WO2006085360A1 - Arrival direction estimating apparatus - Google Patents

Arrival direction estimating apparatus Download PDF

Info

Publication number
WO2006085360A1
WO2006085360A1 PCT/JP2005/001908 JP2005001908W WO2006085360A1 WO 2006085360 A1 WO2006085360 A1 WO 2006085360A1 JP 2005001908 W JP2005001908 W JP 2005001908W WO 2006085360 A1 WO2006085360 A1 WO 2006085360A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
arrival
sensors
code
estimation
Prior art date
Application number
PCT/JP2005/001908
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuo Shirakawa
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2005/001908 priority Critical patent/WO2006085360A1/en
Publication of WO2006085360A1 publication Critical patent/WO2006085360A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • G01S3/46Systems for determining direction or deviation from predetermined direction using antennas spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/345Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using triangular modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/023Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
    • G01S7/0234Avoidance by code multiplex
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/42Diversity systems specially adapted for radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/023Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques

Definitions

  • the present invention relates to an arrival direction estimation device that detects an arrival angle of a signal using a plurality of sensors.
  • Fig. 5 is a diagram showing the functional configuration of a conventional FMCW radar system.
  • a conventional FMCW radar apparatus has N sensor elements A—A receiving sensor.
  • the RF unit 20 includes a transceiver unit, a transceiver baseband unit, a receiver unit, and a receiver baseband unit that are not shown.
  • the transceiver unit is a high-power amplifier (hereinafter referred to as HPA (High Power Amplifier)) 25, a distributor (hereinafter referred to as HYB (Hybrid)) 26, and an RF voltage controlled oscillator (hereinafter referred to as RF). — VCO (RF-Voltage Controlled Oscillator) 27) etc.
  • HPA High Power Amplifier
  • HYB Hybrid
  • RF RF voltage controlled oscillator
  • RF RF voltage controlled oscillator
  • VCO RF-Voltage Controlled Oscillator
  • the transceiver baseband part is a BB (Base Band) voltage controlled oscillator (BB-VCO (BB-Voltage Controlled Oscillator)) 60 etc.
  • the receiver baseband part is a low-pass filter (hereinafter LPF). 30), an analog Z-digital (hereinafter referred to as AZD) converter 40, a CPU (Central Processing Unit) 50, and the like.
  • the FMCW radar apparatus having such a configuration is received by the receiving sensor array 10.
  • a signal containing distance and velocity components The direction of arrival is estimated using the signal.
  • the mixing of the transmission wave and the reception wave is performed by the MIX 22 of the RF unit 20.
  • the receiver unit of the RF unit 20 generates a baseband signal including the mixed received wave force including distance and velocity components.
  • the L PF 30 performs band limitation on the baseband signal and extracts a desired band signal component.
  • the AZD converter 40 converts this baseband signal into a digital baseband signal.
  • the CPU 50 performs the direction of arrival estimation using the digitalized signal.
  • a configuration as shown in FIG. 5 is usually adopted in order to reduce the number of RF units 20 that are expensive and have large variations in component characteristics in the manufacturing process.
  • the signal from each sensor element of the receiving sensor array 10 is switched by each switch in the switch box 15 and input to the receiver unit of the RF unit 20.
  • the FMCW radar apparatus in FIG. 5 has a configuration in which one RF unit 20 is shared for N sensor elements.
  • Output signal is generally about several milliseconds.
  • BB-OSC shown in FIG. 6 indicates a modulation signal (for example, a triangular wave) emitted from the oscillation circuit 60 in each cycle.
  • A is the presence of the received signal output from sensor element A due to the operation of switch box 15.
  • the waveform is shown. Similarly, A, A -OUT, A, A one OUT are shown for each sensor element. ing.
  • this time is required for estimation.
  • this time since this time only takes into account the minimum time required for sampling, in actuality, this time of about 100 times is required to increase the signal-to-noise ratio (hereinafter referred to as the SZN ratio).
  • the SZN ratio signal-to-noise ratio
  • the demodulated signal of the signal from element A is compared with that of sensor element A.
  • the uncertain phase ⁇ other than the direction of arrival is superimposed. This is mainly because the signal from each sensor element is
  • the demodulated signal has phase fluctuations that are not related to the direction of arrival. In order to suppress this, it is necessary to collect more data and perform operations such as averaging, but this further increases the time required for data collection, and direction-of-arrival estimation fails.
  • is the angle to be measured
  • d is the distance between sensor elements in the sensor array (with a uniform spacing)
  • is the wavelength of the RF carrier. To simplify the explanation, the number of angle measurement objects is assumed to be one.
  • Each switch 16-19 in the switch box 15 has a loss (insertion loss) of about 5 dB when SP3T is used, for example. Therefore, if a switch with a large loss is placed immediately after the sensor element, the SZN ratio decreases, so it is necessary to provide an LNA 14 with a gain of about 10 dB for each input port of each switch. However, this complicates the circuit configuration of the apparatus and increases the cost.
  • the number of angle measurement objects that can be identified is about 1Z2 of the number of sensors. If it is necessary to increase the number of angle measurement objects that can be identified, it is necessary to increase the number of sensors. Such a configuration increases the number of sensors, which not only saves more time for data collection but also increases the number of switches. As a result, as described above, high-precision direction-of-arrival estimation cannot be realized, and the circuit configuration becomes more complicated.
  • FIG. 7 is a diagram illustrating a circuit configuration example of the SP3T switch. The above operation will be described with reference to FIG.
  • the receiving sensor element A is connected to the tip of the LNA701 (lower part of the figure), and the receiving sensor element A is connected to the tip of the LNA702 (lower part of the figure).
  • Receiving sensor element A is connected to the tip of NA703 (bottom of the figure), and to the tip of 700 (top of the figure)
  • the receiver unit of the RF unit 20 is connected via the LNA 14 and SP3T19.
  • LNA 14 and SP3T19 In the configuration shown in Figure 7, when the signal received by sensor element A is output from 700,
  • Switch 704 is closed (ON) and switches 705 and 706 are open (OFF).
  • LNA 701 is closed (ON) and LNA 702 and 703 are open (OFF).
  • SP3T17 and 18 and LNAs arranged in these signal paths are also opened (OFF).
  • Patent Document 1 Japanese Patent Publication No. 10-509848
  • An object of the present invention is to estimate the arrival direction of an incoming wave using a plurality of sensors with high accuracy. Another object of the present invention is to provide a direction-of-arrival estimation apparatus that can be performed at high speed.
  • the present invention employs the following configuration in order to solve the above-described problems. That is, the present invention provides a plurality of sensors that receive incoming signals of angle measurement target force, a code generation unit that generates orthogonal codes corresponding to each of the plurality of sensors, and the arrival received by the plurality of sensors. Each of the signals is modulated using the above orthogonal code corresponding to the sensor that received the incoming signal, a multiplexing unit that multiplexes each modulated incoming signal, and the multiplexed signal.
  • a frequency conversion unit for converting into a baseband signal, the baseband signal is distributed according to the number of the plurality of sensors, and each distributed baseband signal is assigned to each of the orthogonal codes corresponding to the plurality of sensors.
  • An arrival direction estimation apparatus comprising: a demodulation unit that demodulates; and an estimation unit that estimates an arrival direction of the arrival signal using a demodulated baseband signal. It is.
  • the modulation unit modulates each received signal having a plurality of sensor forces using an orthogonal code, and multiplexes the modulated signals.
  • the frequency change generates a baseband signal with the multiplexed signal power and the orthogonal code added.
  • the demodulator obtains the baseband signal corresponding to each sensor simultaneously by demodulating the baseband signal with the orthogonal code assigned to each sensor.
  • the present invention can perform direction-of-arrival estimation using signals simultaneously received by the sensors. Therefore, according to the present invention, it is possible to prevent an extra signal component from being added to the signal received by each sensor, and it is possible to perform arrival direction estimation with high accuracy.
  • the estimation unit uses a vector processor, a GPU (Graphic Processing Unit), or the like for each baseband signal demodulated according to the number of the plurality of sensors when estimating the direction of arrival. May be processed in parallel.
  • a vector processor a GPU (Graphic Processing Unit), or the like for each baseband signal demodulated according to the number of the plurality of sensors when estimating the direction of arrival. May be processed in parallel.
  • the present invention can perform high-speed arrival direction estimation processing.
  • the code generation unit may switch the orthogonal code at a predetermined cycle. Moreover, you may make it change based on the positional information on an own apparatus.
  • the code generation unit may change the orthogonal code according to the phase noise of the signal source of the frequency conversion unit!
  • the signal-to-noise ratio (SZN ratio) of the signal processed in the present invention can be improved, and thus the arrival direction can be estimated with high accuracy.
  • the present invention may be a method for causing a computer to realize any one of the functions described above. Further, the present invention may be a program for realizing any of the functions described above. In the present invention, such a program may be recorded in a computer-readable storage medium.
  • an arrival direction estimation device that can perform arrival direction estimation of an incoming wave using a plurality of sensors with high accuracy and high speed.
  • FIG. 1 is a functional configuration diagram of an FMCW radar apparatus receiver unit according to an embodiment.
  • FIG. 2 is a diagram showing a circuit example of a BPSK module.
  • FIG. 3 is a diagram showing a relationship between a time waveform of a PN code and a demodulated waveform.
  • FIG. 4 is a timing chart of signal demodulation in the embodiment.
  • FIG. 5 is a functional configuration diagram of the FMCW radar apparatus in the prior art.
  • FIG. 6 is a diagram showing a signal output timing chart in the prior art.
  • FIG. 7 is a diagram showing a circuit example of switch 3PST.
  • High power amplifier HPA
  • LNA module Low noise amplification module
  • LNA Low Noise Amplifier
  • an arrival direction estimation apparatus according to the best mode for carrying out the present invention (hereinafter referred to as an embodiment) will be described with reference to the drawings.
  • the configuration of the embodiment is an exemplification, and the present invention is not limited to the configuration of the embodiment.
  • FIG. 1 is a block diagram showing a functional configuration of the FMCW radar apparatus in the first embodiment. is there.
  • the functional configuration of the FMCW radar apparatus according to the first embodiment will be described below with reference to FIG.
  • FIG. 1 mainly shows functions for processing received signals, and functions related to signal transmission processing are the same as those of the conventional apparatus shown in FIG.
  • the FMCW radar apparatus includes a reception sensor array 100, a transmission sensor (not shown), an amplifier box 110, an RF down converter 140 (corresponding to the frequency conversion unit of the present invention), and pseudo noise.
  • Code hereinafter referred to as PN code
  • PN code generator 150 corresponding to the code generator of the present invention
  • PN code demodulator module 160 corresponding to the demodulator of the present invention
  • N corresponding to the number of receiving sensor elements
  • LPF Low-pass filters
  • AZD analog Z-digital converter
  • CPU Central Processing Unit
  • the amplifier box 110 includes N low-noise amplification modules (hereinafter referred to as LNA modules) 120-1—120-N (corresponding to the modulation unit of the present invention), and a hybrid synthesizer 130 (the present invention). Equivalent to a multiplexing unit).
  • LNA modules are composed of a low noise amplifier (hereinafter referred to as LNA) 121-1, a B PSK module 122-1, and a buffer 123-1, taking the LNA module 120-1 as an example. .
  • the other LNA modules 120-2-2-1-N have the same configuration.
  • the PN code demodulator module 160 is also configured with N PN code demodulators 161-1 to 161-N corresponding to each sensor element for reception.
