WO2006080424A1 - Low allergen milk obtained using electrical energy - Google Patents

Low allergen milk obtained using electrical energy Download PDF

Info

Publication number
WO2006080424A1
WO2006080424A1 PCT/JP2006/301291 JP2006301291W WO2006080424A1 WO 2006080424 A1 WO2006080424 A1 WO 2006080424A1 JP 2006301291 W JP2006301291 W JP 2006301291W WO 2006080424 A1 WO2006080424 A1 WO 2006080424A1
Authority
WO
WIPO (PCT)
Prior art keywords
milk
lactoglobulin
protein
whey
solution
Prior art date
Application number
PCT/JP2006/301291
Other languages
French (fr)
Japanese (ja)
Inventor
Tomoaki Matsumoto
Kowashi Yosioka
Isao Inoue
Original Assignee
Kumamoto University
Institute Of National Colleges Of Technology, Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumamoto University, Institute Of National Colleges Of Technology, Japan filed Critical Kumamoto University
Priority to JP2007500588A priority Critical patent/JP4769949B2/en
Publication of WO2006080424A1 publication Critical patent/WO2006080424A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/20Milk; Whey; Colostrum
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C21/00Whey; Whey preparations
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/14Milk preparations; Milk powder or milk powder preparations in which the chemical composition of the milk is modified by non-chemical treatment
    • A23C9/144Milk preparations; Milk powder or milk powder preparations in which the chemical composition of the milk is modified by non-chemical treatment by electrical means, e.g. electrodialysis
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J1/00Obtaining protein compositions for foodstuffs; Bulk opening of eggs and separation of yolks from whites
    • A23J1/20Obtaining protein compositions for foodstuffs; Bulk opening of eggs and separation of yolks from whites from milk, e.g. casein; from whey
    • A23J1/205Obtaining protein compositions for foodstuffs; Bulk opening of eggs and separation of yolks from whites from milk, e.g. casein; from whey from whey, e.g. lactalbumine
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/04Animal proteins
    • A23J3/08Dairy proteins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/17Amino acids, peptides or proteins
    • A23L33/19Dairy proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Definitions

  • the present invention relates to a whey raw material with reduced allergenicity, ⁇ -ratatoglobulin protein and dairy product, which can be used for the treatment of immune diseases caused by intake of milk components, in particular, allergy to milk and prevention of the onset thereof. And a manufacturing method thereof. More specifically, the present invention provides whey by electrical energy without using foreign substances such as proteolytic enzymes.
  • the present invention relates to a whey raw material, ⁇ -lactoglobulin protein, and a dairy product obtained by reducing the amount of milk.
  • the present invention relates to a medical dairy product that is safe and retains its flavor, and a method for producing the same.
  • the peptide bond of milk protein is cleaved using porcine spleen or microorganism-derived proteolytic enzyme, and allergic antibody (IgE antibody) cannot be bound.
  • IgE antibody allergic antibody
  • OOODa It is widely used to reduce the molecular weight below (Caff arelli et al., Et al., Determination of aliergenicity to three cow s milk hydroiysates and an amino acid-derived formula in children with cow's milk allergy. Exp. Immuno 1., (2002), vol. 32, p74-79; Rosendal A.
  • Dairy products produced by these methods have several problems from the viewpoint of health when considering long-term drinking.
  • the first is that these substances used in the hypoallergenic reaction remain in the dairy product. Since these hydrolyzed milks are taken by infants over a long period of time, there is concern that porcine spleen or microbial proteolytic enzymes may become new allergens for infants with an allergic predisposition. In addition, these substances retain their biological activity even after they have been taken, so that continued ingestion in infants with immature organ development can be endangered (Carrocclo A). et al. Evaluation of pancrea tic lunction development after hydrolyzed protein-based and soy-based formulas in unweaned infants. Scand. J. Gastroenterol. (1997), vol. 32, p273-277). In addition, these methods obtain low allergens by changing the primary structure of milk protein, and the inherent flavor of milk as a food is lost.
  • JP-A-2003-18956 discloses that the deterioration of the quality of milk components can be prevented over a long period of time by subjecting a liquid containing milk components and / or a preparation to electrolysis or energization treatment. It is described that it is suitable for the production of canned milk coffee and milk tea beverages sold by vending machines and can warmers.
  • a liquid containing a milk component is allowed to flow continuously between two electrodes, or in a stationary state, a voltage is applied between the electrodes, and a current of 0.1 A to 50 A flows. It is described.
  • Patent Document 1 teaches and suggests that allergenicity can be reduced by injecting electric energy into whey raw materials or j8-ratoglobulin protein. .
  • the present invention has been made for the purpose of responding to the needs of the medical community seeking a new low allergen koji manufacturing method because the conventional milk component low allergen koji manufacturing method has the above-mentioned problems. . That is, the present invention is intended to reduce the whey ingredients, especially the allergenicity of j8-latatobrovulin protein, which has the highest allergen activity, in terms of food safety and sensory loss.
  • the problem to be solved was to produce milk products for the treatment of milk allergies and milk products for preventing the onset of milk allergies.
  • the present inventors have studied from various directions, and as a result, the physical components of the milk component are not determined by adding a foreign substance such as an enzyme to the milk component and performing a chemical reaction. Extensive research was conducted to obtain allergenicity reduction.
  • the present inventors focused on the fact that j8-latatoglobulin, which has the highest allergen activity among milk proteins, is a typical globular protein, and its higher-order structure is recognized as an allergen.
  • protein conformation can be changed by physical and chemical methods, but j8-lactoglobulin is heat-stable and is allergenic even at 1 hour at 90 ° C.
  • Britt- Mane E. et al. Modification of IgE Dinding during heat proces sing of the cow's milk allergen beta- lactoglobulin. J Agric food Chem., (2004), vol. 52, pl398-1403) o also because it is a food
  • chemical treatment using an acid-alkali solution cannot be performed. Therefore, the inventors have confirmed that when a certain amount of electric energy is injected into whey or isolated
  • a whey raw material or j8-lactoglobulin protein with reduced allergenicity obtained by injecting electric energy into the whey raw material or j8-lactoglobulin protein.
  • the whey raw material or j8-lactoglobulin protein of the present invention is used for treating a milk allergy patient or preventing the onset of a milk allergy.
  • the whey raw material or ⁇ -ratatoglobulin protein of the present invention injects electric energy by energizing a solution containing the whey raw material or ⁇ -lactoglobulin protein, and recovers the cathode-side solution. It is obtained by this.
  • a dairy product for treating milk allergy patients and a dairy product for preventing allergy onset prepared by using the whey raw material or ⁇ -lactoglobulin protein of the present invention described above. Provided.
  • the whey raw material or 13 lactoglobulin protein is electrically
  • a method for producing whey raw materials or j8-ratoglobulin protein with reduced allergenicity including injection of energy.
  • the allergenicity includes: injecting electrical energy by energizing a solution containing a whey raw material or ⁇ -lactoglobulin protein and recovering the cathode side solution.
  • a method for producing reduced whey ingredients or) 8-lactoglobulin protein is provided.
  • Milk is a basic nutrient source for infants.
  • allergenic activity is the second most common food cause of food allergies in Japan and is observed in 2% of infants (Yoji Iikura, the epidemiology of immediate food allergies. Academic Journal (2002), 16 pp. 139-143).
  • dairy products cause atopic dermatitis, dyspnea, diarrhea, and vomiting, and rarely disturbed consciousness by ingesting dairy products (Tomoaki Matsumoto) An easy-to-understand allergic disease in small children, Kinyoshido Publishing, 2003, 1 151).
  • Nutrition disorders occur in infants due to the inability to consume dairy products over time.
  • Hydrolyzed milk has been conventionally provided as milk for patients with milk allergies, but has been associated with health problems described below. Therefore, as a result of diligent efforts based on a completely new idea of using electric energy, the applicant was able to produce a therapeutic milk that solved these problems.
  • whey raw material or j8-lactoglobulin protein with reduced allergenicity can be produced by injecting electric energy into whey raw material or ⁇ -lactoglobulin protein.
  • the whey raw material referred to in the present invention means any raw material containing a milk component, and may be, for example, raw milk (cow milk), processed milk, skim milk powder, whole milk powder, skim milk, concentrated milk, and the like. Further, a liquid containing these, a liquid obtained by restoring powder with water or hot water, a concentrated liquid or a diluted liquid of these liquids may be used.
  • the whey raw material preferably contains j8-latatoglobulin protein.
  • electric energy is injected into whey raw material or ⁇ -lactoglobulin protein.
  • Examples of the method for injecting electric energy include energization processing (or electrolysis processing).
  • the energization process can be performed as follows.
  • the apparatus used for conducting the energization treatment is not particularly limited as long as it is a normal electrolysis apparatus used for electrolyzing a normal aqueous solution or the like. It is also possible to use an electrolysis method using an ion exchange membrane or a neutral membrane. For example, prepare two glass tubes of appropriate size, connect the central part with a glass tube into a bowl shape, and place it on the base. The bottom of the two left and right tube ports are each plugged with rubber fitted with a platinum electrode plate and a liquid sampling glass cock. This device is filled with whey raw material or j8-lactoglobulin protein solution and can be energized between circuits in which two platinum electrodes are connected in series.
  • a ferrite electrode, a platinum-plated titanium electrode, or the like can be used as an anode, and a stainless electrode, a platinum-plated titanium electrode, or the like can be used as a cathode. Can also be used.
  • a whey material or a liquid containing ⁇ -lactoglobulin protein is retained between the two electrodes, or a direct current is energized in a state in which the whey is continuously flowing between the two electrodes. Can be done.
  • the amount of current is preferably 0.1 A or more, more preferably 0.1 to 20 mm, and particularly preferably 0.5 to 5 mm.
  • the amount of current can be appropriately set according to the electrical conductivity, the distance between the electrodes, the temperature, and the like.
