WO2006085508A1 - Display gradation voltage setting method, display driving method, program, and display - Google Patents

Display gradation voltage setting method, display driving method, program, and display Download PDF

Info

Publication number
WO2006085508A1
WO2006085508A1 PCT/JP2006/302003 JP2006302003W WO2006085508A1 WO 2006085508 A1 WO2006085508 A1 WO 2006085508A1 JP 2006302003 W JP2006302003 W JP 2006302003W WO 2006085508 A1 WO2006085508 A1 WO 2006085508A1
Authority
WO
WIPO (PCT)
Prior art keywords
gradation
voltage
display
display device
gradation voltage
Prior art date
Application number
PCT/JP2006/302003
Other languages
French (fr)
Japanese (ja)
Inventor
Tomoo Furukawa
Takashi Sasaki
Makoto Shiomi
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Publication of WO2006085508A1 publication Critical patent/WO2006085508A1/en

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0209Crosstalk reduction, i.e. to reduce direct or indirect influences of signals directed to a certain pixel of the displayed image on other pixels of said image, inclusive of influences affecting pixels in different frames or fields or sub-images which constitute a same image, e.g. left and right images of a stereoscopic display
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0285Improving the quality of display appearance using tables for spatial correction of display data
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0666Adjustment of display parameters for control of colour parameters, e.g. colour temperature

Definitions

  • Display device gradation voltage setting method display device drive method, program, and display device
  • the present invention relates to a display device gradation voltage setting method, a display device driving method, a program, and a display device that have improved display performance.
  • the source line it is not possible to compensate in advance for crosstalk caused by other source lines.
  • the parasitic capacitance Csda is also generated with the source line B for driving the other display pixel B.
  • the drive voltage that should be applied to the self-display pixel A changes. This is because the potential of the source line B that drives the other display pixels B cannot be defined in advance.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a gradation voltage setting method and a program for a display device that can prevent the occurrence of an edge caused by coupling. It is to be realized.
  • the edge due to the discontinuous luminance change causes an intense driving voltage for driving the low gradation region of the display image.
  • voltage fluctuation More specifically, when a 256-gradation pattern shown in FIG. 12 is displayed, voltage fluctuations become severe in a low gradation region where the gradation is, for example, about 0 to 5, and an edge appears in the display image. Found out that it would occur.
  • the gradation of B is 0 to 5 among the RGB pixels
  • the luminance change of the G pixel becomes discontinuous due to the coupling of B and G, and the luminance change is recognized as an edge. It is because of that.
  • the inventors have found the above new knowledge about the cause of the occurrence of an edge in the display image, and have arrived at the present invention based on this new knowledge.
  • the ladder resistance of the driver generates a grayscale voltage that causes extreme U and voltage fluctuations in the low grayscale region.
  • V a so-called non-linear driver, is designed to be used.
  • the above-described drastic voltage fluctuation occurs in the low gradation region of the display device.
  • the gradation voltage setting method for a display device applies a gradation voltage corresponding to each gradation to a display element to display an image.
  • This is a voltage setting method in which the step of obtaining the difference in gradation voltage for the gradation in the low gradation region and the gradation voltage of the maximum difference gradation corresponding to the maximum difference among the obtained differences are corrected. And a step of correcting the gradation voltage corresponding to each gradation so as to be smaller than the gradation voltage of the 0 gradation.
  • V (x) V (x) -V (x- l) (x represents the gradation, ⁇ V (x) represents the difference in gradation voltage at gradation X, and V (x) represents the gradation voltage at gradation X.)
  • the step of correcting the gradation voltage in the gradation voltage setting method of the display device may be performed by applying a gradation voltage corresponding to a gradation one larger than the maximum difference gradation to a gradation of 0 gradation before correction.
  • the gradation voltage corresponding to each gradation may be corrected so as to obtain the regulated voltage.
  • the gradation voltage of the maximum difference gradation is smaller than the gradation voltage of 0 gradation before correction.
  • the gradation voltage can be corrected as follows.
  • the gradation setting method of the present invention is particularly preferably used when the display device is driven by a source driver having a ladder-resistive division in which a difference in gradation voltage has an extreme value.
  • a display device using a source driver (non-linear dry type) with ladder resistance division whose gradation voltage difference has an extreme value has an edge (false contour) that cannot be resolved by the conventional drive algorithm. May occur in the display image (display screen), but according to the gradation setting method of the present invention, the occurrence of the edge can be prevented.
  • a display device driving method is a display device driving method for displaying an image by applying a gradation voltage corresponding to each gradation to a display element.
  • the gradation voltage of the display device is set (corrected) by the gradation voltage setting method of the present invention, and the display data below the maximum difference gradation is extracted for integers m and n where 6 ⁇ n ⁇ m.
  • the method further includes the step of selecting low-gradation deletion data, converting the low-gradation deletion data to m bits, and then selecting a digital correction value corresponding to the m-bit data force n bits. It is characterized by.
  • a predetermined gradation (2 n ) can be maintained as the gradation expression capability of the display image. That is, according to the step of mbiting the low gradation deletion data and selecting a digital correction value for n bits from the m-bit data, the low gradation area below the maximum difference gradation is selected. Therefore, it is possible to compensate for a decrease in gradation expression capability due to correction that sets a gradation voltage smaller than the gradation voltage of 0 gradation before correction. For this reason, the gradation expression capability of the display device can be maintained at a predetermined gradation.
  • independent ⁇ processing is processing that changes ⁇ characteristics for each RGB data.
  • in order to prevent gradation collapse and gradation skipping for example, in 10-bit data (number of data 102 4). This includes the selection of 8 bits of data (number of data 256) as a digital correction value so that a desired characteristic (for example, ⁇ characteristic) can be obtained from the above.
  • step of mbiting low gradation deletion data and selecting a digital correction value for n bits from the m-bit data refers to m-bit data (low order Tone deletion Rather than simply converted data), m-bit gradation data (0 force 2 m — all of 1 gradation, that is, data with 2 m of data) Medium force Appropriate digital correction value This is done by selecting.
  • pseudo multi-gradation is a process used when, for example, an 8-bit driver wants to express 10-bit equivalent.
  • a noise pattern that determines the lower 2-bit data power is added to the upper 8-bit data instead of truncating the lower 2-bit data. It is to realize expressive power.
  • FRC Full Rate Control
  • the driving method of the display device of the present invention is such that, for integers m and n where 6 ⁇ n ⁇ m, display data equal to or less than the maximum difference gradation is extracted and used as low gradation deletion data. Tone removal After m-bits the data, adjacent pixels of the display device are coupled via parasitic capacitance. Information on the lower (m ⁇ n) bit data in the upper n-bit data out of the m-bit data processed by the above steps for correcting the crosstalk problem resulting from the above and the above-mentioned steps for correcting the crosstalk problem And a step to output as n-bit data! Don't panic! ,.
  • the present invention can also be configured as a program for causing a computer to execute the step of the gradation voltage setting method for the display device of the present invention.
  • the display device is a display device that displays an image by applying a gray voltage corresponding to each gray level to the display element to display an image.
  • the gradation voltage difference is calculated for the gradation of the gradation area, and the gradation voltage of the maximum difference gradation corresponding to the largest difference among the obtained differences is set to be higher than the gradation voltage of the 0 gradation before correction. It is characterized by having correction means for correcting the gradation voltage corresponding to each gradation so as to decrease.
  • the display device prevents the occurrence of a large voltage change caused by coupling in a region below the maximum differential gradation in the low gradation region by correcting the gradation voltage by the correction unit. be able to.
  • the voltage that was used as the drive voltage below the maximum difference gradation in the low gradation area before correction is used as the drive voltage for the gradation that is larger than the maximum difference gradation.
  • Display is performed without using a combination of a gradation and a gradation voltage at which a large voltage change occurs. As a result, it is possible to prevent the occurrence of a discontinuous change in luminance that cannot be corrected using color crosstalk correction, and to prevent the occurrence of an edge in the display image of the display device.
  • the correction means may be configured so that the gradation voltage corresponding to the gradation one larger than the maximum difference gradation becomes the gradation voltage of 0 gradation before correction. It is preferable to have a configuration that corrects the gradation voltage corresponding to the key.
  • This configuration is suitable for a display device in which the applied voltage is increased by increasing the force with low gradation.
  • the display device according to the present invention is driven by a source driver having a ladder resistance division such that a difference in gradation voltage has an extreme value.
  • a display device using a source driver (non-linear driver) having a ladder resistance division whose gradation voltage difference has an extreme value displays an edge (false contour) that cannot be eliminated by a conventional driving algorithm. Although it may occur in an image (display screen), according to the configuration of the present invention, the occurrence of the edge can be prevented.
  • another display device is a display device for displaying an image by applying tl to a display element with a gradation voltage corresponding to each gradation in order to solve the above problem.
  • the gradation voltage difference is calculated for the gradation in the low gradation area, and the gradation voltage of the maximum difference gradation corresponding to the maximum difference among the obtained differences is the gradation of 0 gradation before correction.
  • the gradation voltage corresponding to each gradation is corrected so that it becomes smaller than the voltage, and for the integers m and n where 6 ⁇ n ⁇ m, the display data below the maximum difference gradation is taken out and the low gradation is deleted.
  • the low gradation deletion data is m-bit data
  • the m-bit data power is also provided with a correction means for selecting a digital correction value for n bits.
  • a display device that displays an image by applying the corresponding gradation voltage to the display element, and obtains the difference in gradation voltage for the gradation in the low gradation region, and corresponds to the maximum difference among the obtained differences.
  • the gradation voltage corresponding to each gradation is corrected so that the gradation voltage of the maximum difference gradation is smaller than the gradation voltage of the 0 gradation before correction, and one gradation difference is added.
  • Correction means for correcting the gradation voltage corresponding to each gradation is provided so that the gradation voltage corresponding to the large gradation becomes the gradation voltage of 0 gradation before correction, and the correction means includes 6 ⁇
  • the display data below the maximum difference gradation is taken out and used as low gradation deletion data.
  • the low gradation deletion data is converted to m bits, and then the m bit converted data is converted to m bits. It is equipped with a correction means for selecting a digital correction value for one taka n bits. To have.
  • a predetermined gradation (2 n ) can be maintained as the gradation expression capability of the display image.
  • the low gradation deletion data is converted to m bits and a digital correction value corresponding to n bits of the m-bit keyed data is selected, the low gradation area below the maximum difference gradation is converted to the low gradation area before the correction. It is possible to compensate for a decrease in gradation expression capability due to correction for setting a gradation voltage smaller than the gradation voltage of 0 gradation. For this reason, the gradation expression capability of the display device can be maintained at a predetermined gradation.
  • the correction means of the display device of the present invention performs independent ⁇ processing on the data in which the gradation voltage is set and a certain gradation or less is discarded.
  • independent ⁇ processing is processing that changes ⁇ characteristics for each RGB data.
  • the medium strength of 10-bit data (number of data 1024) is appropriate. It is configured to include the selection of data for bit data (number of data 256) as a digital correction value.
  • the correction unit may be configured to perform color crosstalk correction and pseudo multi-gradation after selecting an appropriate digital correction value.
  • pseudo multi-gradation means For example, this is the process used when an 8-bit driver wants to express 10 bits. When 10-bit data is converted to 8-bit data, a noise pattern that determines the low-order 2-bit data power is added to the high-order 8-bit data rather than truncating the low-order 2-bit data. Realizes expressive power.
  • FRC Full Rate Control
  • the correction unit is low except for display data that is equal to or less than the maximum difference gradation with respect to integers m and n where 6 ⁇ n ⁇ m.
  • Cross-talk problem caused by the fact that the low-gradation deletion data is converted to m-bit data by converting the low-gradation deletion data to m-bit data, and then the adjacent pixels of the display device are coupled through a parasitic capacitance.
  • the upper (n) bit data is added to the upper (n) bit data and output as n-bit data.
  • the maximum difference gradation is determined from the display data. Except for the following display data, it is used as low gradation deletion data, and after the low gradation deletion data is 10 bits long, 8-bit digital correction value is selected from the 10 bits of data. In this case, 256 gradations can be maintained as the gradation representation capability of the display image.
  • FIG. 1 (a) is a graph showing an example of gradation voltage setting after correction by the gradation voltage setting method of the present invention.
  • FIG. 1 (b) is a graph showing a difference in gradation voltage setting shown in FIG. 1 (a).
  • FIG. 2 (a) is a graph showing an example of gradation voltage setting before correction by the gradation voltage setting method of the present invention.
  • FIG. 2 (b) is a graph showing a difference in gradation voltage setting shown in FIG. 2 (a).
  • FIG. 3 is a block diagram showing an example of the configuration of a color display device in which gradation voltages are set according to the present invention.
  • FIG. 4 is a plan view showing in detail the configuration of a display panel in the color display device of FIG. 3.
  • FIG. 4 is a plan view showing in detail the configuration of a display panel in the color display device of FIG. 3.
  • FIG. 5 is a diagram showing a state in which the display pattern changes in the display panel of FIG.
  • FIG. 6 is a diagram for comparing original white luminance with synthetic white luminance.
  • FIG. 7 A graph showing the difference between the monochromatic luminance and the original monochromatic luminance as a difference in stimulus values of chromaticity X, ⁇ , and Z for each gradation.
  • FIG. 8 A graph showing the error rate for each gradation with respect to the difference between the monochromatic luminance and the original monochromatic luminance.
  • FIG. 9 is a graph showing color crosstalk correction values when the other source is 0 gradation.
  • FIG. 10 is a block diagram showing the procedure of correction processing when displaying 8-bit 256 gradation using the gradation voltage after correction according to the present invention.
  • Fig. 11 is a schematic diagram for explaining a conventional technique and explaining crosstalk caused by another source line with respect to the source line.
  • FIG. 12 is a diagram showing that an edge due to a discontinuous luminance change occurs in a display image when a specific pattern is displayed.
