WO2006077964A2 - Polyimide resin, polyimide film, and polyimide laminate - Google Patents

Polyimide resin, polyimide film, and polyimide laminate Download PDF

Info

Publication number
WO2006077964A2
WO2006077964A2 PCT/JP2006/300844 JP2006300844W WO2006077964A2 WO 2006077964 A2 WO2006077964 A2 WO 2006077964A2 JP 2006300844 W JP2006300844 W JP 2006300844W WO 2006077964 A2 WO2006077964 A2 WO 2006077964A2
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide resin
polyimide
group
solution
metal
Prior art date
Application number
PCT/JP2006/300844
Other languages
French (fr)
Japanese (ja)
Other versions
WO2006077964A3 (en
WO2006077964A1 (en
Inventor
Tsuyoshi Bito
Shuta Kihara
Jitsuo Oishi
Original Assignee
Mitsubishi Gas Chemical Co
Tsuyoshi Bito
Shuta Kihara
Jitsuo Oishi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co, Tsuyoshi Bito, Shuta Kihara, Jitsuo Oishi filed Critical Mitsubishi Gas Chemical Co
Priority to US11/814,499 priority Critical patent/US8293371B2/en
Priority to JP2006553964A priority patent/JP5470678B2/en
Priority to KR1020077016561A priority patent/KR101252875B1/en
Publication of WO2006077964A2 publication Critical patent/WO2006077964A2/en
Publication of WO2006077964A1 publication Critical patent/WO2006077964A1/en
Publication of WO2006077964A3 publication Critical patent/WO2006077964A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/386Improvement of the adhesion between the insulating substrate and the metal by the use of an organic polymeric bonding layer, e.g. adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/1021Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/1028Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/105Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J179/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09J161/00 - C09J177/00
    • C09J179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09J179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/582Tearability
    • B32B2307/5825Tear resistant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0154Polyimide
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31681Next to polyester, polyamide or polyimide [e.g., alkyd, glue, or nylon, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31721Of polyimide

Definitions

  • the present invention relates to a polyimide resin having good heat resistance, solvent solubility, thermoplasticity and low water absorption, the polyimide resin film, and a metal-clad laminate using an adhesive comprising the polyimide resin.
  • the metal-clad laminate is processed into a printed wiring board, a surface heating element, an electromagnetic shielding material, a flat cable, and the like.
  • Some metal-clad laminates are manufactured by bonding an insulating substrate and a metal layer through an adhesive or an adhesive film.
  • a metal-clad laminate having a three-layer structure in which an insulating base material such as an aromatic polyimide resin film and a metal layer are bonded via an adhesive film has been proposed (see Patent Document 1).
  • an adhesive or an adhesive film an adhesive and an adhesive film mainly made of an epoxy or acrylic resin have been used.
  • these resins have poor heat resistance, the heat resistance of the product after bonding is insufficient, and the subsequent processing conditions and use conditions are limited.
  • an adhesive and an adhesive film having excellent heat resistance are required.
  • a method of applying a polyimide resin or a polyamic acid solution to an insulating substrate, then removing the solvent and optionally performing an imidization treatment to form a thermocompression bonding layer, polyimide resin or polyamic acid Is applied to a glass plate or the like, and then the solvent is removed and, in some cases, imidization treatment is performed to form a thermocompression-bondable film, and the adhesive layer and adhesive film thus formed A method of thermocompression bonding an object to be bonded such as a metal layer is disclosed (see Patent Documents 2 and 3).
  • the adhesive layer forming method described above is roughly classified into a method using a polyimide resin solution and a method using a polyamic acid solution.
  • the polyimide resin having the 1,2,4,5-cyclohexanetetracarboxylic acid skeleton is relatively easy to obtain a high molecular weight, and it is easy to obtain a flexible film, and also has a solubility in a solvent. Is sufficiently large, which is advantageous in terms of film forming force. Moreover, it is extremely useful because it can easily form a flexible adhesive layer having sufficient thickness and durability.
  • the polyimide resin film described in Patent Document 6 is formed through a high-temperature imidization process as in the past, the film is colored, and the polyimide resin film described in Patent Documents 5 and 6 is In addition, the moisture absorption rate is high and the moisture absorption dimensional stability is inferior.
  • Patent Document 1 Japanese Patent Laid-Open No. 55-91895
  • Patent Document 2 JP-A-5-32950
  • Patent Document 3 Japanese Patent Laid-Open No. 5-59344
  • Patent Document 4 Japanese Patent Laid-Open No. 2001-329246
  • Patent Document 5 Japanese Unexamined Patent Publication No. 2003-168800
  • Patent Document 6 U.S. Pat.No. 3,639,343
  • the object of the present invention is to solve the problems of wholly aromatic polyimide resins that have been conventionally used for adhesive layers, have good thermoplasticity, solvent solubility and heat resistance, low water absorption, and adhesion.
  • Another object of the present invention is to provide a polyimide resin having excellent properties, a production method thereof, a film containing the polyimide resin, and a metal-clad laminate including an adhesive layer made of the polyimide resin.
  • a polyimide resin composed of a specific repeating unit has good thermoplasticity, adhesiveness, solvent solubility and heat resistance, and low water absorption. I found that the rate. Furthermore, by using a compound having a specific structure or a specific functional group in combination as a diamine component or limiting the viscosity of the polyimide resin to a specific range, the adhesion to the metal layer and the insulating substrate is improved. I found out. Based on these findings, the present invention has been achieved.
  • X is a divalent aliphatic group having 2 to 39 carbon atoms, a divalent alicyclic group having 3 to 39 carbon atoms, a divalent aromatic group having 6 to 39 carbon atoms, or these.
  • the main chain of X is O—, —SO—, —CH—, — C (CH) —, — OSi (CH) —, — C
  • X is a carboxyl group, a hydroxyl group, or a carboxylic group force. At least one selected functional group may be present. If it has such a functional group, the functional group concentration F is zero.
  • At least one repeating unit force becomes polyimide ⁇ THAT represented by the formula (1) is the repetition rate of the unit is 50 mole 0/0 or more of the total repeating units of the 0. 5gZdL N- main
  • a polyimide resin having a logarithmic viscosity of 7 to 0.3 dLZg of the polyimide resin measured at 30 ° C. using a chilly-2-pyrrolidone solution is provided.
  • the present invention provides a method for producing the polyimide resin.
  • the present invention also provides a method for producing a polyimide resin film comprising the steps of casting the polyimide resin solution on a support and evaporating and removing the organic solvent.
  • the present invention is a metal-clad laminate including an insulating base material, a metal layer, and an adhesive layer disposed between the insulating base material and the metal layer, wherein the adhesive layer is the polyimide resin It provides a metal-clad laminate that is formed!
  • polyimide A has the following formula (1): Or a repeating unit represented by the above formula (1) and the following formula (2):
  • the ratio of the repeating units represented by the formula (1) is 50 mol% or more, preferably 70 mol% or more, more preferably 80 mol% or more (respectively, respectively) of the total repeating units. is included) 100 mol 0/0.
  • Polyimide A can be either a block copolymer or a random copolymer.
  • a divalent aliphatic group having 3 to 39 carbon atoms Unlike 2 to 39 carbon atoms, a divalent aliphatic group having 3 to 39 carbon atoms, a divalent alicyclic group having 3 to 39 carbon atoms, a divalent aromatic group having 6 to 39 carbon atoms, or a combination thereof 2 Is a valent group.
  • the main chain of X includes O—, -SO 1, -CH 1, -C (CH) 1, -OSi (CH) 1, CH
  • X may have at least one functional group selected from the group consisting of a carboxyl group, a hydroxyl group, and a carbo group (included in the main chain of X).
  • X include divalent aliphatic groups such as polyalkylene, polyoxyalkylene, xylylene and their alkyl-substituted products, halogen-substituted products, carboxy-substituted products, and hydroxy-substituted products; cyclohexane, dicyclohexylmethane, Dimethylcyclohexane, isophorone, nor Divalent alicyclic groups derived from bornane and their alkyl-substituted, halogen-substituted, carboxy-substituted, hydroxy-substituted, etc .; and benzene, naphthalene, biphenylenole, diphenylmethane, diphenylether, diphenylsulfone , Benzophenone and their alkyl-substituted, halogen-substituted, carboxy-substituted, and hydroxy-substituted
  • the functional group concentration F expressed in milliequivalents per lg of polyimide resin is greater than zero and less than lmeqZg polyimide resin, preferably more than zero 0.6 meq / g polyimide It is less than rosin.
  • the functional group concentration F can be easily determined from the amount of raw material charged during synthesis. When the functional group concentration F is increased, the adhesiveness is improved, but the water absorption is increased. When the functional group concentration F is more than 1, it is preferably as small as possible within the above range as long as the desired adhesiveness is obtained.
  • polyimide A Since polyimide A is used as a solution, its molecular weight is preferably expressed by viscosity, particularly logarithmic viscosity.
  • the logarithmic viscosity of polyimide A is 7? (Measured at 30 ° C using 0.5gZdL of N-methyl-2-pyrrolidone solution) is 0.3-2dLZg. If it is less than 3dLZg, the strength of the polyimide resin itself is weak, and a metal-clad laminate having sufficient peel strength cannot be obtained. 2. If OdLZg is exceeded, the solution (varnish) becomes highly viscous, requiring significant dilution that is difficult to apply, making handling difficult. In order to improve the adhesive strength while maintaining the balance of the various properties of the adhesive layer, the logarithmic viscosity r? Is preferably 0.3 to ldLZg.
  • the molecular end of polyimide A is an amino group, a carboxyl group, or a carboxylic anhydride group.
  • the functional group at the molecular end is reduced as much as possible, or an amino group, a carboxyl group or the like is intentionally added to the molecular end.
  • a substituent having a small polarity may be introduced at the molecular end.
  • the water absorption of polyimide A measured by the method described later is preferably 2.5% or less.
  • the minimum water absorption that can be achieved industrially is usually about 1%.
  • Polyimide A is 1, 2, 4, 5-cyclohexanetetracarboxylic acid, 1, 2, 4, 5-cyclohex Reactive derivative powers such as xanthatetracarboxylic dianhydride (HPMDA) and 1, 2, 4, 5-cyclohexanetetracarboxylic acid esters, at least one selected tetracarboxylic acid component (Y), diamine and its It can be obtained by reacting with at least one diamine component (Z) selected from reactive derivatives.
  • HP MDA is preferable.
  • the tetracarboxylic acid component (Y) and the diamine component (Z) include isomers.
  • diamine component (Z) examples include diamine, diisocyanate, and diaminodisilane, and diamine is preferred.
  • the diamine component (diamin component (Z1)) for forming the repeating unit of the above formula (1) is 2,2-bis [4 (4-aminophenoxy) phenyl] propane (BAPP) and
  • the diamine component (diamin component (Z2)) for forming the repeating unit of the above formula (2) is NH 2 -X-NH (X is the same as described above) and its reactive derivative.
  • the diamine component (Z2) may be any of an aromatic diamine, an aliphatic diamine, an alicyclic diamine, a reactive derivative of the diamine, and a mixture thereof.
  • aromatic diamine refers to diamine in which an amino group is directly bonded to an aromatic ring, and an aliphatic group, alicyclic group, aromatic group is part of the structure. Group groups and other substituents may be included.
  • Aliphatic diamine refers to a diamine in which an amino group is directly bonded to an aliphatic group, and the structure includes an aliphatic group, an alicyclic group, an aromatic group, and other substituents. It's okay.
  • Aliphatic diamine refers to a diamine in which an amino group is directly bonded to an alicyclic group, and an aliphatic group, alicyclic group, aromatic group, or other substituent is part of the structure. May be included.
  • 1,3-phenylenediamine m-phenylenediamine, MPD
  • MXDA m-xylylenediamine
  • the polyamic acid and the amino group derived from the aliphatic diamine or alicyclic diamine are relatively free. Since it only forms a weakly bonded salt, the imido reaction proceeds relatively easily and can be easily increased in molecular weight.
  • Examples of the aliphatic diamine include ethylene diamine, hexamethylene diamine, polyethylene glycolenobis (3-aminopropyl) etherole, polypropylene glycolenoles (3-aminopropyl) ether, 1,3 bis (aminomethyl). ) Cyclohexane, 1,4 bis (aminomethyl) cyclohexane, p-xylylenediamine, m-xylylenediamine, and siloxane diamines.
  • Examples of the alicyclic diamine include 4,4'-diaminodicyclohexylmethane, isophorone diamine, norbornane diamine and the like.
  • aromatic diamine examples include 1,4 phenylenediamine, 1,3 phenylenediamine, 2,4 toluene diamine, 4,4'-diaminodiphenyl ether, 3,4'-diamineaminophenol, 4,4'-diaminodiphenylmethane, 1,4 bis (4 aminophenoxy) benzene, 1,3 bis (4 aminophenoxy) benzene, 1,3 bis (3 aminophenoxy) benzene, ⁇ , ⁇ , monobis (4 aminophenol- 1) 1,4 diisopropylbenzene, ⁇ , ⁇ , 1bis (3aminophenol) 1,1,4 diisopropylbenzene, 4,4,1bis (4-aminophenoxy) biphenyl, 4,4'-diaminodiphenol -Sulfone, bis [4- (4-aminophenoxy) phenol] sulfone, bis [4- (3-aminophenoxy) phenol] sulfone,
  • Examples of the diamine having the above functional group include 3,3'-dicarboxy-4,4'-diaminodiphenylmethane, 3,5-diaminobenzoic acid, 3,3,1 dihydroxy 1,4,4,1 di Aminobiphenyl, 2,4 diaminophenol, 4,4'-diaminobenzophenone, 3,3 'diaminobenzophenone, especially 3, 3, -dicarboxy 4,4'-diaminodiphenylmethane ( ⁇ ), 3,5—Diaminobenzoic acid (DBA), 3, 3, —Dihydroxy—4, 4, 1 diaminobiphenol (HAB), 4, 4, 1 Diaminobenzophenone (4, 4, 1 DBP) are preferred .
  • Diamine having a functional group, MPD, or MXDA is used as the diamine component (Z2). Or by setting the logarithmic viscosity r? Of the polyimide resin measured at 30 ° C using a 0.5 g / dL N-methyl-2-pyrrolidone solution in the range of 0.3 to 2 dL / g. The adhesive strength of polyimide resin can be improved.
  • Polyimide A preferably contains the tetracarboxylic acid component (Y) with respect to 1 mole of the diamine component (Z) (diamin component (Z1) or diamine component (Z1) + diamine component (Z2)). Is produced by reacting from 0.66 to L 5 mol, more preferably from 0.9 to 1.1 mol, and even more preferably from 0.97 to L 03 mol.
  • the amount used is adjusted so that the functional group concentration F is not more than lmeqZg polyimide resin.
  • the logarithmic viscosity within the above range is 7?
  • Polyimide A can be manufactured.
  • Those skilled in the art can easily adjust the conditions by carrying out a preliminary reaction or the like. For example, when the logarithmic viscosity of 7? Is adjusted by the molar ratio of the tetracarboxylic acid component (Y) and the diamine component (Z) and the reaction time, the closer the molar ratio is to 1, the longer the reaction time.
  • the logarithmic viscosity of 7? Increases within the above range.
  • the logarithmic viscosity r? Becomes smaller in the above range as the molar ratio is in the range from 0.66 to L5, the further away from 1, and the shorter the reaction time.
  • the relationship between the viscosity of the reaction solution, the reaction time, and other reaction conditions, and the corresponding logarithmic viscosity is obtained in advance, and the end point of the reaction is determined based on this relationship.
  • Polyimide A having a predetermined logarithmic viscosity r? Can be produced.
  • the reaction time is preferably 2 to 12 hours, and the reaction temperature is preferably 180 to 205 ° C.
  • Polyimide A is usually produced as an organic solvent solution.
  • the organic solvent is not particularly limited.
  • NMP N-methyl-2-pyrrolidone
  • DMAC N-dimethylacetamide
  • GBL y-buta-mouth rataton
  • the organic solvent is used in such an amount that the polyimide A concentration in the obtained organic solvent solution is preferably 1 to 50% by weight, more preferably 5 to 40% by weight.
  • a poor solvent such as hexane, heptane, benzene, toluene, xylene, chlorobenzene, o-dichlorobenzene, etc. should be used to the extent that the polymer does not precipitate in combination with the above solvents. Can do.
  • Polyimide A includes (1) a solution polymerization method, (2) a method of preparing a polyamic acid solution, forming a film and imidizing it, and (3) a salt or imide oligomer such as a half ester salt of HPMDA. And (4) a method of reacting tetracarboxylic dianhydride and diisocyanate, and other conventionally known methods. Each method may be used in combination.
  • the reaction of the tetracarboxylic acid component (Y) and the diamine component (Z) may be carried out in the presence of a conventionally known catalyst such as an acid, a tertiary amine or an anhydride.
  • an organic solvent solution of polyimide A can be obtained directly.
  • the solution polymerization method (3) is preferred.
  • a mixture containing diamine component (Z), an organic solvent, and, if necessary, a catalyst is stirred at 10 to 60 Orpm to obtain a homogeneous solution, which is kept at a temperature of 30 to 90 ° C, and a tetracarboxylic acid component ( Y) and if necessary add catalyst.
  • the temperature is raised to 160 to 230 ° C., preferably 180 to 205 ° C. for 0.1 to 6 hours. This temperature depends on the boiling point of the organic solvent used. While collecting the components to be removed from the reaction system, the temperature is kept substantially constant for 0.5 to 24 hours, preferably 2 to 12 hours. If necessary, add more organic solvent and cool to the appropriate temperature.
  • Solution polymerization to produce polyimide A includes trimethylamine and triethylamine (TEA). , Tripropylamine, tributylamine, triethanolamine, N, N-dimethylethanolamine, N, N-jetylethanolamine, triethylenediamine, N-methylpyrrolidine, N-ethylpyrrolidine, The reaction may be performed in the presence of at least one catalyst selected from tertiary amine compounds such as N-methylpiperidine, N-ethylpiperidine, imidazole, pyridine, quinoline, and isoquinoline. When used, the amount of the catalyst, preferably is 0.1 to 100 mole 0/0 of the tetracarboxylic acid component (Y) tool 10 mol 0/0 is more preferable.
  • TAA triethylamine
  • a fluorine or polysiloxane surfactant may be added to the polyimide A organic solvent solution. This makes it easy to obtain an adhesive layer with good surface smoothness and a polyimide resin film.
  • the organic solvent solution of polyimide A is applied (cast) onto a smooth support such as a glass plate or a metal plate to which releasability is imparted, and the temperature is set to 50 to 350 ° C. It can be produced by evaporating and removing the organic solvent by heating. After evaporating the solvent at a temperature of 120 ° C or lower to form a self-supporting film, the film is peeled off from the support, the ends of the film are fixed, and the boiling point of the organic solvent used is 350 ° C. It is preferable to produce a polyimide resin film by drying.
  • the pressure in the dry atmosphere may be any of reduced pressure, normal pressure, and increased pressure.
  • the thickness of the polyimide resin film is preferably 1 to 100 ⁇ m, more preferably 2 to 50 ⁇ m.
  • a polyimide resin film is produced by applying a polyamic acid solution on a smooth support instead of an organic solvent solution of polyimide A and heating to 50 ° C to 350 ° C to carry out a dehydration imidation reaction. it can.
  • the metal-clad laminate of the present invention includes an insulating base, a metal layer, and an adhesive layer made of polyimide A disposed therebetween.
  • an organic solvent solution of polyimide A is applied to one or both of the insulating substrate and the metal layer, and the organic solvent is removed by evaporation at 50 to 350 ° C to form an adhesive layer.
