WO2006080214A1 - Game machine self-traveling body - Google Patents

Game machine self-traveling body Download PDF

Info

Publication number
WO2006080214A1
WO2006080214A1 PCT/JP2006/300594 JP2006300594W WO2006080214A1 WO 2006080214 A1 WO2006080214 A1 WO 2006080214A1 JP 2006300594 W JP2006300594 W JP 2006300594W WO 2006080214 A1 WO2006080214 A1 WO 2006080214A1
Authority
WO
WIPO (PCT)
Prior art keywords
self
line
propelled body
game machine
line width
Prior art date
Application number
PCT/JP2006/300594
Other languages
French (fr)
Japanese (ja)
Inventor
Tetsuo Ishimaru
Satoru Atsuchi
Original Assignee
Konami Digital Entertainment Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konami Digital Entertainment Co., Ltd. filed Critical Konami Digital Entertainment Co., Ltd.
Priority to GB0714443A priority Critical patent/GB2437457B/en
Priority to US11/814,711 priority patent/US20090011816A1/en
Priority to GB0714446A priority patent/GB2437458B/en
Publication of WO2006080214A1 publication Critical patent/WO2006080214A1/en
Priority to HK08100632.6A priority patent/HK1106931A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F9/00Games not otherwise provided for
    • A63F9/14Racing games, traffic games, or obstacle games characterised by figures moved by action of the players
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F9/00Games not otherwise provided for
    • A63F9/14Racing games, traffic games, or obstacle games characterised by figures moved by action of the players
    • A63F9/143Racing games, traffic games, or obstacle games characterised by figures moved by action of the players electric

