WO2006082333A1 - Method for using an energy radiating assembly with kilometric range - Google Patents

Method for using an energy radiating assembly with kilometric range Download PDF

Info

Publication number
WO2006082333A1
WO2006082333A1 PCT/FR2006/050064 FR2006050064W WO2006082333A1 WO 2006082333 A1 WO2006082333 A1 WO 2006082333A1 FR 2006050064 W FR2006050064 W FR 2006050064W WO 2006082333 A1 WO2006082333 A1 WO 2006082333A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiating
assembly
radiating assembly
distance
target
Prior art date
Application number
PCT/FR2006/050064
Other languages
French (fr)
Inventor
Jean-Paul Prulhiere
Original Assignee
Commissariat A L'energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique filed Critical Commissariat A L'energie Atomique
Publication of WO2006082333A1 publication Critical patent/WO2006082333A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H13/00Means of attack or defence not otherwise provided for
    • F41H13/0043Directed energy weapons, i.e. devices that direct a beam of high energy content toward a target for incapacitating or destroying the target
    • F41H13/0068Directed energy weapons, i.e. devices that direct a beam of high energy content toward a target for incapacitating or destroying the target the high-energy beam being of microwave type, e.g. for causing a heating effect in the target
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture

Definitions

  • the invention relates to a method for implementing a radiating assembly capable of depositing significant electromagnetic powers with a kilometer or greater range.
  • the radar is a remote detection and positioning system based on the emission of a radio beam and the processing of its echo. It allows to determine the position of an object in space, its size, its shape, as well as its speed and direction.
  • a radar antenna must have a high directivity to be able to concentrate the energy by sending a narrow beam allowing it to increase the range.
  • the width of a radar beam being proportional to the wavelength of the radiation, and inversely proportional to the width of the antenna, it can operate in centimetric waves.
  • Ground - based radars used to detect aircraft, often include two radars, one performing a horizontal scan to detect an aircraft and determine its azimuth, the other performing a vertical scan, as soon as an aircraft has been reported, to determine the altitude.
  • Radar antennas can be arranged in networks, with computer pointing and synchronization.
  • Such radiating sets of electromagnetic signals aim to transmit signals as far as possible by working in a so-called “far-field”, but they always generate weak signals on the objects they illuminate, which decrease as the square of the distance target radar.
  • the invention relates to a method for implementing a large radiating assembly, based on techniques usually used in the radar field.
  • the invention relates to a method for implementing a radiating set of electromagnetic waves of a few GHz, with an emitted power greater than 100 MW, having a range of one kilometer or greater, characterized in that, the radiating assembly being of large size. dimensions, for example of emission area greater than 5 m 2 :
  • these waves are guided in a cylinder resting on said assembly, a target is illuminated in a near-field zone such that the distance R between the radiating assembly and the target is given by the relation: R ⁇ 2D 2 / ⁇ , where D is the radiating surface diameter, and ⁇ is the length of the radiating surface; wave of the emitted radiation, so as to avoid any attenuation of the electromagnetic field as a function of this distance R, inside this cylinder.
  • the radiating assembly comprises a source associated with a reflector.
  • the radiating assembly comprises an array of sources.
  • the method of the invention makes it possible to obtain intense, guided electromagnetic beams which do not attenuate when one moves away from the radiating assembly, whereas this attenuation is systematic in the radars.
  • the method of the invention can be used in particular in the field of MFP weapon systems (ie "High Power Microwaves", HPM in English), which are part of the weapons systems classified in the category AED ("Directed Energy Weapons").
  • MFP weapon systems ie "High Power Microwaves", HPM in English
  • AED Directed Energy Weapons
  • Figures 1 and 2 illustrate two embodiments of the method of the invention. DETAILED DESCRIPTION OF PARTICULAR EMBODIMENTS
  • the invention relates to a method for implementing a radiating assembly of electromagnetic waves of a few GHz, with a power greater than 100 MW, having a range of one kilometer, or greater, in which, the radiating assembly being of large dimensions (for example with a surface greater than 5 m 2 ),
  • a target is illuminated in a "near field" zone such that the distance R between this radiating assembly and the target is given by the relation: R ⁇ 2D 2 / ⁇ , D being the radiating surface diameter, and ⁇ the length wave of the emitted radiation, so as to avoid any attenuation of the electromagnetic field as a function of this distance R, inside this cylinder.
  • this radiating assembly consists of a source 10 and a reflector 11.
  • the beam 12 of electromagnetic waves emitted by the source 10 is reflected by the surface 13 of the reflector 11.
  • the reflected part of this beam successively comprises:
  • this radiating assembly consists of a network 20 of sources 21 emitting a beam.
  • electromagnetic wave which successively comprises:
  • the power density is then:
  • the radiating assembly is of large dimensions, while remaining of reasonable size: an antenna of a few meters in diameter, for frequencies of a few GHz.
  • the powers emitted range from the hundreds of megawatts (currently accessible with commercial sources) to several tens of gigawatts.
  • the radiating assembly may include a single source associated with a reflector, either multiple sources in the form of arrays, or a combination of both, to create a large radiating surface:
  • Antenna networks consisting of a discrete set of small sources spatially distributed on a surface.
  • the radiating surface is equal to the total area of the network, • fixed reflectors (the size is then limited by mechanical and deployment constraints),