  • An adhesive layer is formed on the surface, and a sputter is formed on the surface of the adhesive layer.
  • a metal-clad laminate in which an insulating substrate and a metal layer are firmly bonded can also be produced by a method of forming a metal thin film by methods such as tulling, vapor deposition, and electroless plating.
  • the thickness of the adhesive layer is preferably 1 to: LOO ⁇ m, more preferably 2 to 50 ⁇ m.
  • the glass transition temperature of polyimide A varies depending on the selected amine, usually 200-350 ° C, preferably 230-300 ° C. Polyimide A exhibits adhesion at temperatures above the glass transition temperature, so if the glass transition temperature is too high, the thermocompression bonding temperature will be too high, and if the glass transition temperature is too low, the heat resistance of the film itself will be insufficient.
  • the metal layer may be formed of a metal foil obtained by a method such as electrolysis or rolling, or the surface of the polyimide resin film or the surface of the adhesive layer formed on the insulating substrate as described above. You may form directly.
  • the thickness of the metal layer is not particularly limited, but is preferably in the range of 1 to: LOO / zm.
  • the material of the metal layer is preferably copper. Further, one surface (adhesion surface) or both surfaces of the metal foil may be subjected to a surface treatment so that the surface roughness Rz is 0.1 to 12 / ⁇ ⁇ .
  • R Z is preferably 0.1-2 ⁇ m, more preferably 0.4-2 / ⁇ ⁇ , and even more preferably 1.0-2 / ⁇ ⁇ . is there.
  • the surface of metal foil that has not been subjected to surface treatment for bonding is usually treated with an antifungal agent, etc., so wipe the surface with a cloth soaked in acetone or other organic solvents. It is preferable to use it after
  • the insulating substrate of the present invention is not particularly limited as long as it can electrically insulate the metal layer.
  • Insulating base materials include flexible type and rigid type, both of which can be used.
  • the thickness of the insulating substrate is preferably 3 to 2000 / zm, which varies depending on the type.
  • Flexible insulating base materials include polyimide resin (except polyimide A), polybenzimidazole, polybenzoxazole, polyamide (including aramid), polyetherimide, polyamideimide, polyester (including liquid crystalline polyester) , Polysulfone, Polyethersulfone, Polyetherketone, Polyetheretherketone, etc.
  • Polyimide resin film are preferred Polyimide resin film, specifically, “Kapton EN”, “Kapton V”, “ Kapton H “(manufactured by Toray 'Dupont Co., Ltd.), trade names” Abical NPI ",” Abical AH “(manufactured by Kanechi Co., Ltd.) and the like.
  • the thickness is not particularly limited. 3 to 150 111 is preferable, 7.5 to 75 111 is preferable.
  • Rigid-type insulating base materials include glass plates, ceramic plates, plastic plates and other insulating material plates with insulating coatings on metal plates, liquid crystal polymers, phenolic resins, and epoxy resins. And molded products obtained by impregnating and kneading various thermosetting resins with reinforcing agents such as glass fiber cloth, plastic fiber cloth and short glass fiber. Thickness is not particularly limited. 30 to 2000 m force.
  • thermocompression bonding a method using a multistage (vacuum) press, a continuous press method using a pressure roll or the like can be appropriately employed.
  • thermocompression bonding temperature is preferably 200 to 400 ° C, more preferably 250 to 350 ° C, and is selected in consideration of the glass transition temperature of the polyimide A used as described above.
  • the pressure for thermocompression bonding is preferably 0.01 to 20 MPa, more preferably 0.1 to LOMPa. It is also preferable to perform thermocompression bonding in a reduced pressure atmosphere to remove the solvent and bubbles.
  • peel strength of the metal layer of the metal-clad laminate of the present invention measured by the method described later is 0.5 N / mm or more, it is preferably 0.8 NZmm or more, which is a practical force.
  • N-methyl-2-pyrrolidone solution of 0.5 g / dL of polyimide was prepared.
  • the liquid surface drop time between the marked lines of this solution was measured with a Cannon Fenceke viscometer in a constant temperature water bath at 30 ° C, and obtained by the following equation.
  • the intermediate glass transition temperature Tmg obtained by measuring at 40 to 350 ° C and at a heating rate of 10 ° C Zmin is the glass transition temperature. It was.
  • IPC-TM-650 Obtained according to the method described in 6. 2. 1.
  • a 10 ⁇ 50 mm specimen was cut from the metal-clad laminate and left in a constant temperature room at 50% humidity and 23 ° C for 24 hours. Next, it floated in a solder bath (260 ° C and 280 ° C) for 20 seconds. A was assigned when no abnormal appearance such as swelling or peeling occurred, and C was assigned when an abnormal appearance occurred.
  • the polyimide A solution obtained above was applied onto a polyimide resin film having a thickness of 25 ⁇ m (trade name: Kapton 100EN, manufactured by Toray DuPont), and 100 ° C, 0.5 on a hot plate. After heating for a period of time, it was dried in a vacuum dryer at 200 ° C for 5 hours to form a 4 m thick adhesive layer on the insulating substrate. 18 m thick electrolytic copper foil (product name; 3EC-III, manufactured by Mitsui Mining & Smelting Co., Ltd.)
  • the peel strength of the metal layer of the obtained metal-clad laminate was 1.09 NZmm, and the solder heat resistance was A.
  • MXDA m-xylylenediamine
  • a polyimide A film was obtained in the same manner as in Example 1 except that the obtained polyimide A solution was used.
  • a metal-clad laminate was obtained in the same manner as in Example 1 except that the obtained polyimide A solution was used.
  • the peel strength of the metal layer of the obtained metal-clad laminate is 0.887 NZmm, and the solder heat resistance is
  • the peel strength of the metal layer of the obtained metal-clad laminate was 0.91 NZmm, and the solder heat resistance was A.
  • MXDA 4.427g (0.003250mol) was added to this and dissolved by stirring for a while. Then, BAPP13.343g (0.003250mol) and NMP8.51g were added together and heated with a mantle heater. The temperature inside the reaction system was raised to 195 ° C over about 20 minutes. The temperature inside the reaction system was maintained at 195 ° C for 6 hours while collecting the components to be distilled off.
  • a polyimide A film was obtained in the same manner as in Example 1 except that the obtained polyimide A solution was used.
  • the logarithmic viscosity of this polyimide A was 0.63 dL / g, the glass transition temperature was 232 ° C., and the water absorption was 2.2%.
  • a metal-clad laminate was obtained in the same manner as in Example 1 except that the obtained polyimide A solution was used.
  • the peel strength of the metal layer of the obtained metal-clad laminate was 0.95 N / mm, and the solder heat resistance was A.
  • Example 4 Except that the polyimide A solution obtained in Example 4 was used, Avical NPI was used as the insulating layer, and a rolled aluminum foil (product name: 1085 foil, manufactured by Nippon Foil Co., Ltd.) having a thickness of 90 ⁇ m was used as the metal layer.
  • a metal-clad laminate was produced in the same manner as in 1.
  • the peel strength of the metal layer of the obtained metal-clad laminate was 1.08 NZmm, and the solder heat resistance was A.
  • HPMDAl l.690g (0.055215 monore) and NMP7.82g were calorie-free, then heated with a mantle heater, and the reaction system temperature was raised to 200 ° C over about 20 minutes. The temperature inside the reaction system was maintained at 200 ° C. for 5 hours while collecting the components to be distilled off.
  • a polyimide A film was obtained in the same manner as in Example 1 except that the obtained polyimide A solution was used.
  • the logarithmic viscosity of this polyimide A was 0.52 dL / g, the glass transition temperature was 253 ° C., and the water absorption rate was 2.2%.
  • the polyimide A solution obtained above was applied onto Kapton 100EN, dried on a hot plate at 100 ° C for 0.5 hour, and then dried in a vacuum dryer at 200 ° C for 5 hours. Then, an adhesive layer having a thickness of 4 ⁇ m was formed on Kapton 100EN. Similarly, a 4 m thick adhesive layer is applied to the non-rough surface of 9 m thick electrolytic copper foil (product name; FO-WS, manufactured by Furukawa Circuit Foil Co., Ltd.) with a Rz of 1.0 m. Formed.
  • FO-WS electrolytic copper foil
  • the peel strength of the metal layer of the obtained metal-clad laminate was 1.04 NZmm, and the solder heat resistance was A.
  • HPMDA14. 979g (0.0.06682 mol;) and DMAC12.72g were added all at once, and then heated with a mantle heater, and the reaction system temperature was raised to 180 ° C over about 20 minutes. The temperature inside the reaction system was maintained at 180 ° C. for 6 hours while collecting the components to be distilled off.
  • a polyimide resin film was obtained in the same manner as in Example 1 except that the obtained polyimide resin solution was used.
  • the logarithmic viscosity of this polyimide resin was 1. OOdLZg, The glass transition temperature was 263 ° C and the water absorption rate was 1.6%.
  • a metal-clad laminate was obtained in the same manner as in Example 1 except that the obtained polyimide resin solution was used.
  • the peel strength of the metal layer of the obtained metal-clad laminate was 0.62 NZmm, and the solder heat resistance was A.
  • a polyimide resin film was obtained in the same manner as in Example 1 except that the obtained polyimide resin solution was used.
  • the characteristic absorption of the imide ring was observed at 772, 1700 (cm 2.
  • the logarithmic viscosity r? Of this polyimide was 1.06 dLZg.
  • the glass transition temperature was 316 ° C and the water absorption was 5.5%.
  • a metal-clad laminate was obtained in the same manner as in Example 1 except that the obtained polyimide resin solution was used.
  • the metal layer of the obtained metal-clad laminate could be easily peeled off by hand, and the peel strength was extremely low.
  • a polyimide resin film was obtained in the same manner as in Example 1 except that the obtained polyimide resin solution was used.
  • the logarithmic viscosity r? Of this polyimide was 0. It was 52 dLZg, the glass transition temperature was 220 ° C, and the water absorption was 1.5%.
  • a metal-clad laminate was obtained in the same manner as in Example 1 except that the obtained polyimide resin solution was used.
  • the peel strength of the metal layer of the obtained metal-clad laminate was 0.45 N / mm, and the solder heat resistance was A.
  • Table 1 Diamine component Logarithmic viscosity Glass rolling Solder Water absorption Peel strength
  • a polyimide A film was obtained in the same manner as in Example 1 except that the obtained polyimide A solution was used.
  • the functional group concentration F of this polyimide A was 0. 034 meq / g, logarithmic viscosity r? was 1.10 dL / g, glass transition temperature was 264 ° C, and water absorption was 1.9%.
  • a metal-clad laminate was obtained in the same manner as in Example 1 except that the obtained polyimide A solution was used.
  • the peel strength of the metal layer of the obtained metal-clad laminate was 1.05 N / mm and the solder heat resistance was A.
  • the metal-clad laminate was manufactured in the same manner as in Example 1 except that Nikko Materials Co., Ltd. was used.
  • the peel strength of the metal layer of the obtained metal-clad laminate was 1. lON / mm, solder Heat resistance was only A.
  • HPMDA15.175 g (0.006769 mol;) and DMAC12.73 g were added all at once, and then heated with a mantle heater, and the reaction system temperature was raised to 180 ° C. over about 20 minutes. The temperature inside the reaction system was maintained at 180 ° C. for 4 hours while collecting the components to be distilled off.
  • a polyimide A film was obtained in the same manner as in Example 1 except that the obtained polyimide A solution was used.
  • the functional group concentration F of this polyimide A was 0.051 meqZg, logarithm
  • the viscosity r? was 0.78 dL / g, the glass transition temperature was 261 ° C, and the water absorption was 2.0 (%).
  • a metal-clad laminate was obtained in the same manner as in Example 1 except that the obtained polyimide A solution was used.
  • the peel strength of the metal layer of the obtained metal-clad laminate was 0.89 (NZmm), and the solder heat resistance was A.
  • Example 10 Using the polyimide A solution obtained in Example 10, 25 / zm thick Avical NPI as the insulating layer, and 90 ⁇ m thick rolled aluminum foil (product name: 1085 foil, manufactured by Nippon Foil Co., Ltd.) as the metal layer A metal-clad laminate was obtained in the same manner as in Example 1 except that. The rolled aluminum foil was used after the adhesive surface was wiped with a cloth soaked with acetone.
  • the peel strength of the metal layer of the obtained metal-clad laminate was 0.97 NZmm, and the solder heat resistance was A.
  • a polyimide A film was obtained in the same manner as in Example 1 except that the obtained polyimide A solution was used.
  • the functional group concentration F of this polyimide A was 0.1101 meq / g, the logarithmic viscosity r? was 1.05 dL / g, the glass transition temperature was 263 ° C., and the water absorption was 1.9%.
  • a metal-clad laminate was obtained in the same manner as in Example 1 except that the obtained polyimide A solution was used.
  • the peel strength of the metal layer of the obtained metal-clad laminate was 0.81 (NZmm), and the solder heat resistance was A.
  • HPMDA15.129g (0.06749mol;) and DMAC12.73g were added all at once, and then heated with a mantle heater, and the temperature in the reaction system was raised to 180 ° C over about 20 minutes. The temperature inside the reaction system was maintained at 180 ° C. for 6 hours while collecting the components to be distilled off.
  • a polyimide A film was obtained in the same manner as in Example 1 except that the obtained polyimide A solution was used.
  • the functional group concentration F of this polyimide A was 0.051 meq / g, the logarithmic viscosity r? was 0.74 dL / g, the glass transition temperature was 262 ° C., and the water absorption was 1.7%.
  • a metal-clad laminate was obtained in the same manner as in Example 1 except that the obtained polyimide A solution was used.
  • the peel strength of the metal layer of the obtained metal-clad laminate was 0.86 N / mm, and the solder heat resistance was A.
  • HPMDA12.581g 0.05612mol;
  • DMAC9.61g were added at once to this, and then heated with a mantle heater, and the temperature in the reaction system was raised to 180 ° C over about 20 minutes. The temperature inside the reaction system was maintained at 180 ° C. for 6 hours while collecting the components to be distilled off.
  • a polyimide film was obtained in the same manner as in Example 1 except that the obtained polyimide solution was used.
  • the polyimide had a functional group concentration F of 1.235 meq / g, a logarithmic viscosity r? Of 0.89 dL / g, a glass transition temperature of 300 ° C., and a water absorption of 5.0%.
  • a metal-clad laminate was obtained in the same manner as in Example 1 except that the obtained polyimide solution was used.
  • the peel strength of the metal layer of the resulting metal-clad laminate was 1. OON / mm and the solder heat resistance was C.
  • HPMDA14.885g (0.006640 monore) and DMAC 12.725g were added together, and then heated with a mantle heater, and the reaction system temperature was raised to 180 ° C over about 20 minutes. The temperature inside the reaction system was maintained at 180 ° C for 3 hours while collecting the components to be distilled off.
  • DMAC96 After adding 374 g, the mixture was stirred for about 30 minutes at a temperature of about 130 ° C to obtain a homogeneous solution, and then cooled to 100 ° C in about 10 minutes to obtain a polyimide A solution having a solid content concentration of 20 wt%. .
  • a polyimide A film was obtained in the same manner as in Example 1 except that the obtained polyimide A solution was used.
  • the logarithmic viscosity of this polyimide A was 7 IdLZg, the glass transition temperature was 262 ° C., and the water absorption was 1.7%.
  • a metal-clad laminate was obtained in the same manner as in Example 1 except that the obtained polyimide A solution was used.
  • the peel strength of the metal layer of the obtained metal-clad laminate was 0.86 N / mm, and the solder heat resistance was A.
  • BAPP 14.214 g (0.003463 mol), 4, 4, monobis (4-aminophenoxy) biphenyl (BAPB, Sei Wakayama) (Manufactured by Sakai Kogyo Co., Ltd.) 12. 757 g (0.003463 mol), GBL50. 995 g, and TEAO. 350 g were stirred at lOOrpm in a nitrogen atmosphere to obtain a solution.
  • HPMDA15.524g (0.006925 monore) and DMAC12.749g were added in a lump, and then heated with a mantle heater, and the reaction system temperature was raised to 180 ° C over about 20 minutes. The temperature inside the reaction system was maintained at 180 ° C. for 4 hours while collecting the components to be distilled off.
  • a polyimide A film was obtained in the same manner as in Example 1 except that the obtained polyimide A solution was used.
  • V (C 0) 1779, 17
  • the characteristic absorption of the imide ring was observed at 04 (cm- 1 ).
  • This polyimide A had a logarithmic viscosity of 7? 0.95dLZg, a glass transition temperature of 278 ° C, and a water absorption of 1.9%.
  • a metal-clad laminate was obtained in the same manner as in Example 1 except that the obtained polyimide A solution was used.
  • the peel strength of the metal layer of the obtained metal-clad laminate was 0.81 NZmm, and the solder heat resistance was A.
  • the peel strength of the metal layer of the obtained metal-clad laminate was 0.85 N / mm, and the solder heat resistance was A.
  • BAPP24 158 g (0.05885 mol), p-xylylenediamine (PXDA, manufactured by Mitsubishi Gasy Chemical Co., Ltd.) in a round glass round bottom flask similar to that used in Example 1.
  • 004 g (0. 01471 mol;), NMP50. OOOg, and TEAO. 372 g were stirred at lOOr pm under a nitrogen atmosphere to obtain a solution.
  • HPMDA16.490g (0.007356mol;) and NMP13.997g were added in a lump to each, and then heated with a mantle heater, and the reaction system temperature was raised to 195 ° C over about 20 minutes. The temperature inside the reaction system was maintained at 195 ° C for 3 hours while collecting the components to be distilled off.
  • a polyimide A film was obtained in the same manner as in Example 1 except that the obtained polyimide A solution was used.
  • This polyimide A had a logarithmic viscosity of 7? Of 0.7 IdL / g, a glass transition temperature of 261 ° C, and a water absorption of 2.2%.
  • a metal-clad laminate was obtained in the same manner as in Example 1 except that the obtained polyimide A solution was used.
  • the peel strength of the metal layer of the obtained metal-clad laminate was 0.85 N / mm, and the solder heat resistance was A.
  • Example 17 The polyimide A solution obtained in Example 17, an abical NPI with a thickness of 25 m as an insulating layer, and a rolled aluminum foil (product name: 1085 foil, manufactured by Nippon Foil Co., Ltd.) with a thickness of 90 ⁇ m as a metal layer.
  • a metal-clad laminate was obtained in the same manner as in Example 1 except that it was used. The rolled aluminum foil was used after the adhesive surface was wiped with a cloth soaked with acetone.
  • the peel strength of the metal layer of the obtained metal-clad laminate was 0.95 N / mm, and the solder heat resistance was A.
  • a polyimide resin film was obtained in the same manner as in Example 1 except that the obtained polyimide resin solution was used.
  • the logarithmic viscosity r? Of this polyimide was 0.
  • the glass transition temperature was 315 ° C and the water absorption was 5.7%.
  • a metal-clad laminate was obtained in the same manner as in Example 1 except that the obtained polyimide resin solution was used.
  • the metal layer of the obtained metal-clad laminate could be easily peeled off by hand, and the peel strength was extremely low.
  • the polyimide resin of the present invention has good thermoplasticity, solvent solubility and heat resistance, low water absorption, and excellent adhesion, so it is processed into printed wiring boards, surface heating elements, electromagnetic shielding materials, flat cables, etc. It is useful as a material for the adhesive layer of a metal-clad laminate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Laminated Bodies (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Moulding By Coating Moulds (AREA)
  • Adhesive Tapes (AREA)