Definitions

  • the present invention relates to a game machine that executes a racing game such as a horse race by causing a self-propelled body placed on a running surface to self-run.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-33567
  • the present invention reduces the burden on the management of the running surface by using the guide line detection function of the self-propelled body, and a game machine that can contribute to the appropriate management of the running surface and
  • the purpose is to provide a running body.
  • a game machine of the present invention includes a game machine body having a running surface with a guide line, and a self-running body capable of running on the running surface.
  • the guiding wire detecting means for detecting the guiding wire and the traveling control means for controlling the traveling of the self-running body based on the detection result of the guiding wire detecting means A line sensor for detecting a luminance distribution in a predetermined detection area including the guide line on the running surface is provided by a light receiving element group arranged in the left-right direction of the self-running body, and the detected guidance is provided on the self-running body.
  • a line width inspection means for determining the line width of the line based on the output of the line sensor is further provided to solve the above-described problem.
  • the self-propelled body of the present invention includes a guide line detection unit that detects a guide line attached to a running surface of a game machine, and a running on the running surface based on a detection result of the guide line detection unit.
  • a self-propelled body provided with a travel control means for controlling a row, wherein the guide wire on the travel surface is formed by a light receiving element group arranged in the left-right direction of the self-propelled body as the guide line detecting means.
  • a line sensor that detects a luminance distribution in a predetermined detection area including the line sensor, and further includes a line width inspection unit that determines the line width of the detected guide line based on the output of the line sensor. Solve the problem.
  • the traveling control means of the self-propelled vehicle specifies the luminance range corresponding to the luminance distribution force induction line detected by the line sensor as the induction line detection means, thereby generating the guide line in the detection region.
  • the position of the self-propelled vehicle in the width direction of the guide wire is determined using the position of the identified guide line in the detection area as a clue, and the traveling of the self-propelled vehicle is controlled with reference to the determination result. Since the line sensor is composed of a large number of light receiving elements arranged in a line, the guide line can be detected with a fine pitch compared to the line width and the line width of the guide line can be determined with high resolution. .
  • the line width discrimination target by the line width inspection means is not limited to the original guide line. Line marks, dots, etc. formed by dirt or foreign matter are also included in the category of “detected guide lines”. The occurrence or existence of the similarities of the guide line caused by such contamination can be detected by applying line width discrimination.
  • the line width inspection means may further determine whether the determined line width is appropriate. By determining whether the line width is appropriate or not, it is possible to easily grasp the occurrence of an abnormality related to the line width.
  • the self-propelled body is provided with direction detecting means for detecting information necessary for specifying the deviation of the direction of the self-propelled body with respect to the longitudinal direction of the guide line.
  • the travel control means determines a shift in the direction of the self-propelled body with respect to the longitudinal direction of the guide line based on the detection result of the direction detecting means, and further refers to the determination result to
  • the line width detecting means may determine the line width based on the detection result of the guide line detecting means and the deviation of the direction determined by the traveling control means. ,.
  • the line sensor When the line sensor is inclined with respect to the guide line, the width of the luminance range corresponding to the guide line in the detection region of the line sensor is also increased or decreased according to the tilt of the line sensor. For this reason, when the line width of the guide line is determined based only on the width of the luminance range, an error corresponding to the inclination of the line sensor may be included in the determined line width.
  • the line sensor uses the deviation of the direction to detect the direction of the guide line. It is possible to grasp how much the force is inclined with respect to the longitudinal direction.
  • the deviation in the direction referred to in the travel control is also referred to in the line width determination, an error in the line width corresponding to the inclination of the line sensor with respect to the guide line without providing new sensors for determining the line width.
  • the line width can be determined more accurately.
  • the self-propelled body is provided with a longitudinal direction position detecting means for detecting information necessary for specifying the position of the self-propelled body with respect to the longitudinal direction of the guide wire.
  • the traveling control means determines the position of the self-propelled body on the traveling surface based on the detection results of the longitudinal position detecting means and the line sensor, and based on the determination result, the self-propelled body.
  • the line width inspection means may create inspection data in which the determination result relating to the line width and the position of the self-propelled body determined by the travel control means are associated with each other.
  • the line width of the guide line, or the line width It is possible to grasp the suitability of the vehicle in association with the position on the traveling surface, thereby making it easier to manage the traveling surface. For example, it is possible to easily identify the position requiring inspection on the running surface from the inspection data. Since inspection data can be created using the position in the longitudinal and width directions of the lead wire that the self-propelled body has identified for travel control, a new sensor is used to create the inspection data. There is no need to provide a kind. The created inspection data can be referred to by an administrator through appropriate means.
  • the self-propelled body itself may be provided with a means for displaying inspection data.
  • the inspection data may be stored in a storage medium attached to the self-propelled body, and when necessary, the storage medium may be detached from the self-propelled body and the inspection data may be read out.
  • the self-propelled body may be provided with data output means for outputting the inspection data to the outside of the self-propelled body.
  • the game machine has a running surface management device that executes predetermined processing for notifying the game machine administrator of the state of the running surface based on the inspection data output from the self-running body. Further, it may be provided. The game machine administrator can easily check the running surface at the game machine installation location.
  • the traveling surface management device detects the position on the traveling surface where the line width is inappropriate and the position based on the inspection data output from the self-propelled body as the predetermined process. Creates data for specifying the number of times and accumulates the data. Based on the accumulated data, the surface where the line width is determined to be inappropriate and the number of times the position is detected is checked. A screen may be displayed. According to this form, the administrator of the game machine grasps the position where the line width is inappropriate and the number of detections related to the position via the traveling surface check screen, and confirms the necessity for inspection, cleaning, etc. on the traveling surface. It can be determined in association with the position.
  • the traveling surface management device as the predetermined processing, based on the inspection data output from the self-propelled body, the position on the traveling surface where the line width is inappropriate or the position of the position Data for identifying at least one of the number of detection times is created and accumulated, and when the accumulated data amount exceeds a predetermined allowable amount, a predetermined amount is given to the administrator of the game machine. A warning may be given.
  • the test sent from the self-propelled body It is possible to prompt the administrator of the game machine to check the running surface based on the ⁇ data.
  • an instruction related to traveling of the self-propelled body is transmitted to the traveling control means of the self-propelled body via predetermined communication means to execute a predetermined game.
  • the game control device may function as the running surface management device.
  • the server When the game machine is connected to a server for managing the game machine via a predetermined network, the server is caused to function as the running surface management device. Moyore. As a result, the server administrator can grasp the state of the running surface, and the server administrator provides information regarding the running surface to the store where the game machine is installed. Inspection, cleaning, etc. can be encouraged.
  • the width of the guide wire or the width of the guide wire is detected using the configuration for detecting the guide wire attached to the running surface and controlling the running of the self-propelled vehicle.
  • the configuration for detecting the guide wire attached to the running surface and controlling the running of the self-propelled vehicle By determining suitability, it is possible to detect the occurrence of abnormalities such as dirt on the running surface, adhesion of foreign matter, and peeling of the guide wire. Therefore, it is possible to reduce the burden of the game machine manager when managing the running surface, and to provide a game machine and a self-propelled body that can contribute to appropriate management of the running surface.
  • FIG. 1 is a diagram showing a schematic configuration of a game system in which a game machine according to one embodiment of the present invention is incorporated.
  • FIG. 2 is a perspective view of the field unit when the stage is raised.
  • FIG. 3 A side view of the field unit when the stage is raised.
  • FIG. 4 is a perspective view of the field unit when the stage is lowered.
  • FIG. 5 is a side view of the field unit when the stage is lowered.
  • FIG. 6 is an exploded perspective view of the field unit.
  • FIG. 7 is a perspective view showing a state where the VII portion of FIG. 2 is viewed from below.
  • FIG. 8 is a view showing a cross section of the top plate provided in the field unit, and a self-propelled vehicle and a model that travel on those traveling surfaces.
  • FIG. 10 is a plan view of a peripheral circuit provided on the lower running surface.
  • FIG. 11 An enlarged view of the corner section of the circuit.
  • FIG. 12 is a diagram showing the internal structure of the self-propelled body.
  • FIG. 13 Bottom view of the self-propelled body.
  • FIG. 14 is a sectional view taken along line XIV—XIV in FIG.
  • FIG. 15 is an enlarged front view of the line sensor.
  • FIG. 16 An enlarged bottom view of the line sensor.
  • FIG. 17A is a diagram showing the relationship between the output of the magnetic sensor and the magnetic measurement line when the self-propelled body is traveling in a straight section, and shows the relationship between the magnetic sensor and the magnetic measurement line.
  • FIG. 17B is a diagram showing the relationship between the output of the magnetic sensor and the magnetic measurement line when the self-propelled body is traveling in a straight section, and shows the output of each detection unit of the magnetic sensor.
  • FIG. 18A A diagram showing the relationship between the magnetic sensor output and the magnetic measurement line when the self-propelled vehicle is traveling in a lane other than the innermost circumference of the corner section. The figure which shows a relationship.
  • FIG. 18B is a diagram showing the relationship between the output of the magnetic sensor and the magnetic measurement line when the self-propelled vehicle is traveling on a lane other than the innermost circumference of the corner section, and shows the relationship between each detection unit of the magnetic sensor. The figure which shows output.
  • FIG. 20 is a block diagram showing a control system provided in the self-propelled vehicle.
  • FIG. 22 is a functional block diagram of the self-propelled vehicle control device.
  • FIG. 24 A flowchart showing a target speed calculation procedure in the target speed calculation unit.
  • FIG. 25 is a diagram showing the relationship between the reversal count, the reversal reference time, the remaining time, and the insufficient progress amount. 26] A flow chart showing the procedure of direction management in the direction management unit.
  • FIG. 27 is a flowchart showing a calculation procedure of a direction correction amount in a direction correction amount calculation unit.
  • FIG. 28 is a flowchart showing a lane management procedure in the lane management unit.
  • FIG. 29 is a diagram showing a correspondence relationship between the shift of the position of the line sensor relative to the guide line and the output of the line sensor.
  • FIG. 30 is a flowchart showing the calculation procedure of the lane correction amount in the lane correction amount calculation unit.
  • FIG. 31 is a flowchart showing a line width inspection procedure in a line width inspection unit.
  • FIG. 32 is a flowchart showing a procedure for transmitting line width inspection data to the main control device.
  • FIG. 33 is a flowchart showing a procedure for managing line width verification data in the main control unit.
  • FIG. 34 is a flowchart showing a procedure of running surface check management in the main control device.
  • FIG. 35 is a diagram showing an example of a running surface check screen.
  • FIG. 36 is a flowchart showing processing in a maintenance mode in the main control device.
  • FIG. 1 is a diagram showing a schematic configuration of a game system in which a game machine according to one embodiment of the present invention is incorporated.
  • the game system 1 is for executing a horse racing game, and includes a plurality of game machines 2A, 2B, 2C, a center server 3, a maintenance server 4, and the like connected to each other via a communication network 6. Maintenance client 5 is provided.
  • Each of the game machines 2A to 2C in the game system 1 has the same configuration. Therefore, hereinafter, when there is no need to distinguish between them, it is referred to as a game machine 2.
  • FIG. 1 shows three game machines 2, the number of game machines 2 included in the game system 1 is not limited to this.
  • the center server 3 mainly processes data relating to the game in response to a request from the game machine 2.
  • the maintenance server 4 stores and manages data related to maintenance such as error log information of the game system 1 in the maintenance storage unit 4a which is its own storage unit.
  • the maintenance client 5 is provided, for example, in a maintenance service unit that centrally manages the maintenance of the game system 1 and performs analysis and analysis related to the maintenance of the game system 1 using data stored in the maintenance storage unit 4a.
  • the Internet is used as an example for communication network 6. Used.
  • the game machine 2 is installed in a store and is configured as a commercial game machine that plays a game in exchange for economic value.
  • the game machine 2 housing (game machine body) 10 is arranged at one end of the field unit 11 and a plurality of station units 12... 12 arranged so as to surround the field unit 11.
  • the monitor unit 13 is provided.
  • the Fino Red unit 11 provides running surfaces 18 and 19 for the self-propelled vehicle (self-propelled body) 30 and the racehorse model 31 shown in FIG.
  • a plurality of self-propelled vehicles 30 and models 31 are installed on the field unit 11, and a horse racing game is realized by competing them.
  • the station unit 12 accepts various operations of the player regarding the horse racing game, and executes a game value payout to the player.
  • the monitor unit 13 includes a main monitor 13a for displaying game information and the like.
  • FIG. 2 is a perspective view of the field unit 11, and FIG. 3 is a side view thereof.
  • the field unit 11 includes a base 14 as a lower structure and a stage 15 as an upper structure that covers the upper portion of the base 14.
  • Base 14 and stage 15 are both frame structures that combine steel materials.
  • the top plate 16 and 17 force S are attached to the upper surfaces of the base 14 and the stage 15, respectively.
  • On the top surface of the top plate 16 of the base 14, a lower traveling surface 18 on which the self-propelled vehicle 30 travels is provided on the top surface of the top plate 17 of the stage 15, and a power feeding surface 20 for the self-propelled vehicle 30 is provided on the lower surface of the top plate 17.
  • the stage 15 is provided so as to be movable up and down with respect to the base 14.
  • Figures 2 and 3 show the stage 15 raised.
  • Figures 4 and 5 show the stage 15 lowered.
  • 4 is a perspective view corresponding to FIG. 2
  • FIG. 5 is a side view corresponding to FIG.
  • the range of stage 15 is as follows. As shown in FIG. 5, with the stage 15 lowered until it comes into contact with the receiving portion 14a of the base 14, the space SP is empty between the lower running surface 18 and the power feeding surface 20.
  • the height Hd of the space SP at this time is a value suitable for accommodating the self-propelled vehicle 30.
  • the height Hu see FIG.
  • the base 14 and the stage 15 can be divided into three subunits 14A to 14C and 15A to 15C in the front-rear direction as shown in FIG.
  • the top plate 16 of the base 14 is injured 3 times according to the subunits 14A-14C.
  • the subunits 14A to 14C are joined to each other by connecting means such as bolts. The same applies to the subunits 15A to 15C.
  • the field unit 11 is provided with a stage drive device (lifting drive device) 21 for driving the stage 15 in the vertical direction.
  • the stage drive device 21 generates a plurality of hydraulic cylinders (actuators) 22 arranged around the field unit 11 at appropriate intervals, and generates hydraulic pressure as a power source for supplying hydraulic pressure to each hydraulic cylinder 22. It is equipped with device 23.
  • the hydraulic cylinder 22 is provided so that the piston rod 22a faces upward.
  • the cylinder tube 22b of the hydraulic cylinder 22 is fixed to the base 14, and the tip of the piston rod 22a is connected to the stage 15 via the adjuster device 24. Accordingly, the stage 15 is raised by supplying hydraulic pressure to the hydraulic cylinder 22 and extending the piston rod 22a.
  • the adjuster device 24 includes an adjuster 24a fixed to the tip of the piston rod 22a, and an adjuster receiver 24b fixed to the stage 15.
  • the agiyasta 24a is inserted into the agiyasta receiver 24b with some play without being fixed to the agiyasta receiver 24b. Accordingly, misalignment of the piston rod 22a during the operation of the hydraulic cylinder 22 is allowed, and the stage 15 can be raised and lowered smoothly by operating the plurality of hydraulic cylinders 22 without mutual interference.
  • the hydraulic pressure generator 23 is driven by electric power supplied to the game machine 2 and generates a hydraulic pressure suitable for the hydraulic cylinder 22.
  • the operation of the hydraulic pressure generator 23 is controlled by a main controller 100 (see FIG. 19) for managing the overall operation of the game machine 2.
  • FIG. 8 is a view showing a cross section of the top plates 16 and 17 and a self-propelled vehicle 30 and a model 31 that travel on the traveling surfaces 18 and 19 thereof.
  • the top plate 16 of the base 14 is composed of a white resin plate.
  • a line sheet 32 is provided on the lower traveling surface 18 of the upper surface, and a magnet (permanent magnet) 33 is provided on the lower surface.
  • the line sheet 32 is for forming a plurality of guide lines 34 for guiding the self-propelled vehicle 30 on the lower travel surface 18.
  • the guide wire 34 is colored in a color (for example, black) having a contrast in the visible light range with respect to the ground color (white) of the top plate 16.
  • the width Wg of the guide wire 34 is 1Z2 of the mutual pitch (interval) Pg of the guide wire 34.
  • the guide wire 34 is provided so as to form a peripheral circuit 35.
  • the peripheral circuit 35 is configured by connecting a straight section 35a in which the guide lines 34 extend in parallel with each other and a corner section 35b in which the guide lines 34 are bent in a semicircular shape. In both the straight section 35a and the corner section 35b, the width Wg and the pitch PTg of the guide wire 34 are constant.
  • the centers of curvature CC of the guide lines 34 in the corner section 35b coincide with each other.
  • the guide wire 34 is positioned as an index indicating the lane of the peripheral circuit 35.
  • the innermost guide line 34 corresponds to the first lane, and the guide line 34 and the lane number are associated with each other, such as the second lane, the third lane,.
  • the position of the self-propelled vehicle 30 in the transverse direction of the circuit 35 is identified by the lane number.
  • the self-propelled vehicle 30 controls its own operation so as to travel along the guide line 34 corresponding to the current lane unless the main control device 100 instructs to change the lane.
  • the number of guide lines 34 is six. The number of forces may be changed as appropriate according to the number of horses to be used in the horse racing game.
  • the magnets 33 are arranged so that the S poles and the N poles are alternately arranged.
  • the magnet 33 has a belt-like shape extending in the transverse direction, and in the corner section 35b, it has a fan shape extending toward the outer periphery.
  • a large number of magnetic measurement lines 36 extending in the transverse direction of the peripheral circuit 35 are repeatedly formed along the longitudinal direction of the peripheral circuit 35 on the lower traveling surface 18 at the boundary position between the S pole and the N pole. .
  • the magnetic measurement line 36 is used as an index indicating the position or progress of the vehicle 30 in the circuit 35.
  • the progress of the self-propelled vehicle 30 in the longitudinal direction of the peripheral circuit 35 is managed by the number of the magnetic measurement lines 36 based on a specific position on the peripheral circuit 35 (for example, the position Pref in FIG. 10). Is done. For example, when the self-propelled vehicle 30 is located on the 100th magnetic measurement line 36 from the reference position Pref, The progress of the self-propelled vehicle 30 is recognized by the game machine 2 as 100.
  • the pitch (interval) of the magnetic measurement lines 36 in the straight section 35a is set to a constant value PTm.
  • this pitch PTm is referred to as a reference pitch.
  • the pitch of the magnetic measurement line 36 in the corner section 35b is set so that the pitch PTin of the magnetic measurement line 36 in the innermost induction line 34 matches the reference pitch PTm. Therefore, the pitch of the magnetic measurement lines 36 in the corner section 35b increases toward the outer periphery.
  • the pitch (maximum pitch) PTout on the outermost guide wire 34 is approximately 30 mm.
  • an absolute position indicating device 37 is provided at an appropriate position of the peripheral circuit 35 (in the illustrated example, both ends of the straight section 35a and the apex position of the corner section 35b).
  • the absolute position indicating device 37 includes an indicating lamp 38 disposed on the lower surface of the top plate 18.
  • the indicator lamp 38 is an infrared LED that emits infrared light.
  • one indicator lamp 38 is provided on the lower surface of each guide wire 34, and the indicator lamps 38 are arranged in the transverse direction of the peripheral circuit 35 in one indicator device 37.
  • An opening is provided in each of the top plate 18 and the magnet 33 just above the indicator lamp 38.
  • the guide wire 34 is made of IR ink that transmits infrared light at least directly above the indicator lamp 38.
  • the position of the indicator lamp 38 in the longitudinal direction of the peripheral circuit 35 is set in the gap between the magnetic measurement lines 36.
  • Data indicating the absolute position and lane number of the indicator lamp 38 on the circuit 35 is superimposed on the infrared light emitted from each indicator lamp 38 of the absolute position indicator 37.
  • the absolute position indicating device 37 functions as means for providing information indicating the absolute position and the lane in the peripheral circuit 35, respectively.
  • the absolute position of the indicator lamp 38 may be associated with the progress using the magnetic measurement line 36.
  • the position of the absolute position pointing device 37 located at the reference position Pref is set to 0, and the clockwise (or counterclockwise) direction from there is between the 100th magnetic measurement line 36 and the 101st magnetic measurement line 36.
  • progress 100 may be sent as position information.
  • the number of absolute position pointing devices 37 from the reference position Pre f is sent as the position information from the indicator light 38, and the number of absolute position pointing devices 37 is replaced with the progress using the internal table of the game machine 2. It may be.
  • the self-propelled vehicle 30 is disposed between the lower traveling surface 18 and the feeding surface 20,
  • the 31 is disposed on the upper running surface 19.
  • a magnet 40 is disposed above the self-propelled vehicle 30.
  • the model 31 is self-supporting on the upper traveling surface 19 via the wheels 31a, but does not have an independent driving means, and the self-propelled vehicle 30 is pulled to the self-propelled vehicle 30 by the magnet 40 of the self-propelled vehicle 30.
  • the self-propelled vehicle 30 includes a lower unit 41A and an upper unit 41B.
  • the lower unit 41 A includes a pair of driving wheels 42 for self-propelling the lower traveling surface 18, a pair of motors 43 for driving the driving wheels 42 independently of each other,
  • the vehicle 30 includes auxiliary wheels 44F and 44R arranged at the front end portion 30a and the rear end portion 30b, respectively.
  • the self-propelled vehicle 30 can change its moving direction by giving a difference in the rotation speed of the motor 43.
  • the lower unit 41A is provided with four guide shafts 45 extending in the vertical direction, and the upper unit 41B is provided so as to be movable up and down along the guide shaft 45.
  • the guide shaft 45 is provided with a coil spring 46, and the upper unit 41B is urged upward by the repulsive force of the coil spring 46 so that the wheel 47 and the power supply brush 48 are pressed against the power supply surface 20.
  • the power supply brush 48 contacts the power supply surface 20, power is supplied from the housing 10 to the self-propelled vehicle 30.
  • FIG. 12 shows a state where the stage 15 is lowered, and when the stage 15 is raised, the power supply surface 20 is sufficiently separated from the power supply brush 48 and the like.
  • the auxiliary wheel 44F on the front side of the lower unit 41A is arranged slightly biased upward with respect to the drive wheel 42.
  • auxiliary wheels 49F and 49R provided on the front and rear sides of the upper unit 41B are arranged on the rear side of the auxiliary wheels 49R slightly offset from the wheels 47. Therefore, the self-propelled vehicle 30 can swing up and down around the drive wheel 42, and the swing is transmitted to the model 31 through the magnet 40. This expresses the racehorse running while swinging up and down.
  • a line sensor 50 and an absolute position detection sensor are provided on the lower surface of the self-propelled vehicle 30. 51 and a magnetic sensor 52 are provided.
  • the line sensor 50 is provided for detecting the guide wire 34
  • the absolute position detection sensor 51 is provided for detecting the light emitted from the indicator light 38
  • the magnetic sensor 52 is provided for detecting the magnetic measurement line 36. It has been.
  • the line sensor 50 includes a pair of light emitting units 53 provided symmetrically at the front end 30a of the self-propelled vehicle 30 and a light receiving unit 54 disposed between the light emitting units 53. Yes.
  • the light emitting unit 53 emits visible light having a predetermined wavelength range toward the lower traveling surface 18, and the light receiving unit 54 receives reflected light from the lower traveling surface 18.
  • the detection wavelength range of the light receiving unit 54 is limited to the wavelength range of visible light emitted from the light emitting unit 53 so that the emission light of the indicator lamp 38 is not erroneously detected. Details of the line sensor 50 are shown in FIGS.
  • the light emitting section 53 is provided symmetrically with respect to the central plane CP that bisects the self-propelled vehicle 30 in the left-right direction, and the respective emission directions are directed obliquely inward.
  • the light receiving section 54 is provided with a sensor array 55 provided so as to extend equally in the left-right direction of the self-propelled vehicle 30 across the center plane CP, and the lower travel surface 18 formed by reflected light from the lower travel surface 18. And an image forming lens 56 for forming an image on the sensor array 55.
  • the sensor array 55 is configured, for example, by arranging a large number of CMOS light receiving elements in a line, and detects the luminance distribution in the left-right direction of the self-propelled vehicle 30 with finer resolution than the width Wg of the guide line 34. For example, the resolution is set to detect a width of 1.5 times the pitch PTg of the guide wire 34 divided into 128 dots.
  • the center plane CP when the center plane CP is located at the center of the guide line 34 in the width direction, the area composed of the guide line 34 and the blank portion adjacent to the guide line 34 is set as the detection area, and the detection area is set to 128.
  • the resolution of the sensor array 55 is set so that detection is performed with dot resolution. For example, if the pitch PTg of the guide wire 34 is 12 mm, the detection width by the sensor array 55 is 18 mm, and the luminance distribution is detected with a resolution of 0.14 mm per dot.
  • the imaging lens 56 is provided to separate the sensor array 55 from the lower travel surface 18 upward. The reason is to suppress the influence of the vertical swing of the self-propelled vehicle 30 caused by the displacement of the auxiliary wheels 44F and 44R on the detection accuracy of the luminance distribution.
  • the absolute position detection sensor 51 includes a light receiving portion 58 disposed on the center plane CP of the self-propelled vehicle 30.
  • the absolute position detection sensor 51 is red sent from the indicator light 38. Receives external light and outputs a signal corresponding to the absolute position and lane number contained in the infrared light.
  • the magnetic sensor 52 includes a plurality of detection units 60 arranged at a constant pitch PTms in the front-rear direction of the self-propelled vehicle 30.
  • the detection unit 60 is sometimes counted from the front end 30a of the self-propelled vehicle 30 and is distinguished from # 1 detection unit, # 2 detection unit, and so on.
  • Each detection unit 60 detects magnetism in the lower travel surface 18 and outputs signals corresponding to the S pole and the N pole, respectively. For example, the detection unit 60 outputs a low signal when the S pole is detected, and outputs a high signal when the N pole is detected. Therefore, the magnetic measurement line 36 can be detected by inversion of the signal of each detection unit 60.
  • the magnetic sensor 52 functions as a measurement line detection means.
  • the number of detection units 60 and the pitch PTms in the front-rear direction are associated with the reference pitch PTm of the magnetic measurement line 36. That is, the pitch PTms of the detector 60 is set to 1Z2 of the reference pitch PTm of the magnetic measurement line 36. In other words, the reference pitch PTm is twice the pitch PTms of the detector 60.
  • the number of detection units 60 is set so that the product of the number and the pitch PTms of the detection unit 60 increases the pitch (maximum pitch) PTou beam at the outermost periphery of the corner section 35b.
  • the reference pitch PTm is 8 mm
  • the maximum pitch PTout is 30 mm
  • the detection unit pitch PTms is 4 mm
  • the number of detection units 60 is 8.
  • FIG. 17B shows an example of the output signal of the magnetic sensor 52 when the magnetic sensor 52 is traveling at the speed Vact along the guide line 34 in the straight section 35a or the guide line 34 in the first lane of the corner section 35b.
  • # 1 detector 60 reaches the magnetic measurement line 36 and its output signal is inverted from Low to High.At time t3, # 1 detector 60 reaches the next magnetic measurement line 36 and the output signal is Assume that it has inverted from High to Low.
  • the output signal of # 2 detector 60 is inverted from low to high.
  • the output signal of # 3 detector 60 reverses from Low to High at time t3.
  • the pitch PTms is 1/2 of the reference pitch PTm
  • the output signal of # 1 detector 60 is also inverted at the same time. Therefore, in the case of FIG. 17B, the progress and speed of the self-propelled vehicle 30 can be controlled with a resolution of 1/2 of the reference pitch PTm by using only the output signals of the detectors 60 of # 1 and # 2. . It is not necessary to use the output signal of detector 60 after # 3.
  • the pitch PTms of the detector 60 is set to each detector
  • the current speed Vact of the self-propelled vehicle 30 is calculated by dividing by the inversion time interval of the output signal of 60 (tl to t2, t2 to t3), and the difference between the current speed Vact and the target speed required in the game is calculated.
  • the traveling of the self-propelled vehicle 30 is controlled based on the above, only the output signals of the detection units 60 of # 1 and # 2 may be used.
  • the pitch of the magnetic measurement line 36 is larger than the reference pitch PTm. Is different. An example of this will be described with reference to FIGS. 18A and 18B.
  • the self-propelled vehicle 30 travels at the speed Vact along the guide line 34 in the second lane or the outer lane in the corner section 35b, and the pitch of the magnetic measurement line 36 in the lane is Assume that PTx (where Pm and PTx ⁇ PTout). In this case, as shown in FIG.
  • the product of the number of detection units 60 and the pitch PTms is the maximum pitch PTou beam of the magnetic measurement line 36 in the outermost periphery of the corner section 35b. If it is set too large.
  • the pitch PT of the detector 60 Since ms is 4mm and the maximum pitch PTout of magnetic measuring line 36 is 30mm, the condition is satisfied if the number of detectors 60 is set to eight.
  • FIG. 19 shows a schematic configuration of the control system of the game machine 2.
  • the game machine 2 communicates with a main control device 100 that controls the overall operation of the game machine 2, and a plurality of communication units 101 for communicating information between the main control device 100 and the self-propelled vehicle 30.
  • a relay device 102 that relays between the unit 101 and the main control device 100 is provided.
  • the main controller 100 is constituted by a personal computer, for example.
  • the main control device 100 controls the progress or development of the horse racing game executed by the game machine 2 according to a predetermined game program, and instructs the progress and lane of each vehicle 30 via the communication unit 101.
  • the progress and the lane number key control device 100 that the self-propelled vehicle 30 should reach after a predetermined unit time are instructed to each self-propelled vehicle 30.
  • the progress is a value expressed by the number of magnetic measurement lines 36 from the reference position Pref in FIG.
  • Self-propelled vehicles 30 are individually managed with numbers (# 1, # 2,).
  • the relay device 102 can be configured with a switching hub, for example.
  • the communication units 101 are arranged around the peripheral circuit 35 at a certain interval.
  • the number of the communication units 101 is 10 in the illustrated example. However, as long as the entire circumference of the peripheral circuit 35 can be covered by these communication units 101, change the number as appropriate.
  • Communication between the communication unit 101 and the self-propelled vehicle 30 may use radio waves or infrared rays.
  • FIG. 20 shows a control system provided in the self-propelled vehicle 30.
  • the control system of the self-propelled vehicle 30 includes a self-propelled vehicle control device 110.
  • the self-propelled vehicle control device 110 is configured as a computer unit equipped with a microprocessor, and executes the travel control of the self-propelled vehicle 30 or the communication control with the main control device 100 according to a predetermined self-propelled vehicle control program. To do.
  • the above-described line sensor 50, absolute position detection sensor 51, and magnetic sensor 52 are connected to the self-propelled vehicle control device 110 as an input device for travel control via an interface (not shown).
