WO2006077873A1 - Novel drug metabolizing enzyme in monkey and nucleic acid encoding the same - Google Patents

Novel drug metabolizing enzyme in monkey and nucleic acid encoding the same Download PDF

Info

Publication number
WO2006077873A1
WO2006077873A1 PCT/JP2006/300623 JP2006300623W WO2006077873A1 WO 2006077873 A1 WO2006077873 A1 WO 2006077873A1 JP 2006300623 W JP2006300623 W JP 2006300623W WO 2006077873 A1 WO2006077873 A1 WO 2006077873A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
monkey
seq
metabolism
drug
Prior art date
Application number
PCT/JP2006/300623
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuhiro Uno
Ryoichi Nagata
Go Kito
Original Assignee
Shin Nippon Biomedical Laboratories, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Nippon Biomedical Laboratories, Ltd. filed Critical Shin Nippon Biomedical Laboratories, Ltd.
Priority to JP2006553924A priority Critical patent/JP4972413B2/en
Publication of WO2006077873A1 publication Critical patent/WO2006077873A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • C12N9/0077Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14) with a reduced iron-sulfur protein as one donor (1.14.15)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5082Supracellular entities, e.g. tissue, organisms
    • G01N33/5088Supracellular entities, e.g. tissue, organisms of vertebrates

Definitions

  • the present invention relates to a novel drug-metabolizing enzyme specifically possessed by monkeys, a nucleic acid encoding the same, and a method for evaluating a preclinical test using monkeys as model animals using the novel drug-metabolizing enzyme.
  • cytochrome P450 An enzyme called cytochrome P450 (CYP) is deeply involved in drug metabolism. CYP forms a gene family, and humans have been reported to have more than 50 CYP genes so far, and other mammals are known to have many CYP genes. CYP is a heme protein coordinated with iron ions. The structure of each CYP is very similar, but the substrate and metabolic activity are different.
  • CYPs are classified based on amino acid sequence homology, and each CYP is a family name (number), subfamily name (alphabet), proper name (number), for example “CYP1A 1”. It is specified by notation.
  • a compound that is metabolized by CYP molecular species with large individual differences is considered undesirable as a drug with a high possibility of different drug efficacy and side effects from person to person.
  • the molecular species of the candidate In advance, only candidates with specific polymorphisms, such as polymorphisms that have a medicinal effect or polymorphisms that are unlikely to cause side effects, are excluded, and candidates that have polymorphisms that are likely to cause side effects are excluded. It is necessary to take measures such as
  • Patent Document 1 Japanese Patent Laid-Open No. 2004-4
  • Non-patent literature l Nartimatsu S. et al., Chem Biol Interact (2000) 127: 73-90
  • Non-patent literature 2 Sharer JE. Et al., Drug Metab Dispos (1995) 23: 1231-1241
  • Non-patent literature 3 Stevens JC. Et al., Drg Metab Dispos (1993) 21: 753-760
  • Non-Patent Document 4 Weaver RJ. Et al., Xenobiotica (1999) 29: 467-482
  • the significance of the test results can be evaluated more accurately and effectively by taking into account differences between human CYPs and model animal CYPs, and polymorphisms between model animals. It is thought that it can be utilized. For example, if the metabolic pattern differs significantly between humans and force-quizal monkeys, and there are drug candidates that produce significant side effects in force-quisal monkeys, the difference in metabolic patterns may be due to differences in CYP between humans and force-quizal monkeys. If it can be confirmed that the same side effects do not occur in humans, it may be possible to continue and promote development as a human drug without wastefully stopping the development of the compound. There is.
  • an object of the present invention is to find a monkey-specific drug-metabolizing enzyme and a gene encoding it that are not found in mammals other than monkeys.
  • the present invention measures the metabolic activity of a drug by the monkey-specific drug metabolizing enzyme described above.
  • the purpose of this study is to provide a method for accurately evaluating the results of pharmacokinetic studies using monkeys as model animals and using them effectively.
  • the present inventors have conducted research to solve the above-mentioned problems and screened a cDNA library having a relatively high homology with the human CYP gene by screening a power-cynomolgus liver cDNA library! As a result of the determination of the full-length nucleotide sequence, 21 CYPs were successfully detected. In addition, it was found that the CYP2C gene, which is less homologous to human genes than other CYP genes, is included in this, and this gene is expressed in Old World and New World monkeys including force-cynomolgus monkeys. It was confirmed that expression was not observed in large apes including humans.
  • DNA having the nucleotide sequence described in SEQ ID NO: 1 or SEQ ID NO: 3, or the nucleotide sequence complementary to the nucleotide sequence described in SEQ ID NO: 1 or SEQ ID NO: 3 or a partial DNA thereof Monkey-derived DNA that encodes a protein that is a drug-metabolizing enzyme that is hybridized under stringent conditions with powerful DNA sequences;
  • a recombinant vector comprising the DNA according to [3];
  • a method for evaluating a cause of a difference in metabolism of the test substance which comprises the step B of measuring the presence or absence of involvement of the protein according to the above [1];
  • step B when the protein according to [1] is involved in metabolism of the test substance, the difference in metabolism of the test substance between the monkey and the mammal other than the monkey is The method according to [8] or [9], wherein the method is evaluated as being caused by a difference in species;
  • Step C for measuring the presence or absence of involvement of the drug, and if there is such involvement, the test results of metabolism, efficacy and Z or safety of the drug candidate compound using monkeys as model animals are as follows: A method for assessing metabolism, efficacy and Z or safety testing comprising the step D of predicting that the pharmaceutical compound differs from metabolism, efficacy and Z or safety in humans;
  • [13] A method for evaluating the feasibility of testing metabolism, drug efficacy and Z or safety of a human drug candidate compound using a monkey as a model animal, the method according to [1] A step of contacting the protein with the drug candidate compound, and a step F of measuring the degree of involvement of the protein according to [1] with respect to the authorization of the pharmaceutical compound. A negative evaluation of testing monkeys as model animals if
  • the protein according to the present invention is a monkey-specific drug-metabolizing enzyme that is expressed in old world monkeys such as power-cynomolgus monkeys, monkey monkeys, and African green monkeys, and in new world monkeys such as common marmoset.
  • old world monkeys such as power-cynomolgus monkeys, monkey monkeys, and African green monkeys
  • new world monkeys such as common marmoset.
  • the amino acid sequence of a novel CYP2C protein hereinafter referred to as “novel mfCYP2C” identified by Kino-Kisaruka et al. Is shown in SEQ ID NO: 2 (bottom of FIG. 1).
  • the inventors have found a novel mfCYP2C by the following method.
  • a clone with high homology to the human CYP gene was identified by screening a force-quizal liver cDNA library, and the nucleotide sequence of the cDNA was determined. This identified 21 force-cynomolgus CYP genes, including novel ones. Most of these CYP genes were found to have a homology of 94-95% with the corresponding human CYP gene and only one gene with a maximum of 79% homology with human CYP2C cDNA. This was designated as a new mfCYP2C.
  • the ability of the new mfCYP2C to be a monkey-specific gene In order to confirm whether human homologs have been identified so far, RT-PCR was performed using gene-specific primers, and others. The presence or absence of novel mfCYP2C in primates was investigated. As a result, the new mfCYP2C gene is present in all the measured Old World and New World monkeys, except primates except for humans, but not in humans or large apes such as chimpanzees and orangutans. It was confirmed. In addition, a blast search using the human and chimpanzee genome 'database did not reveal a novel CYP2C gene that showed 90% or more homology with mfCYP2C.
  • the protein of the present invention is monkey-specific. It was a result to support that.
  • the sample strength from each tissue was extracted from total RNA, and real-time RT-PCR was performed using a novel mfCYP2C gene-specific primer. The expression level of this gene was overwhelmingly large in the liver, and other CYP2C Was confirmed to be expressed in small amounts in the heart, muscle, brain, testis, etc., where it is not normally expressed.
  • the percentage of new mfCYP2C in the total CYP expressed in the force-cynomolgus liver calculated by dividing the number of copies of each CYP gene in the force-cynomolgus liver cDNA library by the number of copies of all CYP genes is 28.0%, which is very high, and the difference in the expression level between males and females was about twice.
  • a new mfCYP2C can be expressed and obtained by inserting a new mfCYP2C gene into an appropriate vector and transforming a host using this vector.
  • the present inventors have confirmed that the recombinant novel mfCYP2C protein strength thus obtained, Tolbutamide and testosterone, showed metabolic activity, but not taxol or S-mephenytoin. If a monkey-specific enzyme has metabolic activity for a certain drug, it is suggested that the metabolic pattern for the drug may differ between monkeys and humans.