  • the energization time is a force that can be performed in any time from several seconds to several hours, preferably 1 minute to 3 hours, more preferably 5 minutes to 1 hour.
  • the total electric energy can be set by adjusting the amount of current and voltage and the energization time.
  • the total electrical energy injected by the method of the present invention is 10 kilojoules or more. 20 kilojoules or more is preferable, for example 10 to 500 kilojoules, more preferably 20 to 300 kilojoules, and even more preferably 30 to 200 kilojoules.
  • the cathode side liquid may be collected and used, or the entire treatment tank may be collected and used, but preferably the cathode side liquid is used. Can be collected and used.
  • a dairy product can be produced using a whey raw material or ⁇ -lactoglobulin protein with reduced allergenicity.
  • the dairy product as referred to in the present invention means a product made from milk or a part thereof, which is covered with the raw material, such as cream, butter, butter oil, cheese, ice cream, concentrated milk, defatted concentrated milk, no milk.
  • the ability to include beverages in which an extract or fruit juice is added to raw materials) is not limited to these.
  • the dairy product of the present invention has reduced allergenicity and can be used for treatment of patients with milk allergies and prevention of the development of milk allergies.
  • electric energy is injected into the milk component, and a raw milk (milk), processed milk, or skim milk powder solution is used as the milk component-containing liquid.
  • a raw milk (milk), processed milk, or skim milk powder solution is used as the milk component-containing liquid.
  • Add acetic acid to this add 1/5 volume of ether to the whey obtained after precipitating casein protein, shake twice in a separating funnel and degrease twice. Place the resulting liquid in a dialysis membrane and dialyze twice using dialysate.
  • the resulting liquid (defatted whey) and the isolated and purified ⁇ 8-lactoglobulin protein (derived from milk, sold by SIGMA, USA, purity 80%) were each dissolved in 1% by weight. Add% sodium chloride and inject electric energy.
  • Electric energy injection into skim whey and ⁇ -lactoglobulin protein is as follows: I went there. Prepare two glass tubes with a length of 300 mm and a diameter of 30 mm, and connect the central part with a glass tube with a length of 40 mm and a diameter of 25 mm to form an H-shape, which is installed on the base. The bottom of the two left and right tube ports are each plugged with rubber fitted with a platinum electrode plate and a liquid sampling glass cock. This apparatus is filled with the above-described skim whey solution and 250 ml of 1% J8-lactoglobulin protein solution, and energized between circuits in which two platinum electrodes are connected in series.
  • FIG. 1 shows an overall photograph of the device energizing the j8-lactoglobulin protein (A) and an enlarged photograph of the platinum electrode plate below the tube port and the glass cock for collecting liquid (B).
  • Table 1 Changes in pH, ORP, and protein concentration of skim whey and i3-lactoglobulin (/ 3 LG)
  • J8-lactoglobulin protein was added to the sera of milk allergy patients, and the amount of anti- ⁇ -lactoglobulin-specific IgE antibody contained in the patient sera was measured (RAST suppression (Yman L. et al., RAST -based allergen assay methods. Dev. Biol. Stand., 1975), vol. 29, pl51-165).
  • RAST suppression Yman L. et al., RAST -based allergen assay methods. Dev. Biol. Stand., 1975), vol. 29, pl51-165.
  • the RAST suppression test described here is used when a patient cannot perform such a biopsy (biological experiment) for reasons such as being a child.
  • allergen protein is added to the serum prior to measuring the amount of allergic antibody (IgE antibody) in the patient's serum, the IgE antibody in the serum is bound and consumed.
  • the principle is that the number of antibodies decreases, that is, the measured value decreases.
  • the amount of allergen protein can be estimated from the decrease of IgE antibody in serum.
  • the milk allergy patient serum used here was selected from milk allergy patients who visited the Department of Developmental Pediatrics, Kumamoto University Hospital. The purpose of this study was well explained, and the strengths of seven people who had consent from the patients themselves or their parents were collected. When blood was collected in normal outpatient practice, an additional 2 ml was collected. When various j8 lactoglobulin proteins are added to serum mixed with equal amounts of them, the anti-lactoglobulin-specific IgE antibody in the mixed serum is adsorbed and the antibody concentration decreases. It was calculated by applying it to the formula. The anti-j8-ratatoglobulin-specific IgE antibody titer is determined by the fluorescent enzyme antibody method (Falma Measured by Shia).
  • Specific IgE antibody titer reduction rate (%) (1- ⁇ IgE antibody titer in serum with added lactoglobulin protein Ig IgE antibody titer in serum without adding anything) X 100
  • the 1% ⁇ -ratatoglobulin protein solution was added to the mixed serum, it was diluted 10-fold, 100-fold, and 1,000-fold with physiological saline in advance.
  • the 8 1 was mixed with 0.4 ml of mixed serum and stirred for 1 hour at 37 ° C., and the anti-
  • the IgE antibody titer decreased most when the 10-fold solution was added (Table 2). For this reason, we decided to use a 10-fold dilution for subsequent experiments to observe IgE antibody adsorption.
  • IgE antibodies in serum are apparently reduced by binding to the allergen portion of j8-lactoglobulin. It was decided to evaluate the allergen activity of ⁇ -latatoglobulin by measuring the rate of decrease. That is, from the reduction rate obtained by adding j8-lactoglobulin before treatment, j8-ratatoglobulin collected on the anode side and the cathode side by energization, or j8 treated with acid or alkali -Subtracting the rate of decrease obtained when each ratatoglobulin was added, the difference was used as an index of attenuation of ⁇ -lactoglobulin protein allergen activity.
  • Non-fat whey and evaluation of allergenic activity of j8-lactoglobulin protein were performed on skin allergic reactions in patients with milk allergy.
  • Kumamoto University Ethics Committee reviewed the clinical research. From the milk allergy patients who visited the Department of Developmental Pediatrics at Kumamoto University Hospital, the contents of the study were well explained to the patients themselves or the parents of the patients, and a total of 15 people who obtained consent were examined.
  • inject the above skimmed whey and the electrical energy for 30 minutes then the anode side, negative side
  • the solution obtained on the extreme side, ⁇ -ratatoglobulin protein solution, and electric energy are injected into the solution for 10 to 30 minutes.
  • the solution collected on the anode and cathode sides, and physiological saline as a negative reaction reference The solution was a histamine 1,000-fold solution as a positive reaction control.
  • 201 drops were applied to the inner skin of each forearm and punctured with a child's brick needle (manufactured by Lincoln, USA), and the maximum diameter of wheal appearing on the surface after 20 minutes was measured.
  • the rate at which the skin allergic reaction was reduced by injecting electric energy into skim whey and ⁇ -latatoglobulin solution was determined by the following formula, and this value was used as an index of allergenic attenuation.
  • FIG. 2 shows a typical example of an allergic reaction that occurs when skim whey (left) and ⁇ -lactoglobulin solution (right) are used on the inner skin of the forearm of a milk allergy patient.
  • V in either case, the reaction to the cathode-side collected solution drawn on the skin (-) is (before) or (i8 LG) and the solution before applying the treatment drawn on the skin, or the anode written (+). It can be seen that it is significantly weaker than the reaction to the side sample.
  • ⁇ -lactoglobulin was injected with electrical energy for 30 minutes, and skin allergic reactions to the collected solutions were evaluated in 15 patients.
  • the diameter of the wheal was suppressed by 71% on average compared to the solution before energization, and the allergen activity was significantly reduced.
  • the mean effusion diameter was suppressed to 10% on the anodic side collection solution (Table 6).
  • Table 8 shows the measurement results in percentage.
  • cysteine (C), methionine (M), and tyrosine (Y) were below the detection limit on both the cathode and anode sides.
  • Lysine (K) also decreased, but decreased particularly on the cathode side.
  • aspartic acid (D), threonine (T), glutamic acid (E), proline (P), and leucine (L) are both on the cathode and anode sides. Increased. Except for lysine, there was no significant difference in amino acid composition between the anode and cathode. Therefore, the remarkable allergenic attenuation of j8-lactoglobulin seen on the cathode side did not seem to be related to the change in the amino acid composition of the protein.
  • ⁇ -latatoglobulin has five cysteine residues, four of which form intramolecular disulfide (S-S) bonds at two locations. The remaining one cysteine residue remains as a thiol group (-SH) or forms an intermolecular disulfide bond, so
  • 8-latatoglobulin is usually a simple force dimer! /.
  • thiol groups When the amount of thiol groups was measured by the Ehleman method, it was found to be almost the same on both the cathode and anode sides (Table 9). The significant allergenic attenuation of j8-lactoglobulin seen on the cathode side is due to del Val G.
  • Example 8 Changes in the molecular weight of 13 lactoglobulin caused by electrotechnical energy injection were investigated by polyacrylamide gel electrophoresis. Each j8-lactoglobulin solution was desalted and a non-reducing buffer (8% SDS, 40% glycerol, BPB, 200 mM Tris—HCL pH 6.8) was added to obtain a protein concentration of lmgZml. The 101 was electrophoresed on a 16% polyacrylamide gel for 90 minutes at a constant current of 16 mA. Staining was done with Kumasi Brilliant Blue.
  • Whey is an industrial waste in the cheese manufacturing process, most of which is swine feed.
  • 50 ml was collected after injecting electric energy into 250 ml of each solution.
  • the concentration of skim whey protein before treatment is 1,460 mgZdl
  • the protein concentration of the ⁇ -latatoglobulin solution before treatment is 728 mgZdl
  • FIG. 1 shows an overall image (A) of the large electrolyzer used in the example, and an enlarged image (B) of the platinum electrode and the liquid sampling cock part.
  • Figure 2 shows typical allergic reactions that occurred when using skim whey (left; whey) and j8-lactoglobulin solution (right; j8 LG) on the inner skin of the forearm of a milk allergy patient. An example is shown.
  • Fig. 3 shows the change in the molecular weight of ⁇ -lactoglobulin protein by electric energy injection.
  • Molecular weight marker
  • 1 j8-lactoglobulin solution before treatment
  • 2 anode collection solution after 10 minutes of energy injection
  • 3 cathode collection solution after 10 minutes of injection
  • 4 30 minutes after injection
  • 5 Cathode-side sampling solution 30 minutes after injection
  • FIG. 4 shows an electrophoresis image after ultrafiltration (30 kDa) of the ⁇ -lactoglobulin cathode-side collected solution.
  • M Molecular weight marker
  • 1 High molecular weight solution
  • 2 Low molecular weight solution
  • 3 Ultrafiltration solution