Abstract

Disclosed is a polyimide resin composed of a repeating unit represented by the formula (1) below, or alternatively a repeating unit represented by the formula (1) below and at least one repeating unit represented by the formula (2) below (wherein X is as defined in the description). [Chemical formula 1] [Chemical formula 2] The polyimide resin is good in thermoplasticity, solubility in solvents and heat resistance, while exhibiting low water absorption and excellent adhesiveness. This polyimide resin is useful as a material for the adhesive layer in a metal-clad laminate which includes an insulating base, a metal layer and an adhesive layer arranged between the insulating base and the metal layer.

Description

明 細 書  Specification
ポリイミド樹脂、ポリイミドフィルム及びポリイミド積層体  Polyimide resin, polyimide film and polyimide laminate
技術分野  Technical field
[0001] 本発明は良好な耐熱性、溶剤可溶性および熱可塑性と低吸水性を示すポリイミド 榭脂、該ポリイミド榭脂フィルム及び該ポリイミド榭脂からなる接着剤を用いた金属張 積層体に関する。該金属張積層体は、プリント配線板、面発熱体、電磁波シールド材 料、フラットケーブルなどに加工される。  [0001] The present invention relates to a polyimide resin having good heat resistance, solvent solubility, thermoplasticity and low water absorption, the polyimide resin film, and a metal-clad laminate using an adhesive comprising the polyimide resin. The metal-clad laminate is processed into a printed wiring board, a surface heating element, an electromagnetic shielding material, a flat cable, and the like.
背景技術  Background art
[0002] 金属張積層体には、絶縁基材と金属層とを接着剤あるいは接着性フィルムを介し て接着することによって製造されるものがある。例えば、芳香族系ポリイミド榭脂フィル ムカゝらなる絶縁基材と金属層とを接着性フィルムを介して接着した 3層構造の金属張 積層体が提案されて ヽる (特許文献 1参照)。  [0002] Some metal-clad laminates are manufactured by bonding an insulating substrate and a metal layer through an adhesive or an adhesive film. For example, a metal-clad laminate having a three-layer structure in which an insulating base material such as an aromatic polyimide resin film and a metal layer are bonded via an adhesive film has been proposed (see Patent Document 1).
[0003] 従来、接着剤あるいは接着性フィルムとしては主にエポキシ系やアクリル系榭脂か らなる接着剤および接着性フィルムが用いられてきた。しかしながら、これらの榭脂は 耐熱性が劣るために接着後の製品の耐熱性が不充分となり、その後の加工条件、使 用条件に制約が生じていた。  Conventionally, as an adhesive or an adhesive film, an adhesive and an adhesive film mainly made of an epoxy or acrylic resin have been used. However, since these resins have poor heat resistance, the heat resistance of the product after bonding is insufficient, and the subsequent processing conditions and use conditions are limited.
[0004] このため、耐熱性に優れる接着剤、接着性フィルムが求められて 、る。例えば、ポリ イミド榭脂あるいはポリアミド酸の溶液を絶縁基材に塗布し、その後溶剤除去と、場合 によってはイミドィ匕処理を行ない、熱圧着性の接着層を形成する方法、ポリイミド榭脂 あるいはポリアミド酸の溶液をガラス板等に塗布し、その後溶剤除去と、場合によって はイミド化処理を行い、熱圧着性フィルムを形成する方法、及び、このようにして形成 された接着層、接着性フィルムに、金属層などの被接着物を熱圧着する方法が開示 されている(特許文献 2、 3参照)。上記した接着層形成方法は、大別してポリイミド榭 脂の溶液を使用する方法と、ポリアミド酸溶液を使用する方法とに分けられる。  [0004] Therefore, an adhesive and an adhesive film having excellent heat resistance are required. For example, a method of applying a polyimide resin or a polyamic acid solution to an insulating substrate, then removing the solvent and optionally performing an imidization treatment to form a thermocompression bonding layer, polyimide resin or polyamic acid Is applied to a glass plate or the like, and then the solvent is removed and, in some cases, imidization treatment is performed to form a thermocompression-bondable film, and the adhesive layer and adhesive film thus formed A method of thermocompression bonding an object to be bonded such as a metal layer is disclosed (see Patent Documents 2 and 3). The adhesive layer forming method described above is roughly classified into a method using a polyimide resin solution and a method using a polyamic acid solution.
[0005] ポリアミド酸溶液を使用する方法では、ポリアミド酸溶液を絶縁基材又はガラス板に 塗布した後、接着層又は接着性フィルムとするために 300°Cを越える高温でのイミド 化工程を経なくてはならな 、。イミド化工程を省略して形成した金属張積層体の耐熱 性は著しく低い。ポリイミド榭脂の溶液を使用する方法では、塗布した後は溶剤を揮 発させるのみで良く、 200°C程度までの低温で接着層又は接着性フィルムを形成す ることができる。従って、ポリイミド榭脂の溶液を使用する方法が高耐熱性金属張積 層体製造上有利である。従来の全芳香族ポリイミド榭脂からなる接着層の多くは、ポ リアミド酸溶液を用いて形成されて 、た。ポリイミド榭脂の溶液を得るには溶剤可溶型 ポリイミド榭脂である必要がある。 [0005] In the method using a polyamic acid solution, after the polyamic acid solution is applied to an insulating substrate or a glass plate, an imidization step at a high temperature exceeding 300 ° C is performed to form an adhesive layer or an adhesive film. It must be ... Heat resistance of metal-clad laminates formed by omitting the imidization process The property is remarkably low. In the method using a polyimide resin solution, it is only necessary to volatilize the solvent after coating, and an adhesive layer or adhesive film can be formed at a low temperature up to about 200 ° C. Therefore, a method using a polyimide resin solution is advantageous in producing a highly heat-resistant metal-clad laminate. Many conventional adhesive layers made of wholly aromatic polyimide resin were formed using a polyamic acid solution. In order to obtain a polyimide resin solution, it is necessary to be a solvent-soluble polyimide resin.
[0006] 金属張積層体において、絶縁基材と金属層の間に配された接着層の残留揮発成 分が多いと、 250°C以上の高温度に達するはんだ工程の際に接着層の白化、膨れ、 発泡等を生じ、絶縁基材と金属層の密着性を著しく損なうと 、う問題を有して 、た (特 許文献 4参照)。この接着層の残留揮発成分とは、接着層又は接着性フィルムを形成 する際のイミド化、溶剤除去工程において除去されな力つた水分と溶剤、製造環境か ら吸収された水分、エッチング工程の水溶液浸漬時に吸収される水分等が挙げられ る。この中で特に問題視されるのは水分である。上記問題を解決するためには、ポリ イミドの水分含有率の指標となる吸水率を低くすることが望まれている。  [0006] In metal-clad laminates, if there is a large amount of residual volatile components in the adhesive layer placed between the insulating substrate and the metal layer, the adhesive layer will be whitened during the soldering process that reaches a high temperature of 250 ° C or higher. If the adhesion between the insulating base material and the metal layer is significantly impaired due to swelling, foaming or the like, there is a problem (see Patent Document 4). The residual volatile components of the adhesive layer are imidization when forming the adhesive layer or adhesive film, strong water and solvent that have not been removed in the solvent removal process, moisture absorbed from the manufacturing environment, and aqueous solution in the etching process. For example, moisture absorbed during immersion. Of these, moisture is a particular problem. In order to solve the above problems, it is desired to reduce the water absorption rate, which is an indicator of the moisture content of the polyimide.
[0007] また、 1, 2, 4, 5—シクロへキサンテトラカルボン酸二無水物及びその反応性誘導 体から得られた、熱溶融可能な分子主鎖中に 1, 2, 4, 5—シクロへキサンテトラカル ボン酸骨格を含むポリイミド榭脂が開示されている (特許文献 6参照)。その実施例 1に は 1, 2, 4, 5—シクロへキサンテトラカルボン酸二無水物及びその反応性誘導体を ジアミノジフヱ-ルメタンと反応させてアミド酸とし、これを塗布した後に加熱してイミド 化し、さらにこれを加熱加圧成形してなるガラス転移温度 304°Cの透明で黄色のポリ イミド榭脂フィルムが開示されている。また、特許文献 5は、ジアミノジフエ二ルエーテ ルを用いて得たポリイミド榭脂溶液から、ガラス転移温度 300°C以上で透明で着色の 少な 、ポリイミド榭脂フィルムが得られることを開示して!/、る。  [0007] In addition, 1, 2, 4, 5—cyclohexanetetracarboxylic dianhydride and its reactive derivative obtained from 1, 2, 4, 5— A polyimide resin containing a cyclohexanetetracarboxylic acid skeleton has been disclosed (see Patent Document 6). In Example 1, 1,2,4,5-cyclohexanetetracarboxylic dianhydride and its reactive derivative were reacted with diaminodifluoromethane to form an amic acid, which was coated and then heated to imidize. Further, a transparent yellow polyimide resin film having a glass transition temperature of 304 ° C. formed by heat-pressing it is disclosed. Patent Document 5 discloses that a polyimide resin film having a glass transition temperature of 300 ° C or higher and being transparent and having little coloring can be obtained from a polyimide resin solution obtained using diaminodiphenyl ether! /
[0008] 上記の 1, 2, 4, 5—シクロへキサンテトラカルボン酸骨格を有するポリイミド榭脂は 高分子量化が比較的容易で、フレキシブルなフィルムが得られ易い上に、溶剤に対 する溶解度も充分に大きいので、フィルムの成形力卩ェの面で有利である。また、塗布 することによりフレキシブルで充分な厚み、耐久性を有する接着層を容易に形成でき るので極めて有用である。 し力しながら、特許文献 6記載のポリイミド榭脂フィルムは従来と同様に高温のイミド 化工程を経て形成されるので、フィルムが着色し、また特許文献 5および 6記載のポリ イミド榭脂フィルムは、吸水率が高ぐ吸湿寸法安定性に劣るといった欠点を有して いた。 [0008] The polyimide resin having the 1,2,4,5-cyclohexanetetracarboxylic acid skeleton is relatively easy to obtain a high molecular weight, and it is easy to obtain a flexible film, and also has a solubility in a solvent. Is sufficiently large, which is advantageous in terms of film forming force. Moreover, it is extremely useful because it can easily form a flexible adhesive layer having sufficient thickness and durability. However, since the polyimide resin film described in Patent Document 6 is formed through a high-temperature imidization process as in the past, the film is colored, and the polyimide resin film described in Patent Documents 5 and 6 is In addition, the moisture absorption rate is high and the moisture absorption dimensional stability is inferior.
[0009] 特許文献 1 :特開昭 55— 91895号公報  Patent Document 1: Japanese Patent Laid-Open No. 55-91895
特許文献 2:特開平 5— 32950号公報  Patent Document 2: JP-A-5-32950
特許文献 3:特開平 5— 59344号公報  Patent Document 3: Japanese Patent Laid-Open No. 5-59344
特許文献 4:特開 2001— 329246号公報  Patent Document 4: Japanese Patent Laid-Open No. 2001-329246
特許文献 5 :特開 2003— 168800号公報  Patent Document 5: Japanese Unexamined Patent Publication No. 2003-168800
特許文献 6 :米国特許第 3, 639, 343号明細書  Patent Document 6: U.S. Pat.No. 3,639,343
発明の開示  Disclosure of the invention
[0010] 本発明の目的は、従来、接着層に用いられてきた全芳香族ポリイミド榭脂の問題点 を解決し、熱可塑性、溶剤可溶性および耐熱性が良好で、低吸水率、更には接着性 に優れるポリイミド榭脂、その製造方法、該ポリイミド榭脂を含むフィルム及び該ポリイ ミド榭脂からなる接着層を含む金属張積層体を提供することにある。  [0010] The object of the present invention is to solve the problems of wholly aromatic polyimide resins that have been conventionally used for adhesive layers, have good thermoplasticity, solvent solubility and heat resistance, low water absorption, and adhesion. Another object of the present invention is to provide a polyimide resin having excellent properties, a production method thereof, a film containing the polyimide resin, and a metal-clad laminate including an adhesive layer made of the polyimide resin.
[0011] 本発明者らは上記の課題を解決するため鋭意検討した結果、特定の繰り返し単位 で構成されるポリイミド榭脂が、熱可塑性、接着性、溶剤可溶性および耐熱性が良好 で、低吸水率であることを見出した。さらに、特定の構造又は特定の官能基を有する 化合物をジァミン成分として併用すること、又は、ポリイミド榭脂の粘度を特定範囲に 制限することより、金属層及び絶縁基材に対する接着性が改善されることを見出した 。これらの知見に基づき本発明に至った。  [0011] As a result of intensive studies to solve the above problems, the present inventors have found that a polyimide resin composed of a specific repeating unit has good thermoplasticity, adhesiveness, solvent solubility and heat resistance, and low water absorption. I found that the rate. Furthermore, by using a compound having a specific structure or a specific functional group in combination as a diamine component or limiting the viscosity of the polyimide resin to a specific range, the adhesion to the metal layer and the insulating substrate is improved. I found out. Based on these findings, the present invention has been achieved.
[0012] すなわち本発明は、下記式(1):  That is, the present invention provides the following formula (1):
[化 1]  [Chemical 1]
Figure imgf000005_0001
で表される繰り返し単位、又は、前記式(1)で表される繰り返し単位と下記式(2): [化 2]
Figure imgf000005_0001
Or a repeating unit represented by the formula (1) and the following formula (2): [Chemical 2]
Figure imgf000006_0001
Figure imgf000006_0001
(式中、 Xは炭素数が 2〜39の 2価の脂肪族基、炭素数が 3〜39の 2価の脂環族基、 炭素数が 6〜39の 2価の芳香族基又はこれらの組み合わせ力 なる 2価の基であり、 Xの主鎖には、 O—、—SO―、 -CH―、— C (CH ) ―、— OSi (CH ) ―、— C (In the formula, X is a divalent aliphatic group having 2 to 39 carbon atoms, a divalent alicyclic group having 3 to 39 carbon atoms, a divalent aromatic group having 6 to 39 carbon atoms, or these. The main chain of X is O—, —SO—, —CH—, — C (CH) —, — OSi (CH) —, — C
2 2 3 2 3 2 2 2 3 2 3 2
H O-及び S 力 なる群力 選ばれた少なくとも 1種の結合基が介在して!/ヽてもH O- and S force group forces at least one selected linking group intervenes!
2 4 twenty four
よぐ Xはカルボキシル基、水酸基又はカルボ-ル基力 なる群力 選ばれた少なくと も 1種の官能基を有していてもよぐ該官能基を有する場合、官能基濃度 Fはゼロを 超え lmeqZgポリイミド榭脂以下である)  X is a carboxyl group, a hydroxyl group, or a carboxylic group force. At least one selected functional group may be present. If it has such a functional group, the functional group concentration F is zero. Exceeding lmeqZg polyimide resin and below)
で表される少なくとも 1種の繰り返し単位力 なるポリイミド榭脂であって、前記式(1) の繰り返し単位の割合が全繰り返し単位の 50モル0 /0以上であり、 0. 5gZdLの N—メ チルー 2—ピロリドン溶液を用いて 30°Cで測定した前記ポリイミド榭脂の対数粘度 7? が 0. 3〜2dLZgであるポリイミド榭脂を提供する。 And at least one repeating unit force becomes polyimide榭脂THAT represented by the formula (1) is the repetition rate of the unit is 50 mole 0/0 or more of the total repeating units of the 0. 5gZdL N- main Provided is a polyimide resin having a logarithmic viscosity of 7 to 0.3 dLZg of the polyimide resin measured at 30 ° C. using a chilly-2-pyrrolidone solution.
[0013] さらに本発明は、前記ポリイミド榭脂の製造方法を提供する。 Furthermore, the present invention provides a method for producing the polyimide resin.
[0014] また、本発明は、上記ポリイミド榭脂の溶液を、支持体上にキャストし、有機溶剤を 蒸発除去する工程を含むポリイミド榭脂フィルムの製造方法を提供する。 [0014] The present invention also provides a method for producing a polyimide resin film comprising the steps of casting the polyimide resin solution on a support and evaporating and removing the organic solvent.
[0015] さらに、本発明は、絶縁基材、金属層および前記絶縁基材と金属層との間に配置さ れた接着層を含む金属張積層体であり、前記接着層が上記ポリイミド榭脂により形成 されて!/ヽる金属張積層体を提供する。 [0015] Further, the present invention is a metal-clad laminate including an insulating base material, a metal layer, and an adhesive layer disposed between the insulating base material and the metal layer, wherein the adhesive layer is the polyimide resin It provides a metal-clad laminate that is formed!
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
本発明のポリイミド榭脂(以下、適宜、ポリイミド Aと記す)は、下記式(1): [化 3]
Figure imgf000007_0001
で表される繰り返し単位、又は上記式(1)で表される繰り返し単位と下記式(2): [化 4]
The polyimide resin of the present invention (hereinafter appropriately referred to as polyimide A) has the following formula (1):
Figure imgf000007_0001
Or a repeating unit represented by the above formula (1) and the following formula (2):
Figure imgf000007_0002
で表される繰り返し単位力 なり、式(1)で表される繰り返し単位の割合が全繰り返し 単位の 50モル%以上、好ましくは 70モル%以上、より好ましくは 80モル%以上(そ れぞれ 100モル0 /0を含む)である。ポリイミド Aは、ブロックコポリマーあるいはランダム コポリマーのどちらでも良い。
Figure imgf000007_0002
The ratio of the repeating units represented by the formula (1) is 50 mol% or more, preferably 70 mol% or more, more preferably 80 mol% or more (respectively, respectively) of the total repeating units. is included) 100 mol 0/0. Polyimide A can be either a block copolymer or a random copolymer.
上記式(2)中の Xは下記式(3):  X in the above formula (2) is the following formula (3):
[化 5]
Figure imgf000007_0003
とは異なり、炭素数 2〜39の 2価の脂肪族基、炭素数 3〜39の 2価の脂環族基、炭 素数 6〜39の 2価の芳香族基又はこれらの組み合わせからなる 2価の基である。 Xの 主鎖には、 O—、 -SO 一、 -CH 一、 -C (CH ) 一、 -OSi (CH ) 一、 C H
[Chemical 5]
Figure imgf000007_0003
Unlike 2 to 39 carbon atoms, a divalent aliphatic group having 3 to 39 carbon atoms, a divalent alicyclic group having 3 to 39 carbon atoms, a divalent aromatic group having 6 to 39 carbon atoms, or a combination thereof 2 Is a valent group. The main chain of X includes O—, -SO 1, -CH 1, -C (CH) 1, -OSi (CH) 1, CH
2 2 3 2 3 2 2 4 2 2 3 2 3 2 2 4
O 、および一 S—力 なる群力 選ばれた少なくとも 1の結合基が介在して 、てもよ い。また、 Xはカルボキシル基、水酸基およびカルボ-ル基 (Xの主鎖に含まれる)か らなる群力 選ばれた少なくとも一つの官能基を有して 、てもよ 、。 Xの具体例として は、ポリアルキレン、ポリオキシアルキレン、キシリレン及びそれらのアルキル置換体、 ハロゲン置換体、カルボキシ置換体およびヒドロキシ置換体などの 2価の脂肪族基; シクロへキサン、ジシクロへキシルメタン、ジメチルシクロへキサン、イソフォロン、ノル ボルナン及びそれらのアルキル置換体、ハロゲン置換体、カルボキシ置換体および ヒドロキシ置換体等から誘導される 2価の脂環族基;及び、ベンゼン、ナフタレン、ビフ ェニノレ、ジフエニルメタン、ジフエニルエーテル、ジフエニルスルフォン、ベンゾフエノ ン及びそれらのアルキル置換体、ハロゲン置換体、カルボキシ置換体およびヒドロキ シ置換体等から誘導される 2価の芳香族基が挙げられる。接着層の諸特性のバラン スを保ちながら接着強度を向上させるためには、 Xが m—フエ-レン基または m—キ シリレン基であるのが好まし 、。 O, and one S—force group force. At least one selected bonding group may intervene. X may have at least one functional group selected from the group consisting of a carboxyl group, a hydroxyl group, and a carbo group (included in the main chain of X). Specific examples of X include divalent aliphatic groups such as polyalkylene, polyoxyalkylene, xylylene and their alkyl-substituted products, halogen-substituted products, carboxy-substituted products, and hydroxy-substituted products; cyclohexane, dicyclohexylmethane, Dimethylcyclohexane, isophorone, nor Divalent alicyclic groups derived from bornane and their alkyl-substituted, halogen-substituted, carboxy-substituted, hydroxy-substituted, etc .; and benzene, naphthalene, biphenylenole, diphenylmethane, diphenylether, diphenylsulfone , Benzophenone and their alkyl-substituted, halogen-substituted, carboxy-substituted, and hydroxy-substituted divalent aromatic groups. In order to improve the adhesive strength while maintaining the balance of various properties of the adhesive layer, X is preferably m-phenylene group or m-xylylene group.
[0018] Xが上記官能基を有する場合、ポリイミド榭脂 lg当たりのミリ当量で表される官能基 濃度 Fは、ゼロを超え lmeqZgポリイミド榭脂以下、好ましくはゼロを超え 0. 6meq/ gポリイミド榭脂以下である。官能基濃度 Fは合成時の原料仕込み量から容易に求め る事ができる。官能基濃度 Fが大きくなると接着性は向上するが、吸水性が大きくなる ので、 1を超えると好ましくなぐ所望の接着性が得られる限り上記範囲内でできるだ け小さいことが好ましい。  [0018] When X has the above functional group, the functional group concentration F expressed in milliequivalents per lg of polyimide resin is greater than zero and less than lmeqZg polyimide resin, preferably more than zero 0.6 meq / g polyimide It is less than rosin. The functional group concentration F can be easily determined from the amount of raw material charged during synthesis. When the functional group concentration F is increased, the adhesiveness is improved, but the water absorption is increased. When the functional group concentration F is more than 1, it is preferably as small as possible within the above range as long as the desired adhesiveness is obtained.
[0019] ポリイミド Aは溶液として使用されるので、その分子量は粘度、特に対数粘度で表す ことが好ましい。ポリイミド Aの対数粘度 7? (0. 5gZdLの N—メチルー 2—ピロリドン 溶液を用いて 30°Cで測定)は、 0. 3〜2dLZgである。 0. 3dLZg未満であると、ポリ イミド榭脂自体の強度が弱ぐ充分な剥離強度を有する金属張積層体が得られない 。 2. OdLZgを超えるとその溶液 (ワニス)が高粘度になり塗布し難ぐ大幅な希釈が 必要となり、取り扱いが難しくなる。接着層の諸特性のバランスを保ちながら接着強度 を向上させるためには、対数粘度 r?は 0. 3〜ldLZgであることが好ましい。  [0019] Since polyimide A is used as a solution, its molecular weight is preferably expressed by viscosity, particularly logarithmic viscosity. The logarithmic viscosity of polyimide A is 7? (Measured at 30 ° C using 0.5gZdL of N-methyl-2-pyrrolidone solution) is 0.3-2dLZg. If it is less than 3dLZg, the strength of the polyimide resin itself is weak, and a metal-clad laminate having sufficient peel strength cannot be obtained. 2. If OdLZg is exceeded, the solution (varnish) becomes highly viscous, requiring significant dilution that is difficult to apply, making handling difficult. In order to improve the adhesive strength while maintaining the balance of the various properties of the adhesive layer, the logarithmic viscosity r? Is preferably 0.3 to ldLZg.