  • the protein according to the present invention is a drug-metabolizing enzyme and has the same function as the protein consisting of the amino acid sequence shown in SEQ ID NO: 2, in the amino acid sequence shown in SEQ ID NO: 2, Several (for example, 1 to 10, preferably 1 to 5) amino acids may have substitutions, deletions, additions, and mutations such as Z or insertion. These mutations may be naturally occurring or artificially modified.
  • the drug-metabolizing enzyme means an enzyme that changes the chemical structure of a drug taken or administered from outside the body in vivo.
  • nucleic acid according to the present invention is a nucleic acid encoding the protein according to the present invention and is a force RNA that is DNA. As described above, it encodes a protein having an amino acid sequence in which a mutation such as substitution, deletion, addition and / or insertion of one or several amino acids has occurred in the amino acid sequence set forth in SEQ ID NO: 2. Such nucleic acids are also included in the present invention as long as the protein is a protein according to the present invention.
  • the novel mfCYP2C cDNA is shown in SEQ ID NO: 1 (upper part of FIG. 1), and the full length of the new mf CYP2C gene is shown in SEQ ID NO: 3.
  • nucleic acid according to the present invention is hybridized under stringent conditions with the nucleotide sequence set forth in SEQ ID NO: 1 or SEQ ID NO: 3, or a DNA sequence having a complementary nucleotide sequence to the partial DNA. It also includes monkey-derived nucleic acids that encode proteins that are drug-metabolizing enzymes.
  • the stringent conditions include, for example, 5% Denhardt's Solution (containing 0.1% Polycol 1 (Pharmacia), 0.1% polybutyrrolidone, 0.1% ushi serum albumin), 0.5% This refers to the conditions of washing at 65 ° C in 6X SSC solution containing SDS and 100 i ug / ml salmon sperm DNA (l X SSC is 0.15 M NaCl, 15 mM sodium citrate).
  • Stringency can be controlled by salt concentration (ionic strength), temperature, etc. Under conditions of higher stringency, i.e., conditions of lower salt concentration and higher temperature, only DNA with sufficiently high homology But no, it's going to give it.
  • a DNA that hybridizes under stringent conditions with a DNA sequence consisting of the base sequence set forth in SEQ ID NO: 1 or SEQ ID NO: 3 or a base sequence complementary to the DNA that is a part of the base sequence is encoded.
  • the amino acid sequence of the protein is considered to have high homology with the amino acid sequence set forth in SEQ ID NO: 2 and the same function.
  • Those skilled in the art can appropriately select stringent conditions by adjusting the temperature and salt concentration.
  • the origin of the protein and nucleic acid according to the present invention is not limited as long as it is understood that the protein and nucleic acid are included in the present invention by its amino acid sequence, base sequence and Z or function.
  • it is derived from power-old monkeys such as cynomolgus monkeys, monkey monkeys, and African green monkeys, and from new world monkeys such as common marmoset.
  • monkey means primates excluding large apes including old world monkeys, new world monkeys, and original monkeys.
  • the present invention also provides a vector into which the DNA according to the present invention is inserted.
  • the vector to be used is not particularly limited as long as it stably holds the inserted DNA.
  • plasmids derived from E. coli eg, pBR322, pBR325
  • Bacillus subtilis eg, pUB110, pTP5
  • yeast eg, pSH19, pSH15
  • E. coli is used as a host
  • pacteriophages such as ⁇ phage and M13 phage are often used.
  • viral DNAs such as SV40, papilloma virus, vaccinia virus, retrovirus, and baculovirus can be used as vectors.
  • a promoter sequence, an enhancer sequence, a Shine-Dalgarno sequence, a signal sequence, a poly A signal, etc. suitable for the host are appropriately selected so that the protein according to the present invention is efficiently expressed in the host, and the vector is used. Can be inserted.
  • the DNA of the present invention can be inserted into the vector by, for example, cleaving the vector with a restriction enzyme and ligating the DNA to the cleavage site by ligase reaction.
  • the present invention also includes a transformant transformed with the vector according to the present invention.
  • the transformant of the present invention can be obtained by selecting a host suitable for the vector into which the DNA of the present invention is inserted and introducing the vector into this host.
  • the host include Gram-negative bacteria such as E. coli and Pseudomonas aeruginosa, Gram-positive bacteria such as Bacillus subtilis, actinomycetes, yeast, filamentous fungi, animal and plant culture cells, and insect culture cells. preferable.
  • the salt-calcium calcium method is used as a method for introducing a vector.
  • the competent cell method When the host is Bacillus subtilis, the competent cell method, the lithium acetate method, Bacillus subtilis, actinomycetes, or yeast is used.
  • the protoplast method, methods widely used for animal and plant cells, yeast, bacteria, etc. should be selected as appropriate, such as calcium phosphate coprecipitation method, electopore position method, DEAE—a method of forming a complex with a polymer such as dextran or polypropylene. Can do. This can be done by using lipofectamine (Invitrogen) which forms a complex with the ribosome of the cationic lipid.
  • the present invention also includes a method for producing a protein, wherein the transformant is cultured to produce the protein according to the present invention.
  • the culture of the transformant can be selected according to the characteristics of the host cell, the characteristics of the expressed protein, the characteristics of the promoter, etc.
  • a known medium such as MEM medium, DMEM medium, Williams E medium (G3 ⁇ 4co) can be used.
  • MEM medium MEM medium
  • DMEM medium DMEM medium
  • Williams E medium G3 ⁇ 4co
  • IPTG is added to the medium. It can be added to induce expression.
  • the protein according to the present invention expressed by culturing the transformant thus obtained can be purified using a normal protein purification method, and depending on the expression system used, for example, various chromatography, It can be purified by a combination of external filtration, salting out, osmotic shock, and ultrasonic treatment.
  • chromatography method include ion exchange chromatography performed in an aqueous solution, gel filtration, hydrophobic chromatography, affinity chromatography, and reverse phase chromatography using an organic solvent.
  • the present invention also includes proteins purified using these purification methods.
  • the expressed protein can be modified or partially removed by using an appropriate protein modifying enzyme before or after purification, and these modified proteins are also included in the present invention. included.
  • protein modifying enzymes include trypsin, chymotrypsin, protein kinase dalcosidase, and the like. A person skilled in the art can easily change the expressed protein to a salt if it is released, or to a released state if it is obtained as a salt.
  • the present invention also provides an antibody that binds to the protein of the present invention or a partial peptide of the protein.
  • the antibody according to the present invention is a novel mfCYP2C protein, a protein functionally equivalent to the novel mfCYP2C (in the amino acid sequence described in SEQ ID NO: 2, one or several amino acids are substituted, deleted, added and / or A protein consisting of an inserted amino acid sequence and a protein that is a drug-metabolizing enzyme), or a polyclonal antibody that binds specifically to a partial peptide thereof, or a monoclonal antibody, .
  • humanized antibodies and antibodies obtained by genetic recombination are also specific for the protein according to the present invention or a partial peptide thereof. As long as they are combined, they are included in the present invention.
  • the antibody according to the present invention can be produced by a method known per se or a method analogous thereto, A typical method is illustrated below.
  • polyclonal antibodies immunize mammals, preferably primates such as rodents, maggots, monkeys such as mice and rats, using new mfCYP2C or its partial peptides, and obtain serum.
  • This serum can be obtained by purifying through a affinity column to which the novel mfCYP2C or a partial peptide thereof is immobilized.
  • Monoclonal antibodies can also be used to immunize mammals first, fuse antibody-producing cells obtained from these animals with highly proliferative myeloma cells, isolate individual fused cells, and test the ability to produce the desired antibodies.
  • cells can be produced by selecting cells that produce only one type of antibody molecule that specifically reacts with one epitope of the antigen, and culturing these cells.
  • a monoclonal antibody can also be obtained by a genetic engineering method by inserting a DNA encoding the amino acid sequence of a monoclonal antibody into a vector, introducing the vector into a host, and producing the vector.
  • Human antibodies can also be produced by immunizing a transgenic animal into which a human antibody gene has been introduced.
  • the antibody of the present invention may be a fragment or modified antibody as long as it specifically recognizes and binds to the protein or partial peptide of the present invention. Examples of antibody fragments include F (ab), F (ab ') 2, Fc fragments, and single chain Fv.Modified antibodies include, for example, antibodies bound to compounds such as polyethylene glycol. Is mentioned.
  • the antibody of the present invention can be used for purification, detection, and quantification of a novel mfCYP2C, and when it has an action of enhancing or suppressing the biological activity of the novel mfCYP2C, it is an agonist or antagonist. It can be.
