WO2006080576A1 - METHOD FOR ASYMMETRIC ALLYLATION OF α-IMINO ACID - Google Patents

METHOD FOR ASYMMETRIC ALLYLATION OF α-IMINO ACID Download PDF

Info

Publication number
WO2006080576A1
WO2006080576A1 PCT/JP2006/301920 JP2006301920W WO2006080576A1 WO 2006080576 A1 WO2006080576 A1 WO 2006080576A1 JP 2006301920 W JP2006301920 W JP 2006301920W WO 2006080576 A1 WO2006080576 A1 WO 2006080576A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituent
asymmetric
imino
chiral
Prior art date
Application number
PCT/JP2006/301920
Other languages
French (fr)
Japanese (ja)
Inventor
Shu Kobayashi
Original Assignee
Japan Science And Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency filed Critical Japan Science And Technology Agency
Priority to JP2007500666A priority Critical patent/JP4714730B2/en
Publication of WO2006080576A1 publication Critical patent/WO2006080576A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C269/00Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C269/06Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups by reactions not involving the formation of carbamate groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • B01J2231/44Allylic alkylation, amination, alkoxylation or analogues
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0238Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/10Complexes comprising metals of Group I (IA or IB) as the central metal
    • B01J2531/16Copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers

Definitions

  • Akira Akira A method for asymmetric arylation of ⁇ -imino acids
  • the present invention relates to a method for enantioselective allylation of optically active allylglycine analogues useful as raw materials for pharmaceuticals, agricultural chemicals, fragrances, catalysts, etc. or synthetic intermediates.
  • Optically active ⁇ -amino acids occupy a valuable position as raw materials or synthetic intermediates for fan chemicals such as natural product synthesis and pharmaceuticals.
  • Various synthetic methods have been studied so far, especially for optically active ⁇ -amino acids that are difficult to obtain from nature.
  • Such optically active non-natural ⁇ -amino acid synthesis methods have been used for a long time, and are still widely used today: derivatization from naturally abundant optically active compounds, optical resolution by enzymes, optical activity This method is based on optical resolution using a recrystallization method after derivatization to a salt with an acidic compound. There were problems such as volume byproduct.
  • Non-patent documents 1 and 2 disclose the catalytic asymmetric synthesis method.
  • the catalytic asymmetric synthesis method is advantageous in terms of cost because it requires a small amount of metal catalyst and asymmetric ligand, and also from the viewpoint of reducing industrial waste, which has become a major issue in recent years. Expected and actively researched.
  • allylglycine a kind of non-natural ⁇ -amino acid, Since it is a useful synthetic intermediate that can be derivatized in various ways by chemical conversion of the double bond, its asymmetric synthesis method has been studied for a long time.
  • asymmetric arylation reactions of ⁇ -iminoesters and N, ⁇ -acetals have recently attracted particular attention as methods for synthesizing optically active arylglycine analogs (Non-patent Documents 2 to 4).
  • Patent Document 1 Non-Patent Documents 5 to 9).
  • Non-Patent Document 1 Bloch, R.. CheiL Rev. 98, 1407, 1998
  • Non-Patent Document 2 Ferrr is, D .; Dudding, T .; Young, B; Druty I I I, W. J .;
  • Non-Patent Document 4 Fang, X .; Johannsen,.; Yao, S .; Gathergood, N .;
  • Non-Patent Document 5 Kobayashi, S .; Matsubara, R .; Nakamura, Y .;
  • Non-Patent Document 6 Hamada, T .; Manabe, K .; Kobayashi, S., Angew. Chem.
  • Non-Patent Document 7 Nakamura, Y .; Matsubara, R .; Kiyohara, H .;
  • Non-Patent Document 8 Matsubara, R .; Nakamura, Y .; Kobayashi, S.;, Angew.
  • Non-Patent Document 9 Matsubara, R .; Paulo, V .; Nakamura, Y .; Kiyohara, H.
  • the present invention is based on the background as described above, and is based on the development history of the present asymmetric reaction catalyst and the asymmetric reaction method as described above and the knowledge obtained therewith.
  • a catalytic asymmetric allylation reaction method as a practical method for synthesizing optically active allylglycine analogs, which can obtain high reaction yield and stereoselectivity under mild reaction conditions using raw materials. Is an issue. [Means for Solving the Problems]
  • the present invention is characterized by the following in order to solve the above problems.
  • a chiral copper catalyst is an asymmetric allylation reaction method comprising a salt of an organic acid or an inorganic acid or a copper compound which is a complex or complex of this salt and a chiral diamine ligand.
  • the chiral diamine ligand is an arylation reaction method having an ethylene diamine molecular structure as a part thereof.
  • R 1 represents a hydrocarbon group which may have a substituent
  • R 2 represents one OR, —SR or —NR a R b
  • R has a substituent
  • R a and R b each represents a hydrogen atom or a hydrocarbon group which may have a substituent
  • R 3 , R 4 , R 5 and R 6 are the same or different and each represents a hydrogen atom or a hydrocarbon group which may have a substituent, X represents a halogen atom, Represents an alkyl group or an alkoxy group)
  • R 1 in formula (1) (3 A) (3 B) is a benzyl group, a trifluoromethyl group, a tertiary butyl group or a P-methoxybenzyl group.
  • An asymmetric allylation reaction method which is a substituent selected from the group consisting of:
  • the present invention has the features as described above, and an embodiment thereof will be described below.
  • a ⁇ C> aryl silane compound is reacted.
