WO2006085511A1 - Pulse modulating wireless communication apparatus - Google Patents

Pulse modulating wireless communication apparatus Download PDF

Info

Publication number
WO2006085511A1
WO2006085511A1 PCT/JP2006/302018 JP2006302018W WO2006085511A1 WO 2006085511 A1 WO2006085511 A1 WO 2006085511A1 JP 2006302018 W JP2006302018 W JP 2006302018W WO 2006085511 A1 WO2006085511 A1 WO 2006085511A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse
signal
clock
data
unit
Prior art date
Application number
PCT/JP2006/302018
Other languages
French (fr)
Japanese (ja)
Inventor
Masahiro Mimura
Suguru Fujita
Kazuaki Takahashi
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2006085511A1 publication Critical patent/WO2006085511A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
    • H04L25/4902Pulse width modulation; Pulse position modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B14/00Transmission systems not characterised by the medium used for transmission
    • H04B14/02Transmission systems not characterised by the medium used for transmission characterised by the use of pulse modulation
    • H04B14/026Transmission systems not characterised by the medium used for transmission characterised by the use of pulse modulation using pulse time characteristics modulation, e.g. width, position, interval
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0008Synchronisation information channels, e.g. clock distribution lines

Definitions

  • the present invention relates to a pulse modulation wireless communication apparatus using a pulse modulation signal.
  • Ultra Wide Band (UWB) technology is (1) suitable for CMOS since it does not necessarily require linearity by using an impulse communication method, and can be miniaturized, (2) High precision local Because it is a wireless communication technology that has the advantage of low power consumption because it does not require an RF circuit such as a signal source, and (3) high-speed communication is possible by using a wide band, it is suitable for the above LAN applications. It attracts attention in recent years.
  • the low frequency component of the received signal is extracted, the pulse is detected while the frequency of the generated clock signal is adjusted, and the received signal is demodulated.
  • the pulse is detected while the frequency of the generated clock signal is adjusted, and the received signal is demodulated.
  • FIG. 13 is a block diagram showing a configuration of a reception unit of a pulse modulation wireless communication apparatus using a pulse modulation signal called conventional UWB.
  • PPM Pulse Position Modulation
  • the receiver 1300 of the conventional pulse modulation wireless communication apparatus has an antenna 130.
  • the signal received by antenna 1301 is amplified by reception RF section 1302.
  • the received signal 1303 is generated by widening or removing an unnecessary signal.
  • a correlation signal 1306 is generated by detecting the correlativity between 3 ⁇ 4
  • the low pass filter 1307 extracts the low frequency component signal 1308 from the correlation signal 1306.
  • An adjustable time base 1309 which is a variable frequency clock transmitting means, monitors the low frequency component signal 1308 and adjusts the frequency of the generated clock 1310 so that the signal becomes maximum.
  • a frequency spreading technology is applied to spreading code sequence generation section 1312 to identify a device not to be communicated, and a pulse timing generation section 1311 adds a delay corresponding to the spread code sequence signal 1313 in the spread code sequence generation unit 1312 to the clock signal 1310 and supplies a pulse generation timing signal 1314 to the pulse generation unit 1305.
  • the correlation unit 1304 detects the pulse.
  • Despreading processing is performed, and a demodulation unit 1316 converts the data into a baseband signal sequence, and demodulates the transmitted data.
  • the overhead system has information at the time position of the pulse.
  • the pulse trains obtained as received signals are not equally spaced, and it is necessary to simultaneously detect deviations in pulse positions, which causes a problem that the synchronous circuit has a complicated configuration.
  • the preamble portion contains information.
  • the transmission rate of information is substantially reduced by the insertion of the preamble part.
  • the present invention solves such a problem, and the receiver appropriately receives pulse modulation reference synchronization information to maintain, for example, a synchronized pulse position, and a data signal.
  • the demodulation circuit can start demodulation immediately, and receives the pulse-modulated data signal.
  • the synchronization circuit provides a pulse-modulated wireless communication device with a simple configuration.
  • the present invention also provides, for example, a pulse modulation wireless communication apparatus capable of receiving a data signal modulated by a multi-level pulse modulation method with a simple configuration of a synchronization circuit.
  • the present invention also provides a pulse modulation wireless communication device with a highly reliable configuration for detecting an error in a data signal.
  • Another object of the present invention is to provide a pulse-modulated wireless communication device having a configuration in which a highly accurate synchronization circuit is not required after synchronization channel synchronization pull-in, and the communication efficiency of the synchronization channel signal is high.
  • the present invention also provides a pulse modulation wireless communication device having a configuration with high utilization efficiency of a synchronization channel signal even when data communication is simultaneously performed with a plurality of pulse modulation wireless communication devices.
  • a clock generation unit that generates a clock signal indicating each frame timing of a transmission signal
  • a first pulse generation unit that generates a pulse signal at the timing of the clock signal
  • the first transmission conversion unit generates a clock conversion signal by converting the pulse signal generated by the first pulse generation unit and generates a clock conversion signal, and generates transmission data in synchronization with the timing of the clock signal.
  • a transmission data generation unit a pulse modulation unit that pulse-modulates transmission data and outputs a pulse generation timing signal, a second pulse generation unit that generates a pulse signal at the timing of the pulse generation timing signal,
  • the pulse signal generated by the pulse generation unit 2 is converted to generate a data conversion signal, and the data signal is a signal channel different from the synchronization signal channel. It has a configuration in which a second transmission converter unit that outputs to the signal channels, Ru.
  • a first reception conversion unit that receives a clock conversion signal obtained by converting a clock pulse signal from a synchronization signal channel and generates a clock pulse signal, and a data pulse signal
  • the data conversion signal obtained by converting the data is received from the data signal channel which is a signal channel different from the synchronization signal channel
  • a second reception conversion unit that generates a data pulse signal, and pulse demodulation of the data pulse signal based on the clock pulse signal
  • a pulse demodulation unit that outputs a bit stream, and a demodulation unit that demodulates the bit stream into received data with reference to the clock pulse signal.
  • the pulse modulation unit sets a modulation pulse position indicating a pulse position of pulse modulation according to transmission data, and a pulse control signal corresponding to the modulation pulse position.
  • a pulse position setting unit that outputs the signal, a multistage delay unit that taps and outputs a clock signal delayed according to all pulse modulation pulse positions, and an output signal of the multistage delay unit is selected by the pulse control signal and output.
  • a switch portion to be connected.
  • the pulse demodulation unit outputs a multistage delay unit for outputting clock pulse signals delayed according to pulse positions of all pulse modulations, and an output of the multistage delay unit.
  • the configuration includes a correlation unit that detects a correlation between a signal and a data pulse signal and outputs a correlation signal, and a pulse position determination unit that determines a pulse position of pulse modulation according to the correlation signal and outputs a bit stream.
  • the pulse-modulated wireless communication device of the present invention further includes a synchronization generation unit that generates a synchronization pulse signal that is a pulse signal of a fixed cycle according to a clock signal, and the first pulse generation unit The pulse signal is generated at the timing of the pulse signal.
  • the pulse-modulated wireless communication device of the present invention further includes a clock recovery unit that generates a recovered clock signal indicating frame timing from a clock pulse signal of a fixed cycle, and the pulse demodulation unit is based on the recovered clock signal.
  • the data pulse signal is pulse-demodulated to output a bit stream, and the demodulator demodulates the bit stream into received data based on the reproduction clock signal.
  • the clock recovery unit operates at a frequency approximating the previously set frame timing, and frequency control is performed by an external voltage.
  • a clock signal source a phase comparison unit that outputs an error amount indicating the phase difference between the clock signal source and the clock pulse signal, and a low pass filter that converts the error amount into a control voltage and outputs the control signal.
  • the frequency is controlled by the control voltage.
  • the clock recovery unit operates at a frequency approximate to the frame timing set in advance, and the phase of the output signal is returned to the initial phase by the external signal.
  • the clock recovery signal generation unit capable of reset control is provided, and the phase of the recovery clock signal is synchronized by the input of the clock pulse signal.
  • the pulse modulation wireless communication apparatus comprises a pulse signal having a predetermined cycle according to a clock signal and a pulse signal in which incidental information data indicating incidental information of transmission data is superimposed on the clock signal.
  • the transmission data generation unit generates additional information data together with the transmission data in synchronization with the timing of the clock signal, and the first pulse generation unit generates a superposition pulse. It has a configuration that generates a pulse signal at the timing of the signal.
  • a clock pulse signal on which pulse signals of a constant cycle and incidental information data indicating incidental information of transmission data are superimposed is used to reproduce a reproduced clock signal indicating every frame timing.
  • a superimposed data decoding unit for extracting superimposed data according to the reproduced clock signal and generating superimposed data by the superimposed clock pulse signal according to the reproduced clock signal.
  • a random number pulse signal generated by pulse modulating a clock signal according to pseudo random number sequence data and a pseudo random number generation unit generating pseudo random number sequence data according to a clock signal.
  • the first pulse generation unit is configured to generate a pulse signal at the timing of the random number pulse signal.
  • a clock pulse demodulation unit for generating a random number reproduction clock signal indicating each frame timing from a clock pulse signal pulse-modulated according to pseudo random number sequence data; And a pseudo random number generation unit for generating pseudo random number sequence data at the timing of the clock signal.
  • the data pulse signal is pulse-demodulated based on the clock signal to output a bit stream, and the demodulator is configured to demodulate the bit stream into received data based on the random number recovery clock signal.
  • a pseudo random number generation unit that generates pseudo random number sequence data according to a clock signal, and bi-phase clock signal according to the pseudo random number sequence data (Bi-Phase)
  • the first pulse generation unit further has a configuration for generating a pulse signal at the timing of the random pulse signal! // A bias modulation unit for generating a modulated (binary phase modulated) random number pulse signal! .
  • a biphase reproduction clock indicating each frame timing by detecting a repetition frequency of biphase modulation from a clock pulse signal modulated by a phase shift according to pseudo random number sequence data.
  • the device further includes a pulse detection unit that generates a signal, and the pulse demodulation unit pulse-demodulates the data pulse signal based on the biphase reproduction clock signal to output a bit stream, and the demodulation unit generates the bit stream based on the biphase reproduction clock signal. It is configured to demodulate a bit stream into received data.
  • a plurality of transmission data generation units, a pulse modulation unit, a second pulse generation unit, and a second transmission conversion unit are provided, and a plurality of communication destinations are provided. Is modulated to synchronize the timings of clock signals to generate a data conversion signal, and the data conversion signal is sent to a data signal channel set for each communication destination.
  • the second reception conversion unit selectively receives a plurality of data signal channel powers set in advance, and generates a data pulse signal.
  • the pulse modulation unit or the pulse demodulation unit is a pulse amplitude modulation method of modulating the amplitude of the pulse, or a pulse phase modulation method of modulating the phase of the pulse, or
  • the pulse frequency modulation scheme that modulates the frequency of is composed of.
  • the frequency band used by the synchronization signal channel is narrower than the frequency band used by the data signal channel.
  • the receiving unit appropriately receives the reference synchronization information of PPM modulation to maintain the synchronized state of the pulse position, and the speed or power after receiving the data signal. It is possible to demodulate the signal, and realize a pulse modulation wireless communication device with a simple configuration, with a synchronization circuit that receives a PPM modulated data signal.
  • the synchronization pulse train is transmitted for each fixed symbol, and the clock pulse is reproduced on the reception side, whereby the synchronization circuit is realized.
  • the synchronization circuit is realized.
  • an error of the data signal can be reduced by transmitting the synchronization pulse train for each fixed symbol and adding additional information such as the noise 'bit of the data signal to the synchronization signal.
  • a highly reliable pulse modulation wireless communication device capable of detection and error correction can be realized.
  • the synchronization signal modulated by the random pattern is also sent to the synchronization channel, and the frequency spectrum of the RF signal is leveled by reproducing the synchronization signal by the same random pattern on the receiving side.
  • the synchronization channel is pulled in, it is possible to realize a pulse modulation wireless communication device that does not require a high-accuracy synchronization circuit and has a high communication efficiency of the synchronization channel signal.
  • a pulse modulation wireless communication apparatus can be realized.
  • the synchronization channel is shared for a plurality of transmission channels, so that the synchronous channel signal utilization efficiency is high. It is possible to realize the pulse modulation wireless communication device of the configuration.
  • Figure la is a block diagram showing a configuration of a transmission unit of the pulse modulation wireless communication apparatus according to Embodiment 1 of the present invention.
  • Figure lb is the receiving part of the pulse modulation wireless communication apparatus according to the first embodiment of the present invention
  • FIG. 7 is a block diagram showing the configuration of FIG.
  • FIG. 2a is a block diagram showing a configuration example of a PPM modulation unit of the pulse modulation wireless communication apparatus according to the first embodiment of the present invention.
  • FIG. 2b is a diagram showing a structural example of a mapping table stored in a pulse position setting unit of the PPM modulation unit according to the first embodiment of the present invention.
  • FIG. 3a is a block diagram showing a configuration example of a PPM demodulator of the pulse modulation wireless communication apparatus according to the first embodiment of the present invention.
  • FIG. 3b is a diagram showing signal waveforms in the vicinity of the PPM demodulation unit according to the first embodiment of the present invention.
  • FIG. 4a is a block diagram showing the configuration of a transmitter unit of a pulse modulation wireless communication apparatus according to a second embodiment of the present invention.
  • FIG. 4b is a block diagram showing a configuration of a reception unit of a pulse modulation wireless communication apparatus according to a second embodiment of the present invention.
  • FIG. 5a is a block diagram showing a configuration example of a clock regeneration unit of a pulse modulation wireless communication apparatus according to a second embodiment of the present invention.
  • FIG. 5b is a block diagram showing another configuration example of the clock regeneration unit of the pulse modulation wireless communication device according to the second embodiment of the present invention.
  • FIG. 6a is a block diagram showing a configuration of a transmitter unit of a pulse modulation wireless communication apparatus according to a third embodiment of the present invention.
  • FIG. 6 b is a block diagram showing a configuration of a reception unit of a pulse modulation wireless communication apparatus according to a third embodiment of the present invention.
  • FIG. 7a is a block diagram showing a configuration of a transmitter unit of a pulse modulation wireless communication apparatus according to a fourth embodiment of the present invention.
  • FIG. 7 b is a block diagram showing a configuration of a reception unit of a pulse modulation wireless communication apparatus according to a fourth embodiment of the present invention.
  • FIG. 8a is a block diagram showing the configuration of a transmission unit in the case of using a biphase modulation method for the modulation unit of a pulse modulation wireless communication apparatus according to a fifth embodiment of the present invention.
  • FIG. 8b is a modulation section of a pulse modulation wireless communication apparatus according to a fifth embodiment of the present invention. Is a block diagram showing the configuration of the receiver when using the biphase modulation scheme.
  • FIG. 9a is a block diagram showing a configuration of a transmitter unit of a pulse modulation wireless communication apparatus according to a sixth embodiment of the present invention.
  • FIG. 9b is a block diagram showing a configuration of a receiving unit of the first pulse modulation wireless communication apparatus according to the sixth embodiment of the present invention.
  • FIG. 9c is a block diagram showing a configuration of a receiver of a second pulse modulation wireless communication apparatus according to a sixth embodiment of the present invention.
  • FIG. 10a is a block diagram showing a configuration of an example of a transmission unit of a pulse modulation wireless communication apparatus according to a seventh embodiment of the present invention.
  • FIG. 10b is a block diagram showing another example of the configuration of the transmitter unit of the pulse-modulated wireless communication apparatus according to the seventh embodiment of the present invention.
  • FIG. 11a is a block diagram showing an example of a configuration of a reception unit of a pulse modulation wireless communication apparatus according to a seventh embodiment of the present invention.
  • FIG. 11 is a block diagram showing another example of the configuration of the reception section of the pulse modulation wireless communication apparatus according to the seventh embodiment of the present invention.
  • FIG. 12a is a diagram showing a received signal waveform received by an antenna of a pulse modulation wireless communication apparatus according to a seventh embodiment of the present invention.
  • FIG. 12b is an enlarged view of a main part of a received signal waveform received by an antenna of a pulse modulation wireless communication apparatus according to a seventh embodiment of the present invention.
  • FIG. 12c is a diagram showing an output signal waveform of the band limiting filter of the pulse modulation wireless communication device according to the seventh embodiment of the present invention.
  • FIG. 12d is an enlarged view of a main portion of an output signal waveform of a band limiting filter of a pulse modulation wireless communication apparatus according to a seventh embodiment of the present invention.
  • FIG. 13 is a block diagram showing a configuration of a reception unit of a conventional pulse modulation wireless communication apparatus.
  • the pulse modulation radio communication apparatus performs four-valued PPM modulation on transmission data and sends out a data RF signal (data conversion signal) to a data signal channel, as well as a data signal channel. Transmits a clock RF signal (clock conversion signal) on a different synchronization signal channel, receives a data RF signal from the data signal channel, and receives a clock RF signal on a synchronization signal channel different from the data signal channel, Four-level PPM demodulation and data are demodulated and regenerated for communication.
  • the transmission signal is a 4-state signal, and an impulse is generated in which the delay amount in a frame is changed to 0 seconds or T seconds.
  • FIG. La is a block diagram showing a configuration of a transmitter of the pulse modulation wireless communication apparatus according to the first embodiment.
  • the transmitting unit 100a is connected to the antennas 108 and 111, and transmits at an interval of the clock signal 102 with the clock generating unit 101 generating the clock signal 102 at a constant interval of the signal transmission frame rate.
  • the transmission data generation unit 103 generates data 112
  • the PPM modulation unit 104 generates a pulse generation timing signal 105 in which the delay amount of the clock signal 102 is changed according to the transmission data.
  • transmitter 100 a processes pulse generator 113 generating pulse signal 113 at the generation timing of clock signal 102 and RF (Radio Frequency) such as amplification of pulse signal 113, and generates a clock conversion signal.
  • Clock RF signal A that is transmitted from the antenna 111 as the RF signal A
  • a pulse generator 106 that generates the pulse signal 114 according to the generation timing of the pulse generation timing signal 105
  • RF processing such as amplification of the pulse signal 114
  • a transmission RF unit 107 to be transmitted from the antenna 108 as a data RF signal B as a data conversion signal.
  • FIG. 1 b is a block diagram showing the configuration of the receiving unit of the pulse modulation wireless communication apparatus according to the first embodiment.
  • the receiving unit 100 b is connected to the antennas 121 and 124, and the receiving RF unit 122 obtains the clock pulse signal 123 by removing unnecessary frequency components from the clock RF signal A received by the antenna 121.
  • the data RF signal B received by the antenna 124 is also composed of the reception RF unit 125 which removes unnecessary frequency components and obtains the data pulse signal 126.
  • FIG. 2a is a block diagram showing an example of configuration of a PPM modulation unit of the pulse modulation wireless communication apparatus according to the first embodiment.
  • PPM modulation section 104 detects the start timing of a frame from clock signal 102, and control signals 202, 203, 204 indicating the pulse position in the frame according to input transmission data 112. , 205, and delay elements 206, 207, and 208 for delaying the respective input signals by time T and outputting them, and switching the energized state according to the control signals 202, 203, 204, and 205.
  • 1 consists of switches 209, 210, 211 and 212.
  • FIG. 2 b is a diagram showing an example of structure of a mapping table stored in a pulse position setting unit of the PPM modulation unit of the pulse modulation wireless communication apparatus according to the first embodiment.
  • mapping table 250 includes input four-value input data, pulse position data indicating the position at which a pulse is generated, and pulse position setting output data indicating the type of control signal to be output. It is composed and beats.
  • PPM modulation section 104 stores it in advance, determines the pulse position with reference to mapping table 250, and determines the pulse position.
  • One of the control signals 202, 203, 204, 205 is output as the setting output.
  • pulse position setting unit 201 when transmission data “01” is input to pulse position setting unit 201, a pulse of pulse position “frame start position + T” is generated, and “control signal 203” is output as a pulse position setting output. Output Then, only the control switch 210 is energized, and the clock signal 102 delayed further from the "frame start position + ⁇ ", that is, the pulse generation timing signal 105 for generating a pulse at the "frame start position + 2 ⁇ " Output.
  • FIG. 3a is a block diagram showing an example of configuration of a PPM demodulation unit of the pulse modulation wireless communication apparatus according to the first embodiment.
  • PPM demodulator 127 is a delay element 301, 302, 303 for delaying each input signal by time T, and mixers 304, 305, 306, 307 as a correlator for multiplying two input signals.
  • the pulse position determination unit 312 that latches and outputs the data mapped by the input signals 308, 309, 310, and 311 in the cycle of the clock signal 123 in the cycle of the clock pulse signal 123.
  • FIG. 3 b is a diagram showing signal waveforms in the vicinity of the PPM demodulation unit of the pulse modulation wireless communication apparatus according to the first embodiment.
  • the division of the frame formed by the interval of the clock pulse signal 123 is indicated by a solid vertical line, and the division of the transition time T of the four-value PPM is indicated by a vertical broken line in each frame.
  • the pulse position determination unit 312 shows the signal waveform of the bit stream 128 which is the result of the determination of the pulse position.
  • the pulse position determination unit 312 latches each correlation detection result for one frame time specified by the clock pulse signal 123, determines a combination of bits, and outputs a bit string of transmission data as a pulse determination result in the next frame time.
  • the transmission data generation unit 103 generates information to be transmitted according to the clock signal 102 generated by the clock generation unit 101 that determines the frame period of signal transmission, and the PPM modulation unit 104 Supply to.
  • the PPM modulation unit 104 generates a PPM modulated pulse generation timing signal 105 according to the pulse generation position in the frame period specified by the clock signal 102 and supplies the pulse generation timing signal 105 to the pulse generation unit 106.
  • the pulse generation unit 106 generates a pulse signal 114 which is an impulse having a characteristic defined for data transmission according to the pulse generation timing signal 105, and the transmission RF unit 107 performs RF processing such as amplitude and band limitation.
  • Data RF signal B is generated and transmitted through antenna 108.
  • pulse generation unit 109 is defined for clock transmission according to clock signal 102.
  • the pulse signal 113 which is an impulse having the characteristic described above is generated, and the transmission RF unit 110 performs RF processing in the same manner as amplitude and band limitation to generate the clock RF signal A, and transmits it through the antenna 111.
  • receiving section 100b independently receives clock RF signal A and data RF signal B, which are respectively transmitted through different channels.