  • the color display device (display device) 1 includes a color crosstalk correction circuit (correction means) 2, a polarity inversion circuit 3, a timing controller 4, and a source driver 5.
  • V and / or the configuration related to the present invention are largely omitted.
  • the color crosstalk correction circuit 2 indicates the gradation level of the red signal R, G (second display color) indicating the gradation level of the R color (first display color) input from the outside.
  • G second display color
  • the applied voltage to each display pixel (not shown) in the display panel 7 based on the input color signal consisting of the green signal G and the blue signal B indicating the gradation level of the B color (second display color)
  • the first display color is cyan
  • the color crosstalk correction circuit 2 includes an applied voltage correction circuit (correction means) 9 and a saturation enhancement circuit (correction means) 10, and one of these two circuits is used.
  • the voltage applied to each display pixel (not shown) in the display panel 7 is corrected.
  • These applied voltage correction circuit 9 and saturation enhancement circuit 10 latch the input color video signal R'G'B and delay it one dot at a time, so that two display pixels connected to the same gate line are connected. The processing described later is performed.
  • the polarity inversion circuit 3 is based on the color video signal R, -G ' ⁇ ⁇ ⁇ ⁇ ' that is digital data output from the applied voltage correction circuit 9 or the saturation enhancement circuit 10, and each display pixel in the display panel 7 This determines the data (analog data) of the voltage applied to.
  • the timing controller 4 generates a source driver timing signal and a gate driver timing signal for driving the source driver 5 and the gate driver 6 based on the input RGB synchronization signal.
  • the source driver timing signal is input to the source driver 5 via the polarity inverting circuit 3.
  • the source driver 5 drives each source line connected to each display pixel provided in the display panel 7 via the TFT so that the voltage determined by the polarity inversion circuit 3 is applied to each display pixel. Is to do.
  • the source driver 5 may be configured integrally with the polarity inversion circuit 3.
  • the gate driver 6 is for driving each gate line connected to each display pixel provided in the display panel 7 via a TFT.
  • the display panel 7 performs image display by driving a plurality of display pixels arranged in a matrix by a plurality of source lines and a plurality of gate lines. Specifically, as shown in FIG. 4, the source line Si (i is an integer) and the gate line Gj (j is an integer) are provided so as to be orthogonal to each other. Table at the intersection A display pixel 11 and a switching element 12 are provided.
  • the configuration of the display panel 7 is not different from the configuration in the above-described conventional liquid crystal display device (see FIG. 11). Therefore, one display pixel among the display pixels 11 is set as the display pixel (A), and is driven by the same gate line G2 as the display pixel (A), and the display pixel ′ (A) is parasitic.
  • the display pixel (B) connected to the source line S3 connected via the capacitor via the switching element is the display pixel (B)
  • the display pixel (A) is surrounded as follows. Parasitic capacitance Csda ⁇ Csdb ⁇ Cgd ⁇ Ccs is formed.
  • Parasitic capacitance Csda parasitic capacitance formed between the source line for driving the display pixel (A) and the display pixel (A)
  • Parasitic capacitance Csdb Parasitic capacitance formed between the source line for driving the display pixel (B) and the display pixel (A)
  • Parasitic capacitance Cgd Parasitic capacitance formed between the gate line for driving the display pixel (A) and the display pixel (A)
  • the configuration of the display panel 7 is the same as the configuration of the display panel provided in the conventional liquid crystal display device, and thus each of the configurations provided in the display panel 7 by the conventional driving method.
  • the display pixels 11 are driven, the gray level of the target display pixel differs from the desired gray level due to the voltage applied to the source line that drives the other display pixels. This causes a crosstalk problem. .
  • the gradation of the display pixel (A) drives the display pixel (B) as the second display pixel. Will be affected by the voltage applied to the source line S3.
  • the applied voltage correction circuit 9 or the saturation enhancement circuit 10 is provided to improve the crosstalk problem that occurs as described above.
  • the fluctuation of the luminance balance for each display pattern is explained below.
  • patterns 1 to 3 as shown in FIG. Specifically, in pattern 1, R, G, B, black, black, and black are displayed in order from the left for six adjacent display pixels. In pattern 2, black, G, B, R, black, and black are displayed. In Pattern 3, black, black, B color, R color, G color, and black color are displayed.
  • the images displayed on the display panel 7 by each of these patterns 1 to 3 should all be the same.
  • the voltage applied to the display pixel on the left side of the display pixel displaying black (display pixel with gradation level 0: 0 gradation) is displayed in black. It is affected by the voltage applied to the display pixel. As a result, a gradation level slightly lower than the desired gradation level is displayed at the pixel on the left side.
  • the B display pixel is adjacent to the black display pixel, the B color is displayed at a slightly lower gradation level than the desired gradation level.
  • the R color is displayed at a gradation level slightly lower than the desired gradation level
  • the G color is displayed at a gradation level slightly lower than the desired gradation level.
  • white should be displayed by switching the display to each of the following patterns 4 to 6. It is. Note that white display in this case may be referred to as “synthetic white brightness” or “synthetic white” in the following description.
  • Pattern 4 R color, black, black Pattern 5: Black, G color, black
  • Pattern 6 Black, black, B color
  • the original white brightness should be equal to the composite white brightness (red brightness + green brightness + blue brightness 1 * 2 * black brightness), but in fact, the composite white brightness is lower than the white brightness. . This is because, as described above, the voltage applied to the R, G, or B color display pixels fluctuates due to being dragged by the voltage applied to the black display pixels.
  • the white luminance and the composite white luminance should be equal, but in actuality, in monochromatic display, the own source: monochromatic, Other sources: The condition of 0 is not satisfied, and color crosstalk occurs between adjacent sources. For this reason, as a result of the monochromatic luminance being lower than the original monochromatic luminance, the composite white luminance is smaller than the white luminance.
  • FIG. 7 shows the difference between the monochromatic luminance and the original monochromatic luminance caused by the above-described reason as the difference of the stimulation values of chromaticity X, Y, and Z ( ⁇ stimulation value) for each gradation.
  • the vertical axis represents the difference in stimulus value between white and synthetic white of chromaticity X, ⁇ , and Z
  • the horizontal axis represents gradation (0 to 255 gradations).
  • the chromaticity stimulus value is used.
  • the graph of FIG. 7 showing the change between white and composite white appears to cause a large error in the high gradation region.
  • the display problem area in the display device is determined by the ratio of the error of the actual stimulus value to the stimulus value of the gradation to be originally displayed, not the absolute value of the error. Therefore, in the relationship between the stimulus value of gradation and the display, this “ratio of stimulus value error” (error rate) is important.
  • the error rate for each chromaticity is obtained by dividing the white error (that is, ⁇ stimulus value) for X, ⁇ , and Z shown in Fig. 7 by using the stimulus values of X, Y, and Z for white luminance. It is obtained by calculation (division method).
  • Fig. 8 shows the result of obtaining the error rate for each gradation as described above.
  • the vertical axis shows the error rates of X, Y, and Z (stimulus value error rate), and the horizontal axis shows the tone.
  • the ratio (error rate) of the error of the actual stimulus value to the stimulus value of the tone to be originally displayed is larger in the tone in the low tone region than in the high tone region. I'm angry. That is, it is understood that the gray scale error in the low gradation area has a large influence on the display, and that the problem in actual display is the gradation in the low gradation area rather than the high gradation area.
  • the force that causes the error rate of the error rate obtained as described above to be calculated is calculated, and the calculated result is used as a LUT (Look Up Table) to store the storage unit of the color display device 1. 8 (See Fig. 3).
  • LUT Look Up Table
  • the error rate for each of X, Y, and Z is divided by the difference when the color to be corrected changes by one gradation.
  • the change gradation is divided by X, Y, and Z. It ’s no longer meaningful! You just get the data.
  • the error rate of X is divided by the difference of X
  • the error rate of Y is divided by the difference of Y
  • the error rate of Z is divided by the difference of Z.
  • the result obtained by this calculation is that the error gradation power of X, ⁇ , and Z is almost the same curve.
  • the correction tables for R, G, and B may be the same.
  • the graph shown in FIG. 9 shows the color crosstalk correction value when the other source is 0 gradation, and the value is taken out for every 32 gradations, for example, as the LUT.
  • the vertical axis indicates the corrected gradations of X, ⁇ , and Z
  • the horizontal axis indicates the gradation.
  • Color crosstalk should be corrected correctly by voltage.
  • correction processing is performed by a driving algorithm.
  • the correction gradation of display pixel A is calculated from the combination of the gradation of display pixel A as shown in FIG. 4 and the gradation of display pixel B adjacent to display pixel A, and is used as the display pixel. It is also realistic to add a method to the gradation data of A.
  • the white error (white—composite white (R + G + B—2 * black)) is calculated for each gradation (ie, ⁇ stimulus value). (3) Calculate the white error rate (white error Z white luminance obtained in (2) above) for each gradation.
  • the correction value when the B display pixel is not 0 gradation is the correction value SO when the gradation of the A display pixel and the B display pixel are the same, so when A ⁇ B, between C and 0 Interpolate linearly. When A ⁇ B, the correction value is 0.
  • the correction gradation obtained in this way varies greatly depending on the panel design, driver, gradation setting, etc., so it is easy to create an algorithm for correcting with a unified equation. Therefore, for example, these correction values taken every 32 gradations are provided as LUTs, and the final correction gradation is obtained by performing interpolation calculation according to the target gradation.
  • Table 1 below shows examples of LUTs determined by gradation and adjacent gradation.
  • color crosstalk correction that corrects the gradation of the display pixel in consideration of the coupling with the adjacent pixel can be performed from the gradation of the display pixel and the adjacent pixel.
  • the above-described color crosstalk correction is used, there are cases in which it is not possible to correct the low gradation region where the voltage fluctuation is severe. Specifically, when the gradation voltage is set as shown in FIG. 2 (a), severe voltage fluctuations occur in the low gradation region as shown in FIG. 2 (b). Tsuma When a non-linear driver is used to adjust the ⁇ characteristics of the liquid crystal display more smoothly, for example, the gradation voltage characteristics shown in Fig.
  • Figure 2 (b) is a graph showing the difference for each calculated gray scale voltage.
  • the difference in grayscale voltage changes greatly in the low grayscale region, and the 0 grayscale (VO) force increases toward the 5th grayscale (V5). )
  • the maximum difference is taken, and for gradations larger than these five gradations (maximum difference gradation), the difference is sharply reduced.
  • the problem that the above-mentioned edge occurs in the display image before correction is due to the fact that the voltage in the region where the difference changes greatly is used as the gradation voltage in the low gradation region (0 to 5 gradations). And then.
  • the gradation voltage of the maximum difference gradation is corrected so that the voltage of the gradation area where the difference greatly changes is not used as the driving voltage of the gradation below the maximum difference gradation (low gradation area).
  • the gradation voltage is corrected so as to be smaller than the driving voltage of the previous 0 gradation.
  • the gradation voltage may be set so as to be a gradation voltage of 6 gradations (V6) of VO force before the correction.
  • V6 6 gradations
  • the gradation voltages corresponding to the other gradations are reset so as to have continuity.
  • Fig. 1 (a) shows the gradation voltage setting after correcting the gradation voltage as described above.
  • the drive voltage for the low gradation region of V5 (5 gradations) or less where the difference is maximum is set to be smaller than the voltage value of the VO drive voltage before correction.
  • the adverse effect on the display due to the lower low gradation region can be eliminated.
  • the second small maximum value that exists in the high gradation region than V5 is considered to be close to noise, as the difference result of the gradation voltage in the high gradation region is rattling. .
  • the gradation drive voltage having the maximum difference among the multiple maximum values in the low gradation region where the difference in the gradation voltage is higher is the 0 gradation before the correction.
  • the drive voltage is adjusted to be lower than the grayscale voltage (target VO voltage). Table 2 shows specific examples of drive voltage settings for each gradation before and after correction using the above method.
  • the grayscale voltage of the maximum differential grayscale is prevented in order to prevent the occurrence of a region where the luminance change recognized as an edge is discontinuous.
  • the correction is made so that it is smaller than the gradation voltage of 0 gradation (target V0 voltage) before correction.
  • a data processing method that is preferably used together with this gradation voltage correction will be described below. The following data processing method is performed by the applied voltage correction circuit (correction means) 9 or the saturation enhancement circuit (correction means) 10 of the display device 1 shown in FIG.
  • digital data processing corrects the use of 6 to 255 gradations out of 8-bit 256 gradations (0 to 255 gradations) and low gradation removal data.
  • processing to select an appropriate digital correction value from the 10-bit data independent ⁇ processing
  • color crosstalk correction pseudo-multiple
  • Independent ⁇ processing correction for converting an input gradation into a specified gradation. Since the conversion process is determined only by the input gradation, it can be realized using a simple LUT. In order to avoid losing gradation information at the time of conversion, it is common to convert, for example, 8-bit data into 10-bit data as in the present embodiment.
  • Color crosstalk correction follows the method described in [2 Crosstalk correction processing].
  • Pseudo multi-tone For example, techniques such as FRC (Frame Rate Control) and dithering.
  • FRC Full Rate Control
  • each unit and each processing step of the display device executes a program stored in a storage means such as a calculation means output ROM (Read Only Memory) or RAM such as a CPU, and inputs such as a keyboard. It can be realized by controlling the means, the output means such as a display, or the communication means such as an interface circuit. Therefore, the computer having these means reads the recording medium storing the program and executes the program, thereby realizing the various functions and the various processes of the display device of the present embodiment. be able to.
  • the above program is a removable recording medium. By recording on the body, the above-described various functions and various processes can be realized on any computer.
  • a program medium such as a memory (not shown) such as ROM may be used for processing by the microcomputer, and V not shown is an external storage device. It may be a program medium provided with a program reading device and readable by inserting a recording medium therein.
  • the stored program is preferably configured to be accessed and executed by a microprocessor. Further, it is preferable that the program is read out, and the read program is downloaded to the program storage area of the microcomputer and the program is executed. Note that this download program is stored in advance in the main unit.
  • the program medium is a recording medium configured to be separable from the main body, such as a tape system such as a magnetic tape or a cassette tape, a magnetic disk such as a flexible disk or a hard disk, or a disk such as a CDZMOZMDZDVD.
  • Disk system card system such as ic card (including memory card), mask ROM, EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read)
  • the recording network is preferably a recording medium that fluidly carries the program so as to download the program.
  • the download program is stored in the main device in advance or installed with another recording medium strength. .