  • the novel mfCYP2C according to the present invention is a monkey-specific protein
  • the metabolic patterns of monkeys and large apes differ for the compounds involved in the metabolism of the novel mfCYP2C. Probability is high. Therefore, before conducting a metabolic test, efficacy test, or safety test for a drug candidate compound, confirm whether the new mfCYP2C is involved in the metabolism of the candidate compound in vitro. Thus, it is possible to evaluate whether or not a monkey can be tested as a model animal.
  • the metabolism of the candidate compound in humans may be significantly different from that in monkeys, and it is not desirable to test monkeys as model animals. It is evaluated as a thing.
  • the novel mfCYP2C is not involved in the metabolism of the candidate compound, it is suggested that the candidate compound may be metabolized by another metabolic enzyme with high homology with humans. It is considered possible to estimate the metabolism in humans using the results of tests using monkeys as model animals.
  • a new mfCYP2C is a drug that has a different metabolic pattern in humans and monkeys. It is presumed that the possibility of being involved in metabolism is high. Therefore, the cause of this difference in metabolic patterns is assessed by contacting drugs with different metabolic patterns in humans and monkeys with new mfCYP2C, incubating under appropriate conditions, and measuring the involvement of new mfCYP2C in the drug metabolism. Is possible.
  • the test will be restrained by the test results using monkeys as model animals and the test will be continued and stopped quickly. It is possible.
  • the present invention further provides a kit containing a novel mfCYP2C, which is used for evaluation of metabolism, efficacy and Z or safety of a human drug candidate compound using a monkey as a model animal.
  • the profitable kit may contain reagents, containers, devices, etc. necessary for the new mfCYP2C to metabolize the substrate.
  • Such a kit can be used to estimate whether results similar to those obtained using a monkey as a model animal can be obtained in a human test, to investigate the cause of a test result that differs between a human and a monkey, Can be used to examine whether or not to test as a model animal.
  • Tissue samples consisted of 6 force-quizzed monkeys (3 males and 3 females), 2 akage monkeys (male), 2 Collected from Mon 'marmoset.
  • Orangutan and chimpanzee tissue samples were also prepared.
  • COS1 cells obtained from ATCC
  • H-marked G2 cells obtained from RIKEN
  • RNA extraction from cells and subsequent DNase I treatment were performed using the RNeasy Mini Kit (QIAGEN) according to the product instructions.
  • clones with high homology to human CYP were identified by screening a force-quizal liver cDNA library. For the identified clones, the entire length of the insert was amplified by PCR. PCR was performed in a total volume of 201 containing the following.
  • RV 5'-TGTGGGAGGTTTTTTCTCTA-3 '(SEQ ID NO: 5)
  • the obtained sequence data was imported into DNASIS Pro (Hitachi Software) for sequence analysis. After trimming the vector sequences, all data were visually inspected to remove regions with inadequate sequence quality before combining each sequence.
  • Homolone 1 ⁇ ⁇ 1 ⁇ ⁇ was performed by BLAS ⁇ program (National and enter for Biotechnology Information). In order to identify highly homologous CYP cDNA sequences, multiple alignments using Clustral W were performed on cDNA and amino acid sequences.
  • FIG. 2 shows the results of the multiple alignment of mfCYP2C9vl, mfCYP2C9v3 and new mfCYP2C, and mfCYP2C20, which is a known force-quizal CYP gene, among 21 CYPs of the force-quizal monkeys found by the inventors. From the top, m! CYP2C20 (SEQ ID NO: 6), mf CYP2C9vl (SEQ ID NO: 7), mfCYP2C9v3 (SEQ ID NO: 8), and new mfCYP2C (SEQ ID NO: 9).
  • CYP2C76 CYP2C43, and CYP2C75, respectively, by the Committee on Standarized P450 Nomenclature, and registered as accession numbers DQ074806, DQ074805, and DQ074807, respectively.
  • the nucleotide sequence of the novel m! CYP2C cDNA (SEQ ID NO: 1) is shown in FIG.
  • the new m! CYP2C cDNA has an open 'reading' frame with an amino acid power of 489, one residue less than all known human and monkey CYP2C.
  • the amino acid sequence deduced from the base sequence includes the N-terminus, which has a very high hydrophobicity, a heme binding region, six substrate recognition sites (Gotoh, (1992), J. Biol Chem 267: 83-90), and other It contained an amino acid sequence common to CYP2C molecules.
  • Bf search (UCSC Genome Bioinformatics) of mfCYP2C homologue was also performed on human and chimpanzee genomes.
  • CYP2C9vl and mfCYP2C9v3 showed about 92% homology to the amino acids of human CYP2C, which was at the same level as CYP2C20 and other known force-cynomolgus CYP2C genes.
  • the new mfCYP2C amino acid is only about 71% homologous to any human CYP2C amino acid, and there was no human cDNA showing any more homology in the GenBank database.
  • New mfCYP2C homologues from other species of monkeys were identified by RT-PCR using RNA samples derived from liver (rhesus monkey, common 'marmoset, orangutan and chimpanzee) or COS1 cells (African green monkey).
  • RT reaction was performed using M-MLV reverse transcriptase (Toyobo), 1 g of total RNA and oligo (dT) primer or random ply. For 1 hour at 37 ° C. The obtained RT product was diluted 25 times and subjected to PCR.
  • a commercially available liver RT product (BD Biosciences) was used.
  • the CYP2C homologue cDNAs of rhesus monkey, green monkey, and common marmoset were able to be amplified by primer pairs having the following base sequences, respectively.
  • RV mlCYP2C (3polyA2a) 5'— TGCCTAGACAGGTAGATAGGAGTG— 3' (SEQ ID NO: 11)
  • mfCYP2C 5ex2a) 5'- GTATTTTCTGGCCGAGGGAG-3 '(SEQ ID NO: 13)
  • RV mlCYP2C (3ex4a) 5'- ACAGGGAACACAACCCAGAA-3' (SEQ ID NO: 14)
  • Amplification was performed using KOD Plus DNA polymerase (Toyobo) Using the MJ Research thermal cycler (MJ Research), the first denaturation was performed at 95 ° C for 2 minutes, followed by 30 cycles of 95 ° C for 20 seconds, 55 ° C for 20 seconds, 72 ° C for 2 minutes, The final extension was 72 ° C for 10 minutes.
  • the PCR product was cloned into a vector using TOPO TA Cloning Kit (Invitrogen). Subsequently, using the ABI Prism BigDye Terminator v3.0 Ready Reaction Cycle Sequencing Kit (Applied Biosystems), the base sequence analysis of the insert was performed, and the electricity was analyzed using the ABI PRISM 3730 DNA Analyzer (Applied Biosystems). Electrophoresis was performed.
  • FIGs. Figures 4 and 5 show the nucleotide sequence of the new m! CYP2C cDNA, respectively. From the top, force-cynomolgus monkey (SEQ ID NO: 15), lizard monkey (SEQ ID NO: 16), daffodil green monkey (SEQ ID NO: 17) and common marmoset (SEQ ID NO: 18).
  • Figure 6 shows the amino acid sequence of the novel mfCYP2C protein. From the top, force-cynomolgus (SEQ ID NO: 2), Rhesus monkey (SEQ ID NO: 19), African green monkey (SEQ ID NO: 20), and common marmoset (SEQ ID NO: 21). ).
  • PCR was denatured at 95 ° C for 2 minutes, and then cycled at 95 ° C for 20 seconds, 55 ° C for 30 seconds, and 72 ° C for 5 minutes 35 times for a final extension of 72. C20 minutes were done. Electrophoresis on 0.8% agarose gel After that, the PCR product was gel-purified, cloned into a vector using TOPO TA or XL cloning kit (Invitrogen) according to the product instructions, and sequenced.
  • RV M13RV 5 -CAGGAAACAGCTATGAC-3 '(SEQ ID NO: 39)
  • the novel mfCYP2C has a length of about 19.6 kb (SEQ ID NO: 3) and is a gene having 9 exons as in all human CYP2C (FIG. 7).
  • the sizes of exon and intron were 142-693bp and 937-4307bp, respectively.
  • most of the boundaries of the exon (lowercase) intron (uppercase) followed the GU-AC rule (bold), but in the 5 'splice site of intron 8, GU was replaced by GC.
  • BACPAC rhesus monkey BAC library
  • the probe is in the presence of [] 32 P-dCTP (Amersham Biosciences), and RadPrime DNA labeling system (Invitrogen) Was synthesized.
  • the identified BAC clone was obtained from BACPAC, and BAC DNA was purified using DNA PhasePrep TM BAC DNA Kit (Sigma-Aldrich).