  • a gyro sensor 111 is connected to the self-propelled vehicle control device 110 as an input device.
  • the gyro sensor 11 1 is the attitude of the self-propelled vehicle 30, in other words, the self-propelled vehicle 30 It is built in the self-propelled vehicle 30 to detect the direction it is facing.
  • the gyro sensor 111 detects the angular acceleration around the turning axis of the self-propelled vehicle 30 (for example, the vertical axis passing through the intersection of the axis of the drive wheel 42 and the center plane CP), and integrates the angular acceleration twice. It is converted into an angle change amount and output to the self-propelled vehicle control device 110.
  • the angle acceleration may be output from the gyro sensor 111 and converted into the angle change amount by the self-propelled vehicle control device 110.
  • a transmission unit 112 and a reception unit 113 for performing information communication with the communication unit 101 are connected to the self-propelled vehicle control device 110 via a communication control circuit 114.
  • the main controller 100 repeatedly gives information indicating the target progress and target lane of the self-propelled vehicle 30 during the game at a constant cycle.
  • the self-propelled vehicle control device 110 calculates the target speed, direction correction amount, etc. of the self-propelled vehicle 30 based on the given target progress and target lane and the output signals of various sensors 50 to 52, 111, and the like. Based on the calculation result, the speed instructions VL and VR are given to the motor drive circuit 115.
  • the motor drive circuit 115 controls the drive current or voltage to each motor 43 so that the given speed instructions VL and VR are obtained.
  • FIG. 21 shows the concept of travel control of the self-propelled vehicle 30 by the self-propelled vehicle control device 110.
  • the current progress of the self-propelled vehicle 30 is ADcrt
  • the target progress given by the main controller 100 is ADtgt
  • the lane direction, that is, the direction of the guide line 34 is Dref
  • the direction where the self-propelled vehicle 30 is facing is Dgyr.
  • the self-propelled vehicle control device 110 has reached the target position Ptgt that is given by the intersection of the center line of the target lane and the target progress ADtgt by the predetermined time from the current position Pert, and reaches the target position Ptgt.
  • the speed of the motor 43 is controlled so that the direction D gyr of the self-propelled vehicle 30 matches the lane direction Dref. That is, the self-propelled vehicle control device 110 increases / decreases the drive speed of each motor 43 according to the degree of advance deficiency ⁇ AD between the current advancement ADcrt and the target advancement ADtgt and sets the target lane from the current position Pert.
  • Lane correction amount given as the distance to the center line ⁇ Yamd The self-propelled vehicle 30 moves in the transverse direction of the circuit 35 and the force is also the direction of the self-propelled vehicle 30 Dgyr force
  • the lane direction at the target position Ptgt Dref The speed ratio between the motors 43 is controlled so as to be corrected by an angle correction amount ⁇ amd given as a deviation amount of the current direction ⁇ gyr with respect to.
  • the advancement deficiency A AD is given as the number of magnetic measurement lines 36, so that the straight section 3 In either case of 5a or corner section 35b, it is obtained by subtracting the current progress AD crt from the target progress ADtgt.
  • the distance Ltr corresponding to the progress deficit amount AAD changes depending on the position of the self-propelled vehicle 30 in the transverse direction of the circuit 35, and thus speed control in consideration of this is necessary.
  • Lane correction amount A Yamd is the amount of deviation between the current position Pert of the self-propelled vehicle 30 and the current lane from the lane distance Ychg corresponding to the distance between the lane where the self-propelled vehicle 30 is currently traveling and the target lane.
  • the lane direction Dref and the self-propelled vehicle direction Dgyr can be specified as the angles ⁇ ref and ⁇ gyr relative to the absolute reference direction Dabs, with the straight direction from the reference position Pref in FIG. 10 as the absolute reference direction Dabs.
  • 0 ref O ° or 180 °.
  • the angle formed by the tangential direction of the guide line 34 in the advance ADcrt with respect to the absolute reference direction Dabs can be specified as ⁇ ref.
  • the tangential direction is uniquely determined by the progress, and if it is the same progress, it is a constant value regardless of the lane.
  • FIG. 22 is a functional block diagram of the self-propelled vehicle control device 110.
  • the self-propelled vehicle control device 110 analyzes the game information given from the main control device 100 to determine the target progress ADtgt of the self-propelled vehicle 30 and the target lane, and the current information of the self-propelled vehicle 30
  • the value of the progress counter 121 is updated and the current speed Vact of the self-propelled vehicle 30 is calculated based on the outputs of the progress counter 121 that stores AD crt and the absolute position detection sensor 51 and magnetic sensor 52.
  • Progress management unit 122 lane counter 123 that stores the lane number in which self-propelled vehicle 30 is currently traveling, and the lane in which self-propelled vehicle 30 is traveling based on the outputs of line sensor 50 and absolute position detection sensor 51
  • the lane counter 123 updates the value of the lane counter 123, detects the lane deviation amount ⁇ of the self-propelled vehicle 30 with respect to the lane, and stores the angle ⁇ gyr indicating the direction of the self-propelled vehicle 30 Gyro counter 125, And a direction control section 126 to update the value of the gyro counter 125 to determine the angle theta gyr of the motor vehicle 30 based on the output of Yairosen support 111.
  • the self-propelled vehicle control device 110 determines the number of the self-propelled vehicle 30 based on the target progress ADtgt, the progress ADcrt stored in the progress counter 121, and the lane number stored in the lane counter 123.
  • a target speed calculation unit 127 that calculates the target speed Vtgt, a speed setting unit 128 that sets the drive speed of the motor 43 of the self-propelled vehicle 30 based on the target speed Vtgt, and the set drive speed as the target speed Vtgt and the current speed Speed FB correction unit 12 9 that performs feedback correction according to the difference from Vact, target lane, lane number of lane counter 123, and lane shift amount ⁇ Y of self-propelled vehicle 30 determined by lane management unit 124 Based on the lane correction amount calculation unit 130 for calculating the lane correction amount ⁇ Yamd of the self-propelled vehicle 30, the progress ADtgt and the angle ⁇ gyr stored in the progress counter 121 and the gyro counter 125, respectively
  • a direction correction amount calculation unit 131 for calculating the direction correction amount ⁇ amd and a speed ratio setting unit 133 for setting the speed ratio between the motors 43 based on the lane correction amount ⁇ Yamd and the direction correction amount ⁇ amd are provided. Yes.
  • the speed ratio setting unit 133 determines the speed instructions VL and VR of the left and right motors 43, and outputs these instructions to the motor drive circuit 115 in FIG.
  • the self-propelled vehicle control device 110 includes the guide wire 34 based on the output of the line sensor 50, the progress A Dcrt stored in the progress counter 121, and the direction correction amount ⁇ amd calculated by the direction correction amount calculation unit 131.
  • a line width inspection unit 136 for inspecting the line width is provided.
  • FIG. 23 is a flowchart showing the processing of the progress management unit 122.
  • the progress management unit 122 monitors the output of the magnetic sensor 52, manages the progress ADcrt of the progress counter 121, and calculates the current speed Vact of the self-propelled vehicle 30. That is, the progress management unit 122 determines whether or not the output of the # 1 detection unit 60 of the magnetic sensor 52 is inverted in the first step S101, and if it is inverted, the value ADcrt of the progress counter 121 is set to 1 in step S102. In step S103, 2 is set in the variable m for determining the detection unit number.
  • Step S102 and S103 are skipped when the output of the detector 60 is not inverted.
  • step S104 it is determined whether or not the output of the detection unit 60 of #m is inverted. If reversed, proceed to step S1 05 to calculate the current speed Vact.
  • step S1 it is determined whether or not the absolute position detection sensor 51 has detected the absolute position, that is, whether or not the infrared light of the indicator lamp 38 has been detected. If not detected, the process returns to step S101. On the other hand, if the absolute position detection sensor 51 detects infrared light from the indicator light 38 in step S107, the progress information coded in the infrared light is determined, and the determined progress and the progress of the progress counter 121 are determined. The progress counter 121 is corrected so that ADcrt matches, and the process returns to step S101. If the signal from #m detector 60 is not judged in step S104,
  • the value ADcrt of the progress counter 121 is incremented by 1 every time the # 1 detection unit 60 measures the magnetic measurement line 36. Moreover, the progress ADcrt is appropriately corrected when the absolute position detection sensor 51 detects a signal from the absolute position indicating device 37. As a result, the position of the self-propelled vehicle 30 in the longitudinal direction of the peripheral circuit 35 can be grasped from the value of the progress counter 121. Further, the current speed Vact of the self-propelled vehicle 30 is calculated every time the self-propelled vehicle 30 moves by the pitch PTms of the detection unit 60 of the magnetic sensor 52.
  • FIG. 24 is a flowchart showing a procedure by which the target speed calculation unit 127 calculates the target speed.
  • the target speed calculation unit 127 acquires the value ADcrt of the progress counter 121 in the first step S121, and determines whether or not the progress counter 121 has been updated since the previous processing in the next step S122. If not updated, the process returns to step S121. If updated, the process proceeds to step S123.
  • the current lane is acquired from the lane counter 123.
  • the number of inversions of the output of the magnetic sensor 52 to be detected before the self-propelled vehicle 30 reaches the next degree of progression (inversion count number) Nx is set to the current degree ADcrt and the self-propelled vehicle 3 0 is estimated based on the currently running lane. That is, a value (quotient) obtained by dividing the pitch PTx of the magnetic measurement line 36 between the current progress ADcrt and the next progress ADcrt + 1 by the pitch PTms of the detection unit 60 is estimated as the inversion count Nx. If the quotient has a fractional part, it is rounded up to the nearest whole number by rounding up, rounding down or rounding.
  • the lane number is used to specify the pitch PTx.
  • the reference pitch PTm shown in Fig. 9 Becomes the pitch PTx of the detector 60.
  • the pitch PTx corresponding to the lane number should be obtained from data such as a prepared table. Les.
  • step S126 calculates the inversion reference time tx.
  • the remaining time from the current time until the time when the self-propelled vehicle 30 should reach the target progress ADtgt is Trmn, and the output of each detection unit 60 of the magnetic sensor 52 is constant within the remaining time Trmn.
  • the remaining time Trmn is given by the product of time tx, the inversion count Nx, and the advance deficiency AAD.
  • the advancement is advanced by one, and if this is repeated a number of times corresponding to the insufficient advancement amount AAD, it will run at the target advancement arrival time.
  • Car 30 will reach the target progress ADtgt.
  • the target progress arrival time may be a time when the next target progress and target lane are given from the main control device 100 of the game machine 2 or a time when a certain delay time is given to the time. it can.
  • the target progress time must be the same among all self-propelled vehicles 30 used in the same race.
  • step S127 a quotient obtained by dividing the pitch PTms of the detection unit 60 by the inversion reference time tx is obtained as the target speed Vtgt.
  • This target speed Vtgt is the speed of the self-propelled vehicle 30 required for the output of the magnetic sensor 52 to be sequentially reversed at intervals of the reversal reference time tx.
  • the target speed Vtgt is updated each time the progress of the self-propelled vehicle 30 advances by one.
  • the target speed Vtgt calculated by the target speed calculator 127 is Provided to the speed setting unit 128 and the speed FB correction unit 129.
  • the speed setting unit 128 sets the driving speed of the motor 43 so that the given target speed Vtgt is obtained, and the speed FB correction unit 12 9 responds to the difference between the target speed Vtgt and the current speed Vact with respect to the driving speed.
  • the speed control accuracy, responsiveness, and the like may be improved by feedback control or feedforward control of the speed using the differential value or integral value of the speed difference.
  • FIG. 26 is a flowchart showing a procedure in which the direction management unit 126 manages the value of the gyro counter 125.
  • the direction management unit 126 acquires the angle change amount output from the gyro sensor 111 in the first step S141, and in the subsequent step S142, adds or subtracts the angle change amount to the value ⁇ gyr of the gyro counter 125, thereby obtaining the gyro counter 125. Update the value ⁇ gyr of.
  • the angle ⁇ gyr indicating the current direction of the self-propelled vehicle 30 is stored in the gyro counter 125.
  • the angle ⁇ gyr of the gyro counter 125 when the self-propelled vehicle 30 faces the absolute reference direction Dabs to 0 °, it is desirable to perform calibration at an appropriate timing.
  • the calibration is performed, for example, based on the progress ADcrt of the progress counter 121 and the output of the line sensor 50 whether or not the self-propelled vehicle 30 travels in a straight section 35a from the reference position Pref in parallel with the lane direction. This can be achieved by recognizing and resetting ⁇ gyr to 0 ° when traveling in parallel.
  • Such calibration may be performed during the race of the horse racing game, or may be performed at an appropriate timing before the race, for example, when the game machine 2 is activated.
  • FIG. 27 is a flowchart showing a procedure by which the direction correction amount calculation unit 131 calculates the direction correction amount ⁇ amd.
  • the direction correction amount calculation unit 131 obtains the value ADcrt of the progress counter in the first step S161, and determines the angle ⁇ r ef in the reference direction from the progress ADcrt in the subsequent step S162.
  • the angle ⁇ ref of the reference direction is uniquely determined in association with the progress AD, and is 0 ° or 180 ° in the straight section 35a and the tangential direction of the guide line 34 in the corner section 35b.
  • the reference direction angle ⁇ ref can be immediately determined from the advance counter value ADcrt.
  • the value ⁇ gyr of the gyro counter 125 is acquired, and in the subsequent step S164, the difference between the angles ⁇ ref and ⁇ gyr is calculated as the direction correction amount ⁇ amd (see FIG. 21).
  • the process returns to step S161.
  • Direction correction amount found here ⁇ ⁇ amd In addition to being provided to the speed ratio setting unit 133, the lane management unit 124 and the line width inspection unit 136 are also provided.
  • FIG. 28 is a flowchart showing the processing of the lane management unit 124.
  • the lane management unit 124 refers to the output of the line sensor 50 and the direction correction amount ⁇ amd to obtain the lane shift amount ⁇ (see Fig. 21) of the self-propelled vehicle 30 and uses the lane shift amount ⁇ . Then, the value of lane counter 123 is managed. That is, the lane management unit 124 obtains the direction correction amount ⁇ amd from the direction correction amount calculation unit 131 in the first step S181, and detects the lane deviation amount ⁇ by capturing the output of the line sensor 50 in the subsequent step S182. To do.
  • An example of the relationship between the output of the line sensor 50 and the lane shift amount ⁇ is shown in FIG.
  • An analog signal corresponding to the reflected light intensity is output from the line sensor 50. If this is binarized with an appropriate threshold value, a rectangular wave corresponding to the guide wire 34 and the blank portion therebetween can be obtained. From the rectangular wave, the number of dots ⁇ Ndot between the center of the detection area of the line sensor 50 and the center of the luminance value range (lane center) corresponding to the guide line 34 corresponds to the lane shift amount ⁇ Y. By multiplying the number ⁇ Ndot by the line width per dot, the lane shift amount ⁇ ⁇ can be obtained. However, if the direction of the self-propelled vehicle 30 is deviated from the reference direction Dref (see Fig.
  • the line sensor 50 also tilts obliquely with respect to the direction perpendicular to the guide line 34, resulting in a dot
  • the number ⁇ Ndot also increases with the slope. Therefore, it is necessary to obtain the correct lane shift amount ⁇ ⁇ by multiplying the lane shift amount ⁇ ⁇ ⁇ obtained from the number of dots A Ndot by the cosine value cos ⁇ amd of the direction correction amount. This is why the direction correction amount ⁇ amd is acquired in step S181 in FIG.
  • the width Wg (see FIG. 9) of the guide line 34 can be detected by similarly correcting the number of dots Ndot included in the luminance value range corresponding to the guide line 34 by ⁇ amd. it can.
  • step S183 it is determined whether or not the self-propelled vehicle 30 has moved to the next lane. For example, when the lane shift amount ⁇ is larger than 1/2 of the pitch PTg of the guide line 34, it can be determined that the self-propelled vehicle 30 has moved to the adjacent lane. Alternatively, compare the distances to the guide line 34 detected on both sides of the center of the line sensor 50, and judge that the lane has moved if the magnitude relationship is reversed. Moved to next lane in step S183 If it is determined, the value of the lane counter 123 is updated to a value corresponding to the next lane. If a negative determination is made in step S183, step S184 is skipped.
  • step S185 it is determined whether or not the absolute position detection sensor 51 has detected an absolute position. If the absolute position is not detected, the process returns to step S181. On the other hand, if it is determined in step S 185 that the absolute position has been detected, the lane number coded in the infrared light from the absolute position indicating device 37 is determined, and the determined lane number and the value of the lane counter 123 are determined. The value of the lane counter 123 is corrected so as to match, and the process returns to step S181. The lane shift amount ⁇ obtained in the above processing is given to the lane correction amount calculation unit 130.
  • FIG. 30 is a flowchart showing a procedure by which the lane correction amount calculation unit 130 calculates the lane correction amount A Yamd.
  • the lane correction amount calculation unit 130 obtains the target lane from the game information analysis unit 120 in the first step S201, obtains the value of the lane counter 123 (current lane number) in the subsequent step S202, and further in step S203.
  • the lane shift amount ⁇ ⁇ ⁇ is acquired from the lane management unit 124.
  • step S204 it is determined whether or not the target lane matches the current lane. If they match, the process proceeds to step S205, sets the lane shift amount ⁇ to the lane correction amount A Yamd, and returns to step S201.
  • step S204 if the lanes coincide with each other in step S204, and the lane is correct, the process proceeds to step S206, and a value obtained by adding the lane deviation amount Y to the lane interval Ychg (see FIG. 21) is set as the lane correction amount A Yamd.
  • step S201 The lane shift amount Ychg is obtained by multiplying the number difference between the target lane and the current lane by the pitch PTg of the guide line 34 (see Fig. 10).
  • the distance in the crossing direction that the self-propelled vehicle 30 should move to the target lane is calculated as the lane correction amount A Yamd.
  • the calculated lane correction amount A Yamd is given to the speed ratio setting unit 133.
  • the speed ratio setting unit 133 determines the speed ratio to be generated between the motors 43 based on the given lane correction amount A Yamd and the direction correction amount ⁇ amd, and the speed FB correction is performed according to the speed ratio. Increase or decrease the drive speed given from the unit 129 to determine the speed instructions VL and VR for the left and right motors 43.
  • the speed ratio is feedback-controlled or fed-forward controlled using the differential value and integral value of the lane correction amount A Yamd and the direction correction amount ⁇ ⁇ amd, and also the angular acceleration detected by the gyro sensor 111, and the target is obtained.
  • the control accuracy and response of lane tracking and direction correction may be improved.
  • the target speed Vtgt of the self-propelled vehicle 30 is given, and the current speed Vact of the self-propelled vehicle 30 is Since each time the self-propelled vehicle 30 moves by a distance corresponding to the pitch PTms of the detector 60, the speed of the self-propelled vehicle 30 can be controlled quickly and with high accuracy. Further, since the magnetic sensor 52 is provided with a number of detection units 60 that can cover the maximum pitch PTms of the magnetic measurement line 36, even if the self-propelled vehicle 30 is traveling in any lane of the corner section 35b, the magnetic sensor 52 is magnetic.
  • the current speed Vact can be detected with a high resolution according to the pitch PTms. Therefore, the error in speed control using the current speed Vact can be reduced, and the fluctuation in speed when the self-propelled vehicle 30 is traveling in the corner section 35b can be effectively suppressed.
  • the gyro sensor 111 is provided to detect the direction of the self-propelled vehicle 30, and the deviation between the direction and the direction of the target lane is given to the speed ratio setting unit 133 as a direction correction amount ⁇ amd. As compared with the case where the position and direction in the transverse direction of the self-propelled vehicle 30 are controlled based only on the output of the line sensor 50, the control accuracy is improved. Furthermore, by using the output of the gyro sensor 111 to determine the amount of change in angle, change in angular velocity, or angular acceleration, and using these physical quantities for direction control of the self-propelled vehicle 30 It is possible to converge smoothly and quickly on the target lane and to align the direction with the target direction accurately and quickly.
  • the direction correction amount ⁇ amd with respect to the target direction of the self-propelled vehicle 30 can be immediately determined from the output of the gyro sensor 111, and the lane shift using the output of the line sensor 50 can be determined.
  • the force S can be detected accurately by using the direction correction amount ⁇ ⁇ amd. Therefore, the lane tracking accuracy of the self-propelled vehicle 30 or the accuracy of the movement control to the target lane can be improved.
  • FIG. 31 is a flowchart showing processing in the line width detection unit 136.
  • the line width detection unit 136 obtains the value ADcrt of the progress counter 121 in the first step S221 of FIG. 31, obtains the value of the lane counter 123 in the next step S222, and further in step S223, the direction correction amount ⁇ Get ⁇ amd.
  • the line width in the current lane is calculated from the output of the line sensor 50.
  • the number of dots Ndot is obtained from the output of the line sensor 50 and multiplied by the line width per dot, and this is multiplied by the direction correction amount ⁇ amd. Correction may be given.
  • step S225 it is determined whether or not the calculated line width is within a predetermined allowable range. If it is within the allowable range, the process returns to step S221. On the other hand, if the line width exceeds the allowable range, the process proceeds to step S226, and the data corresponding to the detected position, that is, the value of the progress counter ADcrt and the value of the lane counter is used as the line width inspection data. It memorize
  • the allowable range of the line width is determined in consideration of the frequency of error in driving control of the self-propelled vehicle 30 caused by the increase or decrease of the guide line 34 with respect to the original line width Wg.
  • the allowable range should be 4 to 8 mm if there is no practical problem with the driving control of the self-propelled vehicle 30. If you set it to.
  • the followability of the self-propelled vehicle 30 to the guide line 34 is reduced. It may deteriorate and cause malfunctions such as unstable behavior when changing lanes. To that end, periodic checks and cleaning of the lower lane 18 are necessary. For such work, the data created by the line width inspection unit 136 can be used effectively.
  • the angle correction may be omitted and the power of being within the allowable range may be determined based on the number of dots Ndot. For example, when traveling control is performed to limit the direction correction amount ⁇ amd of the self-propelled vehicle 30 to a certain range, it corresponds to the guide line width Wg when the direction correction amount ⁇ amd is the maximum value.
  • the number of dots Ndot on the line sensor 50 may be obtained in advance, and when the number of detected dots exceeds this, it may be determined that the allowable range has been exceeded. In this case, tilt correction using the direction correction amount ⁇ amd is also unnecessary.
  • the number of detected dots Ndot is used as a reference, based on the number of detected dots corresponding to the line width Wg when the self-propelled vehicle 30 is traveling straight along the guide wire 34.
  • the line width may be determined to be less than the allowable range.
  • the line width inspection by the line width inspection unit 136 may be performed at any time during the race of the horse racing game, or may be performed at an appropriate time outside the race.
  • the line width inspection is performed by instructing execution of the line width inspection from the main control device 100 at an appropriate time when no race is being performed and causing the self-propelled vehicle 30 to travel along the circuit 35 in a predetermined traveling pattern. You can do this.
  • the signal S output from the line sensor 50 is binarized, the force S for discriminating the black portion and the white portion of the traveling surface 18 is output, and the analog signal waveform is output from the line sensor 50. Digitally digitize with 256 gradations to detect colored parts other than white or black and identify those colored parts as dirt.
  • the line width detection data acquired by the line width detection unit 136 Since the self-propelled vehicle 30 does not have a function to display the line width inspection data, the data is transmitted from the self-propelled vehicle 30 to the main control device 100, and further maintenance is performed via the network 6 as necessary. By transmitting to server 4 etc., the line width detection data can be used effectively. The following shows such usage.
  • FIG. 32 shows a procedure for transmitting line width inspection data from the self-propelled vehicle 30 to the main control device 100. It is a flowchart to show.
  • self-propelled vehicle control device 110 determines whether or not it is time to transmit line width inspection data. If it is determined that it is time to transmit, it proceeds to step S242 and transmits line width inspection data to main control device 100. To do.
  • main controller 100 determines in step S301 whether inspection data is transmitted from self-propelled vehicle 30 or not. If it is determined that the transmission has been successful, the process proceeds to step S302, where the transmitted line width verification data is stored in its own storage device, and the process returns to step S301.
  • the transmission time of the line width detection data may be set as a time when there is no problem in controlling the horse racing game.
  • FIG. 33 shows line width detection executed at an appropriate time after the end of reception of the line width detection data by the main controller 100 in order to manage the line width detection data sent from the self-propelled vehicle 30. It is a flowchart which shows the process sequence of data management.
  • the main controller 100 analyzes the line width inspection data received from the self-propelled vehicle 30 and creates the travel surface warning data.
  • the main control device 100 generates the travel surface warning data.
  • the line width inspection data includes the line width identified as outside the allowable range and the detection position (progress and lane number) of the line width.
  • the number of detections is counted for each detection position, and the detection position and Data that correlates the number of detections is created and stored as travel surface warning data.
  • the count of the number of detections may be omitted, and only the detection position may be held in the traveling surface warning data.
  • the detection position may be omitted and only the number of detections may be retained in the traveling surface warning data.
  • the detection positions it is not always necessary to correspond to the magnetic measurement lines 36 and 1: 1, and two or more adjacent magnetic measurement lines 36 may be regarded as one detection position. In this case, the amount of running surface warning data can be reduced.
  • the circuit 35 is divided into a plurality of zones Z1 to Z10, the number of times of detection is counted for each zone, and the data that associates the number of times of detection with the zone is displayed on the traveling surface. It may be created as warning data.
  • step S323 to check the data amount of the driving surface warning data, and in step S324, the data amount exceeds the predetermined allowable amount. Judge whether or not. If the tolerance is exceeded, step S325 The warning flag is set to 1 at, and in the following step S326, the traveling surface warning data is transmitted to the maintenance server 4 and the processing is finished. On the other hand, if a negative determination is made in step S324, the warning flag is set to 0 in step S327 and the process ends.
  • FIG. 34 shows a processing procedure of running surface check management executed by the main controller 100 in order to display a running surface check screen based on the running surface warning data to the operator (administrator) of the game machine 2. It is a flowchart. This process is executed based on an operator's instruction when the game machine 2 is controlled to the maintenance management mode, for example.
  • the main controller 100 determines whether or not 1 is set in the warning flag. If 1 is set, the process proceeds to step S342 to display a predetermined warning.
  • the warning display shall include, for example, a message prompting the operator to inspect or clean the running surface. If the warning flag is not set to 1, step S342 is skipped.
  • step S343 the traveling surface warning data is read out, and in step S344, a traveling surface check screen based on the traveling surface warning data is displayed and the processing is completed.
  • the traveling surface check screen can be configured as shown in FIG. 35, for example.
  • an entire course diagram 80 showing the peripheral circuit 35 in a plan view is displayed on the screen, and dots 81 are superimposed and displayed at the detection positions in the entire course diagram 80.
  • the number of detections may be identified by changing the display mode of the dots 81 in accordance with the number of detections.
  • the diameter of dot 81 increases as the number of detections increases.
  • the color of the dots 81 may be changed according to the number of detections.
  • by showing areas where the number of detections exceeds a predetermined threshold in a different manner from other areas the operator may be shown more clearly the areas that need inspection or cleaning.
  • the areas Z4, Z9 and Z10 are displayed differently from the other areas, indicating that these areas Z4, Z9 and Z10 have a high need for inspection or cleaning. .
  • the running surface check screen is not limited to the example of FIG.
  • Dot 81 may be omitted to show only areas that need to be examined or cleaned. Dot change display for each area Only the detection position by 81 may be shown.
  • the detection position is not limited to a dot, and may be indicated by an appropriate index.
  • the entire course view 80 can be displayed as a perspective view, and a bar graph with a height corresponding to the number of detections can be displayed at the detection position.
  • the warning flag is checked to determine whether or not the warning display is necessary.
  • the warning display is not limited to this and is appropriate. Go at the timing.
  • the data amount of the running surface warning data may be determined when the game machine 2 is activated, and a warning display may be executed when the allowable amount is exceeded.
  • the operator may be inquired whether or not to display the traveling surface check screen.
  • FIG. 36 is a flowchart showing a maintenance mode processing procedure executed by the main control device 100 when the operator instructs the maintenance mode for the purpose of inspection, cleaning, etc. of the lower running surface 18.
  • the main controller 100 gives an activation instruction to the stage driving device 21 (see FIG. 3) and raises the stage 15 in the first step S361. Raising the stage 15 creates a sufficient space between the lower traveling surface 18 and the power feeding surface 20, so that the operator can easily inspect and clean the lower traveling surface 18.
  • step S362 it is determined whether or not the operator has instructed the end of the maintenance.
  • the process proceeds to step S363 and the stage 15 is lowered.
  • step S364 it is confirmed to the operator whether or not the traveling surface warning data is to be cleared, and whether or not a clear is instructed is determined in the next step S365. If there is an instruction, in step S3 66, the driving surface warning data is cleared, that is, deleted, and the process ends. On the other hand, if clear is not instructed in step S365, step S366 is skipped and the process is terminated.
  • the travel surface warning data is transmitted to the maintenance server 4 in step S326 of FIG. 33, but the maintenance server 4 that has received the travel surface warning data performs the same processing as the main control device 100.
  • the traveling surface check screen As illustrated in FIG. 35 so that the state of the traveling surface 18 can be confirmed. Or you can analyze the running surface jung data in more detail with the maintenance server 4.
  • the state of the lower running surface 18 may be confirmed, and the server administrator may urge the operator of the store where the game machine 2 is installed to perform cleaning or the like.
  • the line width inspection data may be transmitted to the maintenance server 4, the traveling surface warning data may be generated by the maintenance server 4, and the traveling surface check screen or warning may be displayed based on this.
  • the line sensor (50) is the guiding line detection means
  • the gyro sensor 111 is the direction detection means
  • the magnetic sensor 52 is the longitudinal position detection means
  • the self-propelled vehicle control device 110 is the travel control.
  • a combination of the travel control device 30, the communication control circuit 114 and the transmission unit 112 is a data output unit
  • the main control device 100 is a game control device
  • the combination of 113 and the communication control circuit 114 corresponds to the communication means
  • the main control device 100 and the maintenance server 4 correspond to the traveling surface management device.
  • the line width detecting unit 136 of the self-propelled vehicle control device 110 functions as a line width detecting means.
  • the position of the self-propelled vehicle 30 with respect to the longitudinal direction of the guide wire 34 is determined by detecting the magnetic measurement line 36 with the magnetic sensor 52, but with respect to the longitudinal direction of the guide wire.
  • the position determination is not limited to using such means.
  • the position of the self-propelled vehicle 30 may be determined by integrating the amount of rotation of the drive wheels 42.
  • the direction of the self-propelled vehicle 30 is not limited to that using the gyro sensor 111, and various changes are possible.
  • the direction is detected based on the difference in the rotational speed of the drive wheels 42. It is also possible to do this.
  • the present invention is not limited to a game machine having a lower running surface and an upper running surface, and even in a game machine having a single running surface, as long as the guidance line is detected and the running of the self-propelled body is controlled. Is applicable.
  • the game executed on the game machine is not limited to a horse racing game.
  • the guide wire is not limited to the one provided to form the circuit, but may be provided to form a straight path.
  • the present invention is applicable not only to a game machine connected to a network but also to a stand-alone game machine disconnected from the network.