  • the receiving sensor array 100 is also configured with N sensor elements A—A force. Each Sen
  • the cir elements are arranged, for example, in a line of lines, and receive incoming signals (arrival waves).
  • the received incoming wave is output to the LNA module in the amplifier box 110.
  • the PN code generator 150 generates different PN codes that are orthogonal to each other for each receiving sensor element, for the number of all the receiving sensor elements (N).
  • the PN code generator 150 sends each generated PN code to an LNA connected to the sensor element corresponding to the PN code. Output to each module. Further, the PN code generator 150 outputs each generated PN code to a PN code demodulator corresponding to the sensor element corresponding to the PN code.
  • the PN code generated for sensor element A corresponds to sensor element A.
  • a PN (Pseudo Noise) code that is a rectangular wave is used as the orthogonal code.
  • another orthogonal code such as an orthogonal wavelet wave or a sine wave may be used.
  • LNA module 120-1 is connected to sensor element A
  • LNA module 120-2 (not shown) is connected to sensor element A, and sensor element
  • LNA module 120-N is connected to A.
  • N LNA modules are connected to A.
  • the LNA module 120-1 Since all the modules have the same configuration, the LNA module 120-1 will be described as a representative.
  • the LNA module 120-1 modulates the incoming signal input from the receiving sensor element and outputs the modulated signal to the hybrid synthesizer 130.
  • LNA121-1 amplifies the incoming signal with low noise, and the BPSK (Binary Phase Shift Keying) module 12
  • the BPSK module 122-1 spreads the input signal using the PN code from the PN code generator 150. Then, the signal is output to the buffer 123-1.
  • the notifier 123-1 suppresses extra signal components such as impedance fluctuations of other circuit powers for the input signal, and outputs it to the hybrid synthesizer 130.
  • Each of the BPSK modules 122-1 to 122-N includes, for example, a circuit as shown in FIG.
  • FIG. 2 is a diagram showing a circuit example of the BPSK module.
  • the B PSK module according to this example uses a diode as a switch element and includes switches 202 and 203.
  • the diode is controlled by the PN code, and a signal input from the input terminal 200 is modulated.
  • the modulated signal is output from the output terminal 201.
  • FIG. 2 shows the BPSK module 122-1
  • the LNA 121-1 is connected to the input terminal 200
  • the buffer 12 is connected to the output terminal 201.
  • the hybrid synthesizer 130 synthesizes the signals from all the LNA modules 120-1—120—N and outputs the synthesized signal to the RF down converter 140.
  • the RF down-converter 140 mixes the synthesized signal from the hybrid synthesizer 130 with a part of the transmission wave that also transmits the FMCW radar device power, and generates a baseband signal.
  • the baseband signal generated here is a signal with a PN code applied. This baseband signal is output to the PN code demodulation module 160.
  • the PN code demodulating module 160 is composed of N PN code demodulators 161-1 to 161-N corresponding to each sensor element for reception.
  • the PN code demodulation module 160 distributes the signal to all the PN code demodulators.
  • Each PN code demodulator receives the corresponding sensor PN code from the PN code generator 150, and despreads the distributed signal using the PN code.
  • each PN code demodulator can extract a signal component corresponding to each sensor element for reception from the synthesized signal.
  • the despread signal is output to the LPF corresponding to each sensor element for reception.
  • Each LPF takes out only the baseband signal component of the input signal power desired band.
  • the extracted signal is output to the AZD converter 180.
  • the AZD converter 180 converts each LPF force input signal into a digital baseband signal and outputs it to the CPU 190.
  • the CPU 190 estimates the direction of arrival using a digital baseband signal corresponding to each receiving sensor element.
  • a higher-speed processing is possible by using a vector processor (Vector Processing Unit) that excels in power parallel processing as CPU190. It becomes ability.
  • FIG. 3 shows the relationship between the time waveform of the PN code and the demodulated waveform.
  • FIG. 4 is a timing chart showing a time transition in which the signal received by each sensor element is modulated by the PN code and output as a signal to the noise synthesizer 130 and the RF down converter 140 in this embodiment. .
  • the operation example of this system it will be explained in association with the functional configuration shown in FIG.
  • the sensor element A of the receiving sensor array 100 receives an incoming signal having a target force for angle measurement.
  • the received incoming signal is output to the LNA module 120-1 in the amplifier box 110.
  • the incoming signal input to the LNA module 120-1 is amplified by the LNA 121-1, and input to the BPSK module 122-1.
  • the input signal is multiplied with the PN code for the sensor element A to spread and output
  • the signal modulated by the PN code is output to the hybrid synthesizer 130 and is synthesized by the hybrid synthesizer 130 with the modulation signal from the other sensor elements A—A.
  • the synthesized signal is mixed with the transmission signal by the RF down converter 140 to become a baseband signal.
  • the PN code demodulation module 160 When a signal obtained by combining baseband components corresponding to each sensor element power is input to the PN code demodulation module 160, it is distributed to each PN code demodulator.
  • the PN code demodulator 161-1 despreads this baseband signal.
  • the PN code demodulator 1 61-1 has a code corresponding to the sensor element A output from the PN code generator 150.
  • LPF170-1 only has a baseband component corresponding to sensor element A.
  • the baseband signal corresponding to sensor element A is LPF170-1. Bandwidth is limited and output to AZD translation 180.
  • the AZD conversion 180 converts the input signal into a digital baseband signal and outputs it to the CPU 190.
  • the CPU 190 receives a digital baseband signal corresponding to each sensor element A—A,
  • the direction-of-arrival estimation used is performed.
  • FIG. 3 (A) shows the time waveform of the PN code corresponding to each sensor element output from the PN code generator 150.
  • Fig. 3 (B) shows the PN code for sensor element A for each PN code shown in Fig. 3 (A).
  • the signal waveform obtained by multiplying and integrating is shown.
  • a waveform is output only when This is the force with which each PN code is an orthogonal code, and this is the principle of multiplexing received signals by the FMCW radar apparatus according to the present invention. That is, the PN code for the sensor element is multiplied by each LNA module, and the signal synthesized by the hybrid synthesizer 130 is despread again by each PN code demodulator by the PN code, and corresponds to each sensor element. A signal can be obtained.
  • one RF down converter 140 can be shared for a plurality of receiving sensor elements, and baseband signals corresponding to the desired sensor elements can be acquired in a batch.
  • FIG. 4 is a timing chart showing the transition of the signal received by each sensor element by the RF down converter 140 for each sensor. Na FIG. 4 corresponds to the timing chart in the prior art of FIG. 6 described above, where T shown in FIG. 4 indicates the period of the modulation signal and shows the same time as T in FIG.
  • BB-OSC shown in FIG. 4 shows a time waveform of a modulation signal (for example, a triangular wave) emitted from an oscillation circuit (not shown), and shows that it is a chart for one period (T). .
  • a modulation signal for example, a triangular wave
  • T a chart for one period
  • ZBUFFER shows the ON / OFF status of the LNA and buffers in the LNA module.
  • the LNA and buffers of all LNA modules are in the ON status.
  • PN-A is a sensor element output by the PN code generator 150.
  • PN-A is an LNA module
  • the BPSK module 122-1 of 120-1 shows the waveform of the PN code used for signal modulation (spreading).
  • A—IN is input to sensor element
  • A—OUT is output from LNA module 120-1
  • the signal waveform is shown. Below are graphs showing the PN code of each LNA module, the signal input to the LNA module, and the waveform of the signal output from the LNA module.
  • the PN code input to each LNA module is an orthogonal code as described above.
  • the incoming signal (A—IN) input to each LNA module is 2 ⁇ (k ⁇ l) d / l sin 0
  • T is the result of multiplying each input signal (A -IN) by each PN code.
  • is the angle to be measured
  • d is the distance between the sensor elements that make up the sensor array (uniform spacing)
  • is the RF carrier wavelength.
  • the number of angle measurement objects is assumed to be one.
  • the time required to acquire the signal necessary for estimating the direction of arrival is In conventional devices, at least (number of receiving sensor elements) X ( ⁇
  • the device according to the present invention requires only one period ( ⁇ ).
  • both the LNA and the BUFFER are always in the ON state, so that the impedance in each LNA module is stable and includes the frequency converter. This makes it easier to design a receiver.
  • the LNA module spreads the received signal from each sensor element constituting the receiving sensor array 100 using the PN code, and the hybrid synthesizer 130 spreads the spread signal. Combine (multiplex).
  • the RF down converter 140 collectively demodulates the multiplexed signal to generate a baseband signal.
  • the FMCW radar apparatus simultaneously obtains a baseband signal corresponding to each sensor element by demodulating the baseband signal with the PN code assigned to each sensor element for reception by the PN code demodulation module 160.
  • the first embodiment it is possible to perform the direction of arrival estimation using signals received simultaneously by the sensors. Therefore, it is possible to prevent an extra signal component from being added to the signal received by each sensor, and to create a situation close to the theoretical assumption of direction of arrival estimation. As a result, it is possible to perform direction of arrival estimation with high accuracy.
  • the throughput of the device can be improved to at least 1ZN (the number of sensor elements).
  • one RF down converter is shared by synthesizing reception signals received from a plurality of reception sensors.
  • the conventional apparatus configuration shown in FIG. 5 requires more LNAs than the number of sensor elements to compensate for the insertion loss of the switch, whereas the FMCW radar apparatus in the present embodiment
  • the number of LNAs can be reduced and BPSK as shown in Figure 2 Since the module is simpler in circuit, it is also effective in circuit design. As a result, it not only reduces circuit design man-hours, improves circuit quality, and reduces costs, but also enables one-chip radar.
  • the PN code generator 150 generates a PN code corresponding to each sensor element, but the PN code assigned to each sensor element is generated in a form that changes periodically. It may be.
  • the PN code generator 150 acquires the position information of its own device using another device such as a navigation system, GPS, magnetic nails, or a traffic light, and switches the PN code based on the position information. It may be. In this case, the PN code generator 150 may receive the position information of its own device as the external input 151 shown in FIG. 1, and switch the PN code using this.
  • the FMCW radar apparatus can prevent signal interference with other radio apparatuses that use the same PN code as a transmission wave, and is therefore affected by the other apparatuses. It becomes possible to perform precise direction-of-arrival estimation.
  • the PN code generator 150 may change the frequency of the PN code in accordance with the phase noise in the signal source in the RF down converter 140.
  • the PN code generator 150 may receive the phase noise information as the external input 151 shown in FIG. 1, and use it to switch the PN code.
  • the FMCW radar apparatus can perform the direction of arrival estimation based on the signal with improved signal-to-noise ratio (SZN ratio).
  • baseband signals corresponding to all sensor elements are obtained by the PN code demodulation module 160, and the arrival direction is estimated using all these signals.
  • the baseband signal force corresponding to one of the sensor elements is roughly estimated for the position or velocity of the angle measurement target, and based on the estimation result, the precision using the baseband signals corresponding to all sensor elements is used. It may be determined whether or not to perform the arrival direction estimation. In this case, the rough estimation is performed by the predetermined function unit 191 in the CPU unit 190, and then the subsequent accurate estimation is performed. Or not, and the determination result may be returned to the CPU unit 190.
  • the arrival signals received by a plurality of sensors are multiplexed by diffusing Z despreading with a PN code to perform arrival direction estimation, but using a frequency hopping method, Modulation Z demodulation may be performed according to a hopping frequency pattern corresponding to each sensor.
  • the PN code generator 150 generates a hopping frequency pattern corresponding to one element of each sensor, and each LNA module and each PN code demodulator receives the hopping frequency pattern and applies to each sensor element. Process each corresponding signal! ⁇ .

