WO2006085405A1 - Method of quantitative determination of atomic hydrogen, apparatus therefor, method of adsorption removal of atomic hydrogen and apparatus therefor - Google Patents

Method of quantitative determination of atomic hydrogen, apparatus therefor, method of adsorption removal of atomic hydrogen and apparatus therefor Download PDF

Info

Publication number
WO2006085405A1
WO2006085405A1 PCT/JP2005/017266 JP2005017266W WO2006085405A1 WO 2006085405 A1 WO2006085405 A1 WO 2006085405A1 JP 2005017266 W JP2005017266 W JP 2005017266W WO 2006085405 A1 WO2006085405 A1 WO 2006085405A1
Authority
WO
WIPO (PCT)
Prior art keywords
atomic hydrogen
sensor
atomic
deuterium
hydrogen
Prior art date
Application number
PCT/JP2005/017266
Other languages
French (fr)
Japanese (ja)
Inventor
Akira Namiki
Akira Izumi
Hiroshi Tsurumaki
Original Assignee
National University Corporation Kyushu Insutituteof Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Kyushu Insutituteof Technology filed Critical National University Corporation Kyushu Insutituteof Technology
Priority to JP2007502544A priority Critical patent/JP4072627B2/en
Publication of WO2006085405A1 publication Critical patent/WO2006085405A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes

Definitions

  • Atomic hydrogen determination method and apparatus and atomic hydrogen adsorption and removal method and apparatus
  • the present invention mainly relates to a technique for quantitative determination of atomic hydrogen.
  • Non-Patent Document 1 Takashi Morimoto, Koji Yoneyama, Hironobu Umemoto, Satoshi Masuda, Eiji Matsumura, Keiji Ishibashi, Kashiyama Hiroshi, Hiroshi Kawade, Quantitative determination of H atom density using glass containing tungsten oxide, Spring 5th
  • Non-Patent Document 2 H. Umemoto, K. Ohara, D. Morita, Y. Nozaki, A. Masuda, and H. Mat sumura, Direct Detection of Atomic Hydrogen in the Catalytic Chemical Vapor Deposition of the SiH4 / H2 System, J. Appl. Phys., 91, 3, 1650, 2002.
  • Non-Patent Document 3 H. N. Waltenburug, J. T. Yates, Surface-chemistry ofsilicon, Chem. Reviews, 95, 5, 1589 (1995).
  • Non-Patent Document 4 S. Shimokawa, A. Namiki, T. Ando, Y. Sato, J. Lee, J. Chem. Phys., 1 12, 356 (2000).
  • the present invention has been made in view of the above problems, and has as its object to provide an atomic hydrogen quantification method and apparatus capable of easily and accurately quantifying atomic hydrogen. To do.
  • Another object of the present invention is to provide an atomic hydrogen adsorption / removal method and apparatus capable of removing atomic hydrogen.
  • the atomic hydrogen determination method according to the present invention comprises:
  • the measurement target gas is measured.
  • Atomic hydrogen quantification process for quantifying atomic hydrogen (D) in It is characterized by having.
  • the atomic hydrogen determination method according to the present invention includes:
  • the sensor material is irradiated with atomic deuterium (D) to prepare a sensor
  • the intensity correlation obtained by mass spectrometry between the atomic hydrogen (H) irradiation amount for the sensor and the atomic deuterium (D) amount remaining in the sensor previously obtained is determined. Based on this, the atomic hydrogen (D) in the gas to be measured is quantified.
  • the sensor material includes Ni, Cr, Al, Mn, Fe, Co, Be, W, V, Si, C, Nb, Ta, Cu, and Ti. It is an alloy composed of at least two or more kinds of metal members selected from the above.
  • the atomic hydrogen quantification method according to the present invention is characterized in that it is the alloy strength Nconel.
  • the atomic hydrogen quantification method according to the present invention is characterized in that mass spectrometry is performed using a quadrupole mass spectrometer during the intensity measurement step.
  • an atomic hydrogen quantification device includes a sensor chamber that houses a sensor substrate and a heating mechanism that heats the sensor substrate, and the sensor chamber that is provided in connection with the sensor chamber.
  • Atomic deuterium introduction part that introduces atomic deuterium so that the flow can be shut off
  • measurement target gas introduction part that introduces the gas to be measured into the sensor chamber so that the flow can be shut off
  • gas in the sensor chamber that can shut off the flow mass analysis It is characterized by comprising at least a sensor chamber gas lead-out section leading to the apparatus.
  • the atomic hydrogen quantification device includes an atomic deuterium generator connected to the atomic deuterium introduction unit, and a mass spectrometer connected to the sensor chamber gas outlet unit. It is further provided with the feature.
  • the atomic hydrogen quantification device is characterized in that the mass spectrometer is a quadrupole mass spectrometer.
  • the method for adsorbing and removing atomic hydrogen according to the present invention includes a desorption step of desorbing atomic hydrogen adsorbed on the material by heating a material capable of adsorbing and desorbing atomic hydrogen, An adsorption removal step of adsorbing and removing atomic hydrogen in the target gas by exposing the material to the target gas containing atomic hydrogen.
  • the material is Ni, Cr, Al, Mn, Fe, Co, Be, W, V, Si, C, Nb, Ta, Cu, and Ti.
  • the material is an alloy composed of at least two kinds of metals whose forces are also selected.
  • the atomic hydrogen adsorption / removal method according to the present invention is characterized by the alloy power Nconel.
  • the atomic hydrogen adsorption / removal device includes a material capable of adsorbing and desorbing atomic hydrogen and a heating mechanism for heating the material to desorb atomic hydrogen, and It is characterized in that the material in a state in which is desorbed is exposed to a target gas containing atomic hydrogen.
  • a sensor prepared under initial conditions is exposed to an atmosphere containing atomic hydrogen to desorb atomic deuterium and the like, and the atomic state in the atmosphere is determined based on the determination result of atomic deuterium and the like. Since hydrogen is quantified, atomic hydrogen in the atmosphere can be quantified easily and accurately.
  • atomic hydrogen in the target gas can be removed using a material that can significantly adsorb and desorb atomic hydrogen.
  • FIG. 1 is a diagram showing a schematic configuration of an atomic hydrogen quantification apparatus.
  • FIG. 2-1 A graph showing the relationship between the irradiation time of atomic hydrogen and the intensity of deuterium desorbed when Inconel is used for the sensor when atomic deuterium is irradiated to the sensor material. .
  • FIG. 2-2 A graph showing the relationship between the irradiation time of atomic hydrogen and the intensity of desorbed HD when Inconel is used for the sensor when atomic deuterium is irradiated to the sensor material.
  • FIG. 6 is a graph showing the relationship between the irradiation time of atomic hydrogen and the strength of deuterium desorbed when used in the above.
  • FIG. 3-2 A graph showing the relationship between the atomic hydrogen irradiation time and the desorption HD intensity when stainless steel is used for the sensor when atomic deuterium is irradiated to the sensor material.
  • 4-1 A graph showing the relationship between the irradiation time of atomic hydrogen and the strength of deuterium desorption when crystalline silicon is used as the sensor when atomic deuterium is irradiated to the sensor material.
  • FIG. 5-1 is a diagram showing the relationship between the irradiation time of atomic hydrogen and the intensity of deuterium desorbed when aluminum is used as a sensor when atomic deuterium is irradiated to the sensor material. .
  • FIG. 5-2 When irradiating the sensor material with atomic deuterium, it is a diagram showing the relationship between the irradiation time of atomic hydrogen and the desorption HD intensity when aluminum is used as the sensor. 6] A graph showing the relationship between deuterium intensity when thermal desorption is performed on Inconel with varying atomic deuterium irradiation time when atomic deuterium is irradiated onto the sensor material. is there.
  • the atomic hydrogen quantification method in the atomic hydrogen quantification method according to the present invention, after preparing the sensor material under the initial conditions (sensor preparation step), the sensor is exposed to a measurement target gas containing atomic hydrogen, in other words, the sensor is exposed to atomic hydrogen. Is irradiated (sensor exposure process), and the sensor is further heated (heating process) to desorb the hydrogen produced on the sensor. Next, the intensity of the desorbed hydrogen is measured by mass spectrometry (strength measurement process), and the correlation between the irradiation time of atomic hydrogen on the sensor material previously determined and the intensity by mass spectrometry of hydrogen desorbed from the sensor material Based on the above, the atomic hydrogen in the measurement target gas is quantified (atomic hydrogen quantification process).
  • a method for preparing the sensor material under the initial conditions a method of performing initial cleaning by removing hydrogen at a high temperature can be used.
  • the method is not limited to this as long as reproducibility can be ensured.
  • atomic deuterium (D) is irradiated to the sensor material to irradiate atomic deuterium (D). Capture (capture) deuterium termination.
  • deuterium (D) and deuterium generated by atomic hydrogen (D) are irradiated by irradiating the sensor with atomic hydrogen.
