WO2006084981A1 - Methode de traitement des reservoirs petroliers par injection de nanoparticules contenant un additif anti depots mineraux - Google Patents

Methode de traitement des reservoirs petroliers par injection de nanoparticules contenant un additif anti depots mineraux Download PDF

Info

Publication number
WO2006084981A1
WO2006084981A1 PCT/FR2006/000267 FR2006000267W WO2006084981A1 WO 2006084981 A1 WO2006084981 A1 WO 2006084981A1 FR 2006000267 W FR2006000267 W FR 2006000267W WO 2006084981 A1 WO2006084981 A1 WO 2006084981A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
active polymer
polycation
nanoparticles
particles
Prior art date
Application number
PCT/FR2006/000267
Other languages
English (en)
Inventor
Jean-François Argillier
David Pasquier
Original Assignee
Institut Francais Du Petrole
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut Francais Du Petrole filed Critical Institut Francais Du Petrole
Priority to EP06709256A priority Critical patent/EP1859007A1/fr
Priority to US11/815,872 priority patent/US20080269083A1/en
Publication of WO2006084981A1 publication Critical patent/WO2006084981A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/52Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning
    • C09K8/528Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning inorganic depositions, e.g. sulfates or carbonates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/52Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning
    • C09K8/536Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning characterised by their form or by the form of their components, e.g. encapsulated material