[0020] 通常、ポリイミド Aの分子末端は、アミノ基、カルボキシル基、又はカルボン酸無水 物基である。これらの分子末端にカルボン酸無水物基やアミノ基を有する化合物を 反応させることにより、分子末端の官能基を可能な限り減らすこと、又は、意図的に分 子末端にアミノ基、カルボキシル基などの官能基やこれ以外の置換基を導入すること 力 Sできる。吸水率を低下させるために、分子末端に極性の小さい置換基 (官能性の ない置換基)を導入してもよい。後述する方法で測定したポリイミド Aの吸水率は、 2. 5%以下が好ましい。工業的に達成できる吸水率の最小値は通常約 1%である。  [0020] Usually, the molecular end of polyimide A is an amino group, a carboxyl group, or a carboxylic anhydride group. By reacting a compound having a carboxylic acid anhydride group or amino group at the molecular end, the functional group at the molecular end is reduced as much as possible, or an amino group, a carboxyl group or the like is intentionally added to the molecular end. Introduce functional groups and other substituents. In order to reduce the water absorption, a substituent having a small polarity (non-functional substituent) may be introduced at the molecular end. The water absorption of polyimide A measured by the method described later is preferably 2.5% or less. The minimum water absorption that can be achieved industrially is usually about 1%.
[0021] ポリイミド Aは、 1, 2, 4, 5—シクロへキサンテトラカルボン酸、 1, 2, 4, 5—シクロへ キサンテトラカルボン酸二無水物(HPMDA)および 1, 2, 4, 5—シクロへキサンテト ラカルボン酸エステル類などの反応性誘導体力 選ばれる少なくとも 1種のテトラカル ボン酸成分 (Y)と、ジァミン及びその反応性誘導体から選ばれる少なくとも 1種のジァ ミン成分 (Z)とを反応させる事により得られる。テトラカルボン酸成分 (Y)としては、 HP MDAが好ましい。なお、テトラカルボン酸成分 (Y)およびジァミン成分 (Z)は異性体 を含む。 [0021] Polyimide A is 1, 2, 4, 5-cyclohexanetetracarboxylic acid, 1, 2, 4, 5-cyclohex Reactive derivative powers such as xanthatetracarboxylic dianhydride (HPMDA) and 1, 2, 4, 5-cyclohexanetetracarboxylic acid esters, at least one selected tetracarboxylic acid component (Y), diamine and its It can be obtained by reacting with at least one diamine component (Z) selected from reactive derivatives. As the tetracarboxylic acid component (Y), HP MDA is preferable. The tetracarboxylic acid component (Y) and the diamine component (Z) include isomers.
[0022] ジァミン成分 (Z)としては、ジァミン、ジイソシァネート、ジアミノジシランなどが挙げら れるが、ジァミンが好ましい。上記式(1)の繰り返し単位を形成するためのジァミン成 分(ジァミン成分(Z1) )は、 2, 2—ビス〔4一(4ーァミノフヱノキシ)フ ニル〕プロパン( BAPP)およびその反応性誘導体であり、上記式(2)の繰り返し単位を形成するため のジァミン成分 (ジァミン成分 (Z2) )は NH -X-NH (Xは前記と同様)およびその  [0022] Examples of the diamine component (Z) include diamine, diisocyanate, and diaminodisilane, and diamine is preferred. The diamine component (diamin component (Z1)) for forming the repeating unit of the above formula (1) is 2,2-bis [4 (4-aminophenoxy) phenyl] propane (BAPP) and The diamine component (diamin component (Z2)) for forming the repeating unit of the above formula (2) is NH 2 -X-NH (X is the same as described above) and its reactive derivative.
2 2  twenty two
反応性誘導体である。  Reactive derivative.
[0023] ジァミン成分 (Z2)は、芳香族ジァミン、脂肪族ジァミン、脂環族ジァミン、前記ジァ ミンの反応性誘導体、およびこれらの混合物のいずれでも良い。なお、本発明にお V、て"芳香族ジァミン"とは、ァミノ基が芳香族環に直接結合して 、るジァミンを表し、 その構造の一部に脂肪族基、脂環族基、芳香族基、その他の置換基を含んでいても 良い。 "脂肪族ジァミン"とは、ァミノ基が脂肪族基に直接結合しているジァミンを表し 、その構造の一部に脂肪族基、脂環族基、芳香族基、その他の置換基を含んでいて も良い。 "脂環族ジァミン"とは、ァミノ基が脂環族基に直接結合しているジァミンを表 し、その構造の一部に脂肪族基、脂環族基、芳香族基、その他の置換基を含んでい ても良い。例えば、 1, 3—フエ-レンジァミン(m—フエ-レンジァミン、 MPD)は、アミ ノ基が芳香族環 (ベンゼン環)に直接結合しているので芳香族ジァミンであり、 m—キ シリレンジァミン (MXDA)はァミノ基が脂肪族基 (メチレン基)に直接結合しているの で脂肪族ジァミンである。  [0023] The diamine component (Z2) may be any of an aromatic diamine, an aliphatic diamine, an alicyclic diamine, a reactive derivative of the diamine, and a mixture thereof. In the present invention, the term “aromatic diamine” refers to diamine in which an amino group is directly bonded to an aromatic ring, and an aliphatic group, alicyclic group, aromatic group is part of the structure. Group groups and other substituents may be included. “Aliphatic diamine” refers to a diamine in which an amino group is directly bonded to an aliphatic group, and the structure includes an aliphatic group, an alicyclic group, an aromatic group, and other substituents. It's okay. “Aliphatic diamine” refers to a diamine in which an amino group is directly bonded to an alicyclic group, and an aliphatic group, alicyclic group, aromatic group, or other substituent is part of the structure. May be included. For example, 1,3-phenylenediamine (m-phenylenediamine, MPD) is an aromatic diamine because the amino group is directly bonded to the aromatic ring (benzene ring), and m-xylylenediamine (MXDA). ) Is an aliphatic diamine because the amino group is directly bonded to an aliphatic group (methylene group).
[0024] 一般に、テトラカルボン酸二無水物と脂肪族ジァミン又は脂環族ジァミンを反応さ せると、中間生成物であるポリアミド酸と脂肪族ジァミン又は脂環族ジァミン由来のァ ミノ基が強固な塩を形成するために、高分子量ポリイミドが得られにくい。そのため、 塩の溶解性が比較的高 、溶剤、例えばタレゾールを用いるなどの工夫が必要になる 。し力し、テトラカルボン酸二無水物として 1, 2, 4, 5 シクロへキサンテトラカルボン 酸二無水物を用いると、ポリアミド酸と脂肪族ジァミン又は脂環族ジァミン由来のアミ ノ基が比較的弱い結合の塩を形成するに留まるので、イミドィ匕反応が比較的容易に 進行し、容易に高分子量化できる。 [0024] In general, when tetracarboxylic dianhydride is reacted with an aliphatic diamine or alicyclic diamine, the polyamic acid, which is an intermediate product, and the amino group derived from the aliphatic diamine or alicyclic diamine are strong. Since salt is formed, it is difficult to obtain a high molecular weight polyimide. Therefore, the solubility of the salt is relatively high, and it is necessary to devise such as using a solvent such as talesol. . However, when 1,2,4,5 cyclohexanetetracarboxylic dianhydride is used as the tetracarboxylic dianhydride, the polyamic acid and the amino group derived from the aliphatic diamine or alicyclic diamine are relatively free. Since it only forms a weakly bonded salt, the imido reaction proceeds relatively easily and can be easily increased in molecular weight.
[0025] 脂肪族ジァミンとしては、例えば、エチレンジァミン、へキサメチレンジァミン、ポリエ チレングリコーノレビス(3—ァミノプロピル)エーテノレ、ポリプロピレングリコーノレビス (3 -ァミノプロピル)エーテル、 1, 3 ビス(アミノメチル)シクロへキサン、 1, 4 ビス(ァ ミノメチル)シクロへキサン、 p キシリレンジァミン、 m キシリレンジァミン、シロキサ ンジァミン類等が挙げられる。  [0025] Examples of the aliphatic diamine include ethylene diamine, hexamethylene diamine, polyethylene glycolenobis (3-aminopropyl) etherole, polypropylene glycolenoles (3-aminopropyl) ether, 1,3 bis (aminomethyl). ) Cyclohexane, 1,4 bis (aminomethyl) cyclohexane, p-xylylenediamine, m-xylylenediamine, and siloxane diamines.
[0026] 脂環族ジァミンとしては、例えば、 4, 4'ージアミノジシクロへキシルメタン、イソフォ ロンジァミン、ノルボルナンジァミンなどが挙げられる。  [0026] Examples of the alicyclic diamine include 4,4'-diaminodicyclohexylmethane, isophorone diamine, norbornane diamine and the like.
[0027] 芳香族ジァミンとしては、例えば、 1, 4 フエ-レンジァミン、 1, 3 フエ-レンジァ ミン、 2, 4 トルエンジァミン、 4, 4'ージアミノジフエニルエーテル、 3, 4'ージァミノ ジフエ-ルエーテル、 4, 4'ージアミノジフエ-ルメタン、 1, 4 ビス(4 アミノフエノ キシ)ベンゼン、 1, 3 ビス(4 アミノフエノキシ)ベンゼン、 1, 3 ビス(3 アミノフ エノキシ)ベンゼン、 α , α,一ビス(4 ァミノフエ-ル)一 1, 4 ジイソプロピルベン ゼン、 α , α,一ビス(3 ァミノフエ-ル)一 1, 4 ジイソプロピルベンゼン、 4, 4,一 ビス(4—アミノフエノキシ)ビフエ-ル、 4, 4'—ジアミノジフエ-ルスルホン、ビス〔4— ( 4 -アミノフエノキシ)フエ-ル〕スルホン、ビス〔4— (3—アミノフエノキシ)フエ-ル〕スル ホン、 2, 6 ジァミノナフタレン、 1, 5 ジァミノナフタレン等が挙げられる。  [0027] Examples of the aromatic diamine include 1,4 phenylenediamine, 1,3 phenylenediamine, 2,4 toluene diamine, 4,4'-diaminodiphenyl ether, 3,4'-diamineaminophenol, 4,4'-diaminodiphenylmethane, 1,4 bis (4 aminophenoxy) benzene, 1,3 bis (4 aminophenoxy) benzene, 1,3 bis (3 aminophenoxy) benzene, α, α, monobis (4 aminophenol- 1) 1,4 diisopropylbenzene, α, α, 1bis (3aminophenol) 1,1,4 diisopropylbenzene, 4,4,1bis (4-aminophenoxy) biphenyl, 4,4'-diaminodiphenol -Sulfone, bis [4- (4-aminophenoxy) phenol] sulfone, bis [4- (3-aminophenoxy) phenol] sulfone, 2,6 diaminonaphthalene, 1,5 diaminonaphthalene And the like.
[0028] 上記官能基を有するジァミンとしては、例えば、 3, 3'ージカルボキシー 4, 4'ージ アミノジフエ-ルメタン、 3, 5—ジァミノ安息香酸、 3, 3,一ジヒドロキシ一 4, 4,一ジァ ミノビフエニル、 2, 4 ジァミノフエノール、 4, 4'ージァミノべンゾフエノン、 3, 3' ジ ァミノべンゾフエノンが挙げられ、特に、 3, 3,ージカルボキシ 4, 4'ージアミノジフ ェ-ルメタン(ΜΒΑΑ)、 3, 5—ジァミノ安息香酸(DBA)、 3, 3,—ジヒドロキシ— 4, 4,一ジアミノビフエ-ル(HAB)、 4, 4,一ジァミノべンゾフエノン(4, 4,一 DBP)が好 ましい。  [0028] Examples of the diamine having the above functional group include 3,3'-dicarboxy-4,4'-diaminodiphenylmethane, 3,5-diaminobenzoic acid, 3,3,1 dihydroxy 1,4,4,1 di Aminobiphenyl, 2,4 diaminophenol, 4,4'-diaminobenzophenone, 3,3 'diaminobenzophenone, especially 3, 3, -dicarboxy 4,4'-diaminodiphenylmethane (ΜΒΑΑ), 3,5—Diaminobenzoic acid (DBA), 3, 3, —Dihydroxy—4, 4, 1 diaminobiphenol (HAB), 4, 4, 1 Diaminobenzophenone (4, 4, 1 DBP) are preferred .
[0029] ジァミン成分 (Z2)として、官能基を有するジァミン、 MPD、または MXDAを使用す ることにより、あるいは、 0. 5g/dLの N—メチル 2 ピロリドン溶液を用いて 30°C で測定したポリイミド榭脂の対数粘度 r?を 0. 3〜2dL/gの範囲にすることにより、ポ リイミド榭脂の接着力を向上させることができる。 [0029] Diamine having a functional group, MPD, or MXDA is used as the diamine component (Z2). Or by setting the logarithmic viscosity r? Of the polyimide resin measured at 30 ° C using a 0.5 g / dL N-methyl-2-pyrrolidone solution in the range of 0.3 to 2 dL / g. The adhesive strength of polyimide resin can be improved.
[0030] ポリイミド Aは、前記ジァミン成分 (Z) (ジァミン成分 (Z1)、または、ジァミン成分 (Z1 ) +ジァミン成分 (Z2) ) 1モルに対して前記テトラカルボン酸成分 (Y)を、好ましくは 0 . 66〜: L 5モル、より好ましくは 0. 9〜1. 1モル、さらに好ましくは 0. 97〜: L 03モ ル反応させることにより製造される。ジァミン成分 (Z2)として前記官能基を有するジァ ミンを用いる場合は、その使用量を前記官能基濃度 Fが lmeqZgポリイミド榭脂以下 になるように調整する。 [0030] Polyimide A preferably contains the tetracarboxylic acid component (Y) with respect to 1 mole of the diamine component (Z) (diamin component (Z1) or diamine component (Z1) + diamine component (Z2)). Is produced by reacting from 0.66 to L 5 mol, more preferably from 0.9 to 1.1 mol, and even more preferably from 0.97 to L 03 mol. When the diamine having the functional group is used as the diamine component (Z2), the amount used is adjusted so that the functional group concentration F is not more than lmeqZg polyimide resin.
[0031] 例えば、原料の使用割合、反応温度と時間、末端停止剤の使用の有無と使用量、 触媒量などの少なくとも一つの条件を調整することにより、前記範囲内の対数粘度 7? を有するポリイミド Aを製造することができる。前記条件の調整は、予備反応などを行 うことにより、当業者であれば容易に行うことができる。例えば、対数粘度 7?を前記テ トラカルボン酸成分 (Y)と前記ジァミン成分 (Z)とのモル比および反応時間によって 調整する場合、前記モル比が 1に近い程、また、反応時間が長い程、対数粘度 7?が 前記範囲内で大きくなる。前記モル比が 0. 66〜: L 5の範囲内で 1から遠く離れる程 、また、反応時間が短い程、対数粘度 r?は前記範囲内で小さくなる。溶液重合法で は、反応溶液の粘度、反応時間その他の反応条件などと、これに対応した対数粘度 との関係を予め求めておき、この関係に基づいて反応の終了時点を決定することに より、所定対数粘度 r?のポリイミド Aを製造することができる。反応時間は 2〜12時間 、反応温度は 180〜205°Cであるのが好ましい。  [0031] For example, by adjusting at least one of the conditions such as the use ratio of the raw material, the reaction temperature and time, the presence or absence and use amount of the terminal terminator, the catalyst amount, etc., the logarithmic viscosity within the above range is 7? Polyimide A can be manufactured. Those skilled in the art can easily adjust the conditions by carrying out a preliminary reaction or the like. For example, when the logarithmic viscosity of 7? Is adjusted by the molar ratio of the tetracarboxylic acid component (Y) and the diamine component (Z) and the reaction time, the closer the molar ratio is to 1, the longer the reaction time. The logarithmic viscosity of 7? Increases within the above range. The logarithmic viscosity r? Becomes smaller in the above range as the molar ratio is in the range from 0.66 to L5, the further away from 1, and the shorter the reaction time. In the solution polymerization method, the relationship between the viscosity of the reaction solution, the reaction time, and other reaction conditions, and the corresponding logarithmic viscosity is obtained in advance, and the end point of the reaction is determined based on this relationship. Polyimide A having a predetermined logarithmic viscosity r? Can be produced. The reaction time is preferably 2 to 12 hours, and the reaction temperature is preferably 180 to 205 ° C.
[0032] ポリイミド Aは、通常、有機溶剤溶液として製造される。 [0032] Polyimide A is usually produced as an organic solvent solution.
有機溶剤としては特に限定されないが、例えば、 N—メチル 2—ピロリドン、 N, N ージメチルァセトアミド、 N, N ジェチルァセトアミド、 N, N ジメチルホルムアミド、 N, N ジェチルホルムアミド、 N—メチルカプロラタタム、へキサメチルホスホルアミド 、テトラメチレンスルホン、ジメチルスルホキシド、 m—クレゾ一ル、フエノール、 p クロ ルフエノール、 2 クロルー4ーヒドロキシトルエン、ジグライム、トリグライム、テトラグラ ィム、ジォキサン、 γ ブチロラタトン、ジォキソラン、シクロへキサノン、シクロペンタノ ンなどが使用可能であり、 2種以上を併用しても良い。しかし、ポリイミド Aと溶剤から なるポリイミドワニスの性能を考慮すると、 N—メチルー 2—ピロリドン (NMP)、 N, N —ジメチルァセトアミド (DMAC)、 y—ブチ口ラタトン(GBL)を単独又は併用するの が好ましい。有機溶剤は、得られる有機溶剤溶液中のポリイミド A濃度が、好ましくは 1〜50重量%、より好ましくは 5〜40重量%になるような量用いる。また、溶液重合に よる製造の場合、上記溶剤と併せてへキサン、ヘプタン、ベンゼン、トルエン、キシレ ン、クロルベンゼン、 o—ジクロロベンゼン等の貧溶媒を、重合体が析出しない程度に 使用することができる。 The organic solvent is not particularly limited. For example, N-methyl 2-pyrrolidone, N, N-dimethylacetamide, N, N jetylacetamide, N, N dimethylformamide, N, N jetylformamide, N —Methyl caprolatatam, hexamethyl phosphoramide, tetramethylene sulfone, dimethyl sulfoxide, m-cresol, phenol, p chlorophenol, 2 chloro 4-hydroxytoluene, diglyme, triglyme, tetragram, dioxane, γ Butyrolatatone, dioxolane, cyclohexanone, cyclopentano 2 or more types may be used in combination. However, considering the performance of polyimide varnish composed of polyimide A and solvent, N-methyl-2-pyrrolidone (NMP), N, N-dimethylacetamide (DMAC), y-buta-mouth rataton (GBL) alone or in combination It is preferable to do this. The organic solvent is used in such an amount that the polyimide A concentration in the obtained organic solvent solution is preferably 1 to 50% by weight, more preferably 5 to 40% by weight. In addition, in the case of production by solution polymerization, a poor solvent such as hexane, heptane, benzene, toluene, xylene, chlorobenzene, o-dichlorobenzene, etc. should be used to the extent that the polymer does not precipitate in combination with the above solvents. Can do.
[0033] ポリイミド Aは、(1)溶液重合法、(2)ポリアミック酸溶液を調製し、これを製膜し、イミ ド化する方法、 (3) HPMDAのハーフエステル塩などの塩又はイミドオリゴマーを得 、固相重合を行なう方法、(4)テトラカルボン酸二無水物とジイソシァネートを反応さ せる方法、その他従来公知の方法で製造することができる。それぞれの方法を併用 しても良い。テトラカルボン酸成分 (Y)とジァミン成分 (Z)との反応は、酸、三級アミン 類、無水物などの従来公知の触媒の存在下で行ってもょ 、。  [0033] Polyimide A includes (1) a solution polymerization method, (2) a method of preparing a polyamic acid solution, forming a film and imidizing it, and (3) a salt or imide oligomer such as a half ester salt of HPMDA. And (4) a method of reacting tetracarboxylic dianhydride and diisocyanate, and other conventionally known methods. Each method may be used in combination. The reaction of the tetracarboxylic acid component (Y) and the diamine component (Z) may be carried out in the presence of a conventionally known catalyst such as an acid, a tertiary amine or an anhydride.
[0034] これらの方法の中で、ポリイミド Aの有機溶剤溶液が直接得られるので、下記(1)〜  [0034] In these methods, an organic solvent solution of polyimide A can be obtained directly.
(3)の溶液重合法が好ま Uヽ。  The solution polymerization method (3) is preferred.
(1)ジァミン成分 (Z)、有機溶剤、および必要に応じて触媒を含む混合物を 10〜60 Orpmで攪拌して均一溶液とし、これを温度 30〜90°Cに保ち、テトラカルボン酸成分 (Y)および必要に応じて触媒を添加する。  (1) A mixture containing diamine component (Z), an organic solvent, and, if necessary, a catalyst is stirred at 10 to 60 Orpm to obtain a homogeneous solution, which is kept at a temperature of 30 to 90 ° C, and a tetracarboxylic acid component ( Y) and if necessary add catalyst.
(2)テトラカルボン酸成分 (Y)、有機溶剤、および必要に応じて触媒を含む混合物を 10〜600rpmで攪拌して均一溶液とし、これを温度 30〜90°Cに保ち、ジァミン成分 (Z)および必要に応じて触媒を添加する。  (2) Stir the mixture containing the tetracarboxylic acid component (Y), the organic solvent, and, if necessary, the catalyst at 10 to 600 rpm to obtain a homogeneous solution, which is maintained at a temperature of 30 to 90 ° C, and the diamine component (Z ) And, if necessary, a catalyst is added.
(3) (1)又は(2)の方法の後に、 0. 1〜6時間力けて 160〜230°C、好ましくは 180 〜205°Cまで昇温する。この温度は使用する有機溶剤の沸点によって左右される。 反応系外に除去される成分を捕集しつつ、温度を 0. 5〜24時間、好ましくは 2〜12 時間ほぼ一定に保つ。その後必要ならば有機溶剤を更に添加し、適温まで冷却する  (3) After the method (1) or (2), the temperature is raised to 160 to 230 ° C., preferably 180 to 205 ° C. for 0.1 to 6 hours. This temperature depends on the boiling point of the organic solvent used. While collecting the components to be removed from the reaction system, the temperature is kept substantially constant for 0.5 to 24 hours, preferably 2 to 12 hours. If necessary, add more organic solvent and cool to the appropriate temperature.
[0035] ポリイミド Aを製造するための溶液重合は、トリメチルァミン、トリェチルァミン (TEA) 、トリプロピルァミン、トリブチルァミン、トリエタノールァミン、 N, N—ジメチルエタノー ルァミン、 N, N—ジェチルエタノールァミン、トリエチレンジァミン、 N—メチルピロリジ ン、 N—ェチルピロリジン、 N—メチルピペリジン、 N—ェチルピペリジン、イミダゾー ル、ピリジン、キノリン、イソキノリンなどの 3級アミンィ匕合物から選ばれる少なくとも 1種 の触媒の存在下で行ってもよい。使用する場合、触媒の使用量は、テトラカルボン酸 成分 (Y)の 0. 1〜100モル0 /0が好ましぐ 1〜10モル0 /0がより好ましい。 [0035] Solution polymerization to produce polyimide A includes trimethylamine and triethylamine (TEA). , Tripropylamine, tributylamine, triethanolamine, N, N-dimethylethanolamine, N, N-jetylethanolamine, triethylenediamine, N-methylpyrrolidine, N-ethylpyrrolidine, The reaction may be performed in the presence of at least one catalyst selected from tertiary amine compounds such as N-methylpiperidine, N-ethylpiperidine, imidazole, pyridine, quinoline, and isoquinoline. When used, the amount of the catalyst, preferably is 0.1 to 100 mole 0/0 of the tetracarboxylic acid component (Y) tool 10 mol 0/0 is more preferable.
[0036] ポリイミド Aの有機溶剤溶液には、フッ素系、ポリシロキサン系などの界面活性剤を 添加しても良い。これによつて、表面平滑性の良好な接着層、ポリイミド榭脂フィルム を得やすくなる。 [0036] A fluorine or polysiloxane surfactant may be added to the polyimide A organic solvent solution. This makes it easy to obtain an adhesive layer with good surface smoothness and a polyimide resin film.
[0037] ポリイミド榭脂フィルムは、上記ポリイミド Aの有機溶剤溶液を、離型性を付与したガ ラス板、金属板などの平滑な支持体上に塗布 (キャスト)し、 50〜350°Cに加熱して 有機溶剤を蒸発除去することにより製造できる。 120°C以下の温度で溶剤を蒸発さ せて自己支持性のフィルムとした後、該フィルムを支持体より剥離し、該フィルムの端 部を固定し、用いた有機溶剤の沸点〜 350°Cで乾燥してポリイミド榭脂フィルムを製 造することが好ましい。乾燥雰囲気の圧力は、減圧、常圧、加圧のいずれでもよい。 ポリイミド榭脂フィルムの厚さは 1〜100 μ mが好ましぐ 2〜50 μ mがより好ましい。 ポリイミド Aの有機溶剤溶液の代わりにポリアミド酸溶液を平滑な支持体上に塗布し、 50°C〜350°Cに加熱して脱水イミド化反応を行うことによってポリイミド榭脂フィルム を製造することちできる。  [0037] For the polyimide resin film, the organic solvent solution of polyimide A is applied (cast) onto a smooth support such as a glass plate or a metal plate to which releasability is imparted, and the temperature is set to 50 to 350 ° C. It can be produced by evaporating and removing the organic solvent by heating. After evaporating the solvent at a temperature of 120 ° C or lower to form a self-supporting film, the film is peeled off from the support, the ends of the film are fixed, and the boiling point of the organic solvent used is 350 ° C. It is preferable to produce a polyimide resin film by drying. The pressure in the dry atmosphere may be any of reduced pressure, normal pressure, and increased pressure. The thickness of the polyimide resin film is preferably 1 to 100 μm, more preferably 2 to 50 μm. A polyimide resin film is produced by applying a polyamic acid solution on a smooth support instead of an organic solvent solution of polyimide A and heating to 50 ° C to 350 ° C to carry out a dehydration imidation reaction. it can.
[0038] 本発明の金属張積層体は、絶縁基材、金属層およびこれらの間に配置されたポリ イミド Aからなる接着層を含む。  [0038] The metal-clad laminate of the present invention includes an insulating base, a metal layer, and an adhesive layer made of polyimide A disposed therebetween.
金属張積層体は、ポリイミド Aの有機溶剤溶液を絶縁基材および金属層の一方又 は双方に塗布し、有機溶剤を 50〜350°Cで蒸発除去して接着層を形成した後、絶 縁基材と金属層を接着層を介して重ね合わせ、次いで熱圧着する方法、または、上 記ポリイミド榭脂フィルムを絶縁基材と金属層との間に配置し、熱圧着する方法により 製造することができる。また、ポリイミド榭脂フィルムの片面にスパッタリング、蒸着、無 電解めつき等の方法で金属薄膜を直接形成し、他方の面に絶縁基材を戴置し熱圧 着する方法、および、絶縁基材表面に接着層を形成し、該接着層の表面に、スパッ タリング、蒸着、無電解めつき等の方法で金属薄膜を形成する方法によっても絶縁基 材と金属層が強固に接着した金属張積層体を製造することができる。 In the metal-clad laminate, an organic solvent solution of polyimide A is applied to one or both of the insulating substrate and the metal layer, and the organic solvent is removed by evaporation at 50 to 350 ° C to form an adhesive layer. Produced by a method in which the base material and the metal layer are overlapped via an adhesive layer and then thermocompression bonded, or the above polyimide resin film is disposed between the insulating base material and the metal layer and thermocompression bonded. Can do. Also, a method of directly forming a metal thin film on one side of the polyimide resin film by sputtering, vapor deposition, electroless plating, etc., placing an insulating base on the other side, and heat-bonding, and insulating base An adhesive layer is formed on the surface, and a sputter is formed on the surface of the adhesive layer. A metal-clad laminate in which an insulating substrate and a metal layer are firmly bonded can also be produced by a method of forming a metal thin film by methods such as tulling, vapor deposition, and electroless plating.