  • the atomic hydrogen determination step the correlation between the intensity of the atomic hydrogen (H) irradiation with respect to the sensor determined in advance and the amount of atomic deuterium (D) remaining on the sensor by mass spectrometry (deuterium Quantitative determination of atomic hydrogen (D) in the measurement target gas based on the calibration curve)
  • mass analysis is performed on a gas containing a desorbed component that is desorbed by the sensor force during irradiation of atomic hydrogen in the sensor exposure step, and then deuterium or heavy water is used. Measure the strength of the elemental compound (strength measurement step A).
  • a method of measuring the strength of deuterium or deuterium compounds by mass spectrometry of a gas containing a desorbed component that is directly desorbed from the sensor by an extraction reaction may be used (strength measurement step B).
  • 10 _4 P a ⁇ 10 _8 Pa about ultra-high vacuum conditions, at a temperature of room temperature to about 100 ° C Do.
  • it is performed under an ultrahigh vacuum condition of about 1 Pa to: L0 _8 Pa and under a temperature condition of about 269 to 100 ° C.
  • the strength measuring step A in ultra-high vacuum conditions of about 10 _4 P a ⁇ 10 _8 Pa, carried out at a temperature of about 100 to 500 ° C.
  • 10 _ 4 at P a to 10 _8 Pa about ultra-high vacuum conditions, carried out at a temperature of room temperature to about 100 ° C
  • the sensor material takes in a sufficient amount of atomic deuterium, particularly in the case of irradiation with atomic deuterium, and
  • the material type is not particularly limited as long as it generates a sufficient amount of extraction gas when irradiated with gaseous hydrogen.
  • an appropriate material such as crystalline silicon, stainless steel, or aluminum may be used. it can.
  • the above action is more From the viewpoint of effective expression, at least two kinds of metals selected from Ni, Cr, Al, Mn, Fe, Co, Be, W, V, Si, C, Nb, Ta, Cu and Ti are used. It is more preferable to use a configured alloy. As such an alloy, it is more preferable to use Inconel, and Invar, Northello and the like are also preferable.
  • mass spectrometry can be performed using an appropriate apparatus, but a quadrupole mass spectrometer is more preferable.
  • a sensor chamber (sensor) 14 and a heating mechanism 16 for heating the sensor substrate 14 are provided (accommodated) in the sensor chamber 12.
  • the heating mechanism 16 includes, for example, a heating plate that also serves as a mounting table for the sensor substrate 14 and a heat source that heats the heating plate.
  • the measurement target gas introduction unit 20 includes a valve mechanism such as a gate valve that connects the sensor chamber 12 and the outside so as to be able to shut off the flow.
  • a valve mechanism such as a gate valve that connects the sensor chamber 12 and the outside so as to be able to shut off the flow.
  • Each of the atomic deuterium introduction section 18 and the sensor chamber gas outlet section 22 is also provided with an appropriate blocking mechanism. If atomic deuterium is not used, the atomic deuterium introduction section 18 is not necessary.
  • the apparatus configured as described above can be used, for example, as a portable type, transported to a measurement place, and connected to an atomic deuterium generator, a measurement object gas, and a mass spectrometer, respectively.
  • the apparatus configured as described above can also be used as a portable atomic hydrogen removing apparatus (portable atomic hydrogen monitoring apparatus).
  • the measurement target gas introduction part (target gas introduction part) 20 is connected to an atmosphere containing atomic hydrogen to be removed.
  • the sensor chamber gas deriving unit 22 is unnecessary, and further, if the atomic deuterium is previously taken into the sensor substrate 14, the atomic deuterium introducing unit 18 is also unnecessary.
  • the atomic hydrogen quantification apparatus 10 includes an atomic deuterium generator 24 in the atomic deuterium introduction section 18 and a mass spectrometer 26 in the sensor chamber gas outlet section 22. Can also be connected to each other. When atomic deuterium is not used, the atomic deuterium introduction part 18 and the atomic deuterium generator 24 are not necessary.
  • Atomic deuterium generated from the atomic deuterium generator 24 is introduced into the sensor chamber 12, and the sensor substrate 14 is irradiated with atomic hydrogen.
  • the sensor substrate 14 is heated by the heating mechanism 16
  • an atmospheric gas containing atomic hydrogen to be removed is introduced into the sensor chamber 12.
  • the measurement target gas containing atomic deuterium or the atmosphere gas containing atomic hydrogen to be removed is generated, for example, in a thin film deposition apparatus, a dry etching apparatus, or the like.
  • atomic hydrogen generators and atomic hydrogen quantification apparatus 10 are connected via gas introduction unit 20 to be measured, and the gas containing atomic hydrogen from the atomic hydrogen generator enters sensor chamber 12. The introduced and heated sensor substrate 14 is exposed to this gas. Atomic hydrogen is consumed in the reaction with atomic deuterium.
  • the sensor substrate 14 irradiated with atomic hydrogen is heated by the heating mechanism 16 to a temperature higher than the temperature at the time of irradiation, and the intensity of deuterium or deuterium compound (HD) desorbed is mass analyzed.
  • the amount of atomic deuterium remaining in the sensor is calculated from the measurement with the device 26. Intensity correlation data obtained by mass spectrometry between the atomic hydrogen irradiation amount on the sensor substrate 14 and the atomic deuterium amount remaining on the sensor substrate 14 previously incorporated in the mass spectrometer 26. Based on this, atomic hydrogen is quantified.
  • Figure 2-1 shows that an alloy composed of Ni, Cr, Al, Mn, Fe, and Co (Inconel) is the sensor, and atomic hydrogen (H ) Shows the experimental results of the pull-out reaction.
  • atomic hydrogen H
  • Figures 2-1 to 51 show the relationship between the irradiation time of atomic hydrogen and the deuterium (D) intensity desorbed, respectively. is doing.
  • Figures 2-2 to 5-2 show the relationship between atomic hydrogen irradiation time and desorbed HD intensity.
  • Inconel takes in more atomic hydrogen, which has a stronger initial deuterium strength than other materials, and causes a reaction with atomic deuterium.
  • the deuterium intensity of the Incone decreases rapidly with respect to the atomic hydrogen irradiation time compared to other materials. This shows that the amount of atomic hydrogen can be determined more accurately by using Inconel.
  • the results also show that Inconel plays the most efficient role in removing atomic hydrogen.
  • Fig. 6 shows the relationship between the deuterium intensity when deuterium is heated and desorbed from Inconel with different atomic deuterium irradiation time after sufficient irradiation with deuterium atoms (atomic deuterium). Indicates.
  • the pressure when irradiating atomic deuterium (corresponding to the flux of atomic deuterium) is 0.5 X 10 _5 Pa.
  • the method for adsorbing and removing atomic hydrogen according to the present invention is an adsorbing and removing method in which atomic hydrogen in a target gas is adsorbed and removed by exposing a material capable of adsorbing and desorbing atomic hydrogen to the target gas containing atomic hydrogen. And a desorption step of desorbing atomic hydrogen adsorbed on the material.
  • the material capable of adsorbing and desorbing atomic hydrogen is not particularly limited as long as it exhibits the effects of the present invention.
  • an appropriate material such as crystalline silicon, stainless steel, aluminum or the like can be used. Can be used.
  • Ni ⁇ Cr ⁇ ⁇ ⁇ Al, Mn, Fe ⁇ Co, Be ⁇ W, V, Si ⁇ C, Nb ⁇ Ta ⁇ Cu and Ti It is more preferable to use an alloy composed of at least two kinds of metal chains selected from the above. Furthermore, it is more preferable to use Inconel as such an alloy.
  • the material is exposed to a target gas containing atomic hydrogen.
  • the atomic hydrogen in the target gas can be adsorbed and removed.
  • the material is heated to a temperature of 100 to 500 ° C. under atmospheric pressure or reduced pressure.
  • the sensor irradiated with atomic deuterium described in the explanation of the atomic hydrogen determination method can also be used.
  • atomic hydrogen adsorbed on the material can be removed, so that the same material can be used repeatedly.
  • the atomic hydrogen adsorption / removal device which can suitably implement the atomic hydrogen adsorption / removal method according to the present invention, heats a material capable of adsorbing and desorbing atomic hydrogen and the material. And a heating mechanism that desorbs atomic hydrogen, and the material in a state where atomic hydrogen is desorbed is exposed to a target gas containing atomic hydrogen. Note that the heating mechanism is not required depending on the method used by exchanging materials.
  • the apparatus shown in FIG. 1 described in the explanation of the atomic hydrogen quantification apparatus can be used.
  • an apparatus consisting only of a material and a heating mechanism may be used as it is in a target gas containing atomic hydrogen.
  • a device having only material power may be used as it is in a target gas containing atomic hydrogen.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