Abstract

An arrival direction estimating apparatus using a plurality of sensors and capable of quickly performing an arrival direction estimation of an arriving wave with high precision. The arrival direction estimating apparatus comprises a code generating part for generating orthogonal codes corresponding to the respective ones of the plurality of sensors; a modulating part for modulating the arrival signals, which are received by the plurality of sensors, by use of the orthogonal codes corresponding to the respective sensors that receive those arrival signals; a multiplexing part for multiplexing the modulated arrival signals; a frequency converting part for converting the multiplexed signal to a baseband signal; a demodulating part for distributing the baseband signal in accordance with the number of the plurality of sensors and then demodulating the distributed baseband signals by use of the orthogonal codes corresponding to the respective sensors; and an estimating part for estimating the arrival direction of the arrival signal by use of the demodulated baseband signal.

Description

明 細 書  Specification
到来方向推定装置  Direction of arrival estimation device
技術分野  Technical field
[0001] 本発明は、複数のセンサーを用いて信号の到来角度を検知する到来方向推定装 置に関する。  The present invention relates to an arrival direction estimation device that detects an arrival angle of a signal using a plurality of sensors.
背景技術  Background art
[0002] 近年、到来電波の到来方向推定は、伝搬環境解析、移動体通信、レーダなどの各 種分野における要素技術として利用されており、安価で精度の高い到来方向推定装 置が強く望まれている。ここで、従来における到来方向推定装置の機能構成につい て、 FMCW (Frequency Modulated Continuous Wave)レーダ装置を例に挙げ、図 5 を用いて説明する。図 5は、従来技術としての FMCWレーダ装置の機能構成を示す 図である。  In recent years, direction-of-arrival estimation of incoming radio waves has been used as elemental technology in various fields such as propagation environment analysis, mobile communication, and radar, and an inexpensive and highly accurate arrival direction estimation device is strongly desired. ing. Here, the functional configuration of the conventional direction-of-arrival estimation apparatus will be described with reference to FIG. 5, taking an FMCW (Frequency Modulated Continuous Wave) radar apparatus as an example. Fig. 5 is a diagram showing the functional configuration of a conventional FMCW radar system.
[0003] 従来の FMCWレーダ装置は、 N個のセンサー素子 A— Aからなる受信用センサ  [0003] A conventional FMCW radar apparatus has N sensor elements A—A receiving sensor.
1 N  1 N
一アレイ 10、センサー素子 A力 なる送信用センサー 11、スィッチボックス 15  One array 10, Sensor element A force Transmitting sensor 11, Switch box 15
T 、 RF ( T, RF (
Radio Frequency)トランシーバ Zレシーバユニット 20から構成される。 RFユニット 20 は、図示されていない、トランシーバ部、トランシーバベースバンド部、レシーバ部、 及びレシーバベースバンド部から構成される。 Radio Frequency) It is composed of transceiver Z receiver unit 20. The RF unit 20 includes a transceiver unit, a transceiver baseband unit, a receiver unit, and a receiver baseband unit that are not shown.
[0004] トランシーバ部は高出力増幅器(以降、 HPA(High Power Amplifier)と表記する) 25 、分配器 (以降、 HYB(Hybrid)と表記する) 26、及び、 RF電圧制御発信器 (以降、 R F— VCO(RF- Voltage Controlled Oscillator)と表記する) 27等から構成される。レシ ーバ部は、低雑音増幅器(以降、 LNA (Low Noise Amplifier)と表記する) 14、及び、 混合器 (以降、 MIX (Mixer)と表記する) 22等力も構成される。また、トランシーバべ ースバンド部は BB (Base Band)電圧制御発信器(BB— VCO(BB- Voltage Controlled Oscillator)と表記する) 60等から、レシーバベースバンド部は、低域通過フィルタ(以 降、 LPFと表記する) 30、アナログ Zデジタル (以降、 AZDと表記する)変換器 40、 及び CPU (Central Processing Unit) 50等により構成される。  [0004] The transceiver unit is a high-power amplifier (hereinafter referred to as HPA (High Power Amplifier)) 25, a distributor (hereinafter referred to as HYB (Hybrid)) 26, and an RF voltage controlled oscillator (hereinafter referred to as RF). — VCO (RF-Voltage Controlled Oscillator) 27) etc. The receiver unit is also configured with a low noise amplifier (hereinafter referred to as LNA (Low Noise Amplifier)) 14 and a mixer (hereinafter referred to as MIX (Mixer)) 22 isotropic force. The transceiver baseband part is a BB (Base Band) voltage controlled oscillator (BB-VCO (BB-Voltage Controlled Oscillator)) 60 etc., and the receiver baseband part is a low-pass filter (hereinafter LPF). 30), an analog Z-digital (hereinafter referred to as AZD) converter 40, a CPU (Central Processing Unit) 50, and the like.
[0005] このような構成を持つ FMCWレーダ装置は、受信用センサーアレイ 10により受信さ れた測角対象 (目標物)からの反射波を送信波 (送信用センサー 11から送出される) の一部とミキシングする(図 5に示す 22)ことにより、距離と速度成分を含んだ信号を 求め、その信号を用いて到来方向推定を行う。この送信波と受信波とのミキシングは 、 RFユニット 20の MIX22により行われる。 RFユニット 20のレシーバ部は、ミキシング された受信波力も距離と速度成分を含んだベースバンド信号を生成する。そして、 L PF30は、このベースバンド信号に帯域制限を掛け、所望の帯域信号成分を抽出す る。 AZD変換器 40は、このベースバンド信号をデジタルベースバンド信号に変換す る。そして、 CPU50は、このデジタルィ匕された信号を用いて到来方向推定を行う。 [0005] The FMCW radar apparatus having such a configuration is received by the receiving sensor array 10. By mixing the reflected wave from the measured object (target) with a part of the transmission wave (sent from the transmission sensor 11) (22 shown in Fig. 5), a signal containing distance and velocity components The direction of arrival is estimated using the signal. The mixing of the transmission wave and the reception wave is performed by the MIX 22 of the RF unit 20. The receiver unit of the RF unit 20 generates a baseband signal including the mixed received wave force including distance and velocity components. Then, the L PF 30 performs band limitation on the baseband signal and extracts a desired band signal component. The AZD converter 40 converts this baseband signal into a digital baseband signal. Then, the CPU 50 performs the direction of arrival estimation using the digitalized signal.
[0006] このような FMCWレーダ装置においては、高価で、製造工程における部品特性の ばらつきも大きい RFユニット 20を減らすために、通常、図 5に示すような構成が採ら れる。図 5に示す FMCWレーダ装置では、受信用センサーアレイ 10の各センサー素 子からの信号は、スィッチボックス 15内の各スィッチにより切り替えられ、 RFユニット 2 0のレシーバ部に入力されるという構成を採る。言い換えれば、図 5における FMCW レーダ装置は、 N個のセンサー素子に対して、 1つの RFユニット 20が共用される構 成となっている。 In such an FMCW radar apparatus, a configuration as shown in FIG. 5 is usually adopted in order to reduce the number of RF units 20 that are expensive and have large variations in component characteristics in the manufacturing process. In the FMCW radar apparatus shown in FIG. 5, the signal from each sensor element of the receiving sensor array 10 is switched by each switch in the switch box 15 and input to the receiver unit of the RF unit 20. . In other words, the FMCW radar apparatus in FIG. 5 has a configuration in which one RF unit 20 is shared for N sensor elements.
[0007] 精度のよ!、到来方向推定を行うには、各センサー素子により受信される全ての信号 が必要となるため、上述のような構成を採る場合には、 RFユニット 20のレシーバ部を 時分割的に共用する方法が採られる。例えば、図 6に示すようなタイミングで、各セン サー素子から出力される信号を切り替えることにより、 RFユニット 20のレシーバ部を 共用する手法がある。図 6は、到来方向推定を行うのに必要な信号を各センサー素 子で受信する時間推移を示している。なお、図 6の T は、変調信号 (BB— OCS60  [0007] Accurate! In order to perform direction-of-arrival estimation, all signals received by each sensor element are required. Therefore, when the configuration as described above is adopted, the receiver unit of the RF unit 20 is installed. A time sharing method is adopted. For example, there is a method of sharing the receiver unit of the RF unit 20 by switching the signal output from each sensor element at the timing shown in FIG. Figure 6 shows the time transition for receiving the signals necessary for direction-of-arrival estimation at each sensor element. Note that T in Fig. 6 is the modulation signal (BB—OCS60
F  F
からの出力信号)の周期を示し、一般には、数ミリ秒程度の時間である。  Output signal), and is generally about several milliseconds.
[0008] 図 6の例による FMCWレーダ装置では、到来方向推定を行うにあたり、センサー素 子毎に変調信号 1周期分の時間のデータ収集が行われる。図 6に示す BB— OSCは 、各周期における発振回路 60から発せられる変調信号 (例えば、三角波)を示す。 A は、スィッチボックス 15の動作による、センサー素子 Aから出力される受信信号の有[0008] In the FMCW radar apparatus according to the example of Fig. 6, when estimating the direction of arrival, data is collected for one period of the modulation signal for each sensor element. BB-OSC shown in FIG. 6 indicates a modulation signal (for example, a triangular wave) emitted from the oscillation circuit 60 in each cycle. A is the presence of the received signal output from sensor element A due to the operation of switch box 15.
1 1 1 1
無を示す。 A—OUTは、センサー素子 Aカゝら出力された信号の復調信号について  Indicates nothing. A—OUT is the demodulated signal output from sensor element A
1 1  1 1
の波形を示す。同様に、センサー素子毎に A、 A -OUT, A、 A一 OUTが示され ている。 The waveform is shown. Similarly, A, A -OUT, A, A one OUT are shown for each sensor element. ing.
[0009] 図 6により本構成では、素子数 (N個) X変調信号の周期 (T )の時間が到来方向  [0009] According to FIG. 6, in this configuration, the number of elements (N) X modulation signal period (T) time is the direction of arrival
F  F
推定に要されるのが分かる。しかし、この時間はあくまでサンプリングに要する最低限 の時間しか考慮されていないため、実際には信号対雑音比(以降、 SZN比と表記す る)を上げるため、この 100倍程度の時間が要されることになる。これでは、測角対象 (目標)が移動している場合、到来方向推定のためのデータ収集に力かる時間によつ て測角対象が大きく移動してしまい、結果として、システム本来の目的である到来方 向推定が破綻すると ヽぅ本末転倒な結果となってしまう(例えば、目標が 60kmZh程 度の速度で運動している場合で、素子数 N= l l、周期 T = 3ミリ秒とすると、データ  You can see that it is required for estimation. However, since this time only takes into account the minimum time required for sampling, in actuality, this time of about 100 times is required to increase the signal-to-noise ratio (hereinafter referred to as the SZN ratio). Will be. In this case, when the angle measurement target (target) is moving, the angle measurement target moves greatly depending on the time required to collect data for direction-of-arrival estimation. If a certain direction of arrival estimation fails, the result will be a tumbling fall (for example, if the target is moving at a speed of about 60 kmZh, the number of elements is N = ll, and the period is T = 3 milliseconds. data
F  F
を収集して!/ヽる間に目標が 0. 55— 55メートルも移動する)。  And the target moves 0.5-55 to 55 meters while hitting).
[0010] さら〖こ、図 6の A -OUT, A -OUT, A—OUTの復調信号についての波形を比較 [0010] Sarako, comparing waveforms for A-OUT, A-OUT, A-OUT demodulated signals in Figure 6
1 2 N  1 2 N
すると分力るように、 Aを基準とした各センサー素子の番号を k(k= l N)とすると、  Then, so that the force is divided, if the number of each sensor element based on A is k (k = l N),
1 一  1
素子 Aからの信号の復調信号は、センサー素子 Aのそれと較べ、側角目標の角度 The demodulated signal of the signal from element A is compared with that of sensor element A.
K 1 K 1
に由来する位相 { 2 π (k-l) d/ l } sin ( 0 )のみならず、到来方向以外の不確定な 位相 Φ が重畳されてしまって 、る。これは主に、各センサー素子からの信号をサン k-l  In addition to the phase {2 π (k-l) d / l} sin (0) derived from, the uncertain phase Φ other than the direction of arrival is superimposed. This is mainly because the signal from each sensor element is