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Nutrition Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Pulmonology (AREA)
  • Mycology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Virology (AREA)
  • Epidemiology (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Dairy Products (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Abstract

It is intended to produce a dairy product for treatment of milk allergy or a dairy product for prevention of onset of milk allergy by reducing the allergenicity of whey components, particularly β-lactoglobulin protein that has the highest allergenicity among them, without the loss of safety and an organoleptic aspect as food. A whey raw material or β-lactoglobulin protein whose allergenicity is reduced, which can be obtained by putting electrical energy into the whey raw material or β-lactoglobulin protein, is provided.

Description

電気エネルギーを用いた低アレルゲンミルク 技術分野  Low allergen milk using electric energy
[0001] 本発明は、乳成分摂取によって生じる免疫疾患、特に牛乳アレルギーの治療やそ の発症予防に用いることができるアレルゲン性を低減ィ匕した乳清原料、 β—ラタトグ ロブリン蛋白及び乳製品、並びにその製造方法に関するものである。より詳細には、 本発明は、蛋白分解酵素などの異物を用いることなぐ電気エネルギーによって乳清 [0001] The present invention relates to a whey raw material with reduced allergenicity, β-ratatoglobulin protein and dairy product, which can be used for the treatment of immune diseases caused by intake of milk components, in particular, allergy to milk and prevention of the onset thereof. And a manufacturing method thereof. More specifically, the present invention provides whey by electrical energy without using foreign substances such as proteolytic enzymes.
、特にその中でも最もアレルゲン活性の高い j8—ラクトグロブリン蛋白(足立はるよ、 上野川修一。ミルクアレルギーにおける IgEの特異的抗原認識。アレルギーの臨床( 1997)、 3卷。 144— 151頁)のアレルゲン性を低減ィ匕させることによって得られる乳 清原料、 β ラクトグロブリン蛋白及び乳製品に関するものである。本発明は、安全 で風味を保持した医療用乳製品およびその製造方法に関するものである。 In particular, the allergenicity of j8-lactoglobulin protein with the highest allergenic activity (Haru Adachi, Shuichi Uenogawa. Specific IgE antigen recognition in milk allergy. Clinical allergy (1997), 3 卷. 144-151) The present invention relates to a whey raw material, β-lactoglobulin protein, and a dairy product obtained by reducing the amount of milk. The present invention relates to a medical dairy product that is safe and retains its flavor, and a method for producing the same.
背景技術  Background art
[0002] 乳成分のアレルゲン性を失活させる方法としては、ブタ脾臓ないし微生物由来蛋白 分解酵素を用いて牛乳蛋白のペプチド結合を切断し、アレルギー抗体 (IgE抗体)が 結合できな 、分子量( 1 , OOODa)以下に低分子化することが広く行われて 、る(Caff arelli し. et al., Determination of aliergenicity to three cow s milk hydroiysates and a n amino acid-derived formula in children with cow's milk allergy. Clin. Exp. Immuno 1., (2002), vol. 32, p74-79 ; Rosendal A. and Barkholt V., Detection of potentially all ergenic material in 12 hydorolyzed milk formulas. J. Dairy Sci., (2000), vol. 83, p22 00— 2210 ;及び Oldaus G. et al., Cow's milk IgE and IgG antibody responses to cow' s milk formulas. Allergy, (1999), vol., 54, p352- 357)。この技術によって製造された 乳製品は、牛乳アレルギー患者治療用あるいは牛乳アレルギー発症予防用の加水 分解ミルクとして市販されている。また、ィヌを用いた実験では、レドックス制御低分子 蛋白であるチォレドキシンを用いて、乳清成分中でもアレルゲン活性が最も高い j8— ラクトグロブリン蛋白のジスルフイド(S - S)結合を開裂し、この蛋白のアレルゲン性減 弱ィ匕が得られたという報告がある del Val G. et al., Thioredoxin treatment increases digestibility and lowers allergenicity of milk. J. Allergy Clin. Immunol., (1999), vol. 103, p690-697) o [0002] As a method of inactivating the allergenicity of milk components, the peptide bond of milk protein is cleaved using porcine spleen or microorganism-derived proteolytic enzyme, and allergic antibody (IgE antibody) cannot be bound. , OOODa) It is widely used to reduce the molecular weight below (Caff arelli et al., Et al., Determination of aliergenicity to three cow s milk hydroiysates and an amino acid-derived formula in children with cow's milk allergy. Exp. Immuno 1., (2002), vol. 32, p74-79; Rosendal A. and Barkholt V., Detection of potentially all ergenic material in 12 hydorolyzed milk formulas. J. Dairy Sci., (2000), vol 83, p22 00—2210; and Oldaus G. et al., Cow's milk IgE and IgG antibody responses to cow's milk formulas. Allergy, (1999), vol., 54, p352-357). Dairy products produced by this technology are commercially available as hydrolyzed milk for treating milk allergy patients or preventing the development of milk allergies. In experiments using Inu, cleaved disulfide (S-S) bond of j8-lactoglobulin protein, which has the highest allergen activity among whey components, was cleaved using thioredoxin, a redox-regulated small molecule protein. There is a report that the allergenic attenuation of vagina was obtained del Val G. et al., Thioredoxin treatment increases digestibility and lowers allergenicity of milk.J. Allergy Clin. Immunol., (1999), vol. 103, p690-697) o
[0003] し力しこれらの方法によって作製される乳製品には、長期飲用を考える上で健康上 の点からいくつかの問題点がある。まず低アレルゲン化反応に用いたこれらの物質 力 乳製品内に残存する点である。これら加水分解ミルクは乳児に長期にわたり飲用 されるため、ブタ脾臓ないし微生物由来蛋白分解酵素がアレルギー素因をもつ乳児 への新たなアレルゲンとなることが心配される。さらにこれらの物質は飲用された後に おいても生物学的活性を保っているため、器官発達が未熟な乳児での継続的摂取 では、その副反応が危千具されることである(Carrocclo A. et al. Evaluation of pancrea tic lunction development after hydrolyzed protein-based and soy-based formulas in unweaned infants. Scand. J. Gastroenterol. (1997), vol. 32, p273- 277)。またこれら の方法は牛乳蛋白の一次構造を変化させることで低アレルゲンィ匕を得ており、食品と しての乳固有の風味はなくなつている。  [0003] Dairy products produced by these methods have several problems from the viewpoint of health when considering long-term drinking. The first is that these substances used in the hypoallergenic reaction remain in the dairy product. Since these hydrolyzed milks are taken by infants over a long period of time, there is concern that porcine spleen or microbial proteolytic enzymes may become new allergens for infants with an allergic predisposition. In addition, these substances retain their biological activity even after they have been taken, so that continued ingestion in infants with immature organ development can be endangered (Carrocclo A). et al. Evaluation of pancrea tic lunction development after hydrolyzed protein-based and soy-based formulas in unweaned infants. Scand. J. Gastroenterol. (1997), vol. 32, p273-277). In addition, these methods obtain low allergens by changing the primary structure of milk protein, and the inherent flavor of milk as a food is lost.
[0004] また、特開 2003— 18956号公報には、乳成分を含有する液体、および又は、調合 液を電気分解処理あるいは通電処理することで、乳成分の品質劣化を長期間に亘っ て防止することができ、安全性も向上することができ、特に自販機や缶ウォーマーで 販売する缶入りミルクコーヒーやミルクティー飲料の製造に適していることが記載され ている。特許文献 1には、乳成分を含有した液体を 2本の電極間に連続して流したり 、または停留状態にしておいて、電極間に電圧をかけ、 0. 1Aから 50Aの電流を流 すことなどが記載されている。しかしながら、特許文献 1には、乳清原料又は j8—ラタ トグロブリン蛋白に電気エネルギーを注入することによってアレルゲン性を低減ィ匕で きることにつ ヽては全く教示も示唆もされて ヽな 、。  [0004] Further, JP-A-2003-18956 discloses that the deterioration of the quality of milk components can be prevented over a long period of time by subjecting a liquid containing milk components and / or a preparation to electrolysis or energization treatment. It is described that it is suitable for the production of canned milk coffee and milk tea beverages sold by vending machines and can warmers. In Patent Document 1, a liquid containing a milk component is allowed to flow continuously between two electrodes, or in a stationary state, a voltage is applied between the electrodes, and a current of 0.1 A to 50 A flows. It is described. However, Patent Document 1 teaches and suggests that allergenicity can be reduced by injecting electric energy into whey raw materials or j8-ratoglobulin protein. .
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] 本発明は、従来の乳成分の低アレルゲンィ匕製法に上記した様な問題点があるため 、新しい低アレルゲンィ匕製法を求める医療界のニーズに対応する目的でなされたも のである。即ち、本発明は、乳清成分、特にその中でも最もアレルゲン活性の高い j8 —ラタトブロブリン蛋白のアレルゲン性を、食品としての安全性や官能面での損失を 伴うことなく低減ィ匕して、牛乳アレルギー治療用乳製品、牛乳アレルギー発症予防用 乳製品を製造することを解決すべき課題とした。 [0005] The present invention has been made for the purpose of responding to the needs of the medical community seeking a new low allergen koji manufacturing method because the conventional milk component low allergen koji manufacturing method has the above-mentioned problems. . That is, the present invention is intended to reduce the whey ingredients, especially the allergenicity of j8-latatobrovulin protein, which has the highest allergen activity, in terms of food safety and sensory loss. The problem to be solved was to produce milk products for the treatment of milk allergies and milk products for preventing the onset of milk allergies.
課題を解決するための手段  Means for solving the problem
[0006] 本発明者らは、上記目的を達成するため、各方面から検討した結果、乳成分に酵 素などの異物を添加して化学的反応を行うのではなぐ物理的方法によって乳成分 のアレルゲン性低減ィ匕を得るための広範な研究を行った。  [0006] In order to achieve the above object, the present inventors have studied from various directions, and as a result, the physical components of the milk component are not determined by adding a foreign substance such as an enzyme to the milk component and performing a chemical reaction. Extensive research was conducted to obtain allergenicity reduction.
[0007] まず本発明者らは、牛乳蛋白の中でもアレルゲン活性が最も高い j8—ラタトグロブ リンが、典型的な球状蛋白質であり、その高次構造がアレルゲンとして認識される点 に着目した。一般に蛋白質の高次構造は物理的、化学的方法で変化させることがで きるが、 j8—ラクトグロブリンは熱に安定であり、 90°Cで 1時間処理でもアレルゲン性 ίまな \なりな ヽ (Britt— Mane E. et al., Modification of IgE Dinding during heat proces sing of the cow's milk allergen beta- lactoglobulin. J Agric Food Chem., (2004), vol. 52, pl398-1403) oまた食品であるため、酸アルカリ液を用いた化学的処理を行うこと もできない。そこで発明者らは、乳清や単離した |8—ラクトグロブリン蛋白に電気エネ ルギーを一定量注入したところ、それらのアレルゲン活性が著しく減弱化することを 確認した。本発明はこれらの知見に基づいて完成したものである。 [0007] First, the present inventors focused on the fact that j8-latatoglobulin, which has the highest allergen activity among milk proteins, is a typical globular protein, and its higher-order structure is recognized as an allergen. Generally, protein conformation can be changed by physical and chemical methods, but j8-lactoglobulin is heat-stable and is allergenic even at 1 hour at 90 ° C. Britt- Mane E. et al., Modification of IgE Dinding during heat proces sing of the cow's milk allergen beta- lactoglobulin. J Agric food Chem., (2004), vol. 52, pl398-1403) o also because it is a food In addition, chemical treatment using an acid-alkali solution cannot be performed. Therefore, the inventors have confirmed that when a certain amount of electric energy is injected into whey or isolated | 8-lactoglobulin protein, their allergen activity is remarkably attenuated. The present invention has been completed based on these findings.
[0008] 即ち、本発明によれば、乳清原料又は j8—ラクトグロブリン蛋白に電気エネルギー を注入することによって得られる、アレルゲン性を低減ィ匕した乳清原料又は j8—ラクト グロブリン蛋白が提供される。  [0008] That is, according to the present invention, there is provided a whey raw material or j8-lactoglobulin protein with reduced allergenicity obtained by injecting electric energy into the whey raw material or j8-lactoglobulin protein. The