Abstract

A game machine enabling lightening of the load of the management of a traveling surface by using the guide line detecting function of a self-traveling body. A game machine comprises a game machine body (10) having a traveling surface (18) on which a guide line (34) is provided and a self-traveling body (30) capable of self-traveling on the traveling surface (18) and having a guide line detecting unit for detecting the guide line (34) and a traveling control unit (110) for controlling the travel of the self-traveling body according to the result of detection by the guide line detecting unit. The guide line detecting unit is a line sensor (50) having light-receiving elements arranged in the lateral direction of the self-traveling body (30) to detect the luminance distribution in a predetermined detection area including the guide line (34) of the traveling surface (18). The self-traveling body (30) is provided with the line width inspecting section (136) for judging the line width of the detected guide line (34) according to the output of the line sensor (50).

Description

明 細 書  Specification
ゲーム機及びこれに用いる自走体  Game machine and self-propelled body used therefor
技術分野  Technical field
[0001] 本発明は、走行面に置かれた自走体を自走させて競馬等のレースゲームを実行す るゲーム機に関する。  The present invention relates to a game machine that executes a racing game such as a horse race by causing a self-propelled body placed on a running surface to self-run.
背景技術  Background art
[0002] この種の競馬ゲーム機として、 自走体の左右方向に並べられた受光素子を利用し て走行面上の誘導線に対する自走体のずれ量を検出し、その検出されたずれ量に 基づいて自走体の幅方向に関する位置を制御するゲーム機が知られている(例えば 特許文献 1参照)。  [0002] As this type of horse racing game machine, the amount of deviation of the self-propelled body relative to the guide line on the running surface is detected using light receiving elements arranged in the left-right direction of the self-propelled body, and the amount of deviation detected A game machine that controls the position of the self-propelled body in the width direction based on the above is known (see, for example, Patent Document 1).
特許文献 1 :特開 2003— 33567号公報  Patent Document 1: Japanese Patent Laid-Open No. 2003-33567
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] 上述した従来のゲーム機では、走行面の汚れ、異物の付着、誘導線の剥がれ等に よって誘導線の線幅が本来の線幅よりも増加又は減少してレ、ると、誘導線の幅方向 に関する自走体の位置に関して検出誤差が生じ、それにより自走体の位置の制御精 度が低下し、あるいは自走体が正常に走行できない、といった不都合が生じるおそ れがある。走行面の汚れの蓄積等により誘導線に類似の線状痕、ドット等が形成され た場合に、これを誤って誘導線として認識して走行制御にエラーが生じるおそれもあ る。ところが、従来のゲーム機には走行面を検査する手段が存在しないため、ゲーム 機の管理者が目視により走行面を検査して清掃等の管理作業を行う必要があり管理 者の負担が大きい。走行面の検查を怠ることによって上述した不都合を招く可能性も 小さくない。 [0003] In the above-described conventional game machine, if the line width of the guide line increases or decreases from the original line width due to dirt on the running surface, adhesion of foreign matter, peeling of the guide line, etc. A detection error may occur with respect to the position of the self-propelled vehicle in the width direction of the line, which may lead to inconvenience that the control accuracy of the position of the self-propelled vehicle decreases or the self-propelled vehicle cannot travel normally. If linear traces or dots similar to the guide line are formed due to accumulation of dirt on the running surface, this may be mistakenly recognized as a guide line and an error may occur in travel control. However, since there is no means for inspecting the running surface in the conventional game machine, it is necessary for the administrator of the game machine to visually inspect the running surface and perform management work such as cleaning, which places a heavy burden on the administrator. The possibility of incurring the above-mentioned inconvenience due to neglecting the running surface is not small.
[0004] そこで、本発明は自走体の誘導線検出機能を利用して走行面の管理に関する負 担を軽減し、走行面の適切な管理に資することが可能なゲーム機及びこれに用いる 自走体を提供することを目的とする。  [0004] Therefore, the present invention reduces the burden on the management of the running surface by using the guide line detection function of the self-propelled body, and a game machine that can contribute to the appropriate management of the running surface and The purpose is to provide a running body.
課題を解決するための手段 [0005] 本発明のゲーム機は、誘導線が付された走行面を有するゲーム機本体と、前記走 行面を自走可能な自走体とを具備し、前記自走体には、前記誘導線を検出する誘 導線検出手段と、前記誘導線検出手段の検出結果に基づいて自走体の走行を制御 する走行制御手段とが設けられたゲーム機において、前記誘導線検出手段として、 前記自走体の左右方向に並べられた受光素子群により前記走行面の前記誘導線を 含む所定の検出領域における輝度分布を検出するラインセンサが設けられ、前記自 走体には、検出された誘導線の線幅を前記ラインセンサの出力に基づいて判別する 線幅検査手段がさらに設けられることにより、上述した課題を解決する。 Means for solving the problem [0005] A game machine of the present invention includes a game machine body having a running surface with a guide line, and a self-running body capable of running on the running surface. In the game machine provided with the guiding wire detecting means for detecting the guiding wire and the traveling control means for controlling the traveling of the self-running body based on the detection result of the guiding wire detecting means, A line sensor for detecting a luminance distribution in a predetermined detection area including the guide line on the running surface is provided by a light receiving element group arranged in the left-right direction of the self-running body, and the detected guidance is provided on the self-running body. A line width inspection means for determining the line width of the line based on the output of the line sensor is further provided to solve the above-described problem.
[0006] また、本発明の自走体は、ゲーム機の走行面に付された誘導線を検出する誘導線 検出手段と、前記誘導線検出手段の検出結果に基づいて前記走行面上における走 行を制御する走行制御手段とが設けられた自走体であって、前記誘導線検出手段と して、前記自走体の左右方向に並べられた受光素子群により前記走行面の前記誘 導線を含む所定の検出領域における輝度分布を検出するラインセンサが設けられる とともに、検出された誘導線の線幅を前記ラインセンサの出力に基づいて判別する線 幅検査手段をさらに備えることにより、上述した課題を解決する。 [0006] In addition, the self-propelled body of the present invention includes a guide line detection unit that detects a guide line attached to a running surface of a game machine, and a running on the running surface based on a detection result of the guide line detection unit. A self-propelled body provided with a travel control means for controlling a row, wherein the guide wire on the travel surface is formed by a light receiving element group arranged in the left-right direction of the self-propelled body as the guide line detecting means. A line sensor that detects a luminance distribution in a predetermined detection area including the line sensor, and further includes a line width inspection unit that determines the line width of the detected guide line based on the output of the line sensor. Solve the problem.
[0007] 本発明においては、 自走体の走行制御手段が、誘導線検出手段としてのラインセ ンサが検出した輝度分布力 誘導線に対応する輝度範囲を特定することによって検 出領域における誘導線を特定し、その特定した誘導線の検出領域における位置を 手掛かりとして誘導線の幅方向における自走体の位置を判別し、その判別結果を参 照して自走体の走行を制御する。ラインセンサは多数の受光素子を列状に並べて構 成されているので、誘導線をその線幅に比して微細なピッチで検出して誘導線の線 幅を高い分解能で判別することができる。 自走体が誘導線の線幅を判別しているの で、その判別結果を走行面の検査に利用することにより、走行面の管理に関する負 担を軽減することができる。なお、本発明において、線幅検查手段による線幅の判別 対象は本来の誘導線のみに限定されない。汚れや異物等によって形成された線状 痕、ドット等も「検出された誘導線」の範疇に含まれる。このような汚れ等に起因する 誘導線の類似物に関しても線幅判別を適用することにより、その発生、あるいは存在 を検知することができる。 [0008] 本発明の一形態において、前記線幅検査手段は、判別した線幅の適否をさらに判 別してもよい。線幅の適否までを自走体が判別することにより、線幅に関する異常の 発生を容易に把握することができる。 [0007] In the present invention, the traveling control means of the self-propelled vehicle specifies the luminance range corresponding to the luminance distribution force induction line detected by the line sensor as the induction line detection means, thereby generating the guide line in the detection region. The position of the self-propelled vehicle in the width direction of the guide wire is determined using the position of the identified guide line in the detection area as a clue, and the traveling of the self-propelled vehicle is controlled with reference to the determination result. Since the line sensor is composed of a large number of light receiving elements arranged in a line, the guide line can be detected with a fine pitch compared to the line width and the line width of the guide line can be determined with high resolution. . Since the self-propelled vehicle determines the line width of the guide line, the burden on the management of the traveling surface can be reduced by using the determination result for the inspection of the traveling surface. In the present invention, the line width discrimination target by the line width inspection means is not limited to the original guide line. Line marks, dots, etc. formed by dirt or foreign matter are also included in the category of “detected guide lines”. The occurrence or existence of the similarities of the guide line caused by such contamination can be detected by applying line width discrimination. In one embodiment of the present invention, the line width inspection means may further determine whether the determined line width is appropriate. By determining whether the line width is appropriate or not, it is possible to easily grasp the occurrence of an abnormality related to the line width.
[0009] 本発明の一形態において、前記自走体には、前記誘導線の長手方向に対する前 記自走体の方向のずれを特定するために必要な情報を検出する方向検出手段が設 けられ、前記走行制御手段は、前記方向検出手段の検出結果に基づいて前記誘導 線の長手方向に対する前記自走体の方向のずれを判別し、その判別結果をさらに 参照して前記自走体の走行を制御するように構成され、前記線幅検查手段は、前記 誘導線検出手段の検出結果と前記走行制御手段が判別した方向のずれとに基づい て前記線幅を判別してもよレ、。  [0009] In one embodiment of the present invention, the self-propelled body is provided with direction detecting means for detecting information necessary for specifying the deviation of the direction of the self-propelled body with respect to the longitudinal direction of the guide line. The travel control means determines a shift in the direction of the self-propelled body with respect to the longitudinal direction of the guide line based on the detection result of the direction detecting means, and further refers to the determination result to The line width detecting means may determine the line width based on the detection result of the guide line detecting means and the deviation of the direction determined by the traveling control means. ,.
[0010] ラインセンサが誘導線に対して斜めに傾いている場合、ラインセンサの検出領域 において誘導線に対応した輝度範囲の幅もラインセンサの傾きに応じて増加又は減 少する。このため、輝度範囲の幅のみに基づいて誘導線の線幅を判別した場合は、 その判別した線幅にラインセンサの傾きに応じた誤差が含まれることがある。一方、 誘導線の長手方向に対する自走体の方向のずれを判別してその判別結果を走行制 御に参照している場合には、その方向のずれを利用して、ラインセンサが誘導線の 長手方向に対してどの程度傾いている力も把握できる。従って、走行制御で参照す る方向のずれを線幅の判別においても参照すれば、線幅の判別用に新たなセンサ 類を設けることなぐ誘導線に対するラインセンサの傾きに対応した線幅の誤差を排 除し、線幅をより正確に判別することができる。 [0010] When the line sensor is inclined with respect to the guide line, the width of the luminance range corresponding to the guide line in the detection region of the line sensor is also increased or decreased according to the tilt of the line sensor. For this reason, when the line width of the guide line is determined based only on the width of the luminance range, an error corresponding to the inclination of the line sensor may be included in the determined line width. On the other hand, when the deviation of the direction of the self-propelled body with respect to the longitudinal direction of the guide line is discriminated and the discrimination result is referred to the running control, the line sensor uses the deviation of the direction to detect the direction of the guide line. It is possible to grasp how much the force is inclined with respect to the longitudinal direction. Therefore, if the deviation in the direction referred to in the travel control is also referred to in the line width determination, an error in the line width corresponding to the inclination of the line sensor with respect to the guide line without providing new sensors for determining the line width. The line width can be determined more accurately.
[0011] 本発明の一形態において、前記自走体には、前記誘導線の長手方向に関する前 記自走体の位置を特定するために必要な情報を検出する長手方向位置検出手段が 設けられ、前記走行制御手段は、前記長手方向位置検出手段及び前記ラインセン サのそれぞれの検出結果に基づいて前記走行面における前記自走体の位置を判 別し、その判別結果に基づいて前記自走体の走行を制御するように構成され、前記 線幅検査手段は、前記線幅に関する判別結果と前記走行制御手段が判別した自走 体の位置とを対応付けた検査データを作成してもよい。  [0011] In one embodiment of the present invention, the self-propelled body is provided with a longitudinal direction position detecting means for detecting information necessary for specifying the position of the self-propelled body with respect to the longitudinal direction of the guide wire. The traveling control means determines the position of the self-propelled body on the traveling surface based on the detection results of the longitudinal position detecting means and the line sensor, and based on the determination result, the self-propelled body. The line width inspection means may create inspection data in which the determination result relating to the line width and the position of the self-propelled body determined by the travel control means are associated with each other.
[0012] この形態によれば、検查データを参照することにより、誘導線の線幅、あるいは線幅 の適否を走行面上の位置と対応付けて把握することができ、それにより走行面をさら に容易に管理することができる。例えば、走行面上で特に検査を要する位置を検査 データから容易に特定することができる。 自走体が走行制御のために判別している誘 導線の長手方向及び幅方向における位置を利用して検查データを作成することがで きるので、検查データの作成のために新たなセンサ類を設ける必要がない。作成され た検査データは適宜の手段を介して管理者等が参照することができる。 自走体自身 に検査データの表示手段を設けてもよい。 自走体に装着された記憶媒体に検查デ ータを保存し、必要なときに記憶媒体を自走体から取り外して検查データを読み出す ようにしてもよい。 [0012] According to this aspect, by referring to the examination data, the line width of the guide line, or the line width It is possible to grasp the suitability of the vehicle in association with the position on the traveling surface, thereby making it easier to manage the traveling surface. For example, it is possible to easily identify the position requiring inspection on the running surface from the inspection data. Since inspection data can be created using the position in the longitudinal and width directions of the lead wire that the self-propelled body has identified for travel control, a new sensor is used to create the inspection data. There is no need to provide a kind. The created inspection data can be referred to by an administrator through appropriate means. The self-propelled body itself may be provided with a means for displaying inspection data. The inspection data may be stored in a storage medium attached to the self-propelled body, and when necessary, the storage medium may be detached from the self-propelled body and the inspection data may be read out.
[0013] さらに、検査データを自走体の外部に出力するデータ出力手段が自走体に設けら れてもよレ、。これにより、 自走体の外部で検查データを受け取って、そのデータに基 づく走行面の確認を容易に行える。この場合、ゲーム機は、前記自走体から出力さ れる検査データに基づいて、前記ゲーム機の管理者に前記走行面の状態を通知す るための所定の処理を実行する走行面管理装置をさらに備えてもよい。ゲーム機の 管理者がゲーム機の設置箇所にて走行面を容易に確認することができる。  [0013] Furthermore, the self-propelled body may be provided with data output means for outputting the inspection data to the outside of the self-propelled body. This makes it easy to receive inspection data outside the vehicle and to check the running surface based on that data. In this case, the game machine has a running surface management device that executes predetermined processing for notifying the game machine administrator of the state of the running surface based on the inspection data output from the self-running body. Further, it may be provided. The game machine administrator can easily check the running surface at the game machine installation location.
[0014] 前記走行面管理装置は、前記所定の処理として、前記自走体から出力される検査 データに基づいて、前記線幅が不適当となっている走行面上の位置及び当該位置 の検出回数を特定するためのデータを作成して該データを蓄積し、蓄積されたデー タに基づレ、て前記線幅が不適当と判別された位置及びその位置の検出回数を示す 走行面チェック画面を表示してもよい。この形態によれば、ゲーム機の管理者が走行 面チェック画面を介して線幅が不適当な位置及びその位置に関する検出回数を把 握して、検査、清掃等の必要性を走行面上の位置と対応付けて判断することができ る。  [0014] The traveling surface management device detects the position on the traveling surface where the line width is inappropriate and the position based on the inspection data output from the self-propelled body as the predetermined process. Creates data for specifying the number of times and accumulates the data. Based on the accumulated data, the surface where the line width is determined to be inappropriate and the number of times the position is detected is checked. A screen may be displayed. According to this form, the administrator of the game machine grasps the position where the line width is inappropriate and the number of detections related to the position via the traveling surface check screen, and confirms the necessity for inspection, cleaning, etc. on the traveling surface. It can be determined in association with the position.
[0015] 前記走行面管理装置は、前記所定の処理として、前記自走体から出力される検查 データに基づいて、前記線幅が不適当となっている走行面上の位置又は当該位置 の検出回数の少なくともいずれか一方を特定するためのデータを作成して該データ を蓄積し、蓄積されたデータ量が所定の許容量を超えた場合に前記ゲーム機の管 理者に対して所定の警告を行ってもよい。この形態によれば、 自走体から送られる検 查データに基づく走行面の確認をゲーム機の管理者に促すことができる。 [0015] The traveling surface management device, as the predetermined processing, based on the inspection data output from the self-propelled body, the position on the traveling surface where the line width is inappropriate or the position of the position Data for identifying at least one of the number of detection times is created and accumulated, and when the accumulated data amount exceeds a predetermined allowable amount, a predetermined amount is given to the administrator of the game machine. A warning may be given. According to this form, the test sent from the self-propelled body It is possible to prompt the administrator of the game machine to check the running surface based on the 查 data.
[0016] 走行面管理装置を設ける形態において、前記自走体の前記走行制御手段に対し て当該自走体の走行に関する指示を所定の通信手段を介して送信して所定のゲー ムを実行させるゲーム制御装置を備えてレ、る場合には、そのゲーム制御装置を前記 走行面管理装置として機能させてもよい。これにより、 自走体に走行の指示を与える ための構成を利用して自走体からゲーム制御装置に検查データを転送し、そのグー ム制御装置を利用して走行面の状態を把握することができる。  [0016] In the embodiment in which the traveling surface management device is provided, an instruction related to traveling of the self-propelled body is transmitted to the traveling control means of the self-propelled body via predetermined communication means to execute a predetermined game. When a game control device is provided, the game control device may function as the running surface management device. As a result, using the configuration for giving a driving instruction to the self-propelled vehicle, the inspection data is transferred from the self-propelled vehicle to the game control device, and the state of the running surface is grasped using the game control device. be able to.
[0017] 前記ゲーム機が当該ゲーム機を管理するためのサーバと所定のネットワークを介し て接続されてレ、る場合にぉレ、ては、前記サーバを前記走行面管理装置として機能さ せてもよレ、。これにより、サーバの管理者が走行面の状態を把握することが可能となり 、そのサーバの管理者からゲーム機が設置された店舗等に対して走行面の状態に 関する情報を提供し、走行面の検査、清掃等を促すことができる。  [0017] When the game machine is connected to a server for managing the game machine via a predetermined network, the server is caused to function as the running surface management device. Moyore. As a result, the server administrator can grasp the state of the running surface, and the server administrator provides information regarding the running surface to the store where the game machine is installed. Inspection, cleaning, etc. can be encouraged.
発明の効果  The invention's effect
[0018] 以上に説明したように、本発明によれば、走行面に付された誘導線を検出して自走 体の走行を制御するための構成を利用して誘導線の線幅あるいはその適否を判別 することにより、走行面の汚れ、異物の付着、誘導線の剥がれといった異常の発生を 検出することが可能となる。従って、ゲーム機の管理者が走行面を管理する際の負 担を軽減し、走行面の適切な管理に資することが可能なゲーム機及び自走体を提供 すること力 Sできる。  [0018] As described above, according to the present invention, the width of the guide wire or the width of the guide wire is detected using the configuration for detecting the guide wire attached to the running surface and controlling the running of the self-propelled vehicle. By determining suitability, it is possible to detect the occurrence of abnormalities such as dirt on the running surface, adhesion of foreign matter, and peeling of the guide wire. Therefore, it is possible to reduce the burden of the game machine manager when managing the running surface, and to provide a game machine and a self-propelled body that can contribute to appropriate management of the running surface.
図面の簡単な説明  Brief Description of Drawings
[0019] [図 1]本発明の一形態に係るゲーム機が組み込まれたゲームシステムの概略構成を 示す図。  FIG. 1 is a diagram showing a schematic configuration of a game system in which a game machine according to one embodiment of the present invention is incorporated.
[図 2]ステージが上昇しているときのフィールドユニットの斜視図。  FIG. 2 is a perspective view of the field unit when the stage is raised.
[図 3]ステージが上昇しているときのフィールドユニットの側面図。  [Fig. 3] A side view of the field unit when the stage is raised.
[図 4]ステージが下降しているときのフィールドユニットの斜視図。  FIG. 4 is a perspective view of the field unit when the stage is lowered.
[図 5]ステージが下降しているときのフィールドユニットの側面図。  FIG. 5 is a side view of the field unit when the stage is lowered.
[図 6]フィールドユニットの分解斜視図。  FIG. 6 is an exploded perspective view of the field unit.
[図 7]図 2の VII部を下から見上げた状態を示す斜視図。 [図 8]フィールドユニットに設けられた天板の断面、並びにそれらの走行面を走行する 自走車及び模型を示す図。 FIG. 7 is a perspective view showing a state where the VII portion of FIG. 2 is viewed from below. FIG. 8 is a view showing a cross section of the top plate provided in the field unit, and a self-propelled vehicle and a model that travel on those traveling surfaces.
園 9]下段走行面上に設けられた誘導線及び磁気計測線を示す図。 [9] A diagram showing a guide line and a magnetic measurement line provided on the lower running surface.
[図 10]下段走行面に設けられた周回路の平面図。  FIG. 10 is a plan view of a peripheral circuit provided on the lower running surface.
[図 11]周回路のコーナー区間の拡大図。  [Fig. 11] An enlarged view of the corner section of the circuit.
[図 12]自走体の内部構造を示す図。  FIG. 12 is a diagram showing the internal structure of the self-propelled body.
[図 13]自走体の底面図。  [Fig. 13] Bottom view of the self-propelled body.
[図 14]図 13の XIV— XIV線に沿った断面図。  FIG. 14 is a sectional view taken along line XIV—XIV in FIG.
[図 15]ラインセンサの拡大正面図。  FIG. 15 is an enlarged front view of the line sensor.
[図 16]ラインセンサの拡大底面図。  [FIG. 16] An enlarged bottom view of the line sensor.
[図 17A]自走体が直線区間を走行している場合の磁気センサの出力と磁気計測線と の関係を示す図であって、磁気センサと磁気計測線との関係を示す図。  FIG. 17A is a diagram showing the relationship between the output of the magnetic sensor and the magnetic measurement line when the self-propelled body is traveling in a straight section, and shows the relationship between the magnetic sensor and the magnetic measurement line.
[図 17B]自走体が直線区間を走行している場合の磁気センサの出力と磁気計測線と の関係を示す図であって、磁気センサの各検出部の出力を示す図。  FIG. 17B is a diagram showing the relationship between the output of the magnetic sensor and the magnetic measurement line when the self-propelled body is traveling in a straight section, and shows the output of each detection unit of the magnetic sensor.
園 18A]自走体がコーナー区間の最内周以外のレーンを走行している場合の磁気セ ンサの出力と磁気計測線との関係を示す図であって、磁気センサと磁気計測線との 関係を示す図。 18A] A diagram showing the relationship between the magnetic sensor output and the magnetic measurement line when the self-propelled vehicle is traveling in a lane other than the innermost circumference of the corner section. The figure which shows a relationship.
[図 18B]自走体がコーナー区間の最内周以外のレーンを走行している場合の磁気セ ンサの出力と磁気計測線との関係を示す図であって、磁気センサの各検出部の出力 を示す図。  FIG. 18B is a diagram showing the relationship between the output of the magnetic sensor and the magnetic measurement line when the self-propelled vehicle is traveling on a lane other than the innermost circumference of the corner section, and shows the relationship between each detection unit of the magnetic sensor. The figure which shows output.
園 19]ゲーム機の制御系の概略構成を示す図。 19] A diagram showing a schematic configuration of a game machine control system.
[図 20]自走車に設けられた制御系を示すブロック図。 FIG. 20 is a block diagram showing a control system provided in the self-propelled vehicle.
園 21]自走車の進度、横断方向の位置及び方向に関する制御の概念を示す図。 [Sen 21] A diagram showing the concept of control related to the progress of the self-propelled vehicle, the position and direction in the transverse direction.
[図 22]自走車制御装置の機能ブロック図。 FIG. 22 is a functional block diagram of the self-propelled vehicle control device.
園 23]進度管理部における進度管理の手順を示すフローチャート。 [Sen23] A flowchart showing the progress management procedure in the progress management section.
園 24]目標速度演算部における目標速度の演算手順を示すフローチャート。 FIG. 24] A flowchart showing a target speed calculation procedure in the target speed calculation unit.
[図 25]反転カウント数、反転基準時間、残り時間及び進度不足量との関係を示す図。 園 26]方向管理部における方向管理の手順を示すフローチャート。 [図 27]方向補正量演算部における方向補正量の演算手順を示すフローチャート。 FIG. 25 is a diagram showing the relationship between the reversal count, the reversal reference time, the remaining time, and the insufficient progress amount. 26] A flow chart showing the procedure of direction management in the direction management unit. FIG. 27 is a flowchart showing a calculation procedure of a direction correction amount in a direction correction amount calculation unit.
[図 28]レーン管理部におけるレーン管理の手順を示すフローチャート。  FIG. 28 is a flowchart showing a lane management procedure in the lane management unit.
[図 29]誘導線に対するラインセンサの位置ズのずれとラインセンサの出力との対応関 係を示す図。  FIG. 29 is a diagram showing a correspondence relationship between the shift of the position of the line sensor relative to the guide line and the output of the line sensor.
[図 30]レーン補正量演算部におけるレーン補正量の演算手順を示すフローチャート  FIG. 30 is a flowchart showing the calculation procedure of the lane correction amount in the lane correction amount calculation unit.
[図 31]ライン幅検查部におけるライン幅の検查手順を示すフローチャート。 FIG. 31 is a flowchart showing a line width inspection procedure in a line width inspection unit.
[図 32]自走車制御装置力 メイン制御装置へライン幅検査データを送信する手順を 示すフローチャート。  FIG. 32 is a flowchart showing a procedure for transmitting line width inspection data to the main control device.
[図 33]メイン制御装置におけるライン幅検查データ管理の手順を示すフローチャート  FIG. 33 is a flowchart showing a procedure for managing line width verification data in the main control unit.
[図 34]メイン制御装置における走行面チヱック管理の手順を示すフローチャート。 FIG. 34 is a flowchart showing a procedure of running surface check management in the main control device.
[図 35]走行面チェック画面の一例を示す図。  FIG. 35 is a diagram showing an example of a running surface check screen.
[図 36]メイン制御装置におけるメンテナンスモード時の処理を示すフローチャート。 発明を実施するための最良の形態  FIG. 36 is a flowchart showing processing in a maintenance mode in the main control device. BEST MODE FOR CARRYING OUT THE INVENTION
[0020] 図 1は本発明の一形態に係るゲーム機が組み込まれたゲームシステムの概略構成 を示す図である。ゲームシステム 1は競馬ゲームを実行するためのものであって、通 信ネットワーク 6を介して相互に接続された、複数のゲーム機 2A、 2B、 2Cと、センタ サーバ 3と、保守サーバ 4と、保守クライアント 5とを備えている。ゲームシステム 1にお けるゲーム機 2A〜2Cのそれぞれは同じ構成である。従って、以下、特に区別する必 要のない時はゲーム機 2という。なお、図 1には 3台のゲーム機 2が示されているが、 ゲームシステム 1に含まれるゲーム機 2の台数はこれに限定されなレ、。  FIG. 1 is a diagram showing a schematic configuration of a game system in which a game machine according to one embodiment of the present invention is incorporated. The game system 1 is for executing a horse racing game, and includes a plurality of game machines 2A, 2B, 2C, a center server 3, a maintenance server 4, and the like connected to each other via a communication network 6. Maintenance client 5 is provided. Each of the game machines 2A to 2C in the game system 1 has the same configuration. Therefore, hereinafter, when there is no need to distinguish between them, it is referred to as a game machine 2. Although FIG. 1 shows three game machines 2, the number of game machines 2 included in the game system 1 is not limited to this.
[0021] センタサーバ 3は、ゲーム機 2の要求に応じて、主にゲームに関するデータの処理 を行う。保守サーバ 4は、 自己の記憶部である保守記憶部 4aに、ゲームシステム 1の エラーログ情報等のメンテナンスに関するデータを記憶して管理する。保守クライァ ント 5は、例えば、ゲームシステム 1の保守を集中管理するメンテナンスサービス部に 設けられ、保守記憶部 4aに記憶されたデータを利用してゲームシステム 1のメンテナ ンスに関する分析や解析を行う。通信ネットワーク 6には一例としてインターネットが使 用される。 The center server 3 mainly processes data relating to the game in response to a request from the game machine 2. The maintenance server 4 stores and manages data related to maintenance such as error log information of the game system 1 in the maintenance storage unit 4a which is its own storage unit. The maintenance client 5 is provided, for example, in a maintenance service unit that centrally manages the maintenance of the game system 1 and performs analysis and analysis related to the maintenance of the game system 1 using data stored in the maintenance storage unit 4a. The Internet is used as an example for communication network 6. Used.
[0022] ゲーム機 2は、店舗に設置され、経済的価値と引き替えにゲームをプレイさせる商 用ゲーム機として構成されている。ゲーム機 2の筐体 (ゲーム機本体) 10は、フィール ドユニット 11と、そのフィールドユニット 11を取り囲むように配置された複数のステー シヨンユニット 12· · · 12と、フィールドユニット 11の一端に配置されたモニタユニット 13 とを備えている。フィーノレドユニット 11は、図 8に示す自走車(自走体) 30及び競走馬 の模型 31のそれぞれに対する走行面 18、 19を提供する。フィールドユニット 11上に は複数の自走車 30及び模型 31が設置され、それらが競うことによって競馬ゲームが 実現される。ステーションユニット 12は競馬ゲームに関するプレイヤーの各種の操作 を受け付けるとともに、プレイヤーに対する遊技価値の払い出し等を実行する。モニ タユニット 13はゲーム情報等を表示するメインモニタ 13aを備えている。  The game machine 2 is installed in a store and is configured as a commercial game machine that plays a game in exchange for economic value. The game machine 2 housing (game machine body) 10 is arranged at one end of the field unit 11 and a plurality of station units 12... 12 arranged so as to surround the field unit 11. The monitor unit 13 is provided. The Fino Red unit 11 provides running surfaces 18 and 19 for the self-propelled vehicle (self-propelled body) 30 and the racehorse model 31 shown in FIG. A plurality of self-propelled vehicles 30 and models 31 are installed on the field unit 11, and a horse racing game is realized by competing them. The station unit 12 accepts various operations of the player regarding the horse racing game, and executes a game value payout to the player. The monitor unit 13 includes a main monitor 13a for displaying game information and the like.
[0023] 図 2はフィールドユニット 11の斜視図、図 3はその側面図である。これらの図に示す ように、フィールドユニット 11は、下部構造体としてのベース 14と、そのベース 14の上 部に被せられる上部構造体としてのステージ 15とを備えている。ベース 14及びステ ージ 15はいずれも鋼材を組み合わせたフレーム構造である。ベース 14及びステー ジ 15の上面にはそれぞれ天板 16、 17力 S取り付けられてレ、る。ベース 14の天板 16の 上面には自走車 30が走行する下段走行面 18が設けられている。一方、ステージ 15 の天板 17の上面には模型 31が走行する上段走行面 19が設けられ、天板 17の下面 には自走車 30に対する給電面 20が設けられている。  FIG. 2 is a perspective view of the field unit 11, and FIG. 3 is a side view thereof. As shown in these drawings, the field unit 11 includes a base 14 as a lower structure and a stage 15 as an upper structure that covers the upper portion of the base 14. Base 14 and stage 15 are both frame structures that combine steel materials. The top plate 16 and 17 force S are attached to the upper surfaces of the base 14 and the stage 15, respectively. On the top surface of the top plate 16 of the base 14, a lower traveling surface 18 on which the self-propelled vehicle 30 travels is provided. On the other hand, an upper traveling surface 19 on which the model 31 travels is provided on the upper surface of the top plate 17 of the stage 15, and a power feeding surface 20 for the self-propelled vehicle 30 is provided on the lower surface of the top plate 17.
[0024] ステージ 15はベース 14に対して昇降自在に設けられている。図 2及び図 3はステ ージ 15が上昇した状態を示している。ステージ 15が下降した状態を図 4及び図 5に 示す。なお、図 4は図 2に対応する斜視図、図 5は図 3に対応する側面図である。ステ ージ 15の昇降範囲は次の通りである。図 5に示すように、ステージ 15がベース 14の 受け部 14aに接するまで下降した状態で下段走行面 18と給電面 20との間にはスぺ ース SPが空レヽてレ、る。このときのスペース SPの高さ Hd (図 5参照)は自走車 30を収 容するために適した値となる。一方、ステージ 15が上昇した場合のスペース SPの高 さ Hu (図 3参照)は、そのスペース SPに作業者が少なくともその上半身を入れること ができる程度まで拡大される。 目安として、高さ Huは 400mm以上確保するとよい。 なお、フィールドユニット 11の搬入及び搬出の便宜のため、図 6に示すようにベース 1 4及びステージ 15はそれぞれ前後方向に 3つのサブユニット 14A〜14C、 15A〜15 Cに分割可能である。ベース 14の天板 16はサブユニット 14A〜14Cに合わせて 3分 害 |Jされている。サブユニット 14A〜14Cは例えばボルト等の連結手段によって互いに 接合される。サブユニット 15A〜 15Cにつレ、ても同様である。 The stage 15 is provided so as to be movable up and down with respect to the base 14. Figures 2 and 3 show the stage 15 raised. Figures 4 and 5 show the stage 15 lowered. 4 is a perspective view corresponding to FIG. 2, and FIG. 5 is a side view corresponding to FIG. The range of stage 15 is as follows. As shown in FIG. 5, with the stage 15 lowered until it comes into contact with the receiving portion 14a of the base 14, the space SP is empty between the lower running surface 18 and the power feeding surface 20. The height Hd of the space SP at this time (see Fig. 5) is a value suitable for accommodating the self-propelled vehicle 30. On the other hand, the height Hu (see FIG. 3) of the space SP when the stage 15 is raised is expanded to such an extent that an operator can put at least the upper body into the space SP. As a guideline, the height Hu should be 400mm or more. For convenience of loading and unloading of the field unit 11, the base 14 and the stage 15 can be divided into three subunits 14A to 14C and 15A to 15C in the front-rear direction as shown in FIG. The top plate 16 of the base 14 is injured 3 times according to the subunits 14A-14C. The subunits 14A to 14C are joined to each other by connecting means such as bolts. The same applies to the subunits 15A to 15C.