Abstract

A display gradation voltage setting method comprises a step for determining the difference of gradation voltage for the gradation in a low gradation region, and a step for correcting the gradation voltage so that the gradation voltage of the maximum differential gradation corresponding to the maximum difference among the obtained differences becomes lower than the gradation voltage of zero gradation before correction. This prevents occurrence of a low gradation region where luminance varies discontinuously and occurrence of an edge (false outline) caused by color crosstalk.

Description

明 細 書  Specification
表示装置の階調電圧設定方法、表示装置の駆動方法、及びプログラム、 並びに表示装置  Display device gradation voltage setting method, display device drive method, program, and display device
技術分野  Technical field
[0001] 本発明は、表示性能を向上させた表示装置の階調電圧設定方法、表示装置の駆 動方法、及びプログラム、並びに表示装置に関するものである。  The present invention relates to a display device gradation voltage setting method, a display device driving method, a program, and a display device that have improved display performance.
背景技術  Background art
[0002] 表示装置の色再現性に関して従来より多くの欠陥が指摘されており、液晶表示装 置については、例えば、隣り合う画素が寄生容量を介して結合していることから生じる クロストークの問題が指摘されている。  [0002] Many defects have been pointed out regarding the color reproducibility of display devices, and for liquid crystal display devices, for example, the problem of crosstalk caused by adjacent pixels being coupled through a parasitic capacitance. Has been pointed out.
[0003] すなわち、透明電極とソースラインとの間に絶縁膜があると、そこに寄生容量ができ る。同様に、ゲートラインと透明電極との間や、ソースラインと共通電極との間にも寄 生容量が発生する。 TFT(Thin Film Transistor)に接続されている表示画素にはゲ ートハイの瞬間に所望の電圧が印加されている力 ゲート口一時において該表示画 素は、上記の寄生容量を介して多くの周辺電気回路と接続している。そして、これら 周辺電気回路の多くは、パネル設計に関わるものであるから、表示画素と周辺電気 回路との間における寄生容量を考慮した駆動電圧を予め設定することで、その影響 を最小限にすることが可能である。  That is, if there is an insulating film between the transparent electrode and the source line, a parasitic capacitance is generated there. Similarly, parasitic capacitance is generated between the gate line and the transparent electrode and between the source line and the common electrode. The display pixel connected to the TFT (Thin Film Transistor) is applied with a desired voltage at the moment of gate high. Connected to the circuit. Since many of these peripheral electrical circuits are related to panel design, setting the drive voltage in consideration of the parasitic capacitance between the display pixel and the peripheral electrical circuit minimizes the effect. It is possible.
[0004] し力し、ソースラインに関しては、他のソースラインが要因で発生するクロストークを 予め補償することはできない。図 11に示すように、自表示画素 Aを駆動するためのソ ースライン Aとの寄生容量 Csdaの他にも、他表示画素 Bを駆動するためのソースライ ン Bとの間にも寄生容量 Csdbが発生する。この寄生容量 Csdbにより、自表示画素 A に本来力かるべき駆動電圧が変化してしまう。これは、他表示画素 Bを駆動するソー スライン Bの電位は、予め規定することができな ヽと 、う理由によるものである。  However, with regard to the source line, it is not possible to compensate in advance for crosstalk caused by other source lines. As shown in FIG. 11, in addition to the parasitic capacitance Csda with the source line A for driving the self-display pixel A, the parasitic capacitance Csdb is also generated with the source line B for driving the other display pixel B. appear. Due to this parasitic capacitance Csdb, the drive voltage that should be applied to the self-display pixel A changes. This is because the potential of the source line B that drives the other display pixels B cannot be defined in advance.
[0005] このようなクロストークを解消するために、寄生容量を低減する技術が提案されてい るが(例えば、特許文献 1 :特開平 5— 203994 (1993年 8月 13日公開)参照)、クロ ストークの十分な低減を実現するには不十分なものである。このため、他のソースライ ンが要因で発生するクロストークを予め補償するためには、専用の駆動アルゴリズム が用いられている。 [0005] In order to eliminate such crosstalk, a technique for reducing parasitic capacitance has been proposed (see, for example, Patent Document 1: JP-A-5-203994 (published on August 13, 1993)). This is insufficient to achieve a sufficient reduction in crosstalk. For this reason, other source A dedicated drive algorithm is used to compensate in advance for crosstalk caused by noise.
[0006] し力しながら、図 12に示すように、所定のパターンを表示させた場合、上記従来の 駆動アルゴリズムによっては解消できないエッジ (偽輪郭)力 表示装置の表示画像( 表示画面)に発生するという問題が生じる場合がある。このような問題は本来発生し ないものであるが、ドライバのラダー抵抗において特定の電圧配分を行うよう設計さ れた表示装置にぉ 、て、上記エッジとして認識される領域が発生することを新たに見 出した。より具体的には、隣接画素とのカップリングによる液晶印加電圧の変動に起 因して表示画素の輝度が変化することにより、輝度変化が不連続になった領域が上 記エッジとして認識されるという問題が生じる。ここで「不連続である」とは、液晶印加 電圧の変化によって本来ならば 1階調変化してほしいところで例えば 3階調変化して しまうことを、 1階調変化が連続変化であるとするのに対して不連続であると表す。  [0006] When a predetermined pattern is displayed as shown in FIG. 12, an edge (false contour) force that cannot be resolved by the conventional driving algorithm is generated in the display image (display screen) of the display device. Problem may occur. Although such a problem does not occur originally, a display device designed to perform a specific voltage distribution in the ladder resistance of the driver newly introduces an area recognized as the edge. I found it. More specifically, a region in which the luminance change is discontinuous due to a change in the luminance of the display pixel due to a change in the voltage applied to the liquid crystal due to coupling with an adjacent pixel is recognized as the above edge. The problem arises. Here, “discontinuous” means that a change in liquid crystal applied voltage causes a change in one gradation, for example, a change in three gradations, and a change in one gradation is a continuous change. It is expressed as discontinuous.
[0007] 本発明は、上記の問題に鑑みてなされたものであり、その目的は、カップリングに起 因したエッジの発生を防ぐことができる表示装置の階調電圧設定方法、及びプロダラ ムを実現することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a gradation voltage setting method and a program for a display device that can prevent the occurrence of an edge caused by coupling. It is to be realized.
発明の開示  Disclosure of the invention
[0008] 本発明の発明者らは、上記の課題を解決すべく鋭意検討した結果、上記の不連続 な輝度変化によるエッジが、表示画像の低階調領域を駆動する駆動電圧の激し 、電 圧変動に起因して生じるものであることを見出した。より具体的には、図 12に示す 25 6階調のパターンを表示させた場合に、階調が例えば 0〜5程度の低階調領域にお いて電圧変動が激しくなり、表示画像にエッジが生じることを見出した。これは、 RGB の画素のうち、 Bの階調が 0〜5のときに、 Bと Gとのカップリングによって、 Gの画素の 輝度変化が不連続になり、当該輝度変化がエッジとして認識されることによるもので ある。発明者らは、表示画像にエッジが生じる原因について上記の新たな知見を見 出し、この新たな知見に基づ 、て本願発明に想到したものである。  [0008] The inventors of the present invention have intensively studied to solve the above problems, and as a result, the edge due to the discontinuous luminance change causes an intense driving voltage for driving the low gradation region of the display image. We found that it was caused by voltage fluctuation. More specifically, when a 256-gradation pattern shown in FIG. 12 is displayed, voltage fluctuations become severe in a low gradation region where the gradation is, for example, about 0 to 5, and an edge appears in the display image. Found out that it would occur. This is because when the gradation of B is 0 to 5 among the RGB pixels, the luminance change of the G pixel becomes discontinuous due to the coupling of B and G, and the luminance change is recognized as an edge. It is because of that. The inventors have found the above new knowledge about the cause of the occurrence of an edge in the display image, and have arrived at the present invention based on this new knowledge.
[0009] 表示装置の低階調領域にぉ 、て上述した激 U、電圧変動が起きる原因につき、以 下に説明する。近年、低階調領域において、表示装置 (ディスプレイ)の階調輝度特 性を γ = 2. 2の特性になめらかにあわせこむことが要求されている力 リニアドライバ によっては階調輝度特性を γ = 2. 2に厳密に合わせることができない。このため、特 にハイビジョン対応の高画質向け液晶 TV用モジュール等の表示装置において、ノン リニアドライバを採用する機種が増えている。 [0009] The reason why the above-described extreme U and voltage fluctuations occur in the low gradation region of the display device will be described below. In recent years, there has been a demand for smooth adjustment of the gradation luminance characteristics of display devices (displays) to the characteristics of γ = 2.2 in the low gradation area. In some cases, it is not possible to adjust the gradation luminance characteristic exactly to γ = 2.2. For this reason, an increasing number of models are using non-linear drivers, especially in display devices such as high-definition LCD TV modules for high definition.
[0010] すなわち、ハイビジョン対応の高画質向け液晶 TVモジュール等にぉ 、て、ドライバ のラダー抵抗が、低階調領域にぉ ヽて激 U、電圧変動が起きるような階調電圧を発 生させるように設計された、 V、わゆるノンリニアドライバが用いられるようになって 、る。 この結果、表示装置の低階調領域にぉ 、て上述した激 、電圧変動が起きることと なる。  [0010] That is, in a high-definition LCD TV module for high image quality, etc., the ladder resistance of the driver generates a grayscale voltage that causes extreme U and voltage fluctuations in the low grayscale region. V, a so-called non-linear driver, is designed to be used. As a result, the above-described drastic voltage fluctuation occurs in the low gradation region of the display device.
[0011] そこで、本発明の表示装置の階調電圧設定方法は、上記課題を解決するために、 各階調に対応する階調電圧を表示素子に印加して画像を表示する表示装置の階調 電圧設定方法であって、低階調領域の階調について階調電圧の差分を求めるステ ップと、求めた差分のうち最大の差分に対応する最大差分階調の階調電圧を、補正 前の 0階調の階調電圧よりも小さくなるように各階調に対応する階調電圧を補正する ステップとを含んで 、ることを特徴として 、る。  Therefore, in order to solve the above-described problem, the gradation voltage setting method for a display device according to the present invention applies a gradation voltage corresponding to each gradation to a display element to display an image. This is a voltage setting method in which the step of obtaining the difference in gradation voltage for the gradation in the low gradation region and the gradation voltage of the maximum difference gradation corresponding to the maximum difference among the obtained differences are corrected. And a step of correcting the gradation voltage corresponding to each gradation so as to be smaller than the gradation voltage of the 0 gradation.
[0012] 上記の構成により、上述したような画素間のカップリングに起因した上記エッジの発 生を防ぐことができる。つまり、上記のように階調電圧を補正することにより、低階調領 域における最大差分階調以下の階調領域においてカップリングに起因して生じる大 きな電圧変化の発生を防ぐことができる。すなわち、上記の補正後においては、補正 前において上記最大差分階調以下の階調の駆動を、最大差分階調よりも大きな階 調の駆動電圧の電圧値で行って 、るから、大きな電圧変化が発生する「階調」と「階 調電圧」との組み合わせを用いないで表示を行うこととなる。これにより、カラークロス トーク補正を用いても補正できない不連続な輝度変化が発生することを防止して、表 示装置の表示画像におけるエッジが発生することを防止できる。  [0012] With the above configuration, it is possible to prevent the generation of the edge due to the coupling between pixels as described above. In other words, by correcting the gradation voltage as described above, it is possible to prevent the occurrence of a large voltage change caused by coupling in the gradation area below the maximum difference gradation in the low gradation area. . In other words, after the above correction, the gray level below the maximum differential gray level is driven with the voltage value of the driving voltage having a higher gray level than the maximum differential gray level before the correction. The display is performed without using a combination of “gradation” and “gradation voltage” that occur. As a result, it is possible to prevent the occurrence of an edge in the display image of the display device by preventing the occurrence of a discontinuous luminance change that cannot be corrected by using the color crosstalk correction.
[0013] なお、階調電圧の差分を求める低階調領域の階調 (表示階調)の数は、駆動する 表示装置の性質に応じて、適宜設定すればよい。また、差分を求める方法は、公知 の方法によって行えばよいが、例えば、下記の式により、 x(階調) = 1〜255まで 1階 調毎に全階調計算することにより行う。  [0013] Note that the number of gradations (display gradations) in the low gradation region for obtaining the difference in gradation voltage may be set as appropriate according to the properties of the display device to be driven. Further, the method for obtaining the difference may be performed by a known method. For example, x (gradation) = 1 to 255 is calculated for every gradation according to the following formula.
AV (x) =V(x) -V(x- l) (xは階調を、 Δ V (x)は階調 Xにおける階調電圧の差分を、 V (x)は階調 Xの階調電 圧を、それぞれ表している。) AV (x) = V (x) -V (x- l) (x represents the gradation, Δ V (x) represents the difference in gradation voltage at gradation X, and V (x) represents the gradation voltage at gradation X.)
また、上記表示装置の階調電圧設定方法の上記階調電圧を補正するステップは、 上記最大差分階調よりも 1つ大きい階調に対応する階調電圧を、補正前の 0階調の 階調電圧となるように各階調に対応する階調電圧を補正することとしてもよい。階調 の低 、方力 高 、方にかけて印加電圧を大きくする表示装置の場合、上記の構成に よれば、最大差分階調の階調電圧が補正前の 0階調の階調電圧よりも小さくなるよう に階調電圧を補正することができる。  Further, the step of correcting the gradation voltage in the gradation voltage setting method of the display device may be performed by applying a gradation voltage corresponding to a gradation one larger than the maximum difference gradation to a gradation of 0 gradation before correction. The gradation voltage corresponding to each gradation may be corrected so as to obtain the regulated voltage. In the case of a display device in which the applied voltage is increased in the direction of low gradation, high force, and low, according to the above configuration, the gradation voltage of the maximum difference gradation is smaller than the gradation voltage of 0 gradation before correction. The gradation voltage can be corrected as follows.
[0014] 本発明の階調設定方法は、上記表示装置が、階調電圧の差分が極値を持つラダ 一抵抗分割をもつソースドライバによって駆動されるものである場合に特に好適に用 いることができる。ここで、階調電圧の差分が極値を持つラダー抵抗分割をもつソー スドライバ (ノンリニアドライノく)を用いた表示装置は、従来の駆動アルゴリズムによつ ては解消できないエッジ (偽輪郭)が表示画像 (表示画面)に発生する場合があるが 、本発明の階調設定方法によれば、当該エッジの発生を防止することができる。  The gradation setting method of the present invention is particularly preferably used when the display device is driven by a source driver having a ladder-resistive division in which a difference in gradation voltage has an extreme value. Can do. Here, a display device using a source driver (non-linear dry type) with ladder resistance division whose gradation voltage difference has an extreme value has an edge (false contour) that cannot be resolved by the conventional drive algorithm. May occur in the display image (display screen), but according to the gradation setting method of the present invention, the occurrence of the edge can be prevented.
[0015] 上記ノンリニアドライバは、例えば、階調輝度特性が γ = 2. 2にのるようにラダー抵 抗を合わせたものであってもよ ヽ。ノンリニアドライバのラダー抵抗を階調輝度特性が 7 = 2. 2にのるように合わせた場合、低階調領域において激しい電圧変動が起き、 電圧の差分が極値を持つことこととなるが、本発明の階調設定方法によれば、当該 激しい電圧変動によってエッジが発生することを防止することができる。また、激しい 電圧の変動によってエッジが発生する低階調領域は、基準電圧の入力が何階調目 にある力、及び階調輝度特性としてどのくらいの γを想定するかによって変わるが、 通常は、 32階調以下の領域である。  [0015] The non-linear driver may be one in which the ladder resistance is combined so that the gradation luminance characteristic is γ = 2.2, for example. If the gradation resistance characteristic of the nonlinear driver is adjusted so that the gradation luminance characteristic is 7 = 2.2, severe voltage fluctuation occurs in the low gradation region, and the voltage difference has an extreme value. According to the gradation setting method of the present invention, it is possible to prevent an edge from being generated due to the intense voltage fluctuation. In addition, the low gradation area where an edge is generated due to severe voltage fluctuations varies depending on the power at which the reference voltage is input and how much γ is assumed as the gradation luminance characteristic. It is an area of 32 gradations or less.