  • the reception RF unit 122 performs RF processing such as removing unnecessary signals out of the use band from the clock RF signal A received by the antenna 121, and converts the signal into a clock pulse signal 123.
  • the reception RF unit 125 performs an RF process such as removing unnecessary signals out of the use band from the data RF signal B received by the antenna 124, and converts it into a data pulse signal 126.
  • the PPM demodulator 127 detects a pulse position in the frame of the data pulse signal 126 with reference to the clock pulse signal 123 to generate a bit stream 128, and demodulates it into received data in the demodulator 129.
  • the demodulation unit 129 demodulates the output bit stream 128 and reproduces transmission data.
  • the receiving unit appropriately receives the PPM modulation standard synchronization information, thereby maintaining the pulse position synchronization state.
  • the signal can be demodulated immediately after receiving the signal.
  • the clock recovery block conventionally required, that is, the configuration without the adjustable time base configuring the conventional pulse modulation wireless communication device, enables equivalent reception operation, and PPM modulated data.
  • the synchronous circuit that receives the signal can be configured simply.
  • both pulse modulation wireless communication devices Although a mode in which data communication is performed between two pulse modulation wireless communication devices provided with a transmission unit and a reception unit, respectively, both pulse modulation wireless communication devices The same effect can be obtained by providing both of the receiving units and transmitting and receiving data to each other.
  • the pulse position setting unit 201 constituting the PPM modulation unit of the transmission unit shown in the first embodiment can be easily configured by a combination of logic elements, and is configured to be configured by different logic elements. It is a story.
  • the pulse position determination unit 201 constituting the PPM demodulation unit of the reception unit shown in the first embodiment can be easily configured by a combination of logic elements, and is configured to be configured by different logic elements. It is a story.
  • the method of determining the combination of bits in pulse position determination section 201 shown in the first embodiment is table data for determination, for example, pulse position data indicating pulse position and its pulse position. It can be realized by a simple method such as storing table data, which is a set of output data representing an output bit stream corresponding to data, in advance and making reference to judgment.
  • clock RF signal A and data RF signal B are configured to use separate channels in order to achieve separate and asynchronous transmission, so transmission RF section 107 and transmission RF are used.
  • section 110 separates by frequency using different transmission RF frequencies, if channel separation is possible, similar effects can be obtained as a form by means other than frequency separation, for example, CDMA Channel separation can also be performed by a method such as (Code Division Multiple Access).
  • the signal generated by the transmission data generation unit of the transmission unit is a four-value digital signal in which the transmission signal in four states is generated in synchronization with the clock signal.
  • the same effect can be obtained by generating a two-state transmission signal as a digital signal.
  • the installation positions of the respective antennas are assumed to be sufficiently close to the relationship between the installation distance of the respective antennas of the transmission unit and the reception unit and the wavelength of the RF signal.
  • propagation conditions such as delays between transmission and reception of clock RF signal A and data RF signal B are regarded as substantially the same, but when the installation distance of each antenna is large with respect to the wavelength of the RF signal, It may be configured to include means for adjusting a minute synchronization between the clock pulse signal and the data pulse signal.
  • the description is omitted here.
  • the pulse modulation wireless communication apparatus is configured to transmit the clock signal for each frame, whereas the pulse modulation wireless communication apparatus according to the second embodiment is Configure the clock signal to be sent once in multiple frames. , To reduce the repetition cycle of clock signal transmission.
  • FIG. 4a is a block diagram showing a configuration of a transmission unit of the pulse modulation wireless communication apparatus according to the second embodiment.
  • FIG. 4 b is a block diagram showing the configuration of the receiving unit of the pulse modulation wireless communication apparatus according to the second embodiment.
  • transmitting unit 200 a and receiving unit 200 b are substantially the same as the configurations shown in the first embodiment, and therefore the description of the common parts will be omitted, and only the differences will be described.
  • the transmitting unit 200 a is provided with a synchronization generating unit 401 at the front stage of the pulse generating unit 109.
  • the synchronization generation unit 401 outputs a pulse at a constant clock signal cycle determined in advance according to the input of the clock signal 102.
  • the synchronization generation unit 401 is configured by a counter circuit or the like using a shift register.
  • the receiving unit 200 b includes a clock recovery unit 402 as a clock signal source of the PPM demodulation unit 127.
  • the clock recovery unit 402 internally has a clock signal source approximately equal to the interval of the clock signal 102 of the transmission unit 200 a, and when the clock pulse signal 123 is present, the frequency and phase of the clock signal source are converted to the clock pulse signal 123. It outputs the synchronized reproduced clock signal 404.
  • the clock recovery unit 402 can be realized by a PLL (Phase Locked Loop) or the like, and can be realized, for example, by the configuration shown in FIG.
  • PLL Phase Locked Loop
  • FIG. 5a is a block diagram showing a configuration example of a clock recovery unit of the pulse modulation wireless communication apparatus according to the second embodiment.
  • the clock recovery unit 402 a detects, as a voltage, the degree of phase mismatch in the clock signal source 501 that outputs a frequency signal close to the clock signal 102, the phase comparator 502, and the phase comparator 502. And consists of.
  • the clock signal source 501 is capable of controlling the frequency of a VCO (Voltage Controlled Oscillator) or the like.
  • clock recovery unit 402 a when clock pulse signal 123 is present, clock recovery unit 402 a generates a phase ratio between the clock pulse signal 123 and the output signal of clock signal source 501.
  • a control signal detected by the comparator 502 and converted to a voltage value by the low pass filter 503 is supplied to the clock signal source 501.
  • the phase is synchronized by the PLL operation, and the reproduced clock signal 404 synchronized with the clock pulse signal 123 is continuously output.
  • FIG. 5 b is a block diagram showing another configuration example of the clock recovery unit of the pulse modulation wireless communication apparatus according to the second embodiment.
  • the clock recovery unit 402 b is configured of a clock recovery signal generation unit 504 that outputs a recovery clock signal 404 having a frequency close to that of the clock signal 102 having a reset signal input.
  • the clock reproduction signal generation unit 504 uses the clock pulse signal 123 as a reset signal input, and controls the phase of the reproduction clock signal 404 to return to the initial phase when there is a reset signal input, whereby the clock is generated.
  • the reproduced clock signal 404 synchronized with the pulse signal 123 is continuously output.
  • Transmitting section 200 a generates synchronous pulse signal 403 with a constant clock cycle generated by synchronization generating section 401, and transmits clock RF signal A and data RF signal B in the same process as in the first embodiment. Do.
  • Receiving section 200b receives clock RF signal A and data RF signal B, generates regenerated clock signal 404 from received clock pulse signal 123, and demodulates data based on this regenerated clock signal 404. It is.
  • the transmitting side transmits a pulse train at a constant clock signal cycle even if it is a data signal modulated by the multilevel PPM method, and the receiving side
  • the reproduction clock pulse can be generated, and as in the case where the clock signal is transmitted for each frame, the synchronization circuit can obtain the demodulation result with a simple configuration.
  • transmission of clock signals can be minimized to maintain synchronization accuracy, and transmission power can be reduced to reduce power consumption.
  • the synchronization generation unit 401 outputs the synchronization pulse signal at a constant clock signal cycle, but the same effect can be obtained by outputting information in units of information. You can get it. For example, it can be configured to output for each fixed byte amount output from the transmission data generation unit. That is, in FIG. 4A and FIG. 4B, the transmission data generation unit 103 supplies the synchronization request signal 405 to the synchronization generation unit 401 when the division of information unit occurs, and the synchronization generation unit 401 transmits the synchronization request from the transmission data generation unit 103. Only when the signal 405 is input, the clock signal 102 is pulsed to output and transmit the synchronization pulse signal 403. Further, the receiving side determines the division of the information unit from the clock pulse signal 123, refers to it as incidental information, and demodulates.
  • the synchronization generation unit 401 outputs the synchronization pulse signal at a constant clock signal cycle.
  • the pulse interval of the clock RF signal A is variable, the same applies.
  • You can get the effect of The synchronization pulse signal is variably controlled so that the synchronization pulse signal is continuously output at the time of synchronization pull-in immediately after the start of communication, and the synchronization pulse signal is controlled to be sparsely output after the establishment of synchronization. In this way, at the time of synchronization pull-in where the importance of the synchronization pulse signal is high, a large number of synchronization pulse signals can be used, and the necessity of the synchronization pulse is not relatively high. Can have an effect of maximizing the payload in communication, which can suppress transmission of unnecessary synchronization pulse signals.
  • the pulse-modulated wireless communication device is configured to send clock signals at a rate of once in a plurality of frames, whereas the pulse-modulated wireless communication device according to the third embodiment is configured to transmit the clock signal. Further, additional information such as a parity bit is added to the clock signal on the transmitting side, and the error detection or error correction is performed on the receiving side.
  • FIG. 6a is a block diagram showing the configuration of the transmission unit of the pulse modulation wireless communication apparatus according to the third embodiment.
  • FIG. 6 b is a block diagram showing the configuration of the receiving unit of the pulse modulation wireless communication apparatus according to the third embodiment.
  • transmitting unit 300 a and receiving unit 300 b are the same as those shown in the second embodiment. As they are almost the same, the explanation of the common parts is omitted and only the differences are explained.
  • Transmitting section 300 a includes superimposed data generating section 601 which superimposes information on clock signal 102 and outputs superimposed pulse signal 604, instead of synchronization generating section 401 in the second embodiment.
  • the receiving unit 300 b further includes a superimposed data decoding unit 602 that extracts superimposed data 605 indicating information superimposed on the clock pulse signal 123 from the reproduction clock signal 404 and the clock pulse signal 123, and supplies the superimposed data 605 to the demodulation unit 12 9. It is.
  • clock signal 102 is sent at a rate of once in a plurality of frames, insertion of information bits is impossible in the configuration of Embodiment 1 where clock signals are sent out continuously. It will be possible. That is, by configuring the clock signal 102 with a plurality of bits, an information unit defined by a plurality of frames, for example, a noise bit in 1 byte unit or 1 packet unit, or error correction can be used as an information bit. Include information for
  • transmission data generation unit 103 supplies incidental information data 603 to superimposed data generation unit 601 in addition to synchronization request signal 405 in Embodiment 2 at the delimitation of information units, and A superimposed pulse signal 604 is generated including additional information in a data region defined by a plurality of clocks later, and a clock RF signal A is transmitted.
  • the transmission data generation unit 103 provides data areas for a plurality of clocks after the clock signal 102 and adds incidental information such as a parity 'bit by ASK (Amplitude Shift Keying) method. Are pulsed and transmitted.
  • ASK Amplitude Shift Keying
  • the clock recovery unit 402 synchronizes the recovered clock signal 404 with the first pulse of the clock pulse signal 123 as in the second embodiment. Further, the clock pulse signal 123 is supplied to the superposition data decoding unit 602, and the superposition data 605 which is additional information included after the first pulse of the clock pulse signal 123 is decoded and output to the demodulation unit 129.
  • the synchronization pulse train is transmitted for each fixed symbol, and additional information such as the parity 'bit of the data signal is added to the synchronization signal.
  • additional information such as the parity 'bit of the data signal.
  • the data region is configured as an ASK method simply by the presence or absence of a clock signal, but a PPM method may be a bi-phase modulation method that is binary phase modulation.
  • the clock signal is transmitted without modulation for each frame, whereas in the fourth embodiment, the clock signal is transmitted by PPM modulation.
  • FIG. 7a is a block diagram showing the configuration of the transmission unit of the pulse modulation wireless communication apparatus according to the fourth embodiment of the present invention.
  • FIG. 7 b is a block diagram showing a configuration of a receiving unit of the noise modulation radio communication apparatus according to the fourth embodiment of the present invention.
  • the configurations of the transmitting unit 400a and the receiving unit 40Ob are substantially the same as the configurations shown in the first embodiment, and therefore the description of the common portions will be omitted, and differences will be described.
  • the transmitting unit 400 a performs PPM modulation on the clock signal 102 in accordance with the pseudo random number sequence data 705, and generates a random number pulse.
  • the pseudo random number generation unit 701 generates the pseudo random number sequence data 705 in synchronization with the clock signal 102.
  • a clock PPM modulator 702 for outputting the signal 706.
  • Reception unit 400 b performs PPM demodulation using pseudo random number generation unit 703 that generates pseudo random number sequence data 707 in the same sequence as transmission unit 400 a and pseudo random number sequence data 707 output from pseudo random number generation unit 703.
  • a clock PPM demodulator 704 is provided to generate a reproduced clock signal 708. The operation of the pulse modulation wireless communication apparatus according to the fourth embodiment having such a configuration will be described.
  • the pseudo random number generator 701 supplies the clock signal 102 to the clock PPM modulator 702 as the pseudo random number sequence data 705 as a modulation code.
  • the clock PPM modulator 70 2 performs pulse position modulation and supplies a random pulse signal 706 to the pulse generator 109.
  • the pseudo random number generation unit 703 supplies the clock PPM demodulation unit 704 with the same pseudo random number sequence data 707 as the pseudo random number generation unit 701 of the transmission unit 40 Oa, and the clock PPM demodulation unit 704.
  • the clock pulse signal 123 is PPM demodulated to generate a random number reproduction clock signal 708.
  • the phase is synchronized by the sweep means or the like when synchronization is established.
  • the synchronization signal modulated by the random pattern using the pseudo random number sequence data is sent out to the synchronization channel, and the reception side reproduces the signal according to the same random pattern.
  • the frequency spectrum of the clock RF signal can be equalized, and the synchronization efficiency of the synchronization channel signal can be improved without the need for a high precision synchronization circuit after synchronization channel synchronization.
  • clock signal 102 has such a characteristic that power concentrates on a component of a fixed multiple or a division frequency of the repetition frequency of the clock, but in the fourth embodiment, pulse position modulation is performed, and a pseudo random number sequence is generated.
  • pulse position modulation is performed, and a pseudo random number sequence is generated.
  • the PPM method is used as pulse modulation.
  • a biphase modulation method is used instead of the PPM method. Even with this configuration, the same effects as in Embodiment 4 can be obtained.
  • FIGS. 8a and 8b are block diagrams showing configurations of a transmitting unit and a receiving unit of a pulse modulation wireless communication apparatus according to a fifth embodiment of the present invention, respectively.
  • FIG. 7 is a block diagram showing configurations of a transmitting unit and a receiving unit when a bi-phase modulation method is used for a modulation unit of a pulse modulation wireless communication apparatus to be used.
  • the transmission unit 500 a includes a bi-phase modulation unit 801 that bi-phase modulates the clock signal 102 according to the pseudo random number sequence data 705 and outputs a random number pulse signal 803.
  • the receiving unit 500 b includes a pulse detection unit 802 instead of the pseudo random number generation unit 703 and the clock PPM demodulation unit 704.
  • the pulse detection unit 802 detects the synchronization timing by detecting the repetition frequency of the biphase modulation by envelope detection of the input kernel, and generates the noise reproduction clock signal 804.
  • the buffer reproduction clock signal 804 when the buffer reproduction clock signal 804 is reproduced from the clock pulse signal 123 in the reception unit 500 b, the despreading process by the pseudo random number generation unit 703 and the buffer demodulation is performed. It is possible to detect the basic pulse interval of bi-phase modulation by envelope detection etc. without doing this, and this configuration is effective when realizing a simple reception configuration.
  • the pulse modulation wireless communication apparatus when transmitting separately to a plurality of terminals simultaneously, the data RF signal is separately transmitted, and the clock RF signal is shared.
  • the circuit configuration of the transmitter is reduced to reduce power consumption.
  • FIG. 9a is a block diagram showing the configuration of the transmission unit of the pulse modulation wireless communication apparatus according to the sixth embodiment. Further, FIG. 9 b is a block diagram showing the configuration of the receiving unit of the first pulse modulation wireless communication apparatus according to the sixth embodiment. FIG. 9c is a block diagram showing the configuration of the receiving unit of the second pulse modulation wireless communication apparatus according to the sixth embodiment.
  • transmission section 600 a includes transmission data generation section 903, PPM modulation section 904, pulse generation section 906, transmission RF section 907, and antenna 908.
  • transmission section 600 a includes transmission data generation section 903, PPM modulation section 904, pulse generation section 906, transmission RF section 907, and antenna 908.
  • the receiver 600 b and 600 c have the same configuration, and the receiver 600 c has an antenna 921, a receiver RF receiver 922, an antenna 924, a receiver RF receiver 925, a PPM demodulator 927, and a demodulator 929. And share the reception system of the clock RF signal A with the receiver 600c!
  • the data modulation / demodulation operation of transmission section 600 a and reception sections 600 b and 600 c is substantially the same as the operation in the first embodiment.
  • the transmitting unit 600a generates and sends out the clock RF signal A, the data RF signal B for the receiving unit 600b, and the data RF signal C for the receiving unit 600c.
  • the receiving unit 600b receives the clock RF signal A and the data RF signal B and demodulates data
  • the receiving unit 600c receives the clock RF signal A and the data RF signal C and demodulates data.
  • the synchronization channel is set to one device power and the other device. By sharing and transmitting different data simultaneously, it is possible to improve the utilization efficiency of the synchronization channel signal.
  • Embodiment 6 shows a mode in which the data transmission / reception unit has two systems, the same effect can be obtained by sharing one clock RF signal in transmitting / receiving a plurality of data in three or more systems. You can get
  • the pulse-modulated wireless communication apparatus transmits a signal having phase continuity between pulse signals as a clock RF signal to transmit a LO signal for frequency conversion in demodulation.
  • the circuit configuration of the receiving device is reduced and power consumption is reduced by using it as a signal and not having an oscillator that generates an LO signal on the receiving side.
  • the configuration of the pulse modulation wireless communication apparatus according to the seventh embodiment will be described.
  • FIG. 10a is a block diagram showing an example of the configuration of the transmission RF unit of the transmission unit of the pulse modulation wireless communication apparatus according to the seventh embodiment, and the other configuration is the same as that of the first embodiment. , The description is omitted.
  • the transmission RF unit 1001 of the transmission apparatus is composed of an RF signal source 1003 and a short pulse generation circuit 1004, and based on the pulse signal 1002 generated by the pulse generation unit, the short pulse generation circuit 1004 Force RF signal source 1003 switches passage and blocking of the signal output, converts it into a short pulse signal, and outputs it as a clock RF signal and data RF signal.
  • the configuration includes an antenna 1005 for transmission.
  • the short pulse circuit 1004 may be configured using a switch circuit or a mixer circuit.
  • a continuous oscillation circuit as the RF signal source, because the phase continuity between the pulses is required.
  • the circuit that oscillates intermittently or the desired band of the impulse signal is extracted and the signal is extracted. It is possible to use the method of generating the signal and the method of digitally superposing the signal as well as the function of adjusting the phase. In continuous oscillation circuits, it is easy to realize phase continuity, and other methods are advantageous for reducing power consumption because the operation time is short.
  • FIG. 10 b is a block diagram showing another example of the configuration of the transmission RF unit of the transmission unit of the pulse modulation wireless communication apparatus according to the seventh embodiment, and the other configuration is the first embodiment. Description is omitted because it is the same.
  • a plurality of short noises are generated based on the signal from the same RF signal source 1003.
  • a short pulse is generated using an overhead circuit 1006 a or 1006 b, and transmission is performed from the antenna 1005.
  • the configuration of the transmission RF unit 1001 can be simplified, and the number of antennas 1005 can be reduced.
  • FIG. 11a is a block diagram showing an example of the configuration of the reception RF unit of the reception unit of the pulse modulation wireless communication apparatus according to the seventh embodiment, and the other configuration is the same as that of the first embodiment. , The description is omitted.
  • reference numeral 1101 denotes a reception RF unit, and an RF signal source 1102 and a down mixer 1103 Are configured. Transmitter power The clock RF signal and data RF signal sent out are high frequency signals, so it is difficult to receive as it is. Therefore, it is necessary to convert to a low frequency signal.
  • the RF signal received by the antenna 1105 is input to the downmixer 1103, and the signal from the RF signal source 1102 is downconverted to a signal of an appropriate frequency as an LO signal and output as a pulse signal 1104.
  • FIG. 1 ib is a block diagram showing another example of the configuration of the reception RF unit of the reception unit of the pulse modulation wireless communication apparatus according to the seventh embodiment, and the other configuration is the same as that of the first embodiment. Therefore, the explanation is omitted.
  • 1106 is a reception RF unit, and the signal received by antenna 1105 is branched into two, one being inputted to down mixer 1103 as in FIG. 11 a, but one being a band limiting filter It is input to 1107.
  • the signal input to the down mixer 1103 is converted into a continuous signal in order to extract only the frequency of the LO signal in a narrow band, and is input to the down mixer 1103 as an LO signal.
  • the LO signal source for reception is not required, the device configuration is simplified, and the power consumption can be reduced.
  • FIG. 12a is a signal received by the antenna 1105
  • FIG. 12b is a partially enlarged signal thereof.
  • the pulse-like signal received by the antenna 1105 contains a sine wave component.
  • FIG. 12 c is an output signal of the band limiting filter 1107
  • FIG. 12 d is a partially enlarged signal thereof. As described above, in the output signal of the band limiting filter 1107, an intermittent signal is converted into a continuous signal.
  • the RF frequency band is 25 GHz
  • the pulse width lns the band of the band limiting filter is 300 MHz.
  • the RF signal source frequency of the transmitter and the receiver is generated using different reference signal sources, it is necessary to constantly correct the frequency shift, but in this configuration, the RF signal power is extracted to the LO signal.
  • the use of a signal eliminates the need for misregistration correction, and enables simplification of the circuit configuration.
  • the clock RF signal is used as a clock RF signal.
  • the circuit configuration of the receiving apparatus can be reduced and power consumption can be reduced.
  • the PPM modulation unit 104 or the PPM demodulation unit 127 has been described for a pulse modulation wireless communication apparatus configured by a pulse position modulation method in which the position of a pulse is modulated according to transmission data.
  • the present invention relates to a pulse amplitude modulation method that modulates the amplitude of a pulse according to transmission data, a pulse phase modulation method that modulates the phase of a pulse according to transmission data, or a pulse frequency according to transmission data.
  • the method for achieving synchronization when the data is received by the receiver even if it is configured by any of the pulse frequency modulation schemes that modulate the signal is the same as in each embodiment configured by the PPM modulation scheme, and therefore Regardless of which modulation scheme is used, it is possible to maintain the synchronized state at the time of data reception by the reception unit, and to be able to demodulate the signal promptly after data reception.
  • Do is that.
  • the pulse modulation wireless communication device is useful for providing a small-sized and inexpensive PPM modulation wireless device excellent in mass productivity.