[0009] 好ましくは、本発明の乳清原料又は j8—ラクトグロブリン蛋白は、牛乳アレルギー患 者治療又は牛乳アレルギー発症予防のために使用する。  [0009] Preferably, the whey raw material or j8-lactoglobulin protein of the present invention is used for treating a milk allergy patient or preventing the onset of a milk allergy.
[0010] 好ましくは、本発明の乳清原料又は β—ラタトグロブリン蛋白は、乳清原料又は β ラクトグロブリン蛋白を含む溶液に通電することによって電気工ネルギーを注入し、 陰極側の溶液を回収することにより得られるものである。  [0010] Preferably, the whey raw material or β-ratatoglobulin protein of the present invention injects electric energy by energizing a solution containing the whey raw material or β-lactoglobulin protein, and recovers the cathode-side solution. It is obtained by this.
[0011] 本発明の別の側面によれば、上記した本発明の乳清原料又は β ラクトグロブリン 蛋白を使用することによって調製した、牛乳アレルギー患者治療用乳製品及び牛乳 アレルギー発症予防用乳製品が提供される。 [0011] According to another aspect of the present invention, there is provided a dairy product for treating milk allergy patients and a dairy product for preventing allergy onset prepared by using the whey raw material or β-lactoglobulin protein of the present invention described above. Provided.
[0012] 本発明のさらに別の側面によれば、乳清原料又は 13 ラクトグロブリン蛋白に電気 エネルギーを注入することを含む、アレルゲン性を低減ィ匕した乳清原料又は j8—ラタ トグロブリン蛋白の製造方法が提供される。 [0012] According to still another aspect of the present invention, the whey raw material or 13 lactoglobulin protein is electrically There is provided a method for producing whey raw materials or j8-ratoglobulin protein with reduced allergenicity, including injection of energy.
[0013] 本発明のさらに別の側面によれば、乳清原料又は β ラクトグロブリン蛋白を含む 溶液に通電することによって電気エネルギーを注入し、陰極側の溶液を回収すること を含む、アレルゲン性を低減ィ匕した乳清原料又は )8—ラクトグロブリン蛋白の製造方 法が提供される。  [0013] According to still another aspect of the present invention, the allergenicity includes: injecting electrical energy by energizing a solution containing a whey raw material or β-lactoglobulin protein and recovering the cathode side solution. A method for producing reduced whey ingredients or) 8-lactoglobulin protein is provided.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0014] 牛乳は乳幼児にとって基本となる栄養源である。しかしながらそのアレルゲン活性 は高ぐわが国の食物アレルギーの原因食品としては 2番目に多く報告され、乳児の 2%に認められている(飯倉洋治ほ力。即時型食物アレルギーの疫学。 日本小児ァレ ルギ一学会誌(2002)、 16卷。 139— 143頁)。これらの乳幼児では乳製品を摂取 することによって、皮膚にじんま疹ゃアトピー性皮膚炎が生じたり、呼吸困難や下痢、 嘔吐がおこったり、まれに意識障害がみられている (松本知明(著)。わかりやすい小 児のアレルギー疾患、金芳堂出版、 2003年, 1 151頁)。長期にわたって乳製品 が摂取できないために、乳幼児においては栄養障害が生じる。  [0014] Milk is a basic nutrient source for infants. However, its allergenic activity is the second most common food cause of food allergies in Japan and is observed in 2% of infants (Yoji Iikura, the epidemiology of immediate food allergies. Academic Journal (2002), 16 pp. 139-143). In these infants, dairy products cause atopic dermatitis, dyspnea, diarrhea, and vomiting, and rarely disturbed consciousness by ingesting dairy products (Tomoaki Matsumoto) An easy-to-understand allergic disease in small children, Kinyoshido Publishing, 2003, 1 151). Nutrition disorders occur in infants due to the inability to consume dairy products over time.
[0015] 牛乳は牛乳アレルギーの原因ば力りではなぐ乳製品摂取後に激しい胃腸症状を 呈する乳児例も報告されるようになり、この場合は乳製品による食物蛋白誘発性小腸 結腸炎と呼ばれている(川瀬昭彦、近藤祐一、松本知明。 Food protein-induced ente rocolitis syndromeと考えられた低出生体重児の 1例。 日本小児科学会雑誌(2004) , 108卷、 635— 638頁)。また好酸球性胃腸炎の原因にもなつている(Matsumoto T . et al. Markedly high eosinophilia and an elevated serum IL— 5 level in an infant wit h cow milk allergy. Ann. Allergy Asthma Immunol., (1999), vol. 82, p253- 256)。  [0015] Infants who have severe gastrointestinal symptoms after ingestion of dairy products that are not the cause of milk allergies have also been reported, and this is called food protein-induced enterocolitis caused by dairy products. (Akihiko Kawase, Yuichi Kondo, Tomoaki Matsumoto. A case of low birth weight infant considered to be food protein-induced ente rocolitis syndrome. Journal of the Japan Pediatric Society (2004), 108 卷, 635-638). It also causes eosinophilic gastroenteritis (Matsumoto T. et al. Markedly high eosinophilia and an elevated serum IL— 5 level in an infant wit h cow milk allergy. Ann. Allergy Asthma Immunol., (1999 ), vol. 82, p253-256).
[0016] 牛乳アレルギー患者用ミルクとしては、従来から加水分解ミルクが供与されているが 、下記に述べる健康上の問題点力 ^、くつかあつた。そこで申請者らは、電気工ネルギ 一を用いるという全く新しい発想に基づいて鋭意努力した結果、これらの問題点を解 決した治療用ミルクをつくることができた。  [0016] Hydrolyzed milk has been conventionally provided as milk for patients with milk allergies, but has been associated with health problems described below. Therefore, as a result of diligent efforts based on a completely new idea of using electric energy, the applicant was able to produce a therapeutic milk that solved these problems.
[0017] 本発明では、乳清原料又は β ラクトグロブリン蛋白に電気エネルギーを注入する ことによって、アレルゲン性を低減ィ匕した乳清原料又は j8—ラクトグロブリン蛋白を製 造する。 [0017] In the present invention, whey raw material or j8-lactoglobulin protein with reduced allergenicity can be produced by injecting electric energy into whey raw material or β-lactoglobulin protein. Build.
[0018] 本発明で言う乳清原料とは、乳成分を含む任意の原料を意味し、例えば、生乳 (牛 乳)、加工乳、脱脂粉乳、全脂粉乳、脱脂乳、濃縮乳などでもよいし、これらを含有し た液体、粉末を水や湯で復元した液体、これら液体の濃縮液又は希釈液等でもよい 。乳清原料には、 j8—ラタトグロブリン蛋白が含まれていることが好ましい。  [0018] The whey raw material referred to in the present invention means any raw material containing a milk component, and may be, for example, raw milk (cow milk), processed milk, skim milk powder, whole milk powder, skim milk, concentrated milk, and the like. Further, a liquid containing these, a liquid obtained by restoring powder with water or hot water, a concentrated liquid or a diluted liquid of these liquids may be used. The whey raw material preferably contains j8-latatoglobulin protein.
[0019] 本発明では、乳清原料又は β ラクトグロブリン蛋白に電気エネルギーを注入する 。電気エネルギーの注入の方法としては、通電処理 (又は電気分解処理)などが挙 げられる。本発明では、通電処理は以下のようにして行うことができる。  In the present invention, electric energy is injected into whey raw material or β-lactoglobulin protein. Examples of the method for injecting electric energy include energization processing (or electrolysis processing). In the present invention, the energization process can be performed as follows.
[0020] 通電処理を行うために使用する装置としては、通常の水溶液などを電気分解する ために使用される通常の電気分解装置であれば特に限定されない。イオン交換膜や 中性膜を用いた電気分解方法を用いることも可能である。例えば、適当な大きさのガ ラス管を 2本用意し、中央部をガラス管で連結して Η型とし、これを台座に設置する。 左右二本の管口の下方は各々白金電極板および液体採取用ガラスコックを装着し たゴムで栓する。この装置に、乳清原料又は j8—ラクトグロブリン蛋白溶液を充填し、 二本の白金電極を直列に接続した回路間に通電することができる。  [0020] The apparatus used for conducting the energization treatment is not particularly limited as long as it is a normal electrolysis apparatus used for electrolyzing a normal aqueous solution or the like. It is also possible to use an electrolysis method using an ion exchange membrane or a neutral membrane. For example, prepare two glass tubes of appropriate size, connect the central part with a glass tube into a bowl shape, and place it on the base. The bottom of the two left and right tube ports are each plugged with rubber fitted with a platinum electrode plate and a liquid sampling glass cock. This device is filled with whey raw material or j8-lactoglobulin protein solution and can be energized between circuits in which two platinum electrodes are connected in series.
[0021] 通電処理の際に用いる電極としては、白金電極以外にも、例えば陽極として、フエ ライト電極、白金メッキチタニウム電極などを使用することができ、陰極としてステンレ ス電極、白金メッキチタニウム電極などを使用することもできる。  [0021] In addition to the platinum electrode, for example, a ferrite electrode, a platinum-plated titanium electrode, or the like can be used as an anode, and a stainless electrode, a platinum-plated titanium electrode, or the like can be used as a cathode. Can also be used.
[0022] 通電は、乳清原料又は β ラクトグロブリン蛋白を含む液体を 2本の電極間で滞留 させておくか、あるいは 2本の電極間に連続して流れている状態において、直流電流 を通電して行うことができる。  [0022] In the energization, a whey material or a liquid containing β-lactoglobulin protein is retained between the two electrodes, or a direct current is energized in a state in which the whey is continuously flowing between the two electrodes. Can be done.
[0023] 電流の量は、 0. 1A以上が好ましぐ 0. 1〜20Αがさらに好ましぐ 0. 5〜5Αが特 に好ましい。電気伝導度、電極間の距離、温度などに応じて電流の量は適宜設定す ることがでさる。  [0023] The amount of current is preferably 0.1 A or more, more preferably 0.1 to 20 mm, and particularly preferably 0.5 to 5 mm. The amount of current can be appropriately set according to the electrical conductivity, the distance between the electrodes, the temperature, and the like.
[0024] また通電時間は、数秒〜数時間の任意の時間で行うことができる力 好ましくは 1分 以上 3時間以内であり、より好ましくは 5分以上 1時間以内である。  [0024] The energization time is a force that can be performed in any time from several seconds to several hours, preferably 1 minute to 3 hours, more preferably 5 minutes to 1 hour.
[0025] 電流及び電圧の量と通電時間を調整することにより、全電気エネルギーを設定する ことができる。本発明の方法で注入される全電気エネルギーは、 10キロジュール以 上が好ましぐ 20キロジュール以上がさらに好ましぐ例えば 10〜500キロジュール、 より好ましくは 20〜300キロジュール、さらに好ましくは 30〜200キロジュールに設定 することができる。 [0025] The total electric energy can be set by adjusting the amount of current and voltage and the energization time. The total electrical energy injected by the method of the present invention is 10 kilojoules or more. 20 kilojoules or more is preferable, for example 10 to 500 kilojoules, more preferably 20 to 300 kilojoules, and even more preferably 30 to 200 kilojoules.
[0026] 本発明では、通電処理後に、陰極側の液体を採取して使用してもよいし、処理槽全 体の液体を採取して使用してもよいが、好ましくは陰極側の液体を採取して使用する ことができる。  In the present invention, after the energization treatment, the cathode side liquid may be collected and used, or the entire treatment tank may be collected and used, but preferably the cathode side liquid is used. Can be collected and used.
[0027] 本発明では、アレルゲン性を低減ィ匕した乳清原料又は β ラクトグロブリン蛋白を 用いて乳製品を製造することができる。本発明で言う乳製品とは、牛乳またはその一 部を原料とし、これをカ卩ェした製品を意味し、例えばクリーム、バター、バターオイル、 チーズ、アイスクリーム、濃縮乳、脱脂濃縮乳、無糖れん乳、無糖脱脂れん乳、加糖 れん乳、加糖脱脂れん乳、全粉乳、脱脂粉乳、加糖粉乳、調製粉乳、発酵乳、乳酸 菌飲料、及び乳飲料 (生乳や還元乳以外に、コーヒー抽出液や果汁などを原材料に 加えた飲料)などを挙げることができる力 これらに限定されるものではない。本発明 の乳製品は、アレルゲン性が低減化しており、牛乳アレルギー患者の治療並びに牛 乳アレルギー発症の予防のために用いることができる。  In the present invention, a dairy product can be produced using a whey raw material or β-lactoglobulin protein with reduced allergenicity. The dairy product as referred to in the present invention means a product made from milk or a part thereof, which is covered with the raw material, such as cream, butter, butter oil, cheese, ice cream, concentrated milk, defatted concentrated milk, no milk. Sugared milk, sugar-free skim milk, sweetened milk, sweetened skim milk, whole milk powder, skim milk powder, sweetened powdered milk, prepared milk powder, fermented milk, lactic acid bacteria beverage, and milk beverage (in addition to raw milk and reduced milk, coffee The ability to include beverages in which an extract or fruit juice is added to raw materials) is not limited to these. The dairy product of the present invention has reduced allergenicity and can be used for treatment of patients with milk allergies and prevention of the development of milk allergies.