[0016] 本発明の表示装置の駆動方法は、各階調に対応する階調電圧を表示素子に印加 して画像を表示する表示装置の駆動方法であって、上記の課題を解決するために、 上記本発明の階調電圧の設定方法により表示装置の階調電圧を設定 (補正)し、 6 ≤n< mである整数 m、 nに対し、上記最大差分階調以下の表示データを取り出して 低階調削除データとし、当該低階調削除データを mビット化した後、当該 mビット化し たデータ力 nビット分のデジタル補正値を選択するステップをさらに含んでいること を特徴としている。 [0016] A display device driving method according to the present invention is a display device driving method for displaying an image by applying a gradation voltage corresponding to each gradation to a display element. The gradation voltage of the display device is set (corrected) by the gradation voltage setting method of the present invention, and the display data below the maximum difference gradation is extracted for integers m and n where 6 ≤n <m. The method further includes the step of selecting low-gradation deletion data, converting the low-gradation deletion data to m bits, and then selecting a digital correction value corresponding to the m-bit data force n bits. It is characterized by.
[0017] 上記の構成により、表示画像の階調表現能力として所定の階調 (2n )を維持するこ とができる。すなわち、低階調削除データを mビットィ匕し、当該 mビット化されたデータ の中から nビット分のデジタル補正値を選択するステップによれば、上記最大差分階 調以下の低階調領域に、補正前の 0階調の階調電圧よりも小さい階調電圧を設定す る補正を行うことによる階調表現能力の低下を補償することができる。このため、表示 装置の階調表現能力を所定の階調に維持することができる。 [0017] With the above configuration, a predetermined gradation (2 n ) can be maintained as the gradation expression capability of the display image. That is, according to the step of mbiting the low gradation deletion data and selecting a digital correction value for n bits from the m-bit data, the low gradation area below the maximum difference gradation is selected. Therefore, it is possible to compensate for a decrease in gradation expression capability due to correction that sets a gradation voltage smaller than the gradation voltage of 0 gradation before correction. For this reason, the gradation expression capability of the display device can be maintained at a predetermined gradation.
[0018] 本発明の表示装置の駆動方法における上記の処理は、上記本発明の階調設定方 法により、階調電圧を設定し一定階調以下を切り捨てたデータを、独立 γ処理するも のである。ここで、「独立 γ処理」とは、 RGBデータ別に γ特性を変化させる処理であ り、この際、階調つぶれや階調とびを防ぐため、例えば 10ビットデータ(データ数 102 4)の中から所望の特性 (例えば、 γ特性)が得られるような 8ビットデータ分 (データ数 256)のデータをデジタル補正値として選択する事を含めて行われる。  The above-described processing in the driving method of the display device of the present invention is to perform independent γ processing on the data in which the gradation voltage is set and a certain gradation or less is discarded by the gradation setting method of the present invention. is there. Here, “independent γ processing” is processing that changes γ characteristics for each RGB data. In this case, in order to prevent gradation collapse and gradation skipping, for example, in 10-bit data (number of data 102 4). This includes the selection of 8 bits of data (number of data 256) as a digital correction value so that a desired characteristic (for example, γ characteristic) can be obtained from the above.
[0019] 上記「低階調削除データを mビットィ匕し、当該 mビット化されたデータの中から nビッ ト分のデジタル補正値を選択するステップ」は、 mビット化されたデータ (低階調削除 データを単純に変換した値)ではなく mビット化された階調データ (0力 2m— 1階調 のすベて、つまりデータ数 2mのデータ)の中力 適切なデジタル補正値を選択するこ とによりなされる。 [0019] The above-mentioned “step of mbiting low gradation deletion data and selecting a digital correction value for n bits from the m-bit data” refers to m-bit data (low order Tone deletion Rather than simply converted data), m-bit gradation data (0 force 2 m — all of 1 gradation, that is, data with 2 m of data) Medium force Appropriate digital correction value This is done by selecting.
[0020] また、上記ステップの後に、カラークロストーク補正や擬似多階調化を行ってもよい 。ここで、擬似多階調化とは、例えば、 8ビットドライバで 10ビット相当の表現力を出し たいときに使われる処理である。 10ビットデータを 8ビットデータとする場合に、下位 2 ビットデータを切り捨てるのではなぐ下位 2ビットデータ力も決まるノイズパターンを 上位 8ビットデータに付加するなどの方法により、 8ビットドライバで 10ビット相当の表 現力を実現するものである。なお、擬似多階調化の代表例としては、 FRC (Frame Rate Control)が挙げられる。  [0020] After the above steps, color crosstalk correction and pseudo multi-gradation may be performed. Here, pseudo multi-gradation is a process used when, for example, an 8-bit driver wants to express 10-bit equivalent. When 10-bit data is converted to 8-bit data, a noise pattern that determines the lower 2-bit data power is added to the upper 8-bit data instead of truncating the lower 2-bit data. It is to realize expressive power. A typical example of pseudo multi-gradation is FRC (Frame Rate Control).
[0021] 上記本発明の表示装置の駆動方法は、 6≤n<mである整数 m、 nに対し、上記最 大差分階調以下の表示データを取り出して低階調削除データとし、当該低階調削除 データを mビットィヒした後、表示装置の隣り合う画素が寄生容量を介して結合してい ることから生じるクロストークの問題を補正するステップと、クロストークの問題を補正 する上記のステップによって処理された mビットデータのうち、上位 nビットデータに下 位 (m— n)ビットデータの情報を付加して nビットデータとして出力するステップを備え て!ヽて 、るものであってもよ!、。 [0021] The driving method of the display device of the present invention is such that, for integers m and n where 6≤n <m, display data equal to or less than the maximum difference gradation is extracted and used as low gradation deletion data. Tone removal After m-bits the data, adjacent pixels of the display device are coupled via parasitic capacitance. Information on the lower (m−n) bit data in the upper n-bit data out of the m-bit data processed by the above steps for correcting the crosstalk problem resulting from the above and the above-mentioned steps for correcting the crosstalk problem And a step to output as n-bit data! Don't panic! ,.
[0022] 上記本発明の表示装置の駆動方法において、上記表示装置に表示される表示デ ータが 256階調である場合、例えば、後述する実施形態おいて説明するように、 n= 8、 m= 10とすれば、上記表示データから上記最大差分階調以下の表示データを取 り出して低階調削除データとし、当該低階調削除データを 10ビット化した後、当該 10 ビットィ匕したデータ力も 8ビット分のデジタル補正値を選択することとなる。この場合、 表示画像の階調表現能力として 256階調を維持することができる。  [0022] In the driving method of the display device of the present invention, when the display data displayed on the display device has 256 gradations, for example, as described in the embodiments described later, n = 8, If m = 10, the display data below the maximum difference gradation is extracted from the display data as low gradation deletion data, the low gradation deletion data is converted to 10 bits, and then the 10 bits are input. As for the data power, a digital correction value for 8 bits is selected. In this case, 256 gradations can be maintained as the gradation representation ability of the display image.
[0023] また、本発明は、コンピュータに上記本発明の表示装置の階調電圧設定方法のス テツプを実行させるためのプログラムとして構成することもできる。  The present invention can also be configured as a program for causing a computer to execute the step of the gradation voltage setting method for the display device of the present invention.
[0024] また、本発明に係る表示装置は、上記課題を解決するために、各階調に対応する 階調電圧を表示素子に印力 tlして画像を表示する表示装置であって、低階調領域の 階調について階調電圧の差分を求めて、求めた差分のうちの最大の差分に対応す る最大差分階調の階調電圧を、補正前の 0階調の階調電圧よりも小さくなるように各 階調に対応する階調電圧を補正する補正手段を備えて ヽることを特徴として ヽる。  [0024] In addition, in order to solve the above-described problems, the display device according to the present invention is a display device that displays an image by applying a gray voltage corresponding to each gray level to the display element to display an image. The gradation voltage difference is calculated for the gradation of the gradation area, and the gradation voltage of the maximum difference gradation corresponding to the largest difference among the obtained differences is set to be higher than the gradation voltage of the 0 gradation before correction. It is characterized by having correction means for correcting the gradation voltage corresponding to each gradation so as to decrease.
[0025] 上記の構成により、画素間のカップリングに起因したエッジの発生を防ぐことができ る。つまり、本発明に係る表示装置は、補正手段が階調電圧を補正することにより、 低階調領域の最大差分階調以下の領域においてカップリングに起因して生じる大き な電圧変化の発生を防ぐことができる。すなわち、補正後においては、補正前におい て低階調領域の最大差分階調以下の駆動電圧として用いられていた電圧を、最大 差分階調よりも大きな階調の駆動電圧として用いているから、大きな電圧変化が発生 する階調と階調電圧との組み合わせを用いないで表示を行うこととなる。これにより、 カラークロストーク補正を用いても補正できない不連続な輝度変化が発生することを 防止して、表示装置の表示画像におけるエッジが発生することを防止できる。  [0025] With the above configuration, it is possible to prevent the occurrence of an edge due to coupling between pixels. In other words, the display device according to the present invention prevents the occurrence of a large voltage change caused by coupling in a region below the maximum differential gradation in the low gradation region by correcting the gradation voltage by the correction unit. be able to. In other words, after correction, the voltage that was used as the drive voltage below the maximum difference gradation in the low gradation area before correction is used as the drive voltage for the gradation that is larger than the maximum difference gradation. Display is performed without using a combination of a gradation and a gradation voltage at which a large voltage change occurs. As a result, it is possible to prevent the occurrence of a discontinuous change in luminance that cannot be corrected using color crosstalk correction, and to prevent the occurrence of an edge in the display image of the display device.
[0026] なお、階調電圧の差分を求める低階調領域の階調 (表示階調)の数は、上述したと おりである。 [0027] また、上記の構成において、上記補正手段が、上記最大差分階調よりも 1つ大きい 階調に対応する階調電圧が、補正前の 0階調の階調電圧となるように各階調に対応 する階調電圧を補正する構成となって ヽることが好ま U、。 Note that the number of gradations (display gradations) in the low gradation region for obtaining the gradation voltage difference is as described above. [0027] Further, in the above configuration, the correction means may be configured so that the gradation voltage corresponding to the gradation one larger than the maximum difference gradation becomes the gradation voltage of 0 gradation before correction. It is preferable to have a configuration that corrects the gradation voltage corresponding to the key.
[0028] この構成は、階調の低い方力も高い方にかけて印加電圧を大きくする表示装置の 場合に好適である。  [0028] This configuration is suitable for a display device in which the applied voltage is increased by increasing the force with low gradation.
[0029] さらに、本発明に係る表示装置が、階調電圧の差分が極値を持つようなラダー抵抗 分割をもつソースドライバによって駆動されることが好ましい。  Furthermore, it is preferable that the display device according to the present invention is driven by a source driver having a ladder resistance division such that a difference in gradation voltage has an extreme value.
[0030] 階調電圧の差分が極値を持つラダー抵抗分割をもつソースドライバ (ノンリニアドラ イノく)を用いた表示装置は、従来の駆動アルゴリズムによっては解消できな 、エッジ( 偽輪郭)が表示画像 (表示画面)に発生する場合があるが、本発明の構成によれば、 当該エッジの発生を防止することができる。 [0030] A display device using a source driver (non-linear driver) having a ladder resistance division whose gradation voltage difference has an extreme value displays an edge (false contour) that cannot be eliminated by a conventional driving algorithm. Although it may occur in an image (display screen), according to the configuration of the present invention, the occurrence of the edge can be prevented.
[0031] 上記ノンリニアドライバは、例えば、階調輝度特性が γ = 2. 2にのるようにラダー抵 抗を合わせたものであってもよ ヽ。ノンリニアドライバのラダー抵抗を階調輝度特性が 7 = 2. 2にのるように合わせた場合、低階調領域において激しい電圧変動が起き、 電圧の差分が極値を持つことこととなるが、本発明の構成によれば、当該激しい電圧 変動によってエッジが発生することを防止することができる。また、激しい電圧の変動 によってエッジが発生する低階調領域は、基準電圧の入力が何階調目にあるか、及 び階調輝度特性としてどのくらいの Ύを想定するかによって変わる力 通常は、 32階 調以下の領域である。  [0031] The non-linear driver may be one in which the ladder resistance is combined so that the gradation luminance characteristic is γ = 2.2, for example. If the gradation resistance characteristic of the nonlinear driver is adjusted so that the gradation luminance characteristic is 7 = 2.2, severe voltage fluctuation occurs in the low gradation region, and the voltage difference has an extreme value. According to the configuration of the present invention, it is possible to prevent an edge from being generated by the intense voltage fluctuation. Also, in low gradation areas where edges occur due to intense voltage fluctuations, the power that varies depending on which gradation the reference voltage is input to and how much wrinkle is assumed as gradation luminance characteristics. It is an area below the 32nd floor.
[0032] また、本発明に係る別の表示装置は、上記課題を解決するために、各階調に対応 する階調電圧を表示素子に印力 tlして画像を表示する表示装置であって、低階調領 域の階調について階調電圧の差分を求めて、求めた差分のうちの最大の差分に対 応する最大差分階調の階調電圧が、補正前の 0階調の階調電圧よりも小さくなるよう に各階調に対応する階調電圧を補正するとともに、 6≤n<mである整数 m、 nに対し 、上記最大差分階調以下の表示データを取り出して低階調削除データとし、当該低 階調削除データを mビットィ匕した後、当該 mビット化したデータ力も nビット分のデジタ ル補正値を選択する補正手段を備えて 、ることを特徴として 、る。  [0032] Further, another display device according to the present invention is a display device for displaying an image by applying tl to a display element with a gradation voltage corresponding to each gradation in order to solve the above problem. The gradation voltage difference is calculated for the gradation in the low gradation area, and the gradation voltage of the maximum difference gradation corresponding to the maximum difference among the obtained differences is the gradation of 0 gradation before correction. The gradation voltage corresponding to each gradation is corrected so that it becomes smaller than the voltage, and for the integers m and n where 6≤n <m, the display data below the maximum difference gradation is taken out and the low gradation is deleted. After the low gradation deletion data is m-bit data, the m-bit data power is also provided with a correction means for selecting a digital correction value for n bits.
[0033] また、本発明に係るさらに別の表示装置は、上記課題を解決するために、各階調に 対応する階調電圧を表示素子に印加して画像を表示する表示装置であって、低階 調領域の階調について階調電圧の差分を求めて、求めた差分のうちの最大の差分 に対応する最大差分階調の階調電圧が、補正前の 0階調の階調電圧よりも小さくな るように各階調に対応する階調電圧を補正するとともに、上記最大差分階調よりも 1 つ大きい階調に対応する階調電圧が、補正前の 0階調の階調電圧となるように各階 調に対応する階調電圧を補正する補正手段を備えており、上記補正手段は、 6≤n <mである整数 m、 nに対し、上記最大差分階調以下の表示データを取り出して低階 調削除データとし、当該低階調削除データを mビット化した後、当該 mビット化したデ 一タカ nビット分のデジタル補正値を選択する補正手段を備えていることを特徴とし ている。 [0033] Further, another display device according to the present invention is provided for each gradation in order to solve the above problem. A display device that displays an image by applying the corresponding gradation voltage to the display element, and obtains the difference in gradation voltage for the gradation in the low gradation region, and corresponds to the maximum difference among the obtained differences. The gradation voltage corresponding to each gradation is corrected so that the gradation voltage of the maximum difference gradation is smaller than the gradation voltage of the 0 gradation before correction, and one gradation difference is added. Correction means for correcting the gradation voltage corresponding to each gradation is provided so that the gradation voltage corresponding to the large gradation becomes the gradation voltage of 0 gradation before correction, and the correction means includes 6≤ For integers m and n where n <m, the display data below the maximum difference gradation is taken out and used as low gradation deletion data. The low gradation deletion data is converted to m bits, and then the m bit converted data is converted to m bits. It is equipped with a correction means for selecting a digital correction value for one taka n bits. To have.