Abstract

A transmitting section is provided with a clock generating section (101) which generates a clock signal for indicating each frame timing; a first transmission RF section (110) which generates a clock RF signal by RF modulating a pulse signal generated in a timing of the clock signal and transmits the clock RF signal to a synchronization signal channel; a transmission data generating section (103) which generates transmission data in synchronous with timing of the clock signal; a PPM section (104) which performs PPM to the transmission data and outputs a PPM signal; and a second transmission RF section (107), which generates a data RF signal by RF modulating the PPM signal and outputs the data RF signal to a data signal channel which is a signal channel different from the synchronization signal channel. The receiving section receives reference synchronization information of PPM as needed and maintains a status wherein data reception phase is synchronized.

Description

明 細 書  Specification
パルス変調無線通信装置  Pulse modulation wireless communication device
技術分野  Technical field
[0001] 本発明は、パルス状の変調信号を用いたパルス変調無線通信装置に関する。  The present invention relates to a pulse modulation wireless communication apparatus using a pulse modulation signal.
背景技術  Background art
[0002] 近年の無線 LAN (Local Area Network)の普及に伴い、モビリティという無線 の利点を生力した可搬型の端末による利用が増大している。このような可搬型端末は 、(1)機器の小型、軽量化、(2)バッテリーの長寿命化 (消費電力の低減)が重視さ れ、また(3)通信速度の高速ィ匕が求められている。  [0002] With the spread of wireless LANs (Local Area Networks) in recent years, the use by portable terminals taking advantage of the wireless advantage of mobility is increasing. In such portable terminals, (1) downsizing and weight reduction of equipment, (2) battery life extension (reduction of power consumption) is emphasized, and (3) high speed communication speed is required. ing.
[0003] UWB (Ultra Wide Band)技術は、インパルス通信方式を用いることで、(1)直 線性を必ずしも必要としないため CMOS化に適しており小型化を実現できる、 (2)高 精度のローカル信号源等の RF回路が不要であるため低消費電力、(3)広帯域の利 用により高速な通信可能、といった利点をもつ無線通信技術であることから、上記の LAN用途に好適であるとして、近年注目されている。  [0003] Ultra Wide Band (UWB) technology is (1) suitable for CMOS since it does not necessarily require linearity by using an impulse communication method, and can be miniaturized, (2) High precision local Because it is a wireless communication technology that has the advantage of low power consumption because it does not require an RF circuit such as a signal source, and (3) high-speed communication is possible by using a wide band, it is suitable for the above LAN applications. It attracts attention in recent years.
[0004] 従来パルス状の変調信号を用いたパルス変調無線通信装置では、受信信号の低 域成分を抽出し、発生クロック信号の周波数を調整しながら、パルスを検出して受信 信号を復調している(例えば、特表平 10— 508725号公報)。  Conventionally, in a pulse modulation wireless communication apparatus using a pulse modulation signal, the low frequency component of the received signal is extracted, the pulse is detected while the frequency of the generated clock signal is adjusted, and the received signal is demodulated. (For example, JP-A-10-508725).
[0005] 以下に図面を用いて従来の技術を説明する。  The prior art will be described below with reference to the drawings.
[0006] 図 13は、従来の UWBと呼ばれるパルス状の変調信号を用いたパルス変調無線通 信装置の受信部の構成を示すブロック図を示して 、る。  FIG. 13 is a block diagram showing a configuration of a reception unit of a pulse modulation wireless communication apparatus using a pulse modulation signal called conventional UWB.
[0007] 図 13を用い、変調方式を PPM (Pulse Position Modulation:パルス位置変調As shown in FIG. 13, PPM (Pulse Position Modulation) is used as a modulation method.
)方式とした従来例につ!、て説明する。 The conventional example of the method will be described.
[0008] 図 13において、従来のパルス変調無線通信装置の受信部 1300は、アンテナ 130In FIG. 13, the receiver 1300 of the conventional pulse modulation wireless communication apparatus has an antenna 130.
1、 ¾ffRF¾1302, §関 § 1304、 ノ ノレス 生§^ 1305、 Pーノ スフイノレ夕 1307、調 整可能時間ベース 1309、パルスタイミング発生部 1311、拡散符号系列発生部 1311, 3⁄4 ffRF 3⁄41 302, 関 304 1304, Nores ^ ^ 1305, P ー ノ ス イ ノ 307 1307, adjustable time base 1309, pulse timing generator 1311, spread code sequence generator 131
2、復調部 1316で構成されている。 2 and a demodulation unit 1316.
[0009] この構成で、アンテナ 1301によって受信された信号を、受信 RF部 1302により増 幅したり、不要信号を除去したりなどして、受信信号 1303を生成する。 In this configuration, the signal received by antenna 1301 is amplified by reception RF section 1302. The received signal 1303 is generated by widening or removing an unnecessary signal.
[0010] ¾|¾¾1304«,受 f言 f言号 1303と、ノ ノレス 生§^1305の 生するノ ノレス 1315と の相関性を検出し相関信号 1306を発生する。 [0010] A correlation signal 1306 is generated by detecting the correlativity between 3⁄4 | 3⁄4 3 1 4 3⁄4 «, 言 f 号 1 130 3 and the no ls 1315 produced by the no ls ^ 1 305.
[0011] ローパスフィルタ 1307は、相関信号 1306から低域成分信号 1308を抽出する。 The low pass filter 1307 extracts the low frequency component signal 1308 from the correlation signal 1306.
[0012] 周波数可変のクロック発信手段である調整可能時間ベース 1309は、この低域成分 信号 1308を監視しながら、その信号が最大になるように発生クロック 1310の周波数 を調整する。 An adjustable time base 1309, which is a variable frequency clock transmitting means, monitors the low frequency component signal 1308 and adjusts the frequency of the generated clock 1310 so that the signal becomes maximum.
[0013] ここで、特表平 10— 508725号公報記載の技術では、通信対象でないデバイスと の識別のために周波数拡散技術を拡散符号系列発生部 1312に適用しており、パル スタイミング発生部 1311は、クロック信号 1310に、拡散符号系列発生部 1312にお ける拡散符号系列信号 1313に対応した遅延を付与し、パルス発生部 1305にパル ス発生タイミング信号 1314を供給する。  Here, in the technology described in JP-A-10-508725, a frequency spreading technology is applied to spreading code sequence generation section 1312 to identify a device not to be communicated, and a pulse timing generation section 1311 adds a delay corresponding to the spread code sequence signal 1313 in the spread code sequence generation unit 1312 to the clock signal 1310 and supplies a pulse generation timing signal 1314 to the pulse generation unit 1305.
[0014] こうして、従来のパルス変調無線通信装置では、拡散符号系列発生部 1312で生 成する拡散系列信号 1313が送信元の拡散系列信号と一致した場合に、相関部 13 04にてパルス検出とともに逆拡散処理し、復調部 1316にてベースバンド信号列に 変換し、送信されたデータを復調している。  Thus, in the conventional pulse modulation wireless communication apparatus, when the spread sequence signal 1313 generated by the spread code sequence generation unit 1312 matches the spread sequence signal of the transmission source, the correlation unit 1304 detects the pulse. Despreading processing is performed, and a demodulation unit 1316 converts the data into a baseband signal sequence, and demodulates the transmitted data.
[0015] し力しながら、従来のパルス変調無線通信装置では、変調波から高精度に同期信 号を再生するためには、例えば、 ΡΡΜ方式は、パルスの時間的な位置に情報をもた せる変調方式であり、受信信号として得られるパルス列は等間隔にはならず、同時に パルス位置のずれを検出する必要などがあるため、同期回路が複雑な構成になると いう課題がある。  [0015] Meanwhile, in the conventional pulse modulation wireless communication apparatus, in order to reproduce the synchronization signal from the modulation wave with high accuracy, for example, the overhead system has information at the time position of the pulse. The pulse trains obtained as received signals are not equally spaced, and it is necessary to simultaneously detect deviations in pulse positions, which causes a problem that the synchronous circuit has a complicated configuration.
[0016] また、例えば、多値 ΡΡΜ方式では、パルスの時間的な位置を高 、精度で検出する 同期回路が必要になりさらに複雑な構成になるという課題がある。  Also, for example, in the multi-value ΡΡΜ method, there is a problem that a synchronous circuit that detects the temporal position of the pulse with high accuracy is required, and the configuration becomes more complicated.
[0017] また、信号を受信してから復調処理を開始する際に、送信信号に等間隔なパルス 列のプリアンブル部を設けてフレームの同期を図る方法では、プリアンブル部には情 報が含まれな!/、ため、プリアンブル部の挿入により実質的な情報の伝送速度が下が るという課題がある。  In addition, in the method of providing a preamble portion of pulse trains with equal intervals in the transmission signal to start frame synchronization when starting demodulation processing after receiving a signal, the preamble portion contains information. As a result, there is a problem that the transmission rate of information is substantially reduced by the insertion of the preamble part.
[0018] また、同期処理がプリアンブル部のみにおいて断続的に行われるため、マルチパス による電波や他の装置からの電波等の不要干渉波によってプリアンブル部が影響を 受けると、同期タイミングを誤り、受信性能が著しく劣化するという課題がある。 Also, since synchronization processing is performed intermittently only in the preamble part, multipath When the preamble section is affected by unnecessary interference waves such as radio waves from other devices or radio waves from other devices, there is a problem that synchronization timing is erroneous and reception performance is significantly degraded.
発明の開示  Disclosure of the invention
[0019] 本発明は、このような課題を解決するもので、受信部がパルス変調の基準同期情報 を適宜受信することにより、例えば、パルス位置の同期の取れた状態を維持し、デー タ信号の受信後、速やかに復調開始でき、パルス変調されたデータ信号を受信する 同期回路が簡易な構成のパルス変調無線通信装置を提供するものである。  The present invention solves such a problem, and the receiver appropriately receives pulse modulation reference synchronization information to maintain, for example, a synchronized pulse position, and a data signal. After receiving, the demodulation circuit can start demodulation immediately, and receives the pulse-modulated data signal. The synchronization circuit provides a pulse-modulated wireless communication device with a simple configuration.
[0020] 本発明は、また、例えば、多値パルス変調方式で変調されたデータ信号であっても 同期回路が簡易な構成で受信できるパルス変調無線通信装置を提供するものであ る。  The present invention also provides, for example, a pulse modulation wireless communication apparatus capable of receiving a data signal modulated by a multi-level pulse modulation method with a simple configuration of a synchronization circuit.
[0021] 本発明は、また、データ信号のエラーを検出する信頼性の高い構成のパルス変調 無線通信装置を提供するものである。  The present invention also provides a pulse modulation wireless communication device with a highly reliable configuration for detecting an error in a data signal.
[0022] 本発明は、また、同期チャネルの同期引込み後は高精度な同期回路を不要とし、 同期チャネル信号の通信効率が高い構成のパルス変調無線通信装置を提供するも のである。 Another object of the present invention is to provide a pulse-modulated wireless communication device having a configuration in which a highly accurate synchronization circuit is not required after synchronization channel synchronization pull-in, and the communication efficiency of the synchronization channel signal is high.
[0023] 本発明は、また、複数のパルス変調無線通信装置と同時にデータ通信する場合で あっても、同期チャネル信号の利用効率の高 、構成のパルス変調無線通信装置を 提供するものである。  The present invention also provides a pulse modulation wireless communication device having a configuration with high utilization efficiency of a synchronization channel signal even when data communication is simultaneously performed with a plurality of pulse modulation wireless communication devices.
[0024] 本発明のパルス変調無線通信装置では、送信信号の毎フレームタイミングを示す クロック信号を発生するクロック発生部と、クロック信号のタイミングでパルス信号を生 成する第 1のパルス発生部と、第 1のパルス発生部で生成したパルス信号を信号変 換してクロック変換信号を生成し、同期信号チャネルに送出する第 1の送信変換部と 、クロック信号のタイミングに同期して送信データを発生する送信データ発生部と、送 信データをパルス変調してパルス発生タイミング信号を出力するパルス変調部と、パ ルス発生タイミング信号のタイミングでパルス信号を生成する第 2のノ ルス発生部と、 第 2のパルス発生部で生成したパルス信号を信号変換してデータ変換信号を生成し 、同期信号チャネルとは異なる信号チャネルであるデータ信号チャネルへ出力する 第 2の送信変換部とを備えた構成を有して 、る。 [0025] また、本発明のパルス変調無線通信装置では、クロックパルス信号を信号変換した クロック変換信号を同期信号チャネルより受信し、クロックパルス信号を生成する第 1 の受信変換部と、データパルス信号を変換したデータ変換信号を同期信号チャネル とは異なる信号チャネルであるデータ信号チャネルより受信し、データパルス信号を 生成する第 2の受信変換部と、クロックパルス信号を基準としてデータパルス信号を パルス復調してビットストリームを出力するパルス復調部と、クロックパルス信号を基準 としてビットストリームを受信データに復調する復調部とを備えた構成を有している。 In the pulse modulation wireless communication apparatus of the present invention, a clock generation unit that generates a clock signal indicating each frame timing of a transmission signal, a first pulse generation unit that generates a pulse signal at the timing of the clock signal, The first transmission conversion unit generates a clock conversion signal by converting the pulse signal generated by the first pulse generation unit and generates a clock conversion signal, and generates transmission data in synchronization with the timing of the clock signal. A transmission data generation unit, a pulse modulation unit that pulse-modulates transmission data and outputs a pulse generation timing signal, a second pulse generation unit that generates a pulse signal at the timing of the pulse generation timing signal, The pulse signal generated by the pulse generation unit 2 is converted to generate a data conversion signal, and the data signal is a signal channel different from the synchronization signal channel. It has a configuration in which a second transmission converter unit that outputs to the signal channels, Ru. Further, in the pulse modulation wireless communication apparatus of the present invention, a first reception conversion unit that receives a clock conversion signal obtained by converting a clock pulse signal from a synchronization signal channel and generates a clock pulse signal, and a data pulse signal The data conversion signal obtained by converting the data is received from the data signal channel which is a signal channel different from the synchronization signal channel, and a second reception conversion unit that generates a data pulse signal, and pulse demodulation of the data pulse signal based on the clock pulse signal And a pulse demodulation unit that outputs a bit stream, and a demodulation unit that demodulates the bit stream into received data with reference to the clock pulse signal.
[0026] また、本発明のパルス変調無線通信装置では、パルス変調部は、送信データに応 じてパルス変調のパルス位置を示す変調パルス位置を設定し、変調パルス位置に対 応するパルス制御信号を出力するパルス位置設定部と、すべてのパルス変調のパル ス位置に応じてそれぞれ遅延したクロック信号をタップ出力する多段遅延部と、パル ス制御信号により多段遅延部の出力信号を選択して出力するスィッチ部とを備えた 構成を有している。 Further, in the pulse modulation wireless communication apparatus of the present invention, the pulse modulation unit sets a modulation pulse position indicating a pulse position of pulse modulation according to transmission data, and a pulse control signal corresponding to the modulation pulse position. A pulse position setting unit that outputs the signal, a multistage delay unit that taps and outputs a clock signal delayed according to all pulse modulation pulse positions, and an output signal of the multistage delay unit is selected by the pulse control signal and output. And a switch portion to be connected.
[0027] また、本発明のパルス変調無線通信装置では、パルス復調部は、すべてのパルス 変調のパルス位置に応じて遅延したクロックパルス信号をそれぞれ出力する多段遅 延部と、多段遅延部の出力信号とデータパルス信号との相関を検出して相関信号を 出力する相関部と、相関信号に応じてパルス変調のパルス位置を判定してビットスト リームを出力するパルス位置判定部とを備えた構成を有している。  Further, in the pulse modulation wireless communication apparatus of the present invention, the pulse demodulation unit outputs a multistage delay unit for outputting clock pulse signals delayed according to pulse positions of all pulse modulations, and an output of the multistage delay unit. The configuration includes a correlation unit that detects a correlation between a signal and a data pulse signal and outputs a correlation signal, and a pulse position determination unit that determines a pulse position of pulse modulation according to the correlation signal and outputs a bit stream. Have.
[0028] また、本発明のパルス変調無線通信装置では、クロック信号に応じて一定周期のパ ルス信号である同期パルス信号を発生する同期発生部をさらに備え、第 1のパルス 発生部は、同期パルス信号のタイミングでパルス信号を生成する構成を有して 、る。  The pulse-modulated wireless communication device of the present invention further includes a synchronization generation unit that generates a synchronization pulse signal that is a pulse signal of a fixed cycle according to a clock signal, and the first pulse generation unit The pulse signal is generated at the timing of the pulse signal.
[0029] また、本発明のパルス変調無線通信装置では、一定周期のクロックパルス信号から 毎フレームタイミングを示す再生クロック信号を生成するクロック再生部をさらに備え、 パルス復調部は、再生クロック信号を基準としてデータパルス信号をパルス復調して ビットストリームを出力し、復調部は、再生クロック信号を基準としてビットストリームを 受信データに復調するた構成を有している。  The pulse-modulated wireless communication device of the present invention further includes a clock recovery unit that generates a recovered clock signal indicating frame timing from a clock pulse signal of a fixed cycle, and the pulse demodulation unit is based on the recovered clock signal. The data pulse signal is pulse-demodulated to output a bit stream, and the demodulator demodulates the bit stream into received data based on the reproduction clock signal.
[0030] また、本発明のパルス変調無線通信装置では、クロック再生部は、あら力じめ設定 したフレームタイミングに近似した周波数で動作し、外部からの電圧により周波数制 御可能なクロック信号源と、クロック信号源とクロックパルス信号の位相差を示す誤差 量を出力する位相比較部と、誤差量を制御電圧に変換し出力するローパスフィルタと を備え、クロック信号源の周波数を制御電圧により制御する構成を有している。 Further, in the pulse modulation wireless communication apparatus of the present invention, the clock recovery unit operates at a frequency approximating the previously set frame timing, and frequency control is performed by an external voltage. A clock signal source, a phase comparison unit that outputs an error amount indicating the phase difference between the clock signal source and the clock pulse signal, and a low pass filter that converts the error amount into a control voltage and outputs the control signal. The frequency is controlled by the control voltage.
[0031] また、本発明のパルス変調無線通信装置では、クロック再生部は、あら力じめ設定 したフレームタイミングに近似した周波数で動作し、出力信号の位相を外部信号によ り初期位相に戻るようリセット制御可能なクロック再生信号発生部を備え、クロックパル ス信号の入力により再生クロック信号の位相を同期する構成を有して 、る。  Further, in the pulse modulation wireless communication apparatus of the present invention, the clock recovery unit operates at a frequency approximate to the frame timing set in advance, and the phase of the output signal is returned to the initial phase by the external signal. The clock recovery signal generation unit capable of reset control is provided, and the phase of the recovery clock signal is synchronized by the input of the clock pulse signal.
[0032] また、本発明のパルス変調無線通信装置では、クロック信号に応じた一定周期のパ ルス信号と、クロック信号に送信データの付帯情報を示す付帯情報データを重畳し たパルス信号とからなる重畳パルス信号を生成する重畳データ発生部をさらに備え、 送信データ発生部は、クロック信号のタイミングに同期して送信データとともに付帯情 報データを生成し、第 1のパルス発生部は、重畳ノ ルス信号のタイミングでパルス信 号を生成する構成を有して ヽる。  Further, in the pulse modulation wireless communication apparatus of the present invention, the pulse modulation wireless communication apparatus comprises a pulse signal having a predetermined cycle according to a clock signal and a pulse signal in which incidental information data indicating incidental information of transmission data is superimposed on the clock signal. The transmission data generation unit generates additional information data together with the transmission data in synchronization with the timing of the clock signal, and the first pulse generation unit generates a superposition pulse. It has a configuration that generates a pulse signal at the timing of the signal.
[0033] また、本発明のパルス変調無線通信装置では、一定周期のパルス信号と送信デー タの付帯情報を示す付帯情報データとが重畳されたクロックパルス信号から毎フレー ムタイミングを示す再生クロック信号を生成するクロック再生部と、再生クロック信号に 応じて、重畳されたクロックパルス信号力 付帯情報データを抽出して重畳データを 生成する重畳データ復号部とをさらに備え、復調部は再生クロック信号を基準として 重畳データとビットストリームを受信データに復調する構成を有している。  In addition, in the pulse modulation radio communication device of the present invention, a clock pulse signal on which pulse signals of a constant cycle and incidental information data indicating incidental information of transmission data are superimposed is used to reproduce a reproduced clock signal indicating every frame timing. And a superimposed data decoding unit for extracting superimposed data according to the reproduced clock signal and generating superimposed data by the superimposed clock pulse signal according to the reproduced clock signal. As a reference, the superimposed data and the bit stream are demodulated into received data.
[0034] また、本発明のパルス変調無線通信装置では、クロック信号に応じて擬似乱数列 データを生成する擬似乱数発生部と、擬似乱数列データに応じてクロック信号をパ ルス変調した乱数パルス信号を生成するクロックパルス変調部とさらに備え、第 1の パルス発生部は、乱数パルス信号のタイミングでパルス信号を生成する構成を有して いる。  Further, in the pulse modulation wireless communication apparatus of the present invention, a random number pulse signal generated by pulse modulating a clock signal according to pseudo random number sequence data and a pseudo random number generation unit generating pseudo random number sequence data according to a clock signal. The first pulse generation unit is configured to generate a pulse signal at the timing of the random number pulse signal.