接着層の厚さは、好ましくは 1〜: LOO μ m、より好ましくは 2〜50 μ mである。ポリイミ ド Aのガラス転移温度は、選択するジァミンにより異なる力 通常、 200〜350°C、好 ましくは、 230〜300°Cである。ポリイミド Aはガラス転移温度以上の温度で接着性を 示すので、ガラス転移温度が高すぎると熱圧着温度が高くなりすぎ、ガラス転移温度 が低すぎるとフィルム自体の耐熱性が不足する。  The thickness of the adhesive layer is preferably 1 to: LOO μm, more preferably 2 to 50 μm. The glass transition temperature of polyimide A varies depending on the selected amine, usually 200-350 ° C, preferably 230-300 ° C. Polyimide A exhibits adhesion at temperatures above the glass transition temperature, so if the glass transition temperature is too high, the thermocompression bonding temperature will be too high, and if the glass transition temperature is too low, the heat resistance of the film itself will be insufficient.
[0039] 金属層は、電解、圧延等の方法により得られた金属箔により形成してもよいし、上記 したようにポリイミド榭脂フィルムの表面又は絶縁基材上に形成された接着層の表面 に直接形成してもよい。金属層の厚さは、特に制限がないが、 1〜: LOO /z mの範囲が 好ましい。金属層の材料は銅が好ましい。また、金属箔の片面 (接着面)または両面 を表面粗さ Rzが 0. 1〜12 /ζ πιになるように表面処理を施してもよい。一般的にロー プロファイルと呼ばれる銅箔の場合、 RZは、好ましくは 0. 1〜2 μ m、より好ましくは 0 . 4〜2 /ζ πι、さらに好ましくは 1. 0〜2 /ζ πιである。なお、接着用の表面処理を施して いない金属箔は、通常、表面が防鲭剤などで処理されていることが多いので、ァセト ンその他の有機溶剤をしみ込ませた布などで表面を拭くなどした後に用いることが好 ましい。 [0039] The metal layer may be formed of a metal foil obtained by a method such as electrolysis or rolling, or the surface of the polyimide resin film or the surface of the adhesive layer formed on the insulating substrate as described above. You may form directly. The thickness of the metal layer is not particularly limited, but is preferably in the range of 1 to: LOO / zm. The material of the metal layer is preferably copper. Further, one surface (adhesion surface) or both surfaces of the metal foil may be subjected to a surface treatment so that the surface roughness Rz is 0.1 to 12 / ζ πι. In the case of copper foil generally called low profile, R Z is preferably 0.1-2 μm, more preferably 0.4-2 / ζ πι, and even more preferably 1.0-2 / ζ πι. is there. In addition, the surface of metal foil that has not been subjected to surface treatment for bonding is usually treated with an antifungal agent, etc., so wipe the surface with a cloth soaked in acetone or other organic solvents. It is preferable to use it after
[0040] 本発明の絶縁基材は、金属層を電気的に絶縁することができるものであれば特に 限定はない。また、絶縁基材にはフレキシブルタイプのものとリジッドタイプのものが あり、いずれも使用できる。絶縁基材の厚さは前記タイプにより異なる力 3〜2000 /z mが好ましい。フレキシブルタイプの絶縁基材としては、ポリイミド榭脂(ポリイミド A を除く)、ポリべンズイミダゾール、ポリべンズォキサゾール、ポリアミド (ァラミドを含む) 、ポリエーテルイミド、ポリアミドイミド、ポリエステル (液晶性ポリエステルを含む)、ポリ スルホン、ポリエーテルスルホン、ポリエーテルケトン、ポリエーテルエーテルケトンな どのフィルムが挙げられる力 好ましくはポリイミド榭脂フィルムであり、具体的には、 商品名"カプトン EN"、 "カプトン V"、 "カプトン H" (東レ 'デュポン (株)製)、商品名" アビカル NPI"、 "アビカル AH" ( (株)カネ力製)などが挙げられる。厚さは特に制限さ れな ヽカ 3〜150 111カ^好ましく、 7. 5〜75 111カ^ょり好まし1ヽ。 [0041] リジッドタイプの絶縁基材としては、ガラス板、セラミック板、プラスチック板等の絶縁 材板ゃ金属板に絶縁皮膜を形成したもの、液晶ポリマー、フエノール榭脂、エポキシ 榭脂等の熱可塑性や熱硬化性の各種榭脂を、ガラス繊維布、プラスチック繊維布や ガラス短繊維等の補強剤に含浸、混練させた成形体が挙げられる。厚さは特に制限 されない力 30〜2000 m力 子ましい。 [0040] The insulating substrate of the present invention is not particularly limited as long as it can electrically insulate the metal layer. Insulating base materials include flexible type and rigid type, both of which can be used. The thickness of the insulating substrate is preferably 3 to 2000 / zm, which varies depending on the type. Flexible insulating base materials include polyimide resin (except polyimide A), polybenzimidazole, polybenzoxazole, polyamide (including aramid), polyetherimide, polyamideimide, polyester (including liquid crystalline polyester) , Polysulfone, Polyethersulfone, Polyetherketone, Polyetheretherketone, etc. Films are preferred Polyimide resin film, specifically, “Kapton EN”, “Kapton V”, “ Kapton H "(manufactured by Toray 'Dupont Co., Ltd.), trade names" Abical NPI "," Abical AH "(manufactured by Kanechi Co., Ltd.) and the like. The thickness is not particularly limited. 3 to 150 111 is preferable, 7.5 to 75 111 is preferable. [0041] Rigid-type insulating base materials include glass plates, ceramic plates, plastic plates and other insulating material plates with insulating coatings on metal plates, liquid crystal polymers, phenolic resins, and epoxy resins. And molded products obtained by impregnating and kneading various thermosetting resins with reinforcing agents such as glass fiber cloth, plastic fiber cloth and short glass fiber. Thickness is not particularly limited. 30 to 2000 m force.
[0042] 熱圧着の方法としては、通常、多段 (真空)プレス機による方法、加圧ロールなどを 使用した連続プレス法など適宜採用できる。  [0042] As a method for thermocompression bonding, a method using a multistage (vacuum) press, a continuous press method using a pressure roll or the like can be appropriately employed.
熱圧着の温度は、好ましくは 200〜400°C、より好ましくは 250〜350°Cであり、上 記したように用いたポリイミド Aのガラス転移温度を考慮して選択する。熱圧着の圧力 は、好ましくは 0. 01〜20MPa、より好ましくは 0. 1〜: LOMPaである。また、溶剤及 び気泡を除くために減圧雰囲気で熱圧着することも好ましい。  The thermocompression bonding temperature is preferably 200 to 400 ° C, more preferably 250 to 350 ° C, and is selected in consideration of the glass transition temperature of the polyimide A used as described above. The pressure for thermocompression bonding is preferably 0.01 to 20 MPa, more preferably 0.1 to LOMPa. It is also preferable to perform thermocompression bonding in a reduced pressure atmosphere to remove the solvent and bubbles.
後述の方法で測定した本発明の金属張積層体の金属層の剥離強度は、 0. 5N/ mm以上であれば実用に供しうる力 0. 8NZmm以上であることが好ましい。  If the peel strength of the metal layer of the metal-clad laminate of the present invention measured by the method described later is 0.5 N / mm or more, it is preferably 0.8 NZmm or more, which is a practical force.
実施例  Example
[0043] 以下、実施例により本発明を具体的に説明する。但し、本発明はこれらの実施例に より何ら制限されるものではない。  [0043] The present invention will be specifically described below with reference to examples. However, the present invention is not limited to these examples.
物性の測定方法を以下に示す。  A method for measuring physical properties is shown below.
[0044] (1) IRスペクトル [0044] (1) IR spectrum
日本電子 (株)製 JIR— WINSPEC50を用いて測定した。  Measurement was performed using JIR-WINSPEC50 manufactured by JEOL Ltd.
[0045] (2)対数粘度 7? [0045] (2) Logarithmic viscosity 7?
0. 5g/dLのポリイミドの N—メチル—2—ピロリドン溶液を調製した。 30°C恒温水 槽中、キャノンフェンスケ粘度計によってこの溶液の標線間の液面落下時間を計測し 、下式により求めた。  An N-methyl-2-pyrrolidone solution of 0.5 g / dL of polyimide was prepared. The liquid surface drop time between the marked lines of this solution was measured with a Cannon Fenceke viscometer in a constant temperature water bath at 30 ° C, and obtained by the following equation.
r? =ln (溶液落下時間 ZN—メチルー 2—ピロリドン落下時間) ZO. 5 対数粘度はその値が固有粘度に近似しており、簡便に求められる。  r? = ln (Solution falling time ZN—Methyl-2-pyrrolidone falling time) ZO. 5 The logarithmic viscosity approximates the intrinsic viscosity and can be easily obtained.
[0046] (3)ガラス転移温度 [0046] (3) Glass transition temperature
DSC法により求めた。 (株)島津製作所製 DSC— 50を用い、 40〜350°C、昇温 速度 10°CZminで測定して得られた中間点ガラス転移温度 Tmgをガラス転移温度 とした。 Obtained by the DSC method. Using the DSC-50 manufactured by Shimadzu Corporation, the intermediate glass transition temperature Tmg obtained by measuring at 40 to 350 ° C and at a heating rate of 10 ° C Zmin is the glass transition temperature. It was.
[0047] (4)ポリイミドの吸水率  [0047] (4) Water absorption rate of polyimide
IPC-TM-650 2. 6. 2. 1の方法に従って求めた。  IPC-TM-650 2. Obtained according to the method described in 6. 2. 1.
50. 8 X 50. 8mmのポリイミドフィルムを 120°Cで 1時間乾燥した後、重量 (W )を  50. 8 x 50. 8mm polyimide film is dried at 120 ° C for 1 hour, then weight (W) is measured.
0 測定した。このフィルムを 23°Cの蒸留水に 24時間浸漬し、表面の水分を拭き取った 後速やかに重量 (W )を測定した。  0 measured. This film was immersed in distilled water at 23 ° C. for 24 hours, and after wiping off the water on the surface, the weight (W) was measured immediately.
1  1
吸水率(%) = (w -W ) ÷W X 100  Water absorption (%) = (w -W) ÷ W X 100
1 0 0  1 0 0
[0048] (5)金属層の剥離強度  [0048] (5) Peel strength of metal layer
JIS C6471の 90° 剥離による銅はくの剥離強度測定法 (剥離強度測定用回転ド ラム型支持金具を用いた方法 A)に従って求めた。  It was determined in accordance with JIS C6471 90 ° peeling copper foil peel strength measurement method (Method A using a rotating drum-type support bracket for peel strength measurement).
[0049] (6)はんだ耐熱性 [0049] (6) Solder heat resistance
JIS C6471を参考〖こ、以下の試験を行なった。  The following tests were conducted with reference to JIS C6471.
金属張積層体から 10 X 50mmの試験片を切り取り、湿度 50%、 23°Cの恒温室中 に 24時間放置した。次いで、はんだ浴(260°Cと 280°C)に 20秒間浮かべた。膨れ、 剥がれ等の外観異常が発生しな ヽ場合を A、外観異常が発生した場合を Cとした。  A 10 × 50 mm specimen was cut from the metal-clad laminate and left in a constant temperature room at 50% humidity and 23 ° C for 24 hours. Next, it floated in a solder bath (260 ° C and 280 ° C) for 20 seconds. A was assigned when no abnormal appearance such as swelling or peeling occurred, and C was assigned when an abnormal appearance occurred.
[0050] 実施例 1 [0050] Example 1
ステンレス製半月型攪拌翼、窒素導入管、冷却管を取り付けたディーンスターク、 温度計、ガラス製エンドキャップを備えた 300mLの 5ッ口ガラス製丸底フラスコ中で、 2, 2 ビス〔4一(4 アミノフエノキシ)フエ-ル〕プロパン(BAPP、和歌山精化工業( 株)製) 26. OOg (0. 06334モル)、 m—フヱ-レンジァミン(MPD、関東化学 (株)製 ) 0. 76g (0. 00704モル)、溶剤として γ—プチ口ラタトン (GBL、三菱化学 (株)製) 51. 04g、および触媒としてトリェチルァミン (TEA、関東化学 (株)製) 0. 356gを、 窒素雰囲気下、 lOOrpmで攪拌して溶液を得た。  In a 300 mL 5-neck glass round bottom flask equipped with a stainless steel half-moon stirrer, a nitrogen inlet tube, a Dean Stark fitted with a cooling tube, a thermometer, and a glass end cap, 4 Aminophenoxy) phenol] propane (BAPP, manufactured by Wakayama Seika Kogyo Co., Ltd.) 26. OOg (0.0.06334 mol), m-phenol-rangeamine (MPD, manufactured by Kanto Chemical Co., Ltd.) 0.76 g ( 0.00704 mol), γ-petit-mouth rataton (GBL, manufactured by Mitsubishi Chemical Co., Ltd.) 51.04 g as a solvent, and triethylamine (TEA, manufactured by Kanto Chemical Co., Ltd.) 0.356 g as a catalyst, under a nitrogen atmosphere, The solution was obtained by stirring at lOOrpm.
これに 1, 2, 4, 5 シクロへキサンテトラカルボン酸二無水物(HPMDA、三菱ガス 化学 (株)製) 15. 77g (0. 07037モル)とジメチルァセトアミド(DMAC、三菱ガス化 学 (株)製) 12. 76gをそれぞれ一括で加えた後、マントルヒーターで加熱し、約 20分 力けて反応系内温度を 180°Cまで上げた。留去される成分を捕集しながら、反応系 内温度を 180°Cに 5時間維持した。 DMAC96. 20gを添加後、 130°C付近で約 30分攪拌して均一な溶液とし、 10分 程度で 100°Cまで空冷し固形分濃度 20重量%のポリイミド A溶液を得た。 1, 2, 4, 5 Cyclohexanetetracarboxylic dianhydride (HPMDA, manufactured by Mitsubishi Gas Chemical Co., Inc.) 15. 77 g (0.007037 mol) and dimethylacetamide (DMAC, Mitsubishi Gas Chemical) (Made by Co., Ltd.) 12. 76 g of each was added in one batch, and then heated with a mantle heater, and heated for about 20 minutes to raise the temperature in the reaction system to 180 ° C. While collecting the components to be distilled off, the reaction system temperature was maintained at 180 ° C for 5 hours. After adding DMAC 96.20 g, the mixture was stirred at about 130 ° C. for about 30 minutes to obtain a uniform solution, and air-cooled to 100 ° C. in about 10 minutes to obtain a polyimide A solution having a solid content concentration of 20% by weight.
[0051] 得られたポリイミド A溶液を離型剤が極少量散布された平滑なガラス板上にコータ 一で塗布した後、 100°Cのホットプレート上で 1時間加温して自己支持性フィルムを 形成した。ガラス板力も剥離したフィルムをステンレス製型枠にクリップで数箇所固定 した後、 200°Cの真空乾燥機中で 5時間放置して溶剤をほぼ完全に(1重量%未満) 除去し、ポリイミド Aフィルムを得た。このポリイミド Aフィルムの IR ^ベクトルを測定した ところ、 V (C = 0) 1776、 1704 (cm にイミド環の特性吸収が認められた。このポリ イミド Aの対数粘度は 1. 05dLZg、ガラス転移温度は 268°C、吸水率は 2. 1%であ つた o [0051] The obtained polyimide A solution was applied on a smooth glass plate coated with a very small amount of a release agent with a coater, and then heated on a hot plate at 100 ° C for 1 hour to self-supporting film. Formed. After fixing the peeled film on the glass plate to the stainless steel mold with several clips, it was left in a 200 ° C vacuum dryer for 5 hours to remove the solvent almost completely (less than 1% by weight). A film was obtained. IR ^ vector of this polyimide A film was measured, and characteristic absorption of imide ring was observed at V (C = 0) 1776, 1704 (cm. The logarithmic viscosity of this polyimide A was 1.05dLZg, glass transition temperature. Is 268 ° C and water absorption is 2.1% o
[0052] 厚さ 25 μ mのポリイミド榭脂フィルム(商品名;カプトン 100EN、東レ 'デュポン社製 )上に上記で得たポリイミド A溶液を塗布し、ホットプレート上で 100°C、 0. 5時間加 熱後、真空乾燥機中で 200°C、 5時間乾燥し、絶縁基材上に厚さ 4 mの接着層を 形成した。厚さ 18 mの電解銅箔(品名; 3EC— III、三井金属鉱業 (株)製  [0052] The polyimide A solution obtained above was applied onto a polyimide resin film having a thickness of 25 μm (trade name: Kapton 100EN, manufactured by Toray DuPont), and 100 ° C, 0.5 on a hot plate. After heating for a period of time, it was dried in a vacuum dryer at 200 ° C for 5 hours to form a 4 m thick adhesive layer on the insulating substrate. 18 m thick electrolytic copper foil (product name; 3EC-III, manufactured by Mitsui Mining & Smelting Co., Ltd.)
)の片面を接着層面上に粗ィ匕処理して Rzが 5. O /z mの粗ィ匕面を形成した。接着層 上に粗ィ匕面を介して電解銅箔を重ねた。これをステンレス鏡面板で挟み、温度 330 °Cの熱プレス機の熱盤間に入れて接触圧 (OMPa)にて 3分間保持した後、 330°C、 5MPa、 5分間の条件で加熱圧着した。次いで、常温のプレス機の熱盤間に入れて、 5MPa、 2分の条件で冷却し金属張積層体を得た。  ) Was rough-treated on the adhesive layer surface to form a rough surface with Rz of 5. O / z m. An electrolytic copper foil was laminated on the adhesive layer through a rough surface. This was sandwiched between stainless mirror plates, placed between the hot plates of a hot press machine with a temperature of 330 ° C, held at contact pressure (OMPa) for 3 minutes, and then thermocompression bonded under conditions of 330 ° C, 5 MPa, 5 minutes. . Next, the metal-clad laminate was obtained by putting it between hot plates of a normal temperature press and cooling it under the condition of 5 MPa for 2 minutes.
得られた金属張積層体の金属層の剥離強度は 1. 09NZmm、はんだ耐熱性は A であった。  The peel strength of the metal layer of the obtained metal-clad laminate was 1.09 NZmm, and the solder heat resistance was A.
[0053] 実施例 2  [0053] Example 2
実施例 1で使用したものと同様の 5ッロガラス製丸底フラスコ中で、 BAPP27. 280 g (0. 06645モル)、 m—キシリレンジァミン(MXDA、三菱ガス化学 (株)製) 0.0914 g (0. 00067モル;)、 NMP50. OOg、 TEAO. 34gを、窒素雰囲気下、 lOOrpmで攪 拌して溶液を得た。  BAPP27. 280 g (0.006645 mol), m-xylylenediamine (MXDA, manufactured by Mitsubishi Gas Chemical Co., Ltd.) 0.0914 g (in a 5-glass round bottom flask similar to that used in Example 1 0. 00067 mol;), NMP50.OOg, TEAO. 34 g were stirred at lOOrpm under a nitrogen atmosphere to obtain a solution.
これに HPMDA15. 048g (0. 06713モル)、 N—メチル 2 ピロリドン(NMP、 三菱化学 (株)製) 13. 63gをそれぞれ一括で加えた後、マントルヒーターで加熱し、 約 20分かけて反応系内温度を 195°Cまで上げた。留去される成分を捕集しながら、 反応系内温度を 195°Cに 12時間維持した。 To this, HPMDA15. 048g (0.0.06713mol), N-methyl 2 pyrrolidone (NMP, manufactured by Mitsubishi Chemical Corporation) 13. 63g were added in a lump, and then heated with a mantle heater. The reaction system temperature was raised to 195 ° C over about 20 minutes. While collecting the components to be distilled off, the temperature inside the reaction system was maintained at 195 ° C for 12 hours.
DMAC96. 37gを添加後、 130°C付近で約 30分攪拌して均一な溶液とし、 100°C まで 10分程度で空冷し固形分濃度 20重量%のポリイミド A溶液を得た。  After adding 37 g of DMAC, the solution was stirred at about 130 ° C for about 30 minutes to obtain a uniform solution, and air-cooled to 100 ° C in about 10 minutes to obtain a polyimide A solution having a solid content concentration of 20% by weight.
[0054] 得られたポリイミド A溶液を用いた以外は実施例 1と同様にしてポリイミド Aフィルム を得た。このポリイミド Aフィルムの IR ^ベクトルを測定したところ、 V (C = 0) 1772、 1[0054] A polyimide A film was obtained in the same manner as in Example 1 except that the obtained polyimide A solution was used. The IR ^ vector of this polyimide A film was measured, and V (C = 0) 1772, 1
706 (cm 1)にイミド環の特性吸収が認められた。このポリイミド Aの対数粘度は 1. 01 dL/g,ガラス転移温度は 262°C、吸水率は 1. 9%であった。 Characteristic absorption of the imide ring was observed at 706 (cm 1 ). The logarithmic viscosity of this polyimide A was 1.01 dL / g, the glass transition temperature was 262 ° C, and the water absorption was 1.9%.
得られたポリイミド A溶液を用いた以外は実施例 1と同様にして金属張積層体を得 た。得られた金属張積層体の金属層の剥離強度は 0. 87NZmm、はんだ耐熱性は A metal-clad laminate was obtained in the same manner as in Example 1 except that the obtained polyimide A solution was used. The peel strength of the metal layer of the obtained metal-clad laminate is 0.887 NZmm, and the solder heat resistance is
Aであった。 A.
[0055] 実施例 3 [0055] Example 3
実施例 2で得たポリイミド A溶液、絶縁層として厚さ 25 μ mのポリイミド榭脂フィルム( 商品名;アビカル NPI、(株)カネ力製)、及び金属層として Rzが 6. O /z mの粗ィ匕面を 有する厚さ の電解銅箔(品名; JTC、(株)日鉱マテリアルズ製)を使用した以 外は実施例 1と同様にして金属張積層体を製造した。  Polyimide A solution obtained in Example 2, a polyimide resin film having a thickness of 25 μm as an insulating layer (trade name; Avical NPI, manufactured by Kanechi Co., Ltd.), and a metal layer having an Rz of 6. O / zm A metal-clad laminate was produced in the same manner as in Example 1 except that an electrolytic copper foil having a rough surface was used (product name: JTC, manufactured by Nikko Materials Co., Ltd.).
得られた金属張積層体の金属層の剥離強度は 0. 91NZmm、はんだ耐熱性は A であった。  The peel strength of the metal layer of the obtained metal-clad laminate was 0.91 NZmm, and the solder heat resistance was A.
[0056] 実施例 4 [0056] Example 4
実施例 1で使用したものと同様の 5ッロガラス製丸底フラスコ中で、 HPMDA14. 5 73g (0. 06501ΐ/ν) , NMP40. OOg、および TEAO. 33gを、窒素雰囲気下、 100 rpmで攪拌して溶液を得た。  In a 5-glass round bottom flask similar to that used in Example 1, HPMDA14.5 73 g (0.006501ΐ / ν), NMP40.OOg, and TEAO. 33 g were stirred at 100 rpm under a nitrogen atmosphere. To obtain a solution.
これに MXDA4. 427g (0. 03250モル)をカ卩えてしばらく攪拌して溶解し、次いで 、 BAPP13. 343g (0. 03250モル)、 NMP8. 51gをそれぞれ一括で加えた後、マ ントルヒーターで加熱し、約 20分かけて反応系内温度を 195°Cまで上げた。留去さ れる成分を捕集しながら、反応系内温度を 195°Cに 6時間維持した。  MXDA 4.427g (0.003250mol) was added to this and dissolved by stirring for a while. Then, BAPP13.343g (0.003250mol) and NMP8.51g were added together and heated with a mantle heater. The temperature inside the reaction system was raised to 195 ° C over about 20 minutes. The temperature inside the reaction system was maintained at 195 ° C for 6 hours while collecting the components to be distilled off.
DMAC71. 49gを添加後、 130°C付近で約 30分攪拌して均一な溶液とし、 100°C まで 10分程度で空冷し固形分濃度 20重量%のポリイミド A溶液を得た。 得られたポリイミド A溶液を用いた以外は実施例 1と同様にしてポリイミド Aフィルム を得た。このポリイミド Aフィルムの IR ^ベクトルを測定したところ、 V (C = 0) 1774、 1 697 (cm 1)にイミド環の特性吸収が認められた。このポリイミド Aの対数粘度は 0. 63 dL/g,ガラス転移温度は 232°C、吸水率は 2. 2%であった。得られたポリイミド A溶 液を用いた以外は実施例 1と同様にして金属張積層体を得た。得られた金属張積層 体の金属層の剥離強度は 0. 95N/mm,はんだ耐熱性は Aだった。 After adding DMAC71.49g, it stirred at 130 degreeC vicinity for about 30 minutes, it was set as the uniform solution, and it air-cooled in about 10 minutes to 100 degreeC, and obtained the polyimide A solution with a solid content concentration of 20 weight%. A polyimide A film was obtained in the same manner as in Example 1 except that the obtained polyimide A solution was used. When the IR ^ vector of this polyimide A film was measured, the characteristic absorption of the imide ring was observed in V (C = 0) 1774 and 1697 (cm 1 ). The logarithmic viscosity of this polyimide A was 0.63 dL / g, the glass transition temperature was 232 ° C., and the water absorption was 2.2%. A metal-clad laminate was obtained in the same manner as in Example 1 except that the obtained polyimide A solution was used. The peel strength of the metal layer of the obtained metal-clad laminate was 0.95 N / mm, and the solder heat resistance was A.