Definitions

  • the present invention relates to a method of preventive treatment of the surroundings of a hydrocarbon exploitation well, and neighboring reservoir zones.
  • it relates to the use of chemical additives encapsulated in the form of deformable nanoparticles and specific to the prevention of mineral deposits called "antiscale” additives. This is a “smart" preventive treatment of reservoir rock near wellbore.
  • the invention is based on the idea of injecting in the porous and permeable medium nanoparticles containing an anti-deposition polymer ("antiscale”) in the aqueous phase, which are fixed in the porous medium, without appreciably reducing the permeability of the reservoir rock, and diffuse a continuous background of polymer in the presence of more or less salty water.
  • antiscale anti-deposition polymer
  • the present invention relates to a reservoir rock treatment method in which the following steps are carried out:
  • nanometer-sized particles comprising in the form of a water-soluble, water-soluble polymer, an active anti-mineral deposit encapsulated either in a matrix to form a nanocomplex, or in a membrane to form a nanocapsule,
  • a quantity of said particles is maintained in dispersion in a liquid phase; the dispersion is injected into the permeable rock;
  • the active polymer is released on contact with salt water.
  • the liquid phase can be: aqueous, organic, or a mixture of both.
  • the particles may have a particle size sufficiently small so as not to clog the permeable rock during the injection of the nanoparticles.
  • the particle size of the nanoparticles may be less than 1 ⁇ m, and preferably centered around 100 nm.
  • the particles can be adapted to adsorb on the rock to be treated.
  • the particles can be sufficiently deformable to improve the injectivity in a porous medium.
  • the nanoparticles may be polycation / polyanion complexes, the polyanion being the active polymer, the cationic polymer, more or less crosslinked, or non-crosslinked, forming the matrix.
  • the nanocapsules may be the result of interfacial polymerization within a nanoemulsion containing the active polymer.
  • the active polymer may be chosen from at least one of the following polymers: polyphosphates and in particular orthophosphoric acid, organophosphorus compounds such as phosphoric acid esters, phosphonates and phosphinocarboxylic acids, polymers and synthetic copolymers based on at least one of the following monomers: acrylic acid, maleic vinylsulfonic acid, vinyl acetate, vinyl alcohol, acrylamide, and optionally comprising one or more phosphonate functions, polyaspartates, polysaccharides (such as carboxymethylinulin, carboxymethylcellulose).
  • the active polymer of water-soluble type, can have a molecular mass of between 400 and 20000 Dalton.
  • the polycation may be water-soluble, and selected from the following families: polyallylamine hydrochloride, chitosan, gelatin.
  • the crosslinking of the polycation can be optimized to adjust the release conditions of the active polymer.
  • the active polymer is a conventional anti-deposition polymer ("antiscale"), such as a polyacrylate, polyphosphate, phosphonate, polysulphonate, of water-soluble type, generally of relatively low molecular weight, of between 400 and 20000 daltons.
  • antiscale conventional anti-deposition polymer
  • the main inhibitors include:
  • Organophosphorus compounds such as phosphoric acid esters, phosphonates and phosphinocarboxylic acids
  • the particle size of the particles is sufficiently small relative to the permeability of the porous media in such a way that there is no risk of clogging the porous media during the injection of the nanoparticles.
  • the permeability of the tank must not be significantly reduced.
  • the particle size of the nanoparticles could be less than 1 ⁇ m and preferably centered on 100 nm.
  • the nanoparticles can be advantageously deformable to facilitate their injection into porous media.
  • the nanoparticles are retained, at least temporarily, in the porous medium by mechanical retention or, preferably, by adsorption to the wall.
  • the nanoparticles can be loaded (for example cationic) or functionalized to adsorb at best in the porous medium.
  • the anti-deposit active polymer can diffuse through the nanoparticle to act as a specific additive.
  • the nanoparticles At the level of the release profile of the polymer, it is possible to adapt the nanoparticles to obtain diffusion at low concentration (of the order of 10 to 50 ppm) in salt water, for example a reservoir water.
  • the nanoparticles can be either nanospheres, in which the "antiscale” active polymer is trapped in a more or less crosslinked polymer hydrogel, or in the form of nanocapsules, the active polymer
  • antiscale being at least one of the constituents of the heart of the capsule surrounded by a membrane.
  • one embodiment consists of the formation of nanocomplexes (hydrogel) polycation / polyanion, the polyanion being the active polymer "antiscale", the cationic polymer more or less crosslinked, or non-crosslinked, forming the matrix (gel ).
  • a globally slightly cationic complex is formed in order to facilitate its adsorption on the porous medium. Examples, written below, consist of the formation of nano complexes by controlled precipitation of cationic and anionic polyelectrolytes.
  • the size of the nanocomplexes is controlled by various parameters such as the molecular weight of the polymers, the ratio of the concentrations of the two polyelectrolytes used, the ionic strength, optionally the pH and optionally the degree of crosslinking of the polycation.
  • the nanocapsules, comprising the water-soluble antiscale polymer can be obtained by different routes, in particular from techniques consisting in forming the membrane from a nanoemulsion (also called mini emulsion). Different possibilities for forming nanometric emulsions are possible.
  • the membrane can be, for example, obtained by interfacial polymerization, such as polycondensation or polyaddition.
  • the nanoemulsions can be obtained as follows:
  • cationic polymers that can be used to complex inhibiting polymers, mention may be made of: tetraethylammonium propyl polymethacrylate, polyallylamine hydrochloride, chitosan, gelatin, or any other water-soluble cationic polymer.
  • nanoparticles During storage and during injection, nanoparticles
  • nanocapsules or nanospheres can be kept dispersed, either in aqueous phase or in organic phase.
  • the following main functions are optimized: low level of the ionic strength, adequate pH, release inhibitor. It will be possible to advantageously optimize the crosslinking function of the cationic polymer in order to control and adjust the mode of delivery of the active polymer "antiscale".
  • the dispersion in the organic phase may allow, on the one hand to have a longer storage stability, and on the other hand to minimize the risk of damage to the reservoir (vis-à-vis the hysteresis phenomena of saturation) when placing nanoparticles in the formation.