[0035] また、本発明のパルス変調無線通信装置では、擬似乱数列データに応じてパルス 変調されたクロックパルス信号から毎フレームタイミングを示す乱数再生クロック信号 を生成するクロックパルス復調部と、乱数再生クロック信号のタイミングで擬似乱数列 データを発生する擬似乱数発生部とをさらに備え、パルス復調部は、乱数再生クロッ ク信号を基準としてデータパルス信号をパルス復調してビットストリームを出力し、復 調部は、乱数再生クロック信号を基準としてビットストリームを受信データに復調する 構成を有している。 Further, in the pulse modulation wireless communication apparatus of the present invention, a clock pulse demodulation unit for generating a random number reproduction clock signal indicating each frame timing from a clock pulse signal pulse-modulated according to pseudo random number sequence data; And a pseudo random number generation unit for generating pseudo random number sequence data at the timing of the clock signal. The data pulse signal is pulse-demodulated based on the clock signal to output a bit stream, and the demodulator is configured to demodulate the bit stream into received data based on the random number recovery clock signal.
[0036] また、本発明のパルス変調無線通信装置では、クロック信号に応じて擬似乱数列 データを生成する擬似乱数発生部と、擬似乱数列データに応じてクロック信号をバイ フェーズ (Bi— Phase)変調(2値の位相変調)した乱数パルス信号を生成するバイフ エーズ変調部とをさらに備え、第 1のパルス発生部は、乱数パルス信号のタイミングで パルス信号を生成する構成を有して!/、る。  Further, in the pulse modulation wireless communication apparatus of the present invention, a pseudo random number generation unit that generates pseudo random number sequence data according to a clock signal, and bi-phase clock signal according to the pseudo random number sequence data (Bi-Phase) The first pulse generation unit further has a configuration for generating a pulse signal at the timing of the random pulse signal! // A bias modulation unit for generating a modulated (binary phase modulated) random number pulse signal! .
[0037] また、本発明のパルス変調無線通信装置では、擬似乱数列データに応じてバイフ エーズ変調されたクロックパルス信号からバイフェーズ変調の繰り返し周波数を検出 して毎フレームタイミングを示すバイフェーズ再生クロック信号を生成するパルス検出 部をさらに備え、パルス復調部は、バイフェーズ再生クロック信号を基準としてデータ パルス信号をパルス復調してビットストリームを出力し、復調部は、バイフェーズ再生 クロック信号を基準としてビットストリームを受信データに復調する構成を有している。  In addition, in the pulse modulation radio communication device of the present invention, a biphase reproduction clock indicating each frame timing by detecting a repetition frequency of biphase modulation from a clock pulse signal modulated by a phase shift according to pseudo random number sequence data. The device further includes a pulse detection unit that generates a signal, and the pulse demodulation unit pulse-demodulates the data pulse signal based on the biphase reproduction clock signal to output a bit stream, and the demodulation unit generates the bit stream based on the biphase reproduction clock signal. It is configured to demodulate a bit stream into received data.
[0038] また、本発明のパルス変調無線通信装置では、送信データ発生部と、パルス変調 部と、第 2のパルス発生部と、第 2の送信変換部とをそれぞれ複数備え、複数の通信 先に対する送信データを、それぞれクロック信号のタイミング同期するように変調して データ変換信号を生成し、通信先ごとに設定されたデータ信号チャネルへ送出する 構成を有している。  Furthermore, in the pulse modulation wireless communication apparatus of the present invention, a plurality of transmission data generation units, a pulse modulation unit, a second pulse generation unit, and a second transmission conversion unit are provided, and a plurality of communication destinations are provided. Is modulated to synchronize the timings of clock signals to generate a data conversion signal, and the data conversion signal is sent to a data signal channel set for each communication destination.
[0039] また、本発明のパルス変調無線通信装置では、第 2の受信変換部は、複数のデー タ信号チャネル力もあらかじめ設定されたデータ変換信号を選択して受信し、データ パルス信号を生成する構成を有して!/、る。  Further, in the pulse modulation wireless communication apparatus of the present invention, the second reception conversion unit selectively receives a plurality of data signal channel powers set in advance, and generates a data pulse signal. Have a configuration!
[0040] また、本発明のパルス変調無線通信装置では、パルス変調部又はパルス復調部は 、パルスの振幅を変調するパルス振幅変調方式又は、パルスの位相を変調するパル ス位相変調方式又は、パルスの周波数を変調するパルス周波数変調方式の 、ずれ かで構成されている。  Further, in the pulse modulation wireless communication apparatus of the present invention, the pulse modulation unit or the pulse demodulation unit is a pulse amplitude modulation method of modulating the amplitude of the pulse, or a pulse phase modulation method of modulating the phase of the pulse, or The pulse frequency modulation scheme that modulates the frequency of is composed of.
[0041] また、本発明のパルス変調無線通信装置では、同期信号チャネルの使用する周波 数帯域をデータ信号チャネルの使用する周波数帯域より狭く構成されている。 [0042] 以上の構成により、本発明によれば、受信部が PPM変調の基準同期情報を適宜 受信することによりパルス位置の同期の取れた状態を維持して、データ信号の受信 後速や力に信号を復調でき、 PPM変調されたデータ信号を受信する同期回路が簡 易な構成のパルス変調無線通信装置を実現できる。 Further, in the pulse modulation wireless communication apparatus of the present invention, the frequency band used by the synchronization signal channel is narrower than the frequency band used by the data signal channel. With the above configuration, according to the present invention, the receiving unit appropriately receives the reference synchronization information of PPM modulation to maintain the synchronized state of the pulse position, and the speed or power after receiving the data signal. It is possible to demodulate the signal, and realize a pulse modulation wireless communication device with a simple configuration, with a synchronization circuit that receives a PPM modulated data signal.
[0043] 本発明によれば、また、多値 PPM方式で変調されたデータ信号であっても、一定 シンボル毎に同期パルス列を送信し、受信側でクロックノ ルスを再生することにより、 同期回路が簡易な構成で受信できるパルス変調無線通信装置を実現できる。  According to the present invention, even in the case of a data signal modulated by the multi-level PPM method, the synchronization pulse train is transmitted for each fixed symbol, and the clock pulse is reproduced on the reception side, whereby the synchronization circuit is realized. Can realize a pulse modulation wireless communication apparatus that can receive signals with a simple configuration.
[0044] 本発明によれば、また、一定シンボル毎に同期パルス列を送信するとともに、同期 信号にデータ信号のノ リティ'ビットなどの付帯情報を付与して重畳することにより、 データ信号のエラーを検出や誤り訂正できる信頼性の高い構成のパルス変調無線 通信装置を実現できる。  According to the present invention, an error of the data signal can be reduced by transmitting the synchronization pulse train for each fixed symbol and adding additional information such as the noise 'bit of the data signal to the synchronization signal. A highly reliable pulse modulation wireless communication device capable of detection and error correction can be realized.
[0045] 本発明によれば、また、ランダムパターンによって変調した同期信号を同期チヤネ ルに送出し、受信側で同じランダムパターンにより再生することにより、 RF信号の周 波数スぺクトラムを平準化し、同期チャネルの同期引込み後は高精度な同期回路を 不要で同期チャネル信号の通信効率が高い構成のパルス変調無線通信装置を実 現できる。  According to the present invention, the synchronization signal modulated by the random pattern is also sent to the synchronization channel, and the frequency spectrum of the RF signal is leveled by reproducing the synchronization signal by the same random pattern on the receiving side. After the synchronization channel is pulled in, it is possible to realize a pulse modulation wireless communication device that does not require a high-accuracy synchronization circuit and has a high communication efficiency of the synchronization channel signal.
[0046] 本発明によれば、また、ノ ィフェーズ変調方式を用いることにより、受信側でバイフ エーズ変調の基本パルス間隔を包絡線検波などで検出することが可能であり、より簡 便な構成のパルス変調無線通信装置を実現できる。  According to the present invention, it is also possible to detect the basic pulse interval of the bias modulation by envelope detection or the like on the receiving side by using the noise phase modulation method, and a simpler configuration can be obtained. A pulse modulation wireless communication apparatus can be realized.
[0047] 本発明によれば、また、複数のパルス変調無線通信装置と同時にデータ通信する 場合に、複数の送信チャネルに対して同期チャネルを共用することにより、同期チヤ ネル信号の利用効率の高い構成のパルス変調無線通信装置を実現できる。  According to the present invention, when data communication is simultaneously performed with a plurality of pulse modulation wireless communication devices, the synchronization channel is shared for a plurality of transmission channels, so that the synchronous channel signal utilization efficiency is high. It is possible to realize the pulse modulation wireless communication device of the configuration.
[0048] 本発明によれば、また、同期信号チャネルとデータ信号チャネルの合計の周波数 帯域を狭めることが可能となり、周波数あたりの通信効率を高めることができる。 図面の簡単な説明  According to the present invention, it is also possible to narrow the total frequency band of the synchronization signal channel and the data signal channel, and to improve the communication efficiency per frequency. Brief description of the drawings
[0049] [図 la]図 laは、本発明の実施の形態 1にかかるパルス変調無線通信装置の送信部 の構成を示すブロック図である。  [Figure la] Figure la is a block diagram showing a configuration of a transmission unit of the pulse modulation wireless communication apparatus according to Embodiment 1 of the present invention.
[図 lb]図 lbは、本発明の実施の形態 1にかかるパルス変調無線通信装置の受信部 の構成を示すブロック図である。 [Figure lb] Figure lb is the receiving part of the pulse modulation wireless communication apparatus according to the first embodiment of the present invention FIG. 7 is a block diagram showing the configuration of FIG.
[図 2a]図 2aは、本発明の実施の形態 1にかかるパルス変調無線通信装置の PPM変 調部の構成例を示すブロック図である。  [FIG. 2a] FIG. 2a is a block diagram showing a configuration example of a PPM modulation unit of the pulse modulation wireless communication apparatus according to the first embodiment of the present invention.
[図 2b]図 2bは、本発明の実施の形態 1にかかる PPM変調部のパルス位置設定部に 記憶されるマッピングテーブルの構造例を示す図である。  [FIG. 2b] FIG. 2b is a diagram showing a structural example of a mapping table stored in a pulse position setting unit of the PPM modulation unit according to the first embodiment of the present invention.
[図 3a]図 3aは、本発明の実施の形態 1にかかるパルス変調無線通信装置の PPM復 調部の構成例を示すブロック図である。  [FIG. 3a] FIG. 3a is a block diagram showing a configuration example of a PPM demodulator of the pulse modulation wireless communication apparatus according to the first embodiment of the present invention.
[図 3b]図 3bは、本発明の実施の形態 1にかかる PPM復調部周辺の信号波形を示す 図である。  [FIG. 3b] FIG. 3b is a diagram showing signal waveforms in the vicinity of the PPM demodulation unit according to the first embodiment of the present invention.
[図 4a]図 4aは、本発明の実施の形態 2にかかるパルス変調無線通信装置の送信部 の構成を示すブロック図である。  [FIG. 4a] FIG. 4a is a block diagram showing the configuration of a transmitter unit of a pulse modulation wireless communication apparatus according to a second embodiment of the present invention.
圆 4b]図 4bは、本発明の実施の形態 2にかかるパルス変調無線通信装置の受信部 の構成を示すブロック図である。 [4b] FIG. 4b is a block diagram showing a configuration of a reception unit of a pulse modulation wireless communication apparatus according to a second embodiment of the present invention.
[図 5a]図 5aは、本発明の実施の形態 2にかかるパルス変調無線通信装置のクロック 再生部の構成例を示すブロック図である。  [FIG. 5a] FIG. 5a is a block diagram showing a configuration example of a clock regeneration unit of a pulse modulation wireless communication apparatus according to a second embodiment of the present invention.
[図 5b]図 5bは、本発明の実施の形態 2にかかるパルス変調無線通信装置のクロック 再生部の別の構成例を示すブロック図である。  [FIG. 5b] FIG. 5b is a block diagram showing another configuration example of the clock regeneration unit of the pulse modulation wireless communication device according to the second embodiment of the present invention.
[図 6a]図 6aは、本発明の実施の形態 3にかかるパルス変調無線通信装置の送信部 の構成を示すブロック図である。  [FIG. 6a] FIG. 6a is a block diagram showing a configuration of a transmitter unit of a pulse modulation wireless communication apparatus according to a third embodiment of the present invention.
圆 6b]図 6bは、本発明の実施の形態 3にかかるパルス変調無線通信装置の受信部 の構成を示すブロック図である。 6 b] FIG. 6 b is a block diagram showing a configuration of a reception unit of a pulse modulation wireless communication apparatus according to a third embodiment of the present invention.
[図 7a]図 7aは、本発明の実施の形態 4にかかるパルス変調無線通信装置の送信部 の構成を示すブロック図である。  [FIG. 7a] FIG. 7a is a block diagram showing a configuration of a transmitter unit of a pulse modulation wireless communication apparatus according to a fourth embodiment of the present invention.
圆 7b]図 7bは、本発明の実施の形態 4にかかるパルス変調無線通信装置の受信部 の構成を示すブロック図である。 7 b] FIG. 7 b is a block diagram showing a configuration of a reception unit of a pulse modulation wireless communication apparatus according to a fourth embodiment of the present invention.
[図 8a]図 8aは、本発明の実施の形態 5にかかるパルス変調無線通信装置の変調部 にバイフェーズ変調方式を用いた場合の送信部の構成を示すブロック図である。  [FIG. 8a] FIG. 8a is a block diagram showing the configuration of a transmission unit in the case of using a biphase modulation method for the modulation unit of a pulse modulation wireless communication apparatus according to a fifth embodiment of the present invention.
[図 8b]図 8bは、本発明の実施の形態 5にかかるパルス変調無線通信装置の変調部 にバイフェーズ変調方式を用いた場合の受信部の構成を示すブロック図である。 [FIG. 8b] FIG. 8b is a modulation section of a pulse modulation wireless communication apparatus according to a fifth embodiment of the present invention. Is a block diagram showing the configuration of the receiver when using the biphase modulation scheme.
[図 9a]図 9aは、本発明の実施の形態 6にかかるパルス変調無線通信装置の送信部 の構成を示すブロック図である。 [FIG. 9a] FIG. 9a is a block diagram showing a configuration of a transmitter unit of a pulse modulation wireless communication apparatus according to a sixth embodiment of the present invention.
[図 9b]図 9bは、本発明の実施の形態 6にかかる第 1のパルス変調無線通信装置の受 信部の構成を示すブロック図である。  [FIG. 9b] FIG. 9b is a block diagram showing a configuration of a receiving unit of the first pulse modulation wireless communication apparatus according to the sixth embodiment of the present invention.
[図 9c]図 9cは、本発明の実施の形態 6にかかる第 2のパルス変調無線通信装置の受 信部の構成を示すブロック図である。  [FIG. 9c] FIG. 9c is a block diagram showing a configuration of a receiver of a second pulse modulation wireless communication apparatus according to a sixth embodiment of the present invention.
圆 10a]図 10aは、本発明の実施の形態 7にかかるパルス変調無線通信装置の送信 部の一例の構成を示すブロック図である。 10a] FIG. 10a is a block diagram showing a configuration of an example of a transmission unit of a pulse modulation wireless communication apparatus according to a seventh embodiment of the present invention.
圆 10b]図 10bは本発明の実施の形態 7にかかるパルス変調無線通信装置の送信部 の構成の他の例を示すブロック図である。 10b] FIG. 10b is a block diagram showing another example of the configuration of the transmitter unit of the pulse-modulated wireless communication apparatus according to the seventh embodiment of the present invention.
[図 11a]図 11aは、本発明の実施の形態 7にかかるパルス変調無線通信装置の受信 部の構成の一例を示すブロック図である。  [FIG. 11a] FIG. 11a is a block diagram showing an example of a configuration of a reception unit of a pulse modulation wireless communication apparatus according to a seventh embodiment of the present invention.
圆 l ib]図 l ibは、本発明の実施の形態 7にかかるパルス変調無線通信装置の受信 部の構成の他の例を示すブロック図である。 FIG. 11 is a block diagram showing another example of the configuration of the reception section of the pulse modulation wireless communication apparatus according to the seventh embodiment of the present invention.
[図 12a]図 12aは、本発明の実施の形態 7にかかるパルス変調無線通信装置のアン テナで受信された受信信号波形を示す図である。  [FIG. 12a] FIG. 12a is a diagram showing a received signal waveform received by an antenna of a pulse modulation wireless communication apparatus according to a seventh embodiment of the present invention.
[図 12b]図 12bは、本発明の実施の形態 7にかかるパルス変調無線通信装置のアン テナで受信された受信信号波形の要部を拡大した図である。  [FIG. 12b] FIG. 12b is an enlarged view of a main part of a received signal waveform received by an antenna of a pulse modulation wireless communication apparatus according to a seventh embodiment of the present invention.
[図 12c]図 12cは、本発明の実施の形態 7にかかるパルス変調無線通信装置の帯域 制限フィルタの出力信号波形を示す図である。 [FIG. 12c] FIG. 12c is a diagram showing an output signal waveform of the band limiting filter of the pulse modulation wireless communication device according to the seventh embodiment of the present invention.
[図 12d]図 12dは、本発明の実施の形態 7にかかるパルス変調無線通信装置の帯域 制限フィルタの出力信号波形の要部を拡大した図である。  [FIG. 12d] FIG. 12d is an enlarged view of a main portion of an output signal waveform of a band limiting filter of a pulse modulation wireless communication apparatus according to a seventh embodiment of the present invention.
[図 13]図 13は、従来のパルス変調無線通信装置の受信部の構成を示すブロック図 である。  [FIG. 13] FIG. 13 is a block diagram showing a configuration of a reception unit of a conventional pulse modulation wireless communication apparatus.
符号の説明 Explanation of sign
100a, 200a, 300a, 400a, 500a, 600a 送信部  100a, 200a, 300a, 400a, 500a, 600a transmitter
100b, 200b, 300b, 400b, 500b, 600b, 600c 受信部 101 クロック究生咅 100b, 200b, 300b, 400b, 500b, 600b, 600c Receiver 101 Clock Rise
102 クロック信号 102 clock signal
103, 903 送信データ発生部  103, 903 Transmission data generator
104, 904 PPM変調部  104, 904 PPM modulator
105 パルス発生タイミング信号  105 pulse generation timing signal
106, 109, 906 パルス発生部  106, 109, 906 pulse generator
107, 110, 907, 1001 送信 RF部  107, 110, 907, 1001 Transmission RF unit
108, 111, 121 , 124, 908, 921, 924, 1005, 1105 アンテナ 112 送信データ  108, 111, 121, 124, 908, 921, 924, 1005, 1105 Antenna 112 Transmission data
113, 114, 1002, 1104 ノ レス信号  113, 114, 1002, 1104 no signal
122, 125, 922, 925, 1101, 1106 受信 RF部  122, 125, 922, 925, 1101, 1106 Reception RF unit
123 クロックノ ノレス信号  123 clock noise signal
126 データパルス信号  126 data pulse signal
127, 927 PPM復調部  127, 927 PPM demodulator
128 ビットストリーム  128 bit stream
129, 929 復調部  129, 929 demodulator
201 パルス位置設定部  201 Pulse position setting unit
312 パルス位置判定部  312 Pulse position determination unit
401 同期発生部  401 Synchronization generator
402, 402b クロック再生咅  402, 402b Clock Recovery Unit
403 同期パルス信号  403 sync pulse signal
404 再生クロック信号  404 recovered clock signal
405 同期要求信号  405 Synchronization request signal
601 重畳データ発生部  601 Superimposed Data Generator
602 重畳データ復号部  602 Superimposed data decoder
603 付帯情報データ  603 incidental information data
604 重畳パルス信号  604 Superimposed pulse signal
605 重畳データ 701, 703 擬似乱数発生部 605 superimposed data 701, 703 Pseudo-random number generator
702 クロック PPM変調咅  702 clock PPM modulation light
704 クロック PPM復調咅  704 clock PPM demodulation 咅
705, 707 擬似乱数列データ  705, 707 Pseudo random number sequence data
801 バイフェーズ変調部  801 Bi-phase modulator
802 ノ レス検出咅  802 Nose detection system
803 乱数パルス信号  803 Random pulse signal
804 バイフェーズ再生クロック信号  804 Bi-phase recovered clock signal
A クロック RF信号  A clock RF signal
B, C データ RF信号  B, C data RF signal
1003, 1102 RF信号源  1003, 1102 RF signal source
1004, 1006a, 1006b 短パルスィ匕回路  1004, 1006a, 1006b short pulse circuit
1007 クロック信号をもとにしたパルス信号  Pulse signal based on 1007 clock signal
1008 送信データをもとにしたパルス信号  1008 Pulse signal based on transmission data
1103 ダウンミキサ  1103 Down Mixer
1107 帯域制限フィルタ  1107 Band-limiting filter
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0051] 以下、本発明の実施の形態に力かるパルス変調無線通信装置について、図を参照 しながら説明する。  Hereinafter, a pulse modulation wireless communication apparatus according to an embodiment of the present invention will be described with reference to the drawings.
[0052] (実施の形態 1)  Embodiment 1
本発明の実施の形態 1にかかるパルス変調無線通信装置は、送信データを 4値 PP M変調して、データ RF信号 (データ変換信号)をデータ信号チャネルへ送出するとと もに、データ信号チャネルとは異なる同期信号チャネルでクロック RF信号 (クロック変 換信号)を送出し、また、データ RF信号をデータ信号チャネルより受信するとともに、 データ信号チャネルとは異なる同期信号チャネルでクロック RF信号を受信し、 4値 P PM復調しデータを復調再生して、通信している。  The pulse modulation radio communication apparatus according to the first embodiment of the present invention performs four-valued PPM modulation on transmission data and sends out a data RF signal (data conversion signal) to a data signal channel, as well as a data signal channel. Transmits a clock RF signal (clock conversion signal) on a different synchronization signal channel, receives a data RF signal from the data signal channel, and receives a clock RF signal on a synchronization signal channel different from the data signal channel, Four-level PPM demodulation and data are demodulated and regenerated for communication.