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Engineering & Computer Science (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

The invention concerns a method for using an assembly radiating electromagnetic waves of some GHz, of emitted power higher than 100 MW, having at least a range of one kilometer, which consists in, said radiating assembly being of large dimensions: guiding said waves into a cylinder resting on said assembly; illuminating a target in a near field region such that the distance R between the radiating assembly and the target is provided by the relationship: R < 2D2/λ, D being the diameter of the radiating surface, and λ being the wavelength of the emitted radiation, so as to avoid any attenuation of the electromagnetic field based on said distance R, inside said cylinder.

Description

PROCEDE DE MISE EN ŒUVRE D' UN ENSEMBLE RAYONNANT DE PUISSANCE AYANT UNE PORTEE KILOMETRIQUE METHOD FOR IMPLEMENTING A RADIANT POWER ASSEMBLY HAVING A KILOMETRIC RANGE
DESCRIPTIONDESCRIPTION
DOMAINE TECHNIQUE L' invention concerne un procédé de mise en œuvre d' un ensemble rayonnant capable de déposer des puissances électromagnétiques significatives avec une portée kilométrique ou supérieure .TECHNICAL FIELD The invention relates to a method for implementing a radiating assembly capable of depositing significant electromagnetic powers with a kilometer or greater range.
ÉTAT DE LA TECHNIQUE ANTERIEURESTATE OF THE PRIOR ART
Dans le domaine des ensembles rayonnants de puissance ayant une portée kilométrique ou supérieure, le radar est un système de détection et de positionnement à distance fondé sur l' émission d' un faisceau hertzien et le traitement de son écho . Il permet de déterminer la position d' un objet dans l' espace, sa taille, sa forme, ainsi que sa vitesse et sa direction .In the field of power radiating assemblies with mileage or greater, the radar is a remote detection and positioning system based on the emission of a radio beam and the processing of its echo. It allows to determine the position of an object in space, its size, its shape, as well as its speed and direction.
Une antenne radar doit avoir une directivité élevée pour pouvoir concentrer l' énergie en envoyant un faisceau étroit lui permettant d' augmenter la portée . La largeur d' un faisceau radar étant proportionnelle à la longueur d' onde du rayonnement , et inversement proportionnelle à la largeur de l' antenne, celui-ci peut fonctionner en ondes centimétriques .A radar antenna must have a high directivity to be able to concentrate the energy by sending a narrow beam allowing it to increase the range. The width of a radar beam being proportional to the wavelength of the radiation, and inversely proportional to the width of the antenna, it can operate in centimetric waves.
En faisant tourner l' antenne, et donc le faisceau radar, on peut balayer l' espace . La forme la plus simple de balayage est obtenue par la rotation lente et continue de l' antenne . Les radars au sol, utilisés pour détecter les avions , comportent souvent deux radars , l' un réalisant un balayage horizontal pour détecter un avion et déterminer son azimut , l ' autre réalisant un balayage vertical, dès qu' un avion a été signalé, pour en déterminer l' altitude . Les antennes radar peuvent être disposées en réseaux, avec pointage et synchronisation par ordinateur .By rotating the antenna, and thus the radar beam, you can scan the space. The simplest form of scanning is achieved by rotating slow and continuous antenna. Ground - based radars, used to detect aircraft, often include two radars, one performing a horizontal scan to detect an aircraft and determine its azimuth, the other performing a vertical scan, as soon as an aircraft has been reported, to determine the altitude. Radar antennas can be arranged in networks, with computer pointing and synchronization.
De tels ensembles rayonnants de signaux électromagnétiques ont pour objectif de transmettre des signaux le plus loin possible en travaillant en champ dit « lointain », mais ils génèrent toujours des signaux faibles sur les objets qu' ils illuminent , qui décroissent comme le carré de la distance radar-cible .Such radiating sets of electromagnetic signals aim to transmit signals as far as possible by working in a so-called "far-field", but they always generate weak signals on the objects they illuminate, which decrease as the square of the distance target radar.
