WO2006090740A1 - Light source protecting device and disc device - Google Patents

Light source protecting device and disc device Download PDF

Info

Publication number
WO2006090740A1
WO2006090740A1 PCT/JP2006/303173 JP2006303173W WO2006090740A1 WO 2006090740 A1 WO2006090740 A1 WO 2006090740A1 JP 2006303173 W JP2006303173 W JP 2006303173W WO 2006090740 A1 WO2006090740 A1 WO 2006090740A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
drive current
protection device
limit value
temperature
Prior art date
Application number
PCT/JP2006/303173
Other languages
French (fr)
Japanese (ja)
Inventor
Kazunori Ishizuka
Original Assignee
Pioneer Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corporation filed Critical Pioneer Corporation
Priority to JP2007504748A priority Critical patent/JP4377431B2/en
Publication of WO2006090740A1 publication Critical patent/WO2006090740A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/126Circuits, methods or arrangements for laser control or stabilisation

Definitions

  • a semiconductor laser diode (hereinafter referred to as a laser diode) is used as a light source used for information reading light or information recording light.
  • the laser diode is controlled to generate a constant light output by providing a circuit (APC: Automatic Power Controller) that keeps the light output of the laser diode constant between the power supply and the laser diode. Offer 1).
  • APC Automatic Power Controller
  • a current limiting resistor is connected between the power supply and the APC in order to suppress an increase in drive current due to thermal runaway of the laser diode and deterioration of the laser diode due to surge current from the power supply (patented) Reference 1).
  • Patent Document 1 Japanese Patent Laid-Open No. 05-95148
  • the drive current at the highest operating temperature (maximum operating temperature) within the range that can guarantee the specified life is set as the limit value of the laser diode drive current.
  • the resistance value of the current limiting resistor is determined so as to be the limit value of the drive current. For this reason, when the laser diode is used at a temperature lower than the maximum operating temperature (for example, room temperature), the current value of the difference between the limit value and the required drive current value of the laser diode at room temperature is equal to the limit value. Increased more than the current value of the difference from the required drive current value at the maximum operating temperature. That is, the current value of the difference between the limit value and the required drive current value increases as the operating temperature of the laser diode decreases.
  • the limit value of the laser diode drive current determined from the resistance value of the current limit resistor is constant.
  • a driving current exceeding the required driving current value at that operating temperature may flow to the laser diode.
  • the laser diode emits excessive light, leading to deterioration of the laser diode.
  • the invention according to claim 1 is measured by the temperature detecting means for detecting a use temperature of a light source that emits light when power is supplied from a power source and irradiates the optical disk with light, and is measured by the temperature detecting means.
  • Drive current limit value changing means for changing the limit value of the drive current supplied from the power source to the light source based on the operating temperature of the light source.
  • FIG. 1 is a plan view showing a disk device according to this embodiment.
  • FIG. 2 is a perspective view showing an optical system of a pickup provided in the disk device according to this embodiment.
  • FIG. 3 is an explanatory diagram showing the relationship between LD drive current and operating temperature.
  • FIG. 4 is an explanatory view showing a light source protection device according to this embodiment.
  • FIG. 7 is an explanatory view showing a light source protection device according to a third modification of this embodiment.
  • FIG. 8 is an explanatory view showing a light source protection device according to a third modification of this embodiment.
  • FIG. 9 is a circuit diagram showing a circuit for driving a light source according to a conventional example.
  • FIG. 1 is a plan view showing a disk device according to this embodiment. This figure shows the disk device viewed from the side opposite to the disk mounting side.
  • FIG. 2 is a perspective view showing an optical system of a pickup provided in the disk device according to this embodiment.
  • the disc device 1 reproduces information recorded on an optical disc (hereinafter referred to as a disc) such as a CD (Compact Disc) or a DVD (Digital Versatile Disc).
  • the disk device according to this embodiment further has a function of recording information on the disk.
  • the disk device 1 is normally stored in a housing.
  • the disk device 1 includes disk drive means, information reading means for reading information recorded on the disk, and the like. Devices such as a disk driving means, an information reading means, an information reading means support, and an information reading means driving means are attached to the frame 18 provided in the disk device 1.
  • the electric motor 8 which is a disk drive means is attached to the frame 18 and rotates the disk.
  • the pickup 2 has an optical system 2L for reading information recorded on the disc. Then, the pickup 2 as information reading means moves in the radial direction of the disc (in the direction of arrow S) while the disc is rotating, and reads the information recorded on the disc. If the disc device 1 has a function of recording information on the disc, the information is recorded on the disc in the process of moving in the radial direction of the disc.
  • the pickup 2 is supported by a main shaft 3 and a sub shaft 4 that are information reading means supports.
  • the main shaft 3 and the sub shaft 4 are attached to the frame 18.
  • the main axis 3 is an axis that regulates the moving direction and inclination of the pick-up 2.
  • the pickup 2 is formed with a first bearing portion 10 and a second bearing portion 10 which are pickup side support portions, and the main shaft 3 is formed of these.
  • the pickup 2 is formed with a sub bearing portion 11 that engages with the sub shaft 4. With such a configuration, the pickup 2 includes the first bearing portion 10 and the second bearing portion 10.
  • auxiliary bearing part 11 are supported by main shaft 3 and auxiliary shaft 4 at three points, and move in the radial direction of the disk.
  • the first bearing portion 10 and the second bearing portion 10 are fitted to and slide on the main shaft 3. For this reason, the first bearing
  • a journal bearing is provided in each of the part 10 and the second bearing part 10, and the friction with the main shaft 3 is provided.
  • the main shaft 3 and the sub shaft 4 that support the pickup 2 are fixedly supported by the frame body 18.
  • the main shaft 3 is driven by the first fixing screw 9 and the second fixing screw 9 by the first supporting end 3t and the second supporting end 3t force.
  • the optical system 2L is stored in an optical system case 2C.
  • the optical system consists of a rising mirror 12, a composite prism 13, a half mirror 14, an objective lens 15, a first condenser lens 16a, a second condenser lens 16b, a light receiving element 17 as a reading means, and a semiconductor laser diode as a light source.
  • LD semiconductor laser diode
  • a temperature sensor 21 for measuring the ambient temperature of the LD 20a, 2 Ob is provided in the optical system case 2C.
  • the laser beams emitted from the two LDs 20 a and 20 b are combined by the combining prism 13 and then reflected by the half mirror 14. Then, after being reflected by the rising mirror 12 through the first condenser lens 16a, it is condensed by the objective lens 15 arranged at a position facing the rising mirror 12, and irradiated onto the recording surface of the disk. This laser beam is reflected on the recording surface of the disk, and is guided to the light receiving element 17 through the objective lens 15, the rising mirror 12, the first condenser lens 16a, the half mirror 14, and the second condenser lens 16b.
  • LD20a and LD20b are referred to as LD20 without particular distinction.
  • FIG. 3 is an explanatory diagram showing the relationship between the LD drive current and the operating temperature.
  • FIG. 9 is a circuit diagram showing a circuit for driving a light source according to a conventional example. Since the loss current increases as the operating temperature Ta rises in the LD used as the light source for the optical system provided in the disk device pickup, the current value required to drive the LD (hereinafter referred to as the required drive current value) Iopd is It increases as the operating temperature Ta of the LD increases (see Fig. 3).
  • the operating temperature Ta of the LD means the temperature of the LD when the LD is operating.
  • LD degrades as the use temperature Ta increases.
  • LD wants to make the operable temperature range as large as possible, set the highest operating temperature (maximum operating temperature) Tal within the range that can guarantee the specified life.