  • a copper atom is indispensable for its constitution and a structure of a chiral organic molecule is added.
  • it is composed of a copper compound and a chiral organic compound, but more practically, the reaction yield is
  • the selectivity it is preferably considered to be composed of a copper compound and a chiral diamine ligand compound.
  • the copper compound may be selected from a variety of monovalent or divalent copper compounds such as salts, complex salts, and organic metal compounds. Among them, a salt with an organic acid or an inorganic acid, or a salt thereof. Organic complexes are preferable as the complex. Of these, salts with strong acids, for example, (per) fluoroalkylsulfonic acid, salts of perchloric acid, sulfuric acid and the like, and complexes thereof are exemplified as organic complexes. For example C u (OT f) 2, C u C 10 4, C u C 10 4 ⁇ 4 CH 3 CN, C u (BF 4) 2 ⁇ XH 2 0 Hitoshidea Of these, Cu (OT f) 2 is preferred.
  • a compound having an ethylene diamine structure as a part of the molecular structure is preferably used.
  • the amino group may have an imine bond.
  • representative examples include various types of the following formula.
  • R in the formula represents a hydrocarbon group which may have a substituent, and the hydrocarbon group may be a chain or a cyclic group, and the substituent may be a halogen atom. In addition, it may have a hydrocarbon group such as an alkyl group or an alkoxy group. In addition, in P h (phenyl group) in the above formula, May also have a substituent.
  • a complex may be prepared in advance from a copper compound and a chiral organic molecule and used as a catalyst, or a copper compound and a chiral organic molecule may be used in a reaction system. May be used in combination.
  • the use ratio as a catalyst it is considered that the ratio is usually about 0.5 to 30 mol% with respect to ⁇ -imino acids as a complex of a copper compound or a copper compound and a chiral organic molecule.
  • ⁇ -imino acid ⁇ > in which an oxyl group is bonded to the nitrogen atom of the imino group may be of various types. Those shown in (1) are shown.
  • R 1 is a hydrocarbon group which may have a substituent.
  • it may be a chain or alicyclic hydrocarbon group, an aromatic hydrocarbon group, and various hydrocarbon groups as a combination thereof.
  • the substituent does not hinder the nucleophilic addition reaction, it has a hydrocarbon group such as an alkyl group, an alkoxy group, a sulfide group, a cyano group, a two-necked group, an ester group and the like as appropriate. Also good.
  • Ri include a benzyl group, a phenyl group, an ethyl group, a tertiary butyl group, a Me (methyl) group, a p-methoxybenzyl group, and a CF 3 group.
  • R 1 is a benzyl group
  • the benzyloxycarbonyl group can be removed from the ⁇ -amino group by hydrogenolysis or using HB r Z acetic acid.
  • the tertiary butyl and ⁇ -methoxybenzyl the tertiary butoxycarbonyl group or ⁇ -methoxybenzyloxycarbonyl group can be removed with an acid such as TF ⁇ .
  • R 2 is any one of —OR, — SR, —NR a R b as described above, and R is In the hydrocarbon group that may have a substituent, R a and R b each represent a hydrogen atom or a hydrocarbon group that may have a substituent.
  • hydrocarbons that may have a substituent in R, R a , and R b are a chain or alicyclic hydrocarbon group, an aromatic hydrocarbon group, and various combinations thereof. It may be a hydrocarbon group.
  • substituents such as a hydrocarbon group such as an alkyl group, an alkoxy group, a sulfido group, a cyano group, a nitro group, and an ester group may be appropriately included. Good.
  • the gallium silane compound ⁇ C> may also be various, for example, those represented by the above formula (2).
  • R 3 , R 4 , R 5 and R 6 are hydrogen atoms or hydrocarbon groups which may have the same substituent as R 1 described above.
  • X is a halogen atom, an alkyl group, or an alcohol.
  • an alkyl group particularly an alkyl group, particularly a lower alkyl group having about 1 to 6 carbon atoms, is considered suitable.
  • the asymmetric arylation reaction of ⁇ -imino acids of the present invention makes it possible to synthesize an optically active allylglycine analog represented by, for example, any one of the above formulas (3 ⁇ ) (3 ⁇ ).
  • an appropriate organic solvent such as halogenated hydrocarbon, diaryls, ethers and the like may be used, and the reaction temperature is appropriately in the range of about ⁇ 40 to 40.
  • the atmosphere can be air or an inert atmosphere.
  • the use ratio of the ⁇ -imino acids and the allylsilane compound as the reaction substrate can be appropriately set within a range of about 0.5 to 4.0 as a molar ratio.
  • the silane group can be more effectively desorbed from the by-product added with the silane group.
  • divalent copper triflate (7.2 mg, 0.02 mmo 1), chiral diamine (10.8 mg, 0.0 0) synthesized by the method described in the literature (Non-patent Document 5) in an eggplant flask under argon. 2 2mmo 1) was weighed, and then tetradofuran (2. OmL) distilled as needed was added and stirred vigorously for several seconds (copper triflutter was completely dissolved, and the solution turned yellowish green). Stirring was stopped and molecular sieves 3 A (20. Omg) was added. Agitation was resumed and the suspension was cooled to zero.
  • allyltrimethylsilane (0.62 mmo 1) was added, followed by tetrahydrofuran (1. OmL).
  • tetrahydrofuran (1. OmL).
  • the methylene chloride solution 0.1 M, 2. OmL, 0.2 mMol of the imino ester prepared in 1) above was added over 4 hours.
  • Example Y (h) yield% ee%
  • a benzyl group, a trifluoromethyl group, a third butyl group, a p-methoxypentyl group or the like as the alkoxy group of the product N-alkoxycarbonylarylglycine ester, They are removed as normal amino protecting groups under mild conditions without side reactions such as racemization.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