[0053] なお、 4値 PPM変調構成は、送信信号が 4状態の信号で、フレーム内での遅延量 を 0秒若しくは T秒に変化させたインパルスを発生している。そして、クロック信号の入 力 1クロックあたり送信データの 2ビット分を一度で変調するものである。なお、 T秒は 、 PPM変調における偏移値であり、一般にクロック信号の間隔よりも短い時間に設定 する。 In the 4-value PPM modulation configuration, the transmission signal is a 4-state signal, and an impulse is generated in which the delay amount in a frame is changed to 0 seconds or T seconds. And clock signal input Power Modulates two bits of transmit data at one time per clock. T seconds is a shift value in PPM modulation, and is generally set to a time shorter than the clock signal interval.
[0054] 本実施の形態に力かるパルス変調無線通信装置の構成にっ 、て説明する。  The configuration of a pulse modulation wireless communication apparatus according to the present embodiment will be described.
[0055] 図 laは、本実施の形態 1にかかるパルス変調無線通信装置の送信部の構成を示 すブロック図である。 FIG. La is a block diagram showing a configuration of a transmitter of the pulse modulation wireless communication apparatus according to the first embodiment.
[0056] 図 laにおいて、送信部 100aは、アンテナ 108、 111と接続しており、信号送信フレ ームレートの一定間隔でクロック信号 102を発生するクロック発生部 101と、クロック信 号 102の間隔で送信データ 112を発生する送信データ発生部 103と、送信データに 応じてクロック信号 102の遅延量を変化させたパルス発生タイミング信号 105を発生 する PPM変調部 104とで構成される。  In FIG. La, the transmitting unit 100a is connected to the antennas 108 and 111, and transmits at an interval of the clock signal 102 with the clock generating unit 101 generating the clock signal 102 at a constant interval of the signal transmission frame rate. The transmission data generation unit 103 generates data 112, and the PPM modulation unit 104 generates a pulse generation timing signal 105 in which the delay amount of the clock signal 102 is changed according to the transmission data.
[0057] さらに、送信部 100aは、クロック信号 102の発生タイミングにおいてパルス信号 11 3を生成するパルス発生部 109と、パルス信号 113を増幅等の RF (Radio Freque ncy)処理し、クロック変換信号としてのクロック RF信号 Aとしてアンテナ 111から送出 する送信 RF部 110と、パルス発生タイミング信号 105の発生タイミングに応じてパル ス信号 114を生成するパルス発生部 106と、パルス信号 114を増幅等の RF処理し、 データ変換信号としてのデータ RF信号 Bとしてアンテナ 108から送出する送信 RF部 107とで構成される。  Furthermore, transmitter 100 a processes pulse generator 113 generating pulse signal 113 at the generation timing of clock signal 102 and RF (Radio Frequency) such as amplification of pulse signal 113, and generates a clock conversion signal. Clock RF signal A that is transmitted from the antenna 111 as the RF signal A, a pulse generator 106 that generates the pulse signal 114 according to the generation timing of the pulse generation timing signal 105, and RF processing such as amplification of the pulse signal 114 And a transmission RF unit 107 to be transmitted from the antenna 108 as a data RF signal B as a data conversion signal.
[0058] 図 lbは、本実施の形態 1にかかるパルス変調無線通信装置の受信部の構成を示 すブロック図である。  FIG. 1 b is a block diagram showing the configuration of the receiving unit of the pulse modulation wireless communication apparatus according to the first embodiment.
[0059] 受信部 100bは、アンテナ 121、 124と接続しており、アンテナ 121で受信したクロッ ク RF信号 Aカゝら不要な周波数成分を除去し、クロックパルス信号 123を得る受信 RF 部 122と、アンテナ 124で受信したデータ RF信号 B力も不要な周波数成分を除去し 、データパルス信号 126を得る受信 RF部 125とで構成される。  The receiving unit 100 b is connected to the antennas 121 and 124, and the receiving RF unit 122 obtains the clock pulse signal 123 by removing unnecessary frequency components from the clock RF signal A received by the antenna 121. The data RF signal B received by the antenna 124 is also composed of the reception RF unit 125 which removes unnecessary frequency components and obtains the data pulse signal 126.
[0060] さらに、受信部 100bは、クロックパルス信号 123を基準としたデータパルス信号 12 6のフレーム内位置を検出して PPM復調し、ビットストリーム 128を出力する PPM復 調部 127と、ビットストリーム 128から送信されたデータを復調する復調部 129とで構 成される。 [0061] 図 2aは、本実施の形態 1にかかるパルス変調無線通信装置の PPM変調部の構成 例を示すブロック図である。 Furthermore, the receiving unit 100b detects the position in the frame of the data pulse signal 126 based on the clock pulse signal 123, performs PPM demodulation, and outputs a bit stream 128; And a demodulation unit 129 that demodulates the data transmitted from 128. FIG. 2a is a block diagram showing an example of configuration of a PPM modulation unit of the pulse modulation wireless communication apparatus according to the first embodiment.
[0062] 図 2aにおいて、 PPM変調部 104は、クロック信号 102からフレームの開始タイミン グを検出し、入力される送信データ 112に応じてフレーム内のパルス位置を示す制 御信号 202、 203、 204、 205を出力するパルス位置設定部 201と、それぞれの入力 信号を時間 T遅延して出力する遅延素子 206、 207、 208と、制御信号 202、 203、 204、 205に応じて通電状態を切り替える帘1』御スィッチ 209、 210、 211、 212とで構 成されている。  In FIG. 2A, PPM modulation section 104 detects the start timing of a frame from clock signal 102, and control signals 202, 203, 204 indicating the pulse position in the frame according to input transmission data 112. , 205, and delay elements 206, 207, and 208 for delaying the respective input signals by time T and outputting them, and switching the energized state according to the control signals 202, 203, 204, and 205. 1 ”consists of switches 209, 210, 211 and 212.
[0063] 図 2bは、本実施の形態 1にかかるパルス変調無線通信装置の PPM変調部のパル ス位置設定部に記憶されるマッピングテーブルの構造例を示す図である。  FIG. 2 b is a diagram showing an example of structure of a mapping table stored in a pulse position setting unit of the PPM modulation unit of the pulse modulation wireless communication apparatus according to the first embodiment.
[0064] 図 2bにおいて、マッピングテーブル 250は、入力される 4値の入力データと、パルス を発生させる位置を示すパルス位置データと、出力する制御信号の種別を示すパル ス位置設定出力データとで構成されて ヽる。  In FIG. 2 b, mapping table 250 includes input four-value input data, pulse position data indicating the position at which a pulse is generated, and pulse position setting output data indicating the type of control signal to be output. It is composed and beats.
[0065] PPM変調部 104は、パルス位置設定部 201に送信データ 112が入力されると、あ らカじめ記憶して 、るマッピングテーブル 250を参照してパルス位置を決定し、パル ス位置設定出力として、いずれかの制御信号 202、 203、 204、 205を出力する。  When transmission data 112 is input to pulse position setting section 201, PPM modulation section 104 stores it in advance, determines the pulse position with reference to mapping table 250, and determines the pulse position. One of the control signals 202, 203, 204, 205 is output as the setting output.
[0066] 例えば、送信データ「01」がパルス位置設定部 201に入力された場合には、パルス 位置「フレーム開始位置 +T」のパルスを発生し、パルス位置設定出力として「制御信 号 203」を出力する。そして、制御スィッチ 210のみが通電し、 「フレーム開始位置 + Τ」より、さらに Τ遅延したクロック信号 102、すなわち、「フレーム開始位置 + 2Τ」の位 置にパルスを発生するパルス発生タイミング信号 105を出力する。  For example, when transmission data “01” is input to pulse position setting unit 201, a pulse of pulse position “frame start position + T” is generated, and “control signal 203” is output as a pulse position setting output. Output Then, only the control switch 210 is energized, and the clock signal 102 delayed further from the "frame start position + Τ", that is, the pulse generation timing signal 105 for generating a pulse at the "frame start position + 2 Τ" Output.
[0067] 図 3aは、本実施の形態 1にかかるパルス変調無線通信装置の PPM復調部の構成 例を示すブロック図である。  [0067] FIG. 3a is a block diagram showing an example of configuration of a PPM demodulation unit of the pulse modulation wireless communication apparatus according to the first embodiment.
[0068] 図 3aにおいて、 PPM復調部 127は、それぞれの入力信号を時間 T遅延する遅延 素子 301、 302、 303と、 2つの入力信号を乗算する相関部としてのミキサ 304、 305 、 306、 307と、クロックノ ノレス信号 123の周期で入力信号 308、 309、 310、 311に よりマッピングされていたデータをクロックパルス信号 123の周期でラッチし、出力す るパルス位置判定部 312とで構成される。 [0069] 図 3bは、本実施の形態 1にかかるパルス変調無線通信装置の PPM復調部周辺の 信号波形を示す図である。 In FIG. 3a, PPM demodulator 127 is a delay element 301, 302, 303 for delaying each input signal by time T, and mixers 304, 305, 306, 307 as a correlator for multiplying two input signals. And the pulse position determination unit 312 that latches and outputs the data mapped by the input signals 308, 309, 310, and 311 in the cycle of the clock signal 123 in the cycle of the clock pulse signal 123. . FIG. 3 b is a diagram showing signal waveforms in the vicinity of the PPM demodulation unit of the pulse modulation wireless communication apparatus according to the first embodiment.
[0070] 図 3bにおいては、クロックパルス信号 123の間隔により構成するフレームの区切り を縦の実線で示し、各フレーム内では、 4値 PPMの遷移時間 Tの区切りを縦の破線 で示している。 In FIG. 3 b, the division of the frame formed by the interval of the clock pulse signal 123 is indicated by a solid vertical line, and the division of the transition time T of the four-value PPM is indicated by a vertical broken line in each frame.
[0071] また、ミキサ 304、 305、 306、 307にそれぞれ供給される 2つの信号波形、すなわ ち、クロックパルス信号 123を遅延素子 301、 302、 303により Tずつ遅延した信号波 形と、データパルス信号 126の波形、そして、それらの相関を検出した出力結果の信 号 308、 309、 310、 311の信号波形を示している。  Further, two signal waveforms respectively supplied to mixers 304, 305, 306, and 307, that is, signal waveforms obtained by delaying clock pulse signal 123 by T by delay elements 301, 302, and 303, and data The waveform of the pulse signal 126 and the signal waveforms of the output signals 308, 309, 310, 311 of the detected correlations are shown.
[0072] さらに、パルス位置判定部 312にお!/、てパルス位置を判定した結果であるビットスト リーム 128の信号波形を示している。  Furthermore, the pulse position determination unit 312 shows the signal waveform of the bit stream 128 which is the result of the determination of the pulse position.
[0073] 例えば、図 3bの第 1フレームの場合、データパルス信号 126はフレーム開始位置 にインパルスが存在するため、ミキサ 304のみで相関が検出され、当該フレームでは 相関検出結果 308のみ出力する。パルス位置判定部 312は、クロックパルス信号 12 3によって規定される 1フレーム時間、各相関検出結果をラッチし、ビットの組合せを 判定し、送信データのビット列を次のフレーム時間にパルス判定結果として出力する  For example, in the case of the first frame of FIG. 3B, since the data pulse signal 126 has an impulse at the frame start position, the correlation is detected only by the mixer 304, and only the correlation detection result 308 is output in the frame. The pulse position determination unit 312 latches each correlation detection result for one frame time specified by the clock pulse signal 123, determines a combination of bits, and outputs a bit string of transmission data as a pulse determination result in the next frame time. Do
[0074] このような構成で、本実施の形態 1にかかる 2つのパルス変調無線通信装置の間で データを送受信する動作につ!、て説明する。 With such a configuration, an operation of transmitting and receiving data between the two pulse modulation wireless communication apparatuses according to the first embodiment will be described.
[0075] まず、送信部 100aでは、信号送信のフレーム周期を決定するクロック発生部 101 で生成するクロック信号 102に応じて、送信データ発生部 103が送信すべき情報を 発生し、 PPM変調部 104へ供給する。 PPM変調部 104は、クロック信号 102で規定 されるフレーム周期中のパルス発生位置によって、 PPM変調を施したパルス発生タ イミング信号 105を発生し、パルス発生部 106へ供給する。  First, in the transmission unit 100a, the transmission data generation unit 103 generates information to be transmitted according to the clock signal 102 generated by the clock generation unit 101 that determines the frame period of signal transmission, and the PPM modulation unit 104 Supply to. The PPM modulation unit 104 generates a PPM modulated pulse generation timing signal 105 according to the pulse generation position in the frame period specified by the clock signal 102 and supplies the pulse generation timing signal 105 to the pulse generation unit 106.
[0076] パルス発生部 106は、パルス発生タイミング信号 105に応じてデータ送信用に規定 された特性のインパルスであるパルス信号 114を生成し、送信 RF部 107は、振幅や 帯域制限など RF処理してデータ RF信号 Bを生成し、アンテナ 108を通して送信する 。同様に、パルス発生部 109は、クロック信号 102に応じてクロック送信用に規定され た特性のインパルスであるパルス信号 113を生成し、送信 RF部 110は、振幅や帯域 制限など同様に RF処理してクロック RF信号 Aを生成し、アンテナ 111を通して送信 する。 The pulse generation unit 106 generates a pulse signal 114 which is an impulse having a characteristic defined for data transmission according to the pulse generation timing signal 105, and the transmission RF unit 107 performs RF processing such as amplitude and band limitation. Data RF signal B is generated and transmitted through antenna 108. Similarly, pulse generation unit 109 is defined for clock transmission according to clock signal 102. The pulse signal 113 which is an impulse having the characteristic described above is generated, and the transmission RF unit 110 performs RF processing in the same manner as amplitude and band limitation to generate the clock RF signal A, and transmits it through the antenna 111.
[0077] 次に、受信部 100bでは、それぞれ別チャネルにお ヽて送信された、クロック RF信 号 Aとデータ RF信号 Bとを独立に受信する。受信 RF部 122は、アンテナ 121で受信 したクロック RF信号 Aから使用帯域外の不要信号を除去するなど RF処理を施し、ク ロックパルス信号 123へ変換する。一方、受信 RF部 125は、アンテナ 124で受信し たデータ RF信号 Bから使用帯域外の不要信号などを除去するなど RF処理を施し、 データパルス信号 126へ変換する。 PPM復調部 127は、クロックパルス信号 123を 基準として、データパルス信号 126のフレーム内のパルス位置を検出してビットストリ ーム 128を生成し、復調部 129で受信データに復調する。復調部 129は、出力され たビットストリーム 128を復調し、送信データを再生する。  Next, receiving section 100b independently receives clock RF signal A and data RF signal B, which are respectively transmitted through different channels. The reception RF unit 122 performs RF processing such as removing unnecessary signals out of the use band from the clock RF signal A received by the antenna 121, and converts the signal into a clock pulse signal 123. On the other hand, the reception RF unit 125 performs an RF process such as removing unnecessary signals out of the use band from the data RF signal B received by the antenna 124, and converts it into a data pulse signal 126. The PPM demodulator 127 detects a pulse position in the frame of the data pulse signal 126 with reference to the clock pulse signal 123 to generate a bit stream 128, and demodulates it into received data in the demodulator 129. The demodulation unit 129 demodulates the output bit stream 128 and reproduces transmission data.
[0078] このような構成とすることによって、本実施の形態 1では、受信部が PPM変調の基 準同期情報を適宜受信することにより、パルス位置の同期の取れた状態を維持して、 データ信号の受信後速やかに信号を復調できる。また、従来必要であったクロック再 生ブロック、すなわち、従来のパルス変調無線通信装置を構成している調整可能時 間ベースを省いた構成で、同等の受信動作を可能とし、 PPM変調されたデータ信号 を受信する同期回路を簡易な構成とすることができる。  By adopting such a configuration, in the first embodiment, the receiving unit appropriately receives the PPM modulation standard synchronization information, thereby maintaining the pulse position synchronization state. The signal can be demodulated immediately after receiving the signal. Also, the clock recovery block conventionally required, that is, the configuration without the adjustable time base configuring the conventional pulse modulation wireless communication device, enables equivalent reception operation, and PPM modulated data. The synchronous circuit that receives the signal can be configured simply.
[0079] なお、本実施の形態 1では、送信部と受信部をそれぞれ備える 2つのパルス変調無 線通信装置の間でデータ通信する形態としたが、双方のパルス変調無線通信装置 が送信部と受信部の両方を備えて互いにデータを送受信する形態としても、同様の 効果を得る。  In the first embodiment, although a mode in which data communication is performed between two pulse modulation wireless communication devices provided with a transmission unit and a reception unit, respectively, both pulse modulation wireless communication devices The same effect can be obtained by providing both of the receiving units and transmitting and receiving data to each other.
[0080] なお、本実施の形態 1で示した送信部の PPM変調部を構成するパルス位置設定 部 201は、論理素子の組合せにより容易に構成でき、また、異なる論理素子で構成 する形態とすることちでさる。  The pulse position setting unit 201 constituting the PPM modulation unit of the transmission unit shown in the first embodiment can be easily configured by a combination of logic elements, and is configured to be configured by different logic elements. It is a story.
[0081] なお、本実施の形態 1で示した受信部の PPM復調部を構成するパルス位置判定 部 201は、論理素子の組合せにより容易に構成でき、また、異なる論理素子で構成 する形態とすることちでさる。 [0082] また、本実施の形態 1で示したパルス位置判定部 201でのビットの組合せの判定方 法は、判定するためのテーブルデータ、例えば、パルス位置を示すパルス位置デー タとそのパルス位置データに対応する出力ビットストリームを示す出力データとを組と するテーブルデータをあらかじめ記憶しておき、参照して判定するなど簡易な方法で 実現できる。 The pulse position determination unit 201 constituting the PPM demodulation unit of the reception unit shown in the first embodiment can be easily configured by a combination of logic elements, and is configured to be configured by different logic elements. It is a story. The method of determining the combination of bits in pulse position determination section 201 shown in the first embodiment is table data for determination, for example, pulse position data indicating pulse position and its pulse position. It can be realized by a simple method such as storing table data, which is a set of output data representing an output bit stream corresponding to data, in advance and making reference to judgment.
[0083] なお、本実施の形態 1では、クロック RF信号 Aとデータ RF信号 Bとは、分離した非 同期な伝送とするために別チャネルを用いるよう構成したため、送信 RF部 107と送 信 RF部 110は、それぞれ異なる送信 RF周波数を用いて周波数により分離する形態 としたが、チャネルの分離が可能であれば周波数による分離以外の手段による形態 としても、同様の効果は得られ、例えば、 CDMA (Code Division Multiple Acc ess:符号分割多重接続)等の方法によりチャネルの分離を行うこともできる。  In Embodiment 1, clock RF signal A and data RF signal B are configured to use separate channels in order to achieve separate and asynchronous transmission, so transmission RF section 107 and transmission RF are used. Although section 110 separates by frequency using different transmission RF frequencies, if channel separation is possible, similar effects can be obtained as a form by means other than frequency separation, for example, CDMA Channel separation can also be performed by a method such as (Code Division Multiple Access).
[0084] なお、本実施の形態 1では、送信部の送信データ発生部で生成する信号は、 4値 ディジタル信号として 4状態の送信信号をクロック信号に同期して生成する形態とした 力 2値ディジタル信号として 2状態の送信信号を生成する形態としても、同様の効果 がある。  In the first embodiment, the signal generated by the transmission data generation unit of the transmission unit is a four-value digital signal in which the transmission signal in four states is generated in synchronization with the clock signal. The same effect can be obtained by generating a two-state transmission signal as a digital signal.
[0085] なお、本実施の形態 1では、送信部と受信部のそれぞれのアンテナの設置距離と R F信号の波長の関係に対して、それぞれのアンテナの設置位置は十分に近接してい るものとし、クロック RF信号 Aとデータ RF信号 Bの送受信間における遅延などの伝搬 状況をほぼ同一とみなす形態としたが、各アンテナの設置距離が、 RF信号の波長に 対して大きい場合に、受信部内にクロックパルス信号とデータパルス信号との微小な 同期を調整する手段を含む形態とすることができる。ただし、これは本発明の本質的 な内容には影響がないため、ここでは説明を省く。  In the first embodiment, the installation positions of the respective antennas are assumed to be sufficiently close to the relationship between the installation distance of the respective antennas of the transmission unit and the reception unit and the wavelength of the RF signal. In this embodiment, propagation conditions such as delays between transmission and reception of clock RF signal A and data RF signal B are regarded as substantially the same, but when the installation distance of each antenna is large with respect to the wavelength of the RF signal, It may be configured to include means for adjusting a minute synchronization between the clock pulse signal and the data pulse signal. However, since this does not affect the essential contents of the present invention, the description is omitted here.
[0086] (実施の形態 2)  Embodiment 2
次に、本発明の実施の形態 2にかかるパルス変調無線通信装置について説明する  Next, a pulse modulation wireless communication apparatus according to a second embodiment of the present invention will be described.
[0087] 前述の実施の形態 1にかかるパルス変調無線通信装置では、クロック信号を 1フレ ームごとに送信するよう構成していたのに対し、本実施の形態 2にかかるパルス変調 無線通信装置では、クロック信号を複数フレームに 1度の割合で送信するよう構成し 、クロック信号送信の繰り返し周期を低減するようにして ヽる。 The pulse modulation wireless communication apparatus according to the first embodiment described above is configured to transmit the clock signal for each frame, whereas the pulse modulation wireless communication apparatus according to the second embodiment is Configure the clock signal to be sent once in multiple frames. , To reduce the repetition cycle of clock signal transmission.
[0088] 本実施の形態 2にかかるパルス変調無線通信装置の構成にっ 、て説明する。  The configuration of the pulse modulation wireless communication apparatus according to the second embodiment will be described.
[0089] 図 4aは、本実施の形態 2にかかるパルス変調無線通信装置の送信部の構成を示 すブロック図である。また、図 4bは、本実施の形態 2にかかるパルス変調無線通信装 置の受信部の構成を示すブロック図である。 FIG. 4a is a block diagram showing a configuration of a transmission unit of the pulse modulation wireless communication apparatus according to the second embodiment. FIG. 4 b is a block diagram showing the configuration of the receiving unit of the pulse modulation wireless communication apparatus according to the second embodiment.
[0090] 送信部 200aと受信部 200bの構成は、それぞれ実施の形態 1に示した構成とほぼ 同じであるため、共通する部分についての説明は省き、差異についてのみ説明する The configurations of transmitting unit 200 a and receiving unit 200 b are substantially the same as the configurations shown in the first embodiment, and therefore the description of the common parts will be omitted, and only the differences will be described.