  • DNA PhasePrep TM BAC DNA Kit Sigma-Aldrich
  • PCR was performed using olymerase (Applied Biosystems) and primers specific for the 5 'and 3' ends of each gene.
  • Primer pairs were designed in exons 1 and 9 of each gene, and the position was determined by comparing macaque cDNA with the human CYP2C gene. High homology! With CYP2C9vl and CYP2C9 v3, the designed primers did not show gene-specific amplification patterns. Therefore, we searched the macaque genome data to identify gene-specific indels of these genes, and designed primers that recognize these indels (insertion / deletion).
  • the primers used are shown in Table 4. According to the method of Gray et al. (Gray IC et al., Genomics, (1995) 28: 328-332), the arrangement of CYP2C genes in the genome was determined using the amplification pattern. For the same purpose, DNA was also used for BAC end sequencing and restriction enzyme mapping with BamHI or EcoRI according to BACPAC instructions.
  • RNA from brain, lung, heart, liver, kidney, adrenal gland, jejunum, testis, ovary and uterus was performed.
  • the probe was labeled with FAM fluorescence reporter dye at the 5 ′ end.
  • the RT reaction was performed using random primers, and the resulting reaction product was diluted 25-fold and subjected to PCR.
  • PCR was performed using Aq Prism 7700 sequence detection system (Applied Biosystems) using TaqMan Universal PCR Master Mix (Applied Biosystems) in a total volume of 25 ⁇ l.
  • the final concentration of each primer was 0.3 ⁇ M for CYP2C20 and CYP2C9vl, 0.9 ⁇ for CYP2C9v3, and 0.1 ⁇ for new m! CYP2C.
  • the final probe concentration was 0.25 ⁇ ⁇ ⁇ ⁇ ⁇ for all CYP2C.
  • the conditions for the thermal cycler were 50 ° C for 2 minutes, 95 ° C for 10 minutes, 95 ° C for 15 seconds, and 60 ° C for 1 minute for 40 cycles.
  • the 5 'flanking region was identified by Inverse PCR. The method will be described below. First, 1 ⁇ g of genomic DNA derived from each force-cynomolgus monkey was digested at 37 ° C in the presence of Pstl. This product was extracted and purified with a solvent of phenol: chloroform (1: 1), followed by ethanol precipitation. The obtained DNA was self-ligated at 16 ° C. using Ligation high (Toyobo) and then purified by the same method. The purified DNA was subjected to PCR together with two primers shown below based on KOD plus DNA polymerase (Toyobo) and the 5 'end of the novel mfCYP2C cDNA sequence.
  • Toyobo KOD plus DNA polymerase
  • FW mfCYP2C (5inv3) 5'-TCCTCTCCCCGTTATTGGAA-3 '(SEQ ID NO: 88)
  • RV mlCYP2C (3inv2) 5'- CACCAGGATGATGAAGAGATCC-3' (SEQ ID NO: 8)
  • the amplified DNA was gel purified on a 1% agarose gel and then sequenced using m! CYP2C (5inv3) to determine the base sequence at the end of the 5 ′ flanking region. Two primers were further designed based on this sequence.
  • RV mlCYP2C (3flklaH) 5'— CCCAAGCTTGCTGGGCTCTTTGAAAAC— 3 ′ (SEQ ID NO: 91)
  • PCR was performed as described above, and the PCR product was cloned into pGL3-basic vector (Promega). After determining the base sequence of the full length of the insert, a regulatory element search using TRANS FAC was performed on the determined sequence, and the construct was used for reporter assembly.
  • HepG2 cells were purchased from RIKEN, Dulbecco's modified Eagle's Medium (Nissui Pharmaceutical Co., Ltd.), 10% urine fetal serum (Cambrex Bioscience Walkersville), non-essential amino acids (ICN) The cells were cultured in a medium supplemented with ImM sodium pyruvate (Invitrogen) at 37 ° C with 5% CO. 2 x 10 5 on 12 well plate
  • the cells were incubated for 24 hours.
  • HNF1a HNF3 ⁇ and HNF4a, which are the major transcription factors of the liver, were selected as necessary.
  • each protein was expressed according to the method of Iwata et al. (Iwata, H. et al., Biochem Pharmacol (1998) 55: 1315-1325).
  • each cDNA's open reading frame (ORF) is amplified by using the primers shown in Table 6 and KOD Plus DNA polymerase (Toyobo).
  • KOD Plus DNA polymerase Toyobo
  • MALLLAVF MALLLAVF, which is the N-terminal 8 residues of ushi CYP17 (Barnes, HJ et al., Proc Natl Acad Sci USA (1991) 88: 5597-5601).
  • the pCW vector (Barnes, HJ., Methods Enzymol (1996) 272) can be used to co-express PCR products with Iwata et al. : 3) Cloned directly to the vector prepared based on 14).
  • Nocteria was cultured in Luria-bertani broth containing 100 g / ml ampicillin and then prepared according to the method of Iwata et al. (1998). After diluting 100 times with Terrific Broth, the cells were cultured in the presence of 200 ⁇ g / ml ampicillin at 30 ° C for 6 to 12 hours until the OD was about 0.6 to 0.8.
  • IPTG isopropyl-BD-thiogalatatoside
  • the cultured cells were collected and a cell membrane fraction was prepared. Then, the concentrations of P450 and NAPDH-P450 reductase were measured according to the method of Iwata et al. (1998).
  • CYP2C proteins All of the recombinant CYP2C proteins were used to analyze the metabolic activities of novel m! CYP2C, CYP2C20, CYP2C9vl, and CYP2C9v3 against four substrates, taxol, tolbutamide, S-methylentoin and testosterone.
  • the reaction mixture was prepared as follows. First, “C-taxol (6 ⁇ M),” C-tolbutamide (1 00 ⁇ M) ⁇ 14 C— testosterone (50 ⁇ M) ⁇ “C—S—mephenytoin (50 ⁇ M), monkey liver microzoa Or purified recombinant CYP2C was prepared in a tube and incubated for 5 minutes at 37 ° C.
  • Taxol and testosterone are incubated at 37 ° for 15 minutes, 3 ⁇ 4—mephenytoin is incubated for 45 minutes, tolbu tamide is incubated for 60 minutes, and after 60 minutes of incubation, an equal amount of methanol is added to react. Stopped. In the case of recombinant m! CYP2C protein, Bastion was 30 minutes. After completion of the reaction, the sample was centrifuged, and each aliquot was evaporated to dryness and the residue was dissolved in 15 ⁇ l of methanol.
  • the developing solvent was dichloromethane acetone (4: 1, v / v), and 16 cm was developed.
  • nydroxytolbutamide can be obtained according to the method of Ludwig et al. (Ludwig, E. et al., J Chromatogr B Biomed Sci Appl (1998) 707: 347-350) and the developing solvent is toluene acetone-formic acid (60: 39: l, v / v / v) and expanded 10 cm.
  • the TLC plate was dried and allowed to stand for 12 hours in contact with phosphor imaging plate (IP). Changes in the amount of compounds and metabolites were measured using BAS-2500 (Fuji Film). The Rf values for radioactive metabolites were clearly identified compared to unlabeled standards. The results are shown in FIG. Lane 1 is monkey liver microsome, lane 2 is CYP2C20, lane 3 is CYP2C9vl, lane 4 is CYP2C9v3, and lane 5 is new mfCYP2C.
  • the new m! CYP2C is able to metabolize tolbutamide and testosterone out of four substrates.
  • mfCYP2C20 has the ability to metabolize taxol and has no metabolic activity against other compounds. It was also confirmed that m! LYP2 and 9v3iitolbutamiae, 3 ⁇ 4-mephenytoin, testosterone, and mlCYP2C9vl metabolize S-mephenytoin and testosterone.
  • the new m! CYP2C, mfCYP2C9vl, and mfCYP2C9v3 all showed metabolic activity using testosterone as a substrate, but the metabolites were not identical.
  • Neo MPS San Diego, Calif.
  • the synthesized peptide was purified, bound to Keyhol Limpet Hemocyanin (carrier protein) via the thiol group of the C-terminal cysteine residue, and immunized with New Zealand White Rabbit to obtain a rabbit anti-new mfCYP2C antibody (Fig. 15). ).
  • CYP2C antibody (1: 250) and a donkey anti-usagi IgG antibody conjugated to horseradish peroxidase (SantaCruz Biotechnology) 7 lines. The effect of the mouth of the product is not visible. [Visualization with ECL Western Blotting detection reagent (Amersham Biosciences)] Only when the antibody (A) is used, only the band strength corresponding to the new mfC YP2C (CYP2C76) is obtained. And immunospecificity was confirmed (Fig. 16 (A)) 0
  • Immunohistochemical staining with anti-novel mfCYP2C antibody was performed using a section of force-cynomolgus liver according to standard methods.