[0025] 図 2及び図 3に示すように、フィールドユニット 11にはステージ 15を上下方向に駆 動するためのステージ駆動装置 (昇降駆動装置) 21が設けられている。ステージ駆 動装置 21は、フィールドユニット 11の周囲に適宜の間隔を空けて配置された複数本 の油圧シリンダ(ァクチユエータ) 22と、各油圧シリンダ 22に油圧を供給する動力源と しての油圧発生装置 23とを備えてレ、る。油圧シリンダ 22はピストンロッド 22aを上方 に向けるようにして設けられている。油圧シリンダ 22の本数はサブユニット 14A〜14 Cのそれぞれの両側に 1本ずつ、合計で 6本が設けられている。但し、その本数はこ れに限定されない。サブユニット 14A〜14Cのそれぞれに対して少なくとも 1本ずつ 油圧シリンダ 22が配置されていればよい。図 7に示すように、油圧シリンダ 22のシリン ダチューブ 22bはベース 14に固定され、ピストンロッド 22aの先端はアジヤスタ装置 2 4を介してステージ 15に連結されている。従って、油圧シリンダ 22に油圧を供給して ピストンロッド 22aを伸長させることによりステージ 15が上昇する。  As shown in FIGS. 2 and 3, the field unit 11 is provided with a stage drive device (lifting drive device) 21 for driving the stage 15 in the vertical direction. The stage drive device 21 generates a plurality of hydraulic cylinders (actuators) 22 arranged around the field unit 11 at appropriate intervals, and generates hydraulic pressure as a power source for supplying hydraulic pressure to each hydraulic cylinder 22. It is equipped with device 23. The hydraulic cylinder 22 is provided so that the piston rod 22a faces upward. There are six hydraulic cylinders 22 in total, one on each side of each of the subunits 14A to 14C. However, the number is not limited to this. It is sufficient that at least one hydraulic cylinder 22 is arranged for each of the subunits 14A to 14C. As shown in FIG. 7, the cylinder tube 22b of the hydraulic cylinder 22 is fixed to the base 14, and the tip of the piston rod 22a is connected to the stage 15 via the adjuster device 24. Accordingly, the stage 15 is raised by supplying hydraulic pressure to the hydraulic cylinder 22 and extending the piston rod 22a.
[0026] アジヤスタ装置 24はピストンロッド 22aの先端に固定されるアジヤスタ 24aと、ステー ジ 15に固定されるアジヤスタ受け 24bとを備えている。アジヤスタ 24aはアジヤスタ受 け 24bに対して固定されることなく幾らか遊びを伴ってアジヤスタ受け 24bに挿入され ている。従って、油圧シリンダ 22の動作時におけるピストンロッド 22aの芯ずれが許容 され、複数本の油圧シリンダ 22を互いの干渉を受けることなく動作させてステージ 15 を円滑に昇降させることができる。油圧発生装置 23はゲーム機 2に供給される電力 で駆動されて油圧シリンダ 22に適した油圧を発生する。油圧発生装置 23の動作は ゲーム機 2の全体動作を管理するためのメイン制御装置 100 (図 19参照)によって制 御される。  [0026] The adjuster device 24 includes an adjuster 24a fixed to the tip of the piston rod 22a, and an adjuster receiver 24b fixed to the stage 15. The agiyasta 24a is inserted into the agiyasta receiver 24b with some play without being fixed to the agiyasta receiver 24b. Accordingly, misalignment of the piston rod 22a during the operation of the hydraulic cylinder 22 is allowed, and the stage 15 can be raised and lowered smoothly by operating the plurality of hydraulic cylinders 22 without mutual interference. The hydraulic pressure generator 23 is driven by electric power supplied to the game machine 2 and generates a hydraulic pressure suitable for the hydraulic cylinder 22. The operation of the hydraulic pressure generator 23 is controlled by a main controller 100 (see FIG. 19) for managing the overall operation of the game machine 2.
[0027] 図 8は、天板 16、 17の断面と、それらの走行面 18、 19を走行する自走車 30及び 模型 31とを示す図である。ベース 14の天板 16は白色の樹脂板にて構成されており 、その上面の下段走行面 18にはラインシート 32が、下面には磁石(永久磁石) 33が それぞれ設けられている。図 9に示すように、ラインシート 32は自走車 30を誘導する ための複数本の誘導線 34を下段走行面 18上に形成するためのものである。誘導線 34は天板 16の地色(白)に対して可視光域でコントラストを有する色(一例として黒) に着色されている。誘導線 34の幅 Wgは誘導線 34の相互のピッチ(間隔) Pgの 1Z2 であり、一例として Wg = 6mm、 Pg = 12mmである。図 10に示すように誘導線 34は 周回路 35を形成するように設けられている。周回路 35は誘導線 34が互いに平行に 延びる直線区間 35aと、誘導線 34が半円状に湾曲するコーナー区間 35bとを繋ぎ合 わせて構成されている。直線区間 35a及びコーナー区間 35bのいずれにおいても誘 導線 34の幅 Wg及びピッチ PTgは一定である。コーナー区間 35bにおける誘導線 34 の曲率中心 CCは互いに一致する。 FIG. 8 is a view showing a cross section of the top plates 16 and 17 and a self-propelled vehicle 30 and a model 31 that travel on the traveling surfaces 18 and 19 thereof. The top plate 16 of the base 14 is composed of a white resin plate. A line sheet 32 is provided on the lower traveling surface 18 of the upper surface, and a magnet (permanent magnet) 33 is provided on the lower surface. As shown in FIG. 9, the line sheet 32 is for forming a plurality of guide lines 34 for guiding the self-propelled vehicle 30 on the lower travel surface 18. The guide wire 34 is colored in a color (for example, black) having a contrast in the visible light range with respect to the ground color (white) of the top plate 16. The width Wg of the guide wire 34 is 1Z2 of the mutual pitch (interval) Pg of the guide wire 34. For example, Wg = 6 mm and Pg = 12 mm. As shown in FIG. 10, the guide wire 34 is provided so as to form a peripheral circuit 35. The peripheral circuit 35 is configured by connecting a straight section 35a in which the guide lines 34 extend in parallel with each other and a corner section 35b in which the guide lines 34 are bent in a semicircular shape. In both the straight section 35a and the corner section 35b, the width Wg and the pitch PTg of the guide wire 34 are constant. The centers of curvature CC of the guide lines 34 in the corner section 35b coincide with each other.
[0028] ゲーム機 2において、誘導線 34は周回路 35のレーンを示す指標として位置付けら れる。例えば、最も内周の誘導線 34が第 1レーンに相当し、以下、外周に向って第 2 レーン、第 3レーン…といったように誘導線 34とレーン番号とが対応付けられる。ゲー ム機 2ではレーン番号によって周回路 35の横断方向(誘導線 34と直交する方向)に おける自走車 30の位置を識別する。 自走車 30は、メイン制御装置 100からレーンの 変更が指示されない限り、現在のレーンに対応する誘導線 34に沿って走行するよう に自らの動作を制御する。なお、図 10において誘導線 34の本数は 6本である力 そ の本数は競馬ゲームにて使用されるべき馬の頭数等に応じて適宜に変更してよい。  In the game machine 2, the guide wire 34 is positioned as an index indicating the lane of the peripheral circuit 35. For example, the innermost guide line 34 corresponds to the first lane, and the guide line 34 and the lane number are associated with each other, such as the second lane, the third lane,. In the game machine 2, the position of the self-propelled vehicle 30 in the transverse direction of the circuit 35 (direction orthogonal to the guide line 34) is identified by the lane number. The self-propelled vehicle 30 controls its own operation so as to travel along the guide line 34 corresponding to the current lane unless the main control device 100 instructs to change the lane. In FIG. 10, the number of guide lines 34 is six. The number of forces may be changed as appropriate according to the number of horses to be used in the horse racing game.
[0029] 図 9に示すように、磁石 33は S極と N極とが交互に並ぶように配列されている。直線 区間 35aにおいて磁石 33は横断方向に延びる帯状であり、コーナー区間 35bでは 外周に向って広がる扇形である。これにより、下段走行面 18には、 S極と N極との境 界位置において、周回路 35の横断方向に延びる多数の磁気計測線 36が周回路 35 の長手方向に沿って繰り返し形成される。磁気計測線 36は周回路 35における自走 車 30の位置又は進度を示す指標として利用される。すなわち、ゲーム機 2において は、周回路 35上の特定の位置 (例えば図 10における位置 Pref)を基準として、磁気 計測線 36の本数により周回路 35の長手方向の自走車 30の進度が管理される。例え ば、基準位置 Prefから 100本目の磁気計測線 36上に自走車 30が位置するとき、そ の自走車 30の進度は 100としてゲーム機 2で認識される。 As shown in FIG. 9, the magnets 33 are arranged so that the S poles and the N poles are alternately arranged. In the straight section 35a, the magnet 33 has a belt-like shape extending in the transverse direction, and in the corner section 35b, it has a fan shape extending toward the outer periphery. Thus, a large number of magnetic measurement lines 36 extending in the transverse direction of the peripheral circuit 35 are repeatedly formed along the longitudinal direction of the peripheral circuit 35 on the lower traveling surface 18 at the boundary position between the S pole and the N pole. . The magnetic measurement line 36 is used as an index indicating the position or progress of the vehicle 30 in the circuit 35. That is, in the game machine 2, the progress of the self-propelled vehicle 30 in the longitudinal direction of the peripheral circuit 35 is managed by the number of the magnetic measurement lines 36 based on a specific position on the peripheral circuit 35 (for example, the position Pref in FIG. 10). Is done. For example, when the self-propelled vehicle 30 is located on the 100th magnetic measurement line 36 from the reference position Pref, The progress of the self-propelled vehicle 30 is recognized by the game machine 2 as 100.
[0030] 直線区間 35aにおける磁気計測線 36のピッチ(間隔)は一定値 PTmに設定されて いる。以下、このピッチ PTmを基準ピッチと呼ぶ。図 11に示すように、コーナー区間 3 5bにおける磁気計測線 36のピッチは、最も内周の誘導線 34における磁気計測線 3 6のピッチ PTinが基準ピッチ PTmと一致するように設定されている。従って、コーナ 一区間 35bにおける磁気計測線 36のピッチは外周に向うほど拡大する。一例として 基準ピッチ PTmが 8mmのとき、最も外周の誘導線 34におけるピッチ (最大ピッチ) P Toutは略 30mmである。  [0030] The pitch (interval) of the magnetic measurement lines 36 in the straight section 35a is set to a constant value PTm. Hereinafter, this pitch PTm is referred to as a reference pitch. As shown in FIG. 11, the pitch of the magnetic measurement line 36 in the corner section 35b is set so that the pitch PTin of the magnetic measurement line 36 in the innermost induction line 34 matches the reference pitch PTm. Therefore, the pitch of the magnetic measurement lines 36 in the corner section 35b increases toward the outer periphery. As an example, when the reference pitch PTm is 8 mm, the pitch (maximum pitch) PTout on the outermost guide wire 34 is approximately 30 mm.
[0031] 図 10に示すように、周回路 35の適宜の位置(図示例では直線区間 35aの両端部 及びコーナー区間 35bの頂点位置)には絶対位置指示装置 37が設けられている。 図 8に示すように、絶対位置指示装置 37は天板 18の下面に配置された指示灯 38を 備えている。指示灯 38には赤外光を射出する赤外 LEDが用いられている。図 9に示 すように、指示灯 38は各誘導線 34の下面に 1つずつ設けられており、一つの指示装 置 37において指示灯 38は周回路 35の横断方向に並んでいる。指示灯 38の直上に おいて天板 18及び磁石 33のそれぞれには開口部が設けられている。また、誘導線 34は、少なくとも指示灯 38の直上において赤外光を透過する IRインクによって構成 されている。  As shown in FIG. 10, an absolute position indicating device 37 is provided at an appropriate position of the peripheral circuit 35 (in the illustrated example, both ends of the straight section 35a and the apex position of the corner section 35b). As shown in FIG. 8, the absolute position indicating device 37 includes an indicating lamp 38 disposed on the lower surface of the top plate 18. The indicator lamp 38 is an infrared LED that emits infrared light. As shown in FIG. 9, one indicator lamp 38 is provided on the lower surface of each guide wire 34, and the indicator lamps 38 are arranged in the transverse direction of the peripheral circuit 35 in one indicator device 37. An opening is provided in each of the top plate 18 and the magnet 33 just above the indicator lamp 38. The guide wire 34 is made of IR ink that transmits infrared light at least directly above the indicator lamp 38.
[0032] 周回路 35の長手方向における指示灯 38の位置は、磁気計測線 36同士の隙間に 設定されている。絶対位置指示装置 37の各指示灯 38から射出される赤外光には、 周回路 35上における指示灯 38の絶対位置及びレーン番号をそれぞれ示すデータ が重畳される。つまり、絶対位置指示装置 37は周回路 35における絶対位置及びレ ーンをそれぞれ示す情報を提供する手段として機能する。この場合、指示灯 38の絶 対位置は磁気計測線 36を用いた進度と対応付けられてもよい。例えば、基準位置 P refに位置する絶対位置指示装置 37の位置を進度 0とし、そこから時計回り(又は反 時計回り)に 100本目の磁気計測線 36と 101本目の磁気計測線 36との間に配置さ れた指示灯 38からは進度 100を位置情報として送出してもよい。但し、基準位置 Pre fからの絶対位置指示装置 37の個数を位置情報として指示灯 38から送出し、ゲーム 機 2の内部テーブルを利用して絶対位置指示装置 37の個数を進度に置き換えるよう にしてもよい。 [0032] The position of the indicator lamp 38 in the longitudinal direction of the peripheral circuit 35 is set in the gap between the magnetic measurement lines 36. Data indicating the absolute position and lane number of the indicator lamp 38 on the circuit 35 is superimposed on the infrared light emitted from each indicator lamp 38 of the absolute position indicator 37. That is, the absolute position indicating device 37 functions as means for providing information indicating the absolute position and the lane in the peripheral circuit 35, respectively. In this case, the absolute position of the indicator lamp 38 may be associated with the progress using the magnetic measurement line 36. For example, the position of the absolute position pointing device 37 located at the reference position Pref is set to 0, and the clockwise (or counterclockwise) direction from there is between the 100th magnetic measurement line 36 and the 101st magnetic measurement line 36. From the indicator light 38 arranged at, progress 100 may be sent as position information. However, the number of absolute position pointing devices 37 from the reference position Pre f is sent as the position information from the indicator light 38, and the number of absolute position pointing devices 37 is replaced with the progress using the internal table of the game machine 2. It may be.
[0033] 図 8に示すように、 自走車 30は下段走行面 18と給電面 20との間に配置され、模型  [0033] As shown in FIG. 8, the self-propelled vehicle 30 is disposed between the lower traveling surface 18 and the feeding surface 20,
31は上段走行面 19上に配置される。 自走車 30の上部には磁石 40が配置されてい る。模型 31は車輪 31aを介して上段走行面 19上で自立するが、独立した駆動手段 をもたず、自走車 30の磁石 40により自走車 30に引き寄せられた状態で自走車 30を 追従するように上段走行面 19を走行する。つまり、上段走行面 19における模型 31の 走行は自走車 30の走行制御を介して実現される。  31 is disposed on the upper running surface 19. A magnet 40 is disposed above the self-propelled vehicle 30. The model 31 is self-supporting on the upper traveling surface 19 via the wheels 31a, but does not have an independent driving means, and the self-propelled vehicle 30 is pulled to the self-propelled vehicle 30 by the magnet 40 of the self-propelled vehicle 30. Drive on the upper running surface 19 to follow. That is, the traveling of the model 31 on the upper traveling surface 19 is realized through the traveling control of the self-propelled vehicle 30.
[0034] 図 12〜図 14は自走車 30の詳細を示している。なお、図 12及び図 13の左右方向 が自走車 30の前後方向に相当する。また、図 12及び図 13の右方が自走車 30の前 方に対応する。図 12に示すように、 自走車 30は下部ユニット 41Aと上部ユニット 41B とを備えている。図 13にも示したように、下部ユニット 41 Aは下段走行面 18を自走す るための一対の駆動輪 42と、駆動輪 42を互いに独立して駆動する一対のモータ 43 と、 自走車 30の前端部 30a及び後端部 30bにそれぞれ配置された補助輪 44F、 44 Rとを備えている。 自走車 30はモータ 43の回転速度に差を与えることによりその移動 方向を変化させることができる。下部ユニット 41Aには上下方向に延びる 4本の案内 軸 45が設けられ、上部ユニット 41Bはその案内軸 45に沿って昇降可能に設けられて いる。案内軸 45にはコイルばね 46が設けられ、そのコイルばね 46の反発力により上 部ユニット 41Bはその車輪 47及び給電ブラシ 48が給電面 20に押し付けられるように 上方に付勢される。給電ブラシ 48が給電面 20に接することにより、筐体 10から自走 車 30に電力が供給される。但し、図 12はステージ 15が下降した状態であり、ステー ジ 15が上昇した場合には給電面 20が給電ブラシ 48等から十分に離れる。  12 to 14 show details of the self-propelled vehicle 30. 12 and 13 correspond to the front-rear direction of the self-propelled vehicle 30. The right side of FIGS. 12 and 13 corresponds to the front of the self-propelled vehicle 30. As shown in FIG. 12, the self-propelled vehicle 30 includes a lower unit 41A and an upper unit 41B. As shown in FIG. 13, the lower unit 41 A includes a pair of driving wheels 42 for self-propelling the lower traveling surface 18, a pair of motors 43 for driving the driving wheels 42 independently of each other, The vehicle 30 includes auxiliary wheels 44F and 44R arranged at the front end portion 30a and the rear end portion 30b, respectively. The self-propelled vehicle 30 can change its moving direction by giving a difference in the rotation speed of the motor 43. The lower unit 41A is provided with four guide shafts 45 extending in the vertical direction, and the upper unit 41B is provided so as to be movable up and down along the guide shaft 45. The guide shaft 45 is provided with a coil spring 46, and the upper unit 41B is urged upward by the repulsive force of the coil spring 46 so that the wheel 47 and the power supply brush 48 are pressed against the power supply surface 20. When the power supply brush 48 contacts the power supply surface 20, power is supplied from the housing 10 to the self-propelled vehicle 30. However, FIG. 12 shows a state where the stage 15 is lowered, and when the stage 15 is raised, the power supply surface 20 is sufficiently separated from the power supply brush 48 and the like.
[0035] 図 12に示したように、下部ユニット 41Aの前側の補助輪 44Fは駆動輪 42に対して 上方に僅かに偏って配置されている。また、上部ユニット 41Bの前後にも補助輪 49F 、 49Rが設けられている力 後側の補助輪 49Rは車輪 47よりも下方に幾らか偏って 配置されている。従って、 自走車 30は駆動輪 42を軸として上下方向に揺動すること ができ、その揺動は磁石 40を介して模型 31に伝えられる。これにより、競走馬が上 下に振れながら走る様子が表現される。  [0035] As shown in FIG. 12, the auxiliary wheel 44F on the front side of the lower unit 41A is arranged slightly biased upward with respect to the drive wheel 42. Further, auxiliary wheels 49F and 49R provided on the front and rear sides of the upper unit 41B are arranged on the rear side of the auxiliary wheels 49R slightly offset from the wheels 47. Therefore, the self-propelled vehicle 30 can swing up and down around the drive wheel 42, and the swing is transmitted to the model 31 through the magnet 40. This expresses the racehorse running while swinging up and down.
[0036] 図 13に示したように、 自走車 30の下面にはラインセンサ 50、絶対位置検出センサ 51及び磁気センサ 52が設けられている。ラインセンサ 50は誘導線 34を検出するた めに設けられ、絶対位置検出センサ 51は指示灯 38の射出光を検出するために設け られ、磁気センサ 52は磁気計測線 36を検出するために設けられている。 [0036] As shown in FIG. 13, a line sensor 50 and an absolute position detection sensor are provided on the lower surface of the self-propelled vehicle 30. 51 and a magnetic sensor 52 are provided. The line sensor 50 is provided for detecting the guide wire 34, the absolute position detection sensor 51 is provided for detecting the light emitted from the indicator light 38, and the magnetic sensor 52 is provided for detecting the magnetic measurement line 36. It has been.
[0037] ラインセンサ 50は、 自走車 30の前端部 30aにて左右対称に設けられた一対の発 光部 53と、それらの発光部 53の間に配置された受光部 54とを備えている。発光部 5 3は下段走行面 18に向って所定の波長域の可視光を照射し、受光部 54は下段走行 面 18からの反射光を受光する。指示灯 38の射出光を誤って検出しないように受光 部 54の検出波長域は発光部 53の射出する可視光の波長域に制限されている。図 1 5及び図 16にラインセンサ 50の詳細を示す。発光部 53は自走車 30を左右方向に二 等分する中心面 CPに対して対称に設けられており、それぞれの射出方向は斜め内 側に向けられている。 [0037] The line sensor 50 includes a pair of light emitting units 53 provided symmetrically at the front end 30a of the self-propelled vehicle 30 and a light receiving unit 54 disposed between the light emitting units 53. Yes. The light emitting unit 53 emits visible light having a predetermined wavelength range toward the lower traveling surface 18, and the light receiving unit 54 receives reflected light from the lower traveling surface 18. The detection wavelength range of the light receiving unit 54 is limited to the wavelength range of visible light emitted from the light emitting unit 53 so that the emission light of the indicator lamp 38 is not erroneously detected. Details of the line sensor 50 are shown in FIGS. The light emitting section 53 is provided symmetrically with respect to the central plane CP that bisects the self-propelled vehicle 30 in the left-right direction, and the respective emission directions are directed obliquely inward.
[0038] 受光部 54は中心面 CPを挟んで自走車 30の左右方向に等しく延びるように設けら れたセンサアレイ 55と、下段走行面 18からの反射光によって形成される下段走行面 18の像をセンサアレイ 55上に結像させる結像レンズ 56とを備えている。センサアレイ 55は例えば多数の CMOS受光素子を一列に並べて構成されており、自走車 30の 左右方向に関する輝度分布を誘導線 34の幅 Wgに比して微細な分解能で検出する 。分解能は例えば誘導線 34のピッチ PTgの 1. 5倍の幅を 128ドットに分けて検出す るように設定されてレ、る。換言すれば中心面 CPが誘導線 34の幅方向の中心に位置 しているときにその誘導線 34とこれに隣接するブランク部分とによって構成される領 域を検出領域とし、その検出領域を 128ドットの分解能で検出するようにセンサアレイ 55の分解能が設定されている。例えば誘導線 34のピッチ PTgが 12mmであればセ ンサアレイ 55による検出幅は 18mmであり、 1ドットあたり 0. 14mmの分解能で輝度 分布を検出する。  [0038] The light receiving section 54 is provided with a sensor array 55 provided so as to extend equally in the left-right direction of the self-propelled vehicle 30 across the center plane CP, and the lower travel surface 18 formed by reflected light from the lower travel surface 18. And an image forming lens 56 for forming an image on the sensor array 55. The sensor array 55 is configured, for example, by arranging a large number of CMOS light receiving elements in a line, and detects the luminance distribution in the left-right direction of the self-propelled vehicle 30 with finer resolution than the width Wg of the guide line 34. For example, the resolution is set to detect a width of 1.5 times the pitch PTg of the guide wire 34 divided into 128 dots. In other words, when the center plane CP is located at the center of the guide line 34 in the width direction, the area composed of the guide line 34 and the blank portion adjacent to the guide line 34 is set as the detection area, and the detection area is set to 128. The resolution of the sensor array 55 is set so that detection is performed with dot resolution. For example, if the pitch PTg of the guide wire 34 is 12 mm, the detection width by the sensor array 55 is 18 mm, and the luminance distribution is detected with a resolution of 0.14 mm per dot.
[0039] 結像レンズ 56はセンサアレイ 55を下段走行面 18から上方に離すために設けられ ている。その理由は、補助輪 44F、 44Rの位置のずれによってもたらされる自走車 30 の上下方向の揺動が輝度分布の検出精度に与える影響を抑制するためである。  The imaging lens 56 is provided to separate the sensor array 55 from the lower travel surface 18 upward. The reason is to suppress the influence of the vertical swing of the self-propelled vehicle 30 caused by the displacement of the auxiliary wheels 44F and 44R on the detection accuracy of the luminance distribution.
[0040] 図 13に示すように、絶対位置検出センサ 51は自走車 30の中心面 CP上に配置さ れた受光部 58を備えている。絶対位置検出センサ 51は指示灯 38から送出される赤 外光を受光し、その赤外光に含まれている絶対位置及びレーン番号に対応した信号 を出力する。 As shown in FIG. 13, the absolute position detection sensor 51 includes a light receiving portion 58 disposed on the center plane CP of the self-propelled vehicle 30. The absolute position detection sensor 51 is red sent from the indicator light 38. Receives external light and outputs a signal corresponding to the absolute position and lane number contained in the infrared light.
[0041] 磁気センサ 52は自走車 30の前後方向に一定ピッチ PTmsで並べられた複数の検 出部 60を備えている。なお、以下において検出部 60を自走車 30の前端部 30aから 数えて # 1検出部、 # 2検出部…と区別することがある。各検出部 60は、下段走行面 18における磁気を検出して、 S極及び N極にそれぞれ対応した信号を出力する。例 えば検出部 60は、 S極を検出している場合に Low信号を、 N極を検出している場合 に High信号をそれぞれ出力する。従って、各検出部 60の信号の反転によって磁気 計測線 36を検出することができる。これにより、磁気センサ 52は計測線検出手段とし て機能する。図 17Aに示すように、検出部 60の個数及びそれらの前後方向に関する ピッチ PTmsは、磁気計測線 36の基準ピッチ PTmと関連付けられている。すなわち 、検出部 60のピッチ PTmsは磁気計測線 36の基準ピッチ PTmの 1Z2に設定されて いる。言い換えれば基準ピッチ PTmは検出部 60のピッチ PTmsの 2倍である。検出 部 60の個数は、その個数と検出部 60のピッチ PTmsとの積がコーナー区間 35bの 最外周におけるピッチ(最大ピッチ) PTouはりも大きくなるように設定されている。図 示の例では、基準ピッチ PTmが 8mm、最大ピッチ PToutが 30mmとして、検出部の ピッチ PTmsが 4mm、検出部 60の個数が 8個にそれぞれ設定されている。  [0041] The magnetic sensor 52 includes a plurality of detection units 60 arranged at a constant pitch PTms in the front-rear direction of the self-propelled vehicle 30. In the following, the detection unit 60 is sometimes counted from the front end 30a of the self-propelled vehicle 30 and is distinguished from # 1 detection unit, # 2 detection unit, and so on. Each detection unit 60 detects magnetism in the lower travel surface 18 and outputs signals corresponding to the S pole and the N pole, respectively. For example, the detection unit 60 outputs a low signal when the S pole is detected, and outputs a high signal when the N pole is detected. Therefore, the magnetic measurement line 36 can be detected by inversion of the signal of each detection unit 60. Thereby, the magnetic sensor 52 functions as a measurement line detection means. As shown in FIG. 17A, the number of detection units 60 and the pitch PTms in the front-rear direction are associated with the reference pitch PTm of the magnetic measurement line 36. That is, the pitch PTms of the detector 60 is set to 1Z2 of the reference pitch PTm of the magnetic measurement line 36. In other words, the reference pitch PTm is twice the pitch PTms of the detector 60. The number of detection units 60 is set so that the product of the number and the pitch PTms of the detection unit 60 increases the pitch (maximum pitch) PTou beam at the outermost periphery of the corner section 35b. In the example shown in the figure, the reference pitch PTm is 8 mm, the maximum pitch PTout is 30 mm, the detection unit pitch PTms is 4 mm, and the number of detection units 60 is 8.
[0042] 磁気センサ 52が直線区間 35aの誘導線 34、又はコーナー区間 35bの第 1レーン の誘導線 34に沿って速度 Vactで走行している場合の磁気センサ 52の出力信号の 一例を図 17Bに示す。時刻 tlにて # 1検出部 60が磁気計測線 36に達してその出力 信号が Lowから Highに反転し、時刻 t3にて # 1検出部 60が次の磁気計測線 36に 達して出力信号が Highから Lowに反転したと仮定する。この場合、時刻 tl〜t3の間 の時刻 t2で # 2検出部 60の出力信号が Lowから Highに反転する。 # 3検出部 60 の出力信号は時刻 t3で Lowから Highに反転する力 ピッチ PTmsが基準ピッチ PT mの 1/2のため、同時刻に # 1検出部 60の出力信号も反転する。従って、図 17Bの 場合には、 # 1及び # 2の検出部 60の出力信号のみを利用して自走車 30の進度や 速度を基準ピッチ PTmの 1/2の分解能で制御することができる。 # 3以降の検出部 60の出力信号を利用する必要はない。例えば検出部 60のピッチ PTmsを各検出部 60の出力信号の反転時間間隔 (tl〜t2、 t2〜t3)で除して自走車 30の現在速度 V actを割り出し、その現在速度 Vactとゲーム上で要求される目標速度との差に基づ いて自走車 30の走行を制御する場合には、 # 1及び # 2の検出部 60の出力信号の みを利用すればよい。 [0042] FIG. 17B shows an example of the output signal of the magnetic sensor 52 when the magnetic sensor 52 is traveling at the speed Vact along the guide line 34 in the straight section 35a or the guide line 34 in the first lane of the corner section 35b. Shown in At time tl, # 1 detector 60 reaches the magnetic measurement line 36 and its output signal is inverted from Low to High.At time t3, # 1 detector 60 reaches the next magnetic measurement line 36 and the output signal is Assume that it has inverted from High to Low. In this case, at time t2 between times tl and t3, the output signal of # 2 detector 60 is inverted from low to high. The output signal of # 3 detector 60 reverses from Low to High at time t3. Since the pitch PTms is 1/2 of the reference pitch PTm, the output signal of # 1 detector 60 is also inverted at the same time. Therefore, in the case of FIG. 17B, the progress and speed of the self-propelled vehicle 30 can be controlled with a resolution of 1/2 of the reference pitch PTm by using only the output signals of the detectors 60 of # 1 and # 2. . It is not necessary to use the output signal of detector 60 after # 3. For example, the pitch PTms of the detector 60 is set to each detector The current speed Vact of the self-propelled vehicle 30 is calculated by dividing by the inversion time interval of the output signal of 60 (tl to t2, t2 to t3), and the difference between the current speed Vact and the target speed required in the game is calculated. When the traveling of the self-propelled vehicle 30 is controlled based on the above, only the output signals of the detection units 60 of # 1 and # 2 may be used.
[0043] ところ力 コーナー区間 35bにおいて自走車 30が第 1レーン以外のレーンを走行し ている場合には磁気計測線 36のピッチが基準ピッチ PTmよりも拡大するために図 1 7Bとは事情が異なる。その一例を図 18A及び図 18Bによって説明する。図 18Aに おいて、 自走車 30がコーナー区間 35bにおいて第 2レーン又はそれよりも外側のレ ーンの誘導線 34に沿って速度 Vactで走行し、そのレーンにおける磁気計測線 36の ピッチが PTx (但し、 Pmく PTx≤PTout)であったと仮定する。この場合には、図 18 Bに示すように、 # 1検出部 60が磁気計測線 36に達してその出力信号力 SLowから H ighに反転する時刻 tlから、次の磁気計測線 36に # 1検出部 60が達して出力信号 が Highから Lowに反転する時刻 t6までの時間間隔(tl〜t6)がピッチ PTxの拡大 分だけ延びる。一方、 # 2検出部 60の出力信号が Lowから Highに反転する時刻 t2 と時刻 tlとの時間間隔(tl〜t2)は図 17Bの場合と同様である。そのため、時刻 tl〜 t2の時間間隔と時刻 t2〜t6との時間間隔とを比較すると後者が大きくなる。従って、 # 1及び # 2の検出部 60の出力信号の反転時間間隔と検出部 60のピッチ PTmsか ら自走車 30の現在速度 Vactを割り出したならば、後者において得られる速度は PT ms = PTm/2の前提条件が成立しないために誤差を含み、これを利用すると自走 車 30の速度が誤って制御される。  [0043] However, when the self-propelled vehicle 30 is traveling in a lane other than the first lane in the corner section 35b, the pitch of the magnetic measurement line 36 is larger than the reference pitch PTm. Is different. An example of this will be described with reference to FIGS. 18A and 18B. In FIG. 18A, the self-propelled vehicle 30 travels at the speed Vact along the guide line 34 in the second lane or the outer lane in the corner section 35b, and the pitch of the magnetic measurement line 36 in the lane is Assume that PTx (where Pm and PTx≤PTout). In this case, as shown in FIG. 18B, from time tl when the # 1 detection unit 60 reaches the magnetic measurement line 36 and reverses its output signal force SLow to High, the next magnetic measurement line 36 # 1 The time interval (tl to t6) from time t6 when the detection unit 60 reaches and the output signal is inverted from high to low is extended by the pitch PTx. On the other hand, the time interval (tl to t2) between the time t2 and the time tl when the output signal of the # 2 detection unit 60 is inverted from low to high is the same as that in the case of FIG. 17B. Therefore, when the time interval between times tl and t2 is compared with the time interval between times t2 and t6, the latter becomes larger. Therefore, if the current speed Vact of the self-propelled vehicle 30 is calculated from the inversion time interval of the output signal of the detector 60 of # 1 and # 2 and the pitch PTms of the detector 60, the speed obtained in the latter is PT ms = Since the precondition of PTm / 2 is not satisfied, there is an error. If this is used, the speed of the vehicle 30 will be controlled incorrectly.
[0044] —方、図 18Bにおいて、時刻 tl〜t6の間には # 2〜# 5検出部 60が順次同一の 磁気計測線 36に達し、時刻 t2〜時刻 t5に掛けてそれらの出力信号が反転する。時 刻 12〜 5の各時間間隔は検出部 60のピッチ PTmsを現在速度 Vactで除した値に 一致する。そこで、図 18Bの場合には # 1〜# 5の検出部 60の出力信号を利用して 現在速度 Vactを検出すれば、上述した速度の検出誤差は生じない。このような速度 検出を全てのレーンにおいて可能とするためには、上記の通り、検出部 60の個数と ピッチ PTmsとの積がコーナー区間 35bの最外周における磁気計測線 36の最大ピッ チ PTouはりも大きく設定されていればよレ、。上記の例では、検出部 60のピッチ PT msが 4mm、磁気計測線 36の最大ピッチ PToutが 30mmであるため、検出部 60の 個数を 8個に設定すれば条件が満たされる。 [0044] On the other hand, in FIG. 18B, during times tl to t6, # 2 to # 5 detector 60 sequentially reaches the same magnetic measurement line 36, and their output signals are multiplied from time t2 to time t5. Invert. Each time interval from 12 to 5 corresponds to the value obtained by dividing the pitch PTms of the detector 60 by the current speed Vact. Therefore, in the case of FIG. 18B, if the current speed Vact is detected using the output signals of the detectors 60 of # 1 to # 5, the above-described speed detection error does not occur. In order to enable such speed detection in all lanes, as described above, the product of the number of detection units 60 and the pitch PTms is the maximum pitch PTou beam of the magnetic measurement line 36 in the outermost periphery of the corner section 35b. If it is set too large. In the above example, the pitch PT of the detector 60 Since ms is 4mm and the maximum pitch PTout of magnetic measuring line 36 is 30mm, the condition is satisfied if the number of detectors 60 is set to eight.
[0045] 次に、ゲーム機 2の制御系について説明する。図 19はゲーム機 2の制御系の概略 構成を示している。ゲーム機 2は、ゲーム機 2の全体の動作を制御するメイン制御装 置 100と、そのメイン制御装置 100と自走車 30との間で情報を通信するための複数 の通信ユニット 101と、通信ユニット 101とメイン制御装置 100との間を中継する中継 装置 102とを備えている。メイン制御装置 100は例えばパーソナルコンピュータにより 構成される。メイン制御装置 100はゲーム機 2にて実行される競馬ゲームの進行又は 展開を所定のゲームプログラムに従って制御し、通信ユニット 101を介して各自走車 30の進度やレーンを指示する。例えば、所定の単位時間後に自走車 30が達してい るべき進度及びレーン番号カ^ィン制御装置 100から各自走車 30に指示される。上 記のように進度は図 10の基準位置 Prefからの磁気計測線 36の本数によって表現さ れる値である。 自走車 30は番号(# 1、 # 2· · ·)を付して個別に管理される。  Next, a control system of the game machine 2 will be described. FIG. 19 shows a schematic configuration of the control system of the game machine 2. The game machine 2 communicates with a main control device 100 that controls the overall operation of the game machine 2, and a plurality of communication units 101 for communicating information between the main control device 100 and the self-propelled vehicle 30. A relay device 102 that relays between the unit 101 and the main control device 100 is provided. The main controller 100 is constituted by a personal computer, for example. The main control device 100 controls the progress or development of the horse racing game executed by the game machine 2 according to a predetermined game program, and instructs the progress and lane of each vehicle 30 via the communication unit 101. For example, the progress and the lane number key control device 100 that the self-propelled vehicle 30 should reach after a predetermined unit time are instructed to each self-propelled vehicle 30. As described above, the progress is a value expressed by the number of magnetic measurement lines 36 from the reference position Pref in FIG. Self-propelled vehicles 30 are individually managed with numbers (# 1, # 2,...).
[0046] また、メイン制御装置 100は図 1に示すネットワーク 6を介してセンタサーバ 3や保守 サーノく 4との間で情報を交換する。中継装置 102は例えばスイッチングハブにて構 成すること力 Sできる。図 10に示すように通信ユニット 101は周回路 35の周囲に一定 の間隔を空けて並べられている。通信ユニット 101の個数は図示例では 10個である 、これらの通信ユニット 101にて周回路 35の全周をカバーできる限りにおいてその 個数は適宜に変更してよレ、。通信ユニット 101と自走車 30との間の通信は電波を利 用してもよいし、赤外線を利用してもよい。 In addition, the main control device 100 exchanges information with the center server 3 and the maintenance server 4 via the network 6 shown in FIG. The relay device 102 can be configured with a switching hub, for example. As shown in FIG. 10, the communication units 101 are arranged around the peripheral circuit 35 at a certain interval. The number of the communication units 101 is 10 in the illustrated example. However, as long as the entire circumference of the peripheral circuit 35 can be covered by these communication units 101, change the number as appropriate. Communication between the communication unit 101 and the self-propelled vehicle 30 may use radio waves or infrared rays.