[0057] 実施例 5 [0057] Example 5
実施例 4で得たポリイミド A溶液、絶縁層としてアビカル NPI、金属層として厚さ 90 μ mの圧延アルミニウム箔(品名; 1085箔、日本製箔 (株)製)を使用した以外は実 施例 1と同様にして金属張積層体を製造した。  Except that the polyimide A solution obtained in Example 4 was used, Avical NPI was used as the insulating layer, and a rolled aluminum foil (product name: 1085 foil, manufactured by Nippon Foil Co., Ltd.) having a thickness of 90 μm was used as the metal layer. A metal-clad laminate was produced in the same manner as in 1.
得られた金属張積層体の金属層の剥離強度は 1. 08NZmm、はんだ耐熱性は A たった。  The peel strength of the metal layer of the obtained metal-clad laminate was 1.08 NZmm, and the solder heat resistance was A.
[0058] 実施例 6 [0058] Example 6
実施例 1で使用したものと同様の 5ッロガラス製丸底フラスコ中で、 BAPP19. 266 g (0. 04693モル)、 MXDA0.923g (0. 00678モル)、 NMP40. 00g、および TE AO. 26gを、窒素雰囲気下、 lOOrpmで攪拌して溶液を得た。  In a 5-glass round bottom flask similar to that used in Example 1, BAPP 19.266 g (0.04693 mol), MXDA 0.923 g (0.00678 mol), NMP 40.00 g, and TE AO. The solution was obtained by stirring at 100 rpm under a nitrogen atmosphere.
これに HPMDAl l. 690g (0. 05215モノレ)、 NMP7. 82gをそれぞれ一括でカロ免 た後、マントルヒーターで加熱し、約 20分かけて反応系内温度を 200°Cまで上げた。 留去される成分を捕集しながら、反応系内温度を 200°Cに 5時間維持した。  To this, HPMDAl l.690g (0.055215 monore) and NMP7.82g were calorie-free, then heated with a mantle heater, and the reaction system temperature was raised to 200 ° C over about 20 minutes. The temperature inside the reaction system was maintained at 200 ° C. for 5 hours while collecting the components to be distilled off.
DMAC72. 181gを添加後、 130°C付近で約 30分攪拌して均一な溶液とし、 100 °Cまで 10分程度で空冷し固形分濃度 20重量%のポリイミド A溶液を得た。  After adding 181 g of DMAC72, the mixture was stirred for about 30 minutes at around 130 ° C to obtain a uniform solution, and air-cooled to 100 ° C in about 10 minutes to obtain a polyimide A solution having a solid content concentration of 20 wt%.
[0059] 得られたポリイミド A溶液を用いた以外は実施例 1と同様にしてポリイミド Aフィルム を得た。このポリイミド Aフィルムの IR ^ベクトルを測定したところ、 V (C = 0) 1772、 1 704 (cm 1)にイミド環の特性吸収が認められた。このポリイミド Aの対数粘度は 0. 52 dL/g,ガラス転移温度は 253°C、吸水率は 2. 2%であった。 [0059] A polyimide A film was obtained in the same manner as in Example 1 except that the obtained polyimide A solution was used. When the IR ^ vector of this polyimide A film was measured, the characteristic absorption of the imide ring was observed in V (C = 0) 1772, 1704 (cm 1 ). The logarithmic viscosity of this polyimide A was 0.52 dL / g, the glass transition temperature was 253 ° C., and the water absorption rate was 2.2%.
[0060] カプトン 100EN上に上記で得たポリイミド A溶液を塗布し、ホットプレート上で 100 °C、 0. 5時間乾燥した後、真空乾燥機中、 200°C、 5時間の条件で乾燥し、カプトン 1 00EN上に厚さ 4 μ mの接着層を形成した。 同様にして、厚さ 9 mの電解銅箔(品名; FO—WS、古河サーキットフオイル (株) 製)の Rzが 1. 0 mの非粗ィ匕面に厚さ 4 mの接着層を形成した。 [0060] The polyimide A solution obtained above was applied onto Kapton 100EN, dried on a hot plate at 100 ° C for 0.5 hour, and then dried in a vacuum dryer at 200 ° C for 5 hours. Then, an adhesive layer having a thickness of 4 μm was formed on Kapton 100EN. Similarly, a 4 m thick adhesive layer is applied to the non-rough surface of 9 m thick electrolytic copper foil (product name; FO-WS, manufactured by Furukawa Circuit Foil Co., Ltd.) with a Rz of 1.0 m. Formed.
上記で得たカプトン EN及び銅箔を接着層同士が対向するように重ねた後、実施例 1と同様にして金属張積層体を得た。  After the Kapton EN and copper foil obtained above were stacked so that the adhesive layers face each other, a metal-clad laminate was obtained in the same manner as in Example 1.
得られた金属張積層体の金属層の剥離強度は 1. 04NZmm、はんだ耐熱性は A たった。  The peel strength of the metal layer of the obtained metal-clad laminate was 1.04 NZmm, and the solder heat resistance was A.
[0061] 実施例 7 [0061] Example 7
実施例 1で使用したものと同様の 5ッロガラス製丸底フラスコ中で、 BAPP27. 430 g (0. 06682モル;)、 GBL50. 89g、および TEAO. 34gを、窒素雰囲気下、 lOOrp mで攪拌して溶液を得た。  In a 5-glass round bottom flask similar to that used in Example 1, BAPP27.430 g (0.006682 mol;), GBL50.89 g, and TEAO.34 g were stirred at 10 m under nitrogen atmosphere. To obtain a solution.
これに HPMDA14. 979g (0. 06682モル;)、 DMAC12. 72gをそれぞれ一括で 加えた後、マントルヒーターで加熱し、約 20分かけて反応系内温度を 180°Cまで上 げた。留去される成分を捕集しながら、反応系内温度を 180°Cに 6時間維持した。  To this, HPMDA14. 979g (0.0.06682 mol;) and DMAC12.72g were added all at once, and then heated with a mantle heater, and the reaction system temperature was raised to 180 ° C over about 20 minutes. The temperature inside the reaction system was maintained at 180 ° C. for 6 hours while collecting the components to be distilled off.
DMAC96. 39gを添加後、 130°C付近で約 30分攪拌して均一な溶液とし、 100°C まで 10分程度で空冷し固形分濃度 20重量%のポリイミド榭脂溶液を得た。  After adding 39.39 g of DMAC, the mixture was stirred at about 130 ° C for about 30 minutes to obtain a uniform solution, and air-cooled to 100 ° C in about 10 minutes to obtain a polyimide resin solution having a solid content concentration of 20% by weight.
得られたポリイミド榭脂溶液を用いた以外は実施例 1と同様にしてポリイミド榭脂フィ ルムを得た。このポリイミド榭脂フィルムの IR ^ベクトルを測定したところ、 V (C = 0) 1 774、 1706 (cm にイミド環の特性吸収が認められた。このポリイミド榭脂の対数粘 度は 1. OOdLZg、ガラス転移温度は 263°C、吸水率は 1. 6%であった。  A polyimide resin film was obtained in the same manner as in Example 1 except that the obtained polyimide resin solution was used. When the IR ^ vector of this polyimide resin film was measured, V (C = 0) 1 774, 1706 (cm) showed characteristic absorption of the imide ring. The logarithmic viscosity of this polyimide resin was 1. OOdLZg, The glass transition temperature was 263 ° C and the water absorption rate was 1.6%.
[0062] 得られたポリイミド榭脂溶液を用いた以外は実施例 1と同様にして金属張積層体を 得た。得られた金属張積層体の金属層の剥離強度は 0. 62NZmm、はんだ耐熱性 は Aだった。 [0062] A metal-clad laminate was obtained in the same manner as in Example 1 except that the obtained polyimide resin solution was used. The peel strength of the metal layer of the obtained metal-clad laminate was 0.62 NZmm, and the solder heat resistance was A.
[0063] 比較例 1 [0063] Comparative Example 1
実施例 1で使用したものと同様の 5ッロガラス製丸底フラスコ中で、 4, 4'—ジァミノ ジフエ-ルエーテル(ODA、和歌山精化工業 (株)製) 20. 624g (0. 10299モル)、 GBL52. 45g、および TEAO. 52gを、窒素雰囲気下、 lOOrpmで攪拌して溶液を 得た。  In a 5-glass round bottom flask similar to that used in Example 1, 4, 4′-diamino diphenyl ether (ODA, manufactured by Wakayama Seika Kogyo Co., Ltd.) 20. 624 g (0. 10299 mol), GBL52.45g and TEAO.52g were stirred at lOOrpm under nitrogen atmosphere to obtain a solution.
これに HPMDA23. 088g (0. 10299モル;)、 DMAC13. l lgをそれぞれ一括で 加えた後、マントルヒーターで加熱し、約 20分かけて反応系内温度を 180°Cまで上 げた。留去される成分を捕集しながら、反応系内温度を 180°Cに 5時間維持した。 HPMDA23. 088g (0. 10299mol;) and DMAC13. After the addition, the mixture was heated with a mantle heater, and the reaction system temperature was raised to 180 ° C over about 20 minutes. The temperature inside the reaction system was maintained at 180 ° C. for 5 hours while collecting the components to be distilled off.
DMAC94. 43gを添加後、温度 130°C付近で約 30分攪拌して均一溶液とし、 10 After adding 43.43 g of DMAC, stir at about 130 ° C for about 30 minutes to make a homogeneous solution.
0°Cまで 10分程度で空冷し固形分濃度 20重量%のポリイミド榭脂溶液を得た。 Air-cooled to 0 ° C. in about 10 minutes to obtain a polyimide resin solution having a solid concentration of 20% by weight.
[0064] 得られたポリイミド榭脂溶液を用いた以外は実施例 1と同様にしてポリイミド榭脂フィ ルムを得た。このポリイミド榭脂フィルムの IR ^ベクトルを測定したところ、 V (C = 0) 1[0064] A polyimide resin film was obtained in the same manner as in Example 1 except that the obtained polyimide resin solution was used. The IR ^ vector of this polyimide resin film was measured and V (C = 0) 1
772、 1700 (cm にイミド環の特性吸収が認められた。このポリイミドの対数粘度 r? は 1. 06dLZgだった。ガラス転移温度は 316°C、吸水率は 5. 5%であった。 The characteristic absorption of the imide ring was observed at 772, 1700 (cm 2. The logarithmic viscosity r? Of this polyimide was 1.06 dLZg. The glass transition temperature was 316 ° C and the water absorption was 5.5%.
得られたポリイミド榭脂溶液を用いた以外は実施例 1と同様にして金属張積層体を 得た。得られた金属張積層体の金属層は手で簡単に剥がすことができ、剥離強度が 極めて低かった。  A metal-clad laminate was obtained in the same manner as in Example 1 except that the obtained polyimide resin solution was used. The metal layer of the obtained metal-clad laminate could be easily peeled off by hand, and the peel strength was extremely low.
[0065] 比較例 2 [0065] Comparative Example 2
実施例 1で使用したものと同様の 5ッロガラス製丸底フラスコ中で、 α , α '—ビス( 3—ァミノフエ-ル)一 1, 4—ジイソプロピルベンゼン(ビスァ-リン Μ、三井化学 (株) 製) 19. 404g (0. 05633モル)、 GBL38. 44g、および TEAO. 28gを、窒素雰囲 気下、 lOOrpmで攪拌して溶液を得た。  In a 5-glass round bottom flask similar to that used in Example 1, α, α'-bis (3-aminophenol) -1,4-diisopropylbenzene (Bisalin, Mitsui Chemicals, Inc.) 19) 404 g (0.055 mol), GBL 38. 44 g, and TEAO. 28 g were stirred at lOOrpm in a nitrogen atmosphere to obtain a solution.
これに HPMDA12. 627g (0. 05633モル;)、 DMAC9. 61gをそれぞれ一括で加 えた後、マントルヒーターで加熱し、約 20分かけて反応系内温度を 180°Cまで上げ た。留去される成分を捕集しながら、反応系内温度を 180°Cに 12時間維持した。  To this, HPMDA 12.627 g (0.05.633 mol;) and DMAC 9.61 g were added all at once, and then heated with a mantle heater, and the reaction system temperature was raised to 180 ° C. over about 20 minutes. The temperature inside the reaction system was maintained at 180 ° C. for 12 hours while collecting the components to be distilled off.
DMAC 71. 96gを添加後、温度 130°C付近で約 30分攪拌して均一溶液とし、 1 00°Cまで 10分程度で空冷し固形分濃度 20重量%のポリイミド榭脂溶液を得た。  After addition of 71.96 g of DMAC, the mixture was stirred for about 30 minutes at a temperature of about 130 ° C. to obtain a homogeneous solution, and air-cooled to about 100 ° C. for about 10 minutes to obtain a polyimide resin solution having a solid content concentration of 20% by weight.
[0066] 得られたポリイミド榭脂溶液を用いた以外は実施例 1と同様にしてポリイミド榭脂フィ ルムを得た。このポリイミド榭脂フィルムの IR ^ベクトルを測定したところ、 V (C = 0) 1 774、 1704 (cm"1)にイミド環の特性吸収が認められた。このポリイミドの対数粘度 r? は 0. 52dLZg、ガラス転移温度は 220°C、吸水率は 1. 5%であった。 [0066] A polyimide resin film was obtained in the same manner as in Example 1 except that the obtained polyimide resin solution was used. When the IR ^ vector of this polyimide resin film was measured, the characteristic absorption of the imide ring was observed in V (C = 0) 1 774, 1704 (cm " 1 ). The logarithmic viscosity r? Of this polyimide was 0. It was 52 dLZg, the glass transition temperature was 220 ° C, and the water absorption was 1.5%.
得られたポリイミド榭脂溶液を用いた以外は実施例 1と同様にして金属張積層体を 得た。得られた金属張積層体の金属層の剥離強度は 0. 45N/mm,はんだ耐熱性 は Aだった。 1表 ジァミン成分 対数粘度 ガラス転 はんだ 吸水率 剥離強度 A metal-clad laminate was obtained in the same manner as in Example 1 except that the obtained polyimide resin solution was used. The peel strength of the metal layer of the obtained metal-clad laminate was 0.45 N / mm, and the solder heat resistance was A. Table 1 Diamine component Logarithmic viscosity Glass rolling Solder Water absorption Peel strength
BAPP 共重合成分 V 移温度 耐熱性 モ 種類 モ /0* (dL/g) (°C) (%) (N/ram) 実施例 BAPP copolymerization component V transition temperature heat resistance model type / 0 * (dL / g) (° C) (%) (N / ram) Example
1 90 MPD 10 1.05 268 2.1 1.09 A 1 90 MPD 10 1.05 268 2.1 1.09 A
2 99 MXD A 1 1.01 262 1.9 0.87 A2 99 MXD A 1 1.01 262 1.9 0.87 A
3 99 MXD A 1 1.01 262 1.9 0.87 A3 99 MXD A 1 1.01 262 1.9 0.87 A
4 50 MXD A 50 0.63 232 2.2 0.95 A4 50 MXD A 50 0.63 232 2.2 0.95 A
5 50 MXD A 50 0.63 232 2.2 1.08 A5 50 MXD A 50 0.63 232 2.2 1.08 A
6 90 MXD A 13 0.52 253 2.2 1.04 A6 90 MXD A 13 0.52 253 2.2 1.04 A
7 100 1.00 263 1.6 0.62 A 比較例 7 100 1.00 263 1.6 0.62 A Comparative example
比 1 0 ODA 100 1.06 316 5.5 <0.2 一 比 2 0 ビスァユリン M 100 0.52 220 1.5 0.45 A モル%* : HPMDA量に対する割合 Ratio 1 0 ODA 100 1.06 316 5.5 <0.2 Ratio 2 0 Bisyaulin M 100 0.52 220 1.5 0.45 A mol% *: Ratio to HPMDA amount
[0068] 実施例 8 [0068] Example 8
実施例 1で使用したものと同様の 5ッロガラス製丸底フラスコ中で、 BAPP27. 244 g (0. 06637モル)、 3, 3,一ジヒドロキシ一 4, 4,一ジアミノビフエ-ル(HAB、和歌 山精ィ匕工業 (株)製) 0. 145g (0. 00067モル;)、 GBL50. 90g、および TEAO. 339 gを、窒素雰囲気下、 lOOrpmで攪拌して溶液を得た。  In a 5-glass round bottom flask similar to that used in Example 1, BAPP27.244 g (0.06637 mol), 3,3,1 dihydroxy-1,4,4,1 diaminobiphenyl (HAB, Wakayama) Seiyaku Kogyo Co., Ltd.) 0.145 g (0.0.0067 mol;), GBL 50. 90 g, and TEAO. 339 g were stirred at lOOrpm in a nitrogen atmosphere to obtain a solution.
[0069] これに HPMDA15. 027g (0. 06704モル)、 DM AC 12. 72gをそれぞれ一括で 加えた後、マントルヒーターで加熱し、約 20分かけて反応系内温度を 180°Cまで上 げた。留去される成分を捕集しながら、反応系内温度を 180°Cに 5時間維持した。 [0069] After adding HPMDA15. 027g (0.0.06704mol) and DMAC 12.72g in a batch to this, it was heated with a mantle heater, and the temperature in the reaction system was raised to 180 ° C over about 20 minutes. . The temperature inside the reaction system was maintained at 180 ° C. for 5 hours while collecting the components to be distilled off.
DMAC96. 38gを添加後、 130°C付近で約 30分攪拌して均一な溶液とし、 100°C まで 10分程度で空冷し固形分濃度 20重量%のポリイミド A溶液を得た。  After the addition of 96.38 g of DMAC, the mixture was stirred at about 130 ° C for about 30 minutes to obtain a uniform solution, and air-cooled to 100 ° C in about 10 minutes to obtain a polyimide A solution having a solid content concentration of 20% by weight.
得られたポリイミド A溶液を用いた以外は実施例 1と同様にしてポリイミド Aフィルム を得た。このポリイミド Aフィルムの IR ^ベクトルを測定したところ、 V (C = 0) 1776、 1 706 (cm"1)にイミド環の特性吸収が認められた。このポリイミド Aの官能基濃度 Fは 0 . 034meq/g、対数粘度 r?は 1. 10dL/g、ガラス転移温度は 264°C、吸水率は 1 . 9%であった。 A polyimide A film was obtained in the same manner as in Example 1 except that the obtained polyimide A solution was used. When the IR ^ vector of this polyimide A film was measured, characteristic absorption of the imide ring was observed at V (C = 0) 1776, 1706 (cm " 1 ). The functional group concentration F of this polyimide A was 0. 034 meq / g, logarithmic viscosity r? Was 1.10 dL / g, glass transition temperature was 264 ° C, and water absorption was 1.9%.
[0070] 得られたポリイミド A溶液を用いた以外は実施例 1と同様にして金属張積層体を得 た。得られた金属張積層体の金属層の剥離強度は 1. 05N/mm,はんだ耐熱性は Aだった。  [0070] A metal-clad laminate was obtained in the same manner as in Example 1 except that the obtained polyimide A solution was used. The peel strength of the metal layer of the obtained metal-clad laminate was 1.05 N / mm and the solder heat resistance was A.
[0071] 実施例 9  [0071] Example 9
実施例 8で得たポリイミド A溶液、絶縁層として厚さ 25 /z mのアビカル NPI、金属層 として Rzが 6. 0 mの粗ィ匕面を有する厚さ 18 mの電解銅箔(品名; JTC、(株)日 鉱マテリアルズ製)を使用した以外は実施例 1と同様にして金属張積層体を製造した 得られた金属張積層体の金属層の剥離強度は 1. lON/mm,はんだ耐熱性は A たった。  Polyimide A solution obtained in Example 8, abicular NPI with a thickness of 25 / zm as an insulating layer, and an electrolytic copper foil with a thickness of 18 m having a rough surface with a Rz of 6.0 m as a metal layer (product name: JTC The metal-clad laminate was manufactured in the same manner as in Example 1 except that Nikko Materials Co., Ltd. was used. The peel strength of the metal layer of the obtained metal-clad laminate was 1. lON / mm, solder Heat resistance was only A.
[0072] 実施例 10 [0072] Example 10
実施例 1で使用したものと同様の 5ッロガラス製丸底フラスコ中で、 BAPP26. 956 g (0. 06566モル)、 3, 5—ジァミノ安息香酸(DBA、 ACROS社製) 0. 309g (0. 0 0203モル;)、 GBL50. 93g、および TEAO. 34gを、窒素雰囲気下、 lOOrpmで攪 拌して溶液を得た。 In a 5-glass round bottom flask similar to that used in Example 1, BAPP26. 956 g (0.06566 mol), 3,5-diaminobenzoic acid (DBA, manufactured by ACROS) 0.309 g (0. 0 0203 mol;), GBL 50.93 g, and TEAO. 34 g were stirred at lOOrpm under a nitrogen atmosphere to obtain a solution.
これに HPMDA15. 175g (0. 06769モル;)、 DMAC12. 73gをそれぞれ一括で 加えた後、マントルヒーターで加熱し、約 20分かけて反応系内温度を 180°Cまで上 げた。留去される成分を捕集しながら、反応系内温度を 180°Cに 4時間維持した。  To this, HPMDA15.175 g (0.006769 mol;) and DMAC12.73 g were added all at once, and then heated with a mantle heater, and the reaction system temperature was raised to 180 ° C. over about 20 minutes. The temperature inside the reaction system was maintained at 180 ° C. for 4 hours while collecting the components to be distilled off.
DMAC96. 34gを添加後、 130°C付近で約 30分攪拌して均一な溶液とし、 100°C まで 10分程度で空冷し固形分濃度 20重量%のポリイミド A溶液を得た。  After the addition of 96.34 g of DMAC, the solution was stirred at about 130 ° C for about 30 minutes to obtain a uniform solution, and air-cooled to 100 ° C in about 10 minutes to obtain a polyimide A solution having a solid content concentration of 20% by weight.
[0073] 得られたポリイミド A溶液を用いた以外は実施例 1と同様にしてポリイミド Aフィルム を得た。このポリイミド Aフィルムの IR ^ベクトルを測定したところ、 V (C = 0) 1776、 1 706 (cm にイミド環の特性吸収が認められた。このポリイミド Aの官能基濃度 Fは 0 . 051meqZg、対数粘度 r?は 0. 78dL/g,ガラス転移温度は 261°C、吸水率は 2 . 0 (%)であった。 [0073] A polyimide A film was obtained in the same manner as in Example 1 except that the obtained polyimide A solution was used. When the IR ^ vector of this polyimide A film was measured, characteristic absorption of the imide ring was observed at V (C = 0) 1776, 1 706 (cm. The functional group concentration F of this polyimide A was 0.051 meqZg, logarithm The viscosity r? Was 0.78 dL / g, the glass transition temperature was 261 ° C, and the water absorption was 2.0 (%).
得られたポリイミド A溶液を用いた以外は実施例 1と同様にして金属張積層体を得 た。得られた金属張積層体の金属層の剥離強度は 0. 89 (NZmm)、はんだ耐熱性 は Aだった。  A metal-clad laminate was obtained in the same manner as in Example 1 except that the obtained polyimide A solution was used. The peel strength of the metal layer of the obtained metal-clad laminate was 0.89 (NZmm), and the solder heat resistance was A.
[0074] 実施例 11 [0074] Example 11
実施例 10で得たポリイミド A溶液、絶縁層として厚さ 25 /z mのアビカル NPI、金属 層として厚さ 90 μ mの圧延アルミニウム箔(品名; 1085箔、日本製箔 (株)製)を用い た以外は実施例 1と同様にして金属張積層体を得た。なお、圧延アルミニウム箔は、 接着面をアセトンをしみ込ませた布で拭 、た後に使用した。  Using the polyimide A solution obtained in Example 10, 25 / zm thick Avical NPI as the insulating layer, and 90 μm thick rolled aluminum foil (product name: 1085 foil, manufactured by Nippon Foil Co., Ltd.) as the metal layer A metal-clad laminate was obtained in the same manner as in Example 1 except that. The rolled aluminum foil was used after the adhesive surface was wiped with a cloth soaked with acetone.
得られた金属張積層体の金属層の剥離強度は 0. 97NZmm、はんだ耐熱性は A たった。  The peel strength of the metal layer of the obtained metal-clad laminate was 0.97 NZmm, and the solder heat resistance was A.
[0075] 実施例 12 [0075] Example 12
実施例 1で使用したものと同様の 5ッロガラス製丸底フラスコ中で、 BAPP26. 773 g (0. 06522モノレ)、 3, 3,一ジカノレボキシ 4, 4,一ジァミノジフエ-ルメタン(MBA A、和歌山精ィ匕工業 (株)製) 0. 577g (0. 00202モル)、 GBL50. 91g、および TE AO. 34gを、窒素雰囲気下、 lOOrpmで攪拌して溶液を得た。  In a 5-glass round bottom flask similar to that used in Example 1, BAPP26. 773 g (0.0 06522 monole), 3, 3, monodicanoloxy 4, 4, monodiaminodimethane (MBA A, Wakayama Seimitsu) 0.577 g (0.000020 mol), GBL 50. 91 g, and TE AO. 34 g were stirred at lOOrpm in a nitrogen atmosphere to obtain a solution.
これに HPMDA15. 072g (0. 06724モル;)、 DMAC12. 73gをそれぞれ一括で 加えた後、マントルヒーターで加熱し、約 20分かけて反応系内温度を 180°Cまで上 げた。留去される成分を捕集しながら、反応系内温度を 180°Cに 6時間維持した。 HPMDA15.072g (0.006724mol;), DMAC12.73g After the addition, the mixture was heated with a mantle heater, and the reaction system temperature was raised to 180 ° C over about 20 minutes. The temperature inside the reaction system was maintained at 180 ° C. for 6 hours while collecting the components to be distilled off.