A method of quantitative determination of atomic hydrogen, in which the quantitative determination of atomic hydrogen can be carried out easily and accurately; an apparatus therefor; a method of removal of atomic hydrogen, in which any atomic hydrogen can be removed; and an apparatus therefor. There is provided apparatus (10) for quantitative determination of atomic hydrogen, comprising sensor chamber (12), sensor substrate (14), heating means (16), atomic deuterium emission unit (24) and mass spectrometer (26). The sensor substrate (14) is irradiated with atomic deuterium, and the sensor substrate (14) is exposed to a measuring object gas containing atomic hydrogen. The intensities of HD and deuterium desorbed from the sensor substrate (14) are measured, from which the amount of atomic deuterium remaining on the sensor substrate (14) is computed. On the basis of an intensity correlationship by mass spectrometry between the in-advance determined atomic hydrogen irradiation amount to the sensor substrate (14) and amount of atomic deuterium remaining on the sensor substrate (14), there is accomplished the quantitative determination of atomic hydrogen in the measuring object gas.

Description

明 細 書  Specification
原子状水素定量方法およびその装置ならびに原子状水素吸着除去方法 およびその装置  Atomic hydrogen determination method and apparatus, and atomic hydrogen adsorption and removal method and apparatus
技術分野  Technical field
[0001] 本発明は、主に原子状水素の定量技術に関する。  [0001] The present invention mainly relates to a technique for quantitative determination of atomic hydrogen.
背景技術  Background art
[0002] 近年、半導体産業を中心に原子状水素を利用した基板の表面洗浄技術が注目を 浴びている。また、薄膜堆積過程において、原料材料から発生する原子状水素が半 導体デバイスの性能を決定することが明らかにされている。そのため、原子状水素の 発生量を定量する技術および原子状水素の量を制御するための原子状水素を除去 する技術が求められている。  [0002] In recent years, substrate surface cleaning technology using atomic hydrogen has attracted attention mainly in the semiconductor industry. It has also been clarified that atomic hydrogen generated from raw materials determines the performance of semiconductor devices during thin film deposition. Therefore, there is a need for a technique for quantifying the amount of atomic hydrogen generated and a technique for removing atomic hydrogen to control the amount of atomic hydrogen.
[0003] 原子状水素の定量を行う、古くから知られている簡便な方法として、特殊な硝子に 原子状水素を照射し、ガラスが着色することを利用して、原子状水素の量を測る方法 力 Sある(例えば非特許文献 1参照。;)。し力しながら、この方法では、正確な原子状水 素の量を測ることは困難である。 [0003] As a simple method that has been known for a long time for quantitative determination of atomic hydrogen, a special glass is irradiated with atomic hydrogen and the amount of atomic hydrogen is measured by the fact that the glass is colored. There is a method force S (see Non-Patent Document 1, for example). However, with this method, it is difficult to accurately measure the amount of atomic hydrogen.
一方、原子状水素量を正しく測定する方法として、 2光子レーザー誘起蛍光法や真 空紫外吸収法がある(例えば非特許文献 2参照。 )0し力しながら、これらの方法は、 いずれも大型のレーザー装置が必要となるため、装置構成が複雑になり、また装置コ ストが嵩んでしまうなどの問題がある。 On the other hand, as a method for accurately measuring the atomic hydrogen amount, there is a 2-photon laser induced fluorescence or vacuum ultraviolet absorption method (for example, Non-Patent Document 2 referred to.) With 0 tooth force, these methods are all large Therefore, there is a problem that the apparatus configuration becomes complicated and the apparatus cost increases.
また、原子状水素による結晶シリコン上の原子状重水素 (D)の引き抜き反応を利用 した定量法がある。この方法は、原子状重水素を用いることによって、ノ ックグラウン ドに存在している水素と区別できるため、比較的正しく原子状水素量を測定できるこ とを特徴としている。(例えば非特許文献 3、非特許文献 4参照。 )0しかしながら、こ の場合、結晶シリコンを超高真空中で洗浄しなくてはならないなど、取り扱いが困難 である。また、定量の再現性が非常に悪ぐ一部の科学的研究目的のみで用いられ ている。 There is also a quantitative method using the atomic hydrogen extraction (D) on crystalline silicon by atomic hydrogen. This method is characterized by the ability to measure the amount of atomic hydrogen relatively correctly because it can be distinguished from the hydrogen present in the knock ground by using atomic deuterium. (For example, see Non-Patent Document 3 and Non-Patent Document 4.) 0 However, in this case, it is difficult to handle such as crystalline silicon must be cleaned in an ultra-high vacuum. It is also used only for some scientific research purposes where quantitative reproducibility is very poor.
非特許文献 1 :森本隆志,米山浩司,梅本宏信,増田淳,松村英榭,石橋啓次,俵山 博匡,川副博司,酸ィ匕タングステン含有ガラスを用いた H原子密度の定量,春季第 5Non-Patent Document 1: Takashi Morimoto, Koji Yoneyama, Hironobu Umemoto, Satoshi Masuda, Eiji Matsumura, Keiji Ishibashi, Kashiyama Hiroshi, Hiroshi Kawade, Quantitative determination of H atom density using glass containing tungsten oxide, Spring 5th
1回応用物理学関係連合講演会、(東京)、 28P-ZE-1、 2004年 3月 1st Conference on Applied Physics (Tokyo), 28P-ZE-1, March 2004
非特許文献 2 : H. Umemoto, K. Ohara, D. Morita, Y. Nozaki, A. Masuda, andH. Mat sumura, Direct Detection of Atomic Hydrogen in the Catalytic ChemicalVapor Depo sition of the SiH4/H2 System, J. Appl. Phys.,91, 3, 1650, 2002.  Non-Patent Document 2: H. Umemoto, K. Ohara, D. Morita, Y. Nozaki, A. Masuda, and H. Mat sumura, Direct Detection of Atomic Hydrogen in the Catalytic Chemical Vapor Deposition of the SiH4 / H2 System, J. Appl. Phys., 91, 3, 1650, 2002.
非特許文献 3 : H. N. Waltenburug, J. T. Yates, Surface-chemistry ofsilicon, Chem. R eviews, 95, 5, 1589 (1995).  Non-Patent Document 3: H. N. Waltenburug, J. T. Yates, Surface-chemistry ofsilicon, Chem. Reviews, 95, 5, 1589 (1995).
非特許文献 4 : S. Shimokawa, A. Namiki, T. Ando, Y. Sato, J. Lee, J. Chem.Phys., 1 12, 356 (2000).  Non-Patent Document 4: S. Shimokawa, A. Namiki, T. Ando, Y. Sato, J. Lee, J. Chem. Phys., 1 12, 356 (2000).
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 解決しょうとする問題点は、原子状水素の定量を簡便かつ正確に行う方法がない 点と、原子状水素を除去する方法がない点である。 [0004] The problem to be solved is that there is no simple and accurate method for quantitative determination of atomic hydrogen and no method for removing atomic hydrogen.
[0005] 本発明は、上記の課題に鑑みてなされたものであり、原子状水素の定量を簡便か つ正確に行うことができる原子状水素定量方法およびその装置を提供することを目 的とする。 [0005] The present invention has been made in view of the above problems, and has as its object to provide an atomic hydrogen quantification method and apparatus capable of easily and accurately quantifying atomic hydrogen. To do.
また、本発明は、原子状水素を除去することができる原子状水素吸着除去方法お よびその装置を提供することを目的とする。  Another object of the present invention is to provide an atomic hydrogen adsorption / removal method and apparatus capable of removing atomic hydrogen.
課題を解決するための手段  Means for solving the problem
[0006] 本発明に係る原子状水素定量方法は、 [0006] The atomic hydrogen determination method according to the present invention comprises:
センサー材料を初期条件に調製するセンサー調製工程と、  A sensor preparation process for preparing the sensor material under initial conditions;
該センサーを、原子状水素 (H)を含む測定対象ガスに曝露するセンサー曝露ェ 程と、  A sensor exposure step for exposing the sensor to a gas to be measured containing atomic hydrogen (H);
該センサーを加熱する工程と、  Heating the sensor;
該センサーから脱離する水素 (H )の強度を測定する強度測定工程と、  An intensity measuring step for measuring the intensity of hydrogen (H) desorbed from the sensor;
2  2
予め求めておいた該センサーに対する原子状水素 (H)の照射時間と該センサー から脱離する水素 (H )の質量分析による強度の相関関係に基づいて、測定対象ガ  Based on the correlation between the irradiation time of atomic hydrogen (H) on the sensor and the intensity of hydrogen (H) desorbed from the sensor by mass spectrometry, the measurement target gas is measured.
2  2
ス中の原子状水素 (D)を定量する原子状水素定量工程と、 を有することを特徴とする。 Atomic hydrogen quantification process for quantifying atomic hydrogen (D) in It is characterized by having.
[0007] また、本発明に係る原子状水素定量方法は、  [0007] Further, the atomic hydrogen determination method according to the present invention includes:
前記センサー調製工程にぉ 、て、原子状重水素 (D)をセンサー材料に照射してセ ンサーを調製し、  During the sensor preparation step, the sensor material is irradiated with atomic deuterium (D) to prepare a sensor,
前記強度測定工程において、該センサーから脱離する HDおよび重水素(D )の強  In the intensity measurement step, the strength of HD and deuterium (D) desorbed from the sensor