A method for the asymmetric allylation of an α-imino acid, wherein an allylsilane compound is reacted with an an α-imino acid having a structure in which an oxycarbonyl group is bonded to a nitrogen atom of the imino group in the presence of a chiral copper catalyst. The above method can be suitably employed for synthesizing an optically active allylglycine analogue by the use of a practical catalytic asymmetric allylation reaction which uses non-expensive raw materials and gives a high reaction yield and high stereoselectivity under mild conditions.

Description

明 細 書 α —ィミノ酸類の不斉ァリル化反応方法  Akira Akira A method for asymmetric arylation of α-imino acids
【技術分野】 【Technical field】
【0 0 0 1】  [0 0 0 1]
本発明は、 医薬品、 農薬、 香料、 触媒等の原料もしくは合成中間体等 として有用な光学活性ァリルグリシン類縁体のェナンチォ選択的なァ リル化反応方法に関するものである。  The present invention relates to a method for enantioselective allylation of optically active allylglycine analogues useful as raw materials for pharmaceuticals, agricultural chemicals, fragrances, catalysts, etc. or synthetic intermediates.
【背景技術】  [Background]
【0 0 0 2】  [0 0 0 2]
光学活性 α —アミノ酸は天然物合成や医薬品などのファンケミカル 等の原料あるいは合成中間体として貴重な位置を占めている。 そして、 特に天然からは入手が困難な光学活性 α —アミノ酸類に関しては、これ までにも様々な合成法が検討されてきている。 このような光学活性な非 天然 α —アミノ酸の合成法として古くから、そして現在でも多用されて いるのは、 天然に豊富に存在する光学活性化合物からの誘導化、 酵素に よる光学分割、 光学活性な酸性化合物との塩に誘導後に再結晶法を用い る光学分割などによる方法であるが、 これらは入手できるアミノ酸の構 造に制約が多い場合や、 必要な立体とは異なる立体の化合物が同量副生 するなどの問題があった。 近年、 不斉合成反応の進歩にともない、 高い 不斉収率で光学活性 α —アミノ酸を得る手法も報告されている(非特許 文献 1、 2 )。 それらの中でも触媒的不斉合成方法は、 金属触媒や不斉 配位子が少量ですむことからコス卜的に有利であり、 近年の大きな課題 となっている産業廃棄物の削減の観点からも期待され活発に研究され ている。  Optically active α-amino acids occupy a valuable position as raw materials or synthetic intermediates for fan chemicals such as natural product synthesis and pharmaceuticals. Various synthetic methods have been studied so far, especially for optically active α-amino acids that are difficult to obtain from nature. Such optically active non-natural α-amino acid synthesis methods have been used for a long time, and are still widely used today: derivatization from naturally abundant optically active compounds, optical resolution by enzymes, optical activity This method is based on optical resolution using a recrystallization method after derivatization to a salt with an acidic compound. There were problems such as volume byproduct. In recent years, techniques for obtaining optically active α-amino acids with high asymmetric yields have been reported with the progress of asymmetric synthesis reactions (Non-patent documents 1 and 2). Among them, the catalytic asymmetric synthesis method is advantageous in terms of cost because it requires a small amount of metal catalyst and asymmetric ligand, and also from the viewpoint of reducing industrial waste, which has become a major issue in recent years. Expected and actively researched.
【0 0 0 3】  [0 0 0 3]
また、非天然 α —アミノ酸の一種であるァリルグリシンは、 ァリル基 の 2重結合の化学変換により様々な誘導体化が可能な有用な合成中間 体であることから、その不斉合成方法は古くから検討されてきた。特に、 α—ィミノエステルや N , Ο—ァセタールの不斉ァリル化反応は光学活 性ァリルグリシン類縁体の合成法として近年とくに注目されている (非 特許文献 2〜4 )。 In addition, allylglycine, a kind of non-natural α-amino acid, Since it is a useful synthetic intermediate that can be derivatized in various ways by chemical conversion of the double bond, its asymmetric synthesis method has been studied for a long time. In particular, asymmetric arylation reactions of α-iminoesters and N, Ο-acetals have recently attracted particular attention as methods for synthesizing optically active arylglycine analogs (Non-patent Documents 2 to 4).
【0 0 0 4】  [0 0 0 4]
しかしながら、 上記のように、 これまで多くの光学活性な α—ァミノ 酸やその一種としてのァリルダリシン類縁体の触媒的不斉合成方法が 提案されてきたが、 これまでに実用化されたものは少ない。 その理由と しては、 収率や立体選択性が不十分であることや、 触媒が高価 (貴金属 触媒を使用) であり、 触媒の回転 (再利用化率) が低い (触媒量の低減 化が困難) こと、 反応条件が過酷 (反応温度が一 7 8 など)、 基質の 一般性が低いなど様々な問題点がある。 さらに、 ィミノエステルの不斉 ァリル化反応によるァリルダリシン合成の場合には、 生成したァリルグ リシン誘導体の α—ァミノ基上の置換基の除去が一般に困難であると いう問題があった。 すなわち、 原料ィミノエステルの窒素原子の置換基 としてトシル基やァシル基が用いられることが多く、 これらの除去条件 が過酷なためアミノ基が無保護のァリルグリシンに変換する際の障害 になっていた。  However, as described above, many methods for catalytic asymmetric synthesis of optically active α-amino acids and araldaricin analogs as one of them have been proposed, but few have been put to practical use so far. . The reason is that the yield and stereoselectivity are insufficient, the catalyst is expensive (uses a precious metal catalyst), and the rotation (reuse rate) of the catalyst is low (reduction of the amount of catalyst). There are various problems such as severe reaction conditions (reaction temperature is 1 78, etc.) and low generality of substrates. Furthermore, in the case of synthesis of allyldaricin by asymmetric allylation reaction of imino ester, there is a problem that it is generally difficult to remove a substituent on the α-amino group of the produced allylic glycine derivative. That is, the tosyl group and the acyl group are often used as substituents for the nitrogen atom of the raw material imino ester, and since these removal conditions are harsh, it has been an obstacle when the amino group is converted to unprotected allylglycine.
【 0 0 0 5】  [0 0 0 5]
一方、 本発明者らは、 これまでに多くの不斉反応触媒及び不斉反応方 法を開発してきた。 それらの中でもルイス酸金属とキラルなジァミン配 位子から調整される不斉触媒は、 アルデヒドゃィミンへの不斉求核付加 反応を効果的に触媒し、 高収率 ·高立体選択的に光学活性な化合物の合 成を可能にした (特許文献 1 ) (非特許文献 5〜 9 ) .  On the other hand, the present inventors have developed many asymmetric reaction catalysts and asymmetric reaction methods. Among them, asymmetric catalysts prepared from Lewis acid metals and chiral diamine ligands effectively catalyze asymmetric nucleophilic addition reactions to aldehyde diamines, resulting in high yields and high stereoselective optical activity. (Patent Document 1) (Non-Patent Documents 5 to 9).