[0047] 図 20は自走車 30に設けられた制御系を示している。 自走車 30の制御系は自走車 制御装置 110を備えている。 自走車制御装置 110はマイクロプロセッサを備えたコン ピュータユニットとして構成されており、所定の自走車制御プログラムに従って自走車 30の走行制御、あるいはメイン制御装置 100との間の通信制御を実行する。 自走車 制御装置 110には、走行制御のための入力装置として、上述したラインセンサ 50、 絶対位置検出センサ 51及び磁気センサ 52が不図示のインターフェースを介して接 続されている。さらに、 自走車制御装置 110にはジャイロセンサ 111も入力装置として 接続されている。ジャイロセンサ 11 1は自走車 30の姿勢、言い換えれば自走車 30が 向いている方向を検出するために自走車 30に内蔵されている。ジャイロセンサ 111 は自走車 30の旋回軸(一例として駆動輪 42の軸線と中心面 CPとの交点を通過する 鉛直軸線)の回りの角加速度を検出し、その角加速度を 2回積分して角度変化量に 換算し、これを自走車制御装置 110に出力する。但し、ジャイロセンサ 111から角加 速度を出力させ、角度変化量への換算を自走車制御装置 110にて行ってもよい。 FIG. 20 shows a control system provided in the self-propelled vehicle 30. The control system of the self-propelled vehicle 30 includes a self-propelled vehicle control device 110. The self-propelled vehicle control device 110 is configured as a computer unit equipped with a microprocessor, and executes the travel control of the self-propelled vehicle 30 or the communication control with the main control device 100 according to a predetermined self-propelled vehicle control program. To do. The above-described line sensor 50, absolute position detection sensor 51, and magnetic sensor 52 are connected to the self-propelled vehicle control device 110 as an input device for travel control via an interface (not shown). Further, a gyro sensor 111 is connected to the self-propelled vehicle control device 110 as an input device. The gyro sensor 11 1 is the attitude of the self-propelled vehicle 30, in other words, the self-propelled vehicle 30 It is built in the self-propelled vehicle 30 to detect the direction it is facing. The gyro sensor 111 detects the angular acceleration around the turning axis of the self-propelled vehicle 30 (for example, the vertical axis passing through the intersection of the axis of the drive wheel 42 and the center plane CP), and integrates the angular acceleration twice. It is converted into an angle change amount and output to the self-propelled vehicle control device 110. However, the angle acceleration may be output from the gyro sensor 111 and converted into the angle change amount by the self-propelled vehicle control device 110.
[0048] また、 自走車制御装置 110には通信ユニット 101との間で情報通信を行うための送 信部 112及び受信部 113が通信制御回路 114を介して接続されてレ、る。上述したよ うに、メイン制御装置 100からはゲーム中における自走車 30の目標進度及び目標レ ーンを指示する情報が一定の周期で繰り返し与えられる。 自走車制御装置 110は、 与えられた目標進度及び目標レーンと、各種のセンサ 50〜52、 111の出力信号とに 基づいて自走車 30の目標速度、方向補正量等を演算し、それらの演算結果に基づ いてモータ駆動回路 115に速度指示 VL、 VRを与える。モータ駆動回路 115は与え られた速度指示 VL、 VRが得られるように各モータ 43への駆動電流又は電圧を制御 する。 In addition, a transmission unit 112 and a reception unit 113 for performing information communication with the communication unit 101 are connected to the self-propelled vehicle control device 110 via a communication control circuit 114. As described above, the main controller 100 repeatedly gives information indicating the target progress and target lane of the self-propelled vehicle 30 during the game at a constant cycle. The self-propelled vehicle control device 110 calculates the target speed, direction correction amount, etc. of the self-propelled vehicle 30 based on the given target progress and target lane and the output signals of various sensors 50 to 52, 111, and the like. Based on the calculation result, the speed instructions VL and VR are given to the motor drive circuit 115. The motor drive circuit 115 controls the drive current or voltage to each motor 43 so that the given speed instructions VL and VR are obtained.
[0049] 図 21は自走車制御装置 110による自走車 30の走行制御の概念を示している。図 21において自走車 30の現在の進度が ADcrt、メイン制御装置 100から与えられた 目標進度が ADtgt、レーン方向、つまり誘導線 34の方向が Dref、 自走車 30が向い ている方向が Dgyrであったと仮定する。 自走車制御装置 110は、 自走車 30が現在 の位置 Pertから所定の時刻までに目標レーンの中心線と目標進度 ADtgtとの交点 で与えられる目標位置 Ptgtに達し、かつその目標位置 Ptgtにて自走車 30の方向 D gyrがレーン方向 Drefに一致するようにモータ 43の速度を制御する。すなわち、 自 走車制御装置 110は、現在の進度 ADcrtと目標進度 ADtgtとの間の進度不足量 Δ ADに応じて各モータ 43の駆動速度を増減させるとともに、現在位置 Pertから目標レ ーンの中心線までの距離として与えられるレーン補正量 Δ Yamdだけ自走車 30が周 回路 35の横断方向に移動し、し力、も自走車 30の方向 Dgyr力 目標位置 Ptgtにお いてレーン方向 Drefに対する現在の方向 Θ gyrのずれ量として与えられる角度補正 量 Δ Θ amdだけ補正されるようにモータ 43間の速度比を制御する。  FIG. 21 shows the concept of travel control of the self-propelled vehicle 30 by the self-propelled vehicle control device 110. In FIG. 21, the current progress of the self-propelled vehicle 30 is ADcrt, the target progress given by the main controller 100 is ADtgt, the lane direction, that is, the direction of the guide line 34 is Dref, and the direction where the self-propelled vehicle 30 is facing is Dgyr. Suppose that The self-propelled vehicle control device 110 has reached the target position Ptgt that is given by the intersection of the center line of the target lane and the target progress ADtgt by the predetermined time from the current position Pert, and reaches the target position Ptgt. Then, the speed of the motor 43 is controlled so that the direction D gyr of the self-propelled vehicle 30 matches the lane direction Dref. That is, the self-propelled vehicle control device 110 increases / decreases the drive speed of each motor 43 according to the degree of advance deficiency ΔAD between the current advancement ADcrt and the target advancement ADtgt and sets the target lane from the current position Pert. Lane correction amount given as the distance to the center line Δ Yamd The self-propelled vehicle 30 moves in the transverse direction of the circuit 35 and the force is also the direction of the self-propelled vehicle 30 Dgyr force The lane direction at the target position Ptgt Dref The speed ratio between the motors 43 is controlled so as to be corrected by an angle correction amount ΔΘ amd given as a deviation amount of the current direction Θ gyr with respect to.
[0050] なお、進度不足量 A ADは磁気計測線 36の本数として与えられるから、直線区間 3 5a及びコーナー区間 35bのいずれの場合でも目標進度 ADtgtから現在の進度 AD crtを差し引くことによって求められる。但し、コーナー区間 35bにおいては、進度不 足量 AADに対応する距離 Ltrが周回路 35の横断方向における自走車 30の位置に よって変化するため、これを考慮した速度制御が必要となる。レーン補正量 A Yamd は、 自走車 30が現在走行しているレーンと目標レーンとの距離に相当するレーン間 隔 Ychgから、 自走車 30の現在位置 Pertと現在のレーンとのずれ量 Δ Yを差し弓 |くこ とによって求められる。 目標レーンが現在のレーンと一致している場合、すなわち、レ ーン変更が指示されていない場合にはレーン補正量 A Yamd= Δ Υである。レーン 方向 Dref及び自走車方向 Dgyrは、図 10の基準位置 Prefからの直進方向を絶対基 準方向 Dabsとして、その絶対基準方向 Dabsに対する角度 Θ ref、 Θ gyrとして特定 することができる。直線区間 35aにおいては 0 ref = O° 又は 180° である。コーナー 区間 35bにおいては、進度 ADcrtにおける誘導線 34の接線方向が絶対基準方向 D absに対してなす角度を Θ refとして特定することができる。接線方向は進度によって 一義的に定まり、同一進度であればレーンを問わずに一定値である。 [0050] It should be noted that the advancement deficiency A AD is given as the number of magnetic measurement lines 36, so that the straight section 3 In either case of 5a or corner section 35b, it is obtained by subtracting the current progress AD crt from the target progress ADtgt. However, in the corner section 35b, the distance Ltr corresponding to the progress deficit amount AAD changes depending on the position of the self-propelled vehicle 30 in the transverse direction of the circuit 35, and thus speed control in consideration of this is necessary. Lane correction amount A Yamd is the amount of deviation between the current position Pert of the self-propelled vehicle 30 and the current lane from the lane distance Ychg corresponding to the distance between the lane where the self-propelled vehicle 30 is currently traveling and the target lane. Y is bowed. When the target lane matches the current lane, that is, when the lane change is not instructed, the lane correction amount A Yamd = ΔΥ. The lane direction Dref and the self-propelled vehicle direction Dgyr can be specified as the angles Θ ref and Θ gyr relative to the absolute reference direction Dabs, with the straight direction from the reference position Pref in FIG. 10 as the absolute reference direction Dabs. In the straight section 35a, 0 ref = O ° or 180 °. In the corner section 35b, the angle formed by the tangential direction of the guide line 34 in the advance ADcrt with respect to the absolute reference direction Dabs can be specified as Θ ref. The tangential direction is uniquely determined by the progress, and if it is the same progress, it is a constant value regardless of the lane.
[0051] 図 22は自走車制御装置 110の機能ブロック図である。 自走車制御装置 110は、メ イン制御装置 100から与えられるゲーム情報を解析して自走車 30の目標進度 ADtg t及び目標レーンを判別するゲーム情報解析部 120と、 自走車 30の現在の進度 AD crtを記憶する進度カウンタ 121と、絶対位置検出センサ 51及び磁気センサ 52の出 力に基づレ、て進度カウンタ 121の値を更新するとともに自走車 30の現在速度 Vact を演算する進度管理部 122と、 自走車 30が現在走行しているレーン番号を記憶する レーンカウンタ 123と、ラインセンサ 50及び絶対位置検出センサ 51の出力に基づい て自走車 30が走行しているレーンを判別してレーンカウンタ 123の値を更新し、かつ そのレーンに対する自走車 30のレーンずれ量 Δ Υを検出するレーン管理部 124と、 自走車 30の方向を示す角度 Θ gyrを記憶するジャイロカウンタ 125と、ジャイロセン サ 111の出力に基づいて自走車 30の角度 Θ gyrを判別してジャイロカウンタ 125の 値を更新する方向管理部 126とを備えている。  FIG. 22 is a functional block diagram of the self-propelled vehicle control device 110. The self-propelled vehicle control device 110 analyzes the game information given from the main control device 100 to determine the target progress ADtgt of the self-propelled vehicle 30 and the target lane, and the current information of the self-propelled vehicle 30 The value of the progress counter 121 is updated and the current speed Vact of the self-propelled vehicle 30 is calculated based on the outputs of the progress counter 121 that stores AD crt and the absolute position detection sensor 51 and magnetic sensor 52. Progress management unit 122, lane counter 123 that stores the lane number in which self-propelled vehicle 30 is currently traveling, and the lane in which self-propelled vehicle 30 is traveling based on the outputs of line sensor 50 and absolute position detection sensor 51 The lane counter 123 updates the value of the lane counter 123, detects the lane deviation amount ΔΥ of the self-propelled vehicle 30 with respect to the lane, and stores the angle Θ gyr indicating the direction of the self-propelled vehicle 30 Gyro counter 125, And a direction control section 126 to update the value of the gyro counter 125 to determine the angle theta gyr of the motor vehicle 30 based on the output of Yairosen support 111.
[0052] また、 自走車制御装置 110は、 目標進度 ADtgt、進度カウンタ 121が記憶する進 度 ADcrt及びレーンカウンタ 123が記憶するレーン番号に基づいて自走車 30の目 標速度 Vtgtを演算する目標速度演算部 127と、 目標速度 Vtgtに基づいて自走車 3 0のモータ 43の駆動速度を設定する速度設定部 128と、設定された駆動速度を目標 速度 Vtgtと現在速度 Vactとの差に応じてフィードバック補正する速度 FB補正部 12 9と、 目標レーン、レーンカウンタ 123のレーン番号及びレーン管理部 124にて判別 される自走車 30のレーンずれ量 Δ Yに基づレ、て自走車 30のレーン補正量 Δ Yamd を演算するレーン補正量演算部 130と、進度カウンタ 121及びジャイロカウンタ 125 がそれぞれ記憶する進度 ADtgt及び角度 Θ gyrに基づいて自走車 30の方向補正 量 Δ Θ amdを演算する方向補正量演算部 131と、レーン補正量 Δ Yamd及び方向 補正量 Δ Θ amdに基づいてモータ 43間の速度比を設定する速度比設定部 133とを 備えている。速度比設定部 133にて左右のモータ 43の速度指示 VL、 VRが決定さ れ、これらの指示が図 20のモータ駆動回路 115にそれぞれ出力される。さらに、 自走 車制御装置 110には、ラインセンサ 50の出力、進度カウンタ 121が記憶する進度 A Dcrt、及び方向補正量演算部 131が演算する方向補正量 Δ Θ amdに基づいて誘 導線 34のライン幅を検査するライン幅検査部 136が設けられている。 In addition, the self-propelled vehicle control device 110 determines the number of the self-propelled vehicle 30 based on the target progress ADtgt, the progress ADcrt stored in the progress counter 121, and the lane number stored in the lane counter 123. A target speed calculation unit 127 that calculates the target speed Vtgt, a speed setting unit 128 that sets the drive speed of the motor 43 of the self-propelled vehicle 30 based on the target speed Vtgt, and the set drive speed as the target speed Vtgt and the current speed Speed FB correction unit 12 9 that performs feedback correction according to the difference from Vact, target lane, lane number of lane counter 123, and lane shift amount ΔY of self-propelled vehicle 30 determined by lane management unit 124 Based on the lane correction amount calculation unit 130 for calculating the lane correction amount Δ Yamd of the self-propelled vehicle 30, the progress ADtgt and the angle Θ gyr stored in the progress counter 121 and the gyro counter 125, respectively. A direction correction amount calculation unit 131 for calculating the direction correction amount ΔΘ amd and a speed ratio setting unit 133 for setting the speed ratio between the motors 43 based on the lane correction amount Δ Yamd and the direction correction amount ΔΘ amd are provided. Yes. The speed ratio setting unit 133 determines the speed instructions VL and VR of the left and right motors 43, and outputs these instructions to the motor drive circuit 115 in FIG. Further, the self-propelled vehicle control device 110 includes the guide wire 34 based on the output of the line sensor 50, the progress A Dcrt stored in the progress counter 121, and the direction correction amount ΔΘ amd calculated by the direction correction amount calculation unit 131. A line width inspection unit 136 for inspecting the line width is provided.
[0053] 次に、図 23〜図 30を参照して自走車制御装置 110の各部の処理を説明する。図 23は進度管理部 122の処理を示すフローチャートである。進度管理部 122は磁気セ ンサ 52の出力を監視して進度カウンタ 121の進度 ADcrtを管理し、かつ自走車 30 の現在速度 Vactを演算する。すなわち、進度管理部 122は最初のステップ S101に おいて磁気センサ 52の # 1検出部 60の出力が反転したか否か判断し、反転してい ればステップ S102で進度カウンタ 121の値 ADcrtに 1を加算し、続くステップ S103 で検出部番号を判別するための変数 mに 2を設定する。 # 1検出部 60の出力が反転 していないときはステップ S102及び S103をスキップする。続くステップ S104におレヽ て、 # mの検出部 60の出力が反転したか否か判断する。反転したときはステップ S1 05に進んで現在速度 Vactを演算する。現在速度 Vactは、前回の検出部(# m— 1 ) 60の出力反転から今回のセンサの出力反転までの時間間隔を tactとしたときに、 検出部 60のピッチ PTmsをその時間間隔 tact (—例として図 17Bの 1〜t 2の時間間 隔)で割ることによって求められる。つまり、 Vact = PTmsZtactである。  [0053] Next, processing of each part of the self-propelled vehicle control device 110 will be described with reference to FIGS. FIG. 23 is a flowchart showing the processing of the progress management unit 122. The progress management unit 122 monitors the output of the magnetic sensor 52, manages the progress ADcrt of the progress counter 121, and calculates the current speed Vact of the self-propelled vehicle 30. That is, the progress management unit 122 determines whether or not the output of the # 1 detection unit 60 of the magnetic sensor 52 is inverted in the first step S101, and if it is inverted, the value ADcrt of the progress counter 121 is set to 1 in step S102. In step S103, 2 is set in the variable m for determining the detection unit number. # 1 Steps S102 and S103 are skipped when the output of the detector 60 is not inverted. In subsequent step S104, it is determined whether or not the output of the detection unit 60 of #m is inverted. If reversed, proceed to step S1 05 to calculate the current speed Vact. The current speed Vact is the time interval from the output reversal of the previous detection unit (# m— 1) 60 to the output reversal of the current sensor, where tact is the pitch PTms of the detection unit 60. As an example, it is obtained by dividing by the time interval from 1 to t2 in Fig. 17B. That is, Vact = PTmsZtact.
[0054] 現在速度 Vactの算出後はステップ SI 06で変数 mに 1をカ卩算する。続くステップ S1 07では絶対位置検出センサ 51が絶対位置を検出したか否力、すなわち、指示灯 38 力 の赤外光を検出したか否かを判断し、検出していなければステップ S101へ戻る 。一方、ステップ S107で絶対位置検出センサ 51が指示灯 38からの赤外光を検出し た場合にはその赤外光にコーディングされた進度情報を判別し、判別した進度と進 度カウンタ 121の進度 ADcrtとが一致するように進度カウンタ 121を補正してステツ プ S101へ戻る。ステップ S104で # mの検出部 60の信号が判定していないときはス [0054] After calculating the current speed Vact, 1 is added to the variable m in step SI06. Continuing step S1 In 07, it is determined whether or not the absolute position detection sensor 51 has detected the absolute position, that is, whether or not the infrared light of the indicator lamp 38 has been detected. If not detected, the process returns to step S101. On the other hand, if the absolute position detection sensor 51 detects infrared light from the indicator light 38 in step S107, the progress information coded in the infrared light is determined, and the determined progress and the progress of the progress counter 121 are determined. The progress counter 121 is corrected so that ADcrt matches, and the process returns to step S101. If the signal from #m detector 60 is not judged in step S104,
[0055] 以上の処理によれば、 # 1検出部 60が磁気計測線 36を計測する毎に進度カウン タ 121の値 ADcrtが 1ずつ増加する。しかも、その進度 ADcrtは絶対位置検出セン サ 51が絶対位置指示装置 37からの信号を検出することによって適宜に補正される。 これにより、進度カウンタ 121の値から、周回路 35の長手方向に関する自走車 30の 位置を把握することができる。また、 自走車 30の現在速度 Vactは自走車 30が磁気 センサ 52の検出部 60のピッチ PTmsだけ移動する毎に算出される。 According to the above processing, the value ADcrt of the progress counter 121 is incremented by 1 every time the # 1 detection unit 60 measures the magnetic measurement line 36. Moreover, the progress ADcrt is appropriately corrected when the absolute position detection sensor 51 detects a signal from the absolute position indicating device 37. As a result, the position of the self-propelled vehicle 30 in the longitudinal direction of the peripheral circuit 35 can be grasped from the value of the progress counter 121. Further, the current speed Vact of the self-propelled vehicle 30 is calculated every time the self-propelled vehicle 30 moves by the pitch PTms of the detection unit 60 of the magnetic sensor 52.
[0056] 図 24は目標速度演算部 127が目標速度を演算する手順を示すフローチャートで ある。 目標速度演算部 127は、最初のステップ S121において進度カウンタ 121の値 ADcrtを取得し、次のステップ S122では進度カウンタ 121が前回の処理時から更新 されたか否か判断する。更新されていなければステップ S121へ戻り、更新された場 合にステップ S 123へ進む。ステップ S 123では目標進度 ADtgtから進度カウンタ値 ADcrtの値を差し引くことによって進度不足量 A AD (=ADtgt— ADcrt)を求める 。続くステップ S 124ではレーンカウンタ 123から現在のレーンを取得する。  FIG. 24 is a flowchart showing a procedure by which the target speed calculation unit 127 calculates the target speed. The target speed calculation unit 127 acquires the value ADcrt of the progress counter 121 in the first step S121, and determines whether or not the progress counter 121 has been updated since the previous processing in the next step S122. If not updated, the process returns to step S121. If updated, the process proceeds to step S123. In step S 123, the progress deficiency A AD (= ADtgt−ADcrt) is obtained by subtracting the value of the progress counter value ADcrt from the target progress ADtgt. In the following step S124, the current lane is acquired from the lane counter 123.
[0057] 次のステップ S125では、 自走車 30が次の進度に達するまでに検出されるべき磁 気センサ 52の出力反転の回数 (反転カウント数) Nxを現在の進度 ADcrtと自走車 3 0が現在走行しているレーンとに基づいて推定する。すなわち、現在の進度 ADcrtと 次の進度 ADcrt+ 1との間の磁気計測線 36のピッチ PTxを検出部 60のピッチ PTm sで割った値(商)を反転カウント数 Nxとして推定する。なお、商に小数点以下の端数 が生じる場合には切り上げ、切り捨て又は四捨五入等によって整数に丸める。レーン 番号はピッチ PTxを特定するために使用される。 自走車 30が直線区間 35a及びコー ナー区間 35bの最内周のレーンを走行している場合には図 9に示す基準ピッチ PTm が検出部 60のピッチ PTxとなる。一方、進度 ADcrtから自走車 30がコーナー区間 3 5bを走行してレ、ると判断された場合は、レーン番号に応じたピッチ PTxを予め用意さ れたテーブル等のデータから取得すればょレ、。 [0057] In the next step S125, the number of inversions of the output of the magnetic sensor 52 to be detected before the self-propelled vehicle 30 reaches the next degree of progression (inversion count number) Nx is set to the current degree ADcrt and the self-propelled vehicle 3 0 is estimated based on the currently running lane. That is, a value (quotient) obtained by dividing the pitch PTx of the magnetic measurement line 36 between the current progress ADcrt and the next progress ADcrt + 1 by the pitch PTms of the detection unit 60 is estimated as the inversion count Nx. If the quotient has a fractional part, it is rounded up to the nearest whole number by rounding up, rounding down or rounding. The lane number is used to specify the pitch PTx. When self-propelled vehicle 30 is traveling on the innermost lane of straight section 35a and corner section 35b, the reference pitch PTm shown in Fig. 9 Becomes the pitch PTx of the detector 60. On the other hand, if it is determined from the progress ADcrt that the self-propelled vehicle 30 travels in the corner section 35b, the pitch PTx corresponding to the lane number should be obtained from data such as a prepared table. Les.
[0058] 反転カウント数 Nxの推定後はステップ S126へ進んで反転基準時間 txを算出する 。図 25に示すように、 自走車 30が現在時刻から目標進度 ADtgtに達すべき時刻ま での残り時間を Trmnとし、その残り時間 Trmn内で磁気センサ 52の各検出部 60の 出力が一定の時間 tx毎に順次反転すると仮定した場合、残り時間 Trmnは時間 txと 反転カウント数 Nxと進度不足量 AADとの積によって与えられる。つまり、 自走車 30 が目標進度到達時刻に目標進度 ADtgtに達するためには、検出部 60の出力が時 間 tx毎に反転するような速度で自走車 30が進度不足量 A ADに対応する距離を走 らなければならない。このような関係から、反転基準時間 txは、残り時間 Trmnを反転 カウント数 Nxと進度不足量 AADの積によって割った商(tx=TrmnZ (Nx' ΔΑϋ) )によって求められる。言い換えれば、反転基準時間 tx毎に Nx回の出力反転が検出 された時点で進度が 1つ進み、これが進度不足量 AADに相当する回数だけ繰り返 されたならば、 目標進度到達時刻に自走車 30が目標進度 ADtgtに達することにな る。なお、 目標進度到達時刻は、一例として、ゲーム機 2のメイン制御装置 100から次 回の目標進度及び目標レーンが与えられる時刻又はその時刻に対して一定の遅れ 時間を与えた時刻とすることができる。但し、 目標進度到達時刻は同一のレースで使 用されている全ての自走車 30の間で一致している必要がある。  [0058] After the inversion count number Nx is estimated, the process proceeds to step S126 to calculate the inversion reference time tx. As shown in FIG. 25, the remaining time from the current time until the time when the self-propelled vehicle 30 should reach the target progress ADtgt is Trmn, and the output of each detection unit 60 of the magnetic sensor 52 is constant within the remaining time Trmn. Assuming that inversion occurs sequentially at time tx, the remaining time Trmn is given by the product of time tx, the inversion count Nx, and the advance deficiency AAD. In other words, in order for the self-propelled vehicle 30 to reach the target progress ADtgt at the target progress arrival time, the self-propelled vehicle 30 responds to the shortage of progress A AD at such a speed that the output of the detection unit 60 is reversed every time tx. You must run the distance you want. From such a relationship, the inversion reference time tx is obtained by a quotient (tx = TrmnZ (Nx ′ ΔΑϋ)) obtained by dividing the remaining time Trmn by the product of the inversion count Nx and the advance deficiency AAD. In other words, if Nx output inversions are detected at each inversion reference time tx, the advancement is advanced by one, and if this is repeated a number of times corresponding to the insufficient advancement amount AAD, it will run at the target advancement arrival time. Car 30 will reach the target progress ADtgt. As an example, the target progress arrival time may be a time when the next target progress and target lane are given from the main control device 100 of the game machine 2 or a time when a certain delay time is given to the time. it can. However, the target progress time must be the same among all self-propelled vehicles 30 used in the same race.
[0059] 図 24に戻って、反転基準時間 txを算出した後はステップ S127へ進み、検出部 60 のピッチ PTmsを反転基準時間 txで割った商を目標速度 Vtgtとして求める。この目 標速度 Vtgtは、磁気センサ 52の出力が反転基準時間 txの間隔で順次反転するた めに必要な自走車 30の速度となる。ステップ S127にて目標速度 Vtgtを求めた後は ステップ S121へ戻る。従って、進度カウンタの値 ADcrtが更新される毎に進度不足 量 AADが更新され、そのときのレーン数に基づいて反転カウント数 Nxが推定されて 目標速度 Vtgtが求められる。つまり、自走車 30の進度が 1つ進む毎に目標速度 Vtg tが更新される。  Returning to FIG. 24, after calculating the inversion reference time tx, the process proceeds to step S127, and a quotient obtained by dividing the pitch PTms of the detection unit 60 by the inversion reference time tx is obtained as the target speed Vtgt. This target speed Vtgt is the speed of the self-propelled vehicle 30 required for the output of the magnetic sensor 52 to be sequentially reversed at intervals of the reversal reference time tx. After obtaining the target speed Vtgt in step S127, the process returns to step S121. Therefore, every time the value ADcrt of the progress counter is updated, the progress shortage amount AAD is updated, and the inversion count number Nx is estimated based on the number of lanes at that time to obtain the target speed Vtgt. In other words, the target speed Vtgt is updated each time the progress of the self-propelled vehicle 30 advances by one.
[0060] 図 22において説明したように、 目標速度演算部 127が演算した目標速度 Vtgtは 速度設定部 128及び速度 FB補正部 129に与えられる。速度設定部 128は与えられ た目標速度 Vtgtが得られるようにモータ 43の駆動速度を設定し、速度 FB補正部 12 9はその駆動速度に対して目標速度 Vtgtと現在速度 Vactとの差に応じた FB補正量 を与える。なお、速度差の微分値、あるいは積分値を利用して速度をフィードバック 制御、あるいはフィードフォワード制御することにより速度の制御精度、応答性等を高 めるようにしてもよい。 [0060] As described in FIG. 22, the target speed Vtgt calculated by the target speed calculator 127 is Provided to the speed setting unit 128 and the speed FB correction unit 129. The speed setting unit 128 sets the driving speed of the motor 43 so that the given target speed Vtgt is obtained, and the speed FB correction unit 12 9 responds to the difference between the target speed Vtgt and the current speed Vact with respect to the driving speed. Give the FB correction amount. Note that the speed control accuracy, responsiveness, and the like may be improved by feedback control or feedforward control of the speed using the differential value or integral value of the speed difference.
[0061] 図 26は方向管理部 126がジャイロカウンタ 125の値を管理する手順を示すフロー チャートである。方向管理部 126は最初のステップ S141においてジャイロセンサ 11 1が出力する角度変化量を取得し、続くステップ S142ではジャイロカウンタ 125の値 Θ gyrに角度変化量を加算又は減算することにより、ジャイロカウンタ 125の値 Θ gyr を更新する。これにより、ジャイロカウンタ 125には自走車 30の現在の方向を示す角 度 Θ gyrが記憶される。なお、自走車 30が絶対基準方向 Dabsを向いているときのジ ャイロカウンタ 125の角度 Θ gyrを 0° とするために、適宜のタイミングで較正を行うこ とが望ましい。その較正は、例えば自走車 30が基準位置 Prefから直線区間 35aをレ ーン方向と平行に走行してレ、るか否かを進度カウンタ 121の進度 ADcrt及びライン センサ 50の出力に基づいて判別し、平行に走行している場合に Θ gyrを 0° にリセッ トすることによって実現できる。このような較正は競馬ゲームのレース中に行ってもよ いし、レース前の適宜のタイミング、例えばゲーム機 2の起動時に行ってもよい。  FIG. 26 is a flowchart showing a procedure in which the direction management unit 126 manages the value of the gyro counter 125. The direction management unit 126 acquires the angle change amount output from the gyro sensor 111 in the first step S141, and in the subsequent step S142, adds or subtracts the angle change amount to the value Θ gyr of the gyro counter 125, thereby obtaining the gyro counter 125. Update the value Θ gyr of. As a result, the angle Θ gyr indicating the current direction of the self-propelled vehicle 30 is stored in the gyro counter 125. In order to set the angle Θ gyr of the gyro counter 125 when the self-propelled vehicle 30 faces the absolute reference direction Dabs to 0 °, it is desirable to perform calibration at an appropriate timing. The calibration is performed, for example, based on the progress ADcrt of the progress counter 121 and the output of the line sensor 50 whether or not the self-propelled vehicle 30 travels in a straight section 35a from the reference position Pref in parallel with the lane direction. This can be achieved by recognizing and resetting Θ gyr to 0 ° when traveling in parallel. Such calibration may be performed during the race of the horse racing game, or may be performed at an appropriate timing before the race, for example, when the game machine 2 is activated.
[0062] 図 27は方向補正量演算部 131が方向補正量 Δ Θ amdを演算する手順を示すフロ 一チャートである。方向補正量演算部 131は最初のステップ S161において進度カウ ンタの値 ADcrtを取得し、続くステップ S162で進度 ADcrtから基準方向の角度 Θ r efを判別する。上記のように基準方向の角度 Θ refは進度 ADと対応付けて一義的に 定まり、直線区間 35aでは 0° 又は 180° 、コーナー区間 35bでは誘導線 34の接線 方向である。進度 ADと基準方向 Θ refとの対応関係を予めテーブル等のデータに格 納しておけば、進度カウンタの値 ADcrtから基準方向角度 Θ refを直ちに判別するこ とができる。次のステップ S163ではジャイロカウンタ 125の値 Θ gyrを取得し、続くス テツプ S164では角度 Θ ref及び Θ gyrの差を方向補正量 Δ Θ amd (図 21参照)とし て演算する。この後、ステップ S161へ戻る。ここで求められた方向修正量 Δ Θ amd は速度比設定部 133に与えられる他に、レーン管理部 124及びライン幅検査部 136 にも与えられる。 FIG. 27 is a flowchart showing a procedure by which the direction correction amount calculation unit 131 calculates the direction correction amount ΔΘamd. The direction correction amount calculation unit 131 obtains the value ADcrt of the progress counter in the first step S161, and determines the angle Θ r ef in the reference direction from the progress ADcrt in the subsequent step S162. As described above, the angle Θ ref of the reference direction is uniquely determined in association with the progress AD, and is 0 ° or 180 ° in the straight section 35a and the tangential direction of the guide line 34 in the corner section 35b. If the correspondence between the advance AD and the reference direction Θ ref is stored in advance in data such as a table, the reference direction angle Θ ref can be immediately determined from the advance counter value ADcrt. In the next step S163, the value Θ gyr of the gyro counter 125 is acquired, and in the subsequent step S164, the difference between the angles Θ ref and Θ gyr is calculated as the direction correction amount ΔΘ amd (see FIG. 21). After this, the process returns to step S161. Direction correction amount found here Δ Θ amd In addition to being provided to the speed ratio setting unit 133, the lane management unit 124 and the line width inspection unit 136 are also provided.
[0063] 図 28はレーン管理部 124の処理を示すフローチャートである。レーン管理部 124 はラインセンサ 50の出力と方向補正量 Δ Θ amdとを参照して自走車 30のレーンず れ量 Δ Υ (図 21参照)を求めるとともに、そのレーンずれ量 Δ Υを利用してレーンカウ ンタ 123の値を管理する。すなわち、レーン管理部 124は最初のステップ S181にお いて方向補正量演算部 131から方向補正量 Δ Θ amdを取得し、続くステップ S182 でラインセンサ 50の出力を取り込んでレーンずれ量 Δ Υを検出する。ラインセンサ 50 の出力とレーンずれ量 Δ Υとの関係の一例を図 29に示す。ラインセンサ 50からは反 射光強度に応じたアナログ信号が出力されるが、これを適当な閾値で二値化すれば 誘導線 34とその間のブランク部分とに対応した矩形波が得られる。その矩形波からラ インセンサ 50の検出領域の中心と、誘導線 34に対応する輝度値範囲の中心(レー ン中心)とのドット数 Δ Ndotがレーンずれ量 Δ Yに対応しており、そのドット数 Δ Ndo tに 1ドット当たりのライン幅を乗算すればレーンずれ量 Δ Υを求めることができる。但 し、自走車 30の方向が基準方向 Dref (図 21参照)からずれている場合には、ライン センサ 50も誘導線 34と直交する方向に対して対して斜めに傾き、その結果、ドット数 △ Ndotも傾きに応じて増加する。このため、ドット数 A Ndotから求めたレーンずれ量 Δ Υに方向補正量の余弦値 cos Δ Θ amdを乗じて正しいレーンずれ量 Δ Υを取得す る必要がある。図 28のステップ S181で方向補正量 Δ Θ amdを取得しているのはこ のためである。なお、図 29において誘導線 34に対応する輝度値範囲に含まれるドッ ト数 Ndotを Δ Θ amdによって同様に補正することにより、誘導線 34の幅 Wg (図 9参 照)を検出することができる。  FIG. 28 is a flowchart showing the processing of the lane management unit 124. The lane management unit 124 refers to the output of the line sensor 50 and the direction correction amount ΔΘamd to obtain the lane shift amount ΔΥ (see Fig. 21) of the self-propelled vehicle 30 and uses the lane shift amount ΔΥ. Then, the value of lane counter 123 is managed. That is, the lane management unit 124 obtains the direction correction amount ΔΘ amd from the direction correction amount calculation unit 131 in the first step S181, and detects the lane deviation amount ΔΥ by capturing the output of the line sensor 50 in the subsequent step S182. To do. An example of the relationship between the output of the line sensor 50 and the lane shift amount ΔΥ is shown in FIG. An analog signal corresponding to the reflected light intensity is output from the line sensor 50. If this is binarized with an appropriate threshold value, a rectangular wave corresponding to the guide wire 34 and the blank portion therebetween can be obtained. From the rectangular wave, the number of dots Δ Ndot between the center of the detection area of the line sensor 50 and the center of the luminance value range (lane center) corresponding to the guide line 34 corresponds to the lane shift amount Δ Y. By multiplying the number Δ Ndot by the line width per dot, the lane shift amount Δ Υ can be obtained. However, if the direction of the self-propelled vehicle 30 is deviated from the reference direction Dref (see Fig. 21), the line sensor 50 also tilts obliquely with respect to the direction perpendicular to the guide line 34, resulting in a dot The number ΔNdot also increases with the slope. Therefore, it is necessary to obtain the correct lane shift amount Δ て by multiplying the lane shift amount Δ 求 め obtained from the number of dots A Ndot by the cosine value cos ΔΘ amd of the direction correction amount. This is why the direction correction amount ΔΘamd is acquired in step S181 in FIG. In FIG. 29, the width Wg (see FIG. 9) of the guide line 34 can be detected by similarly correcting the number of dots Ndot included in the luminance value range corresponding to the guide line 34 by ΔΘ amd. it can.
[0064] 図 28に戻って、ステップ S182でレーンずれ量 Δ Υを検出した後はステップ S183 へ進み、自走車 30が次のレーンへ移動したか否かを判断する。例えばレーンずれ量 Δ Υが誘導線 34のピッチ PTgの 1/2よりも拡大した場合には隣のレーンへ自走車 3 0が移動したと判断することができる。あるいは、ラインセンサ 50の中心の両側にそれ ぞれ検出されている誘導線 34までの距離を大小比較し、その大小関係が逆転した 場合にレーンが移動したと判断してもよレ、。ステップ S183にて次のレーンへ移動した と判断した場合にはレーンカウンタ 123の値を次のレーンに対応する値に更新する。 ステップ S 183で否定判断した場合にはステップ S 184をスキップする。 Returning to FIG. 28, after detecting the lane shift amount ΔΥ in step S182, the process proceeds to step S183, and it is determined whether or not the self-propelled vehicle 30 has moved to the next lane. For example, when the lane shift amount ΔΥ is larger than 1/2 of the pitch PTg of the guide line 34, it can be determined that the self-propelled vehicle 30 has moved to the adjacent lane. Alternatively, compare the distances to the guide line 34 detected on both sides of the center of the line sensor 50, and judge that the lane has moved if the magnitude relationship is reversed. Moved to next lane in step S183 If it is determined, the value of the lane counter 123 is updated to a value corresponding to the next lane. If a negative determination is made in step S183, step S184 is skipped.