2 度を測定して、これよりセンサーに残存する原子状重水素 (D)量を算出し、  Measure twice and use this to calculate the amount of atomic deuterium (D) remaining in the sensor,
前記原子状水素定量工程において、予め求めておいた該センサーに対する原子 状水素 (H)照射量と該センサーに残存する原子状重水素 (D)量との質量分析によ る強度の相関関係に基づいて、測定対象ガス中の原子状水素 (D)を定量することを 特徴とする。  In the atomic hydrogen determination step, the intensity correlation obtained by mass spectrometry between the atomic hydrogen (H) irradiation amount for the sensor and the atomic deuterium (D) amount remaining in the sensor previously obtained is determined. Based on this, the atomic hydrogen (D) in the gas to be measured is quantified.
[0008] また、本発明に係る原子状水素定量方法は、前記センサー材料が Ni、 Cr、 Al、 M n、 Fe、 Co、 Be、 W、 V、 Si、 C、 Nb、 Ta、 Cuおよび Tiのうちから選ばれる少なくとも 2種類以上の金属カゝら構成される合金であることを特徴とする。  [0008] Further, in the atomic hydrogen determination method according to the present invention, the sensor material includes Ni, Cr, Al, Mn, Fe, Co, Be, W, V, Si, C, Nb, Ta, Cu, and Ti. It is an alloy composed of at least two or more kinds of metal members selected from the above.
[0009] また、本発明に係る原子状水素定量方法は、前記合金力 ンコネルであることを特 徴とする。  [0009] Further, the atomic hydrogen quantification method according to the present invention is characterized in that it is the alloy strength Nconel.
[0010] また、本発明に係る原子状水素定量方法は、前記強度測定工程にぉ 、て、四重極 質量分析装置を用いて質量分析することを特徴とする。  [0010] Further, the atomic hydrogen quantification method according to the present invention is characterized in that mass spectrometry is performed using a quadrupole mass spectrometer during the intensity measurement step.
[0011] また、本発明に係る原子状水素定量装置は、センサー基板と該センサー基板をカロ 熱する加熱機構とを収容するセンサー室と、該センサー室に接続して設けられる、該 センサー室に原子状重水素を流通遮断可能に導入する原子状重水素導入部、測定 対象ガスを該センサー室に流通遮断可能に導入する測定対象ガス導入部および該 センサー室のガスを流通遮断可能に質量分析装置に導出するセンサー室ガス導出 部を、少なくとも備えることを特徴とする。  [0011] Further, an atomic hydrogen quantification device according to the present invention includes a sensor chamber that houses a sensor substrate and a heating mechanism that heats the sensor substrate, and the sensor chamber that is provided in connection with the sensor chamber. Atomic deuterium introduction part that introduces atomic deuterium so that the flow can be shut off, measurement target gas introduction part that introduces the gas to be measured into the sensor chamber so that the flow can be shut off, and gas in the sensor chamber that can shut off the flow mass analysis It is characterized by comprising at least a sensor chamber gas lead-out section leading to the apparatus.
[0012] また、本発明に係る原子状水素定量装置は、前記原子状重水素導入部に接続さ れる原子状重水素発生装置と、前記センサー室ガス導出部に接続される質量分析 装置とをさらに備えることを特徴とする。  [0012] In addition, the atomic hydrogen quantification device according to the present invention includes an atomic deuterium generator connected to the atomic deuterium introduction unit, and a mass spectrometer connected to the sensor chamber gas outlet unit. It is further provided with the feature.
[0013] また、本発明に係る原子状水素定量装置は、前記質量分析装置が四重極質量分 析装置であることを特徴とする。 [0014] また、本発明に係る原子状水素吸着除去方法は、原子状水素を吸脱着可能な材 料を加熱することにより該材料に吸着した原子状水素を脱離させる脱離工程と、該材 料を原子状水素を含む対象ガス中に暴露することにより対象ガス中の原子状水素を 吸着除去する吸着除去工程とを含むことを特徴とする。 [0013] In addition, the atomic hydrogen quantification device according to the present invention is characterized in that the mass spectrometer is a quadrupole mass spectrometer. [0014] In addition, the method for adsorbing and removing atomic hydrogen according to the present invention includes a desorption step of desorbing atomic hydrogen adsorbed on the material by heating a material capable of adsorbing and desorbing atomic hydrogen, An adsorption removal step of adsorbing and removing atomic hydrogen in the target gas by exposing the material to the target gas containing atomic hydrogen.
[0015] また、本発明に係る原子状水素吸着除去方法は、前記材料が Ni、 Cr、 Al、 Mn、 F e、 Co、 Be、 W、 V、 Si、 C、 Nb、 Ta、 Cuおよび Tiのうち力も選ばれる少なくとも 2種 類以上の金属から構成される合金であることを特徴とする。  [0015] Further, in the atomic hydrogen adsorption and removal method according to the present invention, the material is Ni, Cr, Al, Mn, Fe, Co, Be, W, V, Si, C, Nb, Ta, Cu, and Ti. Among these, it is an alloy composed of at least two kinds of metals whose forces are also selected.
[0016] また、本発明に係る原子状水素吸着除去方法は、前記合金力 ンコネルであること を特徴とする。  [0016] Further, the atomic hydrogen adsorption / removal method according to the present invention is characterized by the alloy power Nconel.
[0017] また、本発明に係る原子状水素吸着除去装置は、原子状水素を吸脱着可能な材 料と該材料を加熱して原子状水素を脱離する加熱機構とを備え、原子状水素を脱離 した状態の該材料を原子状水素を含む対象ガス中に暴露して用いることを特徴とす る。  [0017] The atomic hydrogen adsorption / removal device according to the present invention includes a material capable of adsorbing and desorbing atomic hydrogen and a heating mechanism for heating the material to desorb atomic hydrogen, and It is characterized in that the material in a state in which is desorbed is exposed to a target gas containing atomic hydrogen.
発明の効果  The invention's effect
[0018] 本発明では、初期条件に調製したセンサーを原子状水素を含む雰囲気に曝露して 原子状重水素等を脱離させ、原子状重水素等の定量結果に基づいて雰囲気中の 原子状水素の定量を行うので、雰囲気中の原子状水素の定量を簡便かつ正確に行 うことができる。  [0018] In the present invention, a sensor prepared under initial conditions is exposed to an atmosphere containing atomic hydrogen to desorb atomic deuterium and the like, and the atomic state in the atmosphere is determined based on the determination result of atomic deuterium and the like. Since hydrogen is quantified, atomic hydrogen in the atmosphere can be quantified easily and accurately.
また、原子状水素を顕著に吸脱着可能な材料を利用して対象ガス中の原子状水 素を除去することができる。  In addition, atomic hydrogen in the target gas can be removed using a material that can significantly adsorb and desorb atomic hydrogen.
図面の簡単な説明  Brief Description of Drawings
[0019] [図 1]原子状水素定量装置の概略構成を示す図である。 FIG. 1 is a diagram showing a schematic configuration of an atomic hydrogen quantification apparatus.
[図 2-1]原子状重水素をセンサー材料に照射する場合お 、て、インコネルをセンサー に用いたときの原子状水素の照射時間と脱離する重水素強度の関係を示す図であ る。  [Fig. 2-1] A graph showing the relationship between the irradiation time of atomic hydrogen and the intensity of deuterium desorbed when Inconel is used for the sensor when atomic deuterium is irradiated to the sensor material. .
[図 2-2]原子状重水素をセンサー材料に照射する場合お 、て、インコネルをセンサー に用いたときの原子状水素の照射時間と脱離する HD強度の関係を示す図である。  [Fig. 2-2] A graph showing the relationship between the irradiation time of atomic hydrogen and the intensity of desorbed HD when Inconel is used for the sensor when atomic deuterium is irradiated to the sensor material.
[図 3-1]原子状重水素をセンサー材料に照射する場合お 、て、ステンレスをセンサー に用いたときの原子状水素の照射時間と脱離する重水素強度の関係を示す図であ る。 [Fig.3-1] When irradiating sensor material with atomic deuterium, stainless steel FIG. 6 is a graph showing the relationship between the irradiation time of atomic hydrogen and the strength of deuterium desorbed when used in the above.
[図 3-2]原子状重水素をセンサー材料に照射する場合お 、て、ステンレスをセンサー に用いたときの原子状水素の照射時間と脱離する HD強度の関係を示す図である。 圆 4-1]原子状重水素をセンサー材料に照射する場合おいて、結晶シリコンをセンサ 一に用いたときの原子状水素の照射時間と脱離する重水素強度の関係を示す図で ある。  [Fig. 3-2] A graph showing the relationship between the atomic hydrogen irradiation time and the desorption HD intensity when stainless steel is used for the sensor when atomic deuterium is irradiated to the sensor material. [4] 4-1] A graph showing the relationship between the irradiation time of atomic hydrogen and the strength of deuterium desorption when crystalline silicon is used as the sensor when atomic deuterium is irradiated to the sensor material.
圆 4-2]原子状重水素をセンサー材料に照射する場合おいて、結晶シリコンをセンサ 一に用いたときの原子状水素の照射時間と脱離する HD強度の関係を示す図である 圆 4-2] When irradiating sensor material with atomic deuterium, it is a diagram showing the relationship between the irradiation time of atomic hydrogen and the desorption HD intensity when crystalline silicon is used as the sensor.
[図 5-1]原子状重水素をセンサー材料に照射する場合お 、て、アルミニウムをセンサ 一に用いたときの原子状水素の照射時間と脱離する重水素強度の関係を示す図で ある。 FIG. 5-1 is a diagram showing the relationship between the irradiation time of atomic hydrogen and the intensity of deuterium desorbed when aluminum is used as a sensor when atomic deuterium is irradiated to the sensor material. .