プリングする時刻が異なるため、復調信号に到来方向と関係ない位相変動が混入し てしまったものである。これを抑圧するためにはより多くのデータを収集し、平均化等 の操作を行う必要があるが、これではさらにデータ収集に力かる時間が増え、到来方 向推定が破綻してしまう。なお、上式における Θは測角対象の角度を、 dはセンサー アレイを構成するセンサー素子間の距離 (一様間隔としている)を、 λは RF搬送波の 波長を示す。また説明を簡単にするため、測角対象の個数は 1個を想定している。  Because the pulling time is different, the demodulated signal has phase fluctuations that are not related to the direction of arrival. In order to suppress this, it is necessary to collect more data and perform operations such as averaging, but this further increases the time required for data collection, and direction-of-arrival estimation fails. In the above equation, Θ is the angle to be measured, d is the distance between sensor elements in the sensor array (with a uniform spacing), and λ is the wavelength of the RF carrier. To simplify the explanation, the number of angle measurement objects is assumed to be one.
[0011] また、スィッチボックス 15内の各スィッチ 16— 19は、例えば、 SP3Tを用いた場合 にはそれぞれ 5dB程度のロス (挿入損失)を持つ。従って、センサー素子の直後に ロスが大きなスィッチを配置すると SZN比が下がってしまうため、各スィッチの入力 ポート毎に 10dB程度のゲインを持つ LNA14を設ける必要がある。し力し、これでは 、装置の回路構成が複雑なものとなり、コストも高くなつてしまう。  [0011] Each switch 16-19 in the switch box 15 has a loss (insertion loss) of about 5 dB when SP3T is used, for example. Therefore, if a switch with a large loss is placed immediately after the sensor element, the SZN ratio decreases, so it is necessary to provide an LNA 14 with a gain of about 10 dB for each input port of each switch. However, this complicates the circuit configuration of the apparatus and increases the cost.
[0012] これらは、識別可能な測角対象の個数を増やす必要がある場合に、より顕著な問 題となる。通常、識別可能な測角対象の個数はセンサー数の 1Z2程度になるため、 識別可能な測角対象の個数を増やす必要がある場合には、センサー個数を増やす 必要がある。そのような構成とすれば、センサー数が増えるので、データ収集により多 くの時間が力かるばかりか、スィッチの数も増えることになる。結果として、先に述べた とおり、高精度の到来方向推定が実現できず、回路構成も更に煩雑なものとなってし まつ。 [0012] These become more prominent problems when it is necessary to increase the number of angle measuring objects that can be identified. Usually, the number of angle measurement objects that can be identified is about 1Z2 of the number of sensors. If it is necessary to increase the number of angle measurement objects that can be identified, it is necessary to increase the number of sensors. Such a configuration increases the number of sensors, which not only saves more time for data collection but also increases the number of switches. As a result, as described above, high-precision direction-of-arrival estimation cannot be realized, and the circuit configuration becomes more complicated.
[0013] また、上述のようにスィッチを用いた構成では、ポート間アイソレーションを稼ぐため に、通常、スィッチの開閉に伴って LNA等も同時に開閉させる必要がある。図 7は、 SP3Tスィッチの回路構成例を示す図である。図 7を用いて上記動作について説明 する。図 7に示す SP3Tスィッチ 16は、 LNA701の先(図下方)に受信用センサー素 子 Aが接続され、 LNA702の先(図下方)に受信用センサー素子 Aが接続され、 L [0013] In addition, in the configuration using a switch as described above, in order to achieve isolation between ports, it is usually necessary to simultaneously open and close the LNA and the like as the switch is opened and closed. FIG. 7 is a diagram illustrating a circuit configuration example of the SP3T switch. The above operation will be described with reference to FIG. In the SP3T switch 16 shown in Fig. 7, the receiving sensor element A is connected to the tip of the LNA701 (lower part of the figure), and the receiving sensor element A is connected to the tip of the LNA702 (lower part of the figure).
1 21 2
NA703の先(図下方)に受信用センサー素子 Aが接続され、 700の先(図上方)に Receiving sensor element A is connected to the tip of NA703 (bottom of the figure), and to the tip of 700 (top of the figure)
3  Three
LNA14と SP3T19を介して、 RFユニット 20のレシーバ部が接続される。図 7に示す 構成では、センサー素子 Aによって受信された信号を 700から出力する場合には、  The receiver unit of the RF unit 20 is connected via the LNA 14 and SP3T19. In the configuration shown in Figure 7, when the signal received by sensor element A is output from 700,
1  1
スィッチ 704が閉状態 (ON)とされ、スィッチ 705及び 706が開状態 (OFF)とされる と同時に、 LNA701が閉状態(ON)とされ、 LNA702及び 703が開状態(OFF)とさ れる。また SP3T17、 18とこれらの信号経路に配置されている LNAも開状態(OFF) とされる。  Switch 704 is closed (ON) and switches 705 and 706 are open (OFF). At the same time, LNA 701 is closed (ON) and LNA 702 and 703 are open (OFF). SP3T17 and 18 and LNAs arranged in these signal paths are also opened (OFF).
[0014] しかし、このような動作は、回路として、通常は一様でな!ヽインピーダンス変動を伴う ため、スィッチに接続される RFユニット 20のレシーバ部に悪影響を及ぼすことになる 。このため、スィッチを用いた構成では、 RFユニット 20のレシーバ部などをも含めた 回路全体としての設計が必要となり、受信器の設計が難しくなつてしまう。  [0014] However, such an operation is normally uniform as a circuit and involves impedance fluctuations, and therefore adversely affects the receiver unit of the RF unit 20 connected to the switch. For this reason, in the configuration using the switch, it is necessary to design the entire circuit including the receiver unit of the RF unit 20 and the like, which makes it difficult to design the receiver.
[0015] なお、アンテナからの信号を多重化するという点に関しては、ダイバーシチ装置で Walsh符号を用いてアンテナ出力を多重化し、アンテナと無線基地局との間を結ぶ ケーブルを削減すると ヽぅ手法が提案されて!ヽる (特許文献 1参照)。  [0015] As regards the point of multiplexing the signals from the antenna, it is possible to multiplex the antenna output using Walsh codes in the diversity device and reduce the cable connecting the antenna and the radio base station. Proposed! (See Patent Document 1).
特許文献 1:特表平 10- 509848号公報  Patent Document 1: Japanese Patent Publication No. 10-509848
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0016] 本発明の目的は、複数のセンサーを用いた到来波の到来方向推定を、高精度か つ高速に行うことができる到来方向推定装置を提供することにある。 [0016] An object of the present invention is to estimate the arrival direction of an incoming wave using a plurality of sensors with high accuracy. Another object of the present invention is to provide a direction-of-arrival estimation apparatus that can be performed at high speed.
課題を解決するための手段  Means for solving the problem
[0017] 本発明は、上述した課題を解決するために以下の構成を採用する。即ち、本発明 は、測角対象力 の到来信号を受信する複数のセンサーと、当該複数のセンサーの それぞれに対応する直交符号を生成する符号生成部と、当該複数のセンサーにより 受信された前記到来信号のそれぞれを、その到来信号を受信したセンサーに対応 する上記直交符号を用いて変調する変調部と、変調されたそれぞれの到来信号を多 重化する多重化部と、多重化された信号をベースバンド信号に変換する周波数変換 部と、当該ベースバンド信号を複数のセンサーの数に応じて分配し、その分配された 各ベースバンド信号を上記複数のセンサーに対応するそれぞれの上記直交符号に より復調する復調部と、復調されたベースバンド信号を用いて、上記到来信号の到来 方向を推定する推定部とを備える到来方向推定装置についてのものである。  The present invention employs the following configuration in order to solve the above-described problems. That is, the present invention provides a plurality of sensors that receive incoming signals of angle measurement target force, a code generation unit that generates orthogonal codes corresponding to each of the plurality of sensors, and the arrival received by the plurality of sensors. Each of the signals is modulated using the above orthogonal code corresponding to the sensor that received the incoming signal, a multiplexing unit that multiplexes each modulated incoming signal, and the multiplexed signal. A frequency conversion unit for converting into a baseband signal, the baseband signal is distributed according to the number of the plurality of sensors, and each distributed baseband signal is assigned to each of the orthogonal codes corresponding to the plurality of sensors. An arrival direction estimation apparatus comprising: a demodulation unit that demodulates; and an estimation unit that estimates an arrival direction of the arrival signal using a demodulated baseband signal. It is.
[0018] 本発明では、複数のセンサー力 の各受信信号を変調部が直交符号を用いて変 調し、この変調された信号を多重化する。そして、周波数変 は、この多重化され た信号力 当該直交符号が付加された状態のベースバンド信号を生成する。復調部 は、このベースバンド信号をセンサー毎に割り当てられた直交符号で復調させる事で 各センサーに対応するベースバンド信号を同時に求める。  In the present invention, the modulation unit modulates each received signal having a plurality of sensor forces using an orthogonal code, and multiplexes the modulated signals. The frequency change generates a baseband signal with the multiplexed signal power and the orthogonal code added. The demodulator obtains the baseband signal corresponding to each sensor simultaneously by demodulating the baseband signal with the orthogonal code assigned to each sensor.
[0019] これにより、本発明は、各センサーで同時に受信した信号を使用し、到来方向推定 を行うことが可能となる。よって、本発明は、各センサーで受信される信号に余分な信 号成分が付加されるのを防ぐことができ、精度の高い到来方向推定を実施することが 可能となる。  Accordingly, the present invention can perform direction-of-arrival estimation using signals simultaneously received by the sensors. Therefore, according to the present invention, it is possible to prevent an extra signal component from being added to the signal received by each sensor, and it is possible to perform arrival direction estimation with high accuracy.
[0020] また、上記推定部は、到来方向推定を行うにあたり、上記複数のセンサーの数に応 じて、復調されたそれぞれのベースバンド信号を、ベクトルプロセッサ、 GPU ( Graphic Processing Unit)等を用いて並列処理するようにしてもよい。  [0020] Also, the estimation unit uses a vector processor, a GPU (Graphic Processing Unit), or the like for each baseband signal demodulated according to the number of the plurality of sensors when estimating the direction of arrival. May be processed in parallel.
[0021] これにより、本発明は高速な到来方向推定処理を実施することができる。  Accordingly, the present invention can perform high-speed arrival direction estimation processing.
[0022] また、上記符号生成部は、上記直交符号を所定の周期で切り替えるようにしてもよ い。また、自装置の位置情報に基づいて変更するようにしてもよい。  [0022] Further, the code generation unit may switch the orthogonal code at a predetermined cycle. Moreover, you may make it change based on the positional information on an own apparatus.
[0023] これにより、他装置力もの信号との混信を防ぎ、精度のよい到来方向推定を行うこと ができる。 [0023] Thereby, it is possible to prevent interference with signals from other devices and to accurately estimate the direction of arrival. Can do.
[0024] また、上記符号生成部は、上記直交符号を上記周波数変換部の信号源の位相雑 音に応じて変更するようにしてもよ!、。  [0024] Further, the code generation unit may change the orthogonal code according to the phase noise of the signal source of the frequency conversion unit!
[0025] これにより、本発明で処理する信号の信号対雑音比(SZN比)を向上させることが でき、ひいては、精度のよい到来方向推定を行うことができる。 [0025] Thereby, the signal-to-noise ratio (SZN ratio) of the signal processed in the present invention can be improved, and thus the arrival direction can be estimated with high accuracy.
[0026] なお、本発明は、以上の何れかの機能をコンピュータに実現させる方法であっても よい。また、本発明は、以上の何れかの機能を実現させるプログラムであってもよい。 また、本発明は、そのようなプログラムをコンピュータが読み取り可能な記憶媒体に記 録してちよい。 Note that the present invention may be a method for causing a computer to realize any one of the functions described above. Further, the present invention may be a program for realizing any of the functions described above. In the present invention, such a program may be recorded in a computer-readable storage medium.
発明の効果  The invention's effect
[0027] 本発明によれば、複数のセンサーを用いた到来波の到来方向推定を高精度かつ 高速に行うことができる到来方向推定装置を実現することができる。  [0027] According to the present invention, it is possible to realize an arrival direction estimation device that can perform arrival direction estimation of an incoming wave using a plurality of sensors with high accuracy and high speed.
図面の簡単な説明  Brief Description of Drawings
[0028] [図 1]図 1は実施形態における FMCWレーダ装置レシーバ部の機能構成図である。  FIG. 1 is a functional configuration diagram of an FMCW radar apparatus receiver unit according to an embodiment.
[図 2]図 2は BPSKモジュールの回路例を示す図である。  FIG. 2 is a diagram showing a circuit example of a BPSK module.
[図 3]図 3は PN符号の時間波形と復調波形との関連を示す図である。  FIG. 3 is a diagram showing a relationship between a time waveform of a PN code and a demodulated waveform.