[0034] 上記の構成とすることにより、上記の効果に加えて、表示画像の階調表現能力とし て所定の階調 (2n )を維持することができる。すなわち、低階調削除データを mビット 化し、当該 mビットィ匕されたデータの中力 nビット分のデジタル補正値を選択すれば 、上記最大差分階調以下の低階調領域に、補正前の 0階調の階調電圧よりも小さい 階調電圧を設定する補正を行うことによる階調表現能力の低下を補償することができ る。このため、表示装置の階調表現能力を所定の階調に維持することができる。 With the above configuration, in addition to the above effects, a predetermined gradation (2 n ) can be maintained as the gradation expression capability of the display image. In other words, if the low gradation deletion data is converted to m bits and a digital correction value corresponding to n bits of the m-bit keyed data is selected, the low gradation area below the maximum difference gradation is converted to the low gradation area before the correction. It is possible to compensate for a decrease in gradation expression capability due to correction for setting a gradation voltage smaller than the gradation voltage of 0 gradation. For this reason, the gradation expression capability of the display device can be maintained at a predetermined gradation.
[0035] 本発明の表示装置の補正手段は、階調電圧を設定し一定階調以下を切り捨てた データを、独立 γ処理するものである。ここで、独立 γ処理とは、 RGBデータ別に γ 特性を変化させる処理であり、この際、階調つぶれや階調とびを防ぐため、例えば 10 ビットデータ(データ数 1024)の中力 適切な 8ビットデータ分(データ数 256)のデ ータをデジタル補正値として選択する事を含めて行われるように構成されて 、る。  The correction means of the display device of the present invention performs independent γ processing on the data in which the gradation voltage is set and a certain gradation or less is discarded. Here, independent γ processing is processing that changes γ characteristics for each RGB data. In this case, in order to prevent gradation collapse and gradation skipping, for example, the medium strength of 10-bit data (number of data 1024) is appropriate. It is configured to include the selection of data for bit data (number of data 256) as a digital correction value.
[0036] 上記「低階調削除データを mビットィ匕し、当該 mビット化されたデータの中から nビッ ト分のデジタル補正値を選択する」とは、 mビット化されたデータ (低階調削除データ を単純に変換した値)ではなく mビット化された階調データ (0力も 2m— 1階調のすべ て、データ数 2mのデータ)の中力 適切なデジタル補正値を選択することによりなさ れる。 [0036] The above "move the low gradation deletion data and select the digital correction value for n bits from the m-bit data" means m-bit data (low-order data) Selects an appropriate digital correction value instead of m-bit gradation data (0 force is also 2 m — data of 2 m of all data). Is done.
[0037] また、上記補正手段は、適切なデジタル補正値を選択した後に、カラークロストーク 補正や擬似多階調化を行うように構成されていてもよい。ここで、擬似多階調化とは、 例えば、 8ビットドライバで 10ビット相当の表現力を出したいときに使われる処理であ る。 10ビットデータを 8ビットデータとする場合に、下位 2ビットデータを切り捨てるので はなぐ下位 2ビットデータ力も決まるノイズパターンを上位 8ビットデータに付加する などの方法により、 8ビットドライバで 10ビット相当の表現力を実現するものである。な お、擬似多階調化の代表例としては、 FRC (Frame Rate Control)が挙げられる [0037] The correction unit may be configured to perform color crosstalk correction and pseudo multi-gradation after selecting an appropriate digital correction value. Here, pseudo multi-gradation means For example, this is the process used when an 8-bit driver wants to express 10 bits. When 10-bit data is converted to 8-bit data, a noise pattern that determines the low-order 2-bit data power is added to the high-order 8-bit data rather than truncating the low-order 2-bit data. Realizes expressive power. A typical example of pseudo multi-gradation is FRC (Frame Rate Control).
[0038] また、本発明に係る表示装置は、上記の構成において、上記補正手段は、 6≤n< mである整数 m、 nに対し、上記最大差分階調以下の表示データを除いて低階調削 除データとし、当該低階調削除データを mビットィ匕して mビットデータとした後、表示 装置の隣り合う画素が寄生容量を介して結合していることから生じるクロストークの問 題を補正するとともに、クロストークの問題を補正した上記 mビットデータのうち、上位 nビットデータに下位 (m-n)ビットデータの情報を付カ卩して nビットデータとして出力 するように構成されて 、てもよ 、。 [0038] In addition, in the display device according to the present invention, in the above configuration, the correction unit is low except for display data that is equal to or less than the maximum difference gradation with respect to integers m and n where 6≤n <m. Cross-talk problem caused by the fact that the low-gradation deletion data is converted to m-bit data by converting the low-gradation deletion data to m-bit data, and then the adjacent pixels of the display device are coupled through a parasitic capacitance. Of the above m-bit data corrected for the crosstalk problem, and the upper (n) bit data is added to the upper (n) bit data and output as n-bit data. Anyway.
[0039] 上記の構成によれば、上記表示装置に表示される表示データが 256階調である場 合、例えば、 n=8、 m= 10とすれば、上記表示データから上記最大差分階調以下 の表示データを除いて低階調削除データとし、当該低階調削除データを 10ビットィ匕 した後、当該 10ビットィ匕したデータから 8ビット分のデジタル補正値を選択することと なる。この場合、表示画像の階調表現能力として 256階調を維持することができる。  [0039] According to the above configuration, when the display data displayed on the display device has 256 gradations, for example, if n = 8 and m = 10, the maximum difference gradation is determined from the display data. Except for the following display data, it is used as low gradation deletion data, and after the low gradation deletion data is 10 bits long, 8-bit digital correction value is selected from the 10 bits of data. In this case, 256 gradations can be maintained as the gradation representation capability of the display image.
[0040] 本発明のさらに他の目的、特徴、および優れた点は、以下に示す記載によって十 分わ力るであろう。また、本発明の利益は、添付図面を参照した次の説明で明白にな るであろう。  [0040] Still other objects, features, and advantages of the present invention will be sufficiently enhanced by the following description. The benefits of the present invention will become apparent from the following description with reference to the accompanying drawings.
図面の簡単な説明  Brief Description of Drawings
[0041] [図 1(a)]本発明の階調電圧設定方法により補正された後の階調電圧設定の例を示す グラフである。  FIG. 1 (a) is a graph showing an example of gradation voltage setting after correction by the gradation voltage setting method of the present invention.
[図 1(b)]図 1 (a)に示した階調電圧設定の差分を示すグラフである。  FIG. 1 (b) is a graph showing a difference in gradation voltage setting shown in FIG. 1 (a).
[図 2(a)]本発明の階調電圧設定方法により補正される前の階調電圧設定の例を示す グラフである。  FIG. 2 (a) is a graph showing an example of gradation voltage setting before correction by the gradation voltage setting method of the present invention.
[図 2(b)]図 2 (a)に示した階調電圧設定の差分を示すグラフである。 [図 3]本発明により階調電圧が設定されるカラー表示装置の構成の一例を示すブロッ ク図である。 FIG. 2 (b) is a graph showing a difference in gradation voltage setting shown in FIG. 2 (a). FIG. 3 is a block diagram showing an example of the configuration of a color display device in which gradation voltages are set according to the present invention.
[図 4]図 3のカラー表示装置における表示パネルの構成を詳細に示す平面図である。  4 is a plan view showing in detail the configuration of a display panel in the color display device of FIG. 3. FIG.
[図 5]図 4の表示パネルにおいて表示パターンが変化する状態を示す図である。  FIG. 5 is a diagram showing a state in which the display pattern changes in the display panel of FIG.
[図 6]本来の白輝度と合成白輝度とを対比するための図である。  FIG. 6 is a diagram for comparing original white luminance with synthetic white luminance.
[図 7]単色輝度と本来の単色輝度との差を、色度 X, Υ, Zの刺激値の差として、 1階 調毎に表したグラフである。  [Fig. 7] A graph showing the difference between the monochromatic luminance and the original monochromatic luminance as a difference in stimulus values of chromaticity X, Υ, and Z for each gradation.
[図 8]単色輝度と本来の単色輝度との差に関して、 1階調毎の誤差率を示すグラフで ある。  [FIG. 8] A graph showing the error rate for each gradation with respect to the difference between the monochromatic luminance and the original monochromatic luminance.
[図 9]他ソースが 0階調の時のカラークロストーク補正値を示すグラフである。  FIG. 9 is a graph showing color crosstalk correction values when the other source is 0 gradation.
[図 10]本発明により補正された後の階調電圧を用いて、 8ビット 256階調の表示を行 う場合の補正処理の手順を示すブロック図である。  FIG. 10 is a block diagram showing the procedure of correction processing when displaying 8-bit 256 gradation using the gradation voltage after correction according to the present invention.
[図 11]従来技術を示すものであり、ソースラインに関して、他のソースラインが原因で 発生するクロストークを説明するための概略図である。  [Fig. 11] Fig. 11 is a schematic diagram for explaining a conventional technique and explaining crosstalk caused by another source line with respect to the source line.
[図 12]特定のパターンを表示させた場合に、不連続な輝度変化によるエッジが表示 画像に生じることを示す図である。  FIG. 12 is a diagram showing that an edge due to a discontinuous luminance change occurs in a display image when a specific pattern is displayed.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0042] 〔1 表示装置の構成〕  [1 Configuration of Display Device]
本発明の一実施形態を図に基づいて以下に説明する。  An embodiment of the present invention will be described below with reference to the drawings.
図 3に示すように、本実施の形態のカラー表示装置 (表示装置) 1は、カラークロスト ーク補正回路 (補正手段) 2と、極性反転回路 3と、タイミングコントローラ 4と、ソースド ライバ 5と、ゲートドライバ 6と、表示パネル 7、記憶部 8とを備えている。なお、図 3にお V、ては、本発明に関係な!/、構成を大幅に省略してある。  As shown in FIG. 3, the color display device (display device) 1 according to the present embodiment includes a color crosstalk correction circuit (correction means) 2, a polarity inversion circuit 3, a timing controller 4, and a source driver 5. A gate driver 6, a display panel 7, and a storage unit 8. In FIG. 3, V and / or the configuration related to the present invention are largely omitted.
[0043] カラークロストーク補正回路 2は、外部から入力される R色 (第 1表示色)の階調レべ ルを示す赤色信号 R、 G色 (第 2表示色)の階調レベルを示す緑色信号 G、および B 色 (第 2表示色)の階調レベルを示す青色信号 Bからなる入力カラー信号に基づき、 表示パネル 7における各表示画素(図示せず)への印加電圧を補正するための出力 カラー映像信号 R, -G' ·Β'を出力するものである。なお、第 1表示色がシアン、第 2 表示色がマゼンタ、第 3表示色がイェローであってもよ 、。 [0043] The color crosstalk correction circuit 2 indicates the gradation level of the red signal R, G (second display color) indicating the gradation level of the R color (first display color) input from the outside. In order to correct the applied voltage to each display pixel (not shown) in the display panel 7 based on the input color signal consisting of the green signal G and the blue signal B indicating the gradation level of the B color (second display color) Outputs color video signal R, -G '· Β'. The first display color is cyan, the second Even if the display color is magenta and the third display color is yellow.
[0044] 特に、カラークロストーク補正回路 2には、印加電圧補正回路 (補正手段) 9と、彩度 強調回路 (補正手段) 10とを備えており、これら 2つの回路のうち何れかを用いること によって、表示パネル 7における各表示画素(図示せず)への印加電圧を補正する。 これら印加電圧補正回路 9と彩度強調回路 10とは、入力カラー映像信号 R'G'Bをラ ツチして 1ドットずつディレイすることにより、同一のゲートライン接続された 2表示画素 に対して後述の処理を行うものである。  In particular, the color crosstalk correction circuit 2 includes an applied voltage correction circuit (correction means) 9 and a saturation enhancement circuit (correction means) 10, and one of these two circuits is used. As a result, the voltage applied to each display pixel (not shown) in the display panel 7 is corrected. These applied voltage correction circuit 9 and saturation enhancement circuit 10 latch the input color video signal R'G'B and delay it one dot at a time, so that two display pixels connected to the same gate line are connected. The processing described later is performed.
[0045] なお、図 3に示す本実施形態の表示装置 1のように、印加電圧補正回路 9と、彩度 強調回路 10とを両方備えていてもよぐ図示しない他の手段を用いて、何れか一方 が機能するように構成されていてもよい。また、印加電圧補正回路 9および彩度強調 回路 10の何れか一方のみを備えて!/、てもよ!/、。  Note that, as in the display device 1 of the present embodiment shown in FIG. 3, it is possible to include both the applied voltage correction circuit 9 and the saturation enhancement circuit 10 using other means (not shown), Either one may be configured to function. In addition, only one of the applied voltage correction circuit 9 and the saturation enhancement circuit 10 is provided!
[0046] 極性反転回路 3は、印加電圧補正回路 9または彩度強調回路 10から出力されるデ ジタルデータであるカラー映像信号 R, -G' ·Β'に基づき、表示パネル 7における各 表示画素に印加する電圧のデータ (アナログデータ)を決定するものである。  [0046] The polarity inversion circuit 3 is based on the color video signal R, -G '· 基 づ き' that is digital data output from the applied voltage correction circuit 9 or the saturation enhancement circuit 10, and each display pixel in the display panel 7 This determines the data (analog data) of the voltage applied to.
[0047] タイミングコントローラ 4は、入力された RGB同期信号に基づき、ソースドライバ 5お よびゲートドライバ 6を駆動するためのソースドライバ用タイミング信号およびゲートド ライバ用タイミング信号を生成する。なお、ソースドライバ用タイミング信号は、極性反 転回路 3を介してソースドライバ 5に入力される。  The timing controller 4 generates a source driver timing signal and a gate driver timing signal for driving the source driver 5 and the gate driver 6 based on the input RGB synchronization signal. The source driver timing signal is input to the source driver 5 via the polarity inverting circuit 3.
[0048] ソースドライバ 5は、極性反転回路 3にて決定された電圧が各表示画素に印加され るよう、表示パネル 7に設けられる各表示画素に TFTを介して接続された各ソースラ インを駆動するためのものである。なお、ソースドライバ 5は、極性反転回路 3と一体 的に構成されて 、てもよ 、。  [0048] The source driver 5 drives each source line connected to each display pixel provided in the display panel 7 via the TFT so that the voltage determined by the polarity inversion circuit 3 is applied to each display pixel. Is to do. The source driver 5 may be configured integrally with the polarity inversion circuit 3.
[0049] ゲートドライバ 6は、表示パネル 7に設けられる各表示画素に TFTを介して接続され た各ゲートラインを駆動するためのものである。  [0049] The gate driver 6 is for driving each gate line connected to each display pixel provided in the display panel 7 via a TFT.
[0050] 表示パネル 7は、マトリクス状に配置された複数の表示画素を、複数のソースライン および複数のゲートラインによって駆動することにより画像表示を行うものである。具 体的には、図 4に示すように、ソースライン Si (iは整数)とゲートライン Gj (jは整数)と が直交するように設けられており、各ソースラインと各ゲートラインとの交差部分に、表 示画素 11およびスイッチング素子 12とが設けられて 、る。 [0050] The display panel 7 performs image display by driving a plurality of display pixels arranged in a matrix by a plurality of source lines and a plurality of gate lines. Specifically, as shown in FIG. 4, the source line Si (i is an integer) and the gate line Gj (j is an integer) are provided so as to be orthogonal to each other. Table at the intersection A display pixel 11 and a switching element 12 are provided.
[0051] なお、表示パネル 7の構成は、上述した従来の液晶表示装置(図 11参照)における 構成と変わるところがない。したがって、表示画素 11…のうち、ある一つの表示画素 を表示画素 (A)とし、該表示画素 (A)と同一のゲートライン G2により駆動されるととも に、表示画素' (A)が寄生容量を介して接続されているソースライン S3に、スィッチン グ素子を介して接続されて!ヽる表示画素を表示画素 (B)とした場合、表示画素 (A) の周辺には、以下のように寄生容量 Csda · Csdb · Cgd · Ccsが形成される。  Note that the configuration of the display panel 7 is not different from the configuration in the above-described conventional liquid crystal display device (see FIG. 11). Therefore, one display pixel among the display pixels 11 is set as the display pixel (A), and is driven by the same gate line G2 as the display pixel (A), and the display pixel ′ (A) is parasitic. When the display pixel (B) connected to the source line S3 connected via the capacitor via the switching element is the display pixel (B), the display pixel (A) is surrounded as follows. Parasitic capacitance Csda · Csdb · Cgd · Ccs is formed.
[0052] 寄生容量 Csda…表示画素 (A)を駆動するためのソースラインと表示画素 (A)との 間に形成される寄生容量  [0052] Parasitic capacitance Csda: parasitic capacitance formed between the source line for driving the display pixel (A) and the display pixel (A)
寄生容量 Csdb…表示画素(B)を駆動するためのソースラインと表示画素 (A)との 間に形成される寄生容量  Parasitic capacitance Csdb: Parasitic capacitance formed between the source line for driving the display pixel (B) and the display pixel (A)