[図 5-2]原子状重水素をセンサー材料に照射する場合お 、て、アルミニウムをセンサ 一に用いたときの原子状水素の照射時間と脱離する HD強度の関係を示す図である 圆 6]原子状重水素をセンサー材料に照射する場合お 、て、原子状重水素の照射 時間を変化させたインコネルに対して昇温脱離させたときの重水素強度の関係を示 す図である。  [Fig. 5-2] When irradiating the sensor material with atomic deuterium, it is a diagram showing the relationship between the irradiation time of atomic hydrogen and the desorption HD intensity when aluminum is used as the sensor. 6] A graph showing the relationship between deuterium intensity when thermal desorption is performed on Inconel with varying atomic deuterium irradiation time when atomic deuterium is irradiated onto the sensor material. is there.
符号の説明 Explanation of symbols
10 原子状水素定量装置  10 Atomic hydrogen determination system
12 センサー室  12 Sensor room
14 センサー基板  14 Sensor board
16 加熱機構  16 Heating mechanism
18 原子状重水素導入部  18 Atomic deuterium inlet
20 測定対象ガス導入部  20 Measurement target gas introduction part
22 センサー室ガス導出部  22 Sensor room gas outlet
24 原子状重水素発生装置 26 質量分析装置 24 Atomic deuterium generator 26 Mass spectrometer
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0021] 本発明の好適な実施の形態について、図を参照して、以下に説明する。 A preferred embodiment of the present invention will be described below with reference to the drawings.
[0022] まず、本発明に係る原子状水素定量方法につ!、て説明する。 [0022] First, the atomic hydrogen determination method according to the present invention will be described.
本発明に係る原子状水素定量方法では、センサー材料を初期条件に調製した後( センサー調製工程)、センサーを、原子状水素を含む測定対象ガスに曝露、言い換 えれば、センサーに原子状水素を照射し (センサー曝露工程)、さらにセンサーを加 熱することで (加熱工程)センサー上に生成する水素を脱離する。ついで、脱離した 水素の強度を質量分析により測定し (強度測定工程)、予め求めておいたセンサー 材料に対する原子状水素の照射時間とセンサー材料から脱離する水素の質量分析 による強度の相関関係に基づいて、測定対象ガス中の原子状水素を定量する (原子 状水素定量工程)。  In the atomic hydrogen quantification method according to the present invention, after preparing the sensor material under the initial conditions (sensor preparation step), the sensor is exposed to a measurement target gas containing atomic hydrogen, in other words, the sensor is exposed to atomic hydrogen. Is irradiated (sensor exposure process), and the sensor is further heated (heating process) to desorb the hydrogen produced on the sensor. Next, the intensity of the desorbed hydrogen is measured by mass spectrometry (strength measurement process), and the correlation between the irradiation time of atomic hydrogen on the sensor material previously determined and the intensity by mass spectrometry of hydrogen desorbed from the sensor material Based on the above, the atomic hydrogen in the measurement target gas is quantified (atomic hydrogen quantification process).
ここで、センサー材料を初期条件に調製する方法として、昇温水素除去による初期 クリーニングを行う方法を用いることができるが、再現性を確保できる限り、これに限 定するものではない。  Here, as a method for preparing the sensor material under the initial conditions, a method of performing initial cleaning by removing hydrogen at a high temperature can be used. However, the method is not limited to this as long as reproducibility can be ensured.
[0023] また、本発明に係る原子状水素定量方法では、より好ましくは、センサー調製工程 にお 、て、原子状重水素 (D)をセンサー材料に照射して原子状重水素 (D)を取り込 んで (捕獲して)重水素終端ィ匕する。これにより、センサー曝露工程において、センサ 一に原子状水素を照射することで、原子状水素 (D)による重水素 (D )および重水素  [0023] Further, in the atomic hydrogen quantification method according to the present invention, more preferably, in the sensor preparation step, atomic deuterium (D) is irradiated to the sensor material to irradiate atomic deuterium (D). Capture (capture) deuterium termination. As a result, in the sensor exposure process, deuterium (D) and deuterium generated by atomic hydrogen (D) are irradiated by irradiating the sensor with atomic hydrogen.
2  2
化合物 (HD)の引き抜き反応が起こる。ついで、センサーを加熱した後 (加熱工程)、 強度測定工程にぉ 、て、センサーから脱離する重水素化合物 (HD)および重水素( D )強度を測定して、これよりセンサーに残存する原子状重水素 (D)量を算出する。  An extraction reaction of compound (HD) occurs. Next, after heating the sensor (heating process), the intensity measurement process is performed to measure the deuterium compound (HD) and deuterium (D) intensity desorbed from the sensor, and from this, the atoms remaining in the sensor are measured. Calculate the amount of deuterium (D).
2  2
ついで、原子状水素定量工程において、予め求めておいたセンサーに対する原子 状水素 (H)照射量とセンサーに残存する原子状重水素 (D)量との質量分析による 強度の相関関係(重水素を含む分子の量力 キャリブレーションカーブ)に基づいて 、測定対象ガス中の原子状水素 (D)を定量する  Next, in the atomic hydrogen determination step, the correlation between the intensity of the atomic hydrogen (H) irradiation with respect to the sensor determined in advance and the amount of atomic deuterium (D) remaining on the sensor by mass spectrometry (deuterium Quantitative determination of atomic hydrogen (D) in the measurement target gas based on the calibration curve)
上記原子状重水素を照射する方法では、センサー曝露工程で原子状水素を照射 中にセンサー力 脱離される脱離成分を含むガスを質量分析して重水素または重水 素化合物の強度を測定する (強度測定工程 A)。また、引き抜き反応によって直接セ ンサ一から脱離される脱離成分を含むガスを質量分析して重水素または重水素化合 物の強度を測定する方法を利用しても良い (強度測定工程 B)。 In the method of irradiating atomic deuterium, mass analysis is performed on a gas containing a desorbed component that is desorbed by the sensor force during irradiation of atomic hydrogen in the sensor exposure step, and then deuterium or heavy water is used. Measure the strength of the elemental compound (strength measurement step A). In addition, a method of measuring the strength of deuterium or deuterium compounds by mass spectrometry of a gas containing a desorbed component that is directly desorbed from the sensor by an extraction reaction may be used (strength measurement step B).
従来技術として説明した、原子状水素による結晶シリコン上の原子状重水素の引き 抜き反応を利用した定量法の場合、結晶シリコンを超高真空中で洗浄しなくてはなら ないなど、取り扱いが困難である。また、定量の再現性が非常に悪い。これに対して 、本発明によれば、原子状重水素を多量照射したセンサーを用いることで、多量の引 き抜きガスが得られるため、高度の洗浄を試料に施す等の煩雑な取り扱いを要するこ となぐ高い精度で原子状水素を定量することができる。なお、この方法によれば、原 子状重水素の定量も行える。  In the case of the quantitative method using the extraction reaction of atomic deuterium on crystalline silicon by atomic hydrogen as described in the prior art, it is difficult to handle because crystalline silicon must be washed in an ultra-high vacuum. It is. Also, quantitative reproducibility is very poor. On the other hand, according to the present invention, since a large amount of drawn gas can be obtained by using a sensor irradiated with a large amount of atomic deuterium, complicated handling such as applying a high degree of cleaning to the sample is required. Atomic hydrogen can be quantified with much higher accuracy. According to this method, atomic deuterium can also be quantified.
[0024] 以上説明した各操作は、原子状重水素を照射しない場合は、例えば、センサー調 製工程では、 10_8Pa以下程度の超高真空条件下で、 50°C以下程度の温度条件下 で行う。センサー曝露工程では、 10_8Pa以下程度の超高真空条件下で、 20〜500 °C程度の温度条件下で行う。強度測定工程では、 10_8Pa以下程度の超高真空条 件下で行う。強度測定工程 Bでは、 10_8Pa以下程度の超高真空条件下で、 20-50 0°C程度の温度条件下で行う。 [0024] In the operations described above, when atomic deuterium is not irradiated, for example, in the sensor preparation process, under an ultrahigh vacuum condition of about 10 _8 Pa or less and a temperature condition of about 50 ° C or less. To do. The sensor exposure process is performed under an ultrahigh vacuum condition of about 10 _8 Pa or less and a temperature condition of about 20 to 500 ° C. The strength measurement process is performed under ultra-high vacuum conditions of about 10 _8 Pa or less. In the strength measurement process B, it is performed under an ultra-high vacuum condition of about 10 _8 Pa or less and a temperature condition of about 20-500 ° C.
これに対して、原子状重水素を照射する場合は、例えば、センサー調製工程では、 10_4Pa〜10_8Pa程度の超高真空条件下で、室温〜 100°C程度の温度条件下で 行う。センサー曝露工程では、 lPa〜: L0_8Pa程度の超高真空条件下で、 269〜1 00°C程度の温度条件下で行う。強度測定工程 Aでは、 10_4Pa〜10_8Pa程度の超 高真空条件下で、 100〜500°C程度の温度条件下で行う。強度測定工程 Bでは、 10 _4Pa〜10_8Pa程度の超高真空条件下で、室温〜 100°C程度の温度条件下で行う In contrast, when irradiating the atomic deuterium, for example, in the sensor preparing step, 10 _4 P a ~10 _8 Pa about ultra-high vacuum conditions, at a temperature of room temperature to about 100 ° C Do. In the sensor exposure process, it is performed under an ultrahigh vacuum condition of about 1 Pa to: L0 _8 Pa and under a temperature condition of about 269 to 100 ° C. In the strength measuring step A, in ultra-high vacuum conditions of about 10 _4 P a ~10 _8 Pa, carried out at a temperature of about 100 to 500 ° C. In the strength measuring step B, 10 _ 4 at P a to 10 _8 Pa about ultra-high vacuum conditions, carried out at a temperature of room temperature to about 100 ° C