[図 4]図 4は実施形態における信号の復調のタイミングチャートである。  FIG. 4 is a timing chart of signal demodulation in the embodiment.
[図 5]図 5は従来技術における FMCWレーダ装置の機能構成図である。  FIG. 5 is a functional configuration diagram of the FMCW radar apparatus in the prior art.
[図 6]図 6は従来技術における信号出力のタイミングチャートを示す図である。  FIG. 6 is a diagram showing a signal output timing chart in the prior art.
[図 7]図 7はスィッチ 3PSTの回路例を示す図である。  FIG. 7 is a diagram showing a circuit example of switch 3PST.
符号の説明  Explanation of symbols
[0029] 10、 100 センサーアレイ [0029] 10, 100 sensor array
11 送信用センサー  11 Transmitter sensor
15 スィッチボックス  15 Switch box
16、 17、 18、 19 スィッチ(SP3T)  16, 17, 18, 19 switch (SP3T)
110 アンプボックス  110 Amplifier box
20 RFトランシーバ/レシーバユニット  20 RF transceiver / receiver unit
140 RFダウンコンバータ 22 ミキサー 140 RF downconverter 22 Mixer
25 高出力増幅器 (HPA)  25 High power amplifier (HPA)
26 分配器 (HYB)  26 Distributor (HYB)
27 発振回路 (RF - VCO)  27 Oscillator (RF-VCO)
60 発振回路(BB - VCO)  60 Oscillator (BB-VCO)
150 擬似雑音符号生成器 (PN符号生成器)  150 Pseudo-noise code generator (PN code generator)
151 外部入力  151 External input
160 PN符号復調モジュール  160 PN code demodulation module
30、 170— 1— 170— N 低域通過フィノレタ(LPF)  30, 170— 1— 170— N Low pass finoleta (LPF)
40、 180 アナログ Zデジタル変換器 (AZD変換器)  40, 180 Analog Z digital converter (AZD converter)
50、 190 CPU (Central Processing Unit)  50, 190 CPU (Central Processing Unit)
14、 120-1— 120-N 低雑音増幅モジュール(LNAモジュール)  14, 120-1— 120-N Low noise amplification module (LNA module)
130 ハイブリッド合成器  130 Hybrid synthesizer
121— 1— 121 - N 低雑音増幅器 (LNA)  121— 1— 121-N Low Noise Amplifier (LNA)
122— 1— 122— N BPSKモジュール  122— 1— 122— N BPSK module
123— 1— 123— N バッファ  123— 1— 123— N Buffer
191 他機能部  191 Other functions
200 入力端子  200 input terminals
201 出力端子  201 Output terminal
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0030] 以下、図面を参照して、本発明を実施するための最良の形態 (以下、実施形態とい う)に係る到来方向推定装置について説明する。実施形態の構成は例示であり、本 発明は実施形態の構成に限定されない。 Hereinafter, an arrival direction estimation apparatus according to the best mode for carrying out the present invention (hereinafter referred to as an embodiment) will be described with reference to the drawings. The configuration of the embodiment is an exemplification, and the present invention is not limited to the configuration of the embodiment.
〔第一実施形態〕  [First embodiment]
本発明の到来方向推定装置における第一実施形態としての FMCWレーダ装置に ついて、図面を参照して以下に説明する。  An FMCW radar apparatus as a first embodiment in the arrival direction estimation apparatus of the present invention will be described below with reference to the drawings.
[0031] 〈装置構成〉 <Device configuration>
図 1は、第一実施形態における FMCWレーダ装置の機能構成を示すブロック図で ある。以下に、第一実施形態の FMCWレーダ装置の機能構成について図 1を用い て説明する。なお、図 1には、受信信号を処理する機能を主に示しており、信号の送 信処理に関する機能については、図 5に示す従来装置と同様なものとする。 FIG. 1 is a block diagram showing a functional configuration of the FMCW radar apparatus in the first embodiment. is there. The functional configuration of the FMCW radar apparatus according to the first embodiment will be described below with reference to FIG. FIG. 1 mainly shows functions for processing received signals, and functions related to signal transmission processing are the same as those of the conventional apparatus shown in FIG.
[0032] 第一実施形態における FMCWレーダ装置は、受信用センサーアレイ 100、送信用 センサー(図示せず)、アンプボックス 110、 RFダウンコンバータ 140 (本発明の周波 数変換部に相当)、擬似雑音符号 (以降、 PN符号と表記する)生成器 150 (本発明 の符号生成部に相当)、 PN符号復調モジュール 160 (本発明の復調部に相当)、受 信用のセンサー素子の数に対応する N個の低域通過フィルタ(以降、 LPFと表記す る) 170-1— 170-N、アナログ Zデジタル (以降、 AZDと表記する)変換器 180、 及び CPU (Central Processing Unit) 190 (本発明の推定部に相当)から構成される。  [0032] The FMCW radar apparatus according to the first embodiment includes a reception sensor array 100, a transmission sensor (not shown), an amplifier box 110, an RF down converter 140 (corresponding to the frequency conversion unit of the present invention), and pseudo noise. Code (hereinafter referred to as PN code) generator 150 (corresponding to the code generator of the present invention), PN code demodulator module 160 (corresponding to the demodulator of the present invention), N corresponding to the number of receiving sensor elements Low-pass filters (hereinafter referred to as LPF) 170-1—170-N, analog Z-digital (hereinafter referred to as AZD) converter 180, and CPU (Central Processing Unit) 190 (in accordance with the present invention) Equivalent to an estimation unit).
[0033] アンプボックス 110は、 N個の低雑音増幅モジュール(以降、 LNAモジュールと表 記する) 120-1— 120-N (本発明の変調部に相当)、及びハイブリッド合成器 130 ( 本発明の多重化部に相当)から構成される。そして、各 LNAモジュールは、 LNAモ ジュール 120— 1を例に挙げると、低雑音増幅器 (以降、 LNAと表記する) 121— 1、 B PSKモジュール 122— 1、及びバッファ 123— 1から構成される。その他の LNAモジュ ール 120— 2— 120— Nも同様の構成を持つ。また、 PN符号復調モジュール 160は、 受信用の各センサー素子に対応する N個の PN符号復調器 161— 1一 161— N力も構 成される。  [0033] The amplifier box 110 includes N low-noise amplification modules (hereinafter referred to as LNA modules) 120-1—120-N (corresponding to the modulation unit of the present invention), and a hybrid synthesizer 130 (the present invention). Equivalent to a multiplexing unit). Each LNA module is composed of a low noise amplifier (hereinafter referred to as LNA) 121-1, a B PSK module 122-1, and a buffer 123-1, taking the LNA module 120-1 as an example. . The other LNA modules 120-2-2-1-N have the same configuration. The PN code demodulator module 160 is also configured with N PN code demodulators 161-1 to 161-N corresponding to each sensor element for reception.
[0034] 以下、各構成における機能について説明する。  Hereinafter, functions in each configuration will be described.
[0035] く〈受信用センサーアレイ 100〉〉 [0035] <Receiving sensor array 100>
受信用センサーアレイ 100は、 N個のセンサー素子 A— A力も構成される。各セン  The receiving sensor array 100 is also configured with N sensor elements A—A force. Each Sen
1 N  1 N
サー素子は、例えば一列の線状に配列されており、到来信号 (到来波)をそれぞれ 受信する。受信された到来波は、アンプボックス 110内の LNAモジュールへ出力さ れる。  The cir elements are arranged, for example, in a line of lines, and receive incoming signals (arrival waves). The received incoming wave is output to the LNA module in the amplifier box 110.
[0036] <く PN符号生成器 150〉 >  <0036> <PN code generator 150>>
PN符号生成器 150は、受信用のセンサー素子毎に互いに直交する、異なる PN符 号を、全ての受信用センサー素子の数分 (N個)生成する。 PN符号生成器 150は、 生成された各 PN符号を、その PN符号に対応するセンサー素子に接続される LNA モジュールへそれぞれ出力する。さらに、 PN符号生成器 150は、生成された各 PN 符号をその PN符号に対応するセンサー素子に応じた PN符号復調器へそれぞれ出 力する。例えば、センサー素子 A用に生成された PN符号は、センサー素子 Aに対 The PN code generator 150 generates different PN codes that are orthogonal to each other for each receiving sensor element, for the number of all the receiving sensor elements (N). The PN code generator 150 sends each generated PN code to an LNA connected to the sensor element corresponding to the PN code. Output to each module. Further, the PN code generator 150 outputs each generated PN code to a PN code demodulator corresponding to the sensor element corresponding to the PN code. For example, the PN code generated for sensor element A corresponds to sensor element A.
1 1 応する LNAモジュール 120— 1及び PN符号復調器 161— 1へそれぞれ出力される。  1 1 Output to the corresponding LNA module 120-1 and PN code demodulator 161-1.
[0037] 本実施形態では、直交符号として矩形波である PN (Pseudo Noise)符号を用いて!/、 る力 例えば、直交 Wavelet波や正弦波のような他の直交符号であってもよい。 [0037] In the present embodiment, a PN (Pseudo Noise) code that is a rectangular wave is used as the orthogonal code. For example, another orthogonal code such as an orthogonal wavelet wave or a sine wave may be used.
[0038] 〈く LNAモジュール〉〉 [0038] <LNA module>
LNAモジュールは、受信用のセンサー素子毎に備えられ、各センサー素子にそれ ぞれ接続される。つまり、センサー素子 Aには LNAモジュール 120—1が接続され、  An LNA module is provided for each sensor element for reception, and is connected to each sensor element. In other words, LNA module 120-1 is connected to sensor element A,
1  1
センサー素子 Aには LNAモジュール 120— 2 (図示せず)が接続され、センサー素子  LNA module 120-2 (not shown) is connected to sensor element A, and sensor element
2  2
Aには LNAモジュール 120— Nが接続される。以下の説明では、 N個の LNAモジュ LNA module 120-N is connected to A. In the following description, N LNA modules
N N
ールは全て同じ構成であるため、代表して、 LNAモジュール 120—1について説明 するものとする。  Since all the modules have the same configuration, the LNA module 120-1 will be described as a representative.
[0039] LNAモジュール 120— 1は、受信用のセンサー素子から入力された到来信号を変 調し、ノ、イブリツド合成器 130へ出力する。上記到来信号の変調にあたり、 LNA121 —1が到来信号を低雑音増幅させ、 BPSK (Binary Phase Shift Keying)モジュール 12 The LNA module 120-1 modulates the incoming signal input from the receiving sensor element and outputs the modulated signal to the hybrid synthesizer 130. In modulating the incoming signal, LNA121-1 amplifies the incoming signal with low noise, and the BPSK (Binary Phase Shift Keying) module 12
2- 1へ出力する。 BPSKモジュール 122-1は、入力された信号を PN符号生成器 15 0からの PN符号を用いて拡散する。そして、その信号をバッファ 123— 1へ出力する。 ノ ッファ 123— 1は、入力された信号について、他回路力ものインピーダンス変動など の余分な信号成分を抑え、ハイブリッド合成器 130へ出力する。 Output to 2-1. The BPSK module 122-1 spreads the input signal using the PN code from the PN code generator 150. Then, the signal is output to the buffer 123-1. The notifier 123-1 suppresses extra signal components such as impedance fluctuations of other circuit powers for the input signal, and outputs it to the hybrid synthesizer 130.
[0040] BPSKモジュール 122—1— 122— Nのそれぞれは、例えば図 2に示すような回路に より構成される。図 2は、 BPSKモジュールの回路例を示す図である。この例による B PSKモジュールは、スィッチ素子としてダイオードが用いられており、スィッチ 202及 び 203を含んでいる。 PN符号が入力されると、この PN符号により当該ダイオードが 制御され、入力端子 200から入力される信号が変調される。そして変調された信号は 、出力端子 201から出力される。例えば、図 2が BPSKモジュール 122— 1を示してい た場合、入力端子 200には LNA121—1が接続され、出力端子 201にはバッファ 12 [0040] Each of the BPSK modules 122-1 to 122-N includes, for example, a circuit as shown in FIG. FIG. 2 is a diagram showing a circuit example of the BPSK module. The B PSK module according to this example uses a diode as a switch element and includes switches 202 and 203. When a PN code is input, the diode is controlled by the PN code, and a signal input from the input terminal 200 is modulated. The modulated signal is output from the output terminal 201. For example, when FIG. 2 shows the BPSK module 122-1, the LNA 121-1 is connected to the input terminal 200, and the buffer 12 is connected to the output terminal 201.
3— 1力接続されること〖こなる。 [0041] 〈くハイブリッド合成器 130〉〉 3—It must be connected by one force. [0041] <KU Hybrid Synthesizer 130>
ハイブリッド合成器 130は、全ての LNAモジュール 120—1— 120— Nからの信号を 合成し、その合成信号を RFダウンコンバータ 140へ出力する。  The hybrid synthesizer 130 synthesizes the signals from all the LNA modules 120-1—120—N and outputs the synthesized signal to the RF down converter 140.
[0042] 〈く RFダウンコンバータ 140〉〉 [0042] <KU RF down converter 140>
RFダウンコンバータ 140は、ハイブリッド合成器 130からの合成信号を本 FMCWレ ーダ装置力も送出する送信波の一部とミキシングし、ベースバンド信号を生成する。 ここで生成されたベースバンド信号は、 PN符号が掛かった信号となっている。このべ ースバンド信号は、 PN符号復調モジュール 160に出力される。  The RF down-converter 140 mixes the synthesized signal from the hybrid synthesizer 130 with a part of the transmission wave that also transmits the FMCW radar device power, and generates a baseband signal. The baseband signal generated here is a signal with a PN code applied. This baseband signal is output to the PN code demodulation module 160.