寄生容量 Cgd…表示画素 (A)を駆動するためのゲートラインと表示画素 (A)との間 に形成される寄生容量  Parasitic capacitance Cgd: Parasitic capacitance formed between the gate line for driving the display pixel (A) and the display pixel (A)
寄生容量 Ccs · · ·共通電極線と表示画素 ( A)との間に形成される寄生容量。  Parasitic capacitance Ccs · · · Parasitic capacitance formed between the common electrode line and the display pixel (A).
[0053] 上述したとおり、表示パネル 7の構成は、従来の液晶表示装置に備えられている表 示パネルの構成と変わるところがないので、従来の駆動方法により表示パネル 7に備 えられている各表示画素 11…を駆動すると、注目表示画素の階調が、他の表示画 素を駆動するソースラインへの印加電圧に影響を受けて所望の階調と異なってしまう クロストークの問題が発生する。  [0053] As described above, the configuration of the display panel 7 is the same as the configuration of the display panel provided in the conventional liquid crystal display device, and thus each of the configurations provided in the display panel 7 by the conventional driving method. When the display pixels 11 are driven, the gray level of the target display pixel differs from the desired gray level due to the voltage applied to the source line that drives the other display pixels. This causes a crosstalk problem. .
[0054] 例えば、図 4に示す構成では、第 1表示画素としての表示画素 (A)に注目すると、 表示画素 (A)の階調が、第 2表示画素としての表示画素 (B)を駆動するソースライン S3への印加電圧に影響を受けることになる。  For example, in the configuration shown in FIG. 4, when attention is paid to the display pixel (A) as the first display pixel, the gradation of the display pixel (A) drives the display pixel (B) as the second display pixel. Will be affected by the voltage applied to the source line S3.
[0055] [2 クロストークの補正処理について〕  [0055] [2 Crosstalk correction processing]
[2- 1 輝度バランスの変動について〕  [2-1 Luminance balance fluctuation]
本実施の形態のカラー表示装置 1では、上述したように発生するクロストークの問題 を改善すベぐ印加電圧補正回路 9または彩度強調回路 10が設けられている。これ らの 2つの回路による入力カラー映像信号の補正手順を明らかにするため、表示パ ターン毎の輝度バランスの変動について以下に説明する。 [0056] 例えば、図 5に示すようなパターン 1〜3が表示パネル 7により表示されているとする 。具体的には、パターン 1においては、隣接する 6つの表示画素について、左から順 番に、 R色、 G色、 B色、黒色、黒色、黒色が表示されている。また、パターン 2におい ては、黒色、 G色、 B色、 R色、黒色、黒色が表示されている。また、パターン 3におい ては、黒色、黒色、 B色、 R色、 G色、黒色が表示されている。 In the color display device 1 of the present embodiment, the applied voltage correction circuit 9 or the saturation enhancement circuit 10 is provided to improve the crosstalk problem that occurs as described above. In order to clarify the correction procedure of the input color video signal by these two circuits, the fluctuation of the luminance balance for each display pattern is explained below. For example, it is assumed that patterns 1 to 3 as shown in FIG. Specifically, in pattern 1, R, G, B, black, black, and black are displayed in order from the left for six adjacent display pixels. In pattern 2, black, G, B, R, black, and black are displayed. In Pattern 3, black, black, B color, R color, G color, and black color are displayed.
[0057] これらのパターン 1〜3のそれぞれにより表示パネル 7に表示される画像は、全て同 じになるはずである。し力しながら実際には、黒色を表示している表示画素(階調レ ベルが 0である表示画素: 0階調)の左隣にある表示画素への印加電圧力 黒色を表 示している表示画素への印加電圧に影響を受けてしまう。これにより、該左隣の画素 では、所望の階調レベルよりやや低い階調レベルが表示されてしまう。  [0057] The images displayed on the display panel 7 by each of these patterns 1 to 3 should all be the same. In fact, the voltage applied to the display pixel on the left side of the display pixel displaying black (display pixel with gradation level 0: 0 gradation) is displayed in black. It is affected by the voltage applied to the display pixel. As a result, a gradation level slightly lower than the desired gradation level is displayed at the pixel on the left side.
[0058] 例えば、パターン 1では、 B色の表示画素が黒色の表示画素の隣にあるので、 B色 が所望の階調レベルよりやや低い階調レベルで表示されてしまう。同様に、パターン 2では R色が所望の階調レベルよりやや低 、階調レベルで表示され、パターン 3では G色が所望の階調レベルよりやや低い階調レベルで表示される。このように、表示パ ネルにおける表示パターンによって、隣接する複数の表示画素間における輝度バラ ンスが変動してしまう。  [0058] For example, in pattern 1, since the B display pixel is adjacent to the black display pixel, the B color is displayed at a slightly lower gradation level than the desired gradation level. Similarly, in pattern 2, the R color is displayed at a gradation level slightly lower than the desired gradation level, and in pattern 3, the G color is displayed at a gradation level slightly lower than the desired gradation level. Thus, the luminance balance between a plurality of adjacent display pixels varies depending on the display pattern on the display panel.
[0059] また、隣接する 3つの表示画素により白色が表示される場合を考えると、図 6の等式 の左辺に示すように、 3つの表示画素について左力 順に R色、 G色、 B色が表示さ れている状態において、理想的な白色が表示される。なお、以下の説明において、こ の理想的な白色のことを、「本来の白輝度」、もしくは単に「白輝度」や「白」と称するこ とがある。  [0059] Considering the case where white is displayed by three adjacent display pixels, as shown on the left side of the equation in FIG. 6, the R, G, and B colors in the order of the left force for the three display pixels. Ideal white is displayed when is displayed. In the following description, this ideal white color may be referred to as “original white luminance”, or simply “white luminance” or “white”.
[0060] 一方で、隣接する 3つの表示画素において、図 6の等式の右辺に示すように、以下 のパターン 4〜6のそれぞれに表示を切り替えることによつても、白色を表示できるは ずである。なお、この場合の白色の表示に関して、以下の説明において、「合成白輝 度」もしくは「合成白」と称することがある。  [0060] On the other hand, as shown on the right side of the equation in FIG. 6, in the three adjacent display pixels, white should be displayed by switching the display to each of the following patterns 4 to 6. It is. Note that white display in this case may be referred to as “synthetic white brightness” or “synthetic white” in the following description.
[0061] すなわち、パターン 4〜6において、 3つの表示画素のそれぞれにおける表示色を 左の画素力 順番に記載すると、  That is, in the patterns 4 to 6, when the display color in each of the three display pixels is described in order of the left pixel force,
パターン 4 : R色、黒色、黒色 パターン 5 :黒色、 G色、黒色 Pattern 4: R color, black, black Pattern 5: Black, G color, black
パターン 6 :黒色、黒色、 B色  Pattern 6: Black, black, B color
である。  It is.
[0062] ここで、本来の白輝度は、合成白輝度 (赤輝度 +緑輝度 +青輝度一 2 *黒輝度)と 等しくなるはずであるが、実際は、合成白輝度のほうが白輝度より低くなる。これは、 上述したとおり、黒色の表示画素への印加電圧に引きずられて、 R、 G、または B色の 表示画素への印加電圧が変動してしまうからである。  [0062] Here, the original white brightness should be equal to the composite white brightness (red brightness + green brightness + blue brightness 1 * 2 * black brightness), but in fact, the composite white brightness is lower than the white brightness. . This is because, as described above, the voltage applied to the R, G, or B color display pixels fluctuates due to being dragged by the voltage applied to the black display pixels.
[0063] 上述したとおり、白輝度と合成白輝度(単色 R+単色 G +単色 B— 2 *黒)とは等し くなるはずであるが、実際には、単色表示において、自ソース:単色、他ソース: 0とい う条件とはなっておらず、隣接するソース間にはカラークロストークが発生している。こ のために、単色輝度が本来の単色輝度よりも低下してしまう結果として、合成白輝度 は、白輝度よりも小さい値になる。  [0063] As described above, the white luminance and the composite white luminance (monochrome R + monochrome G + monochromatic B-2 * black) should be equal, but in actuality, in monochromatic display, the own source: monochromatic, Other sources: The condition of 0 is not satisfied, and color crosstalk occurs between adjacent sources. For this reason, as a result of the monochromatic luminance being lower than the original monochromatic luminance, the composite white luminance is smaller than the white luminance.
[0064] 図 7は、上記した理由により生じる単色輝度と本来の単色輝度との差を、色度 X, Y , Zの刺激値の差(△刺激値)として、 1階調毎に表したものである。同図において、 縦軸は色度 X, Υ, Zの白と合成白との刺激値の差を表しており、横軸は階調 (0〜25 5階調)を表している。なお、 RGBで表した場合には色が絡んでくるという理由により 、図 7では色度刺激値を用いて示している。  [0064] FIG. 7 shows the difference between the monochromatic luminance and the original monochromatic luminance caused by the above-described reason as the difference of the stimulation values of chromaticity X, Y, and Z (△ stimulation value) for each gradation. Is. In the figure, the vertical axis represents the difference in stimulus value between white and synthetic white of chromaticity X, Υ, and Z, and the horizontal axis represents gradation (0 to 255 gradations). In addition, when expressed in RGB, because the colors are entangled, in FIG. 7, the chromaticity stimulus value is used.
[0065] 白と合成白の変化を示した図 7のグラフを一見すると、高階調領域において大きな 誤差が生じているように見える。しかしながら、表示装置において表示上問題となる 領域は、誤差の絶対値ではなぐ本来表示したい階調の刺激値に対する実際の刺 激値の誤差の比率によって決まるものである。したがって、階調の刺激値と表示との 関係においては、この「刺激値の誤差の比率」(誤差率)が重要になる。ここで、各色 度についての誤差率は、図 7に示した X, Υ, Zそれぞれの白の誤差 (つまり、△刺激 値)を、白輝度の X, Y, Zの刺激値を用いて割る計算(除法)により求められる。  [0065] At first glance, the graph of FIG. 7 showing the change between white and composite white appears to cause a large error in the high gradation region. However, the display problem area in the display device is determined by the ratio of the error of the actual stimulus value to the stimulus value of the gradation to be originally displayed, not the absolute value of the error. Therefore, in the relationship between the stimulus value of gradation and the display, this “ratio of stimulus value error” (error rate) is important. Here, the error rate for each chromaticity is obtained by dividing the white error (that is, △ stimulus value) for X, Υ, and Z shown in Fig. 7 by using the stimulus values of X, Y, and Z for white luminance. It is obtained by calculation (division method).
[0066] 上記のようにして、 1階調毎に上記誤差率を求めた結果を図 8に示す。同図におい ては、縦軸が X, Y, Zそれぞれの誤差率 (刺激値の誤差率)を示しており、横軸が階 調を示している。同図に示すように、本来表示したい階調の刺激値に対する実際の 刺激値の誤差の比率 (誤差率)は、高階調領域よりも低階調領域の階調において大 きくなる。すなわち、表示に対する影響が大きいのは低階調領域の階調の誤差であり 、実際の表示において問題となるのは高階調領域よりも低階調領域の階調であること が分かる。 [0066] Fig. 8 shows the result of obtaining the error rate for each gradation as described above. In the figure, the vertical axis shows the error rates of X, Y, and Z (stimulus value error rate), and the horizontal axis shows the tone. As shown in the figure, the ratio (error rate) of the error of the actual stimulus value to the stimulus value of the tone to be originally displayed is larger in the tone in the low tone region than in the high tone region. I'm angry. That is, it is understood that the gray scale error in the low gradation area has a large influence on the display, and that the problem in actual display is the gradation in the low gradation area rather than the high gradation area.
[0067] 続いて、上記のようにして求めた誤差率が何階調分の誤差になる力を算出し、当該 算出された結果を LUT (Look Up Table)として、カラー表示装置 1の記憶部 8 (図 3参照)に記憶させる。この LUTを求めるためには、補正対象とする色が 1階調変化 したときの差分により、 X, Y, Zそれぞれの誤差率を割ることとする。し力しながら、力 ラークロストークによる輝度変化の起こらな 、色にっ 、ては、上記差分を用いて上記 誤差率を割ったとしても、変化階調分が X, Y, Zでばらばらになつてしまい、意味の な!、データが得られるだけとなる。  [0067] Subsequently, the force that causes the error rate of the error rate obtained as described above to be calculated is calculated, and the calculated result is used as a LUT (Look Up Table) to store the storage unit of the color display device 1. 8 (See Fig. 3). In order to obtain this LUT, the error rate for each of X, Y, and Z is divided by the difference when the color to be corrected changes by one gradation. However, even if the error rate is divided by using the above difference, the change gradation is divided by X, Y, and Z. It ’s no longer meaningful! You just get the data.
[0068] したがって、 LUTを求めるにあたって、 Xの誤差率は Xの差分で、 Yの誤差率は Y の差分で、 Zの誤差率は Zの差分で、それぞれ割ることとする。この計算により得られ る結果は、 X, Υ, Zの誤差階調力 ほぼ同一曲線にのる事になる。このため、 R, G, Bの補正テーブルは、同一でよいことになる。図 9に示したグラフは他ソースが 0階調 時のカラークロストーク補正値を示しており、その値を例えば 32階調毎に取り出して、 LUTとする。なお、同図の縦軸は X, Υ, Zの補正階調を示し、横軸は階調を示して いる。 Therefore, in determining the LUT, the error rate of X is divided by the difference of X, the error rate of Y is divided by the difference of Y, and the error rate of Z is divided by the difference of Z. The result obtained by this calculation is that the error gradation power of X, Υ, and Z is almost the same curve. For this reason, the correction tables for R, G, and B may be the same. The graph shown in FIG. 9 shows the color crosstalk correction value when the other source is 0 gradation, and the value is taken out for every 32 gradations, for example, as the LUT. In the figure, the vertical axis indicates the corrected gradations of X, Υ, and Z, and the horizontal axis indicates the gradation.
[0069] [2- 2 カラークロストークの補正方法〕  [0069] [2-2 Color Crosstalk Correction Method]
カラークロストークの補正は、正しくは電圧によりなされるべきである力 本実施の形 態では、まず、駆動アルゴリズムにて補正処理を行うこととしている。このため、図 4に 示すような表示画素 Aの階調と、表示画素 Aに隣接する表示画素 Bとの階調の組み 合わせから、表示画素 Aの補正階調を計算し、それを表示画素 Aの階調データに上 乗せする方法がもつとも現実的である。  Color crosstalk should be corrected correctly by voltage. In this embodiment, first, correction processing is performed by a driving algorithm. For this reason, the correction gradation of display pixel A is calculated from the combination of the gradation of display pixel A as shown in FIG. 4 and the gradation of display pixel B adjacent to display pixel A, and is used as the display pixel. It is also realistic to add a method to the gradation data of A.
[0070] 以下にその手順の一例を示す。 [0070] An example of the procedure is shown below.
(1) 本来の白、および実際に生じた RGB各色の輝度および色度を 1階調毎に測定 する。  (1) Measure the brightness and chromaticity of the original white and the actual RGB colors for each gradation.
(2) 白の誤差(白—合成白 (R+G + B— 2 *黒))を 1階調毎に計算する (つまり△ 刺激値)。 (3) 白の誤差率 (上記 (2)で得られた白の誤差 Z白輝度)を 1階調毎に計算する。(2) The white error (white—composite white (R + G + B—2 * black)) is calculated for each gradation (ie, △ stimulus value). (3) Calculate the white error rate (white error Z white luminance obtained in (2) above) for each gradation.
(4) 白の誤差率を合成白輝度の差分で割る事により、 B表示画素が 0階調のときの 表示画素 Aの補正階調 Cを得る。 (4) Divide the white error rate by the difference of the combined white luminance to obtain the corrected gradation C of display pixel A when B display pixel is 0 gradation.
(5) B表示画素が 0階調でない場合の補正値は、 A表示画素と B表示画素の階調 が等しい場合の補正値力 SOなので、 A≥Bのときは Cと 0との間で直線的に補間する。 A< Bの場合、補正値は 0とする。  (5) The correction value when the B display pixel is not 0 gradation is the correction value SO when the gradation of the A display pixel and the B display pixel are the same, so when A≥B, between C and 0 Interpolate linearly. When A <B, the correction value is 0.
[0071] 実際問題として、この様にして求まる補正階調は、パネルの設計、ドライバ、階調設 定等で大きく変わるので、一元的な式で補正するアルゴリズムを作るのは容易でな ヽ 。したがって、これらの補正値を例えば 32階調毎に取り出したものを LUTとして持た せ、目的階調に合わせて補間演算を行うことで、最終的な補正階調を求めている。 階調と隣接階調とにより決定された LUTの例を下記の表 1に示す。  [0071] As a practical matter, the correction gradation obtained in this way varies greatly depending on the panel design, driver, gradation setting, etc., so it is easy to create an algorithm for correcting with a unified equation. Therefore, for example, these correction values taken every 32 gradations are provided as LUTs, and the final correction gradation is obtained by performing interpolation calculation according to the target gradation. Table 1 below shows examples of LUTs determined by gradation and adjacent gradation.
[0072] [表 1]  [0072] [Table 1]
Figure imgf000018_0001
Figure imgf000018_0001
〔3 低階調領域の補正について〕 [3 Correction of low gradation area]