[0091] 送信部 200aは、パルス発生部 109の前段に同期発生部 401を備えている。同期 発生部 401は、クロック信号 102の入力に応じてあら力じめ定められた一定クロック信 号周期でノ ルスを出力する。なお、同期発生部 401はシフトレジスタを用いたカウン タ回路などにより構成している。 The transmitting unit 200 a is provided with a synchronization generating unit 401 at the front stage of the pulse generating unit 109. The synchronization generation unit 401 outputs a pulse at a constant clock signal cycle determined in advance according to the input of the clock signal 102. The synchronization generation unit 401 is configured by a counter circuit or the like using a shift register.
[0092] 受信部 200bは、 PPM復調部 127のクロック信号源としてクロック再生部 402を備え ている。クロック再生部 402は、送信部 200aのクロック信号 102の間隔にほぼ等しい クロック信号源を内部に備え、クロックパルス信号 123が存在する場合は、クロック信 号源の周波数と位相をクロックパルス信号 123に同期させた、再生クロック信号 404 を出力するものである。このクロック再生部 402は、 PLL (Phase Locked Loop :位 相同期回路)等で実現でき、例えば図 5aある 、は図 5bに示す構成で実現可能であ る。  The receiving unit 200 b includes a clock recovery unit 402 as a clock signal source of the PPM demodulation unit 127. The clock recovery unit 402 internally has a clock signal source approximately equal to the interval of the clock signal 102 of the transmission unit 200 a, and when the clock pulse signal 123 is present, the frequency and phase of the clock signal source are converted to the clock pulse signal 123. It outputs the synchronized reproduced clock signal 404. The clock recovery unit 402 can be realized by a PLL (Phase Locked Loop) or the like, and can be realized, for example, by the configuration shown in FIG.
[0093] 図 5aは、本実施の形態 2にかかるパルス変調無線通信装置のクロック再生部の構 成例を示すブロック図である。  FIG. 5a is a block diagram showing a configuration example of a clock recovery unit of the pulse modulation wireless communication apparatus according to the second embodiment.
[0094] クロック再生部 402aは、クロック信号 102に近い周波数信号を出力するクロック信 号源 501と、位相比較器 502と、位相比較器 502における位相の不一致度合いを電 圧として検出するローパスフィルタ 503とで構成されている。なお、クロック信号源 50 1は、 VCO (Voltage Controlled Oscillator :電圧制御発振器)などの周波数を 制御可能なものである。  The clock recovery unit 402 a detects, as a voltage, the degree of phase mismatch in the clock signal source 501 that outputs a frequency signal close to the clock signal 102, the phase comparator 502, and the phase comparator 502. And consists of. The clock signal source 501 is capable of controlling the frequency of a VCO (Voltage Controlled Oscillator) or the like.
[0095] この構成により、クロック再生部 402aは、クロックパルス信号 123が存在する場合に は、クロックパルス信号 123とクロック信号源 501の出力信号との位相誤差を位相比 較器 502で検出し、ローパスフィルタ 503により電圧値に直した制御信号をクロック信 号源 501に供給する。位相誤差が減少するように制御することで、 PLL動作により位 相を同期し、クロックパルス信号 123と同期した再生クロック信号 404を連続して出力 する。 With this configuration, when clock pulse signal 123 is present, clock recovery unit 402 a generates a phase ratio between the clock pulse signal 123 and the output signal of clock signal source 501. A control signal detected by the comparator 502 and converted to a voltage value by the low pass filter 503 is supplied to the clock signal source 501. By controlling so as to reduce the phase error, the phase is synchronized by the PLL operation, and the reproduced clock signal 404 synchronized with the clock pulse signal 123 is continuously output.
[0096] 図 5bは、本実施の形態 2にかかるパルス変調無線通信装置のクロック再生部の別 の構成例を示すブロック図である。  FIG. 5 b is a block diagram showing another configuration example of the clock recovery unit of the pulse modulation wireless communication apparatus according to the second embodiment.
[0097] クロック再生部 402bは、リセット信号入力を有したクロック信号 102に近い周波数の 再生クロック信号 404を出力するクロック再生信号発生部 504により構成されている。 ここでクロック再生信号発生部 504は、クロックパルス信号 123をリセット信号入力とし 、リセット信号入力があった場合には、再生クロック信号 404の位相を初期位相に戻 すように制御することで、クロックパルス信号 123と同期した再生クロック信号 404を 連続して出力する。  The clock recovery unit 402 b is configured of a clock recovery signal generation unit 504 that outputs a recovery clock signal 404 having a frequency close to that of the clock signal 102 having a reset signal input. Here, the clock reproduction signal generation unit 504 uses the clock pulse signal 123 as a reset signal input, and controls the phase of the reproduction clock signal 404 to return to the initial phase when there is a reset signal input, whereby the clock is generated. The reproduced clock signal 404 synchronized with the pulse signal 123 is continuously output.
[0098] このような構成における本実施の形態 2にかかるパルス変調無線通信装置の動作 について説明する。  The operation of the pulse modulation wireless communication apparatus according to the second embodiment in such a configuration will be described.
[0099] 送信部 200aでは、同期発生部 401にて生成する一定クロック周期の同期ノ ルス信 号 403を生成し、実施の形態 1と同様の処理でクロック RF信号 Aとデータ RF信号 B を送信する。  Transmitting section 200 a generates synchronous pulse signal 403 with a constant clock cycle generated by synchronization generating section 401, and transmits clock RF signal A and data RF signal B in the same process as in the first embodiment. Do.
[0100] 受信部 200bでは、クロック RF信号 Aとデータ RF信号 Bを受信し、受信したクロック パルス信号 123より、再生クロック信号 404を生成し、この再生クロック信号 404に基 づ 、てデータを復調して 、る。  Receiving section 200b receives clock RF signal A and data RF signal B, generates regenerated clock signal 404 from received clock pulse signal 123, and demodulates data based on this regenerated clock signal 404. It is.
[0101] このような構成とすることによって、本実施の形態 2では、多値 PPM方式で変調され たデータ信号であっても、送信側より一定クロック信号周期でパルス列を送信し、受 信側では再生クロックパルスを生成するようにして、 1フレームごとにクロック信号が送 信されている場合と同様に、同期回路が簡易な構成で復調結果を得ることができる。 また、クロック信号の送信を同期精度の保持に必要最小限に抑え、送信電力を低減 して消費電力を低減することができる。  With this configuration, in the second embodiment, the transmitting side transmits a pulse train at a constant clock signal cycle even if it is a data signal modulated by the multilevel PPM method, and the receiving side In this case, the reproduction clock pulse can be generated, and as in the case where the clock signal is transmitted for each frame, the synchronization circuit can obtain the demodulation result with a simple configuration. In addition, transmission of clock signals can be minimized to maintain synchronization accuracy, and transmission power can be reduced to reduce power consumption.
[0102] なお、本実施の形態 2では、同期発生部 401が同期パルス信号を一定クロック信号 周期で出力する形態としたが、情報単位ごとに出力する形態としても同様の効果を 得ることができる。例えば、送信データ発生部の出力する一定バイト量ごとに出力す る構成とすることができる。すなわち、図 4a及び図 4bにおいて、送信データ発生部 1 03は情報単位の区切り発生時に同期要求信号 405を同期発生部 401に供給し、同 期発生部 401は、送信データ発生部 103から同期要求信号 405が入力されたときに のみ、クロック信号 102をパルス化して同期パルス信号 403を出力、送信するよう構 成する。また受信側は、クロックパルス信号 123より情報単位の区切りを判定し、付帯 情報として参照し、復調する。 In the second embodiment, the synchronization generation unit 401 outputs the synchronization pulse signal at a constant clock signal cycle, but the same effect can be obtained by outputting information in units of information. You can get it. For example, it can be configured to output for each fixed byte amount output from the transmission data generation unit. That is, in FIG. 4A and FIG. 4B, the transmission data generation unit 103 supplies the synchronization request signal 405 to the synchronization generation unit 401 when the division of information unit occurs, and the synchronization generation unit 401 transmits the synchronization request from the transmission data generation unit 103. Only when the signal 405 is input, the clock signal 102 is pulsed to output and transmit the synchronization pulse signal 403. Further, the receiving side determines the division of the information unit from the clock pulse signal 123, refers to it as incidental information, and demodulates.
[0103] なお、本実施の形態 2では、同期発生部 401が同期パルス信号を一定クロック信号 周期で出力する形態としたが、クロック RF信号 Aのパルス間隔を可変にする形態とし ても、同様の効果を得ることができる。同期パルス信号を可変制御して、通信開始直 後の同期引込み時には同期パルス信号を連続して出力するように制御し、同期確立 後は同期パルス信号を疎らに出力するように制御する。このようにして同期パルス信 号の重要性が高い同期引込み時においては、多数の同期パルス信号を用いること ができ、また同期パルスの必要性が比較的高くない同期確立後の同期保持時にお いては、不必要な同期パルス信号の送信を抑えることができるという、通信における ペイロードを最大化する効果を得ることができる。 In the second embodiment, the synchronization generation unit 401 outputs the synchronization pulse signal at a constant clock signal cycle. However, even if the pulse interval of the clock RF signal A is variable, the same applies. You can get the effect of The synchronization pulse signal is variably controlled so that the synchronization pulse signal is continuously output at the time of synchronization pull-in immediately after the start of communication, and the synchronization pulse signal is controlled to be sparsely output after the establishment of synchronization. In this way, at the time of synchronization pull-in where the importance of the synchronization pulse signal is high, a large number of synchronization pulse signals can be used, and the necessity of the synchronization pulse is not relatively high. Can have an effect of maximizing the payload in communication, which can suppress transmission of unnecessary synchronization pulse signals.
[0104] (実施の形態 3)  Third Embodiment
次に、本発明の実施の形態 3にかかるパルス変調無線通信装置について説明する  Next, a pulse modulation wireless communication apparatus according to a third embodiment of the present invention will be described.
[0105] 実施の形態 2にかかるパルス変調無線通信装置では、クロック信号を複数フレーム に 1度の割合で送るよう構成していたのに対し、本実施の形態 3にかかるパルス変調 無線通信装置では、送信側のクロック信号にさらにパリティ 'ビット等の付帯情報をも たせよう構成し、受信側でエラー検出あるいはエラー訂正するようにしている。 The pulse-modulated wireless communication device according to the second embodiment is configured to send clock signals at a rate of once in a plurality of frames, whereas the pulse-modulated wireless communication device according to the third embodiment is configured to transmit the clock signal. Further, additional information such as a parity bit is added to the clock signal on the transmitting side, and the error detection or error correction is performed on the receiving side.
[0106] 本実施の形態 3にかかるパルス変調無線通信装置の構成について説明する。  The configuration of the pulse modulation wireless communication apparatus according to the third embodiment will be described.
[0107] 図 6aは本実施の形態 3にかかるパルス変調無線通信装置の送信部の構成を示す ブロック図である。また、図 6bは、本実施の形態 3にかかるパルス変調無線通信装置 の受信部の構成を示すブロック図である。  FIG. 6a is a block diagram showing the configuration of the transmission unit of the pulse modulation wireless communication apparatus according to the third embodiment. FIG. 6 b is a block diagram showing the configuration of the receiving unit of the pulse modulation wireless communication apparatus according to the third embodiment.
[0108] 送信部 300aと受信部 300bとの構成は、それぞれ実施の形態 2に示した構成とほ ぼ同じであるため、共通する部分についての説明は省き、差異についてのみ説明す る。 The configurations of transmitting unit 300 a and receiving unit 300 b are the same as those shown in the second embodiment. As they are almost the same, the explanation of the common parts is omitted and only the differences are explained.
[0109] 送信部 300aは、実施の形態 2における同期発生部 401の代わりに、クロック信号 1 02に情報を重畳し、重畳パルス信号 604を出力する重畳データ発生部 601を備え ている。また、受信部 300bは、再生クロック信号 404とクロックパルス信号 123からク ロックパルス信号 123に重畳された情報を示す重畳データ 605を抽出し、復調部 12 9に供給する重畳データ復号部 602を備えて 、る。  Transmitting section 300 a includes superimposed data generating section 601 which superimposes information on clock signal 102 and outputs superimposed pulse signal 604, instead of synchronization generating section 401 in the second embodiment. The receiving unit 300 b further includes a superimposed data decoding unit 602 that extracts superimposed data 605 indicating information superimposed on the clock pulse signal 123 from the reproduction clock signal 404 and the clock pulse signal 123, and supplies the superimposed data 605 to the demodulation unit 12 9. It is.
[0110] ここで、クロック信号 102は、複数フレームに一度の割合で送出されるため、連続的 にクロック信号を送出する実施の形態 1の構成では不可能であった、情報ビットの挿 入が可能になる。すなわち、クロック信号 102を複数ビットで構成することにより、情報 ビットとして、複数フレームにより定義される情報単位、例えば、 1バイト単位、あるい は 1パケット単位でのノ リティ.ビット、あるいはエラー訂正のための情報を含ませる。  Here, since clock signal 102 is sent at a rate of once in a plurality of frames, insertion of information bits is impossible in the configuration of Embodiment 1 where clock signals are sent out continuously. It will be possible. That is, by configuring the clock signal 102 with a plurality of bits, an information unit defined by a plurality of frames, for example, a noise bit in 1 byte unit or 1 packet unit, or error correction can be used as an information bit. Include information for
[0111] このような構成で、本実施の形態 3にかかるパルス変調無線通信装置の動作につ いて説明する。  The operation of the pulse modulation wireless communication apparatus according to the third embodiment will be described with such a configuration.
[0112] 送信部 300aでは、送信データ発生部 103は、情報単位の区切りにおいて、実施の 形態 2における同期要求信号 405に加えて付帯情報データ 603を重畳データ発生 部 601に供給し、クロック信号の後に複数クロックにより定義されるデータ領域に付帯 情報を含めて重畳パルス信号 604を生成し、クロック RF信号 Aを送信している。この とき、送信データ発生部 103は、クロック信号 102の後に複数クロック分のデータ領域 を設けて、 ASK (Amplitude Shift Keying :振幅偏移変調)方式でパリティ 'ビッ ト等の付帯情報を付加したものをパルス化して送信している。  In transmission unit 300 a, transmission data generation unit 103 supplies incidental information data 603 to superimposed data generation unit 601 in addition to synchronization request signal 405 in Embodiment 2 at the delimitation of information units, and A superimposed pulse signal 604 is generated including additional information in a data region defined by a plurality of clocks later, and a clock RF signal A is transmitted. At this time, the transmission data generation unit 103 provides data areas for a plurality of clocks after the clock signal 102 and adds incidental information such as a parity 'bit by ASK (Amplitude Shift Keying) method. Are pulsed and transmitted.
[0113] 受信部 300bでは、クロック再生部 402はクロックパルス信号 123の最初のパルスに より、実施の形態 2と同様に再生クロック信号 404を同期する。さらに、クロックパルス 信号 123は、重畳データ復号部 602に供給され、クロックパルス信号 123の最初の パルス以後に含まれる付帯情報である重畳データ 605を復号し、復調部 129に出力 する。  In the receiving unit 300b, the clock recovery unit 402 synchronizes the recovered clock signal 404 with the first pulse of the clock pulse signal 123 as in the second embodiment. Further, the clock pulse signal 123 is supplied to the superposition data decoding unit 602, and the superposition data 605 which is additional information included after the first pulse of the clock pulse signal 123 is decoded and output to the demodulation unit 129.
[0114] このような構成とすることによって、本実施の形態 3では、一定シンボルごとに同期 パルス列を送信するとともに、同期信号にデータ信号のパリティ 'ビットなどの付帯情 報を付与して重畳することにより、情報ビットのペイロードを圧迫することなぐノ^ティ •ビットなどの付帯情報によるエラー検出あるいはエラー訂正できるよう信頼性を高め ることがでさる。 With this configuration, in the third embodiment, the synchronization pulse train is transmitted for each fixed symbol, and additional information such as the parity 'bit of the data signal is added to the synchronization signal. By superimposing the information, it is possible to improve the reliability so that the error detection or error correction can be performed by additional information such as a notary bit that can not compress the payload of the information bit.
[0115] なお、本実施の形態 3では、データ領域は単にクロック信号の有無による ASK方式 として構成するが、 PPM方式ある 、は 2値の位相変調であるバイフェーズ変調方式 であってもよい。  In the third embodiment, the data region is configured as an ASK method simply by the presence or absence of a clock signal, but a PPM method may be a bi-phase modulation method that is binary phase modulation.
[0116] (実施の形態 4)  Embodiment 4
次に、本発明の実施の形態 4にかかるパルス変調無線通信装置について説明する  Next, a pulse modulation wireless communication apparatus according to a fourth embodiment of the present invention will be described.
[0117] 実施の形態 1では、クロック信号をフレームごとに無変調で送信するよう構成してい たのに対し、本実施の形態 4では、クロック信号を PPM変調して送信する構成として いる。こうすることにより、クロック信号の繰り返し周期に起因する、クロック RF信号の 周波数スペクトラムにおける周波数による不均等を低減、すなわちホワイトユングして 、クロック信号の送信電力効率を向上させ、クロック RF信号の受信感度向上や送信 における消費電力を削減するようにして 、る。 In the first embodiment, the clock signal is transmitted without modulation for each frame, whereas in the fourth embodiment, the clock signal is transmitted by PPM modulation. By doing this, the unevenness due to the frequency in the frequency spectrum of the clock RF signal due to the repetition period of the clock signal is reduced, that is, the white power is improved, and the transmission power efficiency of the clock signal is improved. To improve and reduce power consumption in transmission.
[0118] 本実施の形態 4にかかるパルス変調無線通信装置の構成について説明する。  The configuration of the pulse modulation wireless communication apparatus according to the fourth embodiment will be described.
[0119] 図 7aは、本発明の実施の形態 4にかかるパルス変調無線通信装置の送信部の構 成を示すブロック図である。また、図 7bは、本発明の実施の形態 4にかかるノ ルス変 調無線通信装置の受信部の構成を示すブロック図である。送信部 400aと受信部 40 Obの構成は、それぞれ実施の形態 1に示した構成とほぼ同じであるため、共通する 部分についてはその説明を省き、差異について説明する。  [0119] FIG. 7a is a block diagram showing the configuration of the transmission unit of the pulse modulation wireless communication apparatus according to the fourth embodiment of the present invention. Further, FIG. 7 b is a block diagram showing a configuration of a receiving unit of the noise modulation radio communication apparatus according to the fourth embodiment of the present invention. The configurations of the transmitting unit 400a and the receiving unit 40Ob are substantially the same as the configurations shown in the first embodiment, and therefore the description of the common portions will be omitted, and differences will be described.
[0120] 送信部 400aは、クロック信号 102に同期して擬似乱数列データ 705を発生する擬 似乱数発生部 701と、クロック信号 102を擬似乱数列データ 705に応じて PPM変調 して、乱数パルス信号 706を出力するクロック PPM変調部 702とを備えて 、る。  The transmitting unit 400 a performs PPM modulation on the clock signal 102 in accordance with the pseudo random number sequence data 705, and generates a random number pulse. The pseudo random number generation unit 701 generates the pseudo random number sequence data 705 in synchronization with the clock signal 102. And a clock PPM modulator 702 for outputting the signal 706.
[0121] 受信部 400bは、送信部 400aと同系列の擬似乱数列データ 707を発生する擬似 乱数発生部 703と、擬似乱数発生部 703の出力する擬似乱数列データ 707により P PM復調し、乱数再生クロック信号 708を生成するクロック PPM復調部 704を備えて いる。 [0122] このような構成で、本実施の形態 4にかかるパルス変調無線通信装置の動作につ いて説明する。 Reception unit 400 b performs PPM demodulation using pseudo random number generation unit 703 that generates pseudo random number sequence data 707 in the same sequence as transmission unit 400 a and pseudo random number sequence data 707 output from pseudo random number generation unit 703. A clock PPM demodulator 704 is provided to generate a reproduced clock signal 708. The operation of the pulse modulation wireless communication apparatus according to the fourth embodiment having such a configuration will be described.
[0123] 送信部 400aでは、擬似乱数発生部 701は、クロック信号 102を擬似乱数列データ 705を変調符号としてクロック PPM変調部 702に供給する。クロック PPM変調部 70 2はパルス位置変調して乱数パルス信号 706をパルス発生部 109に供給する。  In the transmitter 400 a, the pseudo random number generator 701 supplies the clock signal 102 to the clock PPM modulator 702 as the pseudo random number sequence data 705 as a modulation code. The clock PPM modulator 70 2 performs pulse position modulation and supplies a random pulse signal 706 to the pulse generator 109.
[0124] 受信部 400bでは、擬似乱数発生部 703は、クロック PPM復調部 704に送信部 40 Oaの擬似乱数発生部 701と同一の擬似乱数列データ 707を供給し、クロック PPM復 調部 704はクロックパルス信号 123を PPM復調し、乱数再生クロック信号 708を生成 する。ここで、擬似乱数発生部 703における擬似乱数列データ 707の位相を変調側 と同期させるために、同期確立時にスイープ手段などにより位相を同期している。  In the reception unit 400 b, the pseudo random number generation unit 703 supplies the clock PPM demodulation unit 704 with the same pseudo random number sequence data 707 as the pseudo random number generation unit 701 of the transmission unit 40 Oa, and the clock PPM demodulation unit 704. The clock pulse signal 123 is PPM demodulated to generate a random number reproduction clock signal 708. Here, in order to synchronize the phase of the pseudo random number sequence data 707 in the pseudo random number generation unit 703 with the modulation side, the phase is synchronized by the sweep means or the like when synchronization is established.