【非特許文献 1】 B l och, R. . CheiL Rev. 98巻、 1407頁、 1998年  [Non-Patent Document 1] Bloch, R.. CheiL Rev. 98, 1407, 1998
【非特許文献 2】 Fe rrar i s, D.; Dudd ing, T.; Young, B ; Dru ty I I I, W. J.;  [Non-Patent Document 2] Ferrr is, D .; Dudding, T .; Young, B; Druty I I I, W. J .;
Lec tka, T.、 J. Org. Chem. 64巻、 2 168頁、 1999年 【非特許文献 3 ] Ferraris, D.; Young, B; Cox, C.; Dudding, T,; DrutyLec tka, T., J. Org. Chem. 64, 2 168, 1999 [Non-Patent Document 3] Ferraris, D .; Young, B; Cox, C .; Dudding, T ,;
III, W. J.; Ryzhkov, L.; Taggi, A. E.; Lecktka. 、 T. J.III, W. J .; Ryzhkov, L .; Taggi, A. E .; Lecktka., T. J.
Am. Chem. Soc. 124巻、 67頁、 2002年 Am. Chem. Soc. 124, 67, 2002
【非特許文献 4】 Fang, X.; Johannsen, .; Yao, S.; Gathergood, N.; [Non-Patent Document 4] Fang, X .; Johannsen,.; Yao, S .; Gathergood, N .;
Hazel 1, R. G.; Jorgensen, K. A. 、 J. Org. Chem. 64 巻、 4844頁、 1999年  Hazel 1, R. G .; Jorgensen, K. A., J. Org. Chem. 64, 4844, 1999
【非特許文献 5】 Kobayashi, S.; Matsubara, R.; Nakamura, Y.;  [Non-Patent Document 5] Kobayashi, S .; Matsubara, R .; Nakamura, Y .;
Kitagawa, H.; Sugiura.M.、 J. Am. Chem. Soc. 125 巻、 2507頁、 2003年  Kitagawa, H .; Sugiura.M., J. Am. Chem. Soc. 125, 2507, 2003
【非特許文献 6】 Hamada, T.; Manabe, K.; Kobayashi, S.、 Angew. Chem. ,  [Non-Patent Document 6] Hamada, T .; Manabe, K .; Kobayashi, S., Angew. Chem.
Int. Ed, 42 巻、 3927頁、 2003年  Int. Ed, 42, 3927, 2003
【非特許文献 7】 Nakamura, Y.; Matsubara, R.; Kiyohara, H.;  [Non-Patent Document 7] Nakamura, Y .; Matsubara, R .; Kiyohara, H .;
Kobayashi, S.; 、 Org. Lett.5巻、 2481頁、 2003年 【非特許文献 8】 Matsubara, R.; Nakamura, Y.; Kobayashi, S.;、 Angew.  Kobayashi, S .;, Org. Lett. 5, 2481, 2003 [Non-Patent Document 8] Matsubara, R .; Nakamura, Y .; Kobayashi, S.;, Angew.
Chem. , Int. Ed. 43 巻、 1679頁、 2004年  Chem., Int. Ed. 43, 1679, 2004
【非特許文献 9】 Matsubara, R.; Paulo, V.; Nakamura, Y.; Kiyohara, H.  [Non-Patent Document 9] Matsubara, R .; Paulo, V .; Nakamura, Y .; Kiyohara, H.
; Kobayashi, S. , Tetrahedron 60巻、 9769頁、 2004年 【特許文献 1】 特開 2003— 260363号公報  Kobayashi, S., Tetrahedron 60, 9769, 2004 [Patent Document 1] JP 2003-260363 A
【発明の開示】 DISCLOSURE OF THE INVENTION
【発明が解決しょうとする課題】  [Problems to be solved by the invention]
【 0 0 0 6】  [0 0 0 6]
そこで本発明は、 上記のとおりの背景から、 本発明者らの上記のとお りのこれまでの不斉反応触媒、 不斉反応方法についての開発実績とそこ での知見をも踏まえて、 安価な原料を用い、 温和な反応条件下で、 高い 反応収率と立体選択性が得られる、 実用的な、 光学活性ァリルグリシン 類縁体の合成方法としての触媒的不斉ァリル化反応方法を提供するこ とを課題としている。 【課題を解決するための手段】 Therefore, the present invention is based on the background as described above, and is based on the development history of the present asymmetric reaction catalyst and the asymmetric reaction method as described above and the knowledge obtained therewith. To provide a catalytic asymmetric allylation reaction method as a practical method for synthesizing optically active allylglycine analogs, which can obtain high reaction yield and stereoselectivity under mild reaction conditions using raw materials. Is an issue. [Means for Solving the Problems]
【00 0 7】  [00 0 7]
本発明は、 上記の課題を解決するものとして以下のことを特徴として いる。  The present invention is characterized by the following in order to solve the above problems.
【000 8】  [000 8]
第 1 :キラル銅触媒の存在下に、 ィミノ基の窒素原子にォキシカルボ ニル基が結合した α—ィミノ酸類にァリルシラン化合物を反応させて 光学活性なァリルダリシン類縁体を合成する α—ィミノ酸類の不斉ァ リル化反応方法。  First: Synthesis of optically active allyldaricin analogs by reacting α-imino acids with an oxycarbonyl group bonded to the nitrogen atom of the imino group in the presence of a chiral copper catalyst to synthesize optically active allyldaricin analogs Arylation reaction method.
【000 9】  [000 9]
第 2 :キラル銅触媒は、 有機酸または無機酸の塩もしくはこの塩の錯 体または複合体である銅化合物とキラルジァミン配位子とにより構成 されている不斉ァリル化反応方法。  Second: A chiral copper catalyst is an asymmetric allylation reaction method comprising a salt of an organic acid or an inorganic acid or a copper compound which is a complex or complex of this salt and a chiral diamine ligand.
【00 1 0】  [00 1 0]
第 3 :キラルジァミン配位子は、 エチレンジァミン分子構造をその一 部に有するァリル化反応方法。  Third: The chiral diamine ligand is an arylation reaction method having an ethylene diamine molecular structure as a part thereof.
【00 1 1】  [00 1 1]
第 4 :次式 (1)  Fourth: The following formula (1)
【化 4】  [Chemical 4]
0
Figure imgf000005_0001
0
Figure imgf000005_0001
(式中の R1は置換基を有していてもよい炭化水素基を示し、 R2は、 一 OR, — S Rまたは— NRaRbであって、 Rは置換基を有していてもよ い炭化水素基を、 Raおよび Rbは、 各々、 水素原子または置換基を有し ていてもよい炭化水素基を示す) (In the formula, R 1 represents a hydrocarbon group which may have a substituent, R 2 represents one OR, —SR or —NR a R b , and R has a substituent. And R a and R b each represents a hydrogen atom or a hydrocarbon group which may have a substituent)
で表わされる α—ィミノ酸類に、 次式 (2) 【0 0 1 2】 Α-imino acids represented by the following formula (2) [0 0 1 2]
【化 5】  [Chemical 5]
Figure imgf000006_0001
Figure imgf000006_0001
(式中の R3, R4, R5および R6は、 各々、 同一または別異に、 水素原 子または置換基を有していてもよい炭化水素基を示し、 Xは、 ハロゲン 原子、 アルキル基またはアルコキシ基を示す) (In the formula, R 3 , R 4 , R 5 and R 6 are the same or different and each represents a hydrogen atom or a hydrocarbon group which may have a substituent, X represents a halogen atom, Represents an alkyl group or an alkoxy group)
で表わされるァリルシラン化合物を反応させて、 次式 (3A) (3 B) 【00 1 3】 The following formula (3A) (3 B) [00 1 3]
【化 6】  [Chemical 6]
Figure imgf000006_0002
Figure imgf000006_0002
(3 B)(3 B)
Figure imgf000006_0003
Figure imgf000006_0003
(式中の R1, R2, R3, R4, R5および R6は前記のものを示す) のいずれかで表わされる光学活性なァリルグリシン類縁体を合成する 不斉ァリル化反応方法。 (Wherein R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are as defined above) An asymmetric allylation reaction method for synthesizing an optically active allylglycine analog represented by any one of the following:
【0 0 1 4】 第 5 :上記の不斉ァリル化反応方法において、 式 (1) (3 A) (3 B) 中の R1は、 ベンジル基、 トリフルォロメチル基、 第 3ブチル基および P—メトキシベンジル基からなる群より選択される置換基である不斉 ァリル化反応方法。 [0 0 1 4] Fifth: In the above asymmetric arylation reaction method, R 1 in formula (1) (3 A) (3 B) is a benzyl group, a trifluoromethyl group, a tertiary butyl group or a P-methoxybenzyl group. An asymmetric allylation reaction method which is a substituent selected from the group consisting of:
【発明を実施するための最良の形態】  BEST MODE FOR CARRYING OUT THE INVENTION
【0 0 1 5】  [0 0 1 5]
本発明は上記のとおりの特徴をもつものであるが、 以下にその実施の 形態について説明する。  The present invention has the features as described above, and an embodiment thereof will be described below.
本発明の要件として特徴的なことは、 以下のことにある。  Characteristic features of the present invention are as follows.
<A>キラル銅触媒を反応に用いる。  <A> A chiral copper catalyst is used in the reaction.
【00 1 6】  [00 1 6]
<B>ィミノ基の窒素原子にォキシカルボニル基が結合した α—ィ ミノ酸類を反応基質として用いる。  <B> α-Imino acids with an oxycarbonyl group bonded to the nitrogen atom of the imino group are used as reaction substrates.
<C>ァリルシラン化合物を反応させる。  A <C> aryl silane compound is reacted.
まず、 キラル銅触媒 <A>については、 銅原子をその構成に欠かせな いものとして、 かつキラルな有機分子の構造を付加している各種のもの が考慮される。 一般的には、 銅化合物とキラル有機化合物とにより構成 されるものとするが、 より実際的に、 反応収率ゃェナ  First, as for the chiral copper catalyst <A>, various types are considered in which a copper atom is indispensable for its constitution and a structure of a chiral organic molecule is added. Generally, it is composed of a copper compound and a chiral organic compound, but more practically, the reaction yield is
ンチォ選択性の観点からは、 銅化合物とキラルジァミン配位子化合物と により構成されたものとすることが好適に考慮される。 From the viewpoint of the selectivity, it is preferably considered to be composed of a copper compound and a chiral diamine ligand compound.
【00 1 7】  [00 1 7]
銅化合物としては、 1価または 2価の銅の化合物として塩、 錯塩、 有 機金属化合物等の各種のものから選択されてよいが、 なかでも、 有機酸 または無機酸との塩、 もしくはこの塩との錯体ゃ有機複合体が好適なも のとして挙げられる。 なかでも、 強酸との塩、 たとえば、 (パー) フル ォロアルキルスルホン酸や過塩素酸、 硫酸等の塩、 それらの錯体ゃ有機 複合体が好ましいものとして例示される。 たとえば C u (OT f ) 2、 C u C 104、 C u C 104 · 4 CH3CN、 C u (B F4) 2 · XH20等であ なかでも Cu (OT f ) 2が好適である。 The copper compound may be selected from a variety of monovalent or divalent copper compounds such as salts, complex salts, and organic metal compounds. Among them, a salt with an organic acid or an inorganic acid, or a salt thereof. Organic complexes are preferable as the complex. Of these, salts with strong acids, for example, (per) fluoroalkylsulfonic acid, salts of perchloric acid, sulfuric acid and the like, and complexes thereof are exemplified as organic complexes. For example C u (OT f) 2, C u C 10 4, C u C 10 4 · 4 CH 3 CN, C u (BF 4) 2 · XH 2 0 Hitoshidea Of these, Cu (OT f) 2 is preferred.
【00 1 8】  [00 1 8]
一方のキラルジァミン配位子化合物としては、 分子構造中にエチレン ジァミン構造をその一部として有するものが好適に用いられる。 この場 合のアミノ基はィミン結合を有していてもよい。 たとえば代表的なもの として、 次式の各種のものが例示される。 As one chiral diamine ligand compound, a compound having an ethylene diamine structure as a part of the molecular structure is preferably used. In this case, the amino group may have an imine bond. For example, representative examples include various types of the following formula.
【00 1 9】 [00 1 9]
【化 7】  [Chemical 7]
Figure imgf000009_0001
Figure imgf000009_0001
Figure imgf000009_0002
ここで、 式中の Rは、 置換を有していてもよい炭化水素基を示し、 こ の炭化水素基は、 鎖状、 環状のうちの各種のものでよく、 置換基として も、 ハロゲン原子をはじめ、 アルキル基等の炭化水素基やアルコキシ基 等を有していてもよい。 また、 上記式中の P h (フエニル基) において も置換基を有していてもよい。
Figure imgf000009_0002
Here, R in the formula represents a hydrocarbon group which may have a substituent, and the hydrocarbon group may be a chain or a cyclic group, and the substituent may be a halogen atom. In addition, it may have a hydrocarbon group such as an alkyl group or an alkoxy group. In addition, in P h (phenyl group) in the above formula, May also have a substituent.
【 00 2 0】  [00 2 0]
この出願の発明における以上のようなキラル触媒については、 あらか じめ銅化合物とキラル有機分子とから錯体を調製して触媒として用い てもよいし、 あるいは反応系において銅化合物とキラル有機分子とを混 合して使用するようにしてもよい。 触媒としての使用割合については、 銅化合物もしくは銅化合物とキラル有機分子との錯体として、 α—イミ ノ酸類に対し、 通常、 0. 5〜30モル%程度の割合とすることが考慮 される。  Regarding the above-described chiral catalyst in the invention of this application, a complex may be prepared in advance from a copper compound and a chiral organic molecule and used as a catalyst, or a copper compound and a chiral organic molecule may be used in a reaction system. May be used in combination. Regarding the use ratio as a catalyst, it is considered that the ratio is usually about 0.5 to 30 mol% with respect to α-imino acids as a complex of a copper compound or a copper compound and a chiral organic molecule.
【 00 2 1】  [00 2 1]
本発明の特徴的な反応基質としてのィミノ基の窒素原子にォキシ力 ルポニル基が結合した α—ィミノ酸 <Β>については、その種類は各種 であってよく、 たとえば一般的には前記の式 ( 1) で表われるものが示 される。 この式 (1 ) において符号 R1は置換基を有していてもよい炭 化水素基である。 たとえば、 鎖状または脂環状の炭化水素基、 芳香族の 炭化水素基、 そしてこれらの組合わせとしての各種の炭化水素基であつ てよい。 置換基としても、 求核付加反応を阻害しない限り、 アルキル基 等の炭化水素基やアルコキシ基、 スルフイド基、 シァノ基、 二卜口基、 エステル基等の各種のものを適宜に有していてもよい。 As the characteristic reaction substrate of the present invention, α-imino acid <Β> in which an oxyl group is bonded to the nitrogen atom of the imino group may be of various types. Those shown in (1) are shown. In this formula (1), the symbol R 1 is a hydrocarbon group which may have a substituent. For example, it may be a chain or alicyclic hydrocarbon group, an aromatic hydrocarbon group, and various hydrocarbon groups as a combination thereof. As long as the substituent does not hinder the nucleophilic addition reaction, it has a hydrocarbon group such as an alkyl group, an alkoxy group, a sulfide group, a cyano group, a two-necked group, an ester group and the like as appropriate. Also good.
【00 2 2】  [00 2 2]