上述した方法により、表示画素と隣接画素の階調から、隣接画素とのカップリングを 考慮して表示画素の階調を補正するカラークロストーク補正を施すことができる。しか しながら、上述したカラークロストーク補正を用いても、電圧変動の激しい低階調領域 を補正しきれない場合が生じる。具体的には、図 2 (a)に示すように階調電圧を設定 すると、図 2 (b)に示したように、低階調領域において激しい電圧変動が起こる。つま り、液晶ディスプレイの γ特性をよりなめらかにあわせこむためにノンリニアドライバを 用いた場合、例えば図 2 (a)に示すような階調電圧特性となり、その結果図 2 (b)に示 したように、低階調領域において激しい電圧変動が起こる。この電圧変動、すなわち 、低階調領域の階調電圧の差分が大きく変化することに起因して、輝度変化が不連 続になった領域がエッジ (偽輪郭)として認識されるという問題が生じる。そこで、本実 施の形態では、上述したカラークロストーク補正に、以下の補正方法を追加すること により、低階調領域の階調電圧の補正を行っている。 By the above-described method, color crosstalk correction that corrects the gradation of the display pixel in consideration of the coupling with the adjacent pixel can be performed from the gradation of the display pixel and the adjacent pixel. However, even if the above-described color crosstalk correction is used, there are cases in which it is not possible to correct the low gradation region where the voltage fluctuation is severe. Specifically, when the gradation voltage is set as shown in FIG. 2 (a), severe voltage fluctuations occur in the low gradation region as shown in FIG. 2 (b). Tsuma When a non-linear driver is used to adjust the γ characteristics of the liquid crystal display more smoothly, for example, the gradation voltage characteristics shown in Fig. 2 (a) are obtained, and as a result, as shown in Fig. 2 (b), Severe voltage fluctuation occurs in the low gradation region. Due to this voltage fluctuation, that is, the difference in gradation voltage in the low gradation region changes greatly, there arises a problem that the region where the luminance change is discontinuous is recognized as an edge (false contour). . Therefore, in this embodiment, the following correction method is added to the color crosstalk correction described above to correct the gradation voltage in the low gradation region.
[0073] まず、補正前の階調電圧について各階調電圧の差分を求める。図 2 (b)は、求めた 各階調電圧についての差分を示したグラフである。同図に示すように、階調電圧の 差分は、低階調領域において大きく変化しており、 0階調 (VO)力も 5番目の 5階調( V5)にかけて増大し、 5階調 (V5)において最大差分をとり、そして、この 5階調 (最大 差分階調)よりも大きな階調では急激に小さくなる。補正前において、表示画像に上 記エッジが発生する問題は、低階調領域 (0〜5階調)の階調電圧として、差分が大き く変化する領域の電圧を用いて 、ることに起因して 、る。  [0073] First, the difference of each gradation voltage is obtained for the gradation voltage before correction. Figure 2 (b) is a graph showing the difference for each calculated gray scale voltage. As shown in the figure, the difference in grayscale voltage changes greatly in the low grayscale region, and the 0 grayscale (VO) force increases toward the 5th grayscale (V5). ), The maximum difference is taken, and for gradations larger than these five gradations (maximum difference gradation), the difference is sharply reduced. The problem that the above-mentioned edge occurs in the display image before correction is due to the fact that the voltage in the region where the difference changes greatly is used as the gradation voltage in the low gradation region (0 to 5 gradations). And then.
[0074] そこで、最大差分階調以下 (低階調領域)の階調の駆動電圧として、差分が大きく 変化する階調領域の電圧を用いないように、最大差分階調の階調電圧が補正前の 0 階調の駆動電圧よりも小さくなるように階調電圧を補正することとする。これにより、上 記エッジ発生の問題を解消することができる。  [0074] Therefore, the gradation voltage of the maximum difference gradation is corrected so that the voltage of the gradation area where the difference greatly changes is not used as the driving voltage of the gradation below the maximum difference gradation (low gradation area). The gradation voltage is corrected so as to be smaller than the driving voltage of the previous 0 gradation. As a result, the above-mentioned problem of edge generation can be solved.
[0075] 上記のような階調電圧の補正においては、例えば、補正前における VO力 6階調( V6)の階調電圧となるように、階調電圧を設定することとすればよい。また、この補正 に伴って、その他の階調に対応する階調電圧についても、連続性を持たせるように 再設定する。上記のようにして、階調電圧を補正した後の階調電圧設定を図 1 (a)に 示す。同図のように階調電圧を補正することにより、図 1 (b)に示したように、階調電圧 の差分の大き 、V5以下の低階調領域を用いな 、で、画像を表示することができる。 すなわち、差分が最大となる V5 (5階調)以下の低階調領域の階調の駆動電圧が、 補正前における VOの駆動電圧の電圧値よりも小さくなるように設定されるから、 V5以 下の低階調領域による表示への悪影響を排除することができる。  In the gradation voltage correction as described above, for example, the gradation voltage may be set so as to be a gradation voltage of 6 gradations (V6) of VO force before the correction. Along with this correction, the gradation voltages corresponding to the other gradations are reset so as to have continuity. Fig. 1 (a) shows the gradation voltage setting after correcting the gradation voltage as described above. By correcting the grayscale voltage as shown in the figure, as shown in Fig. 1 (b), the image is displayed without using the low grayscale region where the magnitude of the grayscale voltage difference is V5 or less. be able to. In other words, the drive voltage for the low gradation region of V5 (5 gradations) or less where the difference is maximum is set to be smaller than the voltage value of the VO drive voltage before correction. The adverse effect on the display due to the lower low gradation region can be eliminated.
[0076] なお、図 1 (b)及び図 2 (b)では、低階調領域において、階調電圧の差分のピーク( 極大値)が 2つ存在している。これは、階調輝度特性が Ύ = 2. 2にのるようにドライバ のラダー抵抗を合わせたことによる結果である。また、 V5よりも高階調領域に存在す る 2つ目の小さい極大値は、高階調領域における階調電圧の差分結果が、がたつい ているのと同様に、ノイズに近いものと考えられる。このため、差分を求めた結果、階 調電圧の差分が低階調領域で複数の極大値をもっとき、そのなかの最大の極大値 をとる階調の駆動電圧が、補正前の 0階調の階調電圧 (目標とする VO電圧)よりも小 さくなるように駆動電圧の調整を行うこととしている。以上の方法による補正前後の各 階調の駆動電圧設定の具体例を表 2に示す。 In FIG. 1B and FIG. 2B, in the low gradation region, the peak of the difference in gradation voltage ( There are two local maxima. This is a result of matching the ladder resistance of the driver so that the gradation luminance characteristic is Ύ = 2.2 . In addition, the second small maximum value that exists in the high gradation region than V5 is considered to be close to noise, as the difference result of the gradation voltage in the high gradation region is rattling. . For this reason, as a result of obtaining the difference, the gradation drive voltage having the maximum difference among the multiple maximum values in the low gradation region where the difference in the gradation voltage is higher is the 0 gradation before the correction. The drive voltage is adjusted to be lower than the grayscale voltage (target VO voltage). Table 2 shows specific examples of drive voltage settings for each gradation before and after correction using the above method.
[0077] [表 2] [0077] [Table 2]
Figure imgf000020_0001
Figure imgf000020_0001
なお、本実施の形態において、 6階調(V6) =0. 5Vとしているのは、現行の LCD モジュールの 0階調の階調電圧 (V0)が 0. 5Vであるという理由による。 V6を 0. 5V 以上とすることは可能である力 この場合、エッジの発生を防止するという効果は変わ らない一方、表示のコントラスト低下を招くことになる(V6 = 0. 5Vで CR=840、 V6 = 1. 0Vで CR = 760。 )。 CRが 800を割るのは好ましくないので、階調電圧の差分 が極大値 (最大値)となる V5 (5階調)より 1階調大きレヽ V6 (6階調)の階調電圧は、現 行の LCDモジュールの V0として用いられて 、る 0. 5Vとすることが好まし 、。 In this embodiment, 6 gradations (V6) = 0. 5V is because the gradation voltage (V0) of 0 gradation of the current LCD module is 0.5V. In this case, the effect of preventing the occurrence of edges does not change, but the contrast of the display is lowered (V6 = 0.5V, CR = 840) V6 = 1.0V and CR = 760.) Since it is not desirable that CR divide 800, the gradation voltage of V6 (6 gradations), which is one gradation larger than V5 (5 gradations), where the gradation voltage difference becomes the maximum value (maximum value) Used as V0 of LCD module in a row, preferably 0.5V.
[0078] 上述したように、本実施の形態の階調電圧設定方法によれば、エッジとして認識さ れる輝度変化が不連続な領域の発生を防止するため、最大差分階調の階調電圧が 補正前の 0階調の階調電圧 (目標とする V0電圧)よりも小さくなるように補正するもの である。この階調電圧補正と共に好ましく用いられるデータの処理方法につき、以下 に説明する。なお、以下のデータ処理方法は、図 3に示す表示装置 1の印加電圧補 正回路 (補正手段) 9もしくは彩度強調回路 (補正手段) 10にて行われる。 As described above, according to the grayscale voltage setting method of the present embodiment, the grayscale voltage of the maximum differential grayscale is prevented in order to prevent the occurrence of a region where the luminance change recognized as an edge is discontinuous. The correction is made so that it is smaller than the gradation voltage of 0 gradation (target V0 voltage) before correction. A data processing method that is preferably used together with this gradation voltage correction will be described below. The following data processing method is performed by the applied voltage correction circuit (correction means) 9 or the saturation enhancement circuit (correction means) 10 of the display device 1 shown in FIG.
[0079] 図 10に示すように、デジタルデータ処理により、 8ビット 256階調(0〜255の階調) のうち 6以上 255以下の階調を使用するよう補正して低階調削除データとした後に、 当該低階調削除データを 10ビットィ匕することと併用して 10ビット化されたデータの中 から適切なデジタル補正値を選択する処理 (独立 γ処理)、カラークロストーク補正、 擬似多階調化を行うことにより、画像表示における階調表現能力を 256階調に維持 することができる。同図に示す各補正処理につき、以下に簡単に説明する。  [0079] As shown in FIG. 10, digital data processing corrects the use of 6 to 255 gradations out of 8-bit 256 gradations (0 to 255 gradations) and low gradation removal data. After that, the processing to select an appropriate digital correction value from the 10-bit data (independent γ processing), color crosstalk correction, pseudo-multiple By performing gradation, it is possible to maintain the gradation expression capability in image display at 256 gradations. Each correction process shown in the figure will be briefly described below.
[0080] 独立 γ処理:入力された階調を指定階調へ変換する補正である。入力階調のみで 変換処理が決まるので、簡単な LUTを用いて実現できる。なお、変換の際に階調情 報を失わないため、本実施の形態のように、例えば 8ビットデータを 10ビットデータに 変換することが行われるのが通例である。  [0080] Independent γ processing: correction for converting an input gradation into a specified gradation. Since the conversion process is determined only by the input gradation, it can be realized using a simple LUT. In order to avoid losing gradation information at the time of conversion, it is common to convert, for example, 8-bit data into 10-bit data as in the present embodiment.
カラークロストーク補正:〔2 クロストークの補正処理について〕に記載の方法にした がって行う。  Color crosstalk correction: Follow the method described in [2 Crosstalk correction processing].
擬似多階調ィ匕:例えば FRC (Frame Rate Control)、ディザなどの技術がこれに あたる。一例をあげれば、ドライバ出力が nビットデータの場合、 m>nである mビット データのうち、上位 nビットデータに下位 (m-n)ビットデータ情報力 得られるノイズ パターンを付加して出力し、 nビットドライバで mビットデータと同等のデータ表現力を 持たせるような技術である (本実施の形態では n= 8、 m= 10である。 )0 Pseudo multi-tone: For example, techniques such as FRC (Frame Rate Control) and dithering. As an example, if the driver output is n-bit data, out of m-bit data where m> n, the upper n-bit data is output with a noise pattern obtained from the lower (mn) bit data information power, and n in bit drivers are techniques such as to have equivalent data expressive and m-bit data (in this embodiment is n = 8, m = 10. ) 0
[0081] なお、本実施形態の表示装置の各部や各処理ステップは、 CPUなどの演算手段 力 ROM (Read Only Memory)や RAMなどの記憶手段に記憶されたプログラムを 実行し、キーボードなどの入力手段、ディスプレイなどの出力手段、あるいは、インタ 一フェース回路などの通信手段を制御することにより実現することができる。したがつ て、これらの手段を有するコンピュータが、上記プログラムを記録した記録媒体を読 み取り、当該プログラムを実行するだけで、本実施形態の表示装置の各種機能およ び各種処理を実現することができる。また、上記プログラムをリムーバブルな記録媒 体に記録することにより、任意のコンピュータ上で上記の各種機能および各種処理を 実現することができる。 Note that each unit and each processing step of the display device according to the present embodiment executes a program stored in a storage means such as a calculation means output ROM (Read Only Memory) or RAM such as a CPU, and inputs such as a keyboard. It can be realized by controlling the means, the output means such as a display, or the communication means such as an interface circuit. Therefore, the computer having these means reads the recording medium storing the program and executes the program, thereby realizing the various functions and the various processes of the display device of the present embodiment. be able to. In addition, the above program is a removable recording medium. By recording on the body, the above-described various functions and various processes can be realized on any computer.
[0082] この記録媒体としては、マイクロコンピュータで処理を行うために図示しないメモリ、 例えば ROMのようなものがプログラムメディアであっても良いし、また、図示していな V、が外部記憶装置としてプログラム読み取り装置が設けられ、そこに記録媒体を挿入 することにより読み取り可能なプログラムメディアであっても良い。  As this recording medium, a program medium such as a memory (not shown) such as ROM may be used for processing by the microcomputer, and V not shown is an external storage device. It may be a program medium provided with a program reading device and readable by inserting a recording medium therein.
[0083] また、何れの場合でも、格納されて ヽるプログラムは、マイクロプロセッサがアクセス して実行される構成であることが好ましい。さらに、プログラムを読み出し、読み出され たプログラムは、マイクロコンピュータのプログラム記憶エリアにダウンロードされて、そ のプログラムが実行される方式であることが好ましい。なお、このダウンロード用のプロ グラムは予め本体装置に格納されて 、るものとする。  [0083] In any case, the stored program is preferably configured to be accessed and executed by a microprocessor. Further, it is preferable that the program is read out, and the read program is downloaded to the program storage area of the microcomputer and the program is executed. Note that this download program is stored in advance in the main unit.
[0084] また、上記プログラムメディアとしては、本体と分離可能に構成される記録媒体であ り、磁気テープやカセットテープ等のテープ系、フレキシブルディスクやハードデイス ク等の磁気ディスクや CDZMOZMDZDVD等のディスクのディスク系、 icカード( メモリカードを含む)等のカード系、あるいはマスク ROM、 EPROM (Erasable Progra mmable Read Only Memory)、 EEPROM (Electrically Erasable Programmable Read[0084] Further, the program medium is a recording medium configured to be separable from the main body, such as a tape system such as a magnetic tape or a cassette tape, a magnetic disk such as a flexible disk or a hard disk, or a disk such as a CDZMOZMDZDVD. Disk system, card system such as ic card (including memory card), mask ROM, EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read)
Only Memory )、フラッシュ ROM等による半導体メモリを含めた固定的にプログラム を担持する記録媒体等がある。 Only Memory) and recording media that carry a fixed program including semiconductor memory such as flash ROM.
[0085] また、インターネットを含む通信ネットワークを接続可能なシステム構成であれば、 通信ネットワーク力 プログラムをダウンロードするように流動的にプログラムを担持す る記録媒体であることが好まし 、。 [0085] Further, if the system configuration is capable of connecting a communication network including the Internet, the recording network is preferably a recording medium that fluidly carries the program so as to download the program.
[0086] さらに、このように通信ネットワーク力もプログラムをダウンロードする場合には、その ダウンロード用のプログラムは予め本体装置に格納しておくか、あるいは別な記録媒 体力 インストールされるものであることが好ましい。 [0086] Further, when the communication network capability is downloaded as described above, it is preferable that the download program is stored in the main device in advance or installed with another recording medium strength. .
[0087] 本発明は上述した実施形態に限定されるものではなぐ請求項に示した範囲で種 々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段 を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 産業上の利用の可能性 各階調に対応する階調電圧を表示素子に印加して画像を表示する表示装置にお いて、カラークロストークに起因して発生するエッジ (偽輪郭)などの表示の不具合を 解消することができる。 The present invention is not limited to the above-described embodiment, and various modifications can be made within the scope shown in the claims. That is, embodiments obtained by combining technical means appropriately modified within the scope of the claims are also included in the technical scope of the present invention. Industrial applicability In a display device that displays an image by applying a gradation voltage corresponding to each gradation to a display element, it is possible to eliminate display defects such as edges (false contours) caused by color crosstalk. .