[0125] このような構成とすることによって、本実施の形態 4では、擬似乱数列データを用い たランダムパターンによって変調した同期信号を同期チャネルに送出し、受信側で同 じランダムパターンにより再生することにより、クロック RF信号の周波数スペクトラムを 平準化し、同期チャネルの同期引込み後は高精度な同期回路を不要で同期チヤネ ル信号の通信効率を高めることができる。  By adopting such a configuration, in the fourth embodiment, the synchronization signal modulated by the random pattern using the pseudo random number sequence data is sent out to the synchronization channel, and the reception side reproduces the signal according to the same random pattern. As a result, the frequency spectrum of the clock RF signal can be equalized, and the synchronization efficiency of the synchronization channel signal can be improved without the need for a high precision synchronization circuit after synchronization channel synchronization.
[0126] また、一般にクロック信号 102は、クロックの繰り返し周波数の定倍あるいは分周周 波数の成分に電力が集中する特性をもつが、本実施の形態 4では、パルス位置変調 し、擬似乱数列データによる周波数の拡散により帯域内に一様の周波数特性を示す クロック RF信号 Aを生成することにより、周波数帯域内の電力を稠密に利用して、効 率的な送信信号を得ることができる。  Generally, clock signal 102 has such a characteristic that power concentrates on a component of a fixed multiple or a division frequency of the repetition frequency of the clock, but in the fourth embodiment, pulse position modulation is performed, and a pseudo random number sequence is generated. By generating a clock RF signal A that exhibits uniform frequency characteristics in a band by the spread of frequencies due to data, power in the frequency band can be used closely to obtain an efficient transmission signal.
[0127] (実施の形態 5)  Embodiment 5
次に、本発明の実施の形態 5にかかるパルス変調無線通信装置について説明する  Next, a pulse modulation wireless communication apparatus according to a fifth embodiment of the present invention will be described.
[0128] 実施の形態 4では、パルス変調として PPM方式を用いる形態とした力 本実施の形 態 5では、 PPM方式の代わりにバイフェーズ変調方式を用いる構成としている。この ように構成しても、実施の形態 4と同様の効果が得られる。 In the fourth embodiment, the PPM method is used as pulse modulation. In the fifth embodiment, a biphase modulation method is used instead of the PPM method. Even with this configuration, the same effects as in Embodiment 4 can be obtained.
[0129] 図 8aおよび図 8bは、それぞれ、本発明の実施の形態 5にかかるパルス変調無線通 信装置の送信部および受信部の構成を示すブロック図であって、実施の形態 4にか 力るパルス変調無線通信装置の変調部にバイフェーズ変調方式を用いた場合の送 信部および受信部の構成を示すブロック図である。 FIGS. 8a and 8b are block diagrams showing configurations of a transmitting unit and a receiving unit of a pulse modulation wireless communication apparatus according to a fifth embodiment of the present invention, respectively. FIG. 7 is a block diagram showing configurations of a transmitting unit and a receiving unit when a bi-phase modulation method is used for a modulation unit of a pulse modulation wireless communication apparatus to be used.
[0130] 本実施の形態 5におけるバイフェーズ変調方式を用いた構成と、上記実施の形態 4 に示した PPM方式を用いた構成の差異にっ 、て説明する。  The difference between the configuration using the bi-phase modulation method in the fifth embodiment and the configuration using the PPM method shown in the fourth embodiment will be described.
[0131] 送信部 500aは、クロック信号 102を擬似乱数列データ 705に応じてバイフェーズ 変調して、乱数パルス信号 803を出力するバイフェーズ変調部 801を備えている。受 信部 500bは、擬似乱数発生部 703とクロック PPM復調部 704の代わりに、パルス検 出部 802を備えている。パルス検出部 802は、入カノ ルスの包絡線検波により、バイ フェーズ変調の繰り返し周波数を検出することで、同期タイミングを検出し、ノイフェ ーズ再生クロック信号 804を生成する。  The transmission unit 500 a includes a bi-phase modulation unit 801 that bi-phase modulates the clock signal 102 according to the pseudo random number sequence data 705 and outputs a random number pulse signal 803. The receiving unit 500 b includes a pulse detection unit 802 instead of the pseudo random number generation unit 703 and the clock PPM demodulation unit 704. The pulse detection unit 802 detects the synchronization timing by detecting the repetition frequency of the biphase modulation by envelope detection of the input kernel, and generates the noise reproduction clock signal 804.
[0132] なお、バイフェーズ変調方式を用いる形態では、受信部 500bにおいてクロックパル ス信号 123よりバイフエーズ再生クロック信号 804を再生する際には、擬似乱数発生 部 703とバイフエーズ復調とによる逆拡散処理を行わずに、バイフェーズ変調の基本 パルス間隔を包絡線検波などで検出することが可能であり、簡便な受信構成を実現 する場合に本構成は有効である。  In the mode using the bi-phase modulation method, when the buffer reproduction clock signal 804 is reproduced from the clock pulse signal 123 in the reception unit 500 b, the despreading process by the pseudo random number generation unit 703 and the buffer demodulation is performed. It is possible to detect the basic pulse interval of bi-phase modulation by envelope detection etc. without doing this, and this configuration is effective when realizing a simple reception configuration.
[0133] (実施の形態 6)  Embodiment 6
次に、本発明の実施の形態 6にかかるパルス変調無線通信装置について説明する  Next, a pulse modulation wireless communication apparatus according to a sixth embodiment of the present invention will be described.
[0134] 本実施の形態 6にかかるパルス変調無線通信装置では、複数の端末に対して同時 に個別に送信する場合に、データ RF信号は個別に送信し、クロック RF信号を共用 することにより、送信装置の回路構成を削減し、消費電力を削減するようにしている。 In the pulse modulation wireless communication apparatus according to the sixth embodiment, when transmitting separately to a plurality of terminals simultaneously, the data RF signal is separately transmitted, and the clock RF signal is shared. The circuit configuration of the transmitter is reduced to reduce power consumption.
[0135] 本実施の形態 6にかかるパルス変調無線通信装置の構成について説明する。  The configuration of the pulse modulation wireless communication apparatus according to the sixth embodiment will be described.
[0136] 図 9aは、本実施の形態 6にかかるパルス変調無線通信装置の送信部の構成を示 すブロック図である。また、図 9bは、本実施の形態 6にかかる第 1のパルス変調無線 通信装置の受信部の構成を示すブロック図である。また、図 9cは、本実施の形態 6に 力かる第 2のパルス変調無線通信装置の受信部の構成を示すブロック図である。  FIG. 9a is a block diagram showing the configuration of the transmission unit of the pulse modulation wireless communication apparatus according to the sixth embodiment. Further, FIG. 9 b is a block diagram showing the configuration of the receiving unit of the first pulse modulation wireless communication apparatus according to the sixth embodiment. FIG. 9c is a block diagram showing the configuration of the receiving unit of the second pulse modulation wireless communication apparatus according to the sixth embodiment.
[0137] 送信部 600aと受信部 600b、 600cの構成は、実施の形態 1に示した構成とほぼ同 じであるため、共通する部分についての説明は省き、差異についてのみ説明する。 [0138] 送信部 600aは、実施の形態 1に示した構成に加え、送信データ発生部 903と、 PP M変調部 904と、パルス発生部 906と、送信 RF部 907と、アンテナ 908を備えデータ の送信部を 2系統設けている。また、受信部 600bと 600cは同じ構成をしており、受 信咅 600cは、アンテナ 921と、受信 RF咅 922と、アンテナ 924と、受信 RF咅 925と 、 PPM復調部 927と、復調部 929とを備え、クロック RF信号 Aの受信系統を受信機 6 00cと共用して!/ヽる。 The configurations of transmitting unit 600 a and receiving units 600 b and 600 c are almost the same as the configuration shown in the first embodiment, so the description of the common parts will be omitted, and only differences will be described. In addition to the configuration described in Embodiment 1, transmission section 600 a includes transmission data generation section 903, PPM modulation section 904, pulse generation section 906, transmission RF section 907, and antenna 908. Two transmitters are provided. Also, the receiver 600 b and 600 c have the same configuration, and the receiver 600 c has an antenna 921, a receiver RF receiver 922, an antenna 924, a receiver RF receiver 925, a PPM demodulator 927, and a demodulator 929. And share the reception system of the clock RF signal A with the receiver 600c!
[0139] このような構成で、本実施の形態 6にかかるパルス変調無線通信装置の動作につ いて説明する。  The operation of the pulse modulation wireless communication apparatus according to the sixth embodiment having such a configuration will be described.
[0140] 送信部 600aと受信部 600b、 600cとのデータの変復調動作は、実施の形態 1での 動作とほぼ同じである。そして、送信部 600aは、クロック RF信号 Aと、受信部 600bに 対するデータ RF信号 Bと、受信部 600cに対するデータ RF信号 Cとを生成して送出 する。また、受信部 600bは、クロック RF信号 Aとデータ RF信号 Bを受信してデータを 復調し、受信部 600cは、クロック RF信号 Aとデータ RF信号 Cを受信してデータを復 調する。  The data modulation / demodulation operation of transmission section 600 a and reception sections 600 b and 600 c is substantially the same as the operation in the first embodiment. Then, the transmitting unit 600a generates and sends out the clock RF signal A, the data RF signal B for the receiving unit 600b, and the data RF signal C for the receiving unit 600c. Further, the receiving unit 600b receives the clock RF signal A and the data RF signal B and demodulates data, and the receiving unit 600c receives the clock RF signal A and the data RF signal C and demodulates data.
[0141] このような構成とすることによって、本実施の形態 6では、複数のパルス変調無線通 信装置と同時にデータ通信する場合に、 1つの装置力 他の装置に対して、同期チ ャネルを共用して同時に異なるデータを送信することにより、同期チャネル信号の利 用効率を高めることができる。  By adopting such a configuration, in the sixth embodiment, when data communication is simultaneously performed with a plurality of pulse modulation wireless communication devices, the synchronization channel is set to one device power and the other device. By sharing and transmitting different data simultaneously, it is possible to improve the utilization efficiency of the synchronization channel signal.
[0142] なお、本実施の形態 6ではデータ送受信部を 2系統とする形態について示したが、 3系統以上の複数のデータ送受信において、 1つのクロック RF信号を共有する形態 としても、同様の効果を得ることができる。  Although Embodiment 6 shows a mode in which the data transmission / reception unit has two systems, the same effect can be obtained by sharing one clock RF signal in transmitting / receiving a plurality of data in three or more systems. You can get
[0143] (実施の形態 7)  Embodiment 7
次に、本発明の実施の形態 7にかかるパルス変調無線通信装置について説明する  Next, a pulse modulation wireless communication apparatus according to a seventh embodiment of the present invention will be described.
[0144] 本実施の形態 7にかかるパルス変調無線通信装置では、クロック RF信号としてパ ルス信号間で位相連続性のある信号を送信することにより、復調の際に周波数変換 用の LO信号 (基準信号)として用い、受信側に LO信号を発生する発振器を持たな いことで、受信装置の回路構成を削減し、消費電力を削減するようにしている。 [0145] 本実施の形態 7にかかるパルス変調無線通信装置の構成について説明する。 The pulse-modulated wireless communication apparatus according to the seventh embodiment transmits a signal having phase continuity between pulse signals as a clock RF signal to transmit a LO signal for frequency conversion in demodulation. The circuit configuration of the receiving device is reduced and power consumption is reduced by using it as a signal and not having an oscillator that generates an LO signal on the receiving side. The configuration of the pulse modulation wireless communication apparatus according to the seventh embodiment will be described.
[0146] 図 10aは、本実施の形態 7にかかるパルス変調無線通信装置の送信部の送信 RF 部の構成の一例を示すブロック図であり、その他の構成は実施の形態 1と同様である ので、説明は省略する。  FIG. 10a is a block diagram showing an example of the configuration of the transmission RF unit of the transmission unit of the pulse modulation wireless communication apparatus according to the seventh embodiment, and the other configuration is the same as that of the first embodiment. , The description is omitted.
[0147] 図 10aにおいて、送信装置の送信 RF部 1001は RF信号源 1003と短パルス化回 路 1004で構成されており、パルス発生部で発生したパルス信号 1002を基に、短パ ルス化回路 1004力 RF信号源 1003が出力する信号の通過、阻止を切り替えて短 パルス信号に変換し、クロック RF信号やデータ RF信号として出力する。送信用のァ ンテナ 1005を含む構成である。  In FIG. 10a, the transmission RF unit 1001 of the transmission apparatus is composed of an RF signal source 1003 and a short pulse generation circuit 1004, and based on the pulse signal 1002 generated by the pulse generation unit, the short pulse generation circuit 1004 Force RF signal source 1003 switches passage and blocking of the signal output, converts it into a short pulse signal, and outputs it as a clock RF signal and data RF signal. The configuration includes an antenna 1005 for transmission.
[0148] 短パルス化回路 1004としては、スィッチ回路やミキサ回路を用いて構成しても良い 。また、 RF信号源としては、パルス間の位相の連続性が必要となるため、連続発振 回路で構成することが好ましいが、間欠的に発振する回路や、インパルス信号の所 望帯域を抜き出して信号を生成する方法、デジタル的に信号を重畳する方法を用い ても、位相を調整する機能を備えれば同様に可能である。連続発振回路では位相の 連続性実現が容易であり、これ以外の方法では動作時間が短くなるため低消費電力 化に有利である。  The short pulse circuit 1004 may be configured using a switch circuit or a mixer circuit. In addition, it is preferable to use a continuous oscillation circuit as the RF signal source, because the phase continuity between the pulses is required. However, the circuit that oscillates intermittently or the desired band of the impulse signal is extracted and the signal is extracted. It is possible to use the method of generating the signal and the method of digitally superposing the signal as well as the function of adjusting the phase. In continuous oscillation circuits, it is easy to realize phase continuity, and other methods are advantageous for reducing power consumption because the operation time is short.
[0149] また、図 10bは、本実施の形態 7にかかるパルス変調無線通信装置の送信部の送 信 RF部の構成の他の例を示すブロック図であり、その他の構成は実施の形態 1と同 様であるので、説明は省略する。  FIG. 10 b is a block diagram showing another example of the configuration of the transmission RF unit of the transmission unit of the pulse modulation wireless communication apparatus according to the seventh embodiment, and the other configuration is the first embodiment. Description is omitted because it is the same.
[0150] 図 10bにおいては、同一の RF信号源 1003からの信号を、クロック信号をもとにした パルス信号 1007および送信データをもとにしたノ ルス信号 1008を基に、複数の短 ノ レスィ匕回路 1006a、 1006bを用いて短パルスィ匕し、アンテナ 1005から送信するよ うに構成している。これにより、送信 RF部 1001の構成の簡素化が可能となり、アンテ ナ 1005も少なくすることができる。  [0150] In FIG. 10 b, based on the pulse signal 1007 based on the clock signal and the pulse signal 1008 based on the transmission data, a plurality of short noises are generated based on the signal from the same RF signal source 1003. A short pulse is generated using an overhead circuit 1006 a or 1006 b, and transmission is performed from the antenna 1005. As a result, the configuration of the transmission RF unit 1001 can be simplified, and the number of antennas 1005 can be reduced.
[0151] 図 11aは、本実施の形態 7にかかるパルス変調無線通信装置の受信部の受信 RF 部の構成の一例を示すブロック図であり、その他の構成は実施の形態 1と同様である ので、説明は省略する。  FIG. 11a is a block diagram showing an example of the configuration of the reception RF unit of the reception unit of the pulse modulation wireless communication apparatus according to the seventh embodiment, and the other configuration is the same as that of the first embodiment. , The description is omitted.
[0152] 図 11aにおいて、 1101は受信 RF部であり、 RF信号源 1102とダウンミキサ 1103か ら構成される。送信装置力 送出されたクロック RF信号やデータ RF信号は高 、周波 数の信号であるため、そのままでは受信処理が難しい。そこで周波数の低い信号に 変換する必要がある。アンテナ 1105で受信された RF信号はダウンミキサ 1103に入 力され、 RF信号源 1102からの信号を LO信号として適当な周波数の信号にダウンコ ンバートされパルス信号 1104として出力される。 In FIG. 11a, reference numeral 1101 denotes a reception RF unit, and an RF signal source 1102 and a down mixer 1103 Are configured. Transmitter power The clock RF signal and data RF signal sent out are high frequency signals, so it is difficult to receive as it is. Therefore, it is necessary to convert to a low frequency signal. The RF signal received by the antenna 1105 is input to the downmixer 1103, and the signal from the RF signal source 1102 is downconverted to a signal of an appropriate frequency as an LO signal and output as a pulse signal 1104.
[0153] 図 l ibは、本実施の形態 7にかかるパルス変調無線通信装置の受信部の受信 RF 部の構成の他の例を示すブロック図であり、その他の構成は実施の形態 1と同様であ るので、説明は省略する。  FIG. 1 ib is a block diagram showing another example of the configuration of the reception RF unit of the reception unit of the pulse modulation wireless communication apparatus according to the seventh embodiment, and the other configuration is the same as that of the first embodiment. Therefore, the explanation is omitted.
[0154] 図 l ibにおいて、 1106は受信 RF部であり、アンテナ 1105で受信された信号は 2 分岐され、一方は図 11a同様に、ダウンミキサ 1103に入力されるが、一方は帯域制 限フィルタ 1107に入力される。ダウンミキサ 1103に入力された信号は LO信号の周 波数のみを狭帯域で抜き出すため、連続信号に変換され、ダウンミキサ 1103に LO 信号として入力される。  In FIG. 1 i b, 1106 is a reception RF unit, and the signal received by antenna 1105 is branched into two, one being inputted to down mixer 1103 as in FIG. 11 a, but one being a band limiting filter It is input to 1107. The signal input to the down mixer 1103 is converted into a continuous signal in order to extract only the frequency of the LO signal in a narrow band, and is input to the down mixer 1103 as an LO signal.
[0155] したがって、このような構成によれば、図 11aに示す構成と比較して、受信用に LO 信号源が不要となり、機器構成が簡単になり、消費電力も小さくできる。  Therefore, according to such a configuration, as compared with the configuration shown in FIG. 11a, the LO signal source for reception is not required, the device configuration is simplified, and the power consumption can be reduced.
[0156] 図 12a〜図 12dに図 l ibで示した受信 RF部により受信した信号の波形を示す。 12a to 12d show waveforms of signals received by the reception RF unit shown in FIG.
[0157] 図 12aはアンテナ 1105で受信された信号で、図 12bはそれを部分的に拡大した信 号である。このように、アンテナ 1105で受信されたパルス状の信号の中には、正弦波 成分が含まれている。 [0157] FIG. 12a is a signal received by the antenna 1105, and FIG. 12b is a partially enlarged signal thereof. Thus, the pulse-like signal received by the antenna 1105 contains a sine wave component.
[0158] 図 12cは帯域制限フィルタ 1107の出力信号、図 12dはそれを部分的に拡大した信 号である。このように、帯域制限フィルタ 1107の出力信号は、間欠的な信号が連続 信号に変換されている。  FIG. 12 c is an output signal of the band limiting filter 1107, and FIG. 12 d is a partially enlarged signal thereof. As described above, in the output signal of the band limiting filter 1107, an intermittent signal is converted into a continuous signal.
[0159] なお、図 12a〜図 12dは、 RF周波数帯として 25GHz、パルス幅 lns、帯域制限フ ィルタの帯域は 300MHzとした例を示した。通常、送信装置と受信装置の RF信号源 周波数は、それぞれ別の基準信号源を用いて生成されるため、絶えず周波数ずれ の補正が必要であるが、本構成では LO信号に RF信号力 抽出した信号を用いるた めずれ補正が不要となり、回路構成の簡略ィ匕が可能である。  12a to 12d show an example in which the RF frequency band is 25 GHz, the pulse width lns, and the band of the band limiting filter is 300 MHz. Usually, since the RF signal source frequency of the transmitter and the receiver is generated using different reference signal sources, it is necessary to constantly correct the frequency shift, but in this configuration, the RF signal power is extracted to the LO signal. The use of a signal eliminates the need for misregistration correction, and enables simplification of the circuit configuration.
[0160] このような構成とすることによって、本実施の形態 7では、クロック RF信号としてパル ス信号間で位相連続性のある信号を送信することにより、復調の際に周波数変換用 の LO信号として用いることで、受信装置の回路構成を削減し、消費電力を削減する ことができる。 With such a configuration, in the seventh embodiment, the clock RF signal is used as a clock RF signal. By transmitting a signal having phase continuity between source signals and using it as an LO signal for frequency conversion at the time of demodulation, the circuit configuration of the receiving apparatus can be reduced and power consumption can be reduced.
[0161] 以上の各実施の形態では、 PPM変調部 104又は PPM復調部 127が、送信データ に応じてパルスの位置を変調するパルス位置変調方式で構成されたパルス変調無 線通信装置について説明したが、本発明は、送信データに応じてパルスの振幅を変 調するパルス振幅変調方式又は、送信データに応じてパルスの位相を変調するパル ス位相変調方式又は、送信データに応じてパルスの周波数を変調するパルス周波 数変調方式のいずれかで構成されても、受信部がデータ受信の際に同期を取る方 法は、 PPM変調方式で構成した各実施の形態と同様であり、したがって、上記いず れの変調方式で構成しても、受信部がデータ受信の際に同期の取れた状態を維持 することができ、データ受信後速やかに信号を復調することができる効果を奏すること は言うまでもな 、ことである。  In each of the above embodiments, the PPM modulation unit 104 or the PPM demodulation unit 127 has been described for a pulse modulation wireless communication apparatus configured by a pulse position modulation method in which the position of a pulse is modulated according to transmission data. However, the present invention relates to a pulse amplitude modulation method that modulates the amplitude of a pulse according to transmission data, a pulse phase modulation method that modulates the phase of a pulse according to transmission data, or a pulse frequency according to transmission data. The method for achieving synchronization when the data is received by the receiver even if it is configured by any of the pulse frequency modulation schemes that modulate the signal is the same as in each embodiment configured by the PPM modulation scheme, and therefore Regardless of which modulation scheme is used, it is possible to maintain the synchronized state at the time of data reception by the reception unit, and to be able to demodulate the signal promptly after data reception. To be Do, is that.
産業上の利用可能性  Industrial applicability
[0162] 本発明にかかわるパルス変調無線通信装置は、量産性に優れた PPM変調無線装 置を、小型かつ安価に提供することとして有用である。 The pulse modulation wireless communication device according to the present invention is useful for providing a small-sized and inexpensive PPM modulation wireless device excellent in mass productivity.