DMAC96. 37gを添加後、 130°C付近で約 30分攪拌して均一な溶液とし、 100°C まで 10分程度で空冷し固形分濃度 20重量%のポリイミド A溶液を得た。  After adding 37 g of DMAC, the solution was stirred at about 130 ° C for about 30 minutes to obtain a uniform solution, and air-cooled to 100 ° C in about 10 minutes to obtain a polyimide A solution having a solid content concentration of 20% by weight.
[0076] 得られたポリイミド A溶液を用いた以外は実施例 1と同様にしてポリイミド Aフィルム を得た。このポリイミド Aフィルムの IR ^ベクトルを測定したところ、 V (C = 0) 1776、 1 706 (cm- 1)にイミド環の特性吸収が認められた。  [0076] A polyimide A film was obtained in the same manner as in Example 1 except that the obtained polyimide A solution was used. When the IR ^ vector of this polyimide A film was measured, the characteristic absorption of the imide ring was observed in V (C = 0) 1776 and 1 706 (cm-1).
このポリイミド Aの官能基濃度 Fは 0. 101meq/g,対数粘度 r?は 1. 05dL/g,ガ ラス転移温度は 263°C、吸水率は 1. 9%であった。得られたポリイミド A溶液を用い た以外は実施例 1と同様にして金属張積層体を得た。得られた金属張積層体の金属 層の剥離強度は 0. 81 (NZmm)、はんだ耐熱性は Aだった。  The functional group concentration F of this polyimide A was 0.1101 meq / g, the logarithmic viscosity r? Was 1.05 dL / g, the glass transition temperature was 263 ° C., and the water absorption was 1.9%. A metal-clad laminate was obtained in the same manner as in Example 1 except that the obtained polyimide A solution was used. The peel strength of the metal layer of the obtained metal-clad laminate was 0.81 (NZmm), and the solder heat resistance was A.
[0077] 実施例 13  [0077] Example 13
実施例 1で使用したものと同様の 5ッロガラス製丸底フラスコ中で、 BAPP26. 874 g (0. 06546モノレ)、 4, 4,一ジァミノべンゾフエノン(4, 4, 一 DBPゝ ALDRICH社製 ) 0. 430g (0. 00202モル)、 GBL50. 92g、および TEAO. 34gを、窒素雰囲気下 、 lOOrpmで攪拌して溶液を得た。  In a 5-glass round bottom flask similar to that used in Example 1, BAPP26.874 g (0.0.06546 monole), 4,4,1 diaminobenzophenone (4,4,1 DBP-ALDRICH) A solution was obtained by stirring 0.40 g (0.000020 mol), GBL 50.92 g, and TEAO. 34 g under nitrogen atmosphere at lOOrpm.
これに HPMDA15. 129g (0. 06749モル;)、 DMAC12. 73gをそれぞれ一括で 加えた後、マントルヒーターで加熱し、約 20分かけて 180°Cまで反応系内温度を上 げた。留去される成分を捕集しながら、反応系内温度を 180°Cに 6時間維持した。  HPMDA15.129g (0.06749mol;) and DMAC12.73g were added all at once, and then heated with a mantle heater, and the temperature in the reaction system was raised to 180 ° C over about 20 minutes. The temperature inside the reaction system was maintained at 180 ° C. for 6 hours while collecting the components to be distilled off.
DMAC96. 35gを添加後、 130°C付近で約 30分攪拌して均一な溶液とし、 100°C まで 10分程度で空冷し固形分濃度 20重量%のポリイミド A溶液を得た。  After adding DMAC96.35g, it stirred for about 30 minutes at about 130 degreeC, and it was set as the homogeneous solution, and it air-cooled to about 100 degreeC in about 10 minutes, and obtained the polyimide A solution with a solid content concentration of 20 weight%.
[0078] 得られたポリイミド A溶液を用いた以外は実施例 1と同様にしてポリイミド Aフィルム を得た。このポリイミド Aフィルムの IR ^ベクトルを測定したところ、 V (C = 0) 1776、 1 704 (cm- 1)にイミド環の特性吸収が認められた。 [0078] A polyimide A film was obtained in the same manner as in Example 1 except that the obtained polyimide A solution was used. When the IR ^ vector of this polyimide A film was measured, the characteristic absorption of the imide ring was observed in V (C = 0) 1776, 1704 (cm-1).
このポリイミド Aの官能基濃度 Fは 0. 051meq/g,対数粘度 r?は 0. 74dL/g,ガ ラス転移温度は 262°C、吸水率は 1. 7%であった。  The functional group concentration F of this polyimide A was 0.051 meq / g, the logarithmic viscosity r? Was 0.74 dL / g, the glass transition temperature was 262 ° C., and the water absorption was 1.7%.
得られたポリイミド A溶液を用いた以外は実施例 1と同様にして金属張積層体を得 た。得られた金属張積層体の金属層の剥離強度は 0. 86N/mm,はんだ耐熱性は Aだった。 A metal-clad laminate was obtained in the same manner as in Example 1 except that the obtained polyimide A solution was used. The peel strength of the metal layer of the obtained metal-clad laminate was 0.86 N / mm, and the solder heat resistance was A.
[0079] 比較例 3 [0079] Comparative Example 3
実施例 1で使用したものと同様の 5ッロガラス製丸底フラスコ中で、 BAPP15. 436 g (0. 03760モル)、 HAB4. 005g (0. 01852モル)、 GBL38. 43g、および TEAO . 28gを、窒素雰囲気下、 lOOrpmで攪拌して溶液を得た。  In a 5-glass round bottom flask similar to that used in Example 1, BAPP15.436 g (0.003760 mol), HAB4.005 g (0.001852 mol), GBL38.43 g, and TEAO. The solution was obtained by stirring at lOOrpm under a nitrogen atmosphere.
これに HPMDA12. 581g (0. 05612モル;)、 DMAC9. 61gをそれぞれ一括で加 えた後、マントルヒーターで加熱し、約 20分をかけて 180°Cまで反応系内温度を上 げた。留去される成分を捕集しながら、反応系内温度を 180°Cに 6時間維持した。  HPMDA12.581g (0.05612mol;) and DMAC9.61g were added at once to this, and then heated with a mantle heater, and the temperature in the reaction system was raised to 180 ° C over about 20 minutes. The temperature inside the reaction system was maintained at 180 ° C. for 6 hours while collecting the components to be distilled off.
DMAC71. 97gを添加後、 130°C付近で約 30分攪拌して均一な溶液とし、 100°C まで 10分程度で空冷し固形分濃度 20重量%のポリイミド溶液を得た。  After adding 71.97 g of DMAC, the solution was stirred for about 30 minutes at around 130 ° C. to obtain a uniform solution, and air-cooled to 100 ° C. for about 10 minutes to obtain a polyimide solution having a solid content concentration of 20% by weight.
[0080] 得られたポリイミド溶液を用いた以外は実施例 1と同様にしてポリイミドフィルムを得 た。このポリイミドフィルムの IR ^ベクトルを測定したところ、 V (C = 0) 1772、 1704 ( cm— 1)にイミド環の特性吸収が認められた。このポリイミドの官能基濃度 Fは 1. 235 meq/g,対数粘度 r?は 0. 89dL/g,ガラス転移温度は 300°C、吸水率は 5. 0% であった。 [0080] A polyimide film was obtained in the same manner as in Example 1 except that the obtained polyimide solution was used. When the IR ^ vector of this polyimide film was measured, the characteristic absorption of the imide ring was observed in V (C = 0) 1772 and 1704 (cm-1). The polyimide had a functional group concentration F of 1.235 meq / g, a logarithmic viscosity r? Of 0.89 dL / g, a glass transition temperature of 300 ° C., and a water absorption of 5.0%.
得られたポリイミド溶液を用いた以外は実施例 1と同様にして金属張積層体を得た 。得られた金属張積層体の金属層の剥離強度は 1. OON/mm,はんだ耐熱性は C たった。  A metal-clad laminate was obtained in the same manner as in Example 1 except that the obtained polyimide solution was used. The peel strength of the metal layer of the resulting metal-clad laminate was 1. OON / mm and the solder heat resistance was C.
[0081] [表 2] [0081] [Table 2]
第 2表 ジァミン成分 官能基濃度 F 対数粘度 力 ^^転 吸水率 剥離強度 は^ 画Table 2 Diamine Component Functional Group Concentration F Logarithmic Viscosity Force ^^ Transfer Water Absorption Peel Strength
BAPP 共重合成分 V BAPP copolymer component V
モル0 /0
Figure imgf000027_0001
(meq/ g) (dL/g) (N/mm) 実施例
Mol 0/0
Figure imgf000027_0001
(meq / g) (dL / g) (N / mm) Example
8 99 HAB 1 0. 034 1. 10 264 1. 9 1. 05 A 8 99 HAB 1 0. 034 1. 10 264 1. 9 1. 05 A
9 99 HAB 1 0. 034 1. 10 264 1. 9 1. 10 A9 99 HAB 1 0. 034 1. 10 264 1. 9 1. 10 A
1 0 97 DBA 3 0. 051 0. 78 261 2. 0 0. 89 A 1 1 97 DBA 3 0. 051 0. 78 261 2. 0 0. 97 A1 0 97 DBA 3 0. 051 0. 78 261 2. 0 0. 89 A 1 1 97 DBA 3 0. 051 0. 78 261 2. 0 0. 97 A
1 2 97 MBAA 3 0. 101 1. 05 263 1. 9 0. 81 A 1 3 97 4,4,- DBP 3 0. 051 0. 74 262 1. 7 0. 86 A 比較例 1 2 97 MBAA 3 0. 101 1. 05 263 1. 9 0. 81 A 1 3 97 4, 4,-DBP 3 0. 051 0. 74 262 1. 7 0. 86 A Comparative example
3 67 HAB 1. 235 0. 89 300 5. 0 1. 00 c 3 67 HAB 1. 235 0. 89 300 5. 0 1. 00 c
[0082] 実施例 14 [0082] Example 14
実施例 1で使用したものと同様の 5ッロガラス製丸底フラスコ中で、 BAPP27. 533 g (0. 06707モル;)、 GBL50. 901g、および TEAO. 336gを、窒素雰囲気下、 lOOr pmで攪拌して溶液を得た。  In a 5-glass round bottom flask similar to that used in Example 1, BAPP27.533 g (0.006707 mol;), GBL50.901 g, and TEAO.336 g were stirred at lOOr pm under nitrogen atmosphere. To obtain a solution.
これに HPMDA14. 885g (0. 06640モノレ)と DM AC 12. 725gをそれぞれ一括 で加えた後、マントルヒーターで加熱し、約 20分かけて反応系内温度を 180°Cまで 上げた。留去される成分を捕集しながら、反応系内温度を 180°Cに 3時間維持した。  To this, HPMDA14.885g (0.006640 monore) and DMAC 12.725g were added together, and then heated with a mantle heater, and the reaction system temperature was raised to 180 ° C over about 20 minutes. The temperature inside the reaction system was maintained at 180 ° C for 3 hours while collecting the components to be distilled off.
[0083] DMAC96. 374gを添加後、温度 130°C付近で約 30分攪拌して均一溶液とし、 1 00°Cまで 10分程度で空冷し固形分濃度 20重量%のポリイミド A溶液を得た。  [0083] DMAC96. After adding 374 g, the mixture was stirred for about 30 minutes at a temperature of about 130 ° C to obtain a homogeneous solution, and then cooled to 100 ° C in about 10 minutes to obtain a polyimide A solution having a solid content concentration of 20 wt%. .
得られたポリイミド A溶液を用いた以外は実施例 1と同様にしてポリイミド Aフィルムを 得た。このポリイミド Aフィルムの IR ^ベクトルを測定したところ、 V (C = 0) 1774、 17 06 (cm 1)にイミド環の特性吸収が認められた。このポリイミド Aの対数粘度 7?は 0. 7 IdLZg、ガラス転移温度は 262°C、吸水率は 1. 7%であった。 A polyimide A film was obtained in the same manner as in Example 1 except that the obtained polyimide A solution was used. When the IR ^ vector of this polyimide A film was measured, the characteristic absorption of the imide ring was observed in V (C = 0) 1774, 17 06 (cm 1 ). The logarithmic viscosity of this polyimide A was 7 IdLZg, the glass transition temperature was 262 ° C., and the water absorption was 1.7%.
[0084] 得られたポリイミド A溶液を用いた以外は実施例 1と同様にして金属張積層体を得 た。得られた金属張積層体の金属層の剥離強度は 0. 86N/mm,はんだ耐熱性は Aだった。  [0084] A metal-clad laminate was obtained in the same manner as in Example 1 except that the obtained polyimide A solution was used. The peel strength of the metal layer of the obtained metal-clad laminate was 0.86 N / mm, and the solder heat resistance was A.
[0085] 実施例 15  [0085] Example 15
実施例 1で使用したものと同様の 5ッロガラス製丸底フラスコ中で、 BAPP14. 214 g (0. 03463モル)、 4, 4,一ビス(4—アミノフエノキシ)ビフエ-ル(BAPB、和歌山 精ィ匕工業 (株)製) 12. 757g (0. 03463モル)、 GBL50. 995g、および TEAO. 35 0gを、窒素雰囲気下、 lOOrpmで攪拌して溶液を得た。  In a 5-glass round bottom flask similar to that used in Example 1, BAPP 14.214 g (0.003463 mol), 4, 4, monobis (4-aminophenoxy) biphenyl (BAPB, Sei Wakayama) (Manufactured by Sakai Kogyo Co., Ltd.) 12. 757 g (0.003463 mol), GBL50. 995 g, and TEAO. 350 g were stirred at lOOrpm in a nitrogen atmosphere to obtain a solution.
これに HPMDA15. 524g (0. 06925モノレ)と DMAC12. 749gをそれぞれ一括 で加えた後、マントルヒーターで加熱し、約 20分かけて 180°Cまで反応系内温度を 上げた。留去される成分を捕集しながら、反応系内温度を 180°Cに 4時間維持した。  To this, HPMDA15.524g (0.006925 monore) and DMAC12.749g were added in a lump, and then heated with a mantle heater, and the reaction system temperature was raised to 180 ° C over about 20 minutes. The temperature inside the reaction system was maintained at 180 ° C. for 4 hours while collecting the components to be distilled off.
DMAC96. 256gを添加後、温度 130°C付近で約 30分攪拌して均一溶液とし、 1 00°Cまで 10分程度で空冷し固形分濃度 20重量%のポリイミド A溶液を得た。  After adding DMAC96.256g, it stirred for about 30 minutes at the temperature of about 130 degreeC, and it was set as the homogeneous solution, and it air-cooled in about 10 minutes to 100 degreeC, and obtained the polyimide A solution with a solid content concentration of 20 weight%.
[0086] 得られたポリイミド A溶液を用いた以外は実施例 1と同様にしてポリイミド Aフィルムを 得た。このポリイミド Aフィルムの IR ^ベクトルを測定したところ、 V (C = 0) 1779、 17 04 (cm—1)にイミド環の特性吸収が認められた。このポリイミド Aの対数粘度 7?は 0. 9 5dLZg、ガラス転移温度は 278°C、吸水率は 1. 9%であった。 [0086] A polyimide A film was obtained in the same manner as in Example 1 except that the obtained polyimide A solution was used. When IR ^ vector of this polyimide A film was measured, V (C = 0) 1779, 17 The characteristic absorption of the imide ring was observed at 04 (cm- 1 ). This polyimide A had a logarithmic viscosity of 7? 0.95dLZg, a glass transition temperature of 278 ° C, and a water absorption of 1.9%.
得られたポリイミド A溶液を用いた以外は実施例 1と同様にして金属張積層体を得 た。得られた金属張積層体の金属層の剥離強度は 0. 81NZmm、はんだ耐熱性は Aだった。  A metal-clad laminate was obtained in the same manner as in Example 1 except that the obtained polyimide A solution was used. The peel strength of the metal layer of the obtained metal-clad laminate was 0.81 NZmm, and the solder heat resistance was A.
[0087] 実施例 16 [0087] Example 16
実施例 15で得られたポリイミド A溶液、絶縁層として厚さ 25 mのアビカル NPI、金 属層として Rzが 6. 0 mの粗ィ匕面を有する厚さ 18 mの電解銅箔(品名; JTC、(株 )日鉱マテリアルズ製)を使用した以外は実施例 1と同様にして金属張積層体を製造 した。  Polyimide A solution obtained in Example 15, an abical NPI with a thickness of 25 m as an insulating layer, an electrolytic copper foil with a thickness of 18 m having a rough surface with a Rz of 6.0 m as a metal layer (product name; A metal-clad laminate was produced in the same manner as in Example 1 except that JTC (Nikko Materials Co., Ltd.) was used.
得られた金属張積層体の金属層の剥離強度は 0. 85N/mm,はんだ耐熱性は A たった。  The peel strength of the metal layer of the obtained metal-clad laminate was 0.85 N / mm, and the solder heat resistance was A.
[0088] 実施例 17 [0088] Example 17
実施例 1で使用したものと同様の 5ッロガラス製丸底フラスコ中で、 BAPP24. 158 g (0. 05885モル)、 p—キシリレンジァミン(PXDA、三菱ガスィ匕学 (株)製) 2. 004g (0. 01471モル;)、 NMP50. OOOg、および TEAO. 372gを、窒素雰囲気下、 lOOr pmで攪拌して溶液を得た。  BAPP24. 158 g (0.05885 mol), p-xylylenediamine (PXDA, manufactured by Mitsubishi Gasy Chemical Co., Ltd.) in a round glass round bottom flask similar to that used in Example 1. 004 g (0. 01471 mol;), NMP50. OOOg, and TEAO. 372 g were stirred at lOOr pm under a nitrogen atmosphere to obtain a solution.
これに HPMDA16. 490g (0. 07356モル;)、 NMP13. 997gをそれぞれ一括で 加えた後、マントルヒーターで加熱し、約 20分かけて反応系内温度を 195°Cまで上 げた。留去される成分を捕集しながら、反応系内温度を 195°Cに 3時間維持した。  HPMDA16.490g (0.007356mol;) and NMP13.997g were added in a lump to each, and then heated with a mantle heater, and the reaction system temperature was raised to 195 ° C over about 20 minutes. The temperature inside the reaction system was maintained at 195 ° C for 3 hours while collecting the components to be distilled off.
DMAC96. 023gを添加後、温度 130°C付近で約 30分攪拌して均一溶液とし、 1 00°Cまで 10分程度で空冷し固形分濃度 20重量%のポリイミド A溶液を得た。  After adding DMAC96.023g, the mixture was stirred for about 30 minutes at a temperature of about 130 ° C to obtain a homogeneous solution, and then cooled to 100 ° C in about 10 minutes to obtain a polyimide A solution having a solid content concentration of 20% by weight.
[0089] 得られたポリイミド A溶液を用いた以外は実施例 1と同様にしてポリイミド Aフィルムを 得た。このポリイミド Aフィルムの IR ^ベクトルを測定したところ、 V (C = 0) 1772、 16 99 (cm 1)にイミド環の特性吸収が認められた。このポリイミド Aの対数粘度 7?は 0. 7 IdL/g,ガラス転移温度は 261°C、吸水率は 2. 2%であった。 [0089] A polyimide A film was obtained in the same manner as in Example 1 except that the obtained polyimide A solution was used. When the IR ^ vector of this polyimide A film was measured, the characteristic absorption of the imide ring was observed in V (C = 0) 1772 and 16 99 (cm 1 ). This polyimide A had a logarithmic viscosity of 7? Of 0.7 IdL / g, a glass transition temperature of 261 ° C, and a water absorption of 2.2%.
得られたポリイミド A溶液を用いた以外は実施例 1と同様にして金属張積層体を得 た。得られた金属張積層体の金属層の剥離強度は 0. 85N/mm,はんだ耐熱性は Aだった。 A metal-clad laminate was obtained in the same manner as in Example 1 except that the obtained polyimide A solution was used. The peel strength of the metal layer of the obtained metal-clad laminate was 0.85 N / mm, and the solder heat resistance was A.
[0090] 実施例 18 [0090] Example 18
実施例 17で得られたポリイミド A溶液、絶縁層として厚さ 25 mのアビカル NPI、金 属層として厚さ 90 μ mの圧延アルミニウム箔(品名; 1085箔、日本製箔 (株)製)を用 いた以外は実施例 1と同様にして金属張積層体を得た。なお、圧延アルミニウム箔は 、接着面をアセトンをしみ込ませた布で拭 、た後に使用した。  The polyimide A solution obtained in Example 17, an abical NPI with a thickness of 25 m as an insulating layer, and a rolled aluminum foil (product name: 1085 foil, manufactured by Nippon Foil Co., Ltd.) with a thickness of 90 μm as a metal layer. A metal-clad laminate was obtained in the same manner as in Example 1 except that it was used. The rolled aluminum foil was used after the adhesive surface was wiped with a cloth soaked with acetone.
得られた金属張積層体の金属層の剥離強度は 0. 95N/mm,はんだ耐熱性は A たった。  The peel strength of the metal layer of the obtained metal-clad laminate was 0.95 N / mm, and the solder heat resistance was A.
[0091] 比較例 4 [0091] Comparative Example 4
実施例 1で使用したものと同様の 5ッロガラス製丸底フラスコ中で、 4, 4'—ジァミノ ジフエ-ルエーテル(ODA、和歌山精化工業 (株)製) 20. 624g (0. 10299モル)、 GBL52. 45g、および TEAO. 52gを、窒素雰囲気下、 lOOrpmで攪拌して溶液を 得た。  In a 5-glass round bottom flask similar to that used in Example 1, 4, 4′-diamino diphenyl ether (ODA, manufactured by Wakayama Seika Kogyo Co., Ltd.) 20. 624 g (0. 10299 mol), GBL52.45g and TEAO.52g were stirred at lOOrpm under nitrogen atmosphere to obtain a solution.
これに HPMDA23. 088g (0. 10299モル;)、 DMAC13. l lgをそれぞれ一括で 加えた後、マントルヒーターで加熱し、約 20分かけて 180°Cまで反応系内温度を上 げた。留去される成分を捕集しながら、反応系内温度を 180°Cに 3時間維持した。  To this was added HPMDA23.088g (0.10299mol;) and DMAC13.llg in a lump, and then heated with a mantle heater to raise the temperature in the reaction system to 180 ° C over about 20 minutes. The temperature inside the reaction system was maintained at 180 ° C for 3 hours while collecting the components to be distilled off.
DMAC94. 43gを添加後、温度 130°C付近で約 30分攪拌して均一溶液とし、 10 0°Cまで 10分程度で空冷し固形分濃度 20重量%のポリイミド榭脂溶液を得た。  After adding 94.43 g of DMAC, the mixture was stirred for about 30 minutes at a temperature of about 130 ° C. to obtain a homogeneous solution, and air-cooled to 100 ° C. in about 10 minutes to obtain a polyimide resin solution having a solid content concentration of 20% by weight.
[0092] 得られたポリイミド榭脂溶液を用いた以外は実施例 1と同様にしてポリイミド榭脂フィ ルムを得た。このポリイミド榭脂フィルムの IR ^ベクトルを測定したところ、 V (C = 0) 1 772、 1700 (cm"1)にイミド環の特性吸収が認められた。このポリイミドの対数粘度 r? は 0. 90dLZgだった、ガラス転移温度は 315°C、吸水率は 5. 7%であった。 [0092] A polyimide resin film was obtained in the same manner as in Example 1 except that the obtained polyimide resin solution was used. When the IR ^ vector of this polyimide resin film was measured, characteristic absorption of the imide ring was observed in V (C = 0) 1 772 and 1700 (cm " 1 ). The logarithmic viscosity r? Of this polyimide was 0. The glass transition temperature was 315 ° C and the water absorption was 5.7%.
得られたポリイミド榭脂溶液を用いた以外は実施例 1と同様にして金属張積層体を 得た。得られた金属張積層体の金属層は手で簡単に剥がせることができ、剥離強度 は極めて低かった。  A metal-clad laminate was obtained in the same manner as in Example 1 except that the obtained polyimide resin solution was used. The metal layer of the obtained metal-clad laminate could be easily peeled off by hand, and the peel strength was extremely low.
[0093] [表 3] 3表 [0093] [Table 3] 3 tables
隱 A Bm 対難^ 吸水率 剥瞧度 は モル% モル% 種類 モル% (dL/g) (°C) (%) (N/ram) i≤ 実施例 隱 A B m Difficulty ^ Absorption rate Peeling degree is mol% mol% Type mol% (dL / g) (° C) (%) (N / ram) i≤ Example
1 4 99 100 一 一 0. 71 262 1. 7 0. 86 A 1 4 99 100 1 0. 71 262 1. 7 0. 86 A
1 5 100 50 BAPB 50 0. 95 278 1. 9 0. 81 A1 5 100 50 BAPB 50 0. 95 278 1. 9 0. 81 A
1 6 100 50 BAPB 50 0. 95 278 1. 9 0. 85 A1 6 100 50 BAPB 50 0. 95 278 1. 9 0. 85 A
1 7 100 80 PXDA 20 0. 71 261 2. 2 0. 85 A1 7 100 80 PXDA 20 0. 71 261 2. 2 0. 85 A
1 8 100 80 PXDA 20 0. 71 261 2. 2 0. 95 A 比較例 1 8 100 80 PXDA 20 0. 71 261 2. 2 0. 95 A Comparative example
4 100 —— ODA 100 0. 90 315 5. 7 < 0. 2 —— 4 100 —— ODA 100 0. 90 315 5. 7 <0. 2 ——
産業上の利用可能性 Industrial applicability
本発明のポリイミド榭脂は、熱可塑性、溶剤可溶性および耐熱性が良好で、低吸水 率、更には接着性に優れるので、プリント配線板、面発熱体、電磁波シールド材料、 フラットケーブルなどに加工される金属張積層体の接着層の材料として有用である。  The polyimide resin of the present invention has good thermoplasticity, solvent solubility and heat resistance, low water absorption, and excellent adhesion, so it is processed into printed wiring boards, surface heating elements, electromagnetic shielding materials, flat cables, etc. It is useful as a material for the adhesive layer of a metal-clad laminate.