以下の実施例により本発明をさらに具体的に説明する力 本発明は実施例によつ て限定されるものではない。  The ability to explain the present invention more specifically by the following examples The present invention is not limited by the examples.
実施例  Example
[0028] 実施例 1 [0028] Example 1
本発明の実施態様のひとつとして、乳成分に電気エネルギーを注入するが、乳成 分含有液としては生乳 (牛乳)、加工乳、あるいは脱脂粉乳の溶解液を用いる。これ らに酢酸を加え、カゼイン蛋白を沈殿させた後に得られた乳清 (ホエー)に 5分の 1容 量のエーテルを加え、分離漏斗内で震盪し脱脂する工程を 2回繰り返す。得られた 液体を透析膜に入れ、透析液を用いて 2回透析する。これによつて得られた液体 (脱 脂乳清液)および単離精製された ι8—ラクトグロブリン蛋白(牛乳由来、米国 SIGMA 社販売、精製度 80%) 1%溶解液に、各々重量比 1%の塩ィ匕ナトリウムを加え電気工 ネルギーを注入する。  As one embodiment of the present invention, electric energy is injected into the milk component, and a raw milk (milk), processed milk, or skim milk powder solution is used as the milk component-containing liquid. Add acetic acid to this, add 1/5 volume of ether to the whey obtained after precipitating casein protein, shake twice in a separating funnel and degrease twice. Place the resulting liquid in a dialysis membrane and dialyze twice using dialysate. The resulting liquid (defatted whey) and the isolated and purified ι8-lactoglobulin protein (derived from milk, sold by SIGMA, USA, purity 80%) were each dissolved in 1% by weight. Add% sodium chloride and inject electric energy.
[0029] 脱脂乳清および β ラクトグロブリン蛋白への電気エネルギー注入は、次のように して行った。長さ 300mm、口径 30mmのガラス管を 2本用意し、中央部を長さ 40m m、口径 25mmのガラス管で連結して H型とし、これを台座に設置する。左右二本の 管口の下方は各々白金電極板および液体採取用ガラスコックを装着したゴムで栓す る。この装置に上記の脱脂乳清液および 1% J8—ラクトグロブリン蛋白溶解液 250ml を満たし、二本の白金電極を直列に接続した回路間に通電する。 [0029] Electric energy injection into skim whey and β-lactoglobulin protein is as follows: I went there. Prepare two glass tubes with a length of 300 mm and a diameter of 30 mm, and connect the central part with a glass tube with a length of 40 mm and a diameter of 25 mm to form an H-shape, which is installed on the base. The bottom of the two left and right tube ports are each plugged with rubber fitted with a platinum electrode plate and a liquid sampling glass cock. This apparatus is filled with the above-described skim whey solution and 250 ml of 1% J8-lactoglobulin protein solution, and energized between circuits in which two platinum electrodes are connected in series.
[0030] 脱脂乳清液に対して電圧 83. 5V前後で通電する場合、最適電流値は 1. OAとなり 、脱脂乳清液の電気抵抗は約 84オームであった。この条件下で 30分間まで通電し 、全電気エネルギー約 150キロジュールまで注入した。 1°/0 J8—ラクトグロブリン蛋白 溶解液の電気抵抗は約 140オーム、電圧 83. 5V前後での最適電流値は 0. 6Aであ つた。この条件で 30分間まで通電し、全電気エネルギー約 90キロジュールまで注入 した。各々ペーパータオルでガラス管を包み、冷水を常時浸して溶解液を 55°C以下 に保った。試料は管口下方にある液体採取用ガラスコックをひねり 50ml採取した。 図 1に j8—ラクトグロブリン蛋白へ通電中の装置の全体写真 (A)と、管口下方の白金 電極板および液体採取用ガラスコックの拡大写真 (B)を示す。 [0030] When a non-fat whey was energized at a voltage of about 83.5 V, the optimum current value was 1. OA, and the electrical resistance of the non-fat whey was about 84 ohms. Under this condition, power was applied for up to 30 minutes and total electric energy was injected to about 150 kilojoules. The electrical resistance of the 1 ° / 0 J8-lactoglobulin protein lysate was about 140 ohms, and the optimum current value at a voltage of about 83.5 V was 0.6 A. Under this condition, power was applied for up to 30 minutes, and the total electrical energy was injected to approximately 90 kilojoules. Each glass tube was wrapped with a paper towel, and cold water was constantly immersed to keep the solution at 55 ° C or lower. The sample was collected by twisting the glass cock for collecting liquid at the bottom of the tube mouth. Figure 1 shows an overall photograph of the device energizing the j8-lactoglobulin protein (A) and an enlarged photograph of the platinum electrode plate below the tube port and the glass cock for collecting liquid (B).
[0031] 実施例 2  [0031] Example 2
脱脂乳清液に上記のように電気エネルギーを注入して、陽極側および陰極側で採 取した液体を透析膜に入れ、透析液を用いて 2回透析した。 5名の医療従事者に依 頼して官能テストを行った。その結果、牛乳特有の風味は損なわれていないことが分 かった。  Electric energy was injected into the skim milk as described above, and the liquid collected on the anode side and the cathode side was placed in a dialysis membrane and dialyzed twice using the dialysate. A sensory test was conducted by relying on five health care workers. As a result, it was found that the unique flavor of milk was not impaired.
[0032] 実施例 3 [0032] Example 3
脱脂乳清液および j8—ラクトグロブリン溶液に電気エネルギーを注入することによる pH、酸ィ匕還元電位 (ORP)および蛋白濃度の変化を測定した。蛋白濃度はローリィ 法で測疋した (Fryer H. J. L., Davis G. E. Lowry protein assay using an automatic m icrotiter plate spectrophotometer. Anal. Biochem. (1986), vol. 153, p262— 266.)。て の結果、脱脂乳清液では pH変化は小さぐ β ラクトグロブリン溶液では ρΗ値が大 きく変化した。両液とも陽極側では酸ィ匕電位が高くなり、陰極側では還元電位が高く なった。蛋白濃度は減少したが陽極側、陰極側で大きな差は生じな力つた (表 1)。  Changes in pH, acid-reduction potential (ORP), and protein concentration by injecting electrical energy into skim whey and j8-lactoglobulin solution were measured. Protein concentration was measured by the Lowry method (Fryer H. J. L., Davis G. E. Lowry protein assay using an automatic microtiter plate spectrophotometer. Anal. Biochem. (1986), vol. 153, p262—266.). As a result, the pH change was small in skimmed whey, and the ρΗ value changed significantly in β-lactoglobulin solution. In both solutions, the acid potential increased on the anode side and the reduction potential increased on the cathode side. Although the protein concentration decreased, there was no significant difference between the anode and cathode (Table 1).
[0033] [表 1] 表 1 脱脂乳清および i3—ラクトグロブリン (/3 L G) の p H、 O R P、 蛋白濃度の 変化[0033] [Table 1] Table 1 Changes in pH, ORP, and protein concentration of skim whey and i3-lactoglobulin (/ 3 LG)
Figure imgf000010_0001
Figure imgf000010_0001
[0034] 実施例 4  [0034] Example 4
牛乳アレルギー患者血清に j8—ラクトグロブリン蛋白をカ卩え、患者血清に含まれる 抗 β ラクトグロブリン特異的 IgE抗体がどの程度吸着されるかを測定した (RAST 抑制 (Yman L. et al., RAST- based allergen assay methods. Dev.Biol. Stand.,、 1975), vol.29, pl51-165)。蛋白のアレルゲン性定量には、実際のアレルギー患者で の皮膚反応を調べて、その陽性反応閾値力も推測することが一般的である。しかし患 者でそのような生体検査 (生体実験)が、小児である等の理由力 施行できない場合 には、ここで述べる RAST抑制試験が用いられる。これは患者血清中のアレルギー 抗体 (IgE抗体)量を測定するに先立って、血清中にアレルゲン蛋白を入れると、血 清中の IgE抗体がそれに結合して消費されるため、見かけ上血清から IgE抗体が減 る、つまり測定値が低くなることを原理としている。血清中の IgE抗体の減り具合から 逆にアレルゲン蛋白量が推測できることになる。  J8-lactoglobulin protein was added to the sera of milk allergy patients, and the amount of anti-β-lactoglobulin-specific IgE antibody contained in the patient sera was measured (RAST suppression (Yman L. et al., RAST -based allergen assay methods. Dev. Biol. Stand., 1975), vol. 29, pl51-165). To determine the allergenicity of proteins, it is common to examine the skin reaction in actual allergic patients and infer the positive reaction threshold power. However, the RAST suppression test described here is used when a patient cannot perform such a biopsy (biological experiment) for reasons such as being a child. This is because, if allergen protein is added to the serum prior to measuring the amount of allergic antibody (IgE antibody) in the patient's serum, the IgE antibody in the serum is bound and consumed. The principle is that the number of antibodies decreases, that is, the measured value decreases. On the contrary, the amount of allergen protein can be estimated from the decrease of IgE antibody in serum.
[0035] ここで用いた牛乳アレルギー患者血清は、熊本大学医学部附属病院発達小児科 外来を受診した牛乳アレルギー患者の中から選んだ。この研究の趣旨をよく説明し て、患者本人ないし患者両親から同意を得た 7名力も採取した。通常の外来診療で 血液を採取する際に、 2ml余分に採取した。それらを等量混合した血清に種々の j8 ラクトグロブリン蛋白をカ卩えると、混合血清中の抗 ラクトグロブリン特異的 IgE抗 体が吸着されて抗体濃度が低下するが、その低下の割合を下記の式に当てはめて 求めた。なお抗 j8—ラタトグロブリン特異的 IgE抗体価は蛍光酵素抗体法 (フアルマ シァ社製)で測定した。 The milk allergy patient serum used here was selected from milk allergy patients who visited the Department of Developmental Pediatrics, Kumamoto University Hospital. The purpose of this study was well explained, and the strengths of seven people who had consent from the patients themselves or their parents were collected. When blood was collected in normal outpatient practice, an additional 2 ml was collected. When various j8 lactoglobulin proteins are added to serum mixed with equal amounts of them, the anti-lactoglobulin-specific IgE antibody in the mixed serum is adsorbed and the antibody concentration decreases. It was calculated by applying it to the formula. The anti-j8-ratatoglobulin-specific IgE antibody titer is determined by the fluorescent enzyme antibody method (Falma Measured by Shia).
[0036] 特異的 IgE抗体価低下率(%) = (1 - β ラクトグロブリン蛋白を加えた血清中の I gE抗体価 Ζ何も加えていない血清中の IgE抗体価) X 100  [0036] Specific IgE antibody titer reduction rate (%) = (1-β IgE antibody titer in serum with added lactoglobulin protein Ig IgE antibody titer in serum without adding anything) X 100
[0037] 1% β—ラタトグロブリン蛋白溶液を混合血清に加える際に、前もって生理食塩水 で 10倍、 100倍、 1, 000倍に希釈した。その 8 1を混合血清 0. 4mlに各々カロ免、 3 7°Cで 1時間攪拌し、抗 |8—ラ外グロブリン特異的 IgE抗体価を測定した。その結果 、 10倍液をカ卩えた時が最も IgE抗体価が低下した (表 2)。このため、以降の IgE抗体 吸着をみる実験には 10倍希釈液を用いることにした。  [0037] When the 1% β-ratatoglobulin protein solution was added to the mixed serum, it was diluted 10-fold, 100-fold, and 1,000-fold with physiological saline in advance. The 8 1 was mixed with 0.4 ml of mixed serum and stirred for 1 hour at 37 ° C., and the anti- | 8-exoglobulin specific IgE antibody titer was measured. As a result, the IgE antibody titer decreased most when the 10-fold solution was added (Table 2). For this reason, we decided to use a 10-fold dilution for subsequent experiments to observe IgE antibody adsorption.
[0038] [表 2]  [0038] [Table 2]
表 2 ラク トグロブリン ( j3 L G) 添加による血清中特異的 I g E抗体価の変化  Table 2 Changes in serum specific IgE antibody titer by addition of lactoglobulin (j3LG)
Figure imgf000011_0001
Figure imgf000011_0001
[0039] このようにして血清中の IgE抗体は、 j8—ラクトグロブリンのアレルゲン部分と結合す ることによって見かけ上減少する。この減少する割合を測定することで、 β—ラタトグ ロブリンのアレルゲン活性を評価することにした。すなわち、処理する前の j8—ラクト グロブリン添カ卩によって得られた減少率から、通電して陽極側な ヽし陰極側で採取さ れた j8—ラタトグロブリン、あるいは酸ないしアルカリ処理を受けた j8—ラタトグロプリ ンを各々添加した時に得られた低下率を差し引いて、その差を β ラクトグロブリン 蛋白アレルゲン活性減弱化の指標とした。  [0039] Thus, IgE antibodies in serum are apparently reduced by binding to the allergen portion of j8-lactoglobulin. It was decided to evaluate the allergen activity of β-latatoglobulin by measuring the rate of decrease. That is, from the reduction rate obtained by adding j8-lactoglobulin before treatment, j8-ratatoglobulin collected on the anode side and the cathode side by energization, or j8 treated with acid or alkali -Subtracting the rate of decrease obtained when each ratatoglobulin was added, the difference was used as an index of attenuation of β-lactoglobulin protein allergen activity.