[0043] 〈く PN符号復調モジュール 160〉〉 [0043] <PN code demodulation module 160 >>
PN符号復調モジュール 160は、受信用の各センサー素子に対応した N個の PN符 号復調器 161— 1— 161— N力ら構成される。 PN符号復調モジュール 160は、 RFダ ゥンコンバータ 140からの信号を受けると、全ての PN符号復調器へ当該信号を分配 する。各 PN符号復調器は、 PN符号生成器 150から対応するセンサー用の PN符号 を受信し、分配された信号を当該 PN符号により逆拡散する。これにより、各 PN符号 復調器は、合成されている信号から、受信用の各センサー素子に対応した信号成分 をそれぞれ取り出すことができる。逆拡散された信号は、受信用の各センサー素子に 対応した LPFに出力される。  The PN code demodulating module 160 is composed of N PN code demodulators 161-1 to 161-N corresponding to each sensor element for reception. When receiving the signal from the RF down converter 140, the PN code demodulation module 160 distributes the signal to all the PN code demodulators. Each PN code demodulator receives the corresponding sensor PN code from the PN code generator 150, and despreads the distributed signal using the PN code. As a result, each PN code demodulator can extract a signal component corresponding to each sensor element for reception from the synthesized signal. The despread signal is output to the LPF corresponding to each sensor element for reception.
[0044] く〈低域通過フィルタ(LPF)〉〉 <0044> <Low-pass filter (LPF)>
LPFは、受信用の各センサー素子の個数 (N個)分、備えられている。各 LPFは、 入力された信号力 所望の帯域のベースバンド信号成分のみを取り出す。取り出さ れた信号は、 AZD変 180へ出力される。  There are as many LPFs as the number of receiving sensor elements (N). Each LPF takes out only the baseband signal component of the input signal power desired band. The extracted signal is output to the AZD converter 180.
[0045] 〈く AZD変翻 180〉〉 [0045] <KU AZD Transform 180 >>
AZD変 180は、各 LPF力も入力された信号をデジタルベースバンド信号に 変換し、 CPU190へ出力する。  The AZD converter 180 converts each LPF force input signal into a digital baseband signal and outputs it to the CPU 190.
[0046] 〈く CPU 190〉〉 [0046] <KU CPU 190 >>
CPU190は、各受信用のセンサー素子に対応したデジタルベースバンド信号を用 いて、到来方向の推定を行う。本実施形態では、 CPU190とした力 並列処理に秀 でるベクトルプロセッサ(Vector Processing Unit)を用いることでより高速な処理が可 能となる。 The CPU 190 estimates the direction of arrival using a digital baseband signal corresponding to each receiving sensor element. In this embodiment, a higher-speed processing is possible by using a vector processor (Vector Processing Unit) that excels in power parallel processing as CPU190. It becomes ability.
[0047] 〈動作例〉  <Example of operation>
次に、第一実施形態における FMCWレーダ装置の動作例について、図 3及び 4を 用いて説明する。図 3は、 PN符号の時間波形と復調波形との関連を示す図である。 図 4は、本実施形態における、各センサー素子で受信された信号が PN符号によって 変調され、ノ、イブリツド合成器 130、 RFダウンコンバータ 140への信号として出力さ れる時間推移を示すタイミングチャートである。なお、本システムの動作例の説明にあ たって、図 1に示す機能構成に関連付けた形で説明する。  Next, an operation example of the FMCW radar apparatus in the first embodiment will be described with reference to FIGS. FIG. 3 shows the relationship between the time waveform of the PN code and the demodulated waveform. FIG. 4 is a timing chart showing a time transition in which the signal received by each sensor element is modulated by the PN code and output as a signal to the noise synthesizer 130 and the RF down converter 140 in this embodiment. . In the explanation of the operation example of this system, it will be explained in association with the functional configuration shown in FIG.
[0048] まず、第一実施形態における FMCWレーダ装置の各機能部の動作について、受 信用センサー素子 Aによって受信される信号を例に挙げ説明する。なお、その他の [0048] First, the operation of each functional unit of the FMCW radar apparatus in the first embodiment will be described using a signal received by the reception sensor element A as an example. In addition, other
1  1
センサー素子 A Aの場合においても、動作する機能部(LNAモジュール 120— 2  Even in the case of sensor element A A, the functional part that operates (LNA module 120-2
2 N  2 N
一 120— N、 PN符号復調器 161—2— 161— N、及び LPF 170— 2— 170— N)が異な るだけであり、各機能部の動作は同様である。  1) 120-N, PN code demodulator 161-2-161-N, and LPF 170-2-170-N) are different, and the operation of each functional unit is the same.
[0049] 受信用センサーアレイ 100のセンサー素子 Aが測角対象力もの到来信号を受信 [0049] The sensor element A of the receiving sensor array 100 receives an incoming signal having a target force for angle measurement.
1  1
すると、受信された到来信号は、アンプボックス 110内の LNAモジュール 120— 1へ 出力される。 LNAモジュール 120— 1に入力された到来信号は、 LNA121— 1によつ て増幅され、 BPSKモジュール 122— 1に入力される。 BPSKモジュール 122— 1では 、入力された信号が当該センサー素子 A用の PN符号と掛け合わされて拡散、出力  Then, the received incoming signal is output to the LNA module 120-1 in the amplifier box 110. The incoming signal input to the LNA module 120-1 is amplified by the LNA 121-1, and input to the BPSK module 122-1. In the BPSK module 122-1, the input signal is multiplied with the PN code for the sensor element A to spread and output
1  1
される。 PN符号によって変調された信号は、ハイブリッド合成器 130へ出力され、ハ イブリツド合成器 130によって他のセンサー素子 A— Aからの変調信号と合成され  Is done. The signal modulated by the PN code is output to the hybrid synthesizer 130 and is synthesized by the hybrid synthesizer 130 with the modulation signal from the other sensor elements A—A.
2 N  2 N
る。合成された信号は、 RFダウンコンバータ 140によって、送信信号とミキシングされ 、ベースバンド信号となる。  The The synthesized signal is mixed with the transmission signal by the RF down converter 140 to become a baseband signal.
[0050] 各センサー素子力ものベースバンド成分が合成された信号は、 PN符号復調モジュ ール 160に入力されると、各 PN符号復調器へそれぞれ分配される。そして、 PN符 号復調器 161— 1ではこのベースバンド信号を逆拡散する。この時、 PN符号復調器 1 61— 1では、 PN符号生成器 150から出力されるセンサー素子 Aに対応する符号が [0050] When a signal obtained by combining baseband components corresponding to each sensor element power is input to the PN code demodulation module 160, it is distributed to each PN code demodulator. The PN code demodulator 161-1 despreads this baseband signal. At this time, the PN code demodulator 1 61-1 has a code corresponding to the sensor element A output from the PN code generator 150.
1  1
用いられるので、 LPF170—1にはセンサー素子 Aに対応したベースバンド成分のみ  Because it is used, LPF170-1 only has a baseband component corresponding to sensor element A.
1  1
が現れる。その後、センサー素子 Aに対応するベースバンド信号は、 LPF170—1で 帯域制限を掛けられ、 AZD変翻180へ出力される。 AZD変翻180は、入力さ れた信号をデジタルベースバンド信号に変換し、 CPU190へ出力する。 CPU190は 、各センサー素子 A— Aに対応するデジタルベースバンド信号を受けると、それらを Appears. After that, the baseband signal corresponding to sensor element A is LPF170-1. Bandwidth is limited and output to AZD translation 180. The AZD conversion 180 converts the input signal into a digital baseband signal and outputs it to the CPU 190. When the CPU 190 receives a digital baseband signal corresponding to each sensor element A—A,
1 N  1 N
用いた到来方向推定を行う。  The direction-of-arrival estimation used is performed.
[0051] <〈受信信号の多重化原理〉 > [0051] <Reception signal multiplexing principle>
ここで、上記 PN符号を用いた受信信号の多重化 (LNAモジュール及びノ、イブリツ ド合成器による処理)、及び復調 (PN符合復調モジュールによる処理)の原理につ ヽ て、図 3を用いて説明する。  Here, the principle of multiplexing of received signals using the PN code (processing by the LNA module and the hybrid synthesizer) and demodulation (processing by the PN code demodulating module) will be described with reference to FIG. explain.
[0052] 図 3 (A)は、 PN符号生成器 150から出力される、各センサー素子に対応した PN符 号の時間波形を示す。 Aで示される波形がセンサー素子 A用に出力された PN符号 FIG. 3 (A) shows the time waveform of the PN code corresponding to each sensor element output from the PN code generator 150. The PN code in which the waveform indicated by A is output for sensor element A
1 1  1 1
の波形である。同様に、センサー素子 A及び A用に出力された PN符号の波形が示  It is a waveform. Similarly, the PN code waveforms output for sensor elements A and A are shown.
2 N  2 N
されている。図 3 (B)は、図 3 (A)に示す各 PN符号にセンサー素子 A用の PN符号  Has been. Fig. 3 (B) shows the PN code for sensor element A for each PN code shown in Fig. 3 (A).
1  1
を掛け合わせ、積分した結果の信号波形を示している。  The signal waveform obtained by multiplying and integrating is shown.
[0053] 図 3 (B)の結果から、 A用の PN符号に A用の PN符号を掛け合わせ、積分した場  [0053] From the result in Fig. 3 (B), the PN code for A is multiplied by the PN code for A and integrated.
1 1  1 1
合のみ、波形が出力されることが分かる。これは、各 PN符号がそれぞれ直交符号と なっている力 であり、これが、本発明に係る FMCWレーダ装置による受信信号の 多重化の原理となる。すなわち、各 LNAモジュールによりセンサー素子用の PN符号 が掛け合わされ、ハイブリッド合成器 130によって合成された信号は、再度、当該 PN 符号によって、各 PN符号復調器により逆拡散され、各センサー素子に対応する信号 を得ることができる。これにより、複数の受信用センサー素子に対して、 1つの RFダウ ンコンバータ 140を共用し、かつ、所望のセンサー素子に対応するベースバンド信号 を一括に取得することができるわけである。  It can be seen that a waveform is output only when This is the force with which each PN code is an orthogonal code, and this is the principle of multiplexing received signals by the FMCW radar apparatus according to the present invention. That is, the PN code for the sensor element is multiplied by each LNA module, and the signal synthesized by the hybrid synthesizer 130 is despread again by each PN code demodulator by the PN code, and corresponds to each sensor element. A signal can be obtained. Thus, one RF down converter 140 can be shared for a plurality of receiving sensor elements, and baseband signals corresponding to the desired sensor elements can be acquired in a batch.
[0054] <〈受信信号のベースバンド信号化〉 > [0054] <Base signal conversion of received signal>
次に、測角対象からの到来信号が各センサー素子でそれぞれ受信され、各センサ 一にそれぞれ割り当てられた PN符号によって変調を受けた RF信号力 RFダウンコ ンバータ 140によってベースバンド信号化されるまでのタイミングについて図 4を用い て説明する。図 4は、各センサー素子で受信された信号が RFダウンコンバータ 140 によって復調される推移を、個々のセンサー毎に示したタイミングチャートである。な お、図 4は、先に述べた図 6の従来技術におけるタイミングチャートに対応するもので あり、図 4に示す T は変調信号の周期を示し、図 6の T と同等の時間を示している Next, the incoming signal from the object to be measured is received by each sensor element, and the RF signal power modulated by the PN code assigned to each sensor is converted into a baseband signal by the RF down converter 140. The timing will be described with reference to Fig. 4. FIG. 4 is a timing chart showing the transition of the signal received by each sensor element by the RF down converter 140 for each sensor. Na FIG. 4 corresponds to the timing chart in the prior art of FIG. 6 described above, where T shown in FIG. 4 indicates the period of the modulation signal and shows the same time as T in FIG.
F F  F F
[0055] 図 4に示す BB— OSCは、発振回路(図示せず)から発せられる変調信号 (例えば、 三角波)の時間波形を示し、 1周期分 (T )のチャートであることを示している。 LNA [0055] BB-OSC shown in FIG. 4 shows a time waveform of a modulation signal (for example, a triangular wave) emitted from an oscillation circuit (not shown), and shows that it is a chart for one period (T). . LNA
FM FM
ZBUFFERは、 LNAモジュール内の LNA及びバッファの ON/OFF状態を示して おり、図 4においては全ての LNAモジュールの LNA及びバッファが ON状態である ことを示している。 PN-Aは、 PN符号生成器 150によって出力される、センサー素 ZBUFFER shows the ON / OFF status of the LNA and buffers in the LNA module. In Fig. 4, the LNA and buffers of all LNA modules are in the ON status. PN-A is a sensor element output by the PN code generator 150.
1  1
子 A用の PN符号の時間波形を示す。言い換えれば、 PN— Aは、 LNAモジュール  The time waveform of the PN code for child A is shown. In other words, PN-A is an LNA module
1 1  1 1
120— 1の BPSKモジュール 122— 1が信号の変調(拡散)に用 、る PN符号の波形を 示している。 A—INは、センサー素子 A力 LNAモジュール 120— 1に入力される到  The BPSK module 122-1 of 120-1 shows the waveform of the PN code used for signal modulation (spreading). A—IN is input to sensor element A force LNA module 120-1