L' invention a pour objet un procédé de mise en œuvre d' un ensemble rayonnant de grande dimension, à partir de technique utilisées habituellement dans le domaine radar .The invention relates to a method for implementing a large radiating assembly, based on techniques usually used in the radar field.
EXPOSÉ DE I/ INVENTIONSTATEMENT OF I / INVENTION
L' invention concerne un procédé de mise en œuvre d' un ensemble rayonnant d' ondes électromagnétiques de quelques GHz , de puissance émise supérieure à 100 MW, ayant une portée kilométrique ou supérieure, caractérisé en ce que, l' ensemble rayonnant étant de grandes dimensions , par exemple de surface d' émission supérieure à 5 m2 :The invention relates to a method for implementing a radiating set of electromagnetic waves of a few GHz, with an emitted power greater than 100 MW, having a range of one kilometer or greater, characterized in that, the radiating assembly being of large size. dimensions, for example of emission area greater than 5 m 2 :
- on réalise un guidage de ces ondes dans un cylindre s ' appuyant sur ledit ensemble, - on illumine une cible dans une zone de champ proche telle que la distance R entre l' ensemble rayonnant et la cible est donnée par la relation : R < 2D2/λ, D étant le diamètre de surface rayonnante, et λ la longueur d' onde du rayonnement émis , de manière à éviter toute atténuation du champ électromagnétique en fonction de cette distance R, à l' intérieur de ce cylindre .these waves are guided in a cylinder resting on said assembly, a target is illuminated in a near-field zone such that the distance R between the radiating assembly and the target is given by the relation: R <2D 2 / λ, where D is the radiating surface diameter, and λ is the length of the radiating surface; wave of the emitted radiation, so as to avoid any attenuation of the electromagnetic field as a function of this distance R, inside this cylinder.
Dans un premier mode de réalisation l' ensemble rayonnant comprend une source associée à un réflecteur .In a first embodiment, the radiating assembly comprises a source associated with a reflector.
Dans un second mode de réalisation l' ensemble rayonnant comprend un réseau de sources .In a second embodiment, the radiating assembly comprises an array of sources.
Le procédé de l' invention permet d' obtenir des faisceaux électromagnétiques intenses , guidés qui ne s ' atténuent pas lorsque l' on s ' éloigne de l' ensemble rayonnant , alors que cette atténuation est systématique dans les radars .The method of the invention makes it possible to obtain intense, guided electromagnetic beams which do not attenuate when one moves away from the radiating assembly, whereas this attenuation is systematic in the radars.
Le procédé de l' invention peut être utilisé notamment dans le domaine des systèmes d' arme MFP (c' est-à-dire « Microondes à Forte Puissance », HPM en anglais ) , qui font partie des systèmes d' armes classés dans la catégorie AED (« Armes à Energie Dirigée ») .The method of the invention can be used in particular in the field of MFP weapon systems (ie "High Power Microwaves", HPM in English), which are part of the weapons systems classified in the category AED ("Directed Energy Weapons").
BRÈVE DESCRIPTION DES DESSINSBRIEF DESCRIPTION OF THE DRAWINGS
Les figures 1 et 2 illustrent deux modes de réalisation du procédé de l' invention . EXPOSE DETAILLE DE MODES DE REALISATION PARTICULIERSFigures 1 and 2 illustrate two embodiments of the method of the invention. DETAILED DESCRIPTION OF PARTICULAR EMBODIMENTS
L' invention concerne un procédé de mise en œuvre d' un ensemble rayonnant d' ondes électromagnétiques de quelques GHz , de puissance supérieure à 100 MW, ayant une portée kilométrique, ou supérieure, dans lequel, l' ensemble rayonnant étant de grandes dimensions (par exemple de surface supérieure à 5 m2) ,The invention relates to a method for implementing a radiating assembly of electromagnetic waves of a few GHz, with a power greater than 100 MW, having a range of one kilometer, or greater, in which, the radiating assembly being of large dimensions ( for example with a surface greater than 5 m 2 ),