[0040] 特異的 IgE抗体への吸着率力 みたアレルゲン性減弱化率(%) = [無処置の j8— ラクトグロブリンをカ卩えた時の IgE低下率(%) ] [種々の処置を行った /3 ラクトグロ ブリンをカ卩えた時の IgE低下率(%) ]  [0040] Specific allergenic attenuation rate of specific IgE antibody (%) = [Non-treated j8—IgE reduction rate when lactoglobulin was prepared (%)] [Various treatments were performed / 3 Rate of IgE reduction when lactoglobulin is picked up (%)]
[0041] β ラクトグロブリン溶液に電気エネルギーを注入すると、 pH、 ORP値に変化が生 じるため、 13 ラクトグロブリンのアレルゲン性力 ¾Hや ORPの変化によっても影響を 受けるかについて調べた。表 1に示すように、陽極側で得られた溶液の pHは 3. 50、 ORPは 182mVであり、陰極側で得られた溶液の pHは 11. 20、 ORPは 208mV である。そこで β—ラタトグロブリン蛋白 1%溶液 30mlに、 1モルの酢酸を 450 1滴 下して、 pH3. 50 (ORP, 132mV)の溶液を作製した。また 1モルの水酸化ナトリウム 液を 150 1滴下して pHl l . 20 (ORP, — 256mV)の溶液も作製した。 [0041] When electric energy was injected into a β-lactoglobulin solution, changes in pH and ORP value occurred, so whether or not allergenicity of 13 lactoglobulin ¾H or ORP was also affected. As shown in Table 1, the pH of the solution obtained on the anode side is 3.50, ORP is 182 mV, and the pH of the solution obtained on the cathode side is 11.20, ORP is 208 mV It is. Therefore, 1 drop of 1 mol of acetic acid was added to 30 ml of 1% β-ratatoglobulin protein solution to prepare a solution with pH 3.50 (ORP, 132 mV). In addition, 150 1 drops of 1M sodium hydroxide solution was added dropwise to prepare a pHl.20 (ORP, -256mV) solution.
[0042] 牛乳アレルギー患者混合血清 0. 4mlに、無処置の /3 ラクトグロブリン蛋白溶解 液、 30分間通電して陽極側で採取した液、同陰極側で採取した溶液、酢酸を加えて 酸処置した溶液、水酸ィ匕ナトリウム液を加えアルカリ処置した溶液を、各々 10倍希釈 して 8 1加えた。 37°Cで 1時間攪拌した後、蛍光酵素抗体法で抗 j8—ラタトグロプリ ン特異的 IgE抗体価を測定した。この結果、電気エネルギーを注入して陰極側で得 られた j8—ラタトグロブリン蛋白には著しいアレルゲン活性の低減ィ匕が認められた。こ のアレルゲン性低減化は、同レベルの pH, ORPになるように水酸化ナトリウムをカロえ た j8—ラクトグロブリン蛋白にはみられな力つたので、電気エネルギー注入して陰極 側で見られるアレルゲン性低減ィ匕は単に pH, ORP変化に伴う現象ではな 、ことがわ かった(表 3)。  [0042] Acid treatment by adding 0.4 ml of untreated / 3 lactoglobulin protein solution, liquid collected on the anode side for 30 minutes, solution collected on the cathode side, acetic acid to 0.4 ml of mixed serum of milk allergy patients The solution prepared by adding sodium hydroxide solution and alkali-treated solution was diluted 10 times and added 81. After stirring at 37 ° C for 1 hour, anti-j8-ratatogloline specific IgE antibody titer was measured by a fluorescent enzyme antibody method. As a result, a significant reduction in allergen activity was observed in the j8-latatoglobulin protein obtained by injecting electric energy on the cathode side. This reduction in allergenicity was not seen in j8-lactoglobulin protein with calorie sodium hydroxide so that the pH and ORP were at the same level, so allergens found on the cathode side when electric energy was injected. It was found that the property-reducing property was not simply a phenomenon associated with changes in pH and ORP (Table 3).
[0043] [表 3]  [0043] [Table 3]
表 3 特異的 I g E抗体への吸着率からみた ラクトグロブリン (J3 L G) アレル ゲン活性の変化  Table 3 Changes in lactoglobulin (J3 L G) allergen activity in terms of adsorption rate to specific IgE antibodies
Figure imgf000012_0001
Figure imgf000012_0001
[0044] 実施例 5  [0044] Example 5
脱脂乳清および j8—ラクトグロブリン蛋白のアレルゲン活性の評価を、牛乳アレル ギー患者に対する皮膚アレルギー反応で行った。この検査実施に当たっては、熊本 大学倫理委員会の臨床研究に関する審査を受けた。熊本大学附属病院発達小児 科外来を受診した牛乳アレルギー患者の中から、患者本人ないし患者両親に研究 内容等についてよく説明して、同意が得られた計 15名に検査を施行した。テスト液と しては、上記の脱脂乳清液、それに電気エネルギーを 30分間注入して、陽極側、陰 極側で得られた液、 β—ラタトグロブリン蛋白溶解液、それに電気エネルギーを 10分 間ないし 30分間注入して、陽極側、陰極側で採取された溶液、さらには陰性反応対 照として生理食塩液を、陽性反応対照としてヒスタミン 1, 000倍液を用いた。 Non-fat whey and evaluation of allergenic activity of j8-lactoglobulin protein were performed on skin allergic reactions in patients with milk allergy. In conducting this test, Kumamoto University Ethics Committee reviewed the clinical research. From the milk allergy patients who visited the Department of Developmental Pediatrics at Kumamoto University Hospital, the contents of the study were well explained to the patients themselves or the parents of the patients, and a total of 15 people who obtained consent were examined. For the test solution, inject the above skimmed whey and the electrical energy for 30 minutes, then the anode side, negative side The solution obtained on the extreme side, β-ratatoglobulin protein solution, and electric energy are injected into the solution for 10 to 30 minutes. The solution collected on the anode and cathode sides, and physiological saline as a negative reaction reference The solution was a histamine 1,000-fold solution as a positive reaction control.
[0045] 各々の前腕内側皮膚に 20 1滴下して、小児用ブリック針 (米国リンコリン社製)で 穿刺して、 20分後に表面に出現する膨疹の最大直径を測定した。脱脂乳清液、 β —ラタトグロブリン溶液に各々電気工ネルギーを注入することによって皮膚アレルギ 一反応が低下する割合を下記の式で求め、この値をアレルゲン性減弱化の指標とし た。 [0045] 201 drops were applied to the inner skin of each forearm and punctured with a child's brick needle (manufactured by Lincoln, USA), and the maximum diameter of wheal appearing on the surface after 20 minutes was measured. The rate at which the skin allergic reaction was reduced by injecting electric energy into skim whey and β-latatoglobulin solution was determined by the following formula, and this value was used as an index of allergenic attenuation.
[0046] 皮膚アレルギー反応低下率(%) = (1 (電気工ネルギー注入後の膨疹径 陰性 対照液の膨疹径) / (電気工ネルギー注入前の膨疹径 陰性対照液の膨疹径) ) X 100 (%)  [0046] Decrease rate of skin allergic reaction (%) = (1 (wheal diameter after electric energy injection, wheal diameter of control liquid) / (wheal diameter before electric worker energy injection, wheal diameter of negative control liquid)) X 100 (%)
[0047] 図 2には、牛乳アレルギー患者の前腕内側皮膚面で、脱脂乳清液 (左)および β ラクトグロブリン溶液 (右)を用いた時に生じたアレルギー反応の典型例を示す。 V、ず れも、(-)と皮膚に描記した陰極側採取液に対する反応が、(前)あるいは(i8 LG)と 皮膚に描記した処理を加える前の液、あるいは(+ )と描記した陽極側採取液に対す る反応に比べて、著しく弱いことが分かる。  FIG. 2 shows a typical example of an allergic reaction that occurs when skim whey (left) and β-lactoglobulin solution (right) are used on the inner skin of the forearm of a milk allergy patient. V, in either case, the reaction to the cathode-side collected solution drawn on the skin (-) is (before) or (i8 LG) and the solution before applying the treatment drawn on the skin, or the anode written (+). It can be seen that it is significantly weaker than the reaction to the side sample.
[0048] 脱脂乳清液を用いた皮膚反応は合計 8名の患者で測定した。脱脂乳清液に上記 条件下で電気エネルギーを 30分間注入すると、陰極側ではアレルゲン活性が平均 4 8%低減化された。一方、陽極側では平均 28%の低下にとどまつていた (表 4)。  [0048] Skin reactions using skimmed whey were measured in a total of 8 patients. When electric energy was injected into skim whey for 30 minutes under the above conditions, the allergen activity was reduced by an average of 48% on the cathode side. On the other hand, on the anode side, the average decrease was only 28% (Table 4).
[0049] [表 4]  [0049] [Table 4]
表 4 脱脂乳清液への電気エネルギー注入による皮膚膨疹反応の変化  Table 4 Changes in cutaneous wheal response due to electric energy injection into skim milk whey
Figure imgf000013_0001
Figure imgf000013_0001
*平均値士 1標準偏差 [0050] β ラクトグロブリンに上記条件下で電気エネルギーを 10分間注入して採取した溶 液に対する皮膚アレルギー反応は 3名の患者で評価した。この通電時間では陰極側 、陽極側ともにアレルゲン活性の低減ィ匕はみられなカゝつた (表 5)。 * Average person 1 standard deviation [0050] Skin allergic reactions to solutions collected by injecting electrical energy into β-lactoglobulin for 10 minutes under the above conditions were evaluated in three patients. In this energization time, there was no reduction in allergen activity on both the cathode and anode sides (Table 5).
[0051] [表 5]  [0051] [Table 5]
表 5 /3—ラク トグロプリン溶液への電気エネルギー 1 0分間印加による皮膚膨疹反 応の変化  Table 5 / 3—Electric energy applied to lacto globulin solution 10 Changes in skin wheal response after 10 minutes of application
Figure imgf000014_0001
Figure imgf000014_0001
*平均値 ± 1標準偏差  * Average ± 1 standard deviation
[0052] β ラクトグロブリンに電気エネルギーを 30分間注入して、採取した溶液に対する 皮膚アレルギー反応を 15名の患者で評価した。陰極側で採取した溶液を用いた場 合、通電前の溶液に比べて、その膨疹直径は平均で 71%も抑制されており、アレル ゲン活性が著しく減弱していることが分力つた。一方、陽極側採取液では膨疹直径へ の抑制は平均 10%にとどまって 、た (表 6)。  [0052] β-lactoglobulin was injected with electrical energy for 30 minutes, and skin allergic reactions to the collected solutions were evaluated in 15 patients. When the solution collected on the cathode side was used, the diameter of the wheal was suppressed by 71% on average compared to the solution before energization, and the allergen activity was significantly reduced. On the other hand, the mean effusion diameter was suppressed to 10% on the anodic side collection solution (Table 6).
[0053] [表 6] [0053] [Table 6]
表 6 一ラク トグロプリン溶液への電気エネルギー 3 0分間注入による皮膚膨疹反 応の変化 Table 6 Changes in cutaneous eruption response after 30 minutes of injection of electrical energy into a single lactopurine solution
陽極側 陰極側  Anode side Cathode side
対照液 前 (低下率%) (低下率%) Before control solution (% decrease) (% decrease)
A 4 21 21 (0) 13 (47) A 4 21 21 (0) 13 (47)
B 2 23 16 (33) 3 (95)  B 2 23 16 (33) 3 (95)
C 4 17 22 (0) 20 (0)  C 4 17 22 (0) 20 (0)
D 4 13 12 (11) 6 (78)  D 4 13 12 (11) 6 (78)
E 3 9 9 (0) 3 (100)  E 3 9 9 (0) 3 (100)
F 2 5 5 (0) 3 (67)  F 2 5 5 (0) 3 (67)
G 3 25 24 (5) 5 (91)  G 3 25 24 (5) 5 (91)
H 1 11 11 (0) 5 (60)  H 1 11 11 (0) 5 (60)
I 2 15 14 (8) 2 (100)  I 2 15 14 (8) 2 (100)
J 2 15 9 (46) 8 (54)  J 2 15 9 (46) 8 (54)
K 4 28 17 (46) 5 (96)  K 4 28 17 (46) 5 (96)
L 2 4 4 (0) 2 (100)  L 2 4 4 (0) 2 (100)
M 5 16 15 (0) 8 (73)  M 5 16 15 (0) 8 (73)
N 4 15 24 (0) 7 (73)  N 4 15 24 (0) 7 (73)
0 3 6 16 (0) 5 (33)  0 3 6 16 (0) 5 (33)
(10 ± 16) * (71 ± 28)  (10 ± 16) * (71 ± 28)
*平均値 ± 1標準偏差  * Average ± 1 standard deviation
[0054] 一般に市販されて!ヽる普通のミルク(ミルクと表 7に記載)、アレルギー用に市販され ている加水分解ミルク (加水分解ミルクと表 7に記載)、並びに |8—ラクトグロブリンに 電気工ネルギーを 30分間注入して陰極側で採取した溶液 (陰極側採取液と表 7に記 載)を用いた時の皮膚ブリックテストの結果を表 7に示す。皮膚の膨疹反応の大きさを ミリメートルで記載した。膨疹がどれくらい小さくなつたかを計算し、それを抑制率とし て0 /0で示した。 [0054] Common milk that is generally marketed! (Milk and listed in Table 7), hydrolyzed milk marketed for allergies (hydrolyzed milk and listed in Table 7), and | 8-lactoglobulin Table 7 shows the results of a skin brick test using a solution collected on the cathode side after injecting electric energy for 30 minutes (collected on the cathode side and listed in Table 7). The magnitude of the skin wheal reaction is given in millimeters. Calculates whether wheal was reduced summer much, illustrated with it and inhibition rate 0/0.
[0055] [表 7] [0055] [Table 7]
表 7 Table 7
Figure imgf000016_0001
Figure imgf000016_0001
* 膨疹の最大直径 (醒)  * Maximum diameter of wheal (wake)
* * 平均値 ± 1標準偏差  * * Mean ± 1 standard deviation
[0056] 実施例 6 [0056] Example 6