Claims

請求の範囲 下記式(1) The following formula (1)
[化 1] [Chemical 1]
Figure imgf000033_0001
で表される繰り返し単位、又は、前記式(1)で表される繰り返し単位と下記式(2): [化 2]
Figure imgf000033_0001
Or a repeating unit represented by the formula (1) and the following formula (2):
Figure imgf000033_0002
Figure imgf000033_0002
(式中、 Xは炭素数が 2〜39の 2価の脂肪族基、炭素数が 3〜39の 2価の脂環族基、 炭素数が 6〜39の 2価の芳香族基又はこれらの組み合わせ力 なる 2価の基であり、 Xの主鎖には、 O—、—SO―、 -CH―、— C (CH ) ―、— OSi (CH ) ―、— C (In the formula, X is a divalent aliphatic group having 2 to 39 carbon atoms, a divalent alicyclic group having 3 to 39 carbon atoms, a divalent aromatic group having 6 to 39 carbon atoms, or these. The main chain of X is O—, —SO—, —CH—, — C (CH) —, — OSi (CH) —, — C
2 2 3 2 3 2 2 2 3 2 3 2
H O-及び S 力 なる群力 選ばれた少なくとも 1種の結合基が介在して!/ヽてもH O- and S force group forces at least one selected linking group intervenes!
2 4 twenty four
よぐ Xはカルボキシル基、水酸基又はカルボ-ル基力 なる群力 選ばれた少なくと も 1種の官能基を有していてもよぐ該官能基を有する場合、官能基濃度 Fはゼロを 超え lmeqZgポリイミド榭脂以下である)  X is a carboxyl group, a hydroxyl group, or a carboxylic group force. At least one selected functional group may be present. If it has such a functional group, the functional group concentration F is zero. Exceeding lmeqZg polyimide resin and below)
で表される少なくとも 1種の繰り返し単位力 なるポリイミド榭脂であって、前記式(1) の繰り返し単位の割合が全繰り返し単位の 50モル0 /0以上であり、 0. 5gZdLの N—メ チルー 2 ピロリドン溶液を用いて 30°Cで測定した前記ポリイミド榭脂の対数粘度 7? が 0. 3〜2dLZgであるポリイミド榭脂 And at least one repeating unit force becomes polyimide榭脂THAT represented by the formula (1) is the repetition rate of the unit is 50 mole 0/0 or more of the total repeating units of the 0. 5gZdL N- main Polyimide resin having a logarithmic viscosity 7? Of 0.3-2dLZg of the polyimide resin measured at 30 ° C using a chilly-2 pyrrolidone solution
[2] 式(2)中の Xが m—フエ-レン基又は m—キシリレン基である請求項 1に記載のポリイ ミド榭脂。 [2] The polyimide resin according to claim 1, wherein X in the formula (2) is an m-phenylene group or an m-xylylene group.
[3] 前記対数粘度 r?が 0. 3〜ldLZgである請求項 1に記載のポリイミド榭脂。  [3] The polyimide resin according to claim 1, wherein the logarithmic viscosity r? Is 0.3 to ldLZg.
[4] 吸水率が 2. [4] Water absorption is 2.
5%以下である請求項 1〜3のいずれかに記載のポリイミド榭脂。 [5] 請求項 1〜4の 、ずれか〖こ記載のポリイミド榭脂と有機溶剤を含むポリイミド榭脂溶液 The polyimide resin according to any one of claims 1 to 3, which is 5% or less. [5] A polyimide resin solution containing the polyimide resin according to any one of claims 1 to 4 and an organic solvent.
[6] 1, 2, 4 5 シクロへキサンテトラカルボン酸、 1, 2, 4, 5 シクロへキサンテトラカル ボン酸二無水物および 1, 2, 4, 5 シクロへキサンテトラカルボン酸の反応性誘導 体力もなる群力も選ばれた少なくとも 1種のテトラカルボン酸成分 (Y)と、ジァミン成分 (Z1)または該ジァミン成分 (Z1)とジァミン成分 (Z2)力もなる混合物であるジァミン 成分 (Z)とを反応させる工程を含む、下記式(1): [6] Reactivity of 1, 2, 4 5 cyclohexane tetracarboxylic acid, 1, 2, 4, 5 cyclohexane tetracarboxylic dianhydride and 1, 2, 4, 5 cyclohexane tetracarboxylic acid At least one tetracarboxylic acid component (Y) that is selected as a group strength that also induces physical strength and a diamine component (Z) that is a mixture of the diamine component (Z1) or the diamine component (Z1) and the diamine component (Z2) Including the step of reacting with the following formula (1):
[化 3]  [Chemical 3]
Figure imgf000034_0001
で表される繰り返し単位、又は、前記式(1)で表される繰り返し単位と下記式(2): [化 4]
Figure imgf000034_0001
Or a repeating unit represented by the formula (1) and the following formula (2):
Figure imgf000034_0002
Figure imgf000034_0002
(式中、 Xは炭素数が 2〜39の 2価の脂肪族基、炭素数が 3〜39の 2価の脂環族基、 炭素数が 6〜39の 2価の芳香族基又はこれらの組み合わせ力 なる 2価の基であり、 Xの主鎖には、 O—、—SO―、 -CH―、— C (CH ) ―、— OSi (CH ) ―、— C (In the formula, X is a divalent aliphatic group having 2 to 39 carbon atoms, a divalent alicyclic group having 3 to 39 carbon atoms, a divalent aromatic group having 6 to 39 carbon atoms, or these. The main chain of X is O—, —SO—, —CH—, — C (CH) —, — OSi (CH) —, — C
2 2 3 2 3 2 2 2 3 2 3 2
H O-及び S 力 なる群力 選ばれた少なくとも 1種の結合基が介在して!/ヽてもH O- and S force group forces at least one selected linking group intervenes!
2 4 twenty four
よぐ Xはカルボキシル基、水酸基又はカルボ-ル基力 なる群力 選ばれた少なくと も 1種の官能基を有していてもよぐ該官能基を有する場合、官能基濃度 Fはゼロを 超え lmeqZgポリイミド榭脂以下である)  X is a carboxyl group, a hydroxyl group, or a carboxylic group force. At least one selected functional group may be present. If it has such a functional group, the functional group concentration F is zero. Exceeding lmeqZg polyimide resin and below)
で表される少なくとも 1種の繰り返し単位力 なり、前記式(1)の繰り返し単位の割合 が全繰り返し単位の 50モル%以であるポリイミド榭脂の製造方法であって、  And a ratio of the repeating units of the formula (1) is 50 mol% or less of all repeating units,
(a)該ジァミン成分 (Z1)は、 2, 2 ビス〔4一(4ーァミノフヱノキシ)フ ニル〕プロパ ンおよびその反応性誘導体力 なる群力 選ばれた少なくとも 1種の化合物であり;(a) The diamine component (Z1) is 2, 2 bis [4 (4-aminophenoxy) phenyl] propaline. And its reactive derivative power group power is at least one selected compound;
(b)該ジァミン成分 (Z2)は該ジァミン成分 (Z1)とは異なり、 NH -X-NH (Xは前 (b) The diamine component (Z2) is different from the diamine component (Z1), and NH -X-NH (X
2 2 記と同様)で表されるジァミンおよびその反応性誘導体力 なる群力 選ばれた少な くとも 1種の化合物であり;  2) As in (2)) and the reactive derivative power group power of at least one selected compound;
(c)該ジァミン成分 (Z)が混合物である場合、該ジァミン成分 (Z1)の使用量は該ジァ ミン成分 (Z1)と該ジァミン成分 (Z2)の合計量の 50モル%以上である  (c) When the diamine component (Z) is a mixture, the amount of the diamine component (Z1) used is 50 mol% or more of the total amount of the diamine component (Z1) and the diamine component (Z2).
ことを特徴とするポリイミド榭脂の製造方法。  A method for producing a polyimide resin.
[7] 該ジァミン成分(Z1)が 2, 2 ビス〔4一(4 アミノフエノキシ)フエ-ル〕プロパン及び その反応性誘導体力 なる群力 選ばれた少なくとも 1種の化合物であり、該ジァミン 成分 (Z2)が m—フエ-レンジァミン、 m—キシリレンジァミン、およびそれらの反応性 誘導体力 なる群力 選ばれた少なくとも 1種の化合物であることを特徴とする請求 項 6に記載のポリイミド榭脂の製造方法。 [7] The diamine component (Z1) is at least one compound selected from the group power of 2, 2 bis [4 (4-aminophenoxy) phenol] propane and its reactive derivative, and the diamine component ( The polyimide resin according to claim 6, wherein Z2) is m-phenylenediamine, m-xylylenediamine, and their reactive derivative power group power. Manufacturing method.
[8] 該対数粘度 r?が 0. 3〜ldLZgである請求項 6に記載のポリイミド榭脂の製造方法。 8. The method for producing a polyimide resin according to claim 6, wherein the logarithmic viscosity r? Is 0.3 to ldLZg.
[9] 該反応を有機溶剤溶液中、触媒の存在下または不存在下で加熱下に行ってポリイミ ド榭脂溶液を得る請求項 6〜8のいずれかに記載のポリイミド榭脂の製造方法。 9. The method for producing a polyimide resin according to any one of claims 6 to 8, wherein the reaction is carried out in an organic solvent solution with heating in the presence or absence of a catalyst to obtain a polyimide resin solution.
[10] 該触媒が、第 3級ァミンである請求項 9記載のポリイミド榭脂の製造方法。 10. The method for producing a polyimide resin according to claim 9, wherein the catalyst is a tertiary amine.
[11] 該加熱を温度 180〜205°Cで 2〜12時間行う請求項 9または 10記載のポリイミド榭 脂の製造方法。 11. The method for producing a polyimide resin according to claim 9 or 10, wherein the heating is performed at a temperature of 180 to 205 ° C for 2 to 12 hours.
[12] 請求項 5記載のポリイミド榭脂溶液、又は請求項 9記載の製造方法により得られるポリ イミド榭脂溶液を、支持体上にキャストし、有機溶剤を蒸発除去する工程を含むポリィ ミド榭脂フィルムの製造方法。  [12] A polyimide resin solution comprising the steps of casting the polyimide resin solution according to claim 5 or the polyimide resin solution obtained by the production method according to claim 9 on a support and evaporating and removing the organic solvent. A method for producing a fat film.
[13] 該有機溶剤を 120°C以下の温度で蒸発除去して自己支持性のフィルムにし、支持 体より剥離した該フィルムの端部を固定し、該有機溶剤の沸点〜 350°Cで乾燥する 請求項 12記載のポリイミド榭脂フィルムの製造方法。  [13] The organic solvent is evaporated and removed at a temperature of 120 ° C or lower to form a self-supporting film, the end of the film peeled off from the support is fixed, and dried at a boiling point of the organic solvent to 350 ° C. The method for producing a polyimide resin film according to claim 12.
[14] 絶縁基材、金属層、および、請求項 1〜3のいずれかに記載のポリイミド榭脂、又は 請求項 6〜8のいずれかに記載の製造方法により得られたポリイミド榭脂から形成さ れ、該絶縁基材と金属層との間に配置された接着層を含む金属張積層体。  [14] An insulating base material, a metal layer, and the polyimide resin according to any one of claims 1 to 3, or the polyimide resin obtained by the production method according to any one of claims 6 to 8. And a metal-clad laminate including an adhesive layer disposed between the insulating substrate and the metal layer.
[15] 該接着層を、請求項 5記載のポリイミド榭脂溶液又は請求項 9記載の製造法により得 られたポリイミド榭脂溶液を絶縁基材および金属層の一方又は双方に塗布し、次 、 で、有機溶剤を蒸発除去して形成する請求項 14記載の金属張積層体。 [15] The adhesive layer is obtained by the polyimide resin solution according to claim 5 or the production method according to claim 9. 15. The metal-clad laminate according to claim 14, wherein the obtained polyimide resin solution is applied to one or both of the insulating substrate and the metal layer, and then the organic solvent is removed by evaporation.
[16] 該接着層を、請求項 12記載の製造方法により得られたポリイミド榭脂フィルムにより 形成する請求項 14記載の金属張積層体。 [16] The metal-clad laminate according to claim 14, wherein the adhesive layer is formed of a polyimide resin film obtained by the production method according to claim 12.
[17] 該ポリイミド榭脂のガラス転移温度が 300°C以下である請求項 14〜16のいずれかに 記載の金属張積層体。 17. The metal-clad laminate according to any one of claims 14 to 16, wherein the polyimide resin has a glass transition temperature of 300 ° C or lower.
[18] 該金属層の、接着層に対向する面の表面粗さ Rzが 0. l〜2 /z mである請求項 14〜 [18] The surface roughness Rz of the surface of the metal layer facing the adhesive layer is 0.1 to 2 / z m.
17のいずれか〖こ記載の金属張積層体。 The metal-clad laminate according to any one of 17 above.
[19] JIS C6471の 90° 剥離による銅はくの剥離強度測定法により測定した金属層の剥 離強度が 0. 5NZmm以上である請求項 14〜 18のいずれかに記載の金属張積層 体。 [19] The metal-clad laminate according to any one of [14] to [18], wherein the peel strength of the metal layer measured by the peel strength measurement method for copper foil by 90 ° peel of JIS C6471 is 0.5 NZmm or more.
PCT/JP2006/300844 2005-01-21 2006-01-20 Polyimide resin, polyimide film, and polyimide laminate WO2006077964A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/814,499 US8293371B2 (en) 2005-01-21 2006-01-20 Polyimide resin, polyimide film, and polyimide laminate
JP2006553964A JP5470678B2 (en) 2005-01-21 2006-01-20 Polyimide resin, polyimide film and polyimide laminate
KR1020077016561A KR101252875B1 (en) 2005-01-21 2006-01-20 Polyimide resin, polyimide film, and polyimide laminate

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2005013720 2005-01-21
JP2005-013720 2005-01-21
JP2005-020655 2005-01-28
JP2005020655 2005-01-28
JP2005028466 2005-02-04
JP2005-028466 2005-02-04

Publications (3)

Publication Number Publication Date
WO2006077964A2 true WO2006077964A2 (en) 2006-07-27
WO2006077964A1 WO2006077964A1 (en) 2006-07-27
WO2006077964A3 WO2006077964A3 (en) 2006-12-21

Family

ID=

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008004615A1 (en) * 2006-07-07 2008-01-10 Mitsubishi Gas Chemical Company, Inc. Polyimide resin
WO2008010494A1 (en) * 2006-07-18 2008-01-24 Mitsubishi Gas Chemical Company, Inc. Polyimide resin
WO2008010514A1 (en) * 2006-07-20 2008-01-24 Mitsubishi Gas Chemical Company, Inc. Thermocurable polyimide resin composition
JP2008297360A (en) * 2007-05-29 2008-12-11 New Japan Chem Co Ltd Solvent-soluble polyimide resin
JP2009084391A (en) * 2007-09-28 2009-04-23 Sekisui Chem Co Ltd Method for producing thermosetting resin having dihydrobenzoxazine ring structure
JP2012021133A (en) * 2010-07-14 2012-02-02 Lg Chem Ltd Low temperature curable polyimide resin and method for producing the same
WO2012121259A1 (en) * 2011-03-07 2012-09-13 日産化学工業株式会社 Composition, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2012121257A1 (en) * 2011-03-07 2012-09-13 日産化学工業株式会社 Composition, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2014051050A1 (en) * 2012-09-27 2014-04-03 三菱瓦斯化学株式会社 Polyimide resin composition
US9133353B2 (en) 2010-07-14 2015-09-15 Lg Chem, Ltd. Low temperature curable polyimide resin and method of preparing the same
JP2015227418A (en) * 2014-06-02 2015-12-17 東レ株式会社 Resin film, laminate containing the resin film, organic el element substrate and color filter substrate using the resin film, production methods of the resin film, the laminate, the organic el element substrate and the color filter substrate and flexible organic el display
JP2016222798A (en) * 2015-05-29 2016-12-28 三菱瓦斯化学株式会社 Polyimide resin

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63259515A (en) * 1987-04-16 1988-10-26 Nissan Chem Ind Ltd Orientation processing agent for liquid crystal display element
JPH07152037A (en) * 1993-11-26 1995-06-16 Chisso Corp Liquid crystal oriented film and liquid crystal display element
JP2003155342A (en) * 2001-11-19 2003-05-27 Nippon Steel Chem Co Ltd Polyimide copolymer having alicyclic structure
JP2005015629A (en) * 2003-06-26 2005-01-20 Mitsubishi Gas Chem Co Inc Method for producing solvent-soluble polyimide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63259515A (en) * 1987-04-16 1988-10-26 Nissan Chem Ind Ltd Orientation processing agent for liquid crystal display element
JPH07152037A (en) * 1993-11-26 1995-06-16 Chisso Corp Liquid crystal oriented film and liquid crystal display element
JP2003155342A (en) * 2001-11-19 2003-05-27 Nippon Steel Chem Co Ltd Polyimide copolymer having alicyclic structure
JP2005015629A (en) * 2003-06-26 2005-01-20 Mitsubishi Gas Chem Co Inc Method for producing solvent-soluble polyimide

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8580913B2 (en) 2006-07-07 2013-11-12 Mitsubishi Gas Chemical Company, Inc. Polyimide resin
WO2008004615A1 (en) * 2006-07-07 2008-01-10 Mitsubishi Gas Chemical Company, Inc. Polyimide resin
WO2008010494A1 (en) * 2006-07-18 2008-01-24 Mitsubishi Gas Chemical Company, Inc. Polyimide resin
US8110652B2 (en) 2006-07-18 2012-02-07 Mitsubishi Gas Chemical Company, Inc. Polyimide resin
WO2008010514A1 (en) * 2006-07-20 2008-01-24 Mitsubishi Gas Chemical Company, Inc. Thermocurable polyimide resin composition
JP2008297360A (en) * 2007-05-29 2008-12-11 New Japan Chem Co Ltd Solvent-soluble polyimide resin
JP2009084391A (en) * 2007-09-28 2009-04-23 Sekisui Chem Co Ltd Method for producing thermosetting resin having dihydrobenzoxazine ring structure
US9133353B2 (en) 2010-07-14 2015-09-15 Lg Chem, Ltd. Low temperature curable polyimide resin and method of preparing the same
JP2012021133A (en) * 2010-07-14 2012-02-02 Lg Chem Ltd Low temperature curable polyimide resin and method for producing the same
JPWO2012121259A1 (en) * 2011-03-07 2014-07-17 日産化学工業株式会社 Composition, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
CN103492462A (en) * 2011-03-07 2014-01-01 日产化学工业株式会社 Composition, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
CN103502312A (en) * 2011-03-07 2014-01-08 日产化学工业株式会社 Composition, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JPWO2012121257A1 (en) * 2011-03-07 2014-07-17 日産化学工業株式会社 Composition, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2012121257A1 (en) * 2011-03-07 2012-09-13 日産化学工業株式会社 Composition, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2012121259A1 (en) * 2011-03-07 2012-09-13 日産化学工業株式会社 Composition, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP6003882B2 (en) * 2011-03-07 2016-10-05 日産化学工業株式会社 Composition, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP6075286B2 (en) * 2011-03-07 2017-02-08 日産化学工業株式会社 Composition, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2014051050A1 (en) * 2012-09-27 2014-04-03 三菱瓦斯化学株式会社 Polyimide resin composition
JPWO2014051050A1 (en) * 2012-09-27 2016-08-22 三菱瓦斯化学株式会社 Polyimide resin composition
US10557003B2 (en) 2012-09-27 2020-02-11 Mitsubishi Gas Chemical Company, Inc. Polyimide resin composition
JP2015227418A (en) * 2014-06-02 2015-12-17 東レ株式会社 Resin film, laminate containing the resin film, organic el element substrate and color filter substrate using the resin film, production methods of the resin film, the laminate, the organic el element substrate and the color filter substrate and flexible organic el display
JP2016222798A (en) * 2015-05-29 2016-12-28 三菱瓦斯化学株式会社 Polyimide resin

Also Published As

Publication number Publication date
TWI429684B (en) 2014-03-11
US20090068482A1 (en) 2009-03-12
KR101252875B1 (en) 2013-04-09
KR20070099617A (en) 2007-10-09
JP5470678B2 (en) 2014-04-16
WO2006077964A3 (en) 2006-12-21
US8293371B2 (en) 2012-10-23
JPWO2006077964A1 (en) 2008-06-19
TW200631991A (en) 2006-09-16

Similar Documents

Publication Publication Date Title
JP5565502B2 (en) Polyimide resin
US8580913B2 (en) Polyimide resin
US8293371B2 (en) Polyimide resin, polyimide film, and polyimide laminate
JP5293182B2 (en) Thermosetting polyimide resin composition
KR101076254B1 (en) Copper-clad laminate
KR100503984B1 (en) Flexible aromatic polyimide film/metal film composite sheet
KR101096967B1 (en) Adhesive sheet and copper-clad laminate
KR20070053781A (en) Highly adhesive polyimide film and method for producing same
JP4967465B2 (en) Polyimide resin, polyimide film and polyimide laminate
US5397847A (en) Heat-resistant laminate materials and preparation thereof
JP2001315256A (en) Flexible metal foil-clad laminate
JP4951513B2 (en) Flexible metal-clad laminate
JP2023047876A (en) Polyimide precursor, method for producing polyimide film, polyimide film and multilayer film
JP2023036156A (en) Polyamide acids, polyimides, polyimide films, and multilayer films

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006553964

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020077016561

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200680002776.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06712069

Country of ref document: EP

Kind code of ref document: A2

WWW Wipo information: withdrawn in national office

Ref document number: 6712069

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11814499

Country of ref document: US