Riの具体例としては、 ベンジル基、 フエニル基、 ェチル基、 第 3ブ チル基、 Me (メチル) 基、 p—メトキシベンジル基、 C F3基などが 挙げられる。 たとえば R1がべンジル基の場合には、 水素化分解や HB r Z酢酸を用いることで α—アミノ基からベンジルォキシカルボニル 基を除去することができる。第 3ブチルや ρ—メトキシベンジルの場合 には、 TF Αなどの酸により第 3ブトキシカルボニル基或いは ρ—メト キシベンジルォキシカルボ二ル基を除去することができる。 符号 R2は、 前記のとおりの— OR, — S R, —NRaRbのいずれかであり、 Rは置 換基を有していてもよい炭化水素基を、 R aおよび R bは、 各々、 水素原 子または置換基を有していてもよい炭化水素基を示す。 このうち、 R, R a, R bにおける置換基を有していてもよい炭化水素については、 鎖状 または脂環状の炭化水素基、 芳香族の炭化水素基、 そしてこれらの組合 わせとしての各種の炭化水素基であってよい。 置換基としても、 本発明 の反応を阻害しない限り、 アルキル基等の炭化水素基やアルコキシ基、 スルフィ ド基、 シァノ基、 ニトロ基、 エステル基等の各種のものを適宜 に有していてもよい。 Specific examples of Ri include a benzyl group, a phenyl group, an ethyl group, a tertiary butyl group, a Me (methyl) group, a p-methoxybenzyl group, and a CF 3 group. For example, when R 1 is a benzyl group, the benzyloxycarbonyl group can be removed from the α-amino group by hydrogenolysis or using HB r Z acetic acid. In the case of tertiary butyl and ρ-methoxybenzyl, the tertiary butoxycarbonyl group or ρ-methoxybenzyloxycarbonyl group can be removed with an acid such as TFΑ. The symbol R 2 is any one of —OR, — SR, —NR a R b as described above, and R is In the hydrocarbon group that may have a substituent, R a and R b each represent a hydrogen atom or a hydrocarbon group that may have a substituent. Among these, hydrocarbons that may have a substituent in R, R a , and R b are a chain or alicyclic hydrocarbon group, an aromatic hydrocarbon group, and various combinations thereof. It may be a hydrocarbon group. As a substituent, as long as the reaction of the present invention is not inhibited, various substituents such as a hydrocarbon group such as an alkyl group, an alkoxy group, a sulfido group, a cyano group, a nitro group, and an ester group may be appropriately included. Good.
【 0 0 2 3】  [0 0 2 3]
以上のような α—ィミノ酸類を用いることで不斉ァリル化反応が実 現されるとともに、 不斉ァリル化反応による生成物である光学活性なァ リルダリシン類縁体において、 ァミノ基の窒素原子に結合するこのォキ シカルボ二ル基を簡便に脱離させることが可能になる。  By using the α-imino acids as described above, an asymmetric arylation reaction is realized, and in the optically active aryldaricin analog that is a product of the asymmetric arylation reaction, it binds to the nitrogen atom of the amino group. This oxycarbonyl group can be easily removed.
【 0 0 2 4】  [0 0 2 4]
ァリルシラン化合物 < C >も各種であってよく、 たとえば前記の式 ( 2 ) で示されるものである。 この式 (2 ) における R 3, R 4, R 5およ び R 6は水素原子または上記の R 1と同様の置換基を有していてもよい炭 化水素基である。 また、 Xは、 ハロゲン原子、 アルキル基、 もしくはァ ルコ The gallium silane compound <C> may also be various, for example, those represented by the above formula (2). In this formula (2), R 3 , R 4 , R 5 and R 6 are hydrogen atoms or hydrocarbon groups which may have the same substituent as R 1 described above. X is a halogen atom, an alkyl group, or an alcohol.
キシ基であって、 なかでもアルキル基、 特に炭素数 1〜6程度の低級ァ ルキル基が好適なものとして考慮される。  Of these, an alkyl group, particularly an alkyl group, particularly a lower alkyl group having about 1 to 6 carbon atoms, is considered suitable.
【 0 0 2 5】  [0 0 2 5]
本発明の α —ィミノ酸類の不斉ァリル化反応によって、たとえば前記 式 (3 Α ) ( 3 Β ) のいずれかで表わされる光学活性なァリルグリシン 類縁体の合成が可能とされるが、 この場合の不斉ァリル化反応には、 適 宜な有機溶媒、 たとえばハロゲン化炭化水素、 二卜リル類、 エーテル類 等を用いてもよく、 反応温度は、 — 4 0 〜 4 0 程度の範囲が適宜に 採用される。 雰囲気は大気中もしくは不活性雰囲気とすることができる。 反応基質の α—ィミノ酸類とァリルシラン化合物との使用割合につい ては、 モル比として 0. 5〜4. 0程度の範囲で適宜とすることができ る。 The asymmetric arylation reaction of α-imino acids of the present invention makes it possible to synthesize an optically active allylglycine analog represented by, for example, any one of the above formulas (3 Α) (3 、). For the asymmetric arylation reaction, an appropriate organic solvent such as halogenated hydrocarbon, diaryls, ethers and the like may be used, and the reaction temperature is appropriately in the range of about −40 to 40. Adopted. The atmosphere can be air or an inert atmosphere. The use ratio of the α-imino acids and the allylsilane compound as the reaction substrate can be appropriately set within a range of about 0.5 to 4.0 as a molar ratio.
【00 2 6】  [00 2 6]
また反応に際しては、 後処理として T F Α等による酸処理を施すこと が有効でもある。  In the reaction, it is also effective to carry out an acid treatment with TFΑ as a post-treatment.
これによつて、 シラン基が付加した副生物からシラン基をより効果的に 脱離させることができる。 Thereby, the silane group can be more effectively desorbed from the by-product added with the silane group.
そこで以下に実施例を示し、 さらに詳しく説明する。 もちろん以下の 例によって発明が  Therefore, an example will be shown below and will be described in more detail. Of course, the following example
限定されることはない。 There is no limit.
【実施例】  【Example】
【00 2 7】  [00 2 7]
ぐ実施例 1 > Example 1>
1) N- (ベンジルォキシカルボニル) ィミノエステルの合成 まず、 次式  1) Synthesis of N- (benzyloxycarbonyl) imino ester
【化 8】
Figure imgf000012_0001
の化合物を、 Williams, R. M.; Aldous, D. J.; Aldous, S. C. J. Org. Chem. 1990, 55, 4657. に従って合成した。
[Chemical 8]
Figure imgf000012_0001
Was synthesized according to Williams, RM; Aldous, DJ; Aldous, SCJ Org. Chem. 1990, 55, 4657.
次いで、 次の反応式  Then the following reaction formula
【 00 28】  [00 28]
【化 9】
Figure imgf000013_0001
に従って、 アルゴン雰囲気下、 上記化合物 (0. 4mmo 1 ) の塩化メ チレン (4. 0 mL ) 溶液に piperidinomethyl polystyrene ( 3. 50 mmo l Zg, 216 m g , 0. 80 mmo 1 ) を加えた。 この混合液 を室温にて 10分間攪拌後、 攪拌をとめ、 数分停止させたところ、 高分 子が塩化メチレン層の上部に集積した。 塩化メチレン層の下部から、 ガ ス夕イ トシリンジを用いて、 透明な N— (ベンジルォキシカルボニル) ィミノエステルの塩化メチレン溶液 (2. OmL) を吸い取り、 そのま ま次の反応へ用いた。
[Chemical 9]
Figure imgf000013_0001
Then, piperidinomethyl polystyrene (3.50 mmol Zg, 216 mg, 0.80 mmo 1) was added to a solution of the above compound (0.4 mmo 1) in methylene chloride (4.0 mL) under an argon atmosphere. The mixture was stirred at room temperature for 10 minutes, then the stirring was stopped and the mixture was stopped for several minutes. As a result, the polymer was accumulated on top of the methylene chloride layer. From the bottom of the methylene chloride layer, using a gas syringe, a clear methylene chloride solution (2. OmL) of N- (benzyloxycarbonyl) iminoester was sucked and used as it was in the next reaction.