  • the operating temperature of the LD exceeds the maximum operating temperature Tal, control for executing the protection operation (for example, operation stop) of the LD is generally performed. Therefore, the drive current exceeding the required drive current value at the maximum operating temperature Tal is not applied to the LD.
  • LD120 is necessary when the optical output control function of the APC122 stops working due to poor soldering of the APC122 (hereinafter referred to as APC: Automatic Power Controller) 122 or malfunction due to the deterioration of the APC122 itself. Excessive drive current value exceeding lopl
  • the LD 120 emits excessive light, leading to deterioration of the LD 120.
  • a light source protection device 40 is provided between the power source Vcc of the LD 20 and the APC 22 which is a constant optical output control unit, and according to the operating temperature Ta of the LD 20. Then, the drive current limit value lopl is changed. Specifically, as shown by the solid line in FIG. 3, the drive current limit value lopl is increased as the operating temperature Ta of the LD 20 increases.
  • the drive current limit value lopl is set so as not to exceed the maximum drive current value II of the LD20 determined based on the maximum use temperature Tal of the LD20. That is, the drive current limit value lopl is not more than the maximum drive current value II. As a result, it is possible to prevent the excessive drive current lop from being applied to the LD 20 and to reliably operate the LD 20 up to the maximum operating temperature Tal of the LD 20.
  • the configuration of the light source protection device 40 according to this embodiment explain.
  • the light source protection device 40 includes a temperature sensor 21 as a temperature detecting means for detecting the ambient temperature of the LD 20 that is a light source, and the LD 20 based on the ambient temperature of the LD 20 measured by the temperature sensor 21. And the resistance variable device 30 as a drive current limit value changing means for changing the drive current limit value lopl of the.
  • the operating temperature Ta of the LD20 is represented by the ambient temperature of the LD20.
  • the light source protection device 40 is provided between the power source Vcc of the LD 20 and the APC 22.
  • the light source protection device 40 may be provided between the APC 22 and the LD 20.
  • an excessive current may flow to APC22 when a surge is applied.
  • the resistance variable device 30 is connected in series between the power source Vcc of the LD 20 and the APC 22.
  • the LD 20 is connected to the APC 22 in series and is driven by the APC 22.
  • a photodiode 23 is provided as a light detection means for detecting the light amount of the LD 20.
  • the APC 22 acquires the terminal voltage of the photodiode 23 and calculates the light emission amount of the LD 20 based on the change. Based on the calculation result, the APC 22 controls the LD driving current lop so that the LD 20 emits light with a constant output. As a result, the LD 20 emits light with a constant output.
  • the variable resistance device 30 included in the light source protection device 40 changes the resistance value based on the ambient temperature of the LD 20 detected by the temperature sensor 21 so that the drive current limit value lopl of the LD 20 is indicated by a solid line in FIG. Change to As a result, even if the optical output control function of the APC22 does not work, the LD drive current lop applied to the LD20 does not exceed the drive current limit value lopl of the LD20. As a result, excessive light emission of LD20 can be suppressed and deterioration of LD20 can be suppressed.
  • variable resistance device 30 can be a so-called variable resistor, for example. Then, based on the ambient temperature of the LD 20 detected by the temperature sensor 21, the variable resistor may be controlled by an actuator.
  • variable resistance device 3 0 is an electronic variable resistor using a so-called IC (Integrated Circuit), and does not convert the electrical signal of the temperature sensor 21 force into a mechanical motion. 30 may be controlled.
  • the drive current limit value Iopl of the LD may be the required drive current value Iopd of the LD, but in this embodiment, the margin current value Im is added to the required drive current value Iopd of the LD. Value (Iopd + Im). This is because the required drive current value Iopd required to obtain the same optical output varies due to variations in the operation and manufacturing of the LD. This is to allow the LD to emit light.
  • the drive current limit value Iopl of the LD may be set according to the LD having the smallest necessary drive current value Iopd necessary for obtaining the same optical output. In this way, there is less risk of excessive current being applied to an LD with a small required drive current value Iopd required to obtain the same light output. As a result, it is possible to more reliably suppress the degradation of the LD when there is a manufacturing variation or driving variation of the LD.
  • the LD drive current limit value Iopl can be set by selecting an appropriate setting method from the above setting methods according to the specifications of the disk device 1 and the like.
  • FIG. 5 is an explanatory view showing a light source protection device according to a first modification of this embodiment.
  • This light source protection device uses a thermistor as the temperature detection means, and changes the input voltage input to the op amp used as the drive current limit value changing means based on the change in the resistance value of the thermistor due to the change in the ambient temperature of the LD. As a result, the LD drive current limit value Iopl is changed.
  • the current flows between the emitter and collector of the transistor 34.
  • the resistance value R of the thermistor 21a decreases as the temperature rises.
  • the resistance value R of the thermistor 21a decreases.
  • FIG. 6 is an explanatory view showing a light source protection device according to a second modification of this embodiment.
  • the light source protection device 40b has substantially the same configuration as the light source protection device 40a according to the first modification.
  • the base of the transistor 34 is connected to the branch point B through the third resistor 33. Even with such a configuration, the input to the base of the transistor 34 can be changed based on the change in the resistance value of the thermistor 21a.
  • the driving force limit value lopl of the LD 20 can be increased as the operating temperature Ta of the LD 20 increases.
  • the LD drive current lop applied to the LD20 does not exceed the drive current limit value lopl of the LD20. .
  • excessive light emission of the LD20 can be suppressed and deterioration of the LD20 can be suppressed.
  • FIG. 7 and 8 are explanatory views showing a light source protection device according to a third modification of this embodiment.
  • the light source protection device 40c shown in FIG. 7 directly obtains the temperature of the thermistor 21a by the force microcomputer 35 having substantially the same configuration as the light source protection device 40a according to the first modification of this embodiment, and converts the temperature into voltage. The difference is that it is input to operational amplifier 33.
  • the light source protection device 40d shown in FIG. 8 directly obtains the temperature of the thermistor 21a by the force microcomputer 35 having substantially the same configuration as the light source protection device 40b according to the second modification of this embodiment, and uses the temperature as a voltage. The difference is that it is converted and input to operational amplifier 33.
  • This microcomputer 35 is advantageous in that it is not necessary to newly provide a circuit for temperature detection because the disk device 1 can use a microcomputer provided for controlling the operation of the LD 20 and the like. is there.
  • the ambient temperature of the LD is detected by a thermistor.
  • the ambient temperature of the LD is detected by a thermocouple, and the thermoelectric power is detected.
  • the transistor 34 (FIGS. 5, 6, etc.) that is the LD drive current control element may be controlled by controlling the LD drive current control value lopl.
  • the light source protection device is a temperature detection unit that detects the ambient temperature of the light source (LD) that emits light when power is supplied from the power source and irradiates the optical disk with light. Temperature sensor, thermistor, etc.) and the control of the drive current supplied from the power source to the light source based on the ambient temperature of the light source measured by the temperature detecting means.
  • Drive current limit value changing means resistor, thermistor, etc.
  • driving current limit value Iopl for changing the limit value (drive current limit value Iopl).
  • the light source protection device and the disk device according to the present invention are useful for protecting a light source used in an optical disk device or the like, and are particularly suitable for suppressing excessive light emission of the light source.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Head (AREA)