  • the primary antibody was diluted 50-fold, brought into contact with the section and left at 4 ° C.
  • the bound antibody was detected using EnVision + System and liquid diaminobenzidine (both from DakoCytomation) according to the product instructions. Slides were control stained with harr is hematoxylin. Usagi preimmune serum was used in place of the primary antibody as a negative control.
  • the antibody was pre-cured at 4 ° C with an excess of novel m!
  • CYP2C-specific peptide (0.05 mg / ml) and used in place of the primary antibody. did. As a result, hepatocytes were strongly stained, and the 1S bile duct and vascular cells were not stained. No staining was seen in the presence of blocking peptide or preimmune serum (Figure 17), suggesting that the staining is specific for the novel mfCYP2C.
  • FIG. 1 The upper part of FIG. 1 shows the base sequence of the novel mfCYP2C cDNA (SEQ ID NO: 1), and the lower part shows the amino acid sequence of the novel m! CYP2C protein (SEQ ID NO: 2).
  • the region surrounded by the frame is the region estimated to be a hem coupling region.
  • the extension (281 bases) of the transcript variant with a long 3 'non-translated region is underlined by alternative polyadenylation.
  • the amino acid sequence drawn with a broken line is the sequence of the peptide used to produce the anti-new mfCYP2C antibody.
  • the cDNA is 1666 bases long and contains an open 'reading' frame of 489 amino acid residues.
  • FIG. 2 Multiple alignment of amino acid sequences of four monkey CYP2C proteins. From the top, the amino acid sequences of CYP2C20 (SEQ ID NO: 11), mfCYP2C9vl (SEQ ID NO: 12), mfCYP2C9v3 (SEQ ID NO: 13), and novel mfCYP2C (SEQ ID NO: 14) are shown.
  • the new m! CYP2 C has 489 amino acid residues and is one residue shorter than other monkey CYP2C and human CYP2C proteins.
  • FIG.3 Amino acid sequences of CYP2C in chick (c), chick Kh), pig (pig), inu (dog), rabbit (rab), mouse), force-quizal (mf), rat (r) It is a molecular evolutionary phylogenetic tree drawn using. The sequence of the new m! CYP2C was shown to be more similar to that of other animal species than humans.
  • FIG.4 Multiple alignment of new m! CYP2C homolog cDNAs in other monkeys is there. From the top, the base sequences of cDNAs of Riki quizal (part of SEQ ID NO: 1), monkey (SEQ ID NO: 15), African monkey (SEQ ID NO: 16), and common 'marmoset (SEQ ID NO: 17) are shown. . Due to the species differences, only the akage monkey was able to completely amplify the coding region, and exon 1-4 and exon 2-4 were amplified for African green monkey and common 'marmoset, respectively. Among the species, only a few residues differed, and close to 100% showed homology.
  • FIG. 5 is a continuation of FIG. 15 and shows multiple alignment of cDNA of a novel mfCYP2C homolog in other monkeys.
  • FIG. 6 Multiple alignment of amino acid sequences of proteins of a novel m! CYP2C homolog in other monkeys. From the top, the amino acid sequence of a new m! CYP2C protein homologue of force-quizal (SEQ ID NO: 2), akage monkey (SEQ ID NO: 18), African green monkey (SEQ ID NO: 19), common marmoset (SEQ ID NO: 20) Indicates.
  • FIG. 7 A novel mfCYP2C exon-intron structure determined by long-distance PCR using gene-specific primers designed on each exon and analyzing the sequence of all introns. The new m! CYP2C gene was confirmed to contain 9 exons, similar to the human CYP2C gene.
  • FIG. 8 shows the PCR amplification pattern of CYP2C BAC clones, restriction enzyme mapping, and the structure of the monkey CYP2C gene determined by end sequencing.
  • CYP2C9vl and CYP2C9v3 are drawn in a tentative order because they have the power to determine positions on the genome that are highly homologous to each other.
  • the new monkey-specific mf CYP2C (denoted CYP2C76 in the figure) is a force located at the end of the CYP2C cluster. This position is the region between genes in the corresponding region of the human genome.
  • Broken lines indicate BAC clones that did not undergo clear amplification.
  • FIG. 9 shows the tissue distribution of monkey CYP2C gene expression.
  • Real-time RT-PCR was performed using total RNA from 10 tissue samples.
  • the new mfCYP2C (CYP2C76) with the highest expression in the liver was most prominent.
  • FIG. 10 shows the results of measuring the difference in the expression level of new m! CYP2C in males and females. Male expression was approximately twice that of females.
  • FIG. 11 DNA binding elements for major liver-specific transcription factors (HNF1 a, HNF3 ⁇ , HNF4 a) identified by the TRNASFAC program (threshold score ⁇ 75.0). The position of each element is calculated with the transfer start point as zero.
  • FIG. 12 The 5 ′ flanking region of about 1 kb was analyzed by luciferase assay. Atsei performed using the pGL-lkb construct in HepG2 cells and added transcription factors as needed. All factors, Tokuko HNF1a, markedly enhanced the expression of novel mfCYP2C.
  • FIG. 13 CO-differentience spectra confirming the expression of recombinant novel m! CYP2C protein in E. coli. A peak peculiar to P450 protein (450 nm) can be confirmed.
  • FIG. 14 shows the metabolic activity of monkey CYP2C expressed in E. coli.
  • Lanes 1-5 show monkey liver microsomes, CYP2C20, CYP2C9vl, CYP2C9v3, and new mfCYP2C, respectively.
  • FIG. 15 shows an antibody prepared by immunizing a rabbit with a synthetic peptide having the amino acid sequence shown in FIG. Figure 25A shows the peptide H-CQLNTKNISKSISMLA-NH (SEQ ID NO: 29).
  • Fig. B shows the peptide H-CLYNAFPHLRVL-NH (SEQ ID NO: 30) as the antigen.
  • FIG. 16 shows the results of immunoblotting using A.anti-new mfCYP2C antibody.
  • Eight types of monkey and human P450 were electrophoresed and then transferred to PVDF filters to bind anti-new m! CYP2C antibody. Only the new m! CYP2C (CYP2C76) band could be detected.
  • B. A novel mfCYP2C homologue in liver microsomes of multiple animals was searched for in the same manner as A. The PDI protein as a control was the force detected in all samples. The novel m! CYP2C protein was detected only in the force-quizal and the keystone.
  • FIG. 17 shows the results of immunohistochemical staining of novel m! CYP2C protein in the liver.
  • A shows immunostaining with an anti-new mfCYP2C antibody
  • B shows the results of pretreatment with peptide blocking
  • C shows the results of preimmune staining. Strong and staining were confirmed in hepatocytes, but not in bile duct (arrow) and vein (triangle) epithelial cells.
  • B) and (C) hardly stained.
  • the solid scale shows 100 m.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Hematology (AREA)
  • Microbiology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Urology & Nephrology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • General Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Toxicology (AREA)
  • Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

It is intended to provide a novel drug metabolizing enzyme specific for a monkey and a gene encoding the same. It is also intended to provide a method of evaluating reliability or safety of a metabolism test or the like using a monkey as a model animal with the use of the novel drug metabolizing enzyme. (a) A protein comprising an amino acid sequence represented by SEQ ID NO: 2 or (b) a protein being a drug metabolizing enzyme and comprising an amino acid sequence in which one or several amino acid residues are replaced, deleted added and/or inserted in the amino acid sequence represented by SEQ ID NO: 2; and a nucleic acid encoding the same are provided. Further, a method of evaluating a metabolism test or the like using a monkey as a model animal with the use of the protein according to the invention is provided.

Description

サルの新規薬物代謝酵素、およびそれをコードする核酸  Novel drug metabolizing enzyme of monkey and nucleic acid encoding it
技術分野  Technical field
[0001] 本発明は、サルが特異的に有する新規薬物代謝酵素、それをコードする核酸、お よびこの新規薬物代謝酵素を用いてサルをモデル動物とした前臨床試験を評価する 方法等に関する。 背景技術  [0001] The present invention relates to a novel drug-metabolizing enzyme specifically possessed by monkeys, a nucleic acid encoding the same, and a method for evaluating a preclinical test using monkeys as model animals using the novel drug-metabolizing enzyme. Background art
[0002] 従来、新薬開発の過程では、代謝のパターンがヒトに非常に似ていることから、サル をモデル動物として用いた代謝試験を含む薬物動態試験、薬効試験、安全性試験 等が広く行われている。しかしながら、最近一部の薬物については、サルの代謝パタ ーンがヒトの代謝パターンと異なる場合があるとの報告がなされて 、る(非特許文献 1 〜4)。  [0002] Conventionally, in the process of new drug development, since the pattern of metabolism is very similar to that of humans, pharmacokinetic tests, drug effects tests, safety tests, etc. including metabolic tests using monkeys as model animals have been widely conducted. It has been broken. Recently, however, it has been reported that for some drugs, monkey metabolic patterns may differ from human metabolic patterns (Non-Patent Documents 1 to 4).