- on réalise un guidage de ces ondes dans un cylindre s ' appuyant sur ledit ensemble,these waves are guided in a cylinder resting on said assembly,
- on illumine une cible dans une zone de « champ proche » telle que la distance R entre cet ensemble rayonnant et la cible est donnée par la relation : R < 2D2/λ, D étant le diamètre de surface rayonnante, et λ la longueur d' onde du rayonnement émis , de manière à éviter toute atténuation du champ électromagnétique en fonction de cette distance R, à l' intérieur de ce cylindre .a target is illuminated in a "near field" zone such that the distance R between this radiating assembly and the target is given by the relation: R <2D 2 / λ, D being the radiating surface diameter, and λ the length wave of the emitted radiation, so as to avoid any attenuation of the electromagnetic field as a function of this distance R, inside this cylinder.
Dans un premier mode de réalisation illustré sur la figure 1 , cet ensemble rayonnant est constitué d' une source 10 , et d' un réflecteur 11. Le faisceau 12 d' ondes électromagnétiques émis par la source 10 est réfléchi par la surface 13 du réflecteur 11. La partie réfléchie de ce faisceau comprend successivement :In a first embodiment illustrated in FIG. 1, this radiating assembly consists of a source 10 and a reflector 11. The beam 12 of electromagnetic waves emitted by the source 10 is reflected by the surface 13 of the reflector 11. The reflected part of this beam successively comprises:
- une zone tubulaire sans atténuation 14 ,a tubular zone without attenuation 14,
- une zone divergente avec atténuation 15. Dans un second mode de réalisation illustré sur la figure 2 , cet ensemble rayonnant est constitué d' un réseau 20 de sources 21 émettant un faisceau d' ondes électromagnétiques qui comprend successivement :a diverging zone with attenuation 15. In a second embodiment illustrated in FIG. 2, this radiating assembly consists of a network 20 of sources 21 emitting a beam. electromagnetic wave which successively comprises:
- une zone tubulaire sans atténuation 22 ,a tubular zone without attenuation 22,
- une zone divergente avec atténuation 23. En effet le développement de certains systèmes rayonnants de puissance, tels que des systèmes de défense contre des objets (drones , missiles ) attaquant un site ou une cible (par exemple un bateau) , implique de déposer une densité d' énergie hyperfréquence Φ significative sur un objet situé à grande distance de l' ensemble rayonnant .a divergent zone with attenuation 23. Indeed, the development of certain radiating power systems, such as defense systems against objects (drones, missiles) attacking a site or a target (for example a boat), involves depositing a densité significant microwave energy density on an object located at a great distance from the radiating assembly.
Elle décroît comme le carré de la distance .It decreases like the square of the distance.
Il est donc très difficile, voire impossible, de déposer des densités de puissance ( fluences ) significatives à grande distance, puisque l' ensemble rayonnant est limité en puissance .It is therefore very difficult, if not impossible, to deposit significant power densities (fluences) at a great distance, since the radiating assembly is limited in power.
Le calcul de cette densité est obtenu en utilisant l' équation du radar qui tient compte :The calculation of this density is obtained using the radar equation which takes into account:
• de la puissance émise P (limitée par la technologie des sources d' émission) ,• the power emitted P (limited by the technology of the sources of emission),
• de la surface S de l' ensemble rayonnant ( S = π . D2/4 dans le cas d' une antenne ayant la forme d' un disque de diamètre D) ,• the surface S of the radiating assembly (S = π. D 2/4 in the case of an antenna having the form of a disc of diameter D),
• de la longueur d' onde λ du signal émis , • de la distance R antenne-cible .• the wavelength λ of the transmitted signal, • the distance R antenna - target.
Elle s ' exprime par la formule ci-après : Φ = — PS •—î λ1 R2 It is expressed by the formula below: Φ = - PS • -î λ 1 R 2