Abstract

A light source protecting device (40) is provided to suppress excessive light emission of a laser diode. The light source protecting device (40) includes a temperature sensor (21) and a resistance variable device (30). In a laser diode (20) which is a light source for irradiating a disc with read light or the like, power is supplied from a power supply (Vcc). A temperature sensor (21) detects an ambient temperature, namely, a use temperature, of a laser diode (20). The resistance variable device (30) changes a limit value of a drive current supplied to a laser diode from the power supply (Vcc) based on the ambient temperature of the laser diode (20) measured by the temperature sensor (21).

Description

明 細 書  Specification
光源保護装置及びディスク装置  Light source protection device and disk device
技術分野  Technical field
[0001] 本発明は、光ディスクの読み取り等に用いられる光源の保護に関する。  The present invention relates to protection of a light source used for reading an optical disc or the like.
背景技術  Background art
[0002] 光ディスク等の再生や光ディスク等に記録'再生するためのディスク装置では、情報 の読み取り光あるいは情報の記録光に用いる光源として、半導体レーザーダイォー ド(以下レーザーダイオード)が用いられる。レーザーダイオードは、電源とレーザー ダイオードとの間に、レーザーダイオードの光出力を一定とする回路 (APC : Automat ic Power Controller)を設けて、一定の光出力を発生するように制御される(特許文 献 1)。また、レーザーダイオードの熱暴走による駆動電流の増加や、電源からのサ ージ電流によってレーザーダイオードが劣化するのを抑制する目的で、電源と APC との間に電流制限用抵抗を接続する(特許文献 1)。  [0002] In a disk apparatus for reproducing an optical disk or the like and recording / reproducing on an optical disk or the like, a semiconductor laser diode (hereinafter referred to as a laser diode) is used as a light source used for information reading light or information recording light. The laser diode is controlled to generate a constant light output by providing a circuit (APC: Automatic Power Controller) that keeps the light output of the laser diode constant between the power supply and the laser diode. Offer 1). In addition, a current limiting resistor is connected between the power supply and the APC in order to suppress an increase in drive current due to thermal runaway of the laser diode and deterioration of the laser diode due to surge current from the power supply (patented) Reference 1).
[0003] 特許文献 1 :特開平 05— 95148号公報  [0003] Patent Document 1: Japanese Patent Laid-Open No. 05-95148
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] レーザーダイオードは、動作可能な温度範囲を拡大するため、規定の寿命を保証 できる範囲で最も高い使用温度(最高使用温度)における駆動電流を、レーザーダイ オードの駆動電流の制限値とする。この駆動電流の制限値となるように、電流制限用 抵抗の抵抗値は定められる。このため、レーザーダイオードが最高使用温度よりも低 い温度(例えば常温)で使用される場合、前記制限値と常温におけるレーザーダイォ ードの必要駆動電流値との差分の電流値は、前記制限値と最高使用温度における 必要駆動電流値との差分の電流値よりも増加する。すなわち、前記制限値と必要駆 動電流値との差分の電流値は、レーザーダイオードの使用温度が低下するほど、大 きくなる。 [0004] In order to expand the temperature range in which laser diodes can operate, the drive current at the highest operating temperature (maximum operating temperature) within the range that can guarantee the specified life is set as the limit value of the laser diode drive current. . The resistance value of the current limiting resistor is determined so as to be the limit value of the drive current. For this reason, when the laser diode is used at a temperature lower than the maximum operating temperature (for example, room temperature), the current value of the difference between the limit value and the required drive current value of the laser diode at room temperature is equal to the limit value. Increased more than the current value of the difference from the required drive current value at the maximum operating temperature. That is, the current value of the difference between the limit value and the required drive current value increases as the operating temperature of the laser diode decreases.
[0005] 特許文献 1に開示されたレーザーダイオード駆動回路の場合、電流制限用抵抗の 抵抗値から定められるレーザーダイオードの駆動電流の制限値は一定であるため、 レーザーダイオードの使用温度が低い場合、その使用温度における必要駆動電流 値を超えた駆動電流がレーザーダイオードに流れる場合がある。かかる場合、レーザ 一ダイオードからは過剰に発光し、レーザーダイオードの劣化を招いてしまう。 [0005] In the case of the laser diode drive circuit disclosed in Patent Document 1, the limit value of the laser diode drive current determined from the resistance value of the current limit resistor is constant. When the operating temperature of a laser diode is low, a driving current exceeding the required driving current value at that operating temperature may flow to the laser diode. In such a case, the laser diode emits excessive light, leading to deterioration of the laser diode.
[0006] そこで、本発明は、上述した課題をその一例として解決するものであって、光源であ るレーザーダイオードの過剰発光を抑制できる光源保護装置及びディスク装置を提 供することを目的とする。  [0006] Therefore, the present invention solves the above-described problem as an example, and an object thereof is to provide a light source protection device and a disk device that can suppress excessive light emission of a laser diode as a light source.
課題を解決するための手段  Means for solving the problem
[0007] 請求項 1に記載の発明は、電源から電力が供給されて発光し、光ディスクに光を照 射する光源の使用温度を検出する温度検出手段と、前記温度検出手段によって測 定された前記光源の使用温度に基づレ、て、前記電源から前記光源へ供給される駆 動電流の制限値を変更する駆動電流制限値変更手段と、を含むことを特徴とする。 図面の簡単な説明 [0007] The invention according to claim 1 is measured by the temperature detecting means for detecting a use temperature of a light source that emits light when power is supplied from a power source and irradiates the optical disk with light, and is measured by the temperature detecting means. Drive current limit value changing means for changing the limit value of the drive current supplied from the power source to the light source based on the operating temperature of the light source. Brief Description of Drawings
[0008] [図 1]図 1は、この実施形態に係るディスク装置を示す平面図である。  FIG. 1 is a plan view showing a disk device according to this embodiment.
[図 2]図 2は、この実施形態に係るディスク装置が備えるピックアップの光学系を示す 斜視図である。  FIG. 2 is a perspective view showing an optical system of a pickup provided in the disk device according to this embodiment.
[図 3]図 3は、 LDの駆動電流と、使用温度との関係を示す説明図である。  FIG. 3 is an explanatory diagram showing the relationship between LD drive current and operating temperature.
[図 4]図 4は、この実施形態に係る光源保護装置を示す説明図である。  FIG. 4 is an explanatory view showing a light source protection device according to this embodiment.
[図 5]図 5は、この実施形態の第 1変形例に係る光源保護装置を示す説明図である。  FIG. 5 is an explanatory view showing a light source protection device according to a first modification of this embodiment.
[図 6]図 6は、この実施形態の第 2変形例に係る光源保護装置を示す説明図である。  FIG. 6 is an explanatory view showing a light source protection device according to a second modification of this embodiment.
[図 7]図 7は、この実施形態の第 3変形例に係る光源保護装置を示す説明図である。  FIG. 7 is an explanatory view showing a light source protection device according to a third modification of this embodiment.
[図 8]図 8は、この実施形態の第 3変形例に係る光源保護装置を示す説明図である。  FIG. 8 is an explanatory view showing a light source protection device according to a third modification of this embodiment.
[図 9]図 9は、従来例に係る光源を駆動する回路を示す回路図である。  FIG. 9 is a circuit diagram showing a circuit for driving a light source according to a conventional example.
符号の説明  Explanation of symbols
[0009] 1 ディスク装置 [0009] 1 disk device
2 ピックアップ  2 Pickup
2L 光学系  2L optical system
20 レーザーダイオード(LD)  20 Laser diode (LD)
21 温度センサ 21a サーミスタ 21 Temperature sensor 21a thermistor
22 APC  22 APC
23 フォトダイオード  23 Photodiode
30 抵抗可変装置  30 Variable resistance device
31 第 1抵抗  31 1st resistor
32 第 2抵抗  32 2nd resistor
33 オペアンプ  33 operational amplifier
34 トランジスタ  34 transistors
35 マイクロコンピュータ  35 Microcomputer
40、 40a、 40b、 40c、 40d 光源保護装置  40, 40a, 40b, 40c, 40d Light source protection device
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0010] 以下、この発明につき、図面を参照しつつ詳細に説明する。なお、この発明を実施 するための最良の形態(以下実施形態という)によりこの発明が限定されるものではな レ、。また、以下の実施形態における構成要素には、当業者が容易に想定できるもの 、あるいは実質的に同一のものが含まれる。  Hereinafter, the present invention will be described in detail with reference to the drawings. The present invention is not limited by the best mode for carrying out the invention (hereinafter referred to as an embodiment). In addition, constituent elements in the following embodiments include those that can be easily assumed by those skilled in the art or those that are substantially the same.