薬物の代謝には、チトクロム P450 (CYP)と呼ばれる酵素が深く関与している。 CY Pは遺伝子ファミリーを形成しており、ヒトではこれまでに 50種類を超える CYP遺伝子 の存在が報告され、他の哺乳動物も多くの CYP遺伝子を有することが知られて 、る。 CYPは、鉄イオンを配位したヘムタンパク質であり、各 CYPの構造は極めて類似し ているが、基質や代謝活性がそれぞれ異なっている。  An enzyme called cytochrome P450 (CYP) is deeply involved in drug metabolism. CYP forms a gene family, and humans have been reported to have more than 50 CYP genes so far, and other mammals are known to have many CYP genes. CYP is a heme protein coordinated with iron ions. The structure of each CYP is very similar, but the substrate and metabolic activity are different.
CYPは、アミノ酸配列の相同性に基づいて分類され、各 CYPは、例えば「CYP1A 1」というように CYPに続けてファミリ一名(数字)、サブファミリ一名(アルファベット)、 固有名(数字)を表記することによって特定される。  CYPs are classified based on amino acid sequence homology, and each CYP is a family name (number), subfamily name (alphabet), proper name (number), for example “CYP1A 1”. It is specified by notation.
各 CYPの基質が異なるとともに、最近では、各 CYPの遺伝子多型ごとに代謝活性 や基質特異性が異なることが報告されており(例えば特開 2004— 4号公報;特許文 献 1)、薬効や毒性の発現に見られる個体差、性差、年齢差、種差、人種差の原因の 一つとして、 CYPの分子種や多型に関する研究が進められて 、る。  In addition to the different substrates of each CYP, recently, it has been reported that the metabolic activity and substrate specificity differ for each CYP gene polymorphism (for example, JP 2004-4; Patent Document 1). Studies on the molecular species and polymorphisms of CYP are underway as one of the causes of individual differences, gender differences, age differences, species differences, and racial differences in the development of toxicity.
一般に、個人差が大きい CYP分子種が代謝する化合物は、ヒトによって薬効や副 作用が異なってくる可能性が大きぐ医薬品としては望ましくないと考えられる。このよ うな化合物を医薬品として開発する場合には、臨床開発の際、治験候補者の分子種 の多型を事前に調べ、薬効が得られる多型や、副作用が生じにくい多型等、特定の 多型を有する候補者のみを対象とし、副作用が生じやすい多型を有する候補者は除 外するなどの対策が必要となる。 In general, a compound that is metabolized by CYP molecular species with large individual differences is considered undesirable as a drug with a high possibility of different drug efficacy and side effects from person to person. When developing such compounds as pharmaceuticals, the molecular species of the candidate In advance, only candidates with specific polymorphisms, such as polymorphisms that have a medicinal effect or polymorphisms that are unlikely to cause side effects, are excluded, and candidates that have polymorphisms that are likely to cause side effects are excluded. It is necessary to take measures such as
特許文献 1:特開 2004— 4号公報 Patent Document 1: Japanese Patent Laid-Open No. 2004-4
非特許文献 l : Nartimatsu S. et al., Chem Biol Interact (2000) 127:73-90 非特許文献 2 : Sharer JE. et al., Drug Metab Dispos (1995) 23:1231-1241 非特許文献 3 : Stevens JC. et al., Drg Metab Dispos (1993) 21:753-760 Non-patent literature l: Nartimatsu S. et al., Chem Biol Interact (2000) 127: 73-90 Non-patent literature 2: Sharer JE. Et al., Drug Metab Dispos (1995) 23: 1231-1241 Non-patent literature 3 : Stevens JC. Et al., Drg Metab Dispos (1993) 21: 753-760
非特許文献 4 : Weaver RJ. et al., Xenobiotica (1999) 29:467-482 Non-Patent Document 4: Weaver RJ. Et al., Xenobiotica (1999) 29: 467-482
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
モデル動物を使用して代謝試験等を行う場合も、ヒト CYPとモデル動物 CYPとの 相違、モデル動物間の多型等を考慮することによって、試験結果の意味をより的確 に評価し、有効に活用することができると考えられる。例えば、ヒトと力-クイザルとで 代謝パターンが大きく異なり、力-クイザルにおいて大きな副作用を生じさせる医薬 品候補ィ匕合物があった場合、代謝パターンの相違がヒトと力-クイザルの CYPの違 いに起因することが判明し、ヒトにおいて同様の副作用が生じないことを確認すること ができれば、その化合物の開発を無駄に停止することなぐヒト用の医薬品として開 発を継続、促進できる可能性がある。  When conducting metabolic studies using model animals, the significance of the test results can be evaluated more accurately and effectively by taking into account differences between human CYPs and model animal CYPs, and polymorphisms between model animals. It is thought that it can be utilized. For example, if the metabolic pattern differs significantly between humans and force-quizal monkeys, and there are drug candidates that produce significant side effects in force-quisal monkeys, the difference in metabolic patterns may be due to differences in CYP between humans and force-quizal monkeys. If it can be confirmed that the same side effects do not occur in humans, it may be possible to continue and promote development as a human drug without wastefully stopping the development of the compound. There is.
上述のように、一般に力-クイザルの代謝パターンはヒトに非常によく似ていること から、薬物代謝酵素の活性もヒトとほぼ同様であると考えられていた。し力しながら、こ れまでに力-クイザルの CYPcDNAは 6種類し力 GenBankに報告されておらず、ヒト CYPとの基質の相違や、サルの各個体間での相違についてはほとんど知られてい なかった。  As described above, since the metabolic pattern of force-cynomolgus monkeys is very similar to that of humans, the activity of drug metabolizing enzymes was considered to be almost the same as that of humans. However, six types of CYP cDNA have been reported to GenBank and have not been reported to GenBank, and little is known about differences in substrate with human CYP and between individual monkeys. There wasn't.
一方で、現に、ヒトと力-クイザルとで、代謝パターンの異なる薬物が存在することが 明らかとなっている。  On the other hand, it has been clarified that there are actually drugs with different metabolic patterns between humans and power-quizal.
そこで、本発明は、サル以外の哺乳動物には見られず、サル特有の薬物代謝酵素 およびそれをコードする遺伝子を見出すことを目的とする。  Therefore, an object of the present invention is to find a monkey-specific drug-metabolizing enzyme and a gene encoding it that are not found in mammals other than monkeys.
さらに、本発明は、上述したサル特有の薬物代謝酵素による薬物の代謝活性を測 定することにより、サルをモデル動物として用いた薬物動態試験等の結果を的確に 評価し、有効に活用する方法を提供することを目的とする。 Furthermore, the present invention measures the metabolic activity of a drug by the monkey-specific drug metabolizing enzyme described above. The purpose of this study is to provide a method for accurately evaluating the results of pharmacokinetic studies using monkeys as model animals and using them effectively.
課題を解決するための手段 Means for solving the problem
本発明者らは、上記課題を解決するために研究を重ね、力-クイザルの肝臓 cDN Aライブラリーをスクリーニングすることにより、ヒト CYP遺伝子と比較的高い相同性を 持つ cDNAにつ!/、て全長の塩基配列を決定した結果、 21個の力-クイザルの CYP 遺伝子を検出することに成功した。そして、この中に、他の CYP遺伝子に比較して、 ヒト遺伝子と相同性の低い CYP2C遺伝子が含まれることを見出し、この遺伝子は、 力-クイザルを含む旧世界ザルおよび新世界ザルでは発現して ヽること、ヒトを含む 大型類人猿では発現が見られな ヽこと等を確認した。  The present inventors have conducted research to solve the above-mentioned problems and screened a cDNA library having a relatively high homology with the human CYP gene by screening a power-cynomolgus liver cDNA library! As a result of the determination of the full-length nucleotide sequence, 21 CYPs were successfully detected. In addition, it was found that the CYP2C gene, which is less homologous to human genes than other CYP genes, is included in this, and this gene is expressed in Old World and New World monkeys including force-cynomolgus monkeys. It was confirmed that expression was not observed in large apes including humans.