Claims

請求の範囲 The scope of the claims
[1] 送信信号の毎フレームタイミングを示すクロック信号を発生するクロック発生部と、前 記クロック信号のタイミングでパルス信号を生成する第 1のパルス発生部と、前記第 1 のパルス発生部で生成したパルス信号を信号変換してクロック変換信号を生成し、 同期信号チャネルに送出する第 1の送信変換部と、前記クロック信号のタイミングに 同期して送信データを発生する送信データ発生部と、前記送信データをパルス変調 してパルス発生タイミング信号を出力するパルス変調部と、前記パルス発生タイミング 信号のタイミングでパルス信号を生成する第 2のパルス発生部と、前記第 2のパルス 発生部で生成したパルス信号を信号変換してデータ変換信号を生成し、前記同期 信号チャネルとは異なる信号チャネルであるデータ信号チャネルへ出力する第 2の 送信変換部とを備えたパルス変調無線通信装置。  [1] A clock generation unit that generates a clock signal indicating the timing of each frame of a transmission signal, a first pulse generation unit that generates a pulse signal at the timing of the clock signal, and the first pulse generation unit A first transmission conversion unit that converts the pulse signal into a clock signal to generate a clock conversion signal and sends the clock signal to a synchronization signal channel; a transmission data generation unit that generates transmission data in synchronization with the timing of the clock signal; A pulse modulation unit that pulse-modulates transmission data to output a pulse generation timing signal, a second pulse generation unit that generates a pulse signal at the timing of the pulse generation timing signal, and a second pulse generation unit The pulse signal is converted to generate a data conversion signal, and the data signal channel is a signal channel different from the synchronization signal channel. A pulse modulation wireless communication apparatus comprising:
[2] クロックパルス信号を信号変換したクロック変換信号を同期信号チャネルより受信し、 前記クロックパルス信号を生成する第 1の受信変換部と、データパルス信号を変換し たデータ変換信号を前記同期信号チャネルとは異なる信号チャネルであるデータ信 号チャネルより受信し、前記データパルス信号を生成する第 2の受信変換部と、前記 クロックパルス信号を基準として前記データパルス信号をパルス復調してビットストリ ームを出力するパルス復調部と、前記クロックパルス信号を基準として前記ビットストリ ームを受信データに復調する復調部とを備えたパルス変調無線通信装置。 [2] A clock conversion signal obtained by converting a clock pulse signal is received from a synchronization signal channel, and a first reception conversion unit generating the clock pulse signal; a data conversion signal obtained by converting a data pulse signal; A second reception conversion unit that receives from a data signal channel that is a signal channel different from the channel and generates the data pulse signal, and pulse-demodulates the data pulse signal with reference to the clock pulse signal to generate a bit string. A pulse modulation radio communication apparatus comprising: a pulse demodulation unit that outputs a signal; and a demodulation unit that demodulates the bit stream into reception data based on the clock pulse signal.
[3] 前記パルス変調部は、前記送信データに応じてパルス変調のパルス位置を示す変 調パルス位置を設定し、前記変調パルス位置に対応するパルス制御信号を出力す るパルス位置設定部と、すべての前記パルス変調のパルス位置に応じてそれぞれ遅 延した前記クロック信号を出力する多段遅延部と、前記パルス制御信号により前記多 段遅延部の出力信号を選択して出力するスィッチ部とを備えた請求項 1記載のパル ス変調無線通信装置。 [3] The pulse position setting unit which sets a modulation pulse position indicating a pulse position of pulse modulation according to the transmission data, and outputs a pulse control signal corresponding to the modulation pulse position; The multistage delay unit outputs the clock signal delayed according to the pulse positions of all the pulse modulations, and the switch unit selects and outputs the output signal of the multistage delay unit according to the pulse control signal. The pulse modulation wireless communication device according to claim 1.
[4] 前記パルス復調部は、すべてのパルス変調のパルス位置に応じて遅延した前記クロ ックパルス信号をそれぞれ出力する多段遅延部と、前記多段遅延部の出力信号と前 記データパルス信号との相関を検出して相関信号を出力する相関部と、前記相関信 号に応じて前記パルス変調のパルス位置を判定してビットストリームを出力するパル ス位置判定部とを備えた請求項 2記載のパルス変調無線通信装置。 [4] A multistage delay unit for outputting the clock pulse signal delayed according to pulse positions of all pulse modulations, and a correlation between an output signal of the multistage delay unit and the data pulse signal. And a correlation unit that detects a correlation signal and outputs a correlation signal, and a pulse that determines a pulse position of the pulse modulation according to the correlation signal and outputs a bit stream. The pulse modulation wireless communication device according to claim 2, further comprising:
[5] 前記クロック信号に応じて一定周期のパルス信号である同期パルス信号を発生する 同期発生部をさらに備え、前記第 1のパルス発生部は、前記同期パルス信号のタイミ ングでパルス信号を生成する請求項 1記載のパルス変調無線通信装置。  [5] The device further includes a synchronization generation unit that generates a synchronization pulse signal that is a pulse signal of a fixed cycle according to the clock signal, and the first pulse generation unit generates a pulse signal at the timing of the synchronization pulse signal. The pulse modulation wireless communication device according to claim 1.
[6] 一定周期のクロックパルス信号から毎フレームタイミングを示す再生クロック信号を生 成するクロック再生部をさらに備え、前記パルス復調部は、前記再生クロック信号を 基準として前記データパルス信号をパルス復調してビットストリームを出力し、前記復 調部は、前記再生クロック信号を基準として前記ビットストリームを受信データに復調 する請求項 2記載のパルス変調無線通信装置。  [6] The device further comprises a clock recovery unit that generates a recovery clock signal indicating every frame timing from a clock pulse signal of a fixed cycle, and the pulse demodulation unit pulse demodulates the data pulse signal based on the recovery clock signal. The pulse modulation radio communication apparatus according to claim 2, wherein the bit stream is output, and the demodulator demodulates the bit stream into received data based on the reproduction clock signal.
[7] 前記クロック再生部は、あら力じめ設定したフレームタイミングに近似した周波数で動 作し、外部力 の電圧により周波数制御可能なクロック信号源と、前記クロック信号源 と前記クロックパルス信号の位相差を示す誤差量を出力する位相比較部と、前記誤 差量を制御電圧に変換し出力するローパスフィルタとを備え、前記クロック信号源の 周波数を前記制御電圧により制御する請求項 6記載のパルス変調無線通信装置。  [7] The clock recovery unit operates at a frequency approximating the preset frame timing, and the clock signal source whose frequency can be controlled by the voltage of the external force, the clock signal source, and the clock pulse signal 7. The control circuit according to claim 6, further comprising: a phase comparison unit that outputs an error amount indicating a phase difference; and a low pass filter that converts the error amount into a control voltage and outputs the control voltage. Pulse modulation wireless communication device.
[8] 前記クロック再生部は、あら力じめ設定したフレームタイミングに近似した周波数で動 作し、出力信号の位相を外部信号により初期位相に戻るようリセット制御可能なクロッ ク再生信号発生部を備え、前記クロックパルス信号の入力により前記再生クロック信 号の位相を同期する請求項 6記載のパルス変調無線通信装置。  [8] The clock recovery unit operates at a frequency approximating the preset frame timing, and the clock recovery signal generation unit is resettable so that the phase of the output signal is returned to the initial phase by the external signal. 7. The pulse modulated radio communication apparatus according to claim 6, further comprising: synchronizing the phase of the recovered clock signal by the input of the clock pulse signal.
[9] 前記クロック信号に応じた一定周期のパルス信号と、前記クロック信号に前記送信デ ータの付帯情報を示す付帯情報データを重畳したパルス信号とからなる重畳パルス 信号を生成する重畳データ発生部をさらに備え、前記送信データ発生部は、前記ク ロック信号のタイミングに同期して前記送信データとともに前記付帯情報データを生 成し、前記第 1のパルス発生部は、前記重畳パルス信号のタイミングでパルス信号を 生成する請求項 1記載のパルス変調無線通信装置。  [9] Superimposed data generation for generating a superimposed pulse signal comprising a pulse signal of a fixed cycle corresponding to the clock signal and a pulse signal in which incidental information data indicating incidental information of the transmission data is superimposed on the clock signal The transmission data generation unit further generates the incidental information data together with the transmission data in synchronization with the timing of the clock signal, and the first pulse generation unit generates the timing of the superimposed pulse signal. The pulse modulation wireless communication device according to claim 1, wherein the pulse modulation signal is generated by
[10] 一定周期のパルス信号と前記送信データの付帯情報を示す付帯情報データとが重 畳されたクロックパルス信号から毎フレームタイミングを示す再生クロック信号を生成 するクロック再生部と、前記再生クロック信号に応じて、前記重畳されたクロックパルス 信号から前記付帯情報データを抽出して重畳データを生成する重畳データ復号部と をさらに備え、前記復調部は、前記再生クロック信号を基準として、前記重畳データと 前記ビットストリームを受信データに復調する請求項 2記載のパルス変調無線通信装 置。 [10] A clock recovery unit for generating a recovery clock signal indicating every frame timing from a clock pulse signal in which a pulse signal of a fixed cycle and additional information data indicating additional information of the transmission data is superimposed; And a superimposed data decoding unit that extracts the incidental information data from the superimposed clock pulse signal and generates superimposed data according to The pulse modulation wireless communication device according to claim 2, further comprising: the demodulation unit demodulates the superimposed data and the bit stream into reception data based on the reproduction clock signal.
[11] 前記クロック信号に応じて擬似乱数列データを生成する擬似乱数発生部と、前記擬 似乱数列データに応じて前記クロック信号をパルス変調した乱数パルス信号を生成 するクロックパルス変調部とをさらに備え、前記第 1のパルス発生部は、前記乱数パ ルス信号のタイミングでパルス信号を生成する請求項 1記載のパルス変調無線通信 装置。  [11] A pseudorandom number generation unit that generates pseudorandom number sequence data according to the clock signal, and a clock pulse modulation unit that generates a random number pulse signal obtained by pulse-modulating the clock signal according to the pseudorandom number sequence data. The pulse modulation wireless communication apparatus according to claim 1, further comprising: the first pulse generation unit generates a pulse signal at a timing of the random number pulse signal.
[12] 擬似乱数列データに応じてパルス変調されたクロックパルス信号力 毎フレームタイ ミングを示す乱数再生クロック信号を生成するクロックパルス復調部と、前記乱数再 生クロック信号のタイミングで前記擬似乱数列データを発生する擬似乱数発生部とを さらに備え、パルス復調部は、前記乱数再生クロック信号を基準として前記データパ ルス信号をパルス復調してビットストリームを出力し、前記復調部は、前記乱数再生ク ロック信号を基準として前記ビットストリームを受信データに復調する請求項 2記載の パルス変調無線通信装置。  [12] A clock pulse demodulation unit for generating a random number reproduction clock signal indicating a frame timing and a clock pulse signal strength pulse-modulated according to the pseudo random number sequence data, and the pseudo random number sequence at the timing of the random number reproduction clock signal And a pulse demodulation unit that pulse-demodulates the data pulse signal based on the random number reproduction clock signal to output a bit stream, and the demodulation unit generates the random number reproduction clock signal. The pulse modulation radio communication apparatus according to claim 2, wherein the bit stream is demodulated to reception data based on a lock signal.
[13] 前記クロック信号に応じて擬似乱数列データを生成する擬似乱数発生部と、前記擬 似乱数列データに応じて前記クロック信号をバイフェーズ変調した乱数パルス信号を 生成するバイフェーズ変調部とをさらに備え、前記第 1のパルス発生部は、前記乱数 パルス信号のタイミングでパルス信号を生成する請求項 1記載のパルス変調無線通 信装置。 [13] A pseudo random number generation unit that generates pseudo random number sequence data according to the clock signal, and a bi-phase modulation unit that generates a random number pulse signal obtained by bi-phase modulating the clock signal according to the pseudo random number sequence data The pulse-modulated wireless communication device according to claim 1, further comprising: a first pulse generation unit that generates a pulse signal at a timing of the random number pulse signal.
[14] 擬似乱数列データに応じてバイフェーズ変調されたクロックパルス信号からバイフエ ーズ変調の繰り返し周波数を検出して毎フレームタイミングを示すバイフェーズ再生 クロック信号を生成するパルス検出部をさらに備え、前記パルス復調部は、前記バイ フェーズ再生クロック信号を基準として前記データパルス信号をパルス復調してビット ストリームを出力し、前記復調部は、前記バイフェーズ再生クロック信号を基準として 前記ビットストリームを受信データに復調する請求項 2記載のパルス変調無線通信装 置。  [14] A pulse detection unit for detecting a repetition frequency of the bi-phase modulation from a clock pulse signal bi-phase modulated according to pseudo random number sequence data and generating a bi-phase reproduction clock signal indicating each frame timing is further provided. The pulse demodulation unit pulse-demodulates the data pulse signal based on the bi-phase reproduction clock signal and outputs a bit stream, and the demodulation unit receives the bit stream based on the bi-phase reproduction clock signal. The pulse-modulated wireless communication device according to claim 2, wherein the pulse-modulated wireless communication device demodulates into a signal.
[15] 前記送信データ発生部と、前記パルス変調部と、前記第 2のパルス発生部と、前記 第 2の送信変換部とをそれぞれ複数備え、複数の通信先に対する送信データを、そ れぞれ前記クロック信号のタイミングに同期するように変調してデータ変換信号を生 成し、前記通信先ごとに設定された前記データ信号チャネルへ送出する請求項 1記 載のパルス変調無線通信装置。 [15] The transmission data generation unit, the pulse modulation unit, the second pulse generation unit, and A plurality of second transmission conversion units are provided, and transmission data for a plurality of communication destinations are modulated to be synchronized with the timing of the clock signal, respectively, to generate data conversion signals. The pulse modulated radio communication device according to claim 1, wherein the pulse modulated radio communication device transmits the data signal channel set to
[16] 前記第 2の受信変換部は、複数の前記データ信号チャネル力もあらかじめ設定され た前記データ変換信号を選択して受信し、前記データパルス信号を生成する請求項 2記載のパルス変調無線通信装置。  [16] The pulse modulation wireless communication system according to claim 2, wherein the second reception conversion unit selects and receives the data conversion signal in which a plurality of the data signal channel powers are also preset, and generates the data pulse signal. apparatus.
[17] 前記パルス変調部は、パルスの振幅を変調するパルス振幅変調方式又は、パルスの 位相を変調するパルス位相変調方式又は、パルスの周波数を変調するパルス周波 数変調方式のいずれかで構成される請求項 1記載のパルス変調無線通信装置。  [17] The pulse modulation unit is configured by either a pulse amplitude modulation method of modulating the amplitude of a pulse, a pulse phase modulation method of modulating the phase of the pulse, or a pulse frequency modulation method of modulating the frequency of the pulse. The pulse modulation wireless communication device according to claim 1.
[18] 前記パルス復調部は、パルスの振幅を変調するパルス振幅変調方式又は、パルスの 位相を変調するパルス位相変調方式又は、パルスの周波数を変調するパルス周波 数変調方式のいずれかで構成される請求項 2記載のパルス変調無線通信装置。  [18] The pulse demodulation unit is configured by either a pulse amplitude modulation method of modulating the amplitude of a pulse, a pulse phase modulation method of modulating the phase of the pulse, or a pulse frequency modulation method of modulating the frequency of the pulse. The pulse modulation wireless communication device according to claim 2.
[19] 前記同期信号チャネルの使用する周波数帯域が前記データ信号チャネルの使用す る周波数帯域より狭い請求項 1〜16のいずれかに記載のパルス変調無線通信装置  [19] The pulse modulation wireless communication device according to any one of claims 1 to 16, wherein a frequency band used by the synchronization signal channel is narrower than a frequency band used by the data signal channel.
PCT/JP2006/302018 2005-02-09 2006-02-07 Pulse modulating wireless communication apparatus WO2006085511A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005032563 2005-02-09
JP2005-032563 2005-02-09
JP2006018832A JP2006254412A (en) 2005-02-09 2006-01-27 Pulse modulation radio communication apparatus
JP2006-018832 2006-01-27

Publications (1)

Publication Number Publication Date
WO2006085511A1 true WO2006085511A1 (en) 2006-08-17

Family

ID=36793083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/302018 WO2006085511A1 (en) 2005-02-09 2006-02-07 Pulse modulating wireless communication apparatus

Country Status (2)

Country Link
JP (1) JP2006254412A (en)
WO (1) WO2006085511A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012009853A (en) * 2010-06-03 2012-01-12 Asml Netherlands Bv Stage device and lithography device with such stage device
CN105915481A (en) * 2016-05-20 2016-08-31 中国电子科技集团公司第十研究所 Multi-path high-speed wideband signal analog phase modulation method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101809466B1 (en) 2011-05-27 2017-12-18 삼성전자주식회사 Apparatus and method for high efficiency variable power transmission
US9553693B2 (en) * 2015-06-25 2017-01-24 Raytheon Company Data communication using bandwidth modulation
JP7119681B2 (en) * 2018-07-16 2022-08-17 株式会社デンソー Signal transmission device and drive device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02274130A (en) * 1989-04-17 1990-11-08 Nippon Telegr & Teleph Corp <Ntt> Clock regenerating circuit
JPH0440029A (en) * 1990-06-05 1992-02-10 Fujitsu Ltd Symbol timing reproducing circuit
JP2000196516A (en) * 1998-12-24 2000-07-14 Nec Mobile Commun Ltd Afc circuit for mobile communication unit
WO2002100058A1 (en) * 2001-05-30 2002-12-12 Thine Electronics, Inc. Semiconductor integrated circuit and data transmission system
JP2004241860A (en) * 2003-02-03 2004-08-26 Sony Corp Transmission method and transmission apparatus
JP2005006291A (en) * 2003-05-21 2005-01-06 Matsushita Electric Ind Co Ltd Pulse modulation type radio communication device
JP2005012745A (en) * 2003-06-18 2005-01-13 Samsung Electronics Co Ltd Transmission/reception system in asynchronous type pulse position phase shift modulation system and its transmission/reception signal processing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02274130A (en) * 1989-04-17 1990-11-08 Nippon Telegr & Teleph Corp <Ntt> Clock regenerating circuit
JPH0440029A (en) * 1990-06-05 1992-02-10 Fujitsu Ltd Symbol timing reproducing circuit
JP2000196516A (en) * 1998-12-24 2000-07-14 Nec Mobile Commun Ltd Afc circuit for mobile communication unit
WO2002100058A1 (en) * 2001-05-30 2002-12-12 Thine Electronics, Inc. Semiconductor integrated circuit and data transmission system
JP2004241860A (en) * 2003-02-03 2004-08-26 Sony Corp Transmission method and transmission apparatus
JP2005006291A (en) * 2003-05-21 2005-01-06 Matsushita Electric Ind Co Ltd Pulse modulation type radio communication device
JP2005012745A (en) * 2003-06-18 2005-01-13 Samsung Electronics Co Ltd Transmission/reception system in asynchronous type pulse position phase shift modulation system and its transmission/reception signal processing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012009853A (en) * 2010-06-03 2012-01-12 Asml Netherlands Bv Stage device and lithography device with such stage device
US8587769B2 (en) 2010-06-03 2013-11-19 Asml Netherlands B.V. Stage apparatus and lithographic apparatus comprising such stage apparatus
CN105915481A (en) * 2016-05-20 2016-08-31 中国电子科技集团公司第十研究所 Multi-path high-speed wideband signal analog phase modulation method
CN105915481B (en) * 2016-05-20 2019-05-07 中国电子科技集团公司第十研究所 Multipath high-speed broadband signal analogue phase modulator approach

Also Published As

Publication number Publication date
JP2006254412A (en) 2006-09-21

Similar Documents

Publication Publication Date Title
US20090232197A1 (en) Pulse modulated wireless communication device
US6970448B1 (en) Wireless TDMA system and method for network communications
JP4744344B2 (en) Pulse modulation type transmitter and pulse modulation type receiver
EP1796268B1 (en) Modulating circuit, transmitting apparatus using the same, receiving apparatus and communication system
WO2006095616A1 (en) Master side communication apparatus and slave side communication apparatus
WO2006085511A1 (en) Pulse modulating wireless communication apparatus
EP1050116A1 (en) System for discrete data transmission with noise-like, broadband signals
US8103002B2 (en) Pulse position based-chaotic modulation (PPB-CM) communication system and method
JP3178138B2 (en) Frame synchronization circuit and frame synchronization method
JP3055541B2 (en) Orthogonal frequency division multiplexed signal transmitting / receiving device
JP2003101508A (en) Wireless communication system, base station apparatus, and terminal equipment
JP3531830B1 (en) Orthogonal frequency division multiplexing signal transmission / reception system and orthogonal frequency division multiplexing signal transmission / reception method
JP3531827B1 (en) Orthogonal frequency division multiplexing signal transmission / reception system and orthogonal frequency division multiplexing signal transmission / reception method
JP3531823B2 (en) Orthogonal frequency division multiplexing signal transmission / reception system and orthogonal frequency division multiplexing signal transmission / reception method
JP3531833B1 (en) Orthogonal frequency division multiplexing signal transmission / reception system and orthogonal frequency division multiplexing signal transmission / reception method
JP3531825B2 (en) Orthogonal frequency division multiplexing signal transmission / reception system and orthogonal frequency division multiplexing signal transmission / reception method
JP2827834B2 (en) Data transceiver
JP2003110466A (en) Synchronization-retaining apparatus and method thereof
JPH06350561A (en) Data modulation system
Otte et al. Modulation schemes
JP2002237798A (en) Quadrature frequency division multiplex signal receiver
JP2002237799A (en) Quadrature frequency division multiplex signal receiver
JPH04196936A (en) Frame synchronizing circuit
JP2004260862A (en) Transmitting unit, receiving unit, transmitting method, and receiving method of orthogonal frequency division multiplexing signal
JP2002305499A (en) Orthogonal frequency division multiplex signal transmission device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680000066.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06713161

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6713161

Country of ref document: EP