[0065] 続くステップ S185では絶対位置検出センサ 51が絶対位置を検出したか否か判断 する。絶対位置を検出していなければステップ S 181へ戻る。一方、ステップ S 185で 絶対位置が検出されたと判断した場合には絶対位置指示装置 37からの赤外光にコ ーデイングされたレーン番号を判別し、判別したレーン番号とレーンカウンタ 123の値 とが一致するようにレーンカウンタ 123の値を補正してステップ S181へ戻る。以上の 処理において求められたレーンずれ量 Δ Υはレーン補正量演算部 130に与えられる In subsequent step S185, it is determined whether or not the absolute position detection sensor 51 has detected an absolute position. If the absolute position is not detected, the process returns to step S181. On the other hand, if it is determined in step S 185 that the absolute position has been detected, the lane number coded in the infrared light from the absolute position indicating device 37 is determined, and the determined lane number and the value of the lane counter 123 are determined. The value of the lane counter 123 is corrected so as to match, and the process returns to step S181. The lane shift amount ΔΥ obtained in the above processing is given to the lane correction amount calculation unit 130.
[0066] 図 30はレーン補正量演算部 130がレーン補正量 A Yamdを演算する手順を示す フローチャートである。レーン補正量演算部 130は最初のステップ S201においてゲ ーム情報解析部 120から目標レーンを取得し、続くステップ S202でレーンカウンタ 1 23の値(現在のレーン番号)を取得し、さらにステップ S203でレーン管理部 124から レーンずれ量 Δ Υを取得する。そして、ステップ S204で目標レーンと現在のレーンと がー致するか否か判断する。一致しているときはステップ S205へ進み、レーンずれ 量 Δ Υをレーン補正量 A Yamdに設定してステップ S201へ戻る。一方、ステップ S2 04でレーンが一致してレヽなレ、ときはステップ S206へ進み、レーンずれ量 Δ Yにレー ン間隔 Ychg (図 21参照)を加算した値をレーン補正量 A Yamdとして設定してステツ プ S201へ戻る。レーンずれ量 Ychgは目標レーンと現在のレーンとの間の番号差に 誘導線 34のピッチ PTg (図 10参照)を乗算することによって得られる。 FIG. 30 is a flowchart showing a procedure by which the lane correction amount calculation unit 130 calculates the lane correction amount A Yamd. The lane correction amount calculation unit 130 obtains the target lane from the game information analysis unit 120 in the first step S201, obtains the value of the lane counter 123 (current lane number) in the subsequent step S202, and further in step S203. The lane shift amount Δ か ら is acquired from the lane management unit 124. In step S204, it is determined whether or not the target lane matches the current lane. If they match, the process proceeds to step S205, sets the lane shift amount ΔΥ to the lane correction amount A Yamd, and returns to step S201. On the other hand, if the lanes coincide with each other in step S204, and the lane is correct, the process proceeds to step S206, and a value obtained by adding the lane deviation amount Y to the lane interval Ychg (see FIG. 21) is set as the lane correction amount A Yamd. Return to step S201. The lane shift amount Ychg is obtained by multiplying the number difference between the target lane and the current lane by the pitch PTg of the guide line 34 (see Fig. 10).
[0067] 図 30の処理により、 目標レーンに自走車 30が移動すべき横断方向の距離がレー ン補正量 A Yamdとして演算される。図 22において説明したように、演算されたレー ン補正量 A Yamdは速度比設定部 133に与えられる。速度比設定部 133は、与えら れたレーン補正量 A Yamd及び方向補正量 Δ Θ amdとに基づいてモータ 43間に生 じさせるべき速度比を決定し、その速度比に応じて速度 FB補正部 129から与えられ た駆動速度を増加又は減少させて左右のモータ 43に対する速度指示 VL、VRを決 定する。このとき、各モータ 43には速度比に応じた速度差が発生し、かつそれらの速 度を合成して得られる駆動速度が速度 FB補正部 129から与えられる駆動速度と一 致するように速度指示 VL、 VRが生成される。生成された速度指示 VL、 VRは図 19 に示したモータ駆動回路 115に与えられる。それらの駆動回路 115が指示された速 度でモータ 43を駆動することにより、 自走車 30が所定の時刻に目標進度 ADtgtに 達しかつその方向 Dgyrが基準方向 Drefに一致するように制御される。なお、レーン 補正量 A Yamd及び方向修正量 Δ Θ amdの微分値、積分値、さらにはジャイロセン サ 111で検出する角加速度を利用して速度比をフィードバック制御、あるいはフィー ドフォワード制御して目標レーンへの追従及び方向補正の制御精度、応答性等を高 めるようにしてもよい。 [0067] With the processing in FIG. 30, the distance in the crossing direction that the self-propelled vehicle 30 should move to the target lane is calculated as the lane correction amount A Yamd. As described in FIG. 22, the calculated lane correction amount A Yamd is given to the speed ratio setting unit 133. The speed ratio setting unit 133 determines the speed ratio to be generated between the motors 43 based on the given lane correction amount A Yamd and the direction correction amount ΔΘ amd, and the speed FB correction is performed according to the speed ratio. Increase or decrease the drive speed given from the unit 129 to determine the speed instructions VL and VR for the left and right motors 43. At this time, a speed difference corresponding to the speed ratio is generated in each motor 43, and the driving speed obtained by combining these speeds is equal to the driving speed given from the speed FB correction unit 129. Speed instructions VL and VR are generated to match. The generated speed instructions VL and VR are given to the motor drive circuit 115 shown in FIG. By driving the motor 43 at the instructed speed by the drive circuit 115, the self-propelled vehicle 30 is controlled to reach the target progress ADtgt at a predetermined time and the direction Dgyr coincides with the reference direction Dref. . Note that the speed ratio is feedback-controlled or fed-forward controlled using the differential value and integral value of the lane correction amount A Yamd and the direction correction amount Δ Θ amd, and also the angular acceleration detected by the gyro sensor 111, and the target is obtained. The control accuracy and response of lane tracking and direction correction may be improved.
[0068] 以上に説明した一連の処理によれば、自走車 30の進度が 1つ増加する毎に自走 車 30の目標速度 Vtgtが与えられ、しかも、自走車 30の現在速度 Vactは自走車 30 が検出部 60のピッチ PTmsに相当する距離だけ移動する毎に逐次演算されるので、 自走車 30の速度を迅速かつ高精度に制御することができる。さらに、磁気センサ 52 に磁気計測線 36の最大ピッチ PTmsをカバーできる個数の検出部 60が設けられて いるので、 自走車 30がコーナー区間 35bのいずれのレーンを走行している場合でも 、磁気計測線 36のピッチ PTxの大小に拘わりなく現在速度 Vactをピッチ PTmsに応 じた高い分解能で検出することができる。従って、現在速度 Vactを利用した速度制 御の誤差を小さく抑えることができ、コーナー区間 35bを自走車 30が走行していると きの速度の変動を効果的に抑えることができる。  [0068] According to the series of processes described above, every time the progress of the self-propelled vehicle 30 increases, the target speed Vtgt of the self-propelled vehicle 30 is given, and the current speed Vact of the self-propelled vehicle 30 is Since each time the self-propelled vehicle 30 moves by a distance corresponding to the pitch PTms of the detector 60, the speed of the self-propelled vehicle 30 can be controlled quickly and with high accuracy. Further, since the magnetic sensor 52 is provided with a number of detection units 60 that can cover the maximum pitch PTms of the magnetic measurement line 36, even if the self-propelled vehicle 30 is traveling in any lane of the corner section 35b, the magnetic sensor 52 is magnetic. Regardless of the size of the pitch PTx on the measuring line 36, the current speed Vact can be detected with a high resolution according to the pitch PTms. Therefore, the error in speed control using the current speed Vact can be reduced, and the fluctuation in speed when the self-propelled vehicle 30 is traveling in the corner section 35b can be effectively suppressed.
[0069] また、ジャイロセンサ 111を設けて自走車 30の方向を検出し、その方向と目標レー ンの方向とのずれを方向補正量 Δ Θ amdとして速度比設定部 133に与えているので 、ラインセンサ 50の出力のみに基づいて自走車 30の横断方向の位置及び方向を制 御する場合と比較して制御精度が向上する。さらに、ジャイロセンサ 111の出力を利 用して角度変化量、角速度の変化、あるいは角加速度を判別してそれらの物理量を 自走車 30の方向制御に利用することにより、自走車 30をより円滑にかつ速やかに目 標レーンに収束させかつその向きを目標方向に正確かつ速やかに一致させることが 可能となる。  [0069] Since the gyro sensor 111 is provided to detect the direction of the self-propelled vehicle 30, and the deviation between the direction and the direction of the target lane is given to the speed ratio setting unit 133 as a direction correction amount ΔΘamd. As compared with the case where the position and direction in the transverse direction of the self-propelled vehicle 30 are controlled based only on the output of the line sensor 50, the control accuracy is improved. Furthermore, by using the output of the gyro sensor 111 to determine the amount of change in angle, change in angular velocity, or angular acceleration, and using these physical quantities for direction control of the self-propelled vehicle 30 It is possible to converge smoothly and quickly on the target lane and to align the direction with the target direction accurately and quickly.
[0070] さらに、 自走車 30の目標方向に対する方向補正量 Δ Θ amdをジャイロセンサ 111 の出力から直ちに判別することができ、ラインセンサ 50の出力を利用したレーンずれ 量 Δ Υの判別においてその方向補正量 Δ Θ amdを利用してずれ量 Δ Υを正確に検 出すること力 Sできる。従って、自走車 30のレーン追従精度、あるいは目標レーンへの 移動制御の精度を向上させることができる。 Further, the direction correction amount ΔΘ amd with respect to the target direction of the self-propelled vehicle 30 can be immediately determined from the output of the gyro sensor 111, and the lane shift using the output of the line sensor 50 can be determined. In the determination of the amount Δ 力, the force S can be detected accurately by using the direction correction amount Δ Θ amd. Therefore, the lane tracking accuracy of the self-propelled vehicle 30 or the accuracy of the movement control to the target lane can be improved.
[0071] 図 31はライン幅検查部 136における処理を示すフローチャートである。ライン幅検 查部 136は図 31の最初のステップ S221において進度カウンタ 121の値 ADcrtを取 得し、次のステップ S222にてレーンカウンタ 123の値を取得し、さらにステップ S223 にて方向補正量 Δ Θ amdを取得する。続くステップ S224ではラインセンサ 50の出 力から現在のレーンにおけるライン幅を演算する。図 29において説明したように、ラ イン幅を求めるためには、ラインセンサ 50の出力からドット数 Ndotを求めて 1ドット当 たりのライン幅を乗算し、これに方向補正量 Δ Θ amdに応じた補正を与えればよい。 続くステップ S225では演算されたライン幅が所定の許容範囲内か否か判断し、許容 範囲内であればステップ S221へ戻る。一方、ライン幅が許容範囲を超えている場合 にはステップ S226へ進み、検出されたライン幅を検出位置、すなわち進度カウンタ の値 ADcrt及びレーンカウンタの値と対応付けたデータをライン幅検査データとして 自走車制御装置 110の記憶装置に記憶し、その後にステップ S221へ戻る。ライン幅 の許容範囲は、誘導線 34のライン幅が本来のライン幅 Wgに対して増加又は減少す ることによってもたらされる自走車 30の走行制御のエラーの発生頻度を考慮して定 めればよい。例えば、誘導線 34の本来の幅 Wgが 6mmで、実際の線幅が ± 2mm以 内であれば自走車 30の走行制御に実用上支障が生じない場合には、許容範囲を 4 〜8mmに設定すればょレ、。  FIG. 31 is a flowchart showing processing in the line width detection unit 136. The line width detection unit 136 obtains the value ADcrt of the progress counter 121 in the first step S221 of FIG. 31, obtains the value of the lane counter 123 in the next step S222, and further in step S223, the direction correction amount Δ Get Θ amd. In the following step S224, the line width in the current lane is calculated from the output of the line sensor 50. As described in FIG. 29, in order to obtain the line width, the number of dots Ndot is obtained from the output of the line sensor 50 and multiplied by the line width per dot, and this is multiplied by the direction correction amount ΔΘ amd. Correction may be given. In subsequent step S225, it is determined whether or not the calculated line width is within a predetermined allowable range. If it is within the allowable range, the process returns to step S221. On the other hand, if the line width exceeds the allowable range, the process proceeds to step S226, and the data corresponding to the detected position, that is, the value of the progress counter ADcrt and the value of the lane counter is used as the line width inspection data. It memorize | stores in the memory | storage device of self-propelled vehicle control apparatus 110, and returns to step S221 after that. The allowable range of the line width is determined in consideration of the frequency of error in driving control of the self-propelled vehicle 30 caused by the increase or decrease of the guide line 34 with respect to the original line width Wg. That's fine. For example, if the original width Wg of the guide wire 34 is 6 mm and the actual line width is within ± 2 mm, the allowable range should be 4 to 8 mm if there is no practical problem with the driving control of the self-propelled vehicle 30. If you set it to.
[0072] 以上の処理を行うことにより、下段走行面 18の汚れ、異物の混入、誘導線 34の剥 がれ等に起因する誘導線 34の見かけ上の幅の増加又は減少を検出することができ る。あるいは、誘導線として誤って検出されるような線状の汚れ、傷等の発生もライン 幅の異常として検出することができる。また、記憶されたデータを利用してライン幅の 異常箇所を周回路 35における進度及びレーンによって特定することが可能となる。 本形態ではレーンずれ量 Δ Υの検出、現在のレーンの判断、レーン補正量 A Yamd の演算においてラインセンサ 50の出力を参照しているため、誘導線 34の幅が汚れ 等によって変化した場合にはその影響で自走車 30の誘導線 34に対する追従性が 劣化し、レーン変更時の挙動が安定しないといった誤動作が生じるおそれがあり、そ のためには下段走行面 18の定期的なチェック、清掃等が必要となる。このような作業 に関してライン幅検査部 136が作成したデータを有効に活用することができる。 [0072] By performing the above processing, it is possible to detect an increase or decrease in the apparent width of the guide wire 34 due to dirt on the lower running surface 18, contamination of foreign matter, peeling of the guide wire 34, or the like. it can. Alternatively, the occurrence of linear stains and scratches that are erroneously detected as guide lines can also be detected as abnormal line widths. Further, it becomes possible to identify an abnormal part of the line width by the progress and the lane in the peripheral circuit 35 using the stored data. In this configuration, the output of the line sensor 50 is referred to in the calculation of the lane deviation amount ΔΥ, the determination of the current lane, and the calculation of the lane correction amount A Yamd. As a result, the followability of the self-propelled vehicle 30 to the guide line 34 is reduced. It may deteriorate and cause malfunctions such as unstable behavior when changing lanes. To that end, periodic checks and cleaning of the lower lane 18 are necessary. For such work, the data created by the line width inspection unit 136 can be used effectively.
[0073] なお、上記ではドット数 Ndotをライン幅に換算している力 ドット数 Ndotを角度 Δ  [0073] In the above, the number of dots Ndot is converted into the line width.
e amdにて補正した値を利用してライン幅が許容範囲内か否かを判断してもよい。 角度補正を省略してドット数 Ndotにより許容範囲内か否力、を判断してもよい。例えば 、自走車 30の方向補正量 Δ Θ amdを一定の範囲に制限するような走行制御を行う 場合には、その方向補正量 Δ Θ amdが最大値の場合の誘導線幅 Wgに対応するラ インセンサ 50上のドット数 Ndotを予め求めておき、検出されたドット数がこれを超え た場合に許容範囲を超えたと判断してもよい。この場合は方向補正量 Δ Θ amdを利 用した傾き補正も不要である。一方、ライン幅の下限値については、自走車 30が誘 導線 34に沿って真っ直ぐ進んでいる場合のライン幅 Wgに相当する検出ドット数を基 準として、検出されたドット数 Ndotがその基準値よりも少ないときにライン幅が許容範 囲未満であると判断してもよい。  It may be determined whether the line width is within an allowable range using the value corrected by e amd. The angle correction may be omitted and the power of being within the allowable range may be determined based on the number of dots Ndot. For example, when traveling control is performed to limit the direction correction amount ΔΘamd of the self-propelled vehicle 30 to a certain range, it corresponds to the guide line width Wg when the direction correction amount ΔΘamd is the maximum value. The number of dots Ndot on the line sensor 50 may be obtained in advance, and when the number of detected dots exceeds this, it may be determined that the allowable range has been exceeded. In this case, tilt correction using the direction correction amount ΔΘamd is also unnecessary. On the other hand, regarding the lower limit of the line width, the number of detected dots Ndot is used as a reference, based on the number of detected dots corresponding to the line width Wg when the self-propelled vehicle 30 is traveling straight along the guide wire 34. When the value is smaller than the value, the line width may be determined to be less than the allowable range.
[0074] ライン幅検査部 136によるライン幅の検査は競馬ゲームのレース中に随時実行して もよレ、し、レース外の適宜の時期に実行してもよい。例えば、レースが行われていな い適当な時期にメイン制御装置 100からライン幅検査の実行を指示して自走車 30を 周回路 35に沿って所定の走行パターンで走行させることによりライン幅検査を実施し てもよレ、。上記の形態では、ラインセンサ 50から出力される信号を二値化して走行面 18の黒色部分及び白色部分を判別している力 S、ラインセンサ 50からアナログ信号波 形を出力させ、これを例えば 256階調でデジタルィ匕して白又は黒以外の着色部分を 検出し、その着色部分を汚れ等として識別してもよレ、。  [0074] The line width inspection by the line width inspection unit 136 may be performed at any time during the race of the horse racing game, or may be performed at an appropriate time outside the race. For example, the line width inspection is performed by instructing execution of the line width inspection from the main control device 100 at an appropriate time when no race is being performed and causing the self-propelled vehicle 30 to travel along the circuit 35 in a predetermined traveling pattern. You can do this. In the above embodiment, the signal S output from the line sensor 50 is binarized, the force S for discriminating the black portion and the white portion of the traveling surface 18 is output, and the analog signal waveform is output from the line sensor 50. Digitally digitize with 256 gradations to detect colored parts other than white or black and identify those colored parts as dirt.
[0075] 次に、ライン幅検查部 136によって取得されるライン幅検查データを活用する好適 な形態について説明する。 自走車 30はライン幅検查データを表示する機能を有しな いため、そのデータを自走車 30からメイン制御装置 100に送信し、さらには必要に応 じてネットワーク 6を経由して保守サーバ 4等に送信することによってライン幅検查デ ータを有効に活用することができる。以下はそのような活用方法を示すものである。  [0075] Next, a preferred mode of using the line width detection data acquired by the line width detection unit 136 will be described. Since the self-propelled vehicle 30 does not have a function to display the line width inspection data, the data is transmitted from the self-propelled vehicle 30 to the main control device 100, and further maintenance is performed via the network 6 as necessary. By transmitting to server 4 etc., the line width detection data can be used effectively. The following shows such usage.
[0076] 図 32は自走車 30からメイン制御装置 100にライン幅検查データを送信する手順を 示すフローチャートである。 自走車制御装置 110はステップ S241にてライン幅検査 データの送信時期か否か判断し、送信時期と判断した場合にはステップ S242へ進 んでライン幅検査データをメイン制御装置 100に向けて送信する。一方、メイン制御 装置 100は自走車 30から検查データが送信されたか否かをステップ S301で判断す る。そして、送信があつたと判断した場合にステップ S302へ進み、送信されたライン 幅検查データを自己の記憶装置に蓄積してステップ S301へ戻る。ライン幅検查デ ータの送信時期は競馬ゲームの制御に支障がない時期に設定すればよぐ一例とし てレース終了後の適当な時期を送信時期として設定することができる。 FIG. 32 shows a procedure for transmitting line width inspection data from the self-propelled vehicle 30 to the main control device 100. It is a flowchart to show. In step S241, self-propelled vehicle control device 110 determines whether or not it is time to transmit line width inspection data. If it is determined that it is time to transmit, it proceeds to step S242 and transmits line width inspection data to main control device 100. To do. On the other hand, main controller 100 determines in step S301 whether inspection data is transmitted from self-propelled vehicle 30 or not. If it is determined that the transmission has been successful, the process proceeds to step S302, where the transmitted line width verification data is stored in its own storage device, and the process returns to step S301. As an example, the transmission time of the line width detection data may be set as a time when there is no problem in controlling the horse racing game.
[0077] 図 33は、 自走車 30から送られたライン幅検查データを管理するためにメイン制御 装置 100がライン幅検查データの受信終了後の適宜の時期に実行するライン幅検 查データ管理の処理手順を示すフローチャートである。図 33の最初のステップ S321 においてメイン制御装置 100は自走車 30から受け取ったライン幅検查データを解析 して走行面ワーニングデータを作成し、続くステップ S322でその走行面ワーニング データをメイン制御装置 100の記憶装置に記憶する。ライン幅検査データには、許容 範囲外と識別されたライン幅、及びそのライン幅の検出位置 (進度及びレーン番号) が含まれているので、検出位置毎に検出回数をカウントし、検出位置と検出回数とを 対応付けたデータを作成してこれを走行面ワーニングデータとして記憶する。検出回 数のカウントを省略して検出位置のみを走行面ワーニングデータに保持させてもよい 。あるいは、検出位置を省略して検出回数のみを走行面ワーニングデータに保持さ せてもよい。検出位置に関しては磁気計測線 36と 1: 1に必ずしも対応させる必要は なぐ隣接する 2又はそれ以上の磁気計測線 36をまとめて一つの検出位置とみなす ようにしてもよい。この場合には走行面ワーニングデータのデータ量を軽量化すること ができる。あるいは、図 10に一点鎖線で示したように周回路 35を複数の区域 Z1〜Z 10に区分して区域毎の検出回数をカウントし、その検出回数と区域とを対応付けた データを走行面ワーニングデータとして作成してもよい。  [0077] FIG. 33 shows line width detection executed at an appropriate time after the end of reception of the line width detection data by the main controller 100 in order to manage the line width detection data sent from the self-propelled vehicle 30. It is a flowchart which shows the process sequence of data management. In the first step S321 in FIG. 33, the main controller 100 analyzes the line width inspection data received from the self-propelled vehicle 30 and creates the travel surface warning data. In the subsequent step S322, the main control device 100 generates the travel surface warning data. Store in 100 storage devices. The line width inspection data includes the line width identified as outside the allowable range and the detection position (progress and lane number) of the line width. Therefore, the number of detections is counted for each detection position, and the detection position and Data that correlates the number of detections is created and stored as travel surface warning data. The count of the number of detections may be omitted, and only the detection position may be held in the traveling surface warning data. Alternatively, the detection position may be omitted and only the number of detections may be retained in the traveling surface warning data. Regarding the detection positions, it is not always necessary to correspond to the magnetic measurement lines 36 and 1: 1, and two or more adjacent magnetic measurement lines 36 may be regarded as one detection position. In this case, the amount of running surface warning data can be reduced. Alternatively, as indicated by the one-dot chain line in FIG. 10, the circuit 35 is divided into a plurality of zones Z1 to Z10, the number of times of detection is counted for each zone, and the data that associates the number of times of detection with the zone is displayed on the traveling surface. It may be created as warning data.
[0078] 図 33に戻って、走行面ワーニングデータを記憶した後はステップ S323に進んで走 行面ワーニングデータのデータ量を確認し、続くステップ S324でそのデータ量が所 定の許容量を超えたか否か判断する。許容量を超えている場合にはステップ S325 にて警告フラグに 1をセットし、続くステップ S326で走行面ワーニングデータを保守 サーバ 4に送信し、その後に処理を終える。一方、ステップ S324で否定判断した場 合はステップ S327で警告フラグを 0に設定して処理を終える。 [0078] Returning to FIG. 33, after the driving surface warning data is stored, the process proceeds to step S323 to check the data amount of the driving surface warning data, and in step S324, the data amount exceeds the predetermined allowable amount. Judge whether or not. If the tolerance is exceeded, step S325 The warning flag is set to 1 at, and in the following step S326, the traveling surface warning data is transmitted to the maintenance server 4 and the processing is finished. On the other hand, if a negative determination is made in step S324, the warning flag is set to 0 in step S327 and the process ends.
[0079] 図 34は、走行面ワーニングデータに基づく走行面チェック画面をゲーム機 2のオペ レータ(管理者)に表示するためにメイン制御装置 100が実行する走行面チェック管 理の処理手順を示すフローチャートである。この処理は、例えばゲーム機 2が保守管 理のためのモードに制御されているときにオペレータの指示に基づいて実行される。 図 34の最初のステップ S341においてメイン制御装置 100は警告フラグに 1がセット されているか否か判断し、 1がセットされていればステップ S342に進んで所定の警告 表示を行う。警告表示は例えばオペレータに走行面の検查又は清掃を促すメッセ一 ジを含むものとする。警告フラグに 1がセットされていなければステップ S342はスキッ プする。続くステップ S343では走行面ワーニングデータを読み出し、さらにステップ S344で走行面ワーニングデータに基づく走行面チェック画面を表示して処理を終え る。 [0079] FIG. 34 shows a processing procedure of running surface check management executed by the main controller 100 in order to display a running surface check screen based on the running surface warning data to the operator (administrator) of the game machine 2. It is a flowchart. This process is executed based on an operator's instruction when the game machine 2 is controlled to the maintenance management mode, for example. In the first step S341 in FIG. 34, the main controller 100 determines whether or not 1 is set in the warning flag. If 1 is set, the process proceeds to step S342 to display a predetermined warning. The warning display shall include, for example, a message prompting the operator to inspect or clean the running surface. If the warning flag is not set to 1, step S342 is skipped. In subsequent step S343, the traveling surface warning data is read out, and in step S344, a traveling surface check screen based on the traveling surface warning data is displayed and the processing is completed.
[0080] 走行面チェック画面は例えば図 35に示すように構成することができる。この例では 周回路 35を平面的に示したコース全体図 80を画面に表示するとともに、そのコース 全体図 80の検出位置にドット 81を重ねて表示している。ドット 81の表示態様を検出 回数に応じて変化させることにより、検出回数を識別可能としてもよい。図 35では検 出回数が増加する程にドット 81の直径を拡大している。但し、検出回数に応じてドット 81の色を変化させてもよい。さらに、検出回数が所定閾値を超えた区域を他の区域 と異なる態様で示すことにより、オペレータに検査又は清掃が必要な区域をより明確 に示すようにしてもよレ、。図 35の例では区域 Z4、 Z9及び Z10が他の区域とは異なる 態様で表示されることにより、これらの区域 Z4、 Z9及び Z10において検查又は清掃 の必要性が高いことが示されている。さらに、区域 Z4及び Z9と区域 Z10とを異なる態 様で示すことにより、区域 Z4及び Z9に対する検查又は清掃の必要性が区域 Z10より もさらに高いことが示されている。  The traveling surface check screen can be configured as shown in FIG. 35, for example. In this example, an entire course diagram 80 showing the peripheral circuit 35 in a plan view is displayed on the screen, and dots 81 are superimposed and displayed at the detection positions in the entire course diagram 80. The number of detections may be identified by changing the display mode of the dots 81 in accordance with the number of detections. In Fig. 35, the diameter of dot 81 increases as the number of detections increases. However, the color of the dots 81 may be changed according to the number of detections. In addition, by showing areas where the number of detections exceeds a predetermined threshold in a different manner from other areas, the operator may be shown more clearly the areas that need inspection or cleaning. In the example of Fig. 35, the areas Z4, Z9 and Z10 are displayed differently from the other areas, indicating that these areas Z4, Z9 and Z10 have a high need for inspection or cleaning. . In addition, showing zones Z4 and Z9 and zone Z10 differently indicates that the need for inspection or cleaning for zones Z4 and Z9 is even higher than zone Z10.
[0081] なお、走行面チェック画面は図 35の例に限らなレ、。ドット 81を省略して、検查又は 清掃が必要な区域のみを示すようにしてもよい。区域毎の表示変更を省略してドット 81による検出位置のみを示してもよい。検出位置はドットに限らず、適宜の指標によ つて示してよい。コース全体図 80を斜視図として表示し、検出位置には検出回数に 応じた高さの棒グラフを表示してもよレ、。 [0081] The running surface check screen is not limited to the example of FIG. Dot 81 may be omitted to show only areas that need to be examined or cleaned. Dot change display for each area Only the detection position by 81 may be shown. The detection position is not limited to a dot, and may be indicated by an appropriate index. The entire course view 80 can be displayed as a perspective view, and a bar graph with a height corresponding to the number of detections can be displayed at the detection position.
[0082] 図 34では走行面チェック画面の表示がオペレータによって指示された場合に警告 フラグをチェックして警告表示の要否を判断してレ、るが、警告表示はこれに限らず適 宜のタイミングで行ってよレ、。例えば、ゲーム機 2の起動時に走行面ワーニングデー タのデータ量を判別し、許容量を超えている場合に警告表示を実行してもよい。警告 表示を行う際に、これと合わせて走行面チェック画面を表示させるか否かをオペレー タに問い合わせてもよい。  [0082] In FIG. 34, when the display of the traveling surface check screen is instructed by the operator, the warning flag is checked to determine whether or not the warning display is necessary. However, the warning display is not limited to this and is appropriate. Go at the timing. For example, the data amount of the running surface warning data may be determined when the game machine 2 is activated, and a warning display may be executed when the allowable amount is exceeded. When the warning is displayed, the operator may be inquired whether or not to display the traveling surface check screen.
[0083] 図 36は下段走行面 18の検查、清掃等を目的としてオペレータがメンテナンスモー ドを指示した場合にメイン制御装置 100が実行するメンテナンスモードの処理手順を 示すフローチャートである。メンテナンスモードが指示された場合、メイン制御装置 10 0は最初のステップ S361にてステージ駆動装置 21 (図 3参照)に起動指示を与えて ステージ 15を上昇させる。ステージ 15を上昇させることにより、下段走行面 18と給電 面 20との間に十分なスペースが生じるため、オペレータは下段走行面 18の検査や 清掃を容易に行うことができる。  FIG. 36 is a flowchart showing a maintenance mode processing procedure executed by the main control device 100 when the operator instructs the maintenance mode for the purpose of inspection, cleaning, etc. of the lower running surface 18. When the maintenance mode is instructed, the main controller 100 gives an activation instruction to the stage driving device 21 (see FIG. 3) and raises the stage 15 in the first step S361. Raising the stage 15 creates a sufficient space between the lower traveling surface 18 and the power feeding surface 20, so that the operator can easily inspect and clean the lower traveling surface 18.
[0084] 続くステップ S362ではオペレータがメンテナンス終了を指示したか否か判断し、指 示があった場合にステップ S363へ進んでステージ 15を下降させる。続くステップ S3 64では走行面ワーニングデータをクリアするか否かをオペレータに対して確認し、ク リアが指示されたか否かを次のステップ S365で判断する。指示があればステップ S3 66で走行面ワーニングデータをクリア、すなわち削除して処理を終える。一方、ステツ プ S365でクリアが指示されない場合にはステップ S366をスキップして処理を終える  In subsequent step S362, it is determined whether or not the operator has instructed the end of the maintenance. When there is an instruction, the process proceeds to step S363 and the stage 15 is lowered. In the following step S364, it is confirmed to the operator whether or not the traveling surface warning data is to be cleared, and whether or not a clear is instructed is determined in the next step S365. If there is an instruction, in step S3 66, the driving surface warning data is cleared, that is, deleted, and the process ends. On the other hand, if clear is not instructed in step S365, step S366 is skipped and the process is terminated.
[0085] なお、図 33のステップ S326にて保守サーバ 4に走行面ワーニングデータを送信し ているが、その走行面ワーニングデータを受信した保守サーバ 4においてもメイン制 御装置 100と同様の処理を実行することにより、図 35に例示したような走行面チヱッ ク画面を表示して走行面 18の状態を確認できるようにしてもよレ、。あるいは走行面ヮ 一ユングデータを保守サーバ 4にてさらに詳細に解析してもよレ、。保守サーバ 4にて 下段走行面 18の状態を確認し、サーバ管理者からゲーム機 2が設置された店舗の オペレータに対して清掃等を促してもよい。ライン幅検査データを保守サーバ 4に送 信し、保守サーバ 4にて走行面ワーニングデータを作成し、これに基づく走行面チェ ック画面の表示あるいは警告の表示を行うようにしてもよい。 Note that the travel surface warning data is transmitted to the maintenance server 4 in step S326 of FIG. 33, but the maintenance server 4 that has received the travel surface warning data performs the same processing as the main control device 100. By executing, it is possible to display the traveling surface check screen as illustrated in FIG. 35 so that the state of the traveling surface 18 can be confirmed. Or you can analyze the running surface jung data in more detail with the maintenance server 4. At maintenance server 4 The state of the lower running surface 18 may be confirmed, and the server administrator may urge the operator of the store where the game machine 2 is installed to perform cleaning or the like. The line width inspection data may be transmitted to the maintenance server 4, the traveling surface warning data may be generated by the maintenance server 4, and the traveling surface check screen or warning may be displayed based on this.
[0086] 以上の形態では、ラインセンサ(50)が誘導線検出手段に、ジャイロセンサ 111が方 向検出手段に、磁気センサ 52が長手方向位置検出手段に、 自走車制御装置 110 が走行制御手段に、走行制御装置 30、通信制御回路 114及び送信部 112の組み 合わせがデータ出力手段に、メイン制御装置 100がゲーム制御装置に、通信ュニッ ト 101、中継装置 102、送信部 112、受信部 113及び通信制御回路 114の組み合わ せが通信手段に、メイン制御装置 100及び保守サーバ 4が走行面管理装置にそれ ぞれ相当する。また、 自走車制御装置 110のライン幅検查部 136が線幅検查手段と して機能する。 [0086] In the above embodiment, the line sensor (50) is the guiding line detection means, the gyro sensor 111 is the direction detection means, the magnetic sensor 52 is the longitudinal position detection means, and the self-propelled vehicle control device 110 is the travel control. As a means, a combination of the travel control device 30, the communication control circuit 114 and the transmission unit 112 is a data output unit, the main control device 100 is a game control device, a communication unit 101, a relay device 102, a transmission unit 112, a reception unit. The combination of 113 and the communication control circuit 114 corresponds to the communication means, and the main control device 100 and the maintenance server 4 correspond to the traveling surface management device. In addition, the line width detecting unit 136 of the self-propelled vehicle control device 110 functions as a line width detecting means.
[0087] 上記の形態では、磁気計測線 36を磁気センサ 52で検出することによって誘導線 3 4の長手方向に関する自走車 30の位置を判別しているが、誘導線の長手方向に関 する位置の判別はこのような手段を用いるものに限定されない。例えば、駆動輪 42 の回転量を積算して自走車 30の位置を判別してもよい。 自走車 30の方向の検出に 関しても、ジャイロセンサ 111を利用するものに限定されず、種々の変更が可能であ り、一例として駆動輪 42の回転速度の差に基づいて方向を検出することも可能であ る。  [0087] In the above embodiment, the position of the self-propelled vehicle 30 with respect to the longitudinal direction of the guide wire 34 is determined by detecting the magnetic measurement line 36 with the magnetic sensor 52, but with respect to the longitudinal direction of the guide wire. The position determination is not limited to using such means. For example, the position of the self-propelled vehicle 30 may be determined by integrating the amount of rotation of the drive wheels 42. The direction of the self-propelled vehicle 30 is not limited to that using the gyro sensor 111, and various changes are possible. For example, the direction is detected based on the difference in the rotational speed of the drive wheels 42. It is also possible to do this.
[0088] 本発明は下段走行面と上段走行面とを有するゲーム機に限定されず、単一の走行 面を備えたゲーム機においても誘導線を検出して自走体の走行を制御する限りは適 用可能である。ゲーム機にて実行されるゲームは競馬ゲームに限らない。誘導線は 周回路を形成するように設けられたものに限らず、直線路を構成するように設けられ てもよレ、。ネットワークと接続されるゲーム機に限らず、ネットワークから切り離されたス タンドアローン型のゲーム機であっても本発明は適用可能である。  [0088] The present invention is not limited to a game machine having a lower running surface and an upper running surface, and even in a game machine having a single running surface, as long as the guidance line is detected and the running of the self-propelled body is controlled. Is applicable. The game executed on the game machine is not limited to a horse racing game. The guide wire is not limited to the one provided to form the circuit, but may be provided to form a straight path. The present invention is applicable not only to a game machine connected to a network but also to a stand-alone game machine disconnected from the network.