さらに新規 CYP2Cタンパク質を、大腸菌を用いて発現させ、ヒト CYP2Cや、力-ク ィザルの他の CYP2Cとの間に、ある種の薬物に対する代謝活性に相違があることを 明らかにし、本発明を完成するに至った。  Furthermore, a novel CYP2C protein was expressed using E. coli, and it was clarified that there is a difference in metabolic activity against certain drugs between human CYP2C and other CYP2Cs of force-quizals, and the present invention was completed. It came to do.
即ち、本発明は、  That is, the present invention
〔1〕以下の(a)または (b)のタンパク質: [1] The following protein (a) or (b):
(a)配列番号: 2に記載のアミノ酸配列力 なるタンパク質、  (a) a protein having the amino acid sequence ability described in SEQ ID NO: 2,
(b)配列番号: 2に記載のアミノ酸配列において、 1若しくは数個のアミノ酸が置換、 欠失、付加および Zまたは挿入されたアミノ酸配列力 なる薬物代謝酵素であるタン パク質;  (b) a protein which is a drug-metabolizing enzyme having an amino acid sequence ability in which one or several amino acids are substituted, deleted, added and Z or inserted in the amino acid sequence of SEQ ID NO: 2;
〔2〕〔1〕に記載のタンパク質をコードする核酸;  [2] a nucleic acid encoding the protein according to [1];
〔3〕配列番号: 1若しくは配列番号: 3に記載の塩基配列力 なる DNA、または配列 番号: 1若しくは配列番号: 3に記載の塩基配列若しくはその一部力 なる DNAと相 補的な塩基配列力 なる DNA配列とストリンジヱントな条件下でノ、イブリダィズし、薬 物代謝酵素であるタンパク質をコードするサル由来の DNA;  [3] DNA having the nucleotide sequence described in SEQ ID NO: 1 or SEQ ID NO: 3, or the nucleotide sequence complementary to the nucleotide sequence described in SEQ ID NO: 1 or SEQ ID NO: 3 or a partial DNA thereof Monkey-derived DNA that encodes a protein that is a drug-metabolizing enzyme that is hybridized under stringent conditions with powerful DNA sequences;
〔4〕〔3〕に記載の DNAを含む組換えベクター;  [4] A recombinant vector comprising the DNA according to [3];
[5]〔4〕に記載の組換えベクターを含む形質転換体;  [5] A transformant comprising the recombinant vector according to [4];
〔6〕 [5]に記載の形質転換体を培養し、培養物から〔1〕に記載のタンパク質を精製す ることを特徴とする、〔1〕に記載のタンパク質の製造方法; 〔7〕〔1〕に記載のタンパク質に対する抗体; [6] The method for producing the protein according to [1], wherein the transformant according to [5] is cultured, and the protein according to [1] is purified from the culture; [7] an antibody against the protein according to [1];
〔8〕サルとサル以外の哺乳動物とにおいて被検物質の代謝が異なる場合に、〔1〕に 記載のタンパク質と前記被検物質とを接触させる工程 Aと、前記被検物質の代謝に 対する、前記〔1〕に記載のタンパク質の関与の有無を測定する工程 Bを含む、前記 被検物質の代謝が異なる原因を評価する方法;  [8] Step A in which the protein according to [1] and the test substance are brought into contact with each other when the metabolism of the test substance is different between a monkey and a mammal other than the monkey, and the metabolism of the test substance A method for evaluating a cause of a difference in metabolism of the test substance, which comprises the step B of measuring the presence or absence of involvement of the protein according to the above [1];
〔9〕前記工程 Aで用いる〔1〕に記載のタンパク質が、〔7〕に記載のタンパク質の製造 方法で製造されたものであることを特徴とする、〔8〕に記載の方法;  [9] The method according to [8], wherein the protein according to [1] used in the step A is produced by the protein production method according to [7];
〔10〕前記工程 Bにおいて、〔1〕に記載のタンパク質が前記被検物質の代謝に関与し て 、る場合、前記サルとサル以外の前記哺乳動物とにおける被検物質の代謝の差 異は、種の違いによるものであると評価することを特徴とする、〔8〕または〔9〕に記載 の方法; [10] In the step B, when the protein according to [1] is involved in metabolism of the test substance, the difference in metabolism of the test substance between the monkey and the mammal other than the monkey is The method according to [8] or [9], wherein the method is evaluated as being caused by a difference in species;
〔11〕サルをモデル動物として、ヒト用の医薬品候補ィ匕合物についての代謝、薬効お よび Zまたは安全性を試験する場合に、前記医薬品候補化合物の代謝に対する、〔 1〕に記載のタンパク質の関与の有無を測定する工程 Cと、前記関与が有った場合に 、当該医薬品候補ィ匕合物についてのサルをモデル動物とした代謝、薬効および Zま たは安全性の試験結果は、前記医薬品化合物のヒトにおける代謝、薬効および Zま たは安全性と異なることを予測する工程 Dと、を含む、代謝、薬効および Zまたは安 全性を試験の評価方法;  [11] The protein according to [1] with respect to metabolism of the drug candidate compound when testing metabolism, drug efficacy and Z or safety of the drug candidate compound for humans using monkeys as model animals. Step C for measuring the presence or absence of involvement of the drug, and if there is such involvement, the test results of metabolism, efficacy and Z or safety of the drug candidate compound using monkeys as model animals are as follows: A method for assessing metabolism, efficacy and Z or safety testing comprising the step D of predicting that the pharmaceutical compound differs from metabolism, efficacy and Z or safety in humans;
〔12〕前記工程 C力 in vitroで行われる、〔11〕に記載の方法;  [12] The method according to [11], wherein the step C force is performed in vitro;
〔13〕サルをモデル動物として、ヒト用の医薬品候補ィ匕合物についての代謝、薬効お よび Zまたは安全性を試験することの可否を評価する方法であって、〔1〕に記載のタ ンパク質と、前記医薬品候補化合物を接触させる工程 Eと、前記医薬品化合物の代 謝に対する、〔1〕に記載のタンパク質の関与の程度を測定する工程 Fと、を含み前記 関与が所定の程度以上であった場合に、サルをモデル動物として試験することに対 して否定的な評価をする、方法; [13] A method for evaluating the feasibility of testing metabolism, drug efficacy and Z or safety of a human drug candidate compound using a monkey as a model animal, the method according to [1] A step of contacting the protein with the drug candidate compound, and a step F of measuring the degree of involvement of the protein according to [1] with respect to the authorization of the pharmaceutical compound. A negative evaluation of testing monkeys as model animals if
〔14〕サルをモデル動物とした、ヒト用の医薬品候補ィ匕合物についての代謝、薬効お よび Zまたは安全性を試験の評価に用いられる、〔1〕に記載のタンパク質を含むキッ ト、に関するものである。 発明の効果 [14] A kit containing the protein according to [1], which is used for evaluation of metabolism, efficacy and Z or safety of a human drug candidate compound using monkeys as model animals, It is about. The invention's effect
[0005] 本発明に係るタンパク質および遺伝子は、サル特異的に存在するものであるため、 ある薬物の代謝活性に対する本タンパク質の影響を測定することにより、その代謝活 性がサル特有のものなのか、ヒト等他の動物にも共通するものなかを予測することが できる。また、この予測に基づき、ある薬物の代謝試験等に、モデル動物としてサル を用いることの是非を評価することができる。  [0005] Since the protein and gene according to the present invention exist specifically in monkeys, whether the metabolic activity is unique to monkeys by measuring the influence of the protein on the metabolic activity of a drug. It is possible to predict what is common to other animals such as humans. Based on this prediction, it is possible to evaluate the pros and cons of using monkeys as model animals for metabolic tests of certain drugs.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0006] 以下に本発明の実施の形態について詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail.
本発明に係るタンパク質は、力-クイザル、ァカゲザル、アフリカミドリザル等の旧世 界ザルやコモン ·マーモセット等の新世界ザルに発現が見られるサル特異的な薬物 代謝酵素である。力-クイザルカゝら同定された新規 CYP2Cタンパク質 (以下、「新規 mfCYP2C」という。)のアミノ酸配列を配列番号: 2 (図 1下段)に示す。  The protein according to the present invention is a monkey-specific drug-metabolizing enzyme that is expressed in old world monkeys such as power-cynomolgus monkeys, monkey monkeys, and African green monkeys, and in new world monkeys such as common marmoset. The amino acid sequence of a novel CYP2C protein (hereinafter referred to as “novel mfCYP2C”) identified by Kino-Kisaruka et al. Is shown in SEQ ID NO: 2 (bottom of FIG. 1).
発明者らは、新規 mfCYP2Cを以下の方法によって見出した。  The inventors have found a novel mfCYP2C by the following method.