電機エネルギー注入による —ラクトグロブリンのアミノ酸組成変化を調べた。 β― ラクトグロブリン 1。/0溶液 0. 5mlに 12規定塩酸 0. 5mlをカ卩え、 100°Cで 20時間イン キュペートした。クェン酸リチウム緩衝液で 20倍に希釈し、アミノ酸分析専用高速液 体クロマトグラフ(L— 8500形、 日立)を用いて遊離アミノ酸量を測定した。牛乳由来 β—ラタトグロブリンは分子量約 18kDaで、 20種類 162個のアミノ酸で成り立つてい る力 今回の研究に用いた j8—ラクトグロブリン (米国 SIGMA社販売)は精製度 80 %である。なお強塩酸処理によってァスパラギン (N)はァスパラギン酸 (D)、ダルタミ ン (Q)はグルタミン酸 (E)に変化しており、トリブトファン (W)は破壊されるため検出さ れなかった。 Changes in amino acid composition of lactoglobulin by electric energy injection. β-Lactoglobulin 1. / 0 solution 0. 5 ml to 12 N hydrochloric acid 0. 5 ml Ka卩E was 20 hours in Kyupeto at 100 ° C. The amount of free amino acid was measured using a high-performance liquid chromatograph (L-8500, Hitachi) dedicated to amino acid analysis after dilution 20-fold with lithium citrate buffer. Milk-derived β-latatoglobulin has a molecular weight of about 18 kDa and is composed of 20 types of 162 amino acids. J8-Lactoglobulin used in this study (SIGMA, USA) has a purity of 80%. Asparagine (N) was changed to aspartic acid (D) and dartamine (Q) was changed to glutamic acid (E) by strong hydrochloric acid treatment, but tributofan (W) was destroyed and was not detected.
[0057] 表 8に測定結果を百分比で示した。電機エネルギー 30分注入によって陰極、陽極 側ともにシスティン (C)、メチォニン (M)、チロシン (Y)は検出限界以下となった。ま たリジン (K)も減少したが、陰極側で特に減少した。一方、ァスパラギン酸 (D)、スレ ォニン (T)、グルタミン酸 (E)、プロリン (P)、ロイシン (L)は陰極側、陽極側でともに 増加した。リジンを除いて、陽極側、陰極側でアミノ酸組成に大きな違いは生じな力 た。そのため、陰極側にみられた著しい j8—ラクトグロブリンのアレルゲン性減弱化は 、蛋白のアミノ酸組成変化に関連しないと思われた。 [0057] Table 8 shows the measurement results in percentage. With 30 minutes injection of electrical energy, cysteine (C), methionine (M), and tyrosine (Y) were below the detection limit on both the cathode and anode sides. Lysine (K) also decreased, but decreased particularly on the cathode side. On the other hand, aspartic acid (D), threonine (T), glutamic acid (E), proline (P), and leucine (L) are both on the cathode and anode sides. Increased. Except for lysine, there was no significant difference in amino acid composition between the anode and cathode. Therefore, the remarkable allergenic attenuation of j8-lactoglobulin seen on the cathode side did not seem to be related to the change in the amino acid composition of the protein.
[表 8]  [Table 8]
電機エネルギー注入による ラクトグロプリンのァミノ酸組成変化  Changes in amino acid composition of lactoglopurin by electric energy injection
Figure imgf000017_0001
Figure imgf000017_0001
*減少が著しいアミノ酸  * Amino acids with marked decrease
[0059] 実施例 7  [0059] Example 7
β—ラタトグロブリンは 5個のシスティン残基をもち、うち 4個のシスティン残基は分 子内ジスルフイド(S - S)結合を 2ケ所で形成して 、る。残り 1個のシスティン残基は チオール基(- SH)のままか、分子間ジスルフイド結合を形成するため、通常 |8—ラ タトグロブリンは単体力 2量体となって!/、る。エールマン法でこのチオール基量を測定 したところ、陰極側、陽極側ともほぼ同程度に減少していた (表 9)。陰極側にみられ た j8—ラクトグロブリンの著しいアレルゲン性減弱化は、 del Val G. et al., Thioredoxi n treatment increases digestibility and lowers allergenicity of milk. J. Allergy Clin. I mmunoL, (1999), vol. 103, p690-697で示されたようなチォレドキシンを用いた場合と は異なる機序であることが分力つた。  β-latatoglobulin has five cysteine residues, four of which form intramolecular disulfide (S-S) bonds at two locations. The remaining one cysteine residue remains as a thiol group (-SH) or forms an intermolecular disulfide bond, so | 8-latatoglobulin is usually a simple force dimer! /. When the amount of thiol groups was measured by the Ehleman method, it was found to be almost the same on both the cathode and anode sides (Table 9). The significant allergenic attenuation of j8-lactoglobulin seen on the cathode side is due to del Val G. et al., Thioredoxin treatment increases digestibility and lowers allergenicity of milk. J. Allergy Clin. I mmunoL, (1999), vol. 103, p690-697, the mechanism was different from that using thioredoxin.
[0060] [表 9] [0060] [Table 9]
表 9 電気エネルギー注入による —ラクトグロプリン ( ;3 L G) のチオール基量変 化  Table 9 Changes in thiol group content of lactoglopurine (; 3 L G) by electric energy injection
Figure imgf000017_0002
Figure imgf000017_0002
[0061] 実施例 8 電気工ネルギー注入によって 13 ラクトグロブリンに生じる分子量の変化をポリアク リドアミドゲル電気泳動法で調べた。各々の j8—ラクトグロブリン溶液を脱塩し、還元 作用をもたない緩衝液(8%SDS、 40%グリセロール、 BPB、 200mM Tris— HCL pH6. 8)をカ卩えて lmgZmlの蛋白濃度にした。その 10 1を 16%ポリアクリルアミド ゲル上で定電流 16mA、 90分間泳動した。染色はクマシ一ブリリアントブルーで行つ た。 [0061] Example 8 Changes in the molecular weight of 13 lactoglobulin caused by electrotechnical energy injection were investigated by polyacrylamide gel electrophoresis. Each j8-lactoglobulin solution was desalted and a non-reducing buffer (8% SDS, 40% glycerol, BPB, 200 mM Tris—HCL pH 6.8) was added to obtain a protein concentration of lmgZml. The 101 was electrophoresed on a 16% polyacrylamide gel for 90 minutes at a constant current of 16 mA. Staining was done with Kumasi Brilliant Blue.
[0062] 処置前の j8—ラクトグロブリン溶液には分子量 18kDa付近の 1本のバンドのみが観 察され、このバンドは単体 |8—ラクトグロブリンと考えられた(図 3)。これに上記条件 下で電気エネルギーを 10分間注入すると陽極側、陰極側ともに 18kDa付近のバン ドが薄くなり、新たに高分子領域に幅広い陰影が生じた。しかし 30分後には、これら 高分子領域陰影は陽極側、陰極側カゝらともに消失した。陽極側では再び 18kDa付 近のバンドだけが観察され、陰極側ではこの 18kDa付近のバンドもほぼ消失した。こ のことから、 β—ラタトグロブリンに電気エネルギーを 30分間注入すると、陰極側では β ラクトグロブリン単体、同 2量体が消失すると考えられた。  [0062] Only one band with a molecular weight of around 18 kDa was observed in the j8-lactoglobulin solution before treatment, and this band was considered to be a single | 8-lactoglobulin (Figure 3). When electric energy was injected for 10 minutes under the above conditions, the band around 18 kDa became thinner on both the anode and cathode sides, and a new wide shadow was created in the polymer region. However, after 30 minutes, these polymer region shadows disappeared on both the anode and cathode sides. Only a band near 18 kDa was observed again on the anode side, and this band near 18 kDa almost disappeared on the cathode side. From this, it was considered that β-lactoglobulin alone and dimer disappeared on the cathode side when electric energy was injected into β-latatoglobulin for 30 minutes.
[0063] 実施例 9  [0063] Example 9
電気工ネルギーを一定量注入すると、陰極側で ラクトグロブリン単体がゲル上 力 消失することが分力つたので、この蛋白が高分子化して消失したの力 低分子化 して消失したのかを調べた。すなわち分子分画量 30kDaで限外濾過を行い、高分 子量側溶液、低分子側溶液を得て、限外濾過前の液とともに再度ポリアタリドアミドゲ ル電気泳動を行った。この結果、高分子量側溶液と限外濾過前の液がほぼ同様な 泳動像であり、低分子側溶液にバンド形成が全くみられな力つたので、 β ラクトグロ ブリンは高分子化してゲル上から消失したことが分力つた(図 4)。  When a certain amount of electric energy was injected, the fact that lactoglobulin alone disappeared on the gel at the cathode side was divided, so we investigated whether this protein became polymerized and disappeared. . That is, ultrafiltration was performed at a molecular fraction of 30 kDa to obtain a high molecular weight side solution and a low molecular side solution, and polyatalide amide gel electrophoresis was performed again together with the solution before ultrafiltration. As a result, the high molecular weight side solution and the solution before ultrafiltration were almost the same migration image, and the band formation was not observed at all in the low molecular side solution. Therefore, β-lactoglobulin was polymerized and appeared on the gel. It disappeared because it disappeared (Figure 4).
産業上の利用可能性  Industrial applicability
[0064] 乳清および /3 ラクトグロブリンに電気エネルギーを一定量注入することにより、陰 極側ではそのアレルゲン活性が著しく減弱化する。この方法によって、蛋白分解酵素 ゃチォレドキシンなどの異種蛋白やィ匕学物質を用いることなぐ牛乳アレルギー治療 用乳製品、牛乳アレルギー発症予防用乳製品が製造できる。この製法によって得ら れた乳製品は安全であり、風味も損なわれない。この乳製品は、乳成分を摂取するこ とで生じる免疫疾患、とくに牛乳アレルギーの治療やその予防を目的とした医療に貢 献する。 [0064] By injecting a certain amount of electrical energy into whey and / 3 lactoglobulin, its allergen activity is significantly attenuated on the negative side. By this method, milk products for treating milk allergy and milk products for preventing the onset of milk allergies can be produced without using a heterologous protein or chemical substance such as proteolytic enzyme thioredoxin. Dairy products obtained by this method are safe and do not lose their flavor. This dairy product is a source of dairy ingredients. Contribute to medical treatment aimed at the treatment and prevention of immune diseases that occur in humans, especially milk allergies.
[0065] 乳清はチーズ製造過程における産業廃棄物であり、その多くは養豚飼料となって いる。今回の実験では、各溶液 250mlに電気エネルギーを注入した後 50ml採取し ている。表 1から分力るように、処理前の脱脂乳清蛋白濃度は 1, 460mgZdl、 30分 通電後の陰極側溶液蛋白濃度は 930mgZdlである。よって回収率は(50 + 250) X (930+ 1460) = 12. 7%であった。また処理前の β—ラタトグロブリン溶液の蛋白 濃度は 728mgZdl、 30分通電後の陰極側溶液蛋白濃度は 264mgZdlである。よ つて回収率は(50 + 250) X (264 + 728) = 7. 3%であった。この程度の回収率で あれば、コスト面においても工業的量産に支障ないと考えられる。  [0065] Whey is an industrial waste in the cheese manufacturing process, most of which is swine feed. In this experiment, 50 ml was collected after injecting electric energy into 250 ml of each solution. As shown in Table 1, the concentration of skim whey protein before treatment is 1,460 mgZdl, and the concentration of protein on the cathode side after 30 minutes is 930 mgZdl. Therefore, the recovery rate was (50 + 250) X (930 + 1460) = 12.7%. In addition, the protein concentration of the β-latatoglobulin solution before treatment is 728 mgZdl, and the concentration of protein on the cathode side after 30 minutes energization is 264 mgZdl. Therefore, the recovery rate was (50 + 250) X (264 + 728) = 7.3%. If the recovery rate is this level, it is considered that there is no problem in industrial mass production in terms of cost.
図面の簡単な説明  Brief Description of Drawings
[0066] [図 1]図 1は、実施例で用いた大型電気分解装置全体像 (A)、及び白金電極および 液体採取用コック部分の拡大像 (B)を示す。  [0066] FIG. 1 shows an overall image (A) of the large electrolyzer used in the example, and an enlarged image (B) of the platinum electrode and the liquid sampling cock part.
[図 2]図 2は、牛乳アレルギー患者の前腕内側皮膚面で、脱脂乳清液 (左; whey)お よび j8—ラクトグロブリン溶液 (右; j8 LG)を用いた時に生じたアレルギー反応の典型 例を示す。  [Figure 2] Figure 2 shows typical allergic reactions that occurred when using skim whey (left; whey) and j8-lactoglobulin solution (right; j8 LG) on the inner skin of the forearm of a milk allergy patient. An example is shown.
[図 3]図 3は、電気エネルギー注入による β ラクトグロブリン蛋白の分子量変化を示 す。 Μ :分子量マーカー、 1 :処置前の j8—ラクトグロブリン溶液、 2 :エネルギー注入 10分後の陽極側採取液、 3 :同注入 10分後の陰極側採取液、 4 :同注入 30分後の 陽極側採取液、 5 :同注入 30分後の陰極側採取液  [Fig. 3] Fig. 3 shows the change in the molecular weight of β-lactoglobulin protein by electric energy injection. Μ: Molecular weight marker, 1: j8-lactoglobulin solution before treatment, 2: anode collection solution after 10 minutes of energy injection, 3: cathode collection solution after 10 minutes of injection, 4: 30 minutes after injection Anode-side sampling solution, 5: Cathode-side sampling solution 30 minutes after injection
[図 4]図 4は、 β ラクトグロブリン陰極側採取液の限外濾過(30kDa)後の電気泳動 像を示す。 M :分子量マーカー、 1 :高分子量側溶液、 2 :低分子量側溶液、 3 :限外 濾過前溶液  [FIG. 4] FIG. 4 shows an electrophoresis image after ultrafiltration (30 kDa) of the β-lactoglobulin cathode-side collected solution. M: Molecular weight marker, 1: High molecular weight solution, 2: Low molecular weight solution, 3: Ultrafiltration solution