  • the anti-settling polymer is a sodium polyaspartate (BAYPURE DS 100), a polymer with a molecular weight of approximately 2000 gmol 1 , supplied by Bayer.
  • the polycation used was prepared by polymerization of trimethylammonium chloride propyl methacrylamide. Chemical formula of trimethylammonium chloride propyl methacrylate
  • This type of polycation can be prepared at different average molecular weights, in particular about 10,000, 50,000 or 100,000 gmol -1 . Whatever the pH of the medium in which these polycations are, they are constantly positively charged.
  • the critical molar ratio for the system was evaluated by turbidimetry for the three masses of the polycation, it is close to 1.6 and not equal to 1.
  • the overall weight content of the two polymers is 1.5% in aqueous solution.
  • the charge ratio was varied and the synthesis carried out at pH 10. Above the critical ratio, the solution is always clear regardless of the excess of the polycation. For load ratios close to the critical ratio the solution becomes cloudy, a polymer gel is formed. An excess of polycation in the system leads to the formation of a positively charged complex, dispersed in the solution and stabilized by electrostatic repulsions.
  • Mass of the polycation The systems described in the literature most often relate to high mass polymers. Generally, interactions between heavy polyanions and polycations result in macroscopic phase separation even at low temperatures. The polyanion used, which is relatively light, does not systematically lead to phase separation in the presence of the polycation.
  • the first parameter to take into account is the ionic strength of the medium. Knowing that the cohesion of the complex involves electrostatic interactions, a change in the salt concentration can disrupt the system, screen the charges of the polyelectrolytes and lead to the dissociation of the complex.
  • the nano-complex may not be sufficiently resistant to the ionic strength. In contact with the medium of release, the complex is likely to dissociate too quickly. To improve this function, it is recommended to carry out a crosslinking of the cationic polymer.
  • Example 2 Polyaspartate / Gelatin
  • Type A gelatin can be used as another type of polycation. It is obtained by controlled hydrolysis of collagen derived from pigskin. It is formed of proteins and its molecular weight is poorly defined. It has a global pH-dependent charge with an isoelectric point close to 8. Below this threshold, its charge is globally positive, which makes it interesting for complexation with sodium polyaspartate.
  • gelatin type A This polymer of natural origin is very slightly soluble in cold water but easily hydrates above 40 ° C. Its dissolution is therefore hot. By lowering the temperature, the gelatin has low temperature gelling properties and can be chemically cross-linked (glycine groups).
  • Gelatin has an isoelectric point between 7 and 9. For a pH value below the isoelectric point, it will be positively charged. For pH values between 3 and 5, both electrolytes are sufficiently charged to complex. Gelatin offers the possibility of a chemical crosslinking which gives a certain rigidity to nano complexes.
  • the crosslinking agent is glutaraldehyde. It reacts easily at room temperature by changing color. The aldehyde functions react with the amino functions of the lysine residues of the gelatin chain to result in a Schiff base.
  • the synthesis is carried out at 40 ° C. in such a way that the gelatin is soluble in water, the system is then brought to 8 ° C.
  • the crosslinking agent is added to the solution, after one hour of reaction at room temperature, the crosslinking is stopped by adding sodium bisulfite.
  • the reaction must be carried out at a pH value making it possible to have a large number of functions -NH 3 available to the crosslinking reaction.
  • Polyallylamine hydrochloride is a chemically crosslinkable synthetic polycation. This polymer is commercially available (Aldrich) and has a mass of 15,000 gmol -1 . It is pH dependent, the positive charges are borne by the ammonium ion. At basic pH a proton was liberated to give an amine -NH 2 . The presence of amine functions allows, as in the case of gelatin, chemical crosslinking.
  • Chemical formula of Oohallylamine hydrochloride Chemical formula of Oohallylamine hydrochloride:
  • the mass content of the polymers is 1.5%.
  • the charge ratio (n7n ' ) studied varies between 0.3 and 2.5.
  • the stability of the nano complexes is observed for a ratio> 1.7.
  • the polyanion is that polyaspartate cited in Examples 1, 2 and 3.
  • the polycation is chitosan.
  • Chitosan is the main derivative of chitin.
  • Chitin the natural polymer, is the most abundant polysaccharide on earth with cellulose. Its chemical structure results from the sequence of N-acetyl-D-glucosamine and D-glucosamine-linked repeating units ⁇ - (1-4).
  • Chitin is an important structural element of the exoskeleton of arthropods (crabs, shrimps, insects, ...) and the endoskeleton of cephalopods (cuttlefish, ).
  • Chitosan is derived from the deacetylation of chitin in an alkaline medium, but it also occurs naturally in a parcel.
  • Chitin and chitosan are differentiated by the proportion of acetyl units present in the copolymer, also called degree of acetylation (denoted DA).
  • degree of acetylation denoted degree of acetylation
  • chitosan is usually limited to any chitin sufficiently N-deacetylated to be soluble in dilute acidic medium, there is no official nomenclature proposing a precise limit between the two terms.
  • Chemical formula of chitin and chitosan Chitosan is a polyamine that forms salts in dilute acid solutions (except H 2 SO 4 at room temperature) to produce a polycation type polyelectrolyte.
  • Chitosan is available commercially (Aldrich, Fluka, France Quitine, Marinard), however the DA and the molar mass are not known in all cases.
  • a decrease in the value of the charge is observed after the crosslinking of the nano complexes. It goes from +35 mV for nano complexes to +3 mV after crosslinking.
  • EXAMPLE 5 Carboxymethylinulin / Chitosan (CT)
  • the polycation is the chitosan of Example 4.
  • the polyanion is carboxymethylinulin (for example, the product Dequest PB11625 manufactured by SOLUTIA).
  • carboxymethylinulin for example, the product Dequest PB11625 manufactured by SOLUTIA.
  • concentrations for example, of 0.05% by weight of carboxymethylinulin and 0.25% and 0.5% by weight of chitosan allow the formation of nanocomplexes having a size slightly less than 100 nm and a positive overall charge.
  • Example ⁇ Aquarite ® / chitosan (CT)
  • the aquarite is a commercial compound of the company Rhodia, it is a vinylsulfonic-acrylic acid copolymer finished phosphonate.
  • the polycation is the chitosan of Example 4.
  • concentrations of, for example, 0.03% or 0.05% mass of Aquarite and 0.5% mass of chitosan allow the formation of nanocomplexes having a size slightly less than 100 nm and a positive overall charge.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