1 1  1 1
来信号の波形を示している。 A—OUTは、 LNAモジュール 120— 1から出力される  The waveform of the incoming signal is shown. A—OUT is output from LNA module 120-1
1  1
信号の波形を示している。以下、各 LNAモジュールのそれぞれの PN符号、 LNAモ ジュールに入力される信号、及び LNAモジュールから出力される信号の波形を示す グラフが並んでいる。  The signal waveform is shown. Below are graphs showing the PN code of each LNA module, the signal input to the LNA module, and the waveform of the signal output from the LNA module.
[0056] 各 LNAモジュールに入力される PN符号は先に述べたとおり直交する符号となって いる。また、センサー素子 Aを基準とした各センサー素子の番号を k(k= l  [0056] The PN code input to each LNA module is an orthogonal code as described above. In addition, the number of each sensor element with reference to sensor element A is k (k = l
1 一 N)とす ると、各 LNAモジュールに入力される到来信号 (A— IN)は、 2 π (k-l) d/ l sin 0  1 1 N), the incoming signal (A—IN) input to each LNA module is 2 π (k−l) d / l sin 0
k  k
分位相がずれた形となる。そして、各 LNAモジュールから出力される信号 (A— OU  The phase is shifted. The signals output from each LNA module (A—OU
k  k
T)は、それぞれ入力信号 (A -IN)に各 PN符号を掛け合わされた結果となっている  T) is the result of multiplying each input signal (A -IN) by each PN code.
k  k
。但し、 Θは測角対象の角度を、 dはセンサーアレーを構成するセンサー素子間の距 離 (一様間隔としている)を、 λは RF搬送波の波長を示している。また、説明を簡単 にするため、測角対象の個数は 1個を想定している。  . Where Θ is the angle to be measured, d is the distance between the sensor elements that make up the sensor array (uniform spacing), and λ is the RF carrier wavelength. To simplify the explanation, the number of angle measurement objects is assumed to be one.
[0057] ここで、図 6に示す従来技術における FMCWレーダ装置と、図 4に示す本発明に おける FMCWレーダ装置とを比較すると、到来方向推定をするにあたって必要な信 号を取得する時間が、従来の装置では最低でも (受信用センサー素子の数) X (Τ Here, when the FMCW radar apparatus in the prior art shown in FIG. 6 and the FMCW radar apparatus in the present invention shown in FIG. 4 are compared, the time required to acquire the signal necessary for estimating the direction of arrival is In conventional devices, at least (number of receiving sensor elements) X (Τ
F  F
)時間力かるのに対し、本発明における装置では、 1周期分 (Τ )の時間で済むこと  Whereas it takes time, the device according to the present invention requires only one period (Τ).
F  F
が分かる。 [0058] また、図 4のタイミングチャートで示すとおり、本実施形態における FMCWレーダ装 置では、 LNAも BUFFERも常に ON状態とされるため、各 LNAモジュールにおける インピーダンスが安定し、周波数変換器を含めた受信器の設計が容易になる。 I understand. In addition, as shown in the timing chart of FIG. 4, in the FMCW radar apparatus according to the present embodiment, both the LNA and the BUFFER are always in the ON state, so that the impedance in each LNA module is stable and includes the frequency converter. This makes it easier to design a receiver.
[0059] 〈第一実施形態の作用効果〉  <Effects of First Embodiment>
第一実施形態における FMCWレーダ装置では、受信用センサーアレイ 100を構 成する各センサー素子からの受信信号を、 LNAモジュールが PN符号を用いて拡散 し、この拡散された信号をハイブリッド合成器 130が合成 (多重化)する。そして、本 F MCWレーダ装置は、この多重化された信号を 1つの RFダウンコンバータ 140がまと めて復調し、ベースバンド信号を生成する。そして、本 FMCWレーダ装置は、このべ ースバンド信号を PN符号復調モジュール 160により受信用のセンサー素子毎に割り 当てられた PN符号で復調させる事で各センサー素子に対応するベースバンド信号 を同時に求める。  In the FMCW radar apparatus in the first embodiment, the LNA module spreads the received signal from each sensor element constituting the receiving sensor array 100 using the PN code, and the hybrid synthesizer 130 spreads the spread signal. Combine (multiplex). In the FMCW radar device, the RF down converter 140 collectively demodulates the multiplexed signal to generate a baseband signal. The FMCW radar apparatus simultaneously obtains a baseband signal corresponding to each sensor element by demodulating the baseband signal with the PN code assigned to each sensor element for reception by the PN code demodulation module 160.
[0060] これにより、第一実施形態では、各センサーで同時に受信した信号を使用し、到来 方向推定を行うことが可能となる。よって、各センサーで受信される信号に余分な信 号成分が付加されるのを防ぐことができ、到来方向推定の理論的仮定に近い状況を 作り出すことができる。ひいては、精度の高い到来方向推定を実施することが可能と なる。  Accordingly, in the first embodiment, it is possible to perform the direction of arrival estimation using signals received simultaneously by the sensors. Therefore, it is possible to prevent an extra signal component from being added to the signal received by each sensor, and to create a situation close to the theoretical assumption of direction of arrival estimation. As a result, it is possible to perform direction of arrival estimation with high accuracy.
[0061] また、装置の到来方向推定に要する時間を短くすることができるため、装置のスル 一プットを少なくとも 1ZN (センサー素子数)に向上させることができる。  [0061] In addition, since the time required for estimating the arrival direction of the device can be shortened, the throughput of the device can be improved to at least 1ZN (the number of sensor elements).
[0062] この結果、測角対象が移動している場合など、方向推定の難しい対象に対しての 到来方向推定についても、高速に精度良く検出することができる。特に、第一実施形 態などのレーダ装置など、リアルタイム性が要求される装置での高!、効果が期待でき 、さら〖こは、多測角対象の方向推定を行う場合により明確なメリットが現れる。  [0062] As a result, it is possible to accurately detect the arrival direction for a target whose direction is difficult to be detected, such as when the angle measurement target is moving, at high speed. In particular, it can be expected to be highly effective in a device that requires real-time performance, such as the radar device of the first embodiment. appear.
[0063] また、実施形態における FMCWレーダ装置では、複数の受信用センサーから受信 された受信信号を合成することにより、 1つの RFダウンコンバータを共用する。  [0063] Further, in the FMCW radar apparatus in the embodiment, one RF down converter is shared by synthesizing reception signals received from a plurality of reception sensors.
[0064] これにより、図 5に示した従来の装置構成ではスィッチの挿入損失を補償するため にセンサー素子の個数以上の LNAが必要であるのに対して、本実施形態における FMCWレーダ装置は、 LNAの数を減らすことができ、また、図 2に示すように BPSK モジュールの方が回路的に単純であるため、回路設計においても有効である。ひい ては、回路設計の工数削減、回路の品質向上、及び低価格化を実現するだけでなく 、ワンチップレーダの実現を可能とする。 As a result, the conventional apparatus configuration shown in FIG. 5 requires more LNAs than the number of sensor elements to compensate for the insertion loss of the switch, whereas the FMCW radar apparatus in the present embodiment The number of LNAs can be reduced and BPSK as shown in Figure 2 Since the module is simpler in circuit, it is also effective in circuit design. As a result, it not only reduces circuit design man-hours, improves circuit quality, and reduces costs, but also enables one-chip radar.
[0065] ぐ変形例〉  [0065] Variations>
本実施形態における FMCWレーダ装置では、 PN符号生成器 150により各センサ 一素子に対応した PN符号が生成されるが、各センサー素子に割り振られた PN符号 が周期的に変わる形で生成されるようにしてもよい。  In the FMCW radar apparatus in this embodiment, the PN code generator 150 generates a PN code corresponding to each sensor element, but the PN code assigned to each sensor element is generated in a form that changes periodically. It may be.
[0066] また、 PN符号生成器 150は、ナビゲーシヨンシステム、 GPS、磁気ネイル、若しくは 信号機などの他の装置により自装置の位置情報を取得し、その位置情報に基づいて 、 PN符号を切り替えるようにしてもよい。この場合、 PN符号生成器 150は図 1に示す 外部入力 151として自装置の位置情報の入力を受け、それを利用して PN符号を切 り替えるようにしてもよい。  [0066] In addition, the PN code generator 150 acquires the position information of its own device using another device such as a navigation system, GPS, magnetic nails, or a traffic light, and switches the PN code based on the position information. It may be. In this case, the PN code generator 150 may receive the position information of its own device as the external input 151 shown in FIG. 1, and switch the PN code using this.
[0067] これにより、本実施形態における FMCWレーダ装置は、同様の PN符号を送信波 に利用する他の無線装置との間における信号の混信を防ぐことができ、ひいては、他 装置の影響を受けることなぐ精巧な到来方向推定を行うことが可能となる。  [0067] Thereby, the FMCW radar apparatus according to the present embodiment can prevent signal interference with other radio apparatuses that use the same PN code as a transmission wave, and is therefore affected by the other apparatuses. It becomes possible to perform precise direction-of-arrival estimation.
[0068] また、 PN符号生成器 150は、 RFダウンコンバータ 140内の信号源における位相雑 音に応じて、 PN符号の周波数を変更するようにしてもよい。この場合、 PN符号生成 器 150は図 1に示す外部入力 151として位相雑音情報を受け、それを利用して PN 符号を切り替えるようにしてもょ 、。  [0068] Further, the PN code generator 150 may change the frequency of the PN code in accordance with the phase noise in the signal source in the RF down converter 140. In this case, the PN code generator 150 may receive the phase noise information as the external input 151 shown in FIG. 1, and use it to switch the PN code.
[0069] これにより、本実施形態における FMCWレーダ装置は、信号対ノイズ比(SZN比) を向上させた信号を基に到来方向推定を行うことができる。  [0069] Thereby, the FMCW radar apparatus according to the present embodiment can perform the direction of arrival estimation based on the signal with improved signal-to-noise ratio (SZN ratio).
[0070] また、本実施形態における FMCWレーダ装置では、 PN符号復調モジュール 160 によって全てのセンサー素子に対応するベースバンド信号を得、それら全ての信号 を利用して到来方向推定を行うこととしている。しかし、まず、センサー素子のうちの いずれかに対応するベースバンド信号力 測角対象の位置又は速度を粗く推定し、 その推定結果により、全てのセンサー素子に対応するベースバンド信号を用いた精 密な到来方向推定を行うか否かを判断するようにしてもよい。この場合には、 CPU部 190内の所定の機能部 191によって上記粗推定を行い、その後の精密な推定を行う か否かを判断し、その判断結果を CPU部 190に返すようにすればよい。 In the FMCW radar apparatus according to the present embodiment, baseband signals corresponding to all sensor elements are obtained by the PN code demodulation module 160, and the arrival direction is estimated using all these signals. However, first, the baseband signal force corresponding to one of the sensor elements is roughly estimated for the position or velocity of the angle measurement target, and based on the estimation result, the precision using the baseband signals corresponding to all sensor elements is used. It may be determined whether or not to perform the arrival direction estimation. In this case, the rough estimation is performed by the predetermined function unit 191 in the CPU unit 190, and then the subsequent accurate estimation is performed. Or not, and the determination result may be returned to the CPU unit 190.
[0071] これにより、粗い推定により測角対象が推定対象外のものであつたと判断された場 合など、余計な処理を省くことができ、適切な負荷により精密な到来方向推定を行う ことが可能となる。 [0071] With this, it is possible to omit extra processing, such as when it is determined by rough estimation that the angle measurement target is not the estimation target, and it is possible to perform accurate arrival direction estimation with an appropriate load. It becomes possible.
[0072] また、本実施形態では、複数のセンサーで受信した到来信号を PN符号により拡散 Z逆拡散することで多重化し、到来方向推定を行っているが、周波数ホッピング方式 を用いて、複数のセンサーのそれぞれに対応するホッピング周波数のパターンにより 、変調 Z復調を行うようにしてもよい。その場合には、 PN符号生成器 150が各センサ 一素子に応じたホッピング周波数パターンを生成するようにし、各 LNAモジュール及 び各 PN符合復調器がそのホッピング周波数パターンを受け、各センサー素子に対 応したそれぞれの信号に対して処理をするようにすればよ!ヽ。  [0072] Also, in this embodiment, the arrival signals received by a plurality of sensors are multiplexed by diffusing Z despreading with a PN code to perform arrival direction estimation, but using a frequency hopping method, Modulation Z demodulation may be performed according to a hopping frequency pattern corresponding to each sensor. In that case, the PN code generator 150 generates a hopping frequency pattern corresponding to one element of each sensor, and each LNA module and each PN code demodulator receives the hopping frequency pattern and applies to each sensor element. Process each corresponding signal! ヽ.