【 0029】  [0029]
2) 光学活性 N— (ベンジルォキシカルボニル) ァリルグリシンェチ ルエステルの合成 次の反応式に従って、 不斉ァリル化反応を行った。  2) Synthesis of optically active N- (benzyloxycarbonyl) arylglycine ester An asymmetric arylation reaction was performed according to the following reaction formula.
【化 10】  [Chemical formula 10]
^^SiMe3 (3.0 equiv)
Figure imgf000013_0002
^^ SiMe 3 (3.0 equiv)
Figure imgf000013_0002
slow a ton of iminoester  slow a ton of iminoester
over 4 h  over 4 h
Figure imgf000013_0003
すなわち、アルゴン下で、ナスフラスコに、二価の銅トリフラート(7. 2mg, 0. 0 2mmo 1 )、 文献記載の方法 (非特許文献 5 ) により 合成したキラルジァミン ( 1 0. 8mg, 0. 0 2 2mmo 1 ) を量り とり、 続いて要時蒸留したテトラドフラン (2. OmL) を加え、 数秒 間、 激しく攪拌した (銅トリフラー卜が完全に溶解し、 溶液は黄緑色に なった)。 攪拌を停止し、 モレキュラーシブス 3 A (20. Omg) を 加えた。 攪拌を再開し、 懸濁液を 0でに冷却した。 マイクロシリンジで ァリルトリメチルシラン (0. 62mmo 1 ) を加え、 続いてテトラヒ ドロフラン ( 1. OmL) を加えた。 次に、 前記 1) において調製した ィミノエステルの塩化メチレン溶液 (0. 1 M、 2. OmL, 0. 2m mo 1 ) を 4時間かけて添加した。
Figure imgf000013_0003
That is, divalent copper triflate (7.2 mg, 0.02 mmo 1), chiral diamine (10.8 mg, 0.0 0) synthesized by the method described in the literature (Non-patent Document 5) in an eggplant flask under argon. 2 2mmo 1) was weighed, and then tetradofuran (2. OmL) distilled as needed was added and stirred vigorously for several seconds (copper triflutter was completely dissolved, and the solution turned yellowish green). Stirring was stopped and molecular sieves 3 A (20. Omg) was added. Agitation was resumed and the suspension was cooled to zero. With a microsyringe, allyltrimethylsilane (0.62 mmo 1) was added, followed by tetrahydrofuran (1. OmL). Next, the methylene chloride solution (0.1 M, 2. OmL, 0.2 mMol) of the imino ester prepared in 1) above was added over 4 hours.
【0030】  [0030]
1 5分間攪拌した後に、 飽和重曹水 (8. OmL) を加え激しく攪拌 した。 塩化メチレンで 3回抽出し、 合わせた有機層を飽和食塩水で洗浄 した後に、 無水硫酸ナトリウムで乾燥した。  1 After stirring for 5 minutes, saturated aqueous sodium hydrogen carbonate (8. OmL) was added and stirred vigorously. The mixture was extracted three times with methylene chloride, and the combined organic layer was washed with saturated brine and then dried over anhydrous sodium sulfate.
【0 03 1】  [0 03 1]
ろ過後、 溶媒を留去し、 得られた残さに塩化メチレン (2. OmL) を加え、 溶液を 0 に冷却した。 激しく攪拌しながら、 ゆっくりとトリ フルォロ酢酸 ( 1. OmL) を加えた。  After filtration, the solvent was distilled off, methylene chloride (2. OmL) was added to the resulting residue, and the solution was cooled to zero. Slowly trifluoroacetic acid (1.OmL) was added with vigorous stirring.
【00 3 2】  [00 3 2]
2時間後に、 飽和重曹水 (8. OmL) を加え激しく攪拌した。 塩化 メチレンで 3回抽出し、 合わせた有機層を飽和食塩水で洗浄した後に、 無水硫酸ナトリウムで乾燥した。 ろ過後、 溶媒を留去し、 シリカゲルク 口マトグラフィ一にて精製し、 目的物 (6 7 %収率, 8 8 % e e) を得 た。  After 2 hours, saturated aqueous sodium hydrogen carbonate (8. OmL) was added and stirred vigorously. The mixture was extracted three times with methylene chloride, and the combined organic layer was washed with saturated brine and dried over anhydrous sodium sulfate. After filtration, the solvent was distilled off and the residue was purified by silica gel chromatography, to obtain the desired product (67% yield, 88% ee).
ぐ実施例 2— 4> Example 2-4>
実施例 1の反応 2) において、 ィミノエステルの添加時間 (Y)、 そ してキラル銅触媒の使用量を変更して同様の不斉ァリル化反応を行い、 光学活性な N— (ベンジルォキシカルボニル) ァリルグリシンェチルェ ステルを合成した。 その結果を表 1に示した。 In the reaction 2) of Example 1, the same asymmetric arylation reaction was carried out by changing the addition time of the imino ester (Y) and the amount of chiral copper catalyst used, Optically active N- (benzyloxycarbonyl) aryl glycine ester was synthesized. The results are shown in Table 1.
【0 0 3 3】  [0 0 3 3]
【表 1】  【table 1】
Cu(OTf)2 diamine Cu (OTf) 2 diamine
実施例 Y(h) yield % ee %  Example Y (h) yield% ee%
( mmol %) ( mmol %)  (mmol%) (mmol%)
2 10 11 0.5 46 87 2 10 11 0.5 46 87
3 10 11 24 74 873 10 11 24 74 87
4 30 33 4 72 89 4 30 33 4 72 89
ぐ実施例 5— 8> Example 5—8>
実施例 2と同様の条件下で、 前記の式で表わされる種々のィミノエス テル ( 1) とァリル化剤 (2) を用いて不斉ァリル化反応を実施し、 光 学活性なァリルグリシン誘導体 ((3 A) または (3 B)) を得た。 その 結果を表 2に示した。  Under the same conditions as in Example 2, an asymmetric allylation reaction was carried out using various iminoesters represented by the above formula (1) and an arylating agent (2) to produce a photoactive allylglycine derivative (( 3 A) or (3 B)) was obtained. The results are shown in Table 2.
【表 2】  [Table 2]
(3A)または (3B) Yield (%) ee (%) (3A) or (3B) Yield (%) ee (%)
5 Bzl Et H H Me H Me 99 88 5 Bzl Et H H Me H Me 99 88
6 Boca) Et H H SEt H Me 84 76 6 Boc a) Et HH SEt H Me 84 76
7 Boc Et H H SPh H Me 71 85 7 Boc Et H H SPh H Me 71 85
8 Teocb) Et H H Me H Me 85 71 a)tert-ブトキシカルポニル基 b) トリメチルシリルエトキシカルボニル基 8 Teoc b) Et HH Me H Me 85 71 a) tert-Butoxycarbonyl group b) Trimethylsilylethoxycarbonyl group
【発明の効果】 【The invention's effect】
【0 034】 本発明によれば、 医薬品、 農薬、 香料、 触媒等の原料または合成中間 体として有用なァリルグリシン類縁体の、 安価な金属原料を用い、 高い 触媒回転を有し、 反応条件が温和である触媒的不斉合成を可能にする。 そしてまた、 本発明によれば、 生成物である N—アルコキシカルポニル ァリルグリシンエステルのアルコキシ基としてべンジル基、 トリフルォ ロメチル基、 第 3プチル基、 p—メトキシペンジル基などを用いること により、 それらは通常のァミノ保護基として温和な条件下でラセミ化等 の副反応を伴うことなく除去される。 [0 034] According to the present invention, a raw material for pharmaceuticals, agricultural chemicals, fragrances, catalysts, etc. or an aryl metallicine analog useful as a synthetic intermediate, an inexpensive metal raw material, a high catalytic rotation, and a mild reaction condition Enables asymmetric synthesis. In addition, according to the present invention, by using a benzyl group, a trifluoromethyl group, a third butyl group, a p-methoxypentyl group or the like as the alkoxy group of the product N-alkoxycarbonylarylglycine ester, They are removed as normal amino protecting groups under mild conditions without side reactions such as racemization.