L'invention concerne une méthode de traitement de roches perméables dans laquelle on effectue les étapes suivantes: - on fabrique des particules de taille nanométrique comprenant un polymère hydrosoluble actif anti-dépôt minéraux encapsulé soit dans une matrice pour former un nanocomplexe ou une nanosphère, soit dans une membrane pour former une nanocapsule, - on maintient en dispersion une quantité desdites particules dans une phase liquide, - on injecte la dispersion dans la roche perméable, - on libère le polymère actif au contact d'eau salée.

Description

MÉTHODE DE TRAITEMENT DES RÉSERVOHtS PETROLŒRS PAR INJECTION DE NANOPARTICULES CONTENANT UN ADDITIF ANTI DÉPÔTS MINÉRAUX
La présente invention concerne une méthode de traitement préventif des abords d'un puits d'exploitation d'hydrocarbures, et des zones réservoirs avoisinantes. En particulier, elle concerne l'utilisation d'additifs chimiques encapsulés sous forme de nanoparticules déformables et spécifiques à la prévention des dépôts minéraux dénommés additifs "antiscale". Il s'agit d'un traitement préventif "intelligent" de la roche réservoir aux abords des puits de forage.
L'invention repose sur l'idée d'injecter dans le milieu poreux et perméable des nanoparticules contenant un polymère anti-dépôt ("antiscale") en phase aqueuse, qui se fixent dans le milieu poreux, sans diminuer de manière sensible la perméabilité de la roche réservoir, et diffusent un fond continu de polymère en présence d'eau plus ou moins salée.
Ainsi, la présente invention concerne une méthode de traitement des roches réservoirs dans laquelle on effectue les étapes suivantes:
- on fabrique des particules de taille nanométrique comprenant sous forme aqueuse un polymère hydrosoluble actif anti-dépôt minéraux encapsulé soit dans une matrice pour former un nanocomplexe, soit dans une membrane pour former une nanocapsule,
- on maintient en dispersion une quantité desdites particules dans une phase liquide, - on injecte la dispersion dans la roche perméable,
- on libère le polymère actif au contact d'eau salée.
La phase liquide peut être: aqueuse, organique, ou un mélange des deux.
Les particules peuvent avoir une granulométrie suffisamment faible de façon à ne pas colmater la roche perméable lors de l'injection des nanoparticules.
La granulométrie des nanoparticules peut être inférieure à 1 μm, et de préférence centrée autour de 100 nm.
Les particules peuvent être adaptées à s'adsorber sur la roche à traiter. Les particules peuvent être suffisamment déformables pour améliorer l'injectivité en milieu poreux.
Les nanoparticules peuvent être des complexes polycation/polyanion, le polyanion étant le polymère actif, le polymère cationique, plus ou moins réticulé, ou non réticulé, formant la matrice.
Les nanocapsules peuvent être le résultat d'une polymérisation interfaciale au sein d'une nano émulsion contenant le polymère actif.
Le polymère actif peut être choisi parmi l'un au moins des polymères suivants : les polyphosphates et en particulier l'acide orthophosphorique, les composés organophosphorés comme les esters d'acide phosphorique, les phosphonates et les acides phosphinocarboxyliques, les polymères et copolymères de synthèse à base d'au moins un des monomères suivants : acide acrylique, vinylsulfonique maléique, vinyl acétate, vinyl alcool, acrylamide, et comportant éventuellement une ou plusieurs fonctions phosphonate, les polyaspartates, les polysaccharides (tels que la carboxyméthylinuline, la carboxyméthylcellulose). Le polymère actif, de type hydrosoluble, peut avoir une masse moléculaire comprise entre 400 et 20000 Dalton. Le polycation peut être hydrosoluble, et choisi parmi les familles suivantes : polyallylamine hydrochloride, chitosane, gélatine.
La réticulation du polycation peut être optimisée pour régler les conditions de largage du polymère actif.
L'invention sera mieux comprise et ses avantages apparaîtront plus clairement à la lecture de la description d'exemples suivants, nullement limitatifs.
Le polymère actif est un polymère anti-dépôt ("antiscale") classique, comme un polyacrylate, polyphosphate, phosphonate, polysulfonate, de type hydrosoluble, de masse moléculaire généralement assez faible, comprise entre 400 et 20000 dalton. Parmi les principaux inhibiteurs, on peut citer:
Les polyphosphates et en particulier l'acide orthophosphorique; - Les composés organophosphorés comme les esters d'acide phosphorique, les phosphonates et les acides phosphinocarboxyliques;
Les polymères et copolymères de synthèse à base d'acide acrylique, vinylsulfoniques, maléiques, vinyl acétate, vinyl alcool, acrylamide, comportant éventuellement une ou plusieurs fonctions phosphonate; - Les produits verts tels que les polyaspartates, les polysaccharides
(tels que la carboxyméthylinuline, la carboxyméthylcellulose).
Selon l'invention, la granulométrie des particules est suffisamment faible par rapport à la perméabilité du milieux poreux de telle manière que l'on ne risque pas de colmater le milieux poreux lors de l'injection des nanoparticules. La perméabilité du réservoir ne doit pas être réduite de manière significative. A titre d'exemple, la granulométrie des nanoparticules pourrait être inférieure à 1 μm et de préférence centrée sur 100 nm.
Les nanoparticules peuvent être avantageusement déformables pour faciliter leur injection dans les milieux poreux. Selon la méthode, les nanoparticules sont retenues, au moins provisoirement, dans le milieu poreux par rétention mécanique ou, de préférence, par adsorption à la paroi. Avantageusement, les nanoparticules peuvent être chargées (par exemple cationiques) ou fonctionnalisées pour s'adsorber au mieux dans le milieu poreux.
En présence de phase aqueuse, généralement salée, en particulier lors d'opérations de production d'hydrocarbures, le polymère actif anti-dépôt peut diffuser à travers la nanoparticule pour agir en tant qu'additif spécifique. Au niveau du profil de libération du polymère, on peut adapter les nanoparticules pour obtenir une diffusion à faible concentration (de l'ordre de 10 à 50 ppm) dans l'eau salée, par exemple une eau de gisement.
Les nanoparticules peuvent être soit des nanosphères, dans lesquelles le polymère actif "antiscale" est emprisonné dans un hydrogel de polymère plus ou moins réticulé, soit sous forme de nanocapsules, le polymère actif
"antiscale" étant au moins un des constituants du cœur de la capsule entouré d'une membrane.