Son domaine de validité suppose R > 2D2/λ . ( zone dite de « champ lointain ») . Or, lorsque la taille de l' ensemble rayonnant devient très grande devant la longueur d' onde (D » λ) il existe un autre mode de propagation, dans la zone de « champ proche » correspondant à des distances R < 2D2/λ . Dans ce domaine, la loi de décroissance en fonction de R2 ne joue plus . La puissance émise reste quasi-constante, quel que soit R, dans un cylindre dont la section droite est la surface de l' antenne .Its validity domain assumes R> 2D 2 / λ. (zone called "far field"). However, when the size of the radiating ensemble becomes very large in front of the wavelength (D λ), there is another propagation mode, in the "near field" zone corresponding to distances R <2D 2 / λ . In this domain, the law of decay as a function of R 2 no longer plays. The transmitted power remains almost constant, whatever R, in a cylinder whose cross section is the surface of the antenna.
10 La densité de puissance vaut alors :The power density is then:
Φ = — P . Entre ces deux zones de champ proche et deΦ = - P. Between these two near-field areas and
champ lointain, la puissance fluctue .far field, power fluctuates.
Dans un exemple d' application numérique on considère une puissance émise P telle que : P = 1 GW =In an example of a digital application, an emitted power P is considered such that: P = 1 GW =
15 109 W .15 10 9 W.
On obtient le tableau suivant :We obtain the following table:
Figure imgf000008_0001
Comme le montre le tableau ci-dessus , il est donc possible d' atteindre des fluences Φ très importantes , et supérieures à lKW/cm2 à des distances de l' ordre du kilomètre avec des antennes de taille acceptable dès lors que la fréquence dépasse 3 GHz . Ces fluences sont celles qui sont habituellement demandées pour détruire des composants électroniques , ou au moins perturber leur mission . Dans le procédé de l' invention, l' ensemble rayonnant est de grandes dimensions , tout en restant de taille raisonnable : antenne de quelques mètres de diamètre, pour des fréquences de quelques GHz . Les puissances émises sont comprises entre la centaine de mégawatts (accessible actuellement avec des sources du commerce) jusqu' à plusieurs dizaines de gigawatts .
Figure imgf000008_0001
As shown in the table above, it is therefore possible to reach very high flu fluences, and greater than lKW / cm 2 at distances of the order of one kilometer with antennas of acceptable size when the frequency exceeds 3 GHz. These fluences are those that are usually required to destroy electronic components, or at least disrupt their mission. In the method of the invention, the radiating assembly is of large dimensions, while remaining of reasonable size: an antenna of a few meters in diameter, for frequencies of a few GHz. The powers emitted range from the hundreds of megawatts (currently accessible with commercial sources) to several tens of gigawatts.
L' ensemble rayonnant peut comporter une source unique associée à un réflecteur, soit des sources multiples sous forme de réseaux, soit une combinaison des deux, afin de créer une surface rayonnante de grande dimension :The radiating assembly may include a single source associated with a reflector, either multiple sources in the form of arrays, or a combination of both, to create a large radiating surface:
Le fonctionnement d' un tel ensemble rayonnant en champ proche peut être obtenu par l' emploi de tout type de surfaces rayonnantes de grandes dimensions , en particulier :The operation of such a near - field radiating assembly can be achieved by the use of any type of large radiating surface, in particular:
• de réseaux d' antennes constitués d' un ensemble discret de sources de petites tailles réparties spatialement sur une surface . Dans ce cas , la surface rayonnante est égale à la surface totale du réseau, • de réflecteurs fixes (la taille est alors limitée par des contraintes mécaniques et de déploiement ) ,• Antenna networks consisting of a discrete set of small sources spatially distributed on a surface. In this case, the radiating surface is equal to the total area of the network, • fixed reflectors (the size is then limited by mechanical and deployment constraints),
• de réflecteurs déployables . • deployable reflectors.

Claims

REVENDICATIONS
1. Procédé de mise en œuvre d' un ensemble rayonnant d' ondes électromagnétiques de quelques GHz , de puissance émise supérieure à 100 MW, ayant une portée kilométrique ou supérieure, caractérisé en ce que, l' ensemble rayonnant ( 10 , 11 ) étant de grandes dimensions :1. A method of implementing a radiating assembly of electromagnetic waves of a few GHz, with an emitted power greater than 100 MW, having a range of one kilometer or greater, characterized in that, the radiating assembly (10, 11) being large dimensions:
- on réalise un guidage de ces ondes dans un cylindre ( 14 ) s ' appuyant sur ledit ensemble,these waves are guided in a cylinder (14) pressing on said assembly,
- on illumine une cible dans une zone de champ proche telle que la distance R entre l' ensemble rayonnant et la cible est donnée par la relation : R < 2D2/λ, D étant le diamètre de surface rayonnante, et λ la longueur d' onde du rayonnement émis , de manière à éviter toute atténuation du champ électromagnétique en fonction de cette distance R, à l' intérieur de ce cylindre .a target is illuminated in a near-field zone such that the distance R between the radiating assembly and the target is given by the relation: R <2D 2 / λ, where D is the radiating surface diameter, and λ is the length of the radiating surface; wave of the emitted radiation, so as to avoid any attenuation of the electromagnetic field as a function of this distance R, inside this cylinder.
2. Procédé selon la revendication 1 , dans lequel l' ensemble rayonnant comprend une source ( 10 ) associée à un réflecteur ( 11 ) .2. The method of claim 1, wherein the radiating assembly comprises a source (10) associated with a reflector (11).
3. Procédé selon la revendication 1 , dans lequel l' ensemble rayonnant comprend un réseau (20 ) de sources (21 ) .The method of claim 1, wherein the radiating assembly comprises a network (20) of sources (21).
4. Procédé selon la revendication 1 , dans lequel la surface d' émission de l' ensemble rayonnant est supérieure à 5 m2. 4. The method of claim 1, wherein the emission area of the radiating assembly is greater than 5 m 2 .
PCT/FR2006/050064 2005-02-01 2006-01-27 Method for using an energy radiating assembly with kilometric range WO2006082333A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0550285 2005-02-01
FR0550285A FR2881532B1 (en) 2005-02-01 2005-02-01 METHOD FOR IMPLEMENTING A RADIANT POWER ASSEMBLY HAVING A KILOMETRIC RANGE

Publications (1)

Publication Number Publication Date
WO2006082333A1 true WO2006082333A1 (en) 2006-08-10

Family

ID=34955442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2006/050064 WO2006082333A1 (en) 2005-02-01 2006-01-27 Method for using an energy radiating assembly with kilometric range

Country Status (2)

Country Link
FR (1) FR2881532B1 (en)
WO (1) WO2006082333A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2009008905A (en) * 2007-02-20 2009-08-28 Wavestream Corp Energy focusing system for active denial apparatus.
US8188905B2 (en) * 2008-05-29 2012-05-29 Raytheon Company Target tracking system and method with jitter reduction suitable for directed energy systems

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3795910A (en) * 1973-03-13 1974-03-05 Nasa Microwave power transmission system wherein level of transmitted power is controlled by reflections from receiver
US4959559A (en) * 1989-03-31 1990-09-25 The United States Of America As Represented By The United States Department Of Energy Electromagnetic or other directed energy pulse launcher
WO1995012237A1 (en) * 1993-10-28 1995-05-04 Skysat Communications Network Corporation Long-duration, remotely powered aircraft system
US5777572A (en) * 1994-07-19 1998-07-07 Northrop Grumman Corporation Device for damaging electronic equipment using unfocussed high power millimeter wave beams
US5900837A (en) * 1997-08-21 1999-05-04 Fourth Dimension Systems Corp. Method and apparatus for compensation of diffraction divergence of beam of an antenna system
US20020011963A1 (en) * 2000-07-26 2002-01-31 Koslover Robert A. Compact, lightwelght, steerable, high-power microwave antenna

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3795910A (en) * 1973-03-13 1974-03-05 Nasa Microwave power transmission system wherein level of transmitted power is controlled by reflections from receiver
US4959559A (en) * 1989-03-31 1990-09-25 The United States Of America As Represented By The United States Department Of Energy Electromagnetic or other directed energy pulse launcher
US4959559B1 (en) * 1989-03-31 1993-02-23 Us Secre
WO1995012237A1 (en) * 1993-10-28 1995-05-04 Skysat Communications Network Corporation Long-duration, remotely powered aircraft system
US5777572A (en) * 1994-07-19 1998-07-07 Northrop Grumman Corporation Device for damaging electronic equipment using unfocussed high power millimeter wave beams
US5900837A (en) * 1997-08-21 1999-05-04 Fourth Dimension Systems Corp. Method and apparatus for compensation of diffraction divergence of beam of an antenna system
US20020011963A1 (en) * 2000-07-26 2002-01-31 Koslover Robert A. Compact, lightwelght, steerable, high-power microwave antenna

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MICHAEL ABRAMS: "The Dawn of the E-Bomb", 31 October 2003, IEEE SPECTRUM ONLINE, XP002343880 *

Also Published As

Publication number Publication date
FR2881532A1 (en) 2006-08-04
FR2881532B1 (en) 2007-05-18

Similar Documents

Publication Publication Date Title
BE1010528A5 (en) Online high frequency radiant.
EP1568104B1 (en) Multiple-beam antenna with photonic bandgap material
EP3109941B1 (en) Microwave antenna with dual reflector
EP3223032B1 (en) Secondary radar capable of detecting high-altitude targets
FR2709835A1 (en) Method of extracting targets from a radar signal and radar capable of implementing the said method
Alkaraki et al. High aperture efficient slot antenna surrounded by the cavity and narrow corrugations at Ka‐band and Ku‐band
FR2806214A1 (en) REFLECTOR ANTENNA COMPRISING A PLURALITY OF PANELS
US7339551B2 (en) Reflective fresnel lens for sub-millimeter wave power distribution
FR2985386A1 (en) Method for calibrating microwave weapon emitting high power electromagnetic wave on reflector in e.g. high power microwave system, involves utilizing illumination law for calculation of wave emitted by primary elementary antenna
WO2006082333A1 (en) Method for using an energy radiating assembly with kilometric range
EP0512487B1 (en) Antenna with shaped lobe and high gain
Futatsumori et al. Evaluation of polarisation characteristics of power‐line RCS at 76 GHz for helicopter obstacle detection
Mazhar et al. Log periodic slot‐loaded circular vivaldi antenna for 5–40 GHz UWB applications
WO2019122763A1 (en) Interferometric lightning detection system
EP0520908A1 (en) Linear antenna array
Godard et al. A transient UWB antenna array used with complex impedance surfaces
WO2013004924A9 (en) Device for detecting objects such as mines
Zhai et al. Ka‐band lightweight high‐efficiency wideband 3D printed reflector antenna
EP2711729B1 (en) Network antenna for emitting electromagnetic waves and method for determining the direction of a target
EP2888784B1 (en) Inductive surface element
EP3155689B1 (en) Flat antenna for satellite communication
Mazzinghi et al. Near field focusing for security applications: design and optimization of RLSA antennas
Yi et al. Characteristics of digitised millimetre‐wave metal reflectarray antennas
Chenna Reddy et al. Fragmentation of specular overdense meteor trail echoes observed with Gadanki MST radar
FR2951554A1 (en) Method for neutralization of missile to disrupt or destruct e.g. weapon system, involves emitting microwaves towards target at frequency selected from preferred transmission frequencies selected previously

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06709448

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6709448

Country of ref document: EP