[0011] この実施形態に係る発明は、光ディスクに光を照射するレーザーダイオードの使用 温度を検出する温度検出手段と、この温度検出手段によって測定されたレーザーダ ィオードの使用温度に基づいて、レーザーダイオードに供給する駆動電流の制限値 を変化させる駆動電流制限値変更手段とを含む点に特徴がある。特に、この実施形 態に係る発明は、レーザーダイオードを光ディスクの情報読み取り光等の光源として 用いる場合において、レーザーダイオードの過剰発光による劣化を抑制することに適 している。  The invention according to this embodiment includes a temperature detection unit that detects a use temperature of a laser diode that irradiates light on an optical disc, and a laser diode based on a use temperature of the laser diode measured by the temperature detection unit. It is characterized in that it includes drive current limit value changing means for changing the limit value of the supplied drive current. In particular, the invention according to this embodiment is suitable for suppressing deterioration due to excessive light emission of the laser diode when the laser diode is used as a light source such as information reading light of an optical disk.
[0012] 図 1は、この実施形態に係るディスク装置を示す平面図である。この図は、ディスク 取り付け側とは反対側からディスク装置を見た状態を示している。図 2は、この実施形 態に係るディスク装置が備えるピックアップの光学系を示す斜視図である。このディス ク装置 1は、 CD (Compact Disc)や DVD (Digital Versatile Disc)等の光ディスク ( 以下ディスク)に記録された情報を再生する。なお、この実施形態に係るディスク装置 は、ディスクへ情報を記録する機能をさらに有してレ、てもよレ、。 [0013] ディスク装置 1は、通常は筐体の内部に格納される。ディスク装置 1は、ディスク駆動 手段や、ディスクに記録された情報を読み出す情報読み取り手段等を備えている。 ディスク装置 1が備える枠体 18には、ディスク駆動手段、情報読み取り手段、情報読 み取り手段支持体、情報読み取り手段駆動手段等の機器が取り付けられる。 FIG. 1 is a plan view showing a disk device according to this embodiment. This figure shows the disk device viewed from the side opposite to the disk mounting side. FIG. 2 is a perspective view showing an optical system of a pickup provided in the disk device according to this embodiment. The disc device 1 reproduces information recorded on an optical disc (hereinafter referred to as a disc) such as a CD (Compact Disc) or a DVD (Digital Versatile Disc). The disk device according to this embodiment further has a function of recording information on the disk. [0013] The disk device 1 is normally stored in a housing. The disk device 1 includes disk drive means, information reading means for reading information recorded on the disk, and the like. Devices such as a disk driving means, an information reading means, an information reading means support, and an information reading means driving means are attached to the frame 18 provided in the disk device 1.
[0014] ディスク駆動手段である電気モータ 8は、枠体 18に取り付けられており、ディスクを 回転させる。ピックアップ 2は、ディスクに記録された情報を読み取るための光学系 2L を備る。そして、情報読み取り手段であるピックアップ 2は、ディスクの回転中にディス クの径方向(矢印 S方向)に移動して、ディスクに記録された情報を読み取る。なお、 ディスク装置 1がディスクへ情報を記録する機能を有している場合には、ディスクの径 方向に移動する過程でディスクへ情報を記録する。  [0014] The electric motor 8 which is a disk drive means is attached to the frame 18 and rotates the disk. The pickup 2 has an optical system 2L for reading information recorded on the disc. Then, the pickup 2 as information reading means moves in the radial direction of the disc (in the direction of arrow S) while the disc is rotating, and reads the information recorded on the disc. If the disc device 1 has a function of recording information on the disc, the information is recorded on the disc in the process of moving in the radial direction of the disc.
[0015] ピックアップ 2は、情報読み取り手段支持体である主軸 3、副軸 4によって支持され る。なお、主軸 3、副軸 4は、枠体 18に取り付けられている。ここで、主軸 3は、ピックァ ップ 2の移動方向と傾きとを規制する軸である。ピックアップ 2には、ピックアップ側支 持部である第 1軸受部 10及び第 2軸受部 10が形成されており、主軸 3がこれらの内  The pickup 2 is supported by a main shaft 3 and a sub shaft 4 that are information reading means supports. The main shaft 3 and the sub shaft 4 are attached to the frame 18. Here, the main axis 3 is an axis that regulates the moving direction and inclination of the pick-up 2. The pickup 2 is formed with a first bearing portion 10 and a second bearing portion 10 which are pickup side support portions, and the main shaft 3 is formed of these.
1 2  1 2
部を貫通している。また、ピックアップ 2には、副軸 4と係合する副軸受部 11が形成さ れている。このような構成によって、ピックアップ 2は、第 1軸受部 10、第 2軸受部 10  It penetrates the part. Further, the pickup 2 is formed with a sub bearing portion 11 that engages with the sub shaft 4. With such a configuration, the pickup 2 includes the first bearing portion 10 and the second bearing portion 10.
1 2 及び副軸受部 11の 3点で主軸 3及び副軸 4に支持されて、ディスクの径方向へ移動 する。  1 2 and auxiliary bearing part 11 are supported by main shaft 3 and auxiliary shaft 4 at three points, and move in the radial direction of the disk.
[0016] 第 1軸受部 10、第 2軸受部 10は、主軸 3に嵌合して摺動する。このため、第 1軸受  The first bearing portion 10 and the second bearing portion 10 are fitted to and slide on the main shaft 3. For this reason, the first bearing
1 2  1 2
部 10及び第 2軸受部 10の内部へそれぞれジャーナル軸受を備えて、主軸 3との摩 A journal bearing is provided in each of the part 10 and the second bearing part 10, and the friction with the main shaft 3 is provided.
1 2 1 2
擦を低減する。ピックアップ 2は、情報読み取り手段駆動手段である送りモータ 6によ つてディスクの径方向へ移動する。送りモータ 6の出力軸には送りねじ 5が取り付けら れており、ピックアップ 2に設けられる爪 7が、前記送りねじ 5の外周に形成されるねじ 溝と系合する。これによつて、送りモータ 6を駆動すると、ピックアップ 2がディスクの径 方向外側又は内側へ移動する。  Reduce rubbing. The pickup 2 is moved in the radial direction of the disk by a feed motor 6 which is information reading means driving means. A feed screw 5 is attached to the output shaft of the feed motor 6, and a claw 7 provided on the pickup 2 is aligned with a screw groove formed on the outer periphery of the feed screw 5. As a result, when the feed motor 6 is driven, the pickup 2 moves outward or inward in the radial direction of the disk.
[0017] ピックアップ 2を支持する主軸 3及び副軸 4は、枠体 18に固定支持される。主軸 3は 、第 1支持端部 3t及び第 2支持端部 3t力 第 1固定ねじ 9及び第 2固定ねじ 9によ The main shaft 3 and the sub shaft 4 that support the pickup 2 are fixedly supported by the frame body 18. The main shaft 3 is driven by the first fixing screw 9 and the second fixing screw 9 by the first supporting end 3t and the second supporting end 3t force.
1 2 1 2 つて枠体 18に固定されることによって取り付けられる。また、主軸 3には油等の潤滑 剤が塗布されており、第 1軸受部 10及び第 2軸受部 10の内部へ設けられるジャー 1 2 1 2 Attached by being fixed to the frame 18. The main shaft 3 is lubricated with oil. The jar is applied to the inside of the first bearing part 10 and the second bearing part 10.
1 2  1 2
ナル軸受との摩擦を低減する。  Reduces friction with the null bearing.
[0018] 図 2に示すように、前記光学系 2Lは、光学系ケース 2C内に格納されている。光学 系は、立ち上げミラー 12、合成プリズム 13、ハーフミラー 14、対物レンズ 15、第 1集 光レンズ 16a、第 2集光レンズ 16b、読み取り手段である受光素子 17、光源である半 導体レーザーダイオード(以下 LDという) 20a、 20bとを含んでレ、る。また、 LD20a、 2 Obの周囲温度を測定する温度センサ 21が光学系ケース 2C内に備えられる。  As shown in FIG. 2, the optical system 2L is stored in an optical system case 2C. The optical system consists of a rising mirror 12, a composite prism 13, a half mirror 14, an objective lens 15, a first condenser lens 16a, a second condenser lens 16b, a light receiving element 17 as a reading means, and a semiconductor laser diode as a light source. (Hereinafter referred to as LD) 20a and 20b. Further, a temperature sensor 21 for measuring the ambient temperature of the LD 20a, 2 Ob is provided in the optical system case 2C.
[0019] 2個の LD20a、 20bから出射したレーザー光は、合成プリズム 13で合成された後、 ハーフミラー 14で反射される。そして、第 1集光レンズ 16aを通って立ち上げミラー 12 で反射されてから、立ち上げミラー 12と対向する位置に配置される対物レンズ 15で 集光されてディスクの記録面へ照射される。このレーザー光はディスクの記録面で反 射され、対物レンズ 15、立ち上げミラー 12、第 1集光レンズ 16a、ハーフミラー 14、第 2集光レンズ 16b通って受光素子 17に導かれる。以下の説明においては、 LD20a、 LD20bを特に区別することなぐ LD20と表記する。  The laser beams emitted from the two LDs 20 a and 20 b are combined by the combining prism 13 and then reflected by the half mirror 14. Then, after being reflected by the rising mirror 12 through the first condenser lens 16a, it is condensed by the objective lens 15 arranged at a position facing the rising mirror 12, and irradiated onto the recording surface of the disk. This laser beam is reflected on the recording surface of the disk, and is guided to the light receiving element 17 through the objective lens 15, the rising mirror 12, the first condenser lens 16a, the half mirror 14, and the second condenser lens 16b. In the following description, LD20a and LD20b are referred to as LD20 without particular distinction.