[0025] 本発明において、センサー材料は、原子状水素の定量を満足する限り、特に原子 状重水素を照射する場合においてはセンサー材料が十分な量の原子状重水素を取 り込み、かつ原子状水素を照射したときに十分な量の引き抜きガスを生成するもので ある限り、材料の種類を特に限定するものではなぐ例えば、結晶性シリコン、ステン レス、アルミニウム等の適宜の材料を用いることができる。ただし、上記の作用をより 効果的に発現する観点からは、 Ni、 Cr、 Al、 Mn、 Fe、 Co、 Be、 W、 V、 Si、 C、 Nb、 Ta、 Cuおよび Tiのうちから選ばれる少なくとも 2種類以上の金属から構成される合金 を用いることがより好ましい。このような合金としてはインコネルを用いることがより好ま しぐまた、インバーやノヽステロィ等も好適である。 In the present invention, as long as the sensor material satisfies the determination of atomic hydrogen, the sensor material takes in a sufficient amount of atomic deuterium, particularly in the case of irradiation with atomic deuterium, and The material type is not particularly limited as long as it generates a sufficient amount of extraction gas when irradiated with gaseous hydrogen. For example, an appropriate material such as crystalline silicon, stainless steel, or aluminum may be used. it can. However, the above action is more From the viewpoint of effective expression, at least two kinds of metals selected from Ni, Cr, Al, Mn, Fe, Co, Be, W, V, Si, C, Nb, Ta, Cu and Ti are used. It is more preferable to use a configured alloy. As such an alloy, it is more preferable to use Inconel, and Invar, Northello and the like are also preferable.
[0026] また、本発明において、質量分析は、適宜の装置を用いて行うことができるが、四 重極質量分析装置を用いると、より好ましい。  [0026] In the present invention, mass spectrometry can be performed using an appropriate apparatus, but a quadrupole mass spectrometer is more preferable.
[0027] 上記本発明に係る原子状水素定量方法を好適に実現することができる、本発明に 係る原子状水素定量装置について、図 1を参照して説明する。  [0027] An atomic hydrogen quantification apparatus according to the present invention that can suitably realize the atomic hydrogen quantification method according to the present invention will be described with reference to FIG.
[0028] 図 1に示す原子状水素定量装置 (原子状水素モニター装置) 10は、センサー室 12 にセンサー基板 (センサー) 14とセンサー基板 14を加熱する加熱機構 16が設けられ る(収容される。 ) o加熱機構 16は、例えば、センサー基板 14の載置台を兼ねる加熱 プレートと加熱プレートを加熱する熱源とで構成される。  In the atomic hydrogen determination device (atomic hydrogen monitoring device) 10 shown in FIG. 1, a sensor chamber (sensor) 14 and a heating mechanism 16 for heating the sensor substrate 14 are provided (accommodated) in the sensor chamber 12. O) The heating mechanism 16 includes, for example, a heating plate that also serves as a mounting table for the sensor substrate 14 and a heat source that heats the heating plate.
センサー室 12に接続して、原子状重水素導入部 18、測定対象ガス導入部 20およ びセンサー室ガス導出部 22が設けられる。測定対象ガス導入部 20は、センサー室 1 2と外部とを流通遮断可能に接続する、例えばゲートバルブ等のバルブ機構を備え る。また、原子状重水素導入部 18およびセンサー室ガス導出部 22にも、それぞれ、 適宜の遮断機構を備える。なお、原子状重水素を使用しない場合は、原子状重水素 導入部 18は不要である。  Connected to the sensor chamber 12, an atomic deuterium introduction section 18, a measurement target gas introduction section 20, and a sensor chamber gas outlet section 22 are provided. The measurement target gas introduction unit 20 includes a valve mechanism such as a gate valve that connects the sensor chamber 12 and the outside so as to be able to shut off the flow. Each of the atomic deuterium introduction section 18 and the sensor chamber gas outlet section 22 is also provided with an appropriate blocking mechanism. If atomic deuterium is not used, the atomic deuterium introduction section 18 is not necessary.
上記のように構成される装置は、例えば可搬タイプとして、測定場所に搬送し、原 子状重水素発生装置、測定対象ガスおよび質量分析装置にそれぞれ接続して使用 することができる。  The apparatus configured as described above can be used, for example, as a portable type, transported to a measurement place, and connected to an atomic deuterium generator, a measurement object gas, and a mass spectrometer, respectively.
[0029] また、上記のように構成される装置は、可搬式の原子状水素除去装置 (ポータブル 式原子状水素モニター装置)としても用いることができる。この場合、測定対象ガス導 入部 (対象ガス導入部) 20は、除去対象の原子状水素を含む雰囲気に接続される。 また、センサー室ガス導出部 22は不要であり、さらに、センサー基板 14に原子状重 水素を予め取り込んでおけば、原子状重水素導入部 18も不要である。  [0029] The apparatus configured as described above can also be used as a portable atomic hydrogen removing apparatus (portable atomic hydrogen monitoring apparatus). In this case, the measurement target gas introduction part (target gas introduction part) 20 is connected to an atmosphere containing atomic hydrogen to be removed. Further, the sensor chamber gas deriving unit 22 is unnecessary, and further, if the atomic deuterium is previously taken into the sensor substrate 14, the atomic deuterium introducing unit 18 is also unnecessary.
この場合、原子状重水素が取り込まれるとともに、加熱されたセンサー基板 14を、 除去対象の原子状水素を含む雰囲気中に配置する方法を採用すれば、より簡便で ある。 In this case, it is simpler to adopt a method in which atomic deuterium is taken in and the heated sensor substrate 14 is placed in an atmosphere containing the atomic hydrogen to be removed. is there.
[0030] また、原子状水素定量装置 10は、図 1に示すように、原子状重水素導入部 18に原 子状重水素発生装置 24を、およびセンサー室ガス導出部 22に質量分析装置 26を 、それぞれ接続して用いることもできる。なお、原子状重水素を使用しない場合は、 原子状重水素導入部 18および原子状重水素発生装置 24は不要である。  In addition, as shown in FIG. 1, the atomic hydrogen quantification apparatus 10 includes an atomic deuterium generator 24 in the atomic deuterium introduction section 18 and a mass spectrometer 26 in the sensor chamber gas outlet section 22. Can also be connected to each other. When atomic deuterium is not used, the atomic deuterium introduction part 18 and the atomic deuterium generator 24 are not necessary.
[0031] 原子状水素定量装置 10の使用方法について説明する。  [0031] A method of using the atomic hydrogen quantification apparatus 10 will be described.
原子状重水素発生装置 24から発生する原子状重水素がセンサー室 12に導入さ れ、センサー基板 14に原子状水素が照射される。センサー基板 14を加熱機構 16で 加熱した状態で、原子状重水素を含む測定対象ガスある!、は除去対象の原子状水 素を含む雰囲気ガスがセンサー室 12に導入される。  Atomic deuterium generated from the atomic deuterium generator 24 is introduced into the sensor chamber 12, and the sensor substrate 14 is irradiated with atomic hydrogen. In a state where the sensor substrate 14 is heated by the heating mechanism 16, there is a measurement target gas containing atomic deuterium! Or an atmospheric gas containing atomic hydrogen to be removed is introduced into the sensor chamber 12.
原子状重水素を含む測定対象ガスあるいは除去対象の原子状水素を含む雰囲気 ガスは、例えば、薄膜堆積装置、ドライエッチング装置等で発生する。  The measurement target gas containing atomic deuterium or the atmosphere gas containing atomic hydrogen to be removed is generated, for example, in a thin film deposition apparatus, a dry etching apparatus, or the like.
これらの、いわば原子状水素発生装置と原子状水素定量装置 10が、測定対象ガ ス導入部 20を介して接続され、原子状水素発生装置の原子状水素を含むガスがセ ンサ一室 12に導入され、加熱されたセンサー基板 14がこのガスに曝露される。原子 状水素は原子状重水素との反応で消費される。  These so-called atomic hydrogen generators and atomic hydrogen quantification apparatus 10 are connected via gas introduction unit 20 to be measured, and the gas containing atomic hydrogen from the atomic hydrogen generator enters sensor chamber 12. The introduced and heated sensor substrate 14 is exposed to this gas. Atomic hydrogen is consumed in the reaction with atomic deuterium.
[0032] 原子状水素を照射されたセンサー基板 14を加熱機構 16で照射時の温度よりも高 い温度に加熱して、脱離する重水素あるいは重水素化合物 (HD)の強度を質量分 析装置 26で測定し、これよりセンサーに残存する原子状重水素量を算出する。そし て、質量分析装置 26に組み込まれた、予め求めておいたセンサー基板 14に対する 原子状水素照射量とセンサー基板 14に残存する原子状重水素量との質量分析によ る強度の相関関係データに基づいて、原子状水素が定量される。  [0032] The sensor substrate 14 irradiated with atomic hydrogen is heated by the heating mechanism 16 to a temperature higher than the temperature at the time of irradiation, and the intensity of deuterium or deuterium compound (HD) desorbed is mass analyzed. The amount of atomic deuterium remaining in the sensor is calculated from the measurement with the device 26. Intensity correlation data obtained by mass spectrometry between the atomic hydrogen irradiation amount on the sensor substrate 14 and the atomic deuterium amount remaining on the sensor substrate 14 previously incorporated in the mass spectrometer 26. Based on this, atomic hydrogen is quantified.