Claims

請求の範囲 The scope of the claims
[1] 乳清原料又は β ラクトグロブリン蛋白に電気エネルギーを注入することによって得 られる、アレルゲン性を低減ィ匕した乳清原料又は j8—ラクトグロブリン蛋白。  [1] A whey raw material or j8-lactoglobulin protein with reduced allergenicity, obtained by injecting electric energy into a whey raw material or β-lactoglobulin protein.
[2] 牛乳アレルギー患者治療又は牛乳アレルギー発症予防のために使用する、請求項[2] Claims used for treatment of milk allergy patients or prevention of milk allergy
1に記載の乳清原料又は j8—ラクトグロブリン蛋白。 The whey raw material or j8-lactoglobulin protein according to 1.
[3] 乳清原料又は β ラクトグロブリン蛋白を含む溶液に通電することによって電気エネ ルギーを注入し、陰極側の溶液を回収することにより得られる請求項 1に記載の乳清 原料又は β ラクトグロブリン蛋白。 [3] The whey raw material or β-lactoglobulin according to claim 1, obtained by injecting electric energy by energizing a whey raw material or a solution containing β-lactoglobulin protein and collecting the cathode-side solution. Protein.
[4] 請求項 1から 3の何れかに記載の乳清原料又は β ラクトグロブリン蛋白を使用する ことによって調製した、牛乳アレルギー患者治療用乳製品及び牛乳アレルギー発症 予防用乳製品。 [4] A milk product for treating milk allergy patients and a milk product for preventing the onset of milk allergy, prepared by using the whey raw material according to any one of claims 1 to 3 or β-lactoglobulin protein.
[5] 乳清原料又は β ラクトグロブリン蛋白に電気エネルギーを注入することを含む、ァ レルゲン性を低減ィ匕した乳清原料又は β ラクトグロブリン蛋白の製造方法。  [5] A method for producing a whey raw material or β-lactoglobulin protein with reduced allergenicity, comprising injecting electric energy into the whey raw material or β-lactoglobulin protein.
[6] 乳清原料又は β ラクトグロブリン蛋白を含む溶液に通電することによって電気エネ ルギーを注入し、陰極側の溶液を回収することを含む、アレルゲン性を低減ィ匕した乳 清原料又は ι8—ラクトグロブリン蛋白の製造方法。  [6] Whey raw materials with reduced allergenicity, including injecting electric energy by energizing a whey raw material or a solution containing β-lactoglobulin protein, and collecting the solution on the cathode side A method for producing a lactoglobulin protein.
PCT/JP2006/301291 2005-01-28 2006-01-27 Low allergen milk obtained using electrical energy WO2006080424A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007500588A JP4769949B2 (en) 2005-01-28 2006-01-27 Low allergen milk using electrical energy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-020909 2005-01-28
JP2005020909 2005-01-28

Publications (1)

Publication Number Publication Date
WO2006080424A1 true WO2006080424A1 (en) 2006-08-03

Family

ID=36740448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/301291 WO2006080424A1 (en) 2005-01-28 2006-01-27 Low allergen milk obtained using electrical energy

Country Status (2)

Country Link
JP (1) JP4769949B2 (en)
WO (1) WO2006080424A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5772915A (en) * 1980-10-16 1982-05-07 Ionics Separation of aqueous protein mixture
JPS58165775A (en) * 1982-03-15 1983-09-30 コンチネンタル・パツキツジング・コンパニ−・インコ−ポレ−テツド Keeping of color and flavor of liquid food
JPS59171850A (en) * 1983-03-19 1984-09-28 Nitto Electric Ind Co Ltd Separation of protein
JPS601134A (en) * 1983-06-15 1985-01-07 Fujirebio Inc Recovery of immunoglobulin
JPH05344847A (en) * 1991-03-01 1993-12-27 Meiji Milk Prod Co Ltd Low antigenic decomposed protein free from disagreeable taste and its production
JPH06261691A (en) * 1993-03-16 1994-09-20 Snow Brand Milk Prod Co Ltd Production of low allergenic milk protein
JP2003180244A (en) * 2001-12-21 2003-07-02 Pokka Corp Method of production for high quality dry milk
JP2004073056A (en) * 2002-08-14 2004-03-11 Hiroshi Tanaka Method for modifying health beverage, beverage and liquors using electrolysis and electrodialysis

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS411590B1 (en) * 1963-05-07 1966-02-05
JP4032674B2 (en) * 2001-07-05 2008-01-16 株式会社ポッカコーポレーション Method for producing milk-containing beverage

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5772915A (en) * 1980-10-16 1982-05-07 Ionics Separation of aqueous protein mixture
JPS58165775A (en) * 1982-03-15 1983-09-30 コンチネンタル・パツキツジング・コンパニ−・インコ−ポレ−テツド Keeping of color and flavor of liquid food
JPS59171850A (en) * 1983-03-19 1984-09-28 Nitto Electric Ind Co Ltd Separation of protein
JPS601134A (en) * 1983-06-15 1985-01-07 Fujirebio Inc Recovery of immunoglobulin
JPH05344847A (en) * 1991-03-01 1993-12-27 Meiji Milk Prod Co Ltd Low antigenic decomposed protein free from disagreeable taste and its production
JPH06261691A (en) * 1993-03-16 1994-09-20 Snow Brand Milk Prod Co Ltd Production of low allergenic milk protein
JP2003180244A (en) * 2001-12-21 2003-07-02 Pokka Corp Method of production for high quality dry milk
JP2004073056A (en) * 2002-08-14 2004-03-11 Hiroshi Tanaka Method for modifying health beverage, beverage and liquors using electrolysis and electrodialysis

Also Published As

Publication number Publication date
JP4769949B2 (en) 2011-09-07
JPWO2006080424A1 (en) 2008-06-19

Similar Documents

Publication Publication Date Title
Inglingstad et al. Comparison of the digestion of caseins and whey proteins in equine, bovine, caprine and human milks by human gastrointestinal enzymes
Keri Marshall Therapeutic applications of whey protein
JP3236011B2 (en) Hypoallergenic dairy product and method for producing the same
Chatterton et al. In vitro digestion of novel milk protein ingredients for use in infant formulas: Research on biological functions
KR101277047B1 (en) Low-lactose partially hydrolyzed infant formula
Jaiswal et al. Recent perspective on cow’s milk allergy and dairy nutrition
JP5188631B2 (en) Infant formula supplemented with insulin
AU2020103452A4 (en) Method for preparing liquid milk based on reduced allergenicity of cow's milk
Tripathi et al. Bioactive compounds of colostrum and its application
Pihlanto Whey proteins and peptides: Emerging properties to promote health
EP1887879A1 (en) Methods for producing protein partial hydrolysates and infant formulas containing the same
BRPI0721123A2 (en) MILK PROTEIN HYDROLISATES WITH REDUCED IMMUNOGENIC POTENTIAL
TW201121430A (en) Nutritional composition beneficial to small intestine
Jain et al. Development of low cost nutritional beverage from whey
JP2014532423A (en) Dairy product and manufacturing method
Lindberg et al. In vitro digestion of proteins in human milk fortifiers and in preterm formula
BR112016012701B1 (en) COMBINATION OF PEPTIDES FOR USE IN INDUCING ORAL TOLERANCE IN YOUNG MAMMALS, AND COMPOSITION
US20140170266A1 (en) Composition with improved digestibility of proteins
TWI284537B (en) Blood-viscosity reducing agent
AU723396B2 (en) Food product and process
JP4769949B2 (en) Low allergen milk using electrical energy
Elkot Characterization and healthier properties of whey proteins of camel milk: A review
US5223284A (en) Products and methods for treating colic
JP2959747B2 (en) Savory whey protein hydrolyzate and method for producing the same
Kashyap et al. Evaluation of the antimicrobial attribute of bioactive peptides derived from colostrum whey fermented by Lactobacillus against diarrheagenic E. coli strains

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007500588

Country of ref document: JP

122 Ep: pct application non-entry in european phase

Ref document number: 06712457

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6712457

Country of ref document: EP