[0020] 図 3は、 LDの駆動電流と、使用温度との関係を示す説明図である。図 9は、従来例 に係る光源を駆動する回路を示す回路図である。ディスク装置のピックアップが備え る光学系の光源として用いられる LDは、使用温度 Taの上昇にともなって損失電流が 増加するため、 LDの駆動に必要な電流値 (以下、必要駆動電流値) Iopdは、 LDの 使用温度 Taの上昇にともなって増加する(図 3参照)。ここで、 LDの使用温度 Taは、 LDが動作しているときにおける LDの温度をいう。  FIG. 3 is an explanatory diagram showing the relationship between the LD drive current and the operating temperature. FIG. 9 is a circuit diagram showing a circuit for driving a light source according to a conventional example. Since the loss current increases as the operating temperature Ta rises in the LD used as the light source for the optical system provided in the disk device pickup, the current value required to drive the LD (hereinafter referred to as the required drive current value) Iopd is It increases as the operating temperature Ta of the LD increases (see Fig. 3). Here, the operating temperature Ta of the LD means the temperature of the LD when the LD is operating.
[0021] LDは、使用温度 Taが高くなるほど劣化する。一方、 LDは、動作可能な温度範囲 をできるだけ大きくしたいので、規定の寿命を保証できる範囲で最も高い使用温度( 最高使用温度) Talを設定する。そして、 LDの使用温度が最高使用温度 Talを超え ると、 LDの保護動作 (例えば動作停止)を実行する制御が一般に行われる。したがつ て、 LDには、最高使用温度 Talにおける必要駆動電流値を超えた駆動電流は印加 されない。  [0021] LD degrades as the use temperature Ta increases. On the other hand, since LD wants to make the operable temperature range as large as possible, set the highest operating temperature (maximum operating temperature) Tal within the range that can guarantee the specified life. When the operating temperature of the LD exceeds the maximum operating temperature Tal, control for executing the protection operation (for example, operation stop) of the LD is generally performed. Therefore, the drive current exceeding the required drive current value at the maximum operating temperature Tal is not applied to the LD.
[0022] ここで、実際の LDは、製造ばらつきや動作ばらつきがあるため、例えば図 9に示す 、従来における光源を駆動する回路では、最高使用温度 Talにおける必要駆動電流 値に、 LD120の製造ばらつき等を考慮したマージン電流値 Imを加算した電流値を 、 LD120の最高駆動電流値 IIとして設定していた。すなわち、 LD120の使用温度範 囲(最高使用温度 Tal以下)において、 LD 120には最高駆動電流値 IIを超える電流 は印加されない。 [0022] Here, since the actual LD has manufacturing variations and operation variations, for example, as shown in FIG. 9, in a conventional circuit for driving a light source, a required drive current at the maximum operating temperature Tal is required. The current value obtained by adding the margin current value Im considering the manufacturing variation of the LD120 to the value was set as the maximum drive current value II of the LD120. That is, no current exceeding the maximum drive current value II is applied to the LD 120 in the operating temperature range of the LD 120 (maximum operating temperature Tal or less).
[0023] しかし、このような設定では、 LD120が最高使用温度 Tal以下で駆動される場合に 問題が生ずる場合がある。例えば、 LD120が、使用温度 Tal (Tal <Ta)で駆動さ れる場合、 LD120の必要駆動電流値は loplである(図 3)。このとき、図 3に示すよう  However, such a setting may cause problems when the LD 120 is driven at the maximum operating temperature Tal or lower. For example, when the LD120 is driven at the operating temperature Tal (Tal <Ta), the required drive current value of the LD120 is lopl (Fig. 3). At this time, as shown in Fig. 3.
1  1
に、 LD120の最高駆動電流値は IIなので、使用温度 Talにおいては、必要駆動電 流値 loplを超えた過剰電流が LD120に印加されるおそれがある。例えば、図 9に示  Furthermore, since the maximum drive current value of LD120 is II, excess current exceeding the required drive current value lopl may be applied to LD120 at operating temperature Tal. For example, as shown in Figure 9.
1  1
す光出力一定制御回路(以下 APC : Automatic Power Controller) 122のはんだ付 け不良や APC122自体の劣化に起因する動作不良によって APC122の光出力制 御機能が働かなくなった場合に、 LD120には、必要駆動電流値 loplを超えた過剰  LD120 is necessary when the optical output control function of the APC122 stops working due to poor soldering of the APC122 (hereinafter referred to as APC: Automatic Power Controller) 122 or malfunction due to the deterioration of the APC122 itself. Excessive drive current value exceeding lopl
1  1
電流が印加されるおそれがある。かかる場合、 LD120からは過剰に発光し、 LD120 の劣化を招いてしまう。  Current may be applied. In such a case, the LD 120 emits excessive light, leading to deterioration of the LD 120.
[0024] 図 4は、この実施形態に係る光源保護装置を示す説明図である。この実施形態に 係る光源保護装置 40は、 LDの過剰発光による LDの劣化を抑制するため、 LDの使 用温度 Taに応じて、 LD20の駆動電流 lopの制限値(以下、駆動電流制限値) lopl を変更する。ここで、 LD20の駆動電流は、 LD20を駆動するため、電源 Vccから LD 20に印加される電流をいう。  FIG. 4 is an explanatory view showing the light source protection device according to this embodiment. The light source protection device 40 according to this embodiment suppresses the deterioration of the LD due to the excessive light emission of the LD, and the limit value of the drive current lop of the LD 20 (hereinafter referred to as the drive current limit value) according to the operating temperature Ta of the LD. Change lopl. Here, the drive current of the LD 20 is a current applied from the power source Vcc to the LD 20 in order to drive the LD 20.
[0025] この実施形態においては、図 4に示すように、 LD20の電源 Vccと、光出力一定制 御手段である APC22との間に光源保護装置 40を設けて、 LD20の使用温度 Taに 応じて、駆動電流制限値 loplを変化させる。具体的には、図 3の実線に示すように、 LD20の使用温度 Taが上昇するにしたがって、駆動電流制限値 loplを大きくする。  In this embodiment, as shown in FIG. 4, a light source protection device 40 is provided between the power source Vcc of the LD 20 and the APC 22 which is a constant optical output control unit, and according to the operating temperature Ta of the LD 20. Then, the drive current limit value lopl is changed. Specifically, as shown by the solid line in FIG. 3, the drive current limit value lopl is increased as the operating temperature Ta of the LD 20 increases.
[0026] ただし、駆動電流制限値 loplは、 LD20の最高使用温度 Talに基づいて決定される LD20の最高駆動電流値 IIを超えないように設定される。すなわち、駆動電流制限値 loplは、最高駆動電流値 II以下とする。これによつて、 LD20へ過剰な駆動電流 lop が印加されることを防ぐとともに、 LD20の最高使用温度 Talまで、 LD20を確実に動 作させることができる。次に、この実施形態に係る光源保護装置 40の構成について 説明する。 However, the drive current limit value lopl is set so as not to exceed the maximum drive current value II of the LD20 determined based on the maximum use temperature Tal of the LD20. That is, the drive current limit value lopl is not more than the maximum drive current value II. As a result, it is possible to prevent the excessive drive current lop from being applied to the LD 20 and to reliably operate the LD 20 up to the maximum operating temperature Tal of the LD 20. Next, the configuration of the light source protection device 40 according to this embodiment explain.
[0027] この実施形態に係る光源保護装置 40は、光源である LD20の周囲温度を検出する 温度検出手段としての温度センサ 21と、温度センサ 21によって測定された LD20の 周囲温度に基づいて、 LD20の駆動電流制限値 loplを変更する駆動電流制限値変 更手段としての抵抗可変装置 30とを含む。なお、この実施形態において、 LD20の 使用温度 Taは、 LD20の周囲温度で代表させる。  [0027] The light source protection device 40 according to this embodiment includes a temperature sensor 21 as a temperature detecting means for detecting the ambient temperature of the LD 20 that is a light source, and the LD 20 based on the ambient temperature of the LD 20 measured by the temperature sensor 21. And the resistance variable device 30 as a drive current limit value changing means for changing the drive current limit value lopl of the. In this embodiment, the operating temperature Ta of the LD20 is represented by the ambient temperature of the LD20.