Dans le cas des nanosphères, un mode de réalisation consiste en la formation de nanocomplexes (hydrogel) polycation/polyanion, le polyanion étant le polymère actif "antiscale", le polymère cationique plus ou moins réticulé, ou non réticulé, formant la matrice (gel). On forme un complexe globalement légèrement cationique afin de faciliter son adsorption sur le milieu poreux. Des exemples, écrits ci-après, consistent en la formation de nano complexes par précipitation contrôlée de polyélectrolytes cationiques et anioniques. La taille des nanocomplexes est contrôlée par différents paramètres comme la masse moléculaire des polymères, le rapport des concentrations des deux polyélectrolytes utilisés, la force ionique, éventuellement le pH et éventuellement le taux de réticulation du polycation. Les nanocapsules, comprenant le polymère hydrosoluble antiscale peuvent être obtenues par différentes voies, en particulier à partir de techniques consistant à former la membrane à partir d'une nano émulsion (appelée aussi mini émulsion). Différentes possibilités de formation d'émulsions nanométriques sont possibles. Une fois la nano émulsion formée, la membrane peut être, par exemple, obtenue par polymérisation interfaciale, comme la polycondensation ou la polyaddition.
Les nano émulsions peuvent être obtenues de la manière suivante :
- formation de nano émulsion par diffusion sans émulsifïcation mécanique. La diffusion de la phase interne vers la phase continue permet d'entraîner un des monomères à l'interface des deux liquides où se produit la réaction de polycondensation avec les monomères présents dans la phase externe;
- formation de nano émulsion par agitation mécanique et des choix spécifiques du système de tensioactifs ;
- formation de nano émulsions à l'aide de procédés membranaires ou par inversion de phase (passage au dessus de température d'inversion de phase).
Parmi les principales familles de polymères cationiques, utilisables pour complexer les polymères inhibiteurs, nous pouvons citer : le polyméthacrylate de tetraéthylammonium propyle, le polyallylamine hydrochloride, le chitosane, la gélatine, ou tout autre polymère cationique hydrosoluble.
Pendant le stockage et au cours de l'injection, les nanoparticules
(nanocapsules ou nanosphères) peuvent être maintenues dispersées, soit en phase aqueuse, soit en phase organique.
Pour contrôler le largage intempestif de l'additif actif avant sa mise en place, on optimise les fonctions principales suivantes: faible niveau de la force ionique, pH adéquat, inhibiteur de largage. On pourra avantageusement optimiser la fonction de réticulation du polymère cationique afin de contrôler, et ajuster, le mode de largage du polymère actif "antiscale".
La mise en dispersion en phase organique peut permettre, d'une part d'avoir une plus longue stabilité au stockage, et d'autre part de minimiser les risques d'endommagement du réservoir (vis-à-vis des phénomènes d'hystérésis de saturation) lors de la mise en place des nanop articules dans la formation.
Les exemples ci- après décrivent la fabrication de nanocomplexes constitués d'un polymère cationique et d'un polymère anionique anti-dépôt "antiscale". Les exemples suivants ne sont nullement limitatifs.
Exemple 1 : Polyaspartate/Polymadquat.
Le polymère anti-dépôt est un polyaspartate de sodium (BAYPURE DS 100), polymère de masse moléculaire environ égale à 2000 g.mol 1, fourni par la société Bayer.
Figure imgf000007_0001
R =Na+, NH4 + n fonction de la méthode de synthèse α, β couplage 30:70 polydisperse
Formule chimique du Polyasyartate
Le polycation utilisé a été préparé par polymérisation du chlorure de trimethylammonium propyl methacrylamide.
Figure imgf000008_0001
Formule chimique du chlorure de trimethylammonium propyl metacrylate
Ce type de polycations peut être préparé à différentes masses moléculaires moyennes, notamment environ 10000, 50000 ou 100000 g.mol'1. Quelque soit le pH du milieu dans lequel ces polycations se trouvent, ils sont constamment chargés positivement.
Formation des nano complexes: a) Rapport de charge n7n':
Etant donné que les deux polyélectrolytes présentent une masse molaire et une densité de charge différentes, le rapport de charge n7n" doit être utilisé.
L'existence d'un rapport de charge critique a été mis en évidence, celui-ci n'est pas forcement égal à 1 :1. Ceci peut s'expliquer en terme de différence de longueur de chaîne, masse moléculaire, basicité des groupements ioniques, densité de charge et position des groupements fonctionnels (facteur stérique) des polyélectrolytes utilisés.
Le rapport molaire critique pour le système a été évalué par turbidimétrie pour les trois masses du polycation, il est voisin de 1,6 et non égal à 1.
La teneur globale en masse des deux polymères est de 1,5% en solution aqueuse. Le rapport de charge a été varié et la synthèse effectué à pH 10. Au dessus du rapport critique, la solution est toujours limpide quel que soit l'excès du polycation. Pour des rapports de charge proches du rapport critique la solution se trouble, un gel de polymère se forme. Un excès de polycation dans le système conduit à la formation d'un complexe chargé positivement, dispersé dans la solution et stabilisé par des répulsions électrostatiques. b) Masse du polycation: Les systèmes décrits dans la littérature concernent le plus souvent des polymères de grande masse. Généralement, les interactions entre polyanions lourds et polycations entraînent une séparation de phase macroscopique même à basse température. Le polyanion utilisé, relativement léger, ne conduit pas systématiquement à une séparation de phase en présence du polycation. Les résultats obtenus sont en accord avec ceux rapportés dans la littérature: plus la masse du polycation est importante, plus le complexe formé aura une masse moléculaire importante. Ces résultats ont été établis d'après les analyses en flux force. Les distributions en masse des nano complexes indiquent qu'ils possèdent une taille inférieure à 100 nm. c) Influence du milieu de largage:
Le premier paramètre à prendre en compte est la force ionique du milieu. Sachant que la cohésion du complexe met en jeu des interactions électrostatiques, une modification de la concentration en sel peut perturber le système, écranter les charges des polyélectrolytes et conduire à la dissociation du complexe.
L'influence de la force ionique a été étudié à l'échelle macroscopique pour les rapports de charge 1,0 et 1,6 à pH 10. Les résultats sont extrapolés pour les rapports au dessus du rapport critique de charge. Des sels mono et divalents ont été étudiés (NaCl, KCl, CaCl2).
Lorsqu'on augmente la concentration en sel, on observe dans un premier temps un gonflement des nano complexes. A partir d'une concentration critique, le complexe initialement insoluble, est solubilisé. Pour les sels monovalents cette concentration critique est comprise entre 15 et 20 g.l'1. La valeur est bien inférieure pour le CaCl2.
Au vu de l'ensemble des résultats concernant le milieu de largage, le nano complexe peut ne pas être suffisamment résistant à la force ionique. Au contact avec le milieu de largage, le complexe risque donc de se dissocier trop rapidement. Pour améliorer cette fonction, on préconise de réaliser une réticulation du polymère cationique. Exemple 2 : Polyaspartate/gélatine