[0033] 原子状水素による重水素の引き抜き実験を行った結果を以下に説明する。  [0033] The results of an experiment of extracting deuterium with atomic hydrogen will be described below.
[0034] 図 2— 1に Ni、 Cr、 Al、 Mn、 Fe、 Coから構成されている合金(インコネル)をセンサ 一とし、原子状重水素 (D)を吸着したセンサーに対する原子状水素 (H)による引き 抜き反応の実験結果を示す。併せてこの合金の代わりに、ステンレス、結晶シリコン、 アルミニウムをセンサーとして用 、た結果も図 3— 1〜図 5— 1に示す。図 2— 1〜図 5 1は、それぞれ、原子状水素の照射時間と脱離する重水素 (D )強度の関係を示 している。また、図 2— 2〜図 5— 2には、原子状水素の照射時間と脱離する HD強度 の関係を示す。 [0034] Figure 2-1 shows that an alloy composed of Ni, Cr, Al, Mn, Fe, and Co (Inconel) is the sensor, and atomic hydrogen (H ) Shows the experimental results of the pull-out reaction. At the same time, instead of this alloy, stainless steel, crystalline silicon, and aluminum were used as sensors, and the results are also shown in Fig. 3-1 to Fig. 5-1. Figures 2-1 to 51 show the relationship between the irradiation time of atomic hydrogen and the deuterium (D) intensity desorbed, respectively. is doing. Figures 2-2 to 5-2 show the relationship between atomic hydrogen irradiation time and desorbed HD intensity.
本実験で用いた各材料 (センサー)はいずれも有機洗浄をしただけである。この結 果より、各材料はいずれも多くの原子状水素を取り込み原子状重水素との反応を引 さ起こして!/ヽることがゎカゝる。  All materials (sensors) used in this experiment were only organically cleaned. From this result, it is clear that each material takes in a lot of atomic hydrogen and causes a reaction with atomic deuterium!
また、インコネルは他の材料と比べて、初期の重水素強度が強ぐ多くの原子状水 素を取り込み原子状重水素との反応を引き起こしていることがわかる。また、インコネ ルは他の材料と比べて、原子状水素照射時間に対して、急激に重水素強度が減少 していることがわかる。これより、インコネルを用いることで、より原子状水素の量をより 正しく求めることができることがわかる。また、この結果は、インコネルが原子状水素を 最も効率的に除去する役割を果たして 、ることを示して 、る。  It can also be seen that Inconel takes in more atomic hydrogen, which has a stronger initial deuterium strength than other materials, and causes a reaction with atomic deuterium. In addition, it can be seen that the deuterium intensity of the Incone decreases rapidly with respect to the atomic hydrogen irradiation time compared to other materials. This shows that the amount of atomic hydrogen can be determined more accurately by using Inconel. The results also show that Inconel plays the most efficient role in removing atomic hydrogen.
[0035] 図 6に重水素原子 (原子状重水素)を十分に照射した後に、原子状重水素の照射 時間を変化させたインコネルに対して昇温脱離させたときの重水素強度の関係を示 す。原子状重水素を照射するときの圧力(原子状重水素のフラックスに相当する。)を 0. 5 X 10_5Paと [0035] Fig. 6 shows the relationship between the deuterium intensity when deuterium is heated and desorbed from Inconel with different atomic deuterium irradiation time after sufficient irradiation with deuterium atoms (atomic deuterium). Indicates. The pressure when irradiating atomic deuterium (corresponding to the flux of atomic deuterium) is 0.5 X 10 _5 Pa.
2. 5 X 10_5Paの 2通りの結果を示している。 2. Two results of 5 X 10 _5 Pa are shown.
この結果より、圧力が 0. 5 X 10_5Paの場合、 300秒の範囲で原子状重水素の照 射時間と重水素強度には直線の関係があることがわかる。また、圧力が 2. 5 X 10—5 Paの場合は、 50秒程度の照射初期には先と同じ直線の関係があり、重水素強度は 圧力が 0. 5 X 10_5Paの場合と比べて、圧力の増加量と同じ 5倍となっている。この 結果は、原子状水素を正しく測定できることを示して 、る。 This result shows that when the pressure is 0.5 X 10 _5 Pa, there is a linear relationship between the irradiation time of atomic deuterium and the deuterium intensity in the range of 300 seconds. Compared Further, if the pressure is 2. 5 X 10- 5 Pa, is related in the same straight line as the previous to initial irradiation of about 50 seconds, deuterium strength pressure as in 0. 5 X 10 _5 Pa Therefore, it is 5 times the same as the increase in pressure. This result shows that atomic hydrogen can be measured correctly.
以上の実験を繰り返し行った。ステンレス、結晶シリコン、アルミニウムに比べて、イン コネルでは、再現良く同一の結果を得ることができた。  The above experiment was repeated. Compared to stainless steel, crystalline silicon, and aluminum, Inconel achieved the same results with good reproducibility.
[0036] つぎに、本発明に係る原子状水素吸着除去方法につ!、て説明する。 [0036] Next, the method for adsorbing and removing atomic hydrogen according to the present invention will be described.
本発明に係る原子状水素吸着除去方法は、原子状水素を吸脱着可能な材料を原 子状水素を含む対象ガス中に暴露することにより対象ガス中の原子状水素を吸着除 去する吸着除去工程と材料に吸着した原子状水素を脱離させる脱離工程とを含む。  The method for adsorbing and removing atomic hydrogen according to the present invention is an adsorbing and removing method in which atomic hydrogen in a target gas is adsorbed and removed by exposing a material capable of adsorbing and desorbing atomic hydrogen to the target gas containing atomic hydrogen. And a desorption step of desorbing atomic hydrogen adsorbed on the material.
[0037] ここで、原子状水素を吸脱着可能な材料は、上記原子状水素定量方法の説明で 述べた材料を用いることができる。 [0037] Here, the material capable of adsorbing and desorbing atomic hydrogen is described in the explanation of the atomic hydrogen determination method. The materials mentioned can be used.
すなわち、原子状水素を吸脱着可能な材料は、本発明の効果を奏するものである 限り、種類を特に限定するものではなぐ例えば、結晶性シリコン、ステンレス、アルミ -ゥム等の適宜の材料を用いることができる。ただし、上記の作用をより効果的に発 現する観点からは、 Niゝ Crゝ Al、 Mn、 Feゝ Co、 Beゝ W、 V、 Siゝ C、 Nbゝ Taゝ Cuおよ び Tiのうちから選ばれる少なくとも 2種類以上の金属カゝら構成される合金を用いること 力 り好ましぐさらにまた、このような合金としてはインコネルを用いることがより好まし い。  That is, the material capable of adsorbing and desorbing atomic hydrogen is not particularly limited as long as it exhibits the effects of the present invention. For example, an appropriate material such as crystalline silicon, stainless steel, aluminum or the like can be used. Can be used. However, from the viewpoint of more effectively expressing the above action, Ni ゝ Cr の う ち Al, Mn, Fe ゝ Co, Be ゝ W, V, Si ゝ C, Nb ゝ Ta ゝ Cu and Ti It is more preferable to use an alloy composed of at least two kinds of metal chains selected from the above. Furthermore, it is more preferable to use Inconel as such an alloy.
[0038] 吸着除去工程では、例えば、原子状水素を含む対象ガス中に、材料を暴露する。  [0038] In the adsorption removal step, for example, the material is exposed to a target gas containing atomic hydrogen.
これにより、対象ガス中の原子状水素を吸着除去することができる。  Thereby, the atomic hydrogen in the target gas can be adsorbed and removed.
[0039] 脱離工程では、例えば、大気圧下もしくは減圧下で、 100〜500°Cの温度に材料 を加熱する。なお、このとき、上記原子状水素定量方法の説明で述べた原子状重水 素を照射したセンサーを利用することもできる。この工程により、材料に吸着した原子 状水素を除去できるため、同じ材料を繰り返して使用することができる。  In the desorption step, for example, the material is heated to a temperature of 100 to 500 ° C. under atmospheric pressure or reduced pressure. At this time, the sensor irradiated with atomic deuterium described in the explanation of the atomic hydrogen determination method can also be used. By this step, atomic hydrogen adsorbed on the material can be removed, so that the same material can be used repeatedly.
[0040] 上記本発明に係る原子状水素吸着除去方法を好適に実現することができる、本発 明に係る原子状水素吸着除去装置は、原子状水素を吸脱着可能な材料と材料を加 熱して原子状水素を脱離する加熱機構とを備え、原子状水素を脱離した状態の材料 を原子状水素を含む対象ガス中に暴露して用いるものである。なお、材料を交換して 使用する方法により、加熱機構が不要となる。  [0040] The atomic hydrogen adsorption / removal device according to the present invention, which can suitably implement the atomic hydrogen adsorption / removal method according to the present invention, heats a material capable of adsorbing and desorbing atomic hydrogen and the material. And a heating mechanism that desorbs atomic hydrogen, and the material in a state where atomic hydrogen is desorbed is exposed to a target gas containing atomic hydrogen. Note that the heating mechanism is not required depending on the method used by exchanging materials.
このような装置として、例えば上記原子状水素定量装置の説明で述べた図 1に示 す装置を用いることができる。あるいはまた、材料と加熱機構のみからなる装置を原 子状水素を含む対象ガス中にそのまま配置して用いてもよい。あるいはまた、材料の み力もなる装置を原子状水素を含む対象ガス中にそのまま配置して用いてもよい。  As such an apparatus, for example, the apparatus shown in FIG. 1 described in the explanation of the atomic hydrogen quantification apparatus can be used. Alternatively, an apparatus consisting only of a material and a heating mechanism may be used as it is in a target gas containing atomic hydrogen. Alternatively, a device having only material power may be used as it is in a target gas containing atomic hydrogen.