[0028] この実施形態において、光源保護装置 40は、 LD20の電源 Vccと APC22との間 に設けられる。ここで、光源保護装置 40は、 APC22と LD20との間に設けてもよレ、。 しかし、この場合、サージ印加時等に APC22へ過大な電流が流れるおそれがある。 この実施例のように、光源保護装置 40を LD20の電源 Vccと APC22との間に設ける ことにより、光源保護装置 40によって APC22へ流れる過大な電流を抑制できる。  In this embodiment, the light source protection device 40 is provided between the power source Vcc of the LD 20 and the APC 22. Here, the light source protection device 40 may be provided between the APC 22 and the LD 20. However, in this case, an excessive current may flow to APC22 when a surge is applied. By providing the light source protection device 40 between the power source Vcc of the LD 20 and the APC 22 as in this embodiment, an excessive current flowing to the APC 22 by the light source protection device 40 can be suppressed.
[0029] 抵抗可変装置 30は、 LD20の電源 Vccと APC22との間に、直列に接続される。ま た、 LD20は、 APC22と直列に接続されて、 APC22によって駆動される。 LD20の 近傍には、 LD20の光量を検出する光検出手段として、フォトダイオード 23が設けら れる。 APC22は、フォトダイオード 23の端子電圧を取得し、その変化によって LD20 の発光量を算出する。 APC22は、その算出結果に基づき、 LD20が一定の出力の 光を発光するように、 LD駆動電流 lopを制御する。これによつて、 LD20は、一定の 出力の光を発光する。  The resistance variable device 30 is connected in series between the power source Vcc of the LD 20 and the APC 22. The LD 20 is connected to the APC 22 in series and is driven by the APC 22. In the vicinity of the LD 20, a photodiode 23 is provided as a light detection means for detecting the light amount of the LD 20. The APC 22 acquires the terminal voltage of the photodiode 23 and calculates the light emission amount of the LD 20 based on the change. Based on the calculation result, the APC 22 controls the LD driving current lop so that the LD 20 emits light with a constant output. As a result, the LD 20 emits light with a constant output.
[0030] 光源保護装置 40が備える抵抗可変装置 30は、温度センサ 21によって検出された LD20の周囲温度に基づき抵抗値を変化させて、 LD20の駆動電流制限値 loplを図 3の実線に示すように変更する。これによつて、万一、 APC22の光出力制御機能が 働かなくなった場合であっても、 LD20に印加される LD駆動電流 lopは、 LD20の駆 動電流制限値 loplを超えることはない。その結果、 LD20の過剰な発光を抑制して L D20の劣化を抑えることができる。  The variable resistance device 30 included in the light source protection device 40 changes the resistance value based on the ambient temperature of the LD 20 detected by the temperature sensor 21 so that the drive current limit value lopl of the LD 20 is indicated by a solid line in FIG. Change to As a result, even if the optical output control function of the APC22 does not work, the LD drive current lop applied to the LD20 does not exceed the drive current limit value lopl of the LD20. As a result, excessive light emission of LD20 can be suppressed and deterioration of LD20 can be suppressed.
[0031] 温度センサ 21は、例えば熱伝対ゃサーミスタ等の温度検出素子を使用することが できる。また、抵抗可変装置 30には、例えば、いわゆる可変抵抗器を用いることがで きる。そして、温度センサ 21によって検出された LD20の周囲温度に基づき、ァクチ ユエータによって前記可変抵抗器を制御するようにしてもよい。また、抵抗可変装置 3 0は、いわゆる IC (Integrated Circuit)による電子可変抵抗を用いて、温度センサ 21 力 の電気的な信号を機械的な運動に変換しないで、温度センサ 21からの出力によ つて、直接抵抗可変装置 30を制御してもよい。 As the temperature sensor 21, for example, a temperature detection element such as a thermocouple or thermistor can be used. The variable resistance device 30 can be a so-called variable resistor, for example. Then, based on the ambient temperature of the LD 20 detected by the temperature sensor 21, the variable resistor may be controlled by an actuator. In addition, variable resistance device 3 0 is an electronic variable resistor using a so-called IC (Integrated Circuit), and does not convert the electrical signal of the temperature sensor 21 force into a mechanical motion. 30 may be controlled.
[0032] ここで、 LDの駆動電流制限値 Ioplは、 LDの必要駆動電流値 Iopdとしてもよレ、が、 この実施形態においては、 LDの必要駆動電流値 Iopdにマージン電流値 Imを加算 した値 (Iopd + Im)としている。これは、 LDの動作ばらつきや製造ばらつき等によつ て、同じ光出力を得るために必要とされる必要駆動電流値 Iopdにばらつきがあるた め、このようなばらつきが存在したとしても、確実に LDを発光させることができるように するためである。 Here, the drive current limit value Iopl of the LD may be the required drive current value Iopd of the LD, but in this embodiment, the margin current value Im is added to the required drive current value Iopd of the LD. Value (Iopd + Im). This is because the required drive current value Iopd required to obtain the same optical output varies due to variations in the operation and manufacturing of the LD. This is to allow the LD to emit light.
[0033] また、 LDの駆動電流制限値 Ioplは、同じ光出力を得るために必要な必要駆動電 流値 Iopdが最も小さい LDに合わせて設定してもよい。このようにすれば、同じ光出 力を得るために必要な必要駆動電流値 Iopdが小さい LDに対して、過剰な電流が印 カロされるおそれが小さくなる。その結果、 LDの製造ばらつきや駆動ばらつきが存在 する場合において、 LDの劣化をより確実に抑制できる。 LDの駆動電流制限値 Iopl は、ディスク装置 1の仕様等に応じて、上記設定手法から適切なものを選択して設定 すること力 Sできる。  [0033] Further, the drive current limit value Iopl of the LD may be set according to the LD having the smallest necessary drive current value Iopd necessary for obtaining the same optical output. In this way, there is less risk of excessive current being applied to an LD with a small required drive current value Iopd required to obtain the same light output. As a result, it is possible to more reliably suppress the degradation of the LD when there is a manufacturing variation or driving variation of the LD. The LD drive current limit value Iopl can be set by selecting an appropriate setting method from the above setting methods according to the specifications of the disk device 1 and the like.
[0034] (変形例 1)  [Modification 1]
図 5は、この実施形態の第 1変形例に係る光源保護装置を示す説明図である。この 光源保護装置は、温度検出手段にサーミスタを用い、 LDの周囲温度が変化すること によるサーミスタの抵抗値変化に基づき、駆動電流制限値変更手段として用いるォ ぺアンプに入力する入力電圧を変更することによって、 LDの駆動電流制限値 Ioplを 変更するものである。  FIG. 5 is an explanatory view showing a light source protection device according to a first modification of this embodiment. This light source protection device uses a thermistor as the temperature detection means, and changes the input voltage input to the op amp used as the drive current limit value changing means based on the change in the resistance value of the thermistor due to the change in the ambient temperature of the LD. As a result, the LD drive current limit value Iopl is changed.
[0035] この光源保護装置 40aは、温度検出手段であるサーミスタ 21aと、駆動電流制限値 変更手段であるオペアンプ 33とを含み、さらに、第 1抵抗 31、第 2抵抗 32、及び LD の駆動電流制御素子であるトランジスタ 34を備える。この変形例に係る光源保護装 置 40aは、電源 Vccと、 APC22との間に設けられる。第 1抵抗 31は、電源 Vccとトラ ンジスタ 34のェミッタとの間に接続される。トランジスタ 34のコレクタは、 APC22に接 続される。 [0036] 電源 Vccから流れる電流は、分岐点 Aで第 2抵抗 32に分岐して、これと直列に接続 されるサーミスタ 21aへ流れる。第 2抵抗 32を流れる電流は、分岐点 Bで分岐して、 一方がサーミスタ 21aへ入力され、一方がオペアンプ 33に入力される。また、ォペア ンプ 33には、分岐点 Cで分岐した第 1抵抗 31の出力が入力される。オペアンプ 33の 出力は、トランジスタ 34のベースに入力される。これによつて、オペアンプ 33の出力 によってトランジスタ 34のベースに対する入力を制御して、 APC22へ流れる電流 It の大きさを制 ί卸できる。 The light source protection device 40a includes a thermistor 21a that is a temperature detection means and an operational amplifier 33 that is a drive current limit value changing means, and further includes a first resistor 31, a second resistor 32, and an LD drive current. A transistor 34 as a control element is provided. The light source protection device 40a according to this modification is provided between the power supply Vcc and the APC22. The first resistor 31 is connected between the power supply Vcc and the emitter of the transistor 34. The collector of transistor 34 is connected to APC22. [0036] The current flowing from the power source Vcc branches to the second resistor 32 at the branch point A and flows to the thermistor 21a connected in series therewith. The current flowing through the second resistor 32 branches at a branch point B, one of which is input to the thermistor 21 a and one of which is input to the operational amplifier 33. The output of the first resistor 31 branched at the branch point C is input to the operational amplifier 33. The output of the operational amplifier 33 is input to the base of the transistor 34. As a result, the input to the base of the transistor 34 can be controlled by the output of the operational amplifier 33, and the magnitude of the current It flowing to the APC 22 can be controlled.
[0037] この実施形態に係る光源保護装置 40aにおいて、分岐点 Α—分岐点 Β間の電圧を V、第 1抵抗 31の抵抗値を Rとすると、トランジスタ 34のェミッタ一コレクタ間を流れ [0037] In the light source protection device 40a according to this embodiment, when the voltage between the branch point Α and the branch point Β is V and the resistance value of the first resistor 31 is R, the current flows between the emitter and collector of the transistor 34.