Claims

請求の範囲 The scope of the claims
[1] 測角対象からの到来信号を受信する複数のセンサーと、  [1] Multiple sensors that receive incoming signals from the object to be measured,
前記複数のセンサーのそれぞれに対応する直交符号を生成する符号生成部と、 前記複数のセンサーにより受信された前記到来信号のそれぞれを、その到来信号 を受信したセンサーに対応する前記直交符号を用いて変調する変調部と、  A code generation unit that generates orthogonal codes corresponding to each of the plurality of sensors, and each of the incoming signals received by the plurality of sensors, using the orthogonal code corresponding to the sensor that has received the incoming signals. A modulating unit for modulating;
変調されたそれぞれの到来信号を多重化する多重化部と、  A multiplexing unit for multiplexing each modulated incoming signal;
多重化された信号を、前記直交符号が付加された状態のベースバンド信号に変換 する周波数変換部と、  A frequency converter that converts the multiplexed signal into a baseband signal with the orthogonal code added thereto;
前記ベースバンド信号を前記複数のセンサーの数に応じて分配し、その分配され た各ベースバンド信号を前記複数のセンサーに対応するそれぞれの前記直交符号 により復調する復調部と、  A demodulator that distributes the baseband signal according to the number of the plurality of sensors, and demodulates the distributed baseband signals by the orthogonal codes corresponding to the plurality of sensors;
復調されたベースバンド信号を用いて、前記到来信号の到来方向を推定する推定 部と、  An estimation unit that estimates an arrival direction of the incoming signal using a demodulated baseband signal;
を備える到来方向推定装置。  An arrival direction estimation apparatus comprising:
[2] 前記推定部は、前記複数のセンサーの数に応じて復調されたそれぞれのベースバ ンド信号をベクトルプロセッサを用 、て並列処理することにより、到来方向を推定する 請求項 1記載の到来方向推定装置。  2. The direction of arrival according to claim 1, wherein the estimation unit estimates the direction of arrival by performing parallel processing on each baseband signal demodulated according to the number of the plurality of sensors using a vector processor. Estimating device.
[3] 前記符号生成部は、前記周波数変換部の信号源の位相雑音に応じて、前記直交 符号の周波数を変更する請求項 1に記載の到来方向推定装置。 [3] The direction-of-arrival estimation apparatus according to claim 1, wherein the code generation unit changes the frequency of the orthogonal code in accordance with phase noise of a signal source of the frequency conversion unit.
[4] 前記符号生成部は、前記直交符号として、擬似雑音符号、正弦波、又は Wavelet 符号を用いる請求項 1記載の到来方向推定装置。 4. The arrival direction estimation apparatus according to claim 1, wherein the code generation unit uses a pseudo noise code, a sine wave, or a wavelet code as the orthogonal code.
[5] 前記復調部により復調されたベースバンド信号の少なくとも 1つを用いて、前記測 角対象の位置又は速度を推定する位置推定部を更に備え、 [5] The apparatus further comprises a position estimation unit that estimates the position or velocity of the angle measurement target using at least one of the baseband signals demodulated by the demodulation unit,
前記推定部は、推定された前記測角対象の位置又は速度に基づき到来方向推定 の優先度を決定し、当該優先度に応じて、精密な推定と粗い推定とを切り替える、 請求項 1記載の到来方向推定装置。  The estimation unit determines a priority of direction of arrival estimation based on the estimated position or velocity of the angle measurement target, and switches between precise estimation and rough estimation according to the priority. Direction of arrival estimation device.
[6] 前記符号生成部は、前記直交符号を所定の周期で切り替える請求項 1記載の到来 方向推定装置。 6. The arrival direction estimation apparatus according to claim 1, wherein the code generation unit switches the orthogonal code at a predetermined period.
[7] 自装置の位置情報を取得する取得部を更に備え、 [7] It further comprises an acquisition unit for acquiring the position information of the own device,
前記符号生成部は、前記位置情報に応じた前記直交符号を生成する請求項 1記 載の到来方向推定装置。  The arrival direction estimation device according to claim 1, wherein the code generation unit generates the orthogonal code corresponding to the position information.
[8] 前記符号生成部は、前記複数のセンサーのそれぞれに対応するホッピング周波数 パターンを生成し、 [8] The code generation unit generates a hopping frequency pattern corresponding to each of the plurality of sensors,
前記変調部は、前記複数のセンサーにより受信された前記到来信号のそれぞれを 、その到来信号を受信したセンサーに対応する前記ホッピング周波数パターンを用 いて変調し、  The modulator modulates each of the incoming signals received by the plurality of sensors using the hopping frequency pattern corresponding to the sensor that has received the incoming signals,
前記復調部は、分配された各ベースバンド信号をそれぞれに割り当てられたセンサ 一に対応する前記ホッピング周波数パターンにより復調する、  The demodulator demodulates each distributed baseband signal with the hopping frequency pattern corresponding to a sensor assigned to each baseband signal.
請求項 1記載の到来方向推定装置。  The arrival direction estimation apparatus according to claim 1.
[9] 複数のセンサーにより測角対象からの到来信号を受信し、当該到来信号の到来方 向を推定する到来方向推定方法であって、 [9] An arrival direction estimation method for receiving an arrival signal from an object to be measured by a plurality of sensors and estimating an arrival direction of the arrival signal,
前記複数のセンサーのそれぞれに対応する直交符号を生成するステップと、 前記複数のセンサーにより受信された前記到来信号のそれぞれを、その到来信号 を受信したセンサーに対応する前記直交符号を用いて変調するステップと、 変調されたそれぞれの到来信号を多重化するステップと、  Generating an orthogonal code corresponding to each of the plurality of sensors, and modulating each of the incoming signals received by the plurality of sensors using the orthogonal code corresponding to the sensor that received the incoming signals. And multiplexing each modulated incoming signal;
多重化された信号を、前記直交符号が付加された状態のベースバンド信号に変換 するステップと、  Converting the multiplexed signal into a baseband signal with the orthogonal code added thereto;
前記ベースバンド信号を前記複数のセンサーの数に応じて分配し、その分配され た各ベースバンド信号を前記複数のセンサーに対応するそれぞれの前記直交符号 により復調するステップと、  Distributing the baseband signal according to the number of the plurality of sensors, and demodulating each distributed baseband signal by the respective orthogonal codes corresponding to the plurality of sensors;
復調されたベースバンド信号を用いて、前記到来信号の到来方向を推定するステ ップと、  Using the demodulated baseband signal to estimate the direction of arrival of the incoming signal;
を備える到来方向推定方法。  A direction of arrival estimation method comprising:
PCT/JP2005/001908 2005-02-09 2005-02-09 Arrival direction estimating apparatus WO2006085360A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/001908 WO2006085360A1 (en) 2005-02-09 2005-02-09 Arrival direction estimating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/001908 WO2006085360A1 (en) 2005-02-09 2005-02-09 Arrival direction estimating apparatus

Publications (1)

Publication Number Publication Date
WO2006085360A1 true WO2006085360A1 (en) 2006-08-17

Family

ID=36792935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/001908 WO2006085360A1 (en) 2005-02-09 2005-02-09 Arrival direction estimating apparatus

Country Status (1)

Country Link
WO (1) WO2006085360A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015045573A1 (en) * 2013-09-27 2015-04-02 日産自動車株式会社 Antenna device and signal processing method
CN111698037A (en) * 2020-06-08 2020-09-22 西安电子科技大学 Single microwave signal direction-of-arrival angle estimation method based on microwave photons

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6113371A (en) * 1984-06-29 1986-01-21 Hitachi Ltd Reproduction processing system of synthetic-aperture radar image
JPH08334557A (en) * 1995-06-09 1996-12-17 Honda Motor Co Ltd Radar apparatus carried on vehicle
JPH0915330A (en) * 1995-06-29 1997-01-17 Hitachi Ltd Radar equipment
JP2000088944A (en) * 1998-09-14 2000-03-31 Toyota Central Res & Dev Lab Inc Holographic radar

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6113371A (en) * 1984-06-29 1986-01-21 Hitachi Ltd Reproduction processing system of synthetic-aperture radar image
JPH08334557A (en) * 1995-06-09 1996-12-17 Honda Motor Co Ltd Radar apparatus carried on vehicle
JPH0915330A (en) * 1995-06-29 1997-01-17 Hitachi Ltd Radar equipment
JP2000088944A (en) * 1998-09-14 2000-03-31 Toyota Central Res & Dev Lab Inc Holographic radar

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015045573A1 (en) * 2013-09-27 2015-04-02 日産自動車株式会社 Antenna device and signal processing method
JP6037033B2 (en) * 2013-09-27 2016-12-07 日産自動車株式会社 Antenna device and signal processing method
JPWO2015045573A1 (en) * 2013-09-27 2017-03-09 日産自動車株式会社 Antenna device and signal processing method
US9843109B2 (en) 2013-09-27 2017-12-12 Nissan Motor Co., Ltd. Antenna device and signal processing method
CN111698037A (en) * 2020-06-08 2020-09-22 西安电子科技大学 Single microwave signal direction-of-arrival angle estimation method based on microwave photons
CN111698037B (en) * 2020-06-08 2021-06-01 西安电子科技大学 Single microwave signal direction-of-arrival angle estimation method based on microwave photons

Similar Documents

Publication Publication Date Title
Moghaddasi et al. Multifunctional transceiver for future radar sensing and radio communicating data-fusion platform
EP3529902B1 (en) Backscatter systems, devices, and techniques utilizing css modulation and/or higher order harmonic cancellation
Cabric et al. Spectrum sharing radios
JP2689890B2 (en) Spread spectrum receiver
CN100534026C (en) Bluetooth RF based RF-tag read/write station
US8723720B2 (en) Wireless location detection and/or tracking device and associated methods
US9966989B2 (en) Array antenna system and spread spectrum beamformer method
US7409287B2 (en) System and method for networking a plurality of nodes
JP4238027B2 (en) RF base station data repeater
Han et al. Multifunctional transceiver for future intelligent transportation systems
US8483720B2 (en) Smart/active RFID tag for use in a WPAN
CN1741514B (en) Backscatter interrogator reception method and interrogator for a modulated backscatter system
JPH07202756A (en) Spread spectrum receiver
WO2012037680A1 (en) Radar system with integrated communication functionality
CN101517942B (en) Active receiver detection and ranging
EP2220792A1 (en) Near field radio frequency communication system
US10917134B2 (en) RFID systems
WO2008029812A1 (en) Distance measuring device
Lietzen et al. Polarization conversion-based ambient backscatter system
WO2006085360A1 (en) Arrival direction estimating apparatus
JP2001230702A (en) Spead spectrum communication symchronization acquisition circuit
JP2014059284A (en) Safe driving support device added with mutual distance measurement function
WO2005020455A1 (en) Communication system inquiry device
US20040203877A1 (en) Two-way ranging techniques
Lindenmeier et al. A wireless data link for mobile applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05709960

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5709960

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP