FR2881532A1 - Electromagnetic wave radiating assembly implementing method for e.g. HPM weapon system, involves illuminating target in near field zone so that distance between assembly and target is obtained using radiating surface diameter and wavelength - Google Patents

Electromagnetic wave radiating assembly implementing method for e.g. HPM weapon system, involves illuminating target in near field zone so that distance between assembly and target is obtained using radiating surface diameter and wavelength Download PDF

Info

Publication number
FR2881532A1
FR2881532A1 FR0550285A FR0550285A FR2881532A1 FR 2881532 A1 FR2881532 A1 FR 2881532A1 FR 0550285 A FR0550285 A FR 0550285A FR 0550285 A FR0550285 A FR 0550285A FR 2881532 A1 FR2881532 A1 FR 2881532A1
Authority
FR
France
Prior art keywords
assembly
radiating
target
distance
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR0550285A
Other languages
French (fr)
Other versions
FR2881532B1 (en
Inventor
Jean Paul Prulhiere
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Priority to FR0550285A priority Critical patent/FR2881532B1/en
Publication of FR2881532A1 publication Critical patent/FR2881532A1/en
Application granted granted Critical
Publication of FR2881532B1 publication Critical patent/FR2881532B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H13/00Means of attack or defence not otherwise provided for
    • F41H13/0043Directed energy weapons, i.e. devices that direct a beam of high energy content toward a target for incapacitating or destroying the target
    • F41H13/0068Directed energy weapons, i.e. devices that direct a beam of high energy content toward a target for incapacitating or destroying the target the high-energy beam being of microwave type, e.g. for causing a heating effect in the target
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture

Abstract

The method involves guiding electromagnetic waves of an electromagnetic wave radiating assembly in a cylinder supported on the assembly. A target is illuminated in a near field zone such that the distance (R) between the assembly and the target is given by a relation involving the diameter (D) of radiating surface, greater than 5 square meter, of the assembly and the wavelength (lambda ) of the emitted radiation as parameters.

Description

2881532 12881532 1
PROCEDE DE MISE EN UVRE D'UN ENSEMBLE RAYONNANT DE PROCESS FOR IMPLEMENTING A RADIANT ASSEMBLY OF
PUISSANCE AYANT UNE PORTEE KILOMETRIQUE POWER WITH A KILOMETRIC RANGE
DESCRIPTION DOMAINE TECHNIQUETECHNICAL FIELD DESCRIPTION
L'invention concerne un procédé de mise en uvre d'un ensemble rayonnant capable de déposer des puissances électromac;netiques significatives avec une portée kilométrique o; supérieure. The invention relates to a method of implementing a radiating assembly capable of depositing significant electromechanical powers with a kilometer range o; superior.
ÉTAT DE LA TECHNIQUE ANTÉRIEURE Dans le domaine des ensembles rayonnants de puissance ayant une portée kilométrique ou supérieure, le radar est un système de détection et de positionnement à distance fondé sur l'émission d'un faisceau hertzien et le traitement de son écho. Il permet de déterminer la position d'un objet dans l'espace, sa taille, sa forme, ainsi que sa vitesse et sa direction. STATE OF THE PRIOR ART In the field of radiating power assemblies having a kilometer range or greater, the radar is a remote detection and positioning system based on the emission of a radio beam and the processing of its echo. It allows to determine the position of an object in space, its size, its shape, as well as its speed and direction.
Une antenne radar doit avoir une directivité élevée pour pouvoir concentrer l'énergie en envoyant un faisceau étroit lui permettant d'augmenter la portée. La largeur d'un faisceau radar étant proportionnelle à la longueur d'onde du rayonnement, et inversement proportionnelle à la largeur de l'antenne, celui-ci peut fonctionner en ondes centimétriques. A radar antenna must have a high directivity to be able to concentrate the energy by sending a narrow beam allowing it to increase the range. The width of a radar beam being proportional to the wavelength of the radiation, and inversely proportional to the width of the antenna, it can operate in centimeter waves.
En faisant tourner l'antenne, et donc le faisceau radar, on peut balayer l'espace. La forme la plus simple de balayage est obtenue par la rotation lente et continue de l'antenne. Les radars au sol, utilisés pour détecter les avions, comportent souvent deux radars, l'un réalisant un balayage horizontal pour détecter un avion et déterminer son azimut, l'autre réalisant un balayage vertical, dès qu'un avion a été signalé, pour en déterminer l'altitude. Les antennes radar peuvent être disposées en réseaux, avec pointage et synchronisation par ordinateur. By rotating the antenna, and therefore the radar beam, we can sweep the space. The simplest form of scanning is achieved by the slow and continuous rotation of the antenna. Ground-based radars, used to detect aircraft, often include two radars, one scanning horizontally to detect an airplane and determine its azimuth, the other scanning vertically, as soon as an airplane has been reported, to determine the altitude. Radar antennas can be arranged in arrays, with pointing and computer synchronization.
De tels ensembles rayonnants de signaux électromagnétiques ont pour objectif de transmettre des signaux le plus loin possible en travaillant en champ dit lointain , mais ils génèrent toujours des signaux faibles sur les objets qu'ils illuminent, qui décroissent comme le carré de la distance radar-cible. Such radiating sets of electromagnetic signals aim to transmit signals as far as possible while working in a so-called far field, but they always generate weak signals on the objects they illuminate, which decrease as the square of the radar distance- target.
L'invention a pour objet un procédé de mise en oeuvre d'un ensemble rayonnant de grande dimension, à partir de technique utilisées habituellement dans le domaine radar. The subject of the invention is a method for using a large-dimension radiating assembly, using techniques usually used in the radar field.
EXPOSÉ DE L'INVENTION L'invention concerne un procédé de mise en oeuvre d'un ensemble rayonnant d'ondes électromagnétiques de quelques GHz, de puissance émise supérieure à 100 MW, ayant une portée kilométrique ou supérieure, caractérisé en ce que, l'ensemble rayonnant étant de grandes dimensions, par exemple de surface d'émission supérieure à 5 m2: - on réalise un guidage de ces ondes dans 30 un cylindre s'appuyant sur ledit ensemble, - on illumine une cible dans une zone de champ proche telle que la distance R entre l'ensemble rayonnant et la cible est donnée par la relation: R < 2D2/X, D étant le diamètre de surface rayonnante, et X la longueur d'onde du rayonnement émis, de manière à éviter toute atténuation du champ électromagnétique en fonction de cette distance R, à l'intérieur de ce cylindre. DISCLOSURE OF THE INVENTION The invention relates to a method of implementing an assembly radiating electromagnetic waves of a few GHz, with an emitted power greater than 100 MW, having a kilometer range or greater, characterized in that, the radiating assembly being of large dimensions, for example with an emission surface greater than 5 m2: - these waves are guided in a cylinder resting on said assembly, - a target is illuminated in a near field zone such as that the distance R between the radiating assembly and the target is given by the relation: R <2D2 / X, D being the diameter of the radiating surface, and X the wavelength of the emitted radiation, so as to avoid any attenuation of the electromagnetic field as a function of this distance R, inside this cylinder.
Dans un premier mode de réalisation 10 l'ensemble rayonnant comprend une source associée à un réflecteur. In a first embodiment 10 the radiating assembly comprises a source associated with a reflector.
Dans un second mode de réalisation l'ensemble rayonnant comprend un réseau de sources. In a second embodiment, the radiating assembly comprises an array of sources.
Le procédé de l'invention permet d'obtenir des faisceaux électromagnétiques intenses, guidés qui ne s'atténuent pas lorsque l'on s'éloigne de l'ensemble rayonnant, alors que cette atténuation est systématique dans les radars. The method of the invention makes it possible to obtain intense, guided electromagnetic beams which do not attenuate when one moves away from the radiating assembly, whereas this attenuation is systematic in radars.
Le procédé de l'invention peut être utilisé notamment dans le domaine des systèmes d'arme MFP (c'est-à-dire Microondes à Forte Puissance , HPM en anglais), qui font partie des systèmes d'armes classés dans la catégorie AED ( Armes à Energie Dirigée ). The method of the invention can be used in particular in the field of MFP weapon systems (that is to say High Power Microwaves, HPM in English), which are part of the weapon systems classified in the AED category. (Directed Energy Weapons).
BRÈVE DESCRIPTION DES DESSINSBRIEF DESCRIPTION OF THE DRAWINGS
Les figures 1 et 2 illustrent deux modes de réalisation du procédé de l'invention. Figures 1 and 2 illustrate two embodiments of the method of the invention.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS L'invention concerne un procédé de mise en oeuvre d'un ensemble rayonnant d'ondes électromagnétiques de quelques GHz, de puissance supérieure à 100 MW, ayant une portée kilométrique, ou supérieure, dans lequel, l'ensemble rayonnant étant de grandes dimensions (par exemple de surface supérieure à 5 m2), - on réalise un guidage de ces ondes dans un cylindre s'appuyant sur ledit ensemble, - on illumine une cible dans une zone de champ proche telle que la distance R entre cet ensemble rayonnant et la cible est donnée par la relation: R < 2D2/X, D étant le diamètre de surface rayonnante, et X, la longueur d'onde du rayonnement émis, de manière à éviter toute atténuation du champ électromagnétique en fonction de cette distance R, à l'intérieur de ce cylindre. DETAILED PRESENTATION OF PARTICULAR EMBODIMENTS The invention relates to a method of implementing a radiating assembly of electromagnetic waves of a few GHz, of power greater than 100 MW, having a kilometer range, or greater, in which, the radiating assembly being of large dimensions (for example with an area greater than 5 m2), - these waves are guided in a cylinder resting on said assembly, - a target is illuminated in a near field area such as the distance R between this radiating assembly and the target is given by the relation: R <2D2 / X, D being the diameter of the radiating surface, and X, the wavelength of the radiation emitted, so as to avoid any attenuation of the electromagnetic field in function of this distance R, inside this cylinder.
Dans un premier mode de réalisation illustré sur la figure 1, cet ensemble rayonnant est constitué d'une source 10, et d'un réflecteur 11. Le faisceau 12 d'ondes électromagnétiques émis par la source 10 est réfléchi par la surface 13 du réflecteur 11. La partie réfléchie de ce faisceau comprend successivement. In a first embodiment illustrated in FIG. 1, this radiating assembly consists of a source 10, and of a reflector 11. The beam 12 of electromagnetic waves emitted by the source 10 is reflected by the surface 13 of the reflector. 11. The reflected part of this beam comprises successively.
- une zone tubulaire sans atténuation 14, - une zone divergente avec atténuation 15. Dans un second mode de réalisation illustré sur la figure 2, cet ensemble rayonnant est constitué d'un réseau 20 de sources 21 émettant un faisceau d'ondes électromagnétiques qui comprend successivement: - une zone tubulaire sans atténuation 22, - une zone divergente avec atténuation 23. - a tubular zone without attenuation 14, - a divergent zone with attenuation 15. In a second embodiment illustrated in FIG. 2, this radiating assembly consists of an array 20 of sources 21 emitting a beam of electromagnetic waves which comprises successively: - a tubular zone without attenuation 22, - a divergent zone with attenuation 23.
En effet le développement de certains systèmes rayonnants de puissance, tels que des systèmes de défense contre des objets (drones, missiles) attaquant un site ou une cible (par exemple un bateau), implique de déposer une densité d'énergie hyperfréquence significative sur un objet situé à grande distance de l'ensemble rayonnant. Indeed, the development of certain radiating power systems, such as defense systems against objects (drones, missiles) attacking a site or a target (for example a boat), involves depositing a significant microwave energy density on a surface. object located at a great distance from the radiating unit.
Elle décroît comme le carré de la distance. Il est donc très difficile, voire impossible, de déposer des densités de puissance (fluences) significatives à grande distance, puisque l'ensemble rayonnant est limité en puissance. It decreases as the square of the distance. It is therefore very difficult, if not impossible, to deposit significant power densities (fluences) at a great distance, since the radiating assembly is limited in power.
Le calcul de cette densité est obtenu en utilisant l'équation du radar qui tient compte: É de la puissance émise P (limitée par la 20 technologie des sources d'émission), É de la surface S de l'ensemble rayonnant (S = n.D2/4 dans le cas d'une antenne ayant la forme d'un disque de diamètre D), É de la longueur d'onde X du signal émis, É de la distance R antenne-cible. The calculation of this density is obtained by using the equation of the radar which takes into account: É the emitted power P (limited by the technology of the emission sources), É the surface S of the radiating assembly (S = n.D2 / 4 in the case of an antenna having the shape of a disc of diameter D), É the wavelength X of the transmitted signal, É the distance R antenna-target.
Elle s'exprime par la formule ci-après: P.SÉ 1 22 R2 Son domaine de validité suppose R > 2D2/X,. (zone dite de champ lointain ). It is expressed by the following formula: P.SÉ 1 22 R2 Its domain of validity assumes R> 2D2 / X ,. (so-called far-field area).
Or, lorsque la taille de l'ensemble rayonnant devient très grande devant la longueur d'onde (D 2) il existe un autre mode de propagation, dans la zone de champ proche correspondant à des distances R < 2D2/X. Dans ce domaine, la loi de décroissance en fonction de R2 ne joue plus. La puissance émise reste quasi-constante, quel que soit R, dans un cylindre dont la section droite est la surface de l'antenne. Now, when the size of the radiating assembly becomes very large compared to the wavelength (D 2) there is another mode of propagation, in the near field zone corresponding to distances R <2D2 / X. In this domain, the law of decrease as a function of R2 no longer applies. The emitted power remains almost constant, whatever R, in a cylinder whose cross section is the surface of the antenna.
La densité de puissance vaut alors: d) = S. Entre ces deux zones de champ proche et de champ lointain, la puissance fluctue. The power density is then equal to: d) = S. Between these two near-field and far-field zones, the power fluctuates.
Dans un exemple d'application numérique on considère une puissance émise P telle que: P = 1 GW = 109 W. On obtient le tableau suivant: Paramètre du système A= D2/2X Fluence en B = 2D2/X Fluence en rayonnant (taille de (limite champ kW/cm2 à la (début kW/cm2 à la l'antenne, fréquence proche) distance A champ distance B d'émission) lointain) D = 3 m b S- 8 m2 150 m 11 600 m 2.3 = 3 cm (fréquence 9GHZ) D = 10 m S - 90 m2 1 660 m 1 6 660 m 0.25 = 3 cm (fréquence 9GHZ) D = 3 m b S- 8 m2 45 m 1 180 m 2.5 = 10 cm (fréquence 3GHZ) D = 10 m b S - 90 m2 500 m 11 2 000 m 0.2 = 10 cm (fréquence 3GHZ) Comme le montre le tableau ci-dessus, il est donc possible d'atteindre des fluences d) très importantes, et supérieures à 1KW/cm2 à des distances de l'ordre du kilomètre avec des antennes de taille acceptable dès lors que la fréquence dépasse 3 GHz. Ces fluences sont celles qui sont habituellement demandées pour détruire des composants électroniques, ou au moins perturber leur mission. In an example of a digital application, we consider an emitted power P such that: P = 1 GW = 109 W. We obtain the following table: Parameter of the system A = D2 / 2X Fluence in B = 2D2 / X Fluence in radiating (size from (kW / cm2 field limit at the (start kW / cm2 at the antenna, near frequency) distance A distance field B emission) far) D = 3 mb S- 8 m2 150 m 11 600 m 2.3 = 3 cm (frequency 9GHZ) D = 10 m S - 90 m2 1,660 m 1 6 660 m 0.25 = 3 cm (frequency 9GHZ) D = 3 mb S- 8 m2 45 m 1 180 m 2.5 = 10 cm (frequency 3GHZ) D = 10 mb S - 90 m2 500 m 11 2000 m 0.2 = 10 cm (3GHZ frequency) As shown in the table above, it is therefore possible to achieve very high fluences d), and greater than 1KW / cm2 at distances of the order of a kilometer with antennas of acceptable size when the frequency exceeds 3 GHz. These fluences are those which are usually required to destroy electronic components, or at least disrupt their mission.
Dans le procédé de l'invention, l'ensemble rayonnant est de grandes dimensions, tout en restant de taille raisonnable: antenne de quelques mètres de diamètre, pour des fréquences de quelques GHz. Les puissances émises sont comprises entre la centaine de mégawatts (accessible actuellement avec des sources du commerce) jusqu'à plusieurs dizaines de gigawatts. In the method of the invention, the radiating assembly is of large dimensions, while remaining of reasonable size: antenna of a few meters in diameter, for frequencies of a few GHz. The powers emitted are between a hundred megawatts (currently accessible with commercial sources) up to several tens of gigawatts.
L'ensemble rayonnant peut comporter une source unique associée à un réflecteur, soit des sources multiples sous forme de réseaux, soit une combinaison des deux, afin de créer une surface rayonnante de grande dimension: Le fonctionnement d'un tel ensemble rayonnant en champ proche peut être obtenu par l'emploi de tout type de surfaces rayonnantes de grandes dimensions, en particulier: É de réseaux d'antennes constitués d'un ensemble discret de sources de petites tailles réparties spatialement sur une surface. Dans ce cas, la surface rayonnante est égale à la surface totale du réseau, É de réflecteurs fixes (la taille est alors limitée par des contraintes mécaniques et de déploiement), É de réflecteurs déployables. The radiating assembly can comprise a single source associated with a reflector, either multiple sources in the form of networks, or a combination of the two, in order to create a large-dimension radiating surface: The operation of such a radiating assembly in the near field can be obtained by the use of any type of radiating surfaces of large dimensions, in particular: É antenna arrays made up of a discrete set of sources of small sizes distributed spatially over a surface. In this case, the radiating area is equal to the total area of the array, É of fixed reflectors (the size is then limited by mechanical and deployment constraints), É of deployable reflectors.

Claims (4)

REVENDICATIONS
1. Procédé de mise en oeuvre d'un ensemble rayonnant d'ondes électromagnétiques de quelques GHz, de puissance émise supérieure à 100 MW, ayant une portée kilométrique ou supérieure, caractérisé en ce que, l'ensemble rayonnant (10, 11) étant de grandes dimensions. 1. A method of implementing a radiating assembly of electromagnetic waves of a few GHz, with an emitted power greater than 100 MW, having a kilometer range or greater, characterized in that, the radiating assembly (10, 11) being large dimensions.
- on réalise un guidage de ces ondes dans un cylindre (14) s'appuyant sur ledit ensemble, - on illumine une cible dans une zone de champ proche telle que la distance R entre l'ensemble rayonnant et la cible est donnée par la relation: R < 2D2/2, D étant le diamètre de surface rayonnante, et 2 la longueur d'onde du rayonnement émis, de manière à éviter toute atténuation du champ électromagnétique en fonction de cette distance R, à l'intérieur de ce cylindre. - these waves are guided in a cylinder (14) based on said assembly, - a target is illuminated in a near-field zone such that the distance R between the radiating assembly and the target is given by the relation : R <2D2 / 2, D being the diameter of the radiating surface, and 2 the wavelength of the radiation emitted, so as to avoid any attenuation of the electromagnetic field as a function of this distance R, inside this cylinder.
2. Procédé selon la revendication 1, dans lequel l'ensemble rayonnant comprend une source (10) associée à un réflecteur (11). 2. The method of claim 1, wherein the radiating assembly comprises a source (10) associated with a reflector (11).
3. Procédé selon la revendication 1, dans 25 lequel l'ensemble rayonnant comprend un réseau (20) de sources (21). 3. The method of claim 1, wherein the radiating assembly comprises an array (20) of sources (21).
4. Procédé selon la revendication 1, dans lequel la surface d'émission de l'ensemble rayonnant 30 est supérieure à 5 m2. 4. The method of claim 1, wherein the emission surface of the radiating assembly 30 is greater than 5 m2.
FR0550285A 2005-02-01 2005-02-01 METHOD FOR IMPLEMENTING A RADIANT POWER ASSEMBLY HAVING A KILOMETRIC RANGE Expired - Fee Related FR2881532B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FR0550285A FR2881532B1 (en) 2005-02-01 2005-02-01 METHOD FOR IMPLEMENTING A RADIANT POWER ASSEMBLY HAVING A KILOMETRIC RANGE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0550285A FR2881532B1 (en) 2005-02-01 2005-02-01 METHOD FOR IMPLEMENTING A RADIANT POWER ASSEMBLY HAVING A KILOMETRIC RANGE
PCT/FR2006/050064 WO2006082333A1 (en) 2005-02-01 2006-01-27 Method for using an energy radiating assembly with kilometric range

Publications (2)

Publication Number Publication Date
FR2881532A1 true FR2881532A1 (en) 2006-08-04
FR2881532B1 FR2881532B1 (en) 2007-05-18

Family

ID=34955442

Family Applications (1)

Application Number Title Priority Date Filing Date
FR0550285A Expired - Fee Related FR2881532B1 (en) 2005-02-01 2005-02-01 METHOD FOR IMPLEMENTING A RADIANT POWER ASSEMBLY HAVING A KILOMETRIC RANGE

Country Status (2)

Country Link
FR (1) FR2881532B1 (en)
WO (1) WO2006082333A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2113063A1 (en) * 2007-02-20 2009-11-04 Wavestream Corporation Energy focusing system for active denial apparatus
US8188905B2 (en) * 2008-05-29 2012-05-29 Raytheon Company Target tracking system and method with jitter reduction suitable for directed energy systems

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3795910A (en) * 1973-03-13 1974-03-05 Nasa Microwave power transmission system wherein level of transmitted power is controlled by reflections from receiver
US4959559A (en) * 1989-03-31 1990-09-25 The United States Of America As Represented By The United States Department Of Energy Electromagnetic or other directed energy pulse launcher
WO1995012237A1 (en) * 1993-10-28 1995-05-04 Skysat Communications Network Corporation Long-duration, remotely powered aircraft system
US5777572A (en) * 1994-07-19 1998-07-07 Northrop Grumman Corporation Device for damaging electronic equipment using unfocussed high power millimeter wave beams
US5900837A (en) * 1997-08-21 1999-05-04 Fourth Dimension Systems Corp. Method and apparatus for compensation of diffraction divergence of beam of an antenna system
US20020011963A1 (en) * 2000-07-26 2002-01-31 Koslover Robert A. Compact, lightwelght, steerable, high-power microwave antenna

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3795910A (en) * 1973-03-13 1974-03-05 Nasa Microwave power transmission system wherein level of transmitted power is controlled by reflections from receiver
US4959559A (en) * 1989-03-31 1990-09-25 The United States Of America As Represented By The United States Department Of Energy Electromagnetic or other directed energy pulse launcher
US4959559B1 (en) * 1989-03-31 1993-02-23 Us Secre
WO1995012237A1 (en) * 1993-10-28 1995-05-04 Skysat Communications Network Corporation Long-duration, remotely powered aircraft system
US5777572A (en) * 1994-07-19 1998-07-07 Northrop Grumman Corporation Device for damaging electronic equipment using unfocussed high power millimeter wave beams
US5900837A (en) * 1997-08-21 1999-05-04 Fourth Dimension Systems Corp. Method and apparatus for compensation of diffraction divergence of beam of an antenna system
US20020011963A1 (en) * 2000-07-26 2002-01-31 Koslover Robert A. Compact, lightwelght, steerable, high-power microwave antenna

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MICHAEL ABRAMS: "The Dawn of the E-Bomb", 31 October 2003, IEEE SPECTRUM ONLINE, XP002343880 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2113063A1 (en) * 2007-02-20 2009-11-04 Wavestream Corporation Energy focusing system for active denial apparatus
EP2151663A3 (en) * 2007-02-20 2011-10-05 Wavestream Corporation Energy focusing system for energy beam weapon
EP2113063A4 (en) * 2007-02-20 2011-12-28 Wavestream Corp Energy focusing system for active denial apparatus
US8453551B2 (en) 2007-02-20 2013-06-04 Wavestream Corporation Energy focusing system for active denial apparatus
US8188905B2 (en) * 2008-05-29 2012-05-29 Raytheon Company Target tracking system and method with jitter reduction suitable for directed energy systems

Also Published As

Publication number Publication date
WO2006082333A1 (en) 2006-08-10
FR2881532B1 (en) 2007-05-18

Similar Documents

Publication Publication Date Title
EP2194602B1 (en) Antenna with shared sources and design process for a multi-beam antenna with shared sources
US20120088459A1 (en) Substrate lens antenna device
BE1010528A5 (en) Online high frequency radiant.
US4999637A (en) Creation of artificial ionization clouds above the earth
FR2709835A1 (en) Method of extracting targets from a radar signal and radar capable of implementing the said method
FR2881532A1 (en) Electromagnetic wave radiating assembly implementing method for e.g. HPM weapon system, involves illuminating target in near field zone so that distance between assembly and target is obtained using radiating surface diameter and wavelength
FR2985385A1 (en) Method for emission of electromagnetic wave by emission system, involves generating electromagnetic waves under control of processing unit, where waves are produced in form of coherent wave emitted by emission system
EP0512487A1 (en) Antenna with shaped lobe and high gain
EP0520908B1 (en) Linear antenna array
EP3729111A1 (en) Interferometric lightning detection system
EP3223032B1 (en) Secondary radar capable of detecting high-altitude targets
EP3109941B1 (en) Microwave antenna with dual reflector
FR2951554A1 (en) Method for neutralization of missile to disrupt or destruct e.g. weapon system, involves emitting microwaves towards target at frequency selected from preferred transmission frequencies selected previously
FR2718228A1 (en) Electromagnetic method for anti-aircraft defence by resonant attack
Zhai et al. Ka-Band Lightweight High-Efficiency Wideband 3D Printed Reflector Antenna
Fourikis Novel power combining circular arrays operating at mm-wavelengths
EP3446362B1 (en) System for deflecting and pointing a microwave beam
EP3365943B1 (en) Acquisition aid antenna device and associated antenna system for monitoring a moving target
EP2711729B1 (en) Network antenna for emitting electromagnetic waves and method for determining the direction of a target
EP3654057A1 (en) Method for optimising the pointing of an antenna of an airborne radar system
FR3027161A1 (en) METHOD FOR GENERATING HIGH POWER ELECTROMAGNETIC RADIATION
EP3155689B1 (en) Flat antenna for satellite communication
WO2008109946A1 (en) Three-dimensional millimeter-wave imaging system
Fourtinon 3D conformal antennas for radar applications
Elmansouri et al. Effects of lossless cavity‐backing on power spiral antenna in time‐domain

Legal Events

Date Code Title Description
ST Notification of lapse

Effective date: 20081031