2 1 twenty one
て APC22に流れる電流 Itは、式(1)で求めることができる。  Thus, the current It flowing through the APC 22 can be obtained by equation (1).
It=V /R · · · (1)  It = V / R (1)
2 1  twenty one
[0038] サーミスタ 21aは、温度が上昇すると抵抗値 Rが小さくなる。サーミスタ 21aによって  [0038] The resistance value R of the thermistor 21a decreases as the temperature rises. By thermistor 21a
t  t
検出する LD20の周囲温度が上昇すると、サーミスタ 21aの抵抗値 Rが小さくなるの  As the ambient temperature of the detected LD20 increases, the resistance value R of the thermistor 21a decreases.
t  t
で、分岐点 B—グランド間の電圧 Vは小さくなる。分岐点 A—グランド間の電圧は一 t  Thus, the voltage V between the branch point B and ground becomes small. Voltage between branch point A and ground is 1 t
定なので、前記 Vが小さくなると、分岐点 A—分岐点 B間の電圧 Vは大きくなる。する  Therefore, when V becomes smaller, the voltage V between branch point A and branch point B increases. Do
t 2  t 2
と式(1)から、 Itは増加する。  From equation (1), It increases.
[0039] 式(1)によって定まる電流 Itは、この変形例に係る光源保護装置 40aから出力され て、 APC22へ入力される電流である。この電流は、 LD20の周囲温度、すなわち LD 20の使用温度 Taの上昇とともに、図 3の実線のように変化する。したがって、 Itを LD の駆動電流制限値 Ioplとすれば、 LD20の使用温度 Taが上昇するにしたがって、 L D20の駆動電流制限値 Ioplを大きくすることができる。  [0039] The current It determined by the equation (1) is a current output from the light source protection device 40a according to this modification and input to the APC 22. This current changes as shown by the solid line in FIG. 3 as the ambient temperature of the LD 20, that is, the operating temperature Ta of the LD 20 increases. Therefore, if It is assumed that the LD drive current limit value Iopl is increased, the drive current limit value Iopl of LD20 can be increased as the operating temperature Ta of the LD20 increases.
[0040] これによつて、万一、 APC22の光出力制御機能が働かなくなった場合であっても、 LD20に印加される LD駆動電流 lopは、 LD20の駆動電流制限値 Ioplを超えること はない。その結果、 LD20の過剰な発光を抑制して LD20の劣化を抑えることができ る。  [0040] According to this, even if the optical output control function of APC22 stops working, the LD drive current lop applied to the LD20 does not exceed the drive current limit value Iopl of the LD20. . As a result, excessive light emission of the LD20 can be suppressed and deterioration of the LD20 can be suppressed.
[0041] (変形例 2)  [0041] (Modification 2)
図 6は、この実施形態の第 2変形例に係る光源保護装置を示す説明図である。この 光源保護装置 40bは、上記第 1変形例に係る光源保護装置 40aと略同様の構成で あるが、トランジスタ 34のベースは、第 3抵抗 33を介して分岐点 Bと接続されている。 このような構成によっても、サーミスタ 21aの抵抗値変化に基づいてトランジスタ 34の ベースに対する入力を変化させることができる。そして、図 3の実線に示すように、 LD 20の使用温度 Taが上昇するにしたがって、 LD20の駆動電流制限値 loplを大きくす ること力 Sできる。 FIG. 6 is an explanatory view showing a light source protection device according to a second modification of this embodiment. The light source protection device 40b has substantially the same configuration as the light source protection device 40a according to the first modification. However, the base of the transistor 34 is connected to the branch point B through the third resistor 33. Even with such a configuration, the input to the base of the transistor 34 can be changed based on the change in the resistance value of the thermistor 21a. As shown by the solid line in FIG. 3, the driving force limit value lopl of the LD 20 can be increased as the operating temperature Ta of the LD 20 increases.
[0042] これによつて、万一、 APC22の光出力制御機能が働かなくなった場合であっても、 LD20に印加される LD駆動電流 lopは、 LD20の駆動電流制限値 loplを超えること はない。その結果、 LD20の過剰な発光を抑制して LD20の劣化を抑えることができ る。  [0042] Accordingly, even if the optical output control function of the APC22 stops working, the LD drive current lop applied to the LD20 does not exceed the drive current limit value lopl of the LD20. . As a result, excessive light emission of the LD20 can be suppressed and deterioration of the LD20 can be suppressed.
[0043] (変形例 3)  [0043] (Modification 3)
図 7、図 8は、この実施形態の第 3変形例に係る光源保護装置を示す説明図である 。図 7に示す光源保護装置 40cは、この実施形態の第 1変形例に係る光源保護装置 40aと略同様の構成である力 マイクロコンピュータ 35によりサーミスタ 21aの温度を 直接求め、その温度を電圧に変換してオペアンプ 33に入力する点が異なる。図 8に 示す光源保護装置 40dは、この実施形態の第 2変形例に係る光源保護装置 40bと 略同様の構成である力 マイクロコンピュータ 35によりサーミスタ 21aの温度を直接求 め、その温度を電圧に変換してオペアンプ 33に入力する点が異なる。このマイクロコ ンピュータ 35は、ディスク装置 1が、 LD20の動作等を制御するために備えるマイクロ コンピュータを利用することができるので、新たに温度検出のための回路を設ける必 要がない点で有利である。  7 and 8 are explanatory views showing a light source protection device according to a third modification of this embodiment. The light source protection device 40c shown in FIG. 7 directly obtains the temperature of the thermistor 21a by the force microcomputer 35 having substantially the same configuration as the light source protection device 40a according to the first modification of this embodiment, and converts the temperature into voltage. The difference is that it is input to operational amplifier 33. The light source protection device 40d shown in FIG. 8 directly obtains the temperature of the thermistor 21a by the force microcomputer 35 having substantially the same configuration as the light source protection device 40b according to the second modification of this embodiment, and uses the temperature as a voltage. The difference is that it is converted and input to operational amplifier 33. This microcomputer 35 is advantageous in that it is not necessary to newly provide a circuit for temperature detection because the disk device 1 can use a microcomputer provided for controlling the operation of the LD 20 and the like. is there.
[0044] この実施形態の第 1変形例〜第 3変形例においては、サーミスタによって LDの周 囲温度を検出したが、例えば、熱伝対によって LDの周囲温度を検出し、その熱起電 力によって LDの駆動電流制御素子であるトランジスタ 34 (図 5、図 6等)を制御し、こ れによって LDの駆動電流制限値 loplを制御してもよい。  [0044] In the first to third modifications of this embodiment, the ambient temperature of the LD is detected by a thermistor. For example, the ambient temperature of the LD is detected by a thermocouple, and the thermoelectric power is detected. The transistor 34 (FIGS. 5, 6, etc.) that is the LD drive current control element may be controlled by controlling the LD drive current control value lopl.
[0045] 以上、この実施形態およびその変形例に係る光源保護装置は、電源から電力が供 給されて発光し、光ディスクに光を照射する光源 (LD)の周囲温度を検出する温度 検出手段 (温度センサ、サーミスタ等)と、前記温度検出手段によって測定された前 記光源の周囲温度に基づレ、て、前記電源から前記光源へ供給される駆動電流の制 限値 (駆動電流制限値 Iopl)を変更する駆動電流制限値変更手段 (抵抗可変装置、 オペアンプ等)とを含む。これにより、万一、 APCの光出力制御機能が働かなくなつ た場合であっても、 LDに印加される駆動電流 lopは、 LDの駆動電流制限値 Ioplを 超えることはない。その結果、 LDの過剰な発光を抑制して LDの劣化を抑えることが できる。 As described above, the light source protection device according to this embodiment and the modification thereof is a temperature detection unit that detects the ambient temperature of the light source (LD) that emits light when power is supplied from the power source and irradiates the optical disk with light. Temperature sensor, thermistor, etc.) and the control of the drive current supplied from the power source to the light source based on the ambient temperature of the light source measured by the temperature detecting means. Drive current limit value changing means (resistance variable device, operational amplifier, etc.) for changing the limit value (drive current limit value Iopl). As a result, even if the optical output control function of the APC does not work, the drive current lop applied to the LD does not exceed the LD drive current limit value Iopl. As a result, excessive light emission of the LD can be suppressed and deterioration of the LD can be suppressed.
産業上の利用可能性 Industrial applicability
以上のように、本発明に係る光源保護装置及びディスク装置は、光ディスク装置等 に用いられる光源の保護に有用であり、特に、光源の過剰発光を抑制することに適し ている。  As described above, the light source protection device and the disk device according to the present invention are useful for protecting a light source used in an optical disk device or the like, and are particularly suitable for suppressing excessive light emission of the light source.