La gélatine de type A peut être utilisée comme autre type de polycation. Elle est obtenue par hydrolyse ménagée du collagène issu de la peau de porc. Elle est formée de protéines et sa masse moléculaire est mal définie. Elle possède une charge globale pH-dépendante avec un point isoélectrique voisin de 8. En dessous de ce seuil, sa charge est globalement positive, ce qui la rend intéressante en vue d'une complexation avec le polyaspartate de sodium.
Figure imgf000010_0001
Glycine praline Y Glycine X Hydroxyproline
Formule chimique de la gélatine type A Ce polymère d'origine naturelle est très peu soluble dans l'eau froide mais s'hydrate facilement au dessus de 4O0C. Sa dissolution se fait donc à chaud. Par abaissement de la température, la gélatine possède des propriétés de gélification à basse température et elle peut être réticulée chimiquement (groupements glycines).
Figure imgf000010_0002
Réticulation de la gélatine avec le glutaraldéhyde Formation des nano complexes:
La gélatine présente un point isoélectrique entre 7 et 9. Pour une valeur de pH inférieure au point isoélectrique, elle sera chargée positivement. Pour des valeurs de pH comprises entre 3 et 5, les deux électrolytes sont suffisamment chargés pour complexer. La gélatine offre la possibilité d'une réticulation chimique ce qui donne une certaine rigidité aux nano complexes. L'agent réticulant est le glutaraldéhyde. Il réagit facilement à température ambiante en changeant de couleur. Les fonctions aldéhyde réagissent avec les fonctions aminés des résidus de lysine de la chaîne de gélatine pour aboutir à une base de Schiff. Afin d'obtenir des nano complexes plus « rigides », la synthèse est effectuée à 40°C de telle manière que la gélatine soit soluble dans l'eau, le système est ensuite porté à 8°C afin de rigidifier localement les chaînes de gélatine. L'agent réticulant est ajouté à la solution, après une heure de réaction à température ambiante, la réticulation est stoppée par ajout de bisulfite de sodium. La réaction doit être réalisée à une valeur de pH permettant d'avoir un nombre important de fonctions -NH3 disponibles à la réaction de réticulation.
La mise en contact des nano complexes, réticulés ou non, avec une solution saline montre que seuls les nano complexes réticulés ne se solubilisent pas, même à force ionique élevée.
Des essais de réticulation ont été menés sur différents échantillons contenant des rapports massiques (gélatine/polyaspartate) variables. Dans certaines conditions, les solutions des complexes réticulés obtenues sont limpides. Une analyse granulométrique a mis en évidence deux populations des particules autour de 30 et 60 nm.
Exemple 3 ; Polyaspartate/polyallylamine hydrochloride
L'hydrochlorure de polyallylamine est un polycation synthétique réticulable chimiquement. Ce polymère est commercialement disponible (Aldrich) et possède une masse de 15000 g.mol'1. Il est pH dépendant, les charges positives sont portées par l'ion ammonium. A pH basique on a libération d'un proton pour donner une aminé -NH2. La présence des fonctions aminé permet, comme dans le cas de la gélatine, la réticulation chimique. Formule chimique de la Oohallylamine hydrochloride:
Figure imgf000012_0001
La synthèse est effectuée à un pH = 9. La teneur en masse des polymères est égale à 1,5%. Le rapport de charge (n7n') étudié varie entre 0,3 et 2,5. La stabilité des nano complexes est observée pour un rapport >1,7.
Exemple 4 ; Polyaspartate /chitosane (CT)
Le polyanion est celui le polyaspartate cité dans les exemples 1, 2 et 3. Le polycation est le chitosane.
Le chitosane est le principal dérivé de la chitine. La chitine, polymère naturel, est le polysaccharide le plus abondant sur terre avec la cellulose. Sa structure chimique, résulte de l'enchaînement d'unités de répétition N-acétyl- D-glucosamine et D-glucosamine liées β-(l— >4). La chitine est un élément structural important de l'exosquelette des arthropodes (crabes, crevettes, insectes,...) et de l'endosquelette des céphalopodes (seiches,...). Le chitosane est issu de la désacétylation de la chitine en milieu alcalin, mais il existe aussi de façon parcellaire à l'état naturel.
La chitine et le chitosane se différencient par la proportion des unités acétylées présentes dans le copolymère, appelée aussi degré d'acétylation (noté DA). Bien que le terme « chitosane » soit usuellement limité à toute chitine suffisamment N-désacétylée pour être soluble en milieu acide dilué, il n'existe pas de nomenclature officielle proposant de limite précise entre les deux termes.
Figure imgf000012_0002
N-acétyl-D-Glucosamine D-Glucosamiπe GIoNAc GIcN
Formule chimique de la chitine et du chitosane Le chitosane est une polyamine qui forme des sels dans des solutions d'acides dilués (excepté H2SO4 à température ambiante) pour produire un polyélectrolyte de type polycation.
Le chitosane est disponible de manière commerciale (Aldrich, Fluka, France Quitine, Marinard), cependant le DA et la masse molaire ne sont pas connus dans tous les cas.
Formation des nano complexes:
La formation a lieu à pH =5 ; la solution du polyanion est ajouté goutte à goutte, sous agitation magnétique, à la solution du polycation. En fonction du rapport des concentrations des polyélectrolytes l'obtention de nano complexe est possible. Les concentrations 0,1% masse de polyaspartate et 0,2% et 0,5% masse de chitosane permettent la formation de nanocomplexes présentant une taille autour de 100 nm et une charge globale positive. Réticulation des nano complexes:
Une diminution de la valeur de la charge est observée après la réticulation des nano complexes. Elle passe de +35 mV pour les nano complexes à +3 mV après réticulation.
La variation de la taille en présence d'une solution saline est restreinte dans le cas des nano complexes ayant suivi une réticulation.
Ce couple parait un bon candidat pour le largage contrôlé du polymère antiscale (polyaspartate) en présence d'eau salée.
Exemple 5 : Carboxymethylinuline /chitosane (CT) Le polycation est le chitosane de l'exemple 4. Le polyanion est la carboxymethylinuline (par exemple, le produit référencé Dequest PB11625 fabriqué par SOLUTIA). En fonction du rapport des concentrations des polyélectrolytes l'obtention de nano complexe est possible. Les concentrations par exemple de 0,05% masse de carboxymethylinuline et 0,25% et 0,5% masse de chitosane permettent la formation de nanocomplexes présentant une taille légèrement inférieure à 100 nm et une charge globale positive. Exemple β : Aquarite ® / chitosane (CT)
L'aquarite est un composé commercial de la société Rhodia, il s'agit d'un copolymère vinylsulfonique-acide acrylique terminé phosphonate. Le polycation est le chitosane de l'exemple 4. En fonction du rapport des concentrations des polyélectrolytes l'obtention de nanocomplexe est possible. Les concentrations par exemple de 0,03% ou 0,05% masse d'Aquarite et 0,5% masse de chitosane permettent la formation de nanocomplexes présentant une taille légèrement inférieure à 100 nm et une charge globale positive.