Claims

請求の範囲 The scope of the claims
1. キラル銅触媒の存在下に、 ィミノ基の窒素原子にォキシカルボ二 ル基が結合した α—ィミノ酸類にァリルシラン化合物を反応させて光 学活性なァリルダリシン類縁体を合成することを特徵とする α—イミ ノ酸類の不斉ァリル化反応方法。 1. In the presence of a chiral copper catalyst, a photoactive allyldaricin analog is synthesized by reacting an α-imino acid with an oxycarbonyl group bonded to the nitrogen atom of the imino group with a allylic silane compound. —Method for asymmetric arylation of imino acids.
2. キラル銅触媒は、 有機酸または無機酸の塩もしくはこの塩の錯体 または複合体である銅化合物とキラルジァミン配位子とにより構成さ れていることを特徴とする請求項 1の不斉ァリル化反応方法。  2. The chiral copper catalyst according to claim 1, wherein the chiral copper catalyst is composed of a salt of an organic acid or an inorganic acid, or a complex or complex of this salt, and a chiral diamine ligand. Chemical reaction method.
3. キラルジァミン配位子は、 エチレンジァミン分子構造をその一部 に有することを特徴とする請求項 2の不斉ァリル化反応方法。  3. The method for asymmetric arylation according to claim 2, wherein the chiral diamine ligand has an ethylene diamine molecular structure as a part thereof.
4. 次式 (1 )  4. The following formula (1)
【化 1】  [Chemical 1]
0
Figure imgf000017_0001
0
Figure imgf000017_0001
(式中の R1は置換基を有していてもよい炭化水素基を示し、 R2は、 - OR, — S Rまたは— NRaRbであって、 Rは置換基を有していてもよ い炭化水素基を、 Raおよび Rbは、 各々、 水素原子または置換基を有し ていてもよい炭化水素基を示す) (In the formula, R 1 represents a hydrocarbon group which may have a substituent, R 2 represents —OR, —SR or —NR a R b , and R represents a substituent. And R a and R b each represents a hydrogen atom or a hydrocarbon group which may have a substituent)
で表わされる α—イミノ酸類に、 次式 (2) In the α-imino acids represented by the following formula (2)
【化 2】  [Chemical 2]
Figure imgf000017_0002
(式中の R3, R4, R5および R6は、 各々、 同一または別異に、 水素原 子または置換基を有していてもよい炭化水素基を示し、 Xは、 ハロゲン 原子、 アルキル基またはアルコキシ基を示す)
Figure imgf000017_0002
(In the formula, R 3 , R 4 , R 5 and R 6 are the same or different and each represents a hydrogen atom or a hydrocarbon group which may have a substituent, X represents a halogen atom, Represents an alkyl group or an alkoxy group)
で表わされるァリルシラン化合物を反応させて、 次式 (3A) (3 B) 【化 3】 Is reacted with a silane compound represented by the following formula (3A) (3 B)
Figure imgf000018_0001
Figure imgf000018_0001
(式中の R1, R2, R3, R4, R5および R6は前記のものを示す) のいずれかで表わされる光学活性なァリルグリシン類縁体を合成する ことを特徴とする請求項 1から 3のいずれかの不斉ァリル化反応方法。 (Wherein R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are as defined above), an optically active arylglycine analog represented by any one of the following is synthesized: A method for asymmetric arylation according to any one of 1 to 3.
5. 請求項 4の不斉ァリル化反応方法において、 式 (1 ) (3A) (3 B) 中の R1は、 ベンジル基、 トリフルォロメチル基、 第 3ブチル基お よび P—メトキシベンジル基からなる群より選択される置換基である ことを特徴とする不斉ァリル化反応方法。 5. The method for asymmetric arylation according to claim 4, wherein R 1 in the formula (1) (3A) (3 B) is a benzyl group, a trifluoromethyl group, a tert-butyl group or P-methoxybenzyl. A method for asymmetric arylation, which is a substituent selected from the group consisting of groups.
PCT/JP2006/301920 2005-01-31 2006-01-31 METHOD FOR ASYMMETRIC ALLYLATION OF α-IMINO ACID WO2006080576A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007500666A JP4714730B2 (en) 2005-01-31 2006-01-31 Method for asymmetric allylation of α-imino acids

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005024587 2005-01-31
JP2005-024587 2005-01-31

Publications (1)

Publication Number Publication Date
WO2006080576A1 true WO2006080576A1 (en) 2006-08-03

Family

ID=36740581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/301920 WO2006080576A1 (en) 2005-01-31 2006-01-31 METHOD FOR ASYMMETRIC ALLYLATION OF α-IMINO ACID

Country Status (2)

Country Link
JP (1) JP4714730B2 (en)
WO (1) WO2006080576A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003260363A (en) * 2002-03-11 2003-09-16 Japan Science & Technology Corp New chiral copper catalyst and method for manufacturing n-acylated aminoacid derivative by using the same
JP2004099443A (en) * 2002-09-04 2004-04-02 Kansai Tlo Kk Method for producing substance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003260363A (en) * 2002-03-11 2003-09-16 Japan Science & Technology Corp New chiral copper catalyst and method for manufacturing n-acylated aminoacid derivative by using the same
JP2004099443A (en) * 2002-09-04 2004-04-02 Kansai Tlo Kk Method for producing substance

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
FERRARIS D. ET AL.: "Catalytic, Enantioselective Alkylation of alpha-Imino Esters: The Synthesis of Nonnatural alpha-Amino Acid Derivatives", J. AM. CHEM. SOC., vol. 124, 2002, pages 67 - 77, XP002999610 *
KOBAYASHI S. ET AL.: "Catalytic Asymmetric Synthesis of alpha-Amino Phosphonates Using Enantioselective Carbon-Carbon Bond-Forming Reactions", J. AM. CHEM., vol. 126, no. 21, 2004, pages 6558 - 6559, XP002990307 *
KOBAYASHI S. ET AL.: "Catalytic, Asymmetric Mannich-type Reactions of N-Acylimino Esters: Reactivity, Diastereo- and Enantioselectivity, and Application to Synthesis of N-Acylated Amino Acid Derivatives", J. AM. CHEM., vol. 125, 2003, pages 2507 - 2515, XP002999609 *
OLLEVIER T. AND BA T.: "Highly efficient three-component synthesis of protected homoallylic amines by bismuth triflate-catalyzed allylation of aldimines", TETRAHEDRON LETTERS, vol. 44, no. 50, 8 December 2003 (2003-12-08), pages 9003 - 9005, XP004471949 *

Also Published As

Publication number Publication date
JPWO2006080576A1 (en) 2008-06-26
JP4714730B2 (en) 2011-06-29

Similar Documents

Publication Publication Date Title
JP5113118B2 (en) Reagent for organic synthesis, and organic synthesis reaction method using the reagent
JP4822844B2 (en) Enantioselective nucleophilic addition reaction to enamide carbonyl group and synthesis method of optically active α-hydroxy-γ-keto acid ester and hydroxy diketone
KR101430116B1 (en) METHOD FOR PREPARING CHIRAL α-AMINO NITRILE USING CATALYST FOR STRECKER REACTION
JP5426556B2 (en) Method for asymmetric cyanation of imine
JP2010522636A (en) Method for asymmetric cyanation of titanium compound and imine
WO2006080576A1 (en) METHOD FOR ASYMMETRIC ALLYLATION OF α-IMINO ACID
JP3634207B2 (en) Process for producing optically active α-amino nitrile and α-amino acids
JP4827531B2 (en) Enantioselective method of nucleophilic addition reaction of enamide to imine and synthesis method of α-amino-γ-keto acid ester
CN110183513B (en) Cyclopeptide compound simulating structure of natural product and preparation method thereof
JP4413507B2 (en) Pincer metal complex, method for producing the same, and pincer metal complex catalyst
JP5569938B2 (en) Pyrrolidine derivative and method for producing the same
JP5372556B2 (en) Production method of selective homoallylic alcohol derivatives by α-addition type allylation reaction
JP4004547B2 (en) Method for producing optically active amine
WO2020220651A1 (en) Method for synthesizing chiral 2-hydroxy-1,4-dicarbonyl compound and pantolactone
JP2015172024A (en) Chiral bicyclic diene ligand having hydrogen bond formation amide group
JP2004196710A (en) Ligand and asymmetric catalyst
EP4249470A1 (en) Method for preparing alpha-amino acids
JP3990544B2 (en) Method for producing amino compound using salen manganese complex as catalyst
JP4643566B2 (en) Method for allylation of N-acylhydrazone
JP4310284B2 (en) Nucleophilic addition reaction method of enamide to azo compounds
JP4076969B2 (en) Method for asymmetric synthesis of optically active β-hydroxy-α-substituted carboxylic acid ester
US20040096211A1 (en) Enantioselective reformatsky process for preparing optically active alcohols, amines and derivatives thereof
JP4268424B2 (en) Method for producing 2-oxazolidinones
JP3594793B2 (en) Method for producing α-aminonitrile
US20050119416A1 (en) Arene-ruthenium complexes immobilized on polymers, catalysts consisting of the complexes, and processes for organic syntheses with the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007500666

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06713063

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6713063

Country of ref document: EP