Claims

請求の範囲 The scope of the claims
[1] センサー材料を初期条件に調製するセンサー調製工程と、  [1] A sensor preparation process for preparing the sensor material under initial conditions;
該センサーを、原子状水素を含む測定対象ガスに曝露するセンサー曝露工程と、 該センサーを加熱する加熱工程と、  A sensor exposure step of exposing the sensor to a measurement target gas containing atomic hydrogen; and a heating step of heating the sensor;
該センサーから脱離する水素の強度を測定する強度測定工程と、  An intensity measuring step for measuring the intensity of hydrogen desorbed from the sensor;
予め求めておいた該センサーに対する原子状水素の照射時間と該センサーから脱 離する水素の質量分析による強度の相関関係に基づいて、測定対象ガス中の原子 状水素を定量する原子状水素定量工程と、  Atomic hydrogen quantification step for quantifying atomic hydrogen in the gas to be measured based on the correlation between the irradiation time of atomic hydrogen on the sensor determined in advance and the intensity of hydrogen desorbed from the sensor by mass spectrometry When,
を有することを特徴とする原子状水素定量方法。  A method for determining atomic hydrogen, comprising:
[2] 前記センサー調製工程にぉ 、て、原子状重水素をセンサー材料に照射してセンサ 一を調製し、  [2] During the sensor preparation step, the sensor material is prepared by irradiating the sensor material with atomic deuterium,
前記強度測定工程にお!、て、該センサーから脱離する HDおよび重水素の強度を 測定して、これよりセンサーに残存する原子状重水素量を算出し、  In the intensity measurement step, the intensity of HD and deuterium desorbed from the sensor is measured, and from this, the amount of atomic deuterium remaining in the sensor is calculated,
前記原子状水素定量工程において、予め求めておいた該センサーに対する原子 状水素照射量とセンサーに残存する原子状重水素量との質量分析による強度の相 関関係に基づいて、測定対象ガス中の原子状水素を定量することを特徴とする請求 項 1記載の原子状水素定量方法。  In the atomic hydrogen determination step, based on the correlation between the atomic hydrogen irradiation amount for the sensor obtained in advance and the atomic deuterium amount remaining in the sensor by mass spectrometry, 2. The atomic hydrogen quantification method according to claim 1, wherein atomic hydrogen is quantified.
[3] 前記センサー材料が Ni、 Cr、 Al、 Mn、 Fe、 Co、 Be、 W、 V、 Si、 C、 Nb、 Ta、 Cu および Tiのうちから選ばれる少なくとも 2種類以上の金属力も構成される合金であるこ とを特徴とする請求項 1または 2記載の原子状水素定量方法。  [3] The sensor material includes at least two kinds of metal forces selected from Ni, Cr, Al, Mn, Fe, Co, Be, W, V, Si, C, Nb, Ta, Cu and Ti. The atomic hydrogen determination method according to claim 1 or 2, wherein the alloy is an alloy.
[4] 前記合金力 Sインコネルであることを特徴とする請求項 3記載の原子状水素定量方法  4. The atomic hydrogen determination method according to claim 3, wherein the alloying force is S inconel.
[5] 前記強度測定工程において、四重極質量分析装置を用いて質量分析することを特 徴とする請求項 1または 2記載の原子状水素定量方法。 5. The atomic hydrogen determination method according to claim 1 or 2, wherein in the intensity measurement step, mass spectrometry is performed using a quadrupole mass spectrometer.
[6] センサー基板と該センサー基板を加熱する加熱機構とを収容するセンサー室と、 該センサー室に接続して設けられる、該センサー室に原子状重水素を流通遮断可 能に導入する原子状重水素導入部、測定対象ガスを該センサー室に流通遮断可能 に導入する測定対象ガス導入部および該センサー室のガスを流通遮断可能に質量 分析装置に導出するセンサー室ガス導出部を、少なくとも備えることを特徴とする原 子状水素定量装置。 [6] A sensor chamber that houses a sensor substrate and a heating mechanism that heats the sensor substrate, and an atomic device that is provided in connection with the sensor chamber and introduces atomic deuterium into the sensor chamber so that the flow of the deuterium can be interrupted. Deuterium introduction section, measurement target gas introduction section for introducing the measurement target gas into the sensor chamber so as to be shut off, and mass so that the gas in the sensor chamber can be shut off. An atomic hydrogen quantification device comprising at least a sensor chamber gas deriving unit for deriving to an analyzer.
[7] 前記原子状重水素導入部に接続される原子状重水素発生装置と、前記センサー 室ガス導出部に接続される質量分析装置とをさらに備えることを特徴とする請求項 6 記載の原子状水素定量装置。  7. The atom according to claim 6, further comprising an atomic deuterium generator connected to the atomic deuterium introduction part, and a mass spectrometer connected to the sensor chamber gas outlet part. Hydrogen determination device.
[8] 前記質量分析装置が四重極質量分析装置であることを特徴とする請求項 7記載の 原子状水素定量装置。  8. The atomic hydrogen quantification device according to claim 7, wherein the mass spectrometer is a quadrupole mass spectrometer.
[9] 原子状水素を吸脱着可能な材料を加熱することにより該材料に吸着した原子状水 素を脱離させる脱離工程と、該材料を原子状水素を含む対象ガス中に暴露すること により対象ガス中の原子状水素を吸着除去する吸着除去工程とを含むことを特徴と する原子状水素吸着除去方法。  [9] A desorption step of desorbing atomic hydrogen adsorbed on the material by heating the material capable of adsorbing and desorbing atomic hydrogen, and exposing the material to a target gas containing atomic hydrogen. And an adsorption removal step of adsorbing and removing atomic hydrogen in the target gas.
[10] 前記材料が Niゝ Crゝ Al、 Mn、 Feゝ Co、 Beゝ W、 V、 Siゝ C、 Nbゝ Taゝ Cuおよび Ti のうちから選ばれる少なくとも 2種類以上の金属力 構成される合金であることを特徴 とする請求項 9記載の原子状水素吸着除去方法。  [10] The material is composed of at least two metal forces selected from Ni ゝ Cr ゝ Al, Mn, Fe ゝ Co, Be ゝ W, V, Si ゝ C, Nb ゝ Ta ゝ Cu and Ti. 10. The method for adsorbing and removing atomic hydrogen according to claim 9, wherein the method is an alloy.
[11] 前記合金力 Sインコネルであることを特徴とする請求項 10記載の原子状水素の吸着 除去方法。  11. The method for adsorbing and removing atomic hydrogen according to claim 10, wherein the alloying force is S Inconel.
[12] 原子状水素を吸脱着可能な材料と該材料を加熱して原子状水素を脱離する加熱 機構とを備え、原子状水素を脱離した状態の該材料を原子状水素を含む対象ガス 中に暴露して用いることを特徴とする原子状水素吸着除去装置。  [12] A material that can absorb and desorb atomic hydrogen, and a heating mechanism that desorbs atomic hydrogen by heating the material, and includes the atomic hydrogen in a state in which the atomic hydrogen is desorbed. An atomic hydrogen adsorption and removal device characterized by being exposed to gas.
PCT/JP2005/017266 2005-02-14 2005-09-20 Method of quantitative determination of atomic hydrogen, apparatus therefor, method of adsorption removal of atomic hydrogen and apparatus therefor WO2006085405A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007502544A JP4072627B2 (en) 2005-02-14 2005-09-20 Atomic hydrogen determination method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005035392 2005-02-14
JP2005-035392 2005-02-14

Publications (1)

Publication Number Publication Date
WO2006085405A1 true WO2006085405A1 (en) 2006-08-17

Family

ID=36792983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/017266 WO2006085405A1 (en) 2005-02-14 2005-09-20 Method of quantitative determination of atomic hydrogen, apparatus therefor, method of adsorption removal of atomic hydrogen and apparatus therefor

Country Status (2)

Country Link
JP (1) JP4072627B2 (en)
WO (1) WO2006085405A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07106098A (en) * 1993-09-30 1995-04-21 Ishikawajima Harima Heavy Ind Co Ltd Vacuum beam duct for accelerator and manufacture thereof
JPH0837176A (en) * 1994-07-25 1996-02-06 Fujitsu Ltd Method of cleaning hydrogen-plasma down-flow apparatus and manufacture of semiconductor device
JPH09281079A (en) * 1996-04-16 1997-10-31 Hitachi Ltd Method and apparatus for measuring hydrogen embrittlement in place
JP2000153308A (en) * 1998-11-17 2000-06-06 Bridgestone Corp MANUFACTURE OF HIGH Ni-ALLOY FIBER

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07106098A (en) * 1993-09-30 1995-04-21 Ishikawajima Harima Heavy Ind Co Ltd Vacuum beam duct for accelerator and manufacture thereof
JPH0837176A (en) * 1994-07-25 1996-02-06 Fujitsu Ltd Method of cleaning hydrogen-plasma down-flow apparatus and manufacture of semiconductor device
JPH09281079A (en) * 1996-04-16 1997-10-31 Hitachi Ltd Method and apparatus for measuring hydrogen embrittlement in place
JP2000153308A (en) * 1998-11-17 2000-06-06 Bridgestone Corp MANUFACTURE OF HIGH Ni-ALLOY FIBER

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HAYAKAWA E. ET AL.: "Toon Datsuriho ni yoru Ge(100) Hyomen Kyuchaku Suiso no Netsu Datsuri", OYO BUTSURIGAKU KYUSHU SHIBU KOENKAI KOEN YOKOSHU, vol. 25, 1999, pages 30 *
KHANOM F. ET AL.: "Suiso Genshi ni yoru Si(100) Hyomen Kyuchaku Suiso no Nukitori Hanno Kaiseki", OYO BUTSURIGAKU KYUSHU SHIBU KOENKAI KOEN YOKOSHU, vol. 25, 1999, pages 31 *
SHIMOKAWA S. ET AL.: "Ge(100) Hyomen ni Okeru Suiso Yuki Suiso Datsuri Hanno", OYO BUTSURIGAKU KYUSHU SHIBU KOENKAI KOEN YOKOSHU, vol. 25, 1999, pages 29 *

Also Published As

Publication number Publication date
JPWO2006085405A1 (en) 2008-08-07
JP4072627B2 (en) 2008-04-09

Similar Documents

Publication Publication Date Title
Eilmsteiner et al. Reaction kinetics of atomic hydrogen with deuterium on Ni (110)
US8302458B2 (en) Portable analytical system for detecting organic chemicals in water
Stroscio et al. Reaction of methanol on Si (111)-7× 7
JPH06275697A (en) Programmed temperature desorption gas analyzer
JP6039580B2 (en) Vacuuming the sample chamber
JP5491311B2 (en) Temperature-programmed desorption gas analyzer and method
CA2826873A1 (en) Introducing an analyte into a chemical analyzer
JP2013503348A (en) Sample preconcentration system
De Mongeot et al. Oxygen adsorption on Ag (111)
JP2009257839A (en) Rapid analyzing system of voc and analyzing method of voc
Funk et al. Adsorption dynamics of CO2 on Cu (1 1 0): A molecular beam study
JP3506599B2 (en) Analysis method
Kabir et al. A silver electrode based surface acoustic wave (SAW) mercury vapor sensor: A physio-chemical and analytical investigation
WO2006085405A1 (en) Method of quantitative determination of atomic hydrogen, apparatus therefor, method of adsorption removal of atomic hydrogen and apparatus therefor
JP4788924B2 (en) Atomic hydrogen adsorption removal method and apparatus
Matsumoto et al. Hydrogen incorporation and release from nonevaporable getter coatings based on oxygen-free Pd/Ti thin films
JP3195731B2 (en) Apparatus and method for analyzing amount of organic matter attached to sample surface
JP3599599B2 (en) Gas concentration analyzer
Dobrozemsky et al. Residence times of water molecules on stainless steel and aluminum surfaces in vacuum and atmosphere
Itadani et al. Unambiguous evidence supporting the decomposition reaction of NO on two types of monovalent copper-ion in CuZSM-5 zeolite
JPH0251057A (en) Analysis for water absorbed on surface
JPS60190860A (en) Apparatus for measuring minute amount of organic substance
Fei et al. Adsorption and desorption of hydrogen on bare and Xe-covered Cu (111)
JP4653357B2 (en) Method and apparatus for analyzing metal carbonyl compound
Yaoming et al. An Apparatus for Studying Phosphor Luminescence upon Excitation by Atomic–Molecular Beams

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007502544

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05785564

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5785564

Country of ref document: EP