Claims

請求の範囲 The scope of the claims
[1] 誘導線が付された走行面を有するゲーム機本体と、前記走行面を自走可能な自走 体とを具備し、前記自走体には、前記誘導線を検出する誘導線検出手段と、前記誘 導線検出手段の検出結果に基づいて自走体の走行を制御する走行制御手段とが 設けられたゲーム機にぉレ、て、  [1] A game machine main body having a running surface with a guide line and a self-propelled body capable of self-propelling the traveling surface, and the self-propelled body detects the guide line. And a game machine provided with travel control means for controlling the travel of the self-propelled body based on the detection result of the guide wire detection means,
前記誘導線検出手段として、前記自走体の左右方向に並べられた受光素子群に より前記走行面の前記誘導線を含む所定の検出領域における輝度分布を検出する ラインセンサが設けられ、前記自走体には、検出された誘導線の線幅を前記ラインセ ンサの出力に基づいて判別する線幅検査手段がさらに設けられている、  As the guide line detecting means, a line sensor for detecting a luminance distribution in a predetermined detection region including the guide line on the traveling surface by a group of light receiving elements arranged in the left-right direction of the self-propelled body is provided. The running body is further provided with line width inspection means for determining the line width of the detected guide line based on the output of the line sensor.
ゲーム機。  game machine.
[2] 前記線幅検査手段は、判別した線幅の適否をさらに判別する請求の範囲第 1項に 記載のゲーム機。  [2] The game machine according to claim 1, wherein the line width inspecting means further determines whether or not the determined line width is appropriate.
[3] 前記自走体には、前記誘導線の長手方向に対する前記自走体の方向のずれを特 定するために必要な情報を検出する方向検出手段が設けられ、  [3] The self-propelled body is provided with direction detecting means for detecting information necessary for specifying a deviation of the direction of the self-propelled body with respect to the longitudinal direction of the guide line,
前記走行制御手段は、前記方向検出手段の検出結果に基づレ、て前記誘導線の 長手方向に対する前記自走体の方向のずれを判別し、その判別結果をさらに参照し て前記自走体の走行を制御するように構成され、  The travel control means determines a shift in the direction of the self-propelled body with respect to the longitudinal direction of the guide wire based on the detection result of the direction detecting means, and further refers to the determination result to determine the self-propelled body. Configured to control the running of
前記線幅検査手段は、前記ラインセンサの検出結果と前記走行制御手段が判別し た方向のずれとに基づいて前記線幅を判別する、  The line width inspection means determines the line width based on a detection result of the line sensor and a deviation in a direction determined by the travel control means;
請求の範囲第 1項又は第 2項に記載のゲーム機。  The game machine according to claim 1 or 2.
[4] 前記自走体には、前記誘導線の長手方向に関する前記自走体の位置を特定する ために必要な情報を検出する長手方向位置検出手段が設けられ、 [4] The self-propelled body is provided with a longitudinal position detecting means for detecting information necessary for specifying the position of the self-propelled body with respect to the longitudinal direction of the guide wire,
前記走行制御手段は、前記長手方向位置検出手段及び前記ラインセンサのそれ ぞれの検出結果に基づいて前記走行面における前記自走体の位置を判別し、その 判別結果に基づいて前記自走体の走行を制御するように構成され、  The travel control means determines the position of the self-propelled body on the travel surface based on the detection results of the longitudinal position detection means and the line sensor, and based on the determination result, the self-propelled body Configured to control the running of
前記線幅検査手段は、前記線幅に関する判別結果と前記走行制御手段が判別し た自走体の位置とを対応付けた検査データを作成する、  The line width inspection means creates inspection data in which the determination result relating to the line width is associated with the position of the self-propelled body determined by the travel control means.
請求の範囲第 1項〜第 3項のいずれか一項に記載のゲーム機。 The game machine according to any one of claims 1 to 3.
[5] 前記自走体には、前記検査データを自走体の外部に出力するデータ出力手段が 設けられている請求の範囲第 4項に記載のゲーム機。 5. The game machine according to claim 4, wherein the self-propelled body is provided with data output means for outputting the inspection data to the outside of the self-propelled body.
[6] 前記自走体から出力される検査データに基づいて、前記ゲーム機の管理者に前記 走行面の状態を通知するための所定の処理を実行する走行面管理装置を備えてい る請求の範囲第 5項に記載のゲーム機。  6. A running surface management device for executing a predetermined process for notifying a manager of the game machine of the state of the running surface based on inspection data output from the self-running body. The game machine according to item 5 of the scope.
[7] 前記走行面管理装置は、前記所定の処理として、前記自走体から出力される検査 データに基づいて、前記線幅が不適当となっている走行面上の位置及び当該位置 の検出回数を特定するためのデータを作成して該データを蓄積し、蓄積されたデー タに基づいて前記線幅が不適当と判別された位置及びその位置の検出回数を示す 走行面チェック画面を表示する請求の範囲第 6項に記載のゲーム機。  [7] The traveling surface management device detects the position on the traveling surface where the line width is inappropriate and the position based on the inspection data output from the self-propelled body as the predetermined process. Creates data for specifying the number of times, accumulates the data, and displays a running surface check screen showing the position where the line width is determined to be inappropriate based on the accumulated data and the number of times the position is detected. The game machine according to claim 6.
[8] 前記走行面管理装置は、前記所定の処理として、前記自走体から出力される検査 データに基づいて、前記線幅が不適当となっている走行面上の位置又は当該位置 の検出回数の少なくともいずれか一方を特定するためのデータを作成して該データ を蓄積し、蓄積されたデータ量が所定の許容量を超えた場合に前記ゲーム機の管 理者に対して所定の警告を行う請求の範囲第 6項に記載のゲーム機。  [8] The traveling surface management device detects the position on the traveling surface where the line width is inappropriate or the position based on the inspection data output from the self-propelled body as the predetermined process. Data for identifying at least one of the number of times is created and accumulated, and when the accumulated data exceeds a predetermined allowable amount, a predetermined warning is given to the administrator of the game machine. The game machine according to claim 6, wherein:
[9] 前記自走体の前記走行制御手段に対して当該自走体の走行に関する指示を所定 の通信手段を介して送信して所定のゲームを実行させるゲーム制御装置を備え、前 記ゲーム制御装置が前記走行面管理装置として機能する請求の範囲第 6項〜第 8 項のレ、ずれか一項に記載のゲーム機。  [9] The game control apparatus includes: a game control device that transmits an instruction related to the traveling of the self-propelled body to the traveling control unit of the self-propelled body via a predetermined communication unit to execute a predetermined game; The game machine according to any one of claims 6 to 8, wherein the device functions as the running surface management device.
[10] 前記ゲーム機が当該ゲーム機を管理するためのサーバと所定のネットワークを介し て接続され、前記サーバが前記走行面管理装置として機能する請求の範囲第 6項〜 第 9項のレ、ずれか一項に記載のゲーム機。  [10] The claims 6 to 9, wherein the game machine is connected to a server for managing the game machine via a predetermined network, and the server functions as the running surface management device. The game machine as described in one item.
[11] ゲーム機の走行面に付された誘導線を検出する誘導線検出手段と、前記誘導線 検出手段の検出結果に基づいて前記走行面上における走行を制御する走行制御 手段とが設けられた自走体において、  [11] A guide line detecting means for detecting a guide line attached to the running surface of the game machine, and a travel control means for controlling the travel on the running surface based on the detection result of the guide line detecting means are provided. In the self-propelled body
前記誘導線検出手段として、前記自走体の左右方向に並べられた受光素子群に より前記走行面の前記誘導線を含む所定の検出領域における輝度分布を検出する ラインセンサが設けられるとともに、検出された誘導線の線幅を前記ラインセンサの出 力に基づいて判別する線幅検査手段をさらに備えている、 As the guide line detecting means, a line sensor for detecting a luminance distribution in a predetermined detection area including the guide line on the traveling surface is provided by a light receiving element group arranged in the left-right direction of the self-propelled body, and is detected. The line width of the guided wire is output from the line sensor. It further comprises a line width inspection means for determining based on force,
自走体。  Self-propelled body.
[12] 前記線幅検査手段は、判別した線幅の適否をさらに判別する請求の範囲第 11項 に記載の自走体。  [12] The self-propelled vehicle according to [11], wherein the line width inspection means further determines whether or not the determined line width is appropriate.
[13] 前記誘導線の長手方向に対する前記自走体の方向のずれを特定するために必要 な情報を検出する方向検出手段を備え、  [13] It comprises a direction detecting means for detecting information necessary for specifying a deviation of the direction of the self-propelled body with respect to the longitudinal direction of the guide line,
前記走行制御手段は、前記方向検出手段の検出結果に基づいて前記誘導線の 方向に対する前記自走体の方向のずれを判別し、その判別結果をさらに参照して前 記自走体の走行を制御するように構成され、  The travel control means determines a deviation of the direction of the self-propelled body with respect to the direction of the guide line based on the detection result of the direction detection means, and further refers to the determination result to determine the travel of the self-propelled body. Configured to control,
前記幅検査手段は、前記ラインセンサの検出結果と前記走行制御手段が判別した 方向のずれとに基づいて前記線幅を判別する、  The width inspection means determines the line width based on a detection result of the line sensor and a deviation in a direction determined by the travel control means.
請求の範囲第 11項又は第 12項に記載の自走体。  The self-propelled body according to claim 11 or 12.
[14] 前記誘導線の長手方向に関する自走体の位置を特定するために必要な情報を検 出する長手方向位置検出手段を備え、 [14] Longitudinal position detecting means for detecting information necessary for specifying the position of the self-propelled body with respect to the longitudinal direction of the guide line,
前記走行制御手段は、前記長手方向位置検出手段及び前記ラインセンサのそれ ぞれの検出結果に基づいて前記走行面における自走体の位置を判別し、その判別 結果に基づいて自走体の走行を制御するように構成され、  The travel control means determines the position of the self-propelled body on the travel surface based on the detection results of the longitudinal position detection means and the line sensor, and the travel of the self-propelled body based on the determination result. Configured to control
前記線幅検査手段は、前記誘導線の幅に関する判別結果と前記走行制御手段が 判別した自走体の位置とを対応付けた検査データを作成する検査データ作成手段 を備えている、  The line width inspection means includes inspection data creation means for creating inspection data in which the determination result relating to the width of the guide line is associated with the position of the self-propelled body determined by the travel control means.
請求の範囲第 11項〜第 13項のいずれか一項に記載の自走体。  The self-propelled body according to any one of claims 11 to 13.
[15] 前記検査データを外部に出力するデータ出力手段が設けられている請求の範囲 第 14項に記載の自走体。 15. The self-propelled body according to claim 14, further comprising data output means for outputting the inspection data to the outside.
PCT/JP2006/300594 2005-01-26 2006-01-18 Game machine self-traveling body WO2006080214A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
GB0714443A GB2437457B (en) 2005-01-26 2006-01-18 Game machine and self-running body for use therein
US11/814,711 US20090011816A1 (en) 2005-01-26 2006-01-18 Game Machine and Self-Running Body For Use Therein
GB0714446A GB2437458B (en) 2005-01-26 2006-01-18 Game machine and self-running body for use therein
HK08100632.6A HK1106931A1 (en) 2005-01-26 2008-01-17 Game machine and self-running body for use therein

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-017753 2005-01-26
JP2005017753A JP3885081B2 (en) 2005-01-26 2005-01-26 Game machine and self-propelled body used therefor

Publications (1)

Publication Number Publication Date
WO2006080214A1 true WO2006080214A1 (en) 2006-08-03

Family

ID=36740248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/300594 WO2006080214A1 (en) 2005-01-26 2006-01-18 Game machine self-traveling body

Country Status (7)

Country Link
US (1) US20090011816A1 (en)
JP (1) JP3885081B2 (en)
KR (1) KR100902715B1 (en)
GB (2) GB2437458B (en)
HK (1) HK1106931A1 (en)
TW (1) TW200638978A (en)
WO (1) WO2006080214A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109186432A (en) * 2018-09-29 2019-01-11 滁州欧博特电子制造有限公司 A kind of heavy-load type precise guide rail accuracy detecting device and its detection method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003033564A (en) * 2001-07-19 2003-02-04 Konami Co Ltd Racing direction reverse operation system for line guiding type racing game system
JP2003164661A (en) * 2001-11-30 2003-06-10 Konami Co Ltd Traveling control system for line guided racing game
JP2003199969A (en) * 2002-01-09 2003-07-15 Konami Co Ltd System for angle direction of self-traveling body in line guided race game machine

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0693937B2 (en) * 1991-05-30 1994-11-24 株式会社セガ・エンタープライゼス Video synchronizer for competitive game machines
JP3230779B2 (en) * 1993-03-29 2001-11-19 江藤電気株式会社 Competition game equipment
JP3049330B2 (en) * 1993-08-25 2000-06-05 コナミ株式会社 Game equipment
US5411258A (en) * 1994-03-17 1995-05-02 Fresh Logic Ltd. Interactive video horse-race game
US5770533A (en) * 1994-05-02 1998-06-23 Franchi; John Franco Open architecture casino operating system
JP3870493B2 (en) * 1996-08-02 2007-01-17 株式会社セガ Competitive game equipment
JPH11244510A (en) * 1998-03-03 1999-09-14 Seiko Precision Inc Travel control device of traveling body
US7235013B2 (en) * 2000-12-07 2007-06-26 Konami Corporation Game machine using self-propelled members
JP3591771B2 (en) * 2001-01-10 2004-11-24 コナミ株式会社 Race game machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003033564A (en) * 2001-07-19 2003-02-04 Konami Co Ltd Racing direction reverse operation system for line guiding type racing game system
JP2003164661A (en) * 2001-11-30 2003-06-10 Konami Co Ltd Traveling control system for line guided racing game
JP2003199969A (en) * 2002-01-09 2003-07-15 Konami Co Ltd System for angle direction of self-traveling body in line guided race game machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109186432A (en) * 2018-09-29 2019-01-11 滁州欧博特电子制造有限公司 A kind of heavy-load type precise guide rail accuracy detecting device and its detection method
CN109186432B (en) * 2018-09-29 2021-03-02 滁州欧博特电子制造有限公司 Heavy-load precision guide rail precision detection device and detection method thereof

Also Published As

Publication number Publication date
GB2437458A (en) 2007-10-24
TWI302848B (en) 2008-11-11
GB0714443D0 (en) 2007-09-05
GB2437458B (en) 2009-11-18
GB2437458A8 (en) 2007-11-05
TW200638978A (en) 2006-11-16
GB2437458A9 (en) 2009-03-11
KR100902715B1 (en) 2009-06-15
GB2437457B (en) 2009-11-18
JP2006204395A (en) 2006-08-10
HK1106931A1 (en) 2008-03-20
JP3885081B2 (en) 2007-02-21
GB0714446D0 (en) 2007-09-05
US20090011816A1 (en) 2009-01-08
GB2437457A9 (en) 2009-03-11
GB2437457A (en) 2007-10-24
KR20070104434A (en) 2007-10-25

Similar Documents

Publication Publication Date Title
JP5869954B2 (en) Unmanned traveling work system
JP2005296511A (en) Self-propelled vacuum cleaner
CN104155979B (en) A kind of magnetic navigation intelligent vehicle positioner based on magnetic field symmetry and method
CN101379450A (en) Application controller
WO2018173907A1 (en) Vehicle control device
JP3885082B2 (en) Game console field unit
WO2006080214A1 (en) Game machine self-traveling body
JP3885080B2 (en) Game machine and self-propelled body used therefor
CN116571845A (en) Weld joint tracking detection robot and weld joint tracking method thereof
JP2008175674A (en) Traveling vehicle, and measuring method of its wheel abrasion quantity
JPH10232712A (en) Traveling lane and traveling device including the same
JP3946856B2 (en) Competitive game equipment
JPH11244515A (en) Moving body control device
KR100902717B1 (en) Information recognizing device, information recognizing method and sheet
JPH08179829A (en) Guide controller for mobile object
JPH04312104A (en) Mobile working robot
US20130331159A1 (en) Game machine and method of generating sensor correction data therefor
CN114829083A (en) Mobile robot
JPS63298411A (en) Guiding device for unmanned vehicle
JP2006065767A (en) Unmanned carrier system
JPH03282309A (en) Wear measuring instrument for wheel
JPH06249638A (en) Measuring method for position of cylindrical object
JPH0695296B2 (en) Beam light guide device
JPH04147007A (en) Beam light projector
JPH0666922A (en) Movement control apparatus for moving body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 0714443

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20060118

Ref document number: 0714446

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20060118

WWE Wipo information: entry into national phase

Ref document number: 0714443.9

Country of ref document: GB

WWE Wipo information: entry into national phase

Ref document number: 1020077019385

Country of ref document: KR

REG Reference to national code

Ref country code: GB

Ref legal event code: 789A

Ref document number: 0714446

Country of ref document: GB

REG Reference to national code

Ref country code: GB

Ref legal event code: 789A

Ref document number: 0714443

Country of ref document: GB

WWE Wipo information: entry into national phase

Ref document number: 11814711

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 06711863

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6711863

Country of ref document: EP