Claims

REVENDICATIONS
1) Méthode de traitement de roches perméables, caractérisée en ce que l'on effectue les étapes suivantes: - on fabrique des particules de taille nanométrique comprenant, sous forme aqueuse, un polymère hydrosoluble actif anti-dépôt minéraux encapsulé soit dans une matrice pour former un nanocomplexe, soit dans une membrane pour former une nanocapsule,
- on maintient en dispersion une quantité desdites particules dans une phase liquide,
- on injecte la dispersion dans la roche perméable,
- on libère le polymère actif au contact d'eau salée.
2) Méthode selon la revendication 1, dans laquelle ladite phase liquide est: aqueuse, organique, ou un mélange des deux.
3) Méthode selon l'une des revendications 1 ou 2, dans laquelle lesdites particules ont une granulométrie suffisamment faible de façon à ne pas colmater la roche perméable lors de l'injection des nanoparticules.
4) Méthode selon la revendication 3, dans laquelle la granulométrie des nanoparticules est inférieure à 1 μm, et de préférence centrée autour de 100 nm.
5) Méthode selon l'une des revendications précédentes, dans laquelle lesdites particules sont adaptées à s'adsorber sur la roche à traiter.
6) Méthode selon l'une des revendications précédentes, dans laquelle les nanoparticules sont des complexes polycation/polyanion, le polyanion étant le polymère actif sous forme aqueuse, le polymère cationique, plus ou moins réticulé ou non réticulé, formant la matrice. 7) Méthode selon l'une des revendications 1 à 6, dans laquelle les nanocapsules sont le résultat d'une polymérisation interfaciale au sein d'une nano émulsion contenant le polymère actif en phase aqueuse.
8) Méthode selon l'une des revendications précédentes, dans laquelle le polymère actif est choisi parmi l'un au moins des polymères suivants : les polyphosphates et en particulier l'acide orthophosphorique, les composés organophosphorés comme les esters d'acide phosphorique, les phosphonates et les acides phosphinocarboxyliques, les polymères et copolymères de synthèse à base d'au moins un des monomères suivants : acide acrylique, vinylsulfonique maléique, vinyl acétate, vinyl alcool, acrylamide, et comportant éventuellement une ou plusieurs fonctions phosphonate, les polyaspartates, les polysaccharides (tels que la carboxyméthylinuline, la carboxyméthylcellulose).
9) Méthode selon la revendication 8, dans laquelle le polymère actif, de type hydrosoluble, a une masse moléculaire comprise entre 400 et 20000 Dalton.
10) Méthode selon la revendication 6, dans laquelle le polycation est hydrosoluble, et choisi parmi les familles suivantes : polyallylamine hydrochloride, chitosane, gélatine.
11) Méthode selon l'une des revendications 6 ou 10, dans laquelle la réticulation du polycation est optimisée pour régler les conditions de largage du polymère actif.
PCT/FR2006/000267 2005-02-10 2006-02-06 Methode de traitement des reservoirs petroliers par injection de nanoparticules contenant un additif anti depots mineraux WO2006084981A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06709256A EP1859007A1 (fr) 2005-02-10 2006-02-06 Methode de traitement des reservoirs petroliers par injection de nanoparticules contenant un additif anti depots mineraux
US11/815,872 US20080269083A1 (en) 2005-02-10 2006-02-06 Oil Reservoir Treatment Method By Injection of Nanoparticles Containing an Anti-Mineral Deposit Additive

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0501370 2005-02-10
FR0501370A FR2881787B1 (fr) 2005-02-10 2005-02-10 Methode de traitement des reservoirs petroliers par injection de nanoparticules contenant un additif anti depots mineraux

Publications (1)

Publication Number Publication Date
WO2006084981A1 true WO2006084981A1 (fr) 2006-08-17

Family

ID=35058922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2006/000267 WO2006084981A1 (fr) 2005-02-10 2006-02-06 Methode de traitement des reservoirs petroliers par injection de nanoparticules contenant un additif anti depots mineraux

Country Status (4)