Claims

請求の範囲 The scope of the claims
[1] 各階調に対応する階調電圧を表示素子に印加して画像を表示する表示装置の階 調電圧設定方法であって、  [1] A gradation voltage setting method for a display device for displaying an image by applying a gradation voltage corresponding to each gradation to a display element,
低階調領域の階調について階調電圧の差分を求めるステップと、求めた差分のう ち最大の差分に対応する最大差分階調の階調電圧を、補正前の 0階調の階調電圧 よりも小さくなるように各階調に対応する階調電圧を補正するステップとを含んでいる ことを特徴とする表示装置の階調電圧設定方法。  The step of obtaining the gradation voltage difference for the gradation of the low gradation region, and the gradation voltage of the maximum difference gradation corresponding to the maximum difference among the obtained differences are represented by the gradation voltage of 0 gradation before correction. And a step of correcting the gradation voltage corresponding to each gradation so as to be smaller than the gradation voltage setting method for a display device.
[2] 上記最大差分階調よりも 1つ大きい階調に対応する階調電圧を、補正前の 0階調 の階調電圧となるように各階調に対応する階調電圧を補正することを特徴とする請求 項 1に記載の表示装置の階調電圧設定方法。  [2] The gradation voltage corresponding to each gradation is corrected so that the gradation voltage corresponding to the gradation one larger than the maximum difference gradation becomes the gradation voltage of 0 gradation before correction. The gradation voltage setting method for a display device according to claim 1, wherein
[3] 上記表示装置が、階調電圧の差分が極値を持つようなラダー抵抗分割をもつソー スドライバによって駆動されることを特徴とする請求項 1又は 2に記載の表示装置の階 調電圧設定方法。 [3] The gradation of the display device according to claim 1 or 2, wherein the display device is driven by a source driver having a ladder resistance division in which a difference in gradation voltage has an extreme value. Voltage setting method.
[4] 各階調に対応する階調電圧を表示素子に印加して画像を表示する表示装置の駆 動方法であって、  [4] A driving method of a display device for displaying an image by applying a gradation voltage corresponding to each gradation to a display element,
請求項 1又は 2に記載の方法により表示装置の階調電圧を設定し、  A gradation voltage of the display device is set by the method according to claim 1 or 2,
6≤11< 111でぁる整数111、 nに対し、上記最大差分階調以下の表示データを取り出し て低階調削除データとし、当該低階調削除データを mビット化した後、当該 mビット化 したデータ力 nビット分のデジタル補正値を選択するステップをさらに含んでいるこ とを特徴とする表示装置の駆動方法。  For integers 111 and n where 6≤11 <111, display data below the maximum difference gradation is extracted as low gradation deletion data, the low gradation deletion data is converted to m bits, and then the corresponding m bits The display device driving method further comprising the step of selecting a digital correction value corresponding to the converted data force n bits.
[5] 6≤11< 111でぁる整数111、 nに対し、上記最大差分階調以下の表示データを除いて 低階調削除データとし、当該低階調削除データを mビット化した後、表示装置の隣り 合う画素が寄生容量を介して結合していることから生じるクロストークの問題を補正す るステップと、 [5] For integers 111 and n where 6≤11 <111, the display data below the maximum difference gray level is excluded, and the low gray level deletion data is converted to m bits. Correcting for crosstalk problems arising from adjacent pixels of the display device being coupled through parasitic capacitances;
クロストークの問題を補正する上記のステップによって処理された mビットデータのう ち、上位 nビットデータに下位 (m-n)ビットデータの情報を付カ卩して nビットデータと して出力するステップとをさらに備えていることを特徴とする請求項 4に記載の表示装 置の駆動方法。 Of the m- bit data processed by the above steps to correct the crosstalk problem, the upper n-bit data is appended with the lower (mn) bit data information and output as n-bit data. 5. The display device driving method according to claim 4, further comprising:.
[6] コンピュータに請求項 1に記載のステップを実行させるためのプログラム。 [6] A program for causing a computer to execute the steps according to claim 1.
[7] 各階調に対応する階調電圧を表示素子に印力!]して画像を表示する表示装置であ つて、 [7] A display device for displaying an image by applying a gradation voltage corresponding to each gradation to a display element!
低階調領域の階調について階調電圧の差分を求めて、求めた差分のうちの最大 の差分に対応する最大差分階調の階調電圧を、補正前の 0階調の階調電圧よりも小 さくなるように各階調に対応する階調電圧を補正する補正手段を備えていることを特 徴とする表示装置。  The gradation voltage difference is calculated for the gradation in the low gradation area, and the gradation voltage of the maximum difference gradation corresponding to the maximum difference among the obtained differences is calculated from the gradation voltage of the 0 gradation before correction. A display device comprising correction means for correcting a gradation voltage corresponding to each gradation so as to be smaller.
[8] 上記補正手段は、上記最大差分階調よりも 1つ大きい階調に対応する階調電圧が [8] The correction means has a gradation voltage corresponding to a gradation one larger than the maximum difference gradation.
、補正前の 0階調の階調電圧となるように各階調に対応する階調電圧を補正する構 成となっていることを特徴とする請求項 7に記載の表示装置。 8. The display device according to claim 7, wherein a gradation voltage corresponding to each gradation is corrected so as to be a gradation voltage of 0 gradation before correction.
[9] 階調電圧の差分が極値を持つようなラダー抵抗分割をもつソースドライバによって 駆動されることを特徴とする請求項 7又は 8に記載の表示装置。 9. The display device according to claim 7, wherein the display device is driven by a source driver having a ladder resistance division in which a difference in gradation voltage has an extreme value.
[10] 各階調に対応する階調電圧を表示素子に印力!]して画像を表示する表示装置であ つて、 [10] A display device that displays an image by applying a gradation voltage corresponding to each gradation to the display element!
低階調領域の階調について階調電圧の差分を求めて、求めた差分のうちの最大 の差分に対応する最大差分階調の階調電圧が、補正前の 0階調の階調電圧よりも小 さくなるように各階調に対応する階調電圧を補正するとともに、  The gradation voltage difference is calculated for the gradation in the low gradation area, and the gradation voltage of the maximum difference gradation corresponding to the maximum difference among the obtained differences is greater than the gradation voltage of the 0 gradation before correction. In addition to correcting the gradation voltage corresponding to each gradation so that the
6≤11< 111でぁる整数111、 nに対し、上記最大差分階調以下の表示データを取り出し て低階調削除データとし、当該低階調削除データを mビット化した後、当該 mビット化 したデータ力 nビット分のデジタル補正値を選択する補正手段を備えていることを特 徴とする表示装置。  For integers 111 and n where 6≤11 <111, display data below the maximum difference gradation is extracted as low gradation deletion data, the low gradation deletion data is converted to m bits, and then the corresponding m bits A display device characterized by comprising correction means for selecting a digital correction value corresponding to n-bit data power.
[11] 各階調に対応する階調電圧を表示素子に印力 tlして画像を表示する表示装置であ つて、  [11] A display device that displays an image by applying a gradation voltage corresponding to each gradation to the display element tl.
低階調領域の階調について階調電圧の差分を求めて、求めた差分のうちの最大 の差分に対応する最大差分階調の階調電圧が、補正前の 0階調の階調電圧よりも小 さくなるように各階調に対応する階調電圧を補正するとともに、上記最大差分階調よ りも 1つ大きい階調に対応する階調電圧が、補正前の 0階調の階調電圧となるように 各階調に対応する階調電圧を補正する補正手段を備えており、 上記補正手段は、 6≤11< 111でぁる整数111、 nに対し、上記最大差分階調以下の表 示データを取り出して低階調削除データとし、当該低階調削除データを mビットィ匕し た後、当該 mビットィ匕したデータ力 nビット分のデジタル補正値を選択する補正手段 を備えて!/ヽることを特徴とする表示装置。 The gradation voltage difference is calculated for the gradation in the low gradation area, and the gradation voltage of the maximum difference gradation corresponding to the maximum difference among the obtained differences is greater than the gradation voltage of the 0 gradation before correction. The gradation voltage corresponding to each gradation is corrected so that the gradation voltage becomes smaller, and the gradation voltage corresponding to the gradation one larger than the maximum difference gradation is the gradation voltage of the 0 gradation before correction. Correction means for correcting the gradation voltage corresponding to each gradation is provided, For the integers 111 and n where 6≤11 <111, the correction means takes out display data below the maximum difference gradation and uses it as low gradation deletion data. And a correction means for selecting a digital correction value corresponding to the m bits of data power n bits.
上記補正手段は、 6≤11< 111でぁる整数111、 nに対し、上記最大差分階調以下の表 示データを除いて低階調削除データとし、当該低階調削除データを mビットィ匕して m ビットデータとした後、表示装置の隣り合う画素が寄生容量を介して結合していること から生じるクロストークの問題を補正するとともに、  The correction means removes the display data below the maximum difference gradation for the integers 111 and n where 6≤11 <111, and uses the low gradation deletion data as mbits. After correcting for m-bit data, the problem of crosstalk caused by the adjacent pixels of the display device being coupled through a parasitic capacitance is corrected.
クロストークの問題を補正した上記 mビットデータのうち、上位 nビットデータに下位( m-n)ビットデータの情報を付加して nビットデータとして出力するように構成されて V、ることを特徴とする請求項 10又は 11に記載の表示装置。 Of the m- bit data corrected for the crosstalk problem, V is configured to add the information of the lower (mn) bit data to the upper n-bit data and output as n-bit data. The display device according to claim 10 or 11.
PCT/JP2006/302003 2005-02-09 2006-02-06 Display gradation voltage setting method, display driving method, program, and display WO2006085508A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-033653 2005-02-09
JP2005033653 2005-02-09

Publications (1)

Publication Number Publication Date
WO2006085508A1 true WO2006085508A1 (en) 2006-08-17

Family

ID=36793080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/302003 WO2006085508A1 (en) 2005-02-09 2006-02-06 Display gradation voltage setting method, display driving method, program, and display

Country Status (1)

Country Link
WO (1) WO2006085508A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998048317A1 (en) * 1997-04-18 1998-10-29 Seiko Epson Corporation Circuit and method for driving electrooptic device, electrooptic device, and electronic equipment made by using the same
JP2001100708A (en) * 1999-09-30 2001-04-13 Hitachi Ltd Liquid crystal display device
JP2001337667A (en) * 2000-03-24 2001-12-07 Sharp Corp Image processor and image display device with it

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998048317A1 (en) * 1997-04-18 1998-10-29 Seiko Epson Corporation Circuit and method for driving electrooptic device, electrooptic device, and electronic equipment made by using the same
JP2001100708A (en) * 1999-09-30 2001-04-13 Hitachi Ltd Liquid crystal display device
JP2001337667A (en) * 2000-03-24 2001-12-07 Sharp Corp Image processor and image display device with it

Similar Documents

Publication Publication Date Title
CN107369408B (en) Toning method, toning device, display driver and display system
JP5430068B2 (en) Display device
JP6309777B2 (en) Display device, display panel driver, and display panel driving method
JP3805150B2 (en) Liquid crystal display
US10380936B2 (en) Display device, display panel driver, image processing apparatus and image processing method
US7522127B2 (en) Driving method for driving a display device including display pixels, each of which includes a switching element and a pixel electrode, display device, and medium
JP2006506664A (en) Liquid crystal display device and driving method thereof
KR102510573B1 (en) Transparent display device and method for driving the same
JP6347957B2 (en) Display device, display panel driver, and display panel driving method
US10783841B2 (en) Liquid crystal display device and method for displaying image of the same
CN106847197B (en) Circuit device, electro-optical device, and electronic apparatus
US20120249619A1 (en) Display device
KR101295881B1 (en) Method of correcting preferred color and display apparatus using the same
KR101354272B1 (en) Liquid crystal display device and driving method thereof
CN111599322A (en) Liquid crystal display device and image signal correction method
TWI747557B (en) Apparatus for performing brightness enhancement in display module
US10373584B2 (en) Device and method for display color adjustment
JP2009265260A (en) Display method and display device
JP2001282190A (en) Liquid crystal display device, medium, and information assembly
US20100110115A1 (en) Frame Rate Control Method and Display Device Using the Same
WO2006085508A1 (en) Display gradation voltage setting method, display driving method, program, and display
KR20220012583A (en) Display Device and Vehicle Display Device using the same
KR100796485B1 (en) Method and Apparatus For Driving Liquid Crystal Display
JP2010091681A (en) Grayscale correction circuit and display device
KR100680908B1 (en) Source driver integrated circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06713146

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6713146

Country of ref document: EP