まず力-クイザル肝臓 cDNAライブラリーをスクリーニングすることにより、ヒト CYP 遺伝子に相同性の高いクローンを同定し、その cDNAの塩基配列を決定した。これ により、新規なものを含む 21の力-クイザルの CYP遺伝子が同定された。これらの C YP遺伝子のほとんどは、対応するヒトの CYP遺伝子との相同性が 94— 95%であつ た力 一つだけヒト CYP2Cの cDNAと最大で 79%しか相同性を示さない遺伝子を 発見し、これを新規 mfCYP2Cとした。  First, a clone with high homology to the human CYP gene was identified by screening a force-quizal liver cDNA library, and the nucleotide sequence of the cDNA was determined. This identified 21 force-cynomolgus CYP genes, including novel ones. Most of these CYP genes were found to have a homology of 94-95% with the corresponding human CYP gene and only one gene with a maximum of 79% homology with human CYP2C cDNA. This was designated as a new mfCYP2C.
新規 mfCYP2Cがサル特異的な遺伝子であるの力 これまでにヒトのホモログが同 定されて 、な力つただけなのかを確認するため、遺伝子特異的なプライマーを用い て RT—PCRを行い、他の霊長類における新規 mfCYP2Cの有無を調べた。この結 果、新規 mfCYP2C遺伝子は、測定したすべての旧世界ザルおよび新世界ザル等 、ヒトゃ大型類人猿を除く霊長類には存在するが、ヒトや、チンパンジーおよびオラン ウータンといった大型類人猿には存在しないことが確認された。また、ヒトおよびチン パンジーのゲノム'データベースを用いてブラスト検索を行っても、新規 mfCYP2Cと 90%以上の相同性を示す CYP2C遺伝子は見出されず、このことも、本発明に係る タンパク質がサル特異的であることを支持する結果であった。 また、各組織由来のサンプル力も全 RNAを抽出し、新規 mfCYP2C遺伝子特異 的プライマーを用いてリアルタイム RT—PCRを行って、この遺伝子の発現量は肝臓 において圧倒的に多いこと、また、他の CYP2Cが通常発現しない心臓、筋肉、脳、 精巣等にも少量発現して ヽることを確認した。 The ability of the new mfCYP2C to be a monkey-specific gene In order to confirm whether human homologs have been identified so far, RT-PCR was performed using gene-specific primers, and others. The presence or absence of novel mfCYP2C in primates was investigated. As a result, the new mfCYP2C gene is present in all the measured Old World and New World monkeys, except primates except for humans, but not in humans or large apes such as chimpanzees and orangutans. It was confirmed. In addition, a blast search using the human and chimpanzee genome 'database did not reveal a novel CYP2C gene that showed 90% or more homology with mfCYP2C. This also indicates that the protein of the present invention is monkey-specific. It was a result to support that. In addition, the sample strength from each tissue was extracted from total RNA, and real-time RT-PCR was performed using a novel mfCYP2C gene-specific primer. The expression level of this gene was overwhelmingly large in the liver, and other CYP2C Was confirmed to be expressed in small amounts in the heart, muscle, brain, testis, etc., where it is not normally expressed.
さらに、力-クイザル肝臓 cDNAライブラリ一中における各 CYP遺伝子のコピー数 を、全 CYP遺伝子のコピー数で割ることによって算出した、力-クイザル肝臓で発現 している全 CYPに占める新規 mfCYP2Cの割合は、 28. 0%と非常に高ぐまた雄と 雌で約 2倍の発現量の差があることが認められた。  Furthermore, the percentage of new mfCYP2C in the total CYP expressed in the force-cynomolgus liver calculated by dividing the number of copies of each CYP gene in the force-cynomolgus liver cDNA library by the number of copies of all CYP genes is 28.0%, which is very high, and the difference in the expression level between males and females was about twice.
新規 mfCYP2Cは、新規 mfCYP2C遺伝子を適当なベクターに挿入し、このべクタ 一を用いて宿主を形質転換することによって発現させ、得ることができる。  A new mfCYP2C can be expressed and obtained by inserting a new mfCYP2C gene into an appropriate vector and transforming a host using this vector.
本発明者らは、こうして得た組換え新規 mfCYP2Cタンパク質力 Tolbutamideおよ び testosteroneに対して代謝活性を示し、 taxolや S- mephenytoin、に対しては示さな いことを確認した。サル特異的な酵素が、ある種の薬物に対する代謝活性を有する 場合は、当該薬物に対する代謝パターンが、サルとヒトとにおいて異なる可能性が示 唆される。  The present inventors have confirmed that the recombinant novel mfCYP2C protein strength thus obtained, Tolbutamide and testosterone, showed metabolic activity, but not taxol or S-mephenytoin. If a monkey-specific enzyme has metabolic activity for a certain drug, it is suggested that the metabolic pattern for the drug may differ between monkeys and humans.
本発明に係るタンパク質は、それが薬物代謝酵素であって、配列番号: 2に記載の アミノ酸配列からなるタンパクと同一の機能を有する限り、配列番号: 2に記載のァミノ 酸配列において、 1若しくは数個(例えば、 1〜10個、好ましくは 1〜5個)のアミノ酸 が置換、欠失、付加および Zまたは挿入されている等の変異が生じていてもよい。ま たこれらの変異は、自然に発生したものであってもよぐ人為的に改変したものであつ てもよい。  As long as the protein according to the present invention is a drug-metabolizing enzyme and has the same function as the protein consisting of the amino acid sequence shown in SEQ ID NO: 2, in the amino acid sequence shown in SEQ ID NO: 2, Several (for example, 1 to 10, preferably 1 to 5) amino acids may have substitutions, deletions, additions, and mutations such as Z or insertion. These mutations may be naturally occurring or artificially modified.
ここで薬物代謝酵素とは、生体内において体外から摂取または投与された薬物の 化学構造を変化させる酵素を意味する。  Here, the drug-metabolizing enzyme means an enzyme that changes the chemical structure of a drug taken or administered from outside the body in vivo.
本発明に係る核酸は、本発明に係るタンパク質をコードする核酸であって、 DNAで ある力 RNAであるかを問わない。上述のように、配列番号: 2に記載のアミノ酸配列 において、 1若しくは数個のアミノ酸が置換、欠失、付加および/または挿入されて いる等の変異が生じているアミノ酸配列を有するタンパク質をコードする核酸も、当該 タンパク質が本発明に係るタンパク質である限り、本発明に含まれる。 このような核酸の例として、新規 mfCYP2Cの cDNAを配列番号: 1 (図 1上段)に、 新規 mf CYP2C遺伝子の全長を配列番号: 3に示す。 It does not matter whether the nucleic acid according to the present invention is a nucleic acid encoding the protein according to the present invention and is a force RNA that is DNA. As described above, it encodes a protein having an amino acid sequence in which a mutation such as substitution, deletion, addition and / or insertion of one or several amino acids has occurred in the amino acid sequence set forth in SEQ ID NO: 2. Such nucleic acids are also included in the present invention as long as the protein is a protein according to the present invention. As an example of such a nucleic acid, the novel mfCYP2C cDNA is shown in SEQ ID NO: 1 (upper part of FIG. 1), and the full length of the new mf CYP2C gene is shown in SEQ ID NO: 3.
また、本発明に係る核酸は、配列番号: 1若しくは配列番号: 3に記載の塩基配列若 しくはその一部力 なる DNAと相補的な塩基配列力 なる DNA配列をストリンジヱン トな条件下でハイブリダィズし、薬物代謝酵素であるタンパク質をコードするサル由来 の核酸も含む。配列番号: 1若しくは配列番号: 3に記載の塩基配列若しくはその一 部からなる DNAと相補的な塩基配列力もなる DNA配列をストリンジ ントな条件下 でノ、イブリダィズする核酸は、配列番号: 1または配列番号: 3に記載の塩基配列と相 同性が高ぐコードするタンパク質も同一の機能を有する可能性が高いものと考えら れる。ストリンジェントな条件とは、例えば、 5%Denhardt's Solution (0. l%Ficol 1 (Pharmacia社)、 0. 1%ポリビュルピロリドン、 0. 1%ゥシ血清アルブミンを含む)と 、0. 5%SDSと、 100 iu g/mlサケ精子DNAを含む6 X SSC溶液(l X SSCは0. 1 5M NaCl、 15mM クェン酸ナトリウム)中において 65°Cで洗浄する条件をいう。ス トリンジエンシーは塩濃度 (イオン強度)、温度等によって制御することができ、ストリン ジエンシーがより高い条件、即ち塩濃度がより低ぐ温度がより高い条件では、相同性 が十分に高い DNAのみがノ、イブリダィズする。