Country Link
US (1) US20080269083A1 (fr)
EP (1) EP1859007A1 (fr)
FR (1) FR2881787B1 (fr)
WO (1) WO2006084981A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10392887B2 (en) 2015-11-04 2019-08-27 Halliburton Energy Services, Inc Downhole payload release containers, method and system of using the same
CN112943162A (zh) * 2021-03-19 2021-06-11 西南石油大学 一种使边底水气藏气水界面人工隔板快速致密化的方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8183184B2 (en) * 2006-09-05 2012-05-22 University Of Kansas Polyelectrolyte complexes for oil and gas applications
CN101680288A (zh) * 2007-03-12 2010-03-24 堪萨斯大学 作为用于油气应用的凝胶延迟剂的聚合物电解质络合物
US20090038799A1 (en) * 2007-07-27 2009-02-12 Garcia-Lopez De Victoria Marieliz System, Method, and Apparatus for Combined Fracturing Treatment and Scale Inhibition
FR2942147B1 (fr) * 2009-02-17 2011-08-26 Inst Francais Du Petrole Systeme particulaire micro-ou nanometrique et son utilisation dans des procedes de traitement de puits petroliers
FR2984910B1 (fr) * 2011-12-21 2013-12-06 IFP Energies Nouvelles Procede de synthese d'un systeme nanoparticulaire de polyelectrolytes de charges opposees et utilisation pour le traitement de formations geologiques
GB201210034D0 (en) 2012-06-07 2012-07-18 Univ Leeds A method of inhibiting scale in a geological formation
CA3148845A1 (fr) * 2013-01-18 2014-07-24 Conocophillips Company Nanogels pour gelification retardee
MY178153A (en) 2013-01-28 2020-10-05 Conocophillips Co Delayed gelling agents
US11034883B2 (en) 2013-01-28 2021-06-15 The University Of Kansas Low molecular weight polyacrylates for EOR
US9677386B2 (en) * 2013-02-28 2017-06-13 Halliburton Energy Services, Inc. Methods of stabilizing weakly consolidated subterranean formation intervals
FR3003868A1 (fr) * 2013-03-27 2014-10-03 Poweltec Traitement anti-depot des formations souterraines par injection d'inhibiteur de depot
WO2016081049A1 (fr) 2014-11-19 2016-05-26 Conocophillips Company Gélification retardée de polymères
EP3234061B1 (fr) * 2014-12-15 2020-05-27 Total SA Nano-inhibiteurs
WO2016201230A1 (fr) 2015-06-10 2016-12-15 Rhodia Operations Polysaccharides phosphonés, gels, et procédé de fabrication associé
US11254861B2 (en) * 2017-07-13 2022-02-22 Baker Hughes Holdings Llc Delivery system for oil-soluble well treatment agents and methods of using the same
US11111426B2 (en) * 2018-05-30 2021-09-07 Saudi Arabian Oil Company In-situ salinity adjustment to improve waterflooding performance in oil-wet carbonate reservoirs

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002012674A1 (fr) * 2000-08-07 2002-02-14 T R Oil Services Limited Procede de distribution de produits chimiques dans un puits de petrole ou de gaz
US6380136B1 (en) * 1996-05-31 2002-04-30 Bp Exploration Operating Company Coated products and use thereof in oil fields
WO2004016906A1 (fr) * 2002-08-15 2004-02-26 Bp Exploration Operating Company Limited Procede de traitement d'une formation souterraine
US20040074646A1 (en) * 2000-11-20 2004-04-22 Kotlar Hans Kristian Well treatment method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10244504A1 (de) * 2002-09-25 2004-04-08 Capsulution Nanoscience Ag Schnellfreisetzende Darreichungsform mit schwerlöslichem Wirkstoff

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6380136B1 (en) * 1996-05-31 2002-04-30 Bp Exploration Operating Company Coated products and use thereof in oil fields
WO2002012674A1 (fr) * 2000-08-07 2002-02-14 T R Oil Services Limited Procede de distribution de produits chimiques dans un puits de petrole ou de gaz
US20040074646A1 (en) * 2000-11-20 2004-04-22 Kotlar Hans Kristian Well treatment method
WO2004016906A1 (fr) * 2002-08-15 2004-02-26 Bp Exploration Operating Company Limited Procede de traitement d'une formation souterraine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10392887B2 (en) 2015-11-04 2019-08-27 Halliburton Energy Services, Inc Downhole payload release containers, method and system of using the same
CN112943162A (zh) * 2021-03-19 2021-06-11 西南石油大学 一种使边底水气藏气水界面人工隔板快速致密化的方法

Also Published As

Publication number Publication date
FR2881787B1 (fr) 2015-07-24
FR2881787A1 (fr) 2006-08-11
US20080269083A1 (en) 2008-10-30
EP1859007A1 (fr) 2007-11-28

Similar Documents

Publication Publication Date Title
WO2006084981A1 (fr) Methode de traitement des reservoirs petroliers par injection de nanoparticules contenant un additif anti depots mineraux
US11634626B2 (en) Delayed gelling agents
CA2680301C (fr) Complexes polyelectrolytiques servant d'agents gelifiants retardes pour applications de petrole et gaz
CA2662493C (fr) Complexes polyelectrolyte pour applications de petrole et de gaz
Huguet et al. Calcium-alginate beads coated with polycationic polymers: comparison of chitosan and DEAE-dextran
EP2607405B1 (fr) Procédé de synthèse d'un système nanoparticulaire de polyélectrolytes de charges opposées et utilisation pour le traitement de formations géologiques
WO1998026864A1 (fr) Composition moussante a base d'eau - procede de fabrication
CA2927071C (fr) Composition fluide pour la stimulation dans le domaine de la production de petrole et de gaz
FR2486950A1 (fr) Suspensions stables de polymeres hydrosolubles et leur preparation
FR2792997A1 (fr) Formulation d'additifs pour ameliorer le transport d'effluents petroliers susceptibles de contenir des hydrates et procede utilisant cette formulation
FR2798664A1 (fr) Methode de preparation de microgels de taille controlee
EP3234061B1 (fr) Nano-inhibiteurs
EP3083874B1 (fr) Utilisation d'un copolymere a base d'acide styrene sulfonique pour inhiber ou ralentir la formation de depôts sulfures
EP2218761B1 (fr) Système particulaire micro- ou nanométrique et son utilisation dans des procédés de traitement de puits pétroliers
Chavanpatil et al. Studies on pectin as a potential carrier in colonic drug delivery
Mironov et al. Manufacture of granulated chitosan
PERETZ Interaction of alginate with metal ions, cationic surfactants and cationic dyes
FR2897362A1 (fr) Methode de traitement des puits par emulsions de petite taille contenant des additifs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006709256

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11815872

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2006709256

Country of ref document: EP