Claims

請求の範囲 The scope of the claims
[1] 電源から電力が供給されて発光し、光ディスクに光を照射する光源の使用温度を 検出する温度検出手段と、  [1] Temperature detecting means for detecting the operating temperature of a light source that emits light when power is supplied from a power source, and irradiates the optical disk with light;
前記温度検出手段によって測定された前記光源の使用温度に基づいて、前記電 源から前記光源へ供給される駆動電流の制限値を変更する駆動電流制限値変更手 段と、  A drive current limit value changing means for changing a limit value of the drive current supplied from the power source to the light source based on the operating temperature of the light source measured by the temperature detecting means;
を含むことを特徴とする光源保護装置。  A light source protection device comprising:
[2] 前記駆動電流の制限値は、前記光源の最高使用温度に基づいて決定される、前 記光源の最高駆動電流値以下であることを特徴とする請求項 1に記載の光源保護装 置。  [2] The light source protection device according to claim 1, wherein the limit value of the drive current is equal to or less than a maximum drive current value of the light source, which is determined based on a maximum operating temperature of the light source. .
[3] 請求項 1又は 2に記載の光源保護装置は、  [3] The light source protection device according to claim 1 or 2,
前記電源と、前記光源の光出力を一定に制御する光出力一定制御手段との間に 設けられることを特徴とする光源保護装置。  A light source protection device, which is provided between the power source and a light output constant control means for controlling the light output of the light source to be constant.
[4] 前記温度検出手段は、温度によって抵抗値が変化する素子であり、 [4] The temperature detecting means is an element whose resistance value changes with temperature,
前記駆動電流制限値変更手段は、前記素子の抵抗値の変化に基づいて、前記光 源へ供給される駆動電流の制限値を変更することを特徴とする請求項:!〜 3のいず れか 1項に記載の光源保護装置。  The drive current limit value changing means changes the limit value of the drive current supplied to the light source based on a change in the resistance value of the element. Or the light source protection device according to item 1.
[5] ディスクを回転させるディスク駆動手段と、 [5] disk drive means for rotating the disk;
前記ディスクに光を照射するための光源と、  A light source for irradiating the disc with light;
請求項:!〜 4のいずれか 1項に記載の光源保護装置と、  Claims:! To 4 of the light source protection device according to any one of
を含むことを特徴とするディスク装置。  A disk device comprising:
PCT/JP2006/303173 2005-02-22 2006-02-22 Light source protecting device and disc device WO2006090740A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007504748A JP4377431B2 (en) 2005-02-22 2006-02-22 Light source protection device and disk device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005045638 2005-02-22
JP2005-045638 2005-02-22

Publications (1)

Publication Number Publication Date
WO2006090740A1 true WO2006090740A1 (en) 2006-08-31

Family

ID=36927378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/303173 WO2006090740A1 (en) 2005-02-22 2006-02-22 Light source protecting device and disc device

Country Status (2)

Country Link
JP (1) JP4377431B2 (en)
WO (1) WO2006090740A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8755419B2 (en) 2009-09-02 2014-06-17 Ricoh Company, Ltd. Laser diode drive circuit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6168324U (en) * 1984-10-12 1986-05-10
JPS6368121U (en) * 1986-10-20 1988-05-09
JPH01114091A (en) * 1987-10-28 1989-05-02 Mitsubishi Electric Corp Semiconductor laser driving circuit
JPH07254743A (en) * 1994-03-15 1995-10-03 Sanyo Electric Co Ltd Semiconductor laser equipment with protective circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6168324U (en) * 1984-10-12 1986-05-10
JPS6368121U (en) * 1986-10-20 1988-05-09
JPH01114091A (en) * 1987-10-28 1989-05-02 Mitsubishi Electric Corp Semiconductor laser driving circuit
JPH07254743A (en) * 1994-03-15 1995-10-03 Sanyo Electric Co Ltd Semiconductor laser equipment with protective circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8755419B2 (en) 2009-09-02 2014-06-17 Ricoh Company, Ltd. Laser diode drive circuit

Also Published As

Publication number Publication date
JPWO2006090740A1 (en) 2008-08-07
JP4377431B2 (en) 2009-12-02

Similar Documents

Publication Publication Date Title
JP4736967B2 (en) Optical disc apparatus and information recording method
US7680166B2 (en) Laser drive, optical disc apparatus, and laser-driving method
US20070025230A1 (en) Compensation methods based on laser diode controlling input
JP4377431B2 (en) Light source protection device and disk device
US20030099178A1 (en) Optical disc drive and laser beam drive power supply voltage control method
JPWO2005050800A1 (en) LASER DRIVE DEVICE, OPTICAL HEAD HAVING LASER DRIVE DEVICE, AND OPTICAL DISK DEVICE
US20040105377A1 (en) Optical pickup and disk drive unit
US20080043579A1 (en) Optical Disk Device
US20090190620A1 (en) Optical disk device and method of controlling light emitting element
JP2002232073A (en) Laser diode device and optical disk device
JP4032868B2 (en) Light quantity detector and optical pickup device
US8335142B2 (en) Optical disc drive and method of controlling laser light power in optical disc drive
JP2001216672A (en) Temperature detector for laser light emitting body and light emitting device
JP5223896B2 (en) Optical disc apparatus and information recording method
JP2005026371A (en) Semiconductor laser drive circuit and photoelectric sensor
JP4390645B2 (en) Optical disk device
JP2006202440A (en) Method of protecting light source, computer program for protecting light source, apparatus of protecting light source, and disk device
KR100425437B1 (en) Apparatus for reading cd-rom disk having low reflectance and method therefor, particularly concerned with effectively reading disk having low reflectance by increasing driving current for laser diode
JP4596232B2 (en) Optical disc drive, optical head device, focus adjustment method, characteristic data generation device, and characteristic data generation method
JP2006244547A (en) Optical pickup
US20060280070A1 (en) Radiation source driving device and method for driving a radiation source
JP2013004149A (en) Apc circuit, and optical disk playback device
KR950013390B1 (en) Auto control circuit of optical power
JP2008217898A (en) Optical disk device and temperature detection method
JP4872685B2 (en) Current-voltage conversion circuit, photodetector circuit, and optical disc apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007504748

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06714313

Country of ref document: EP

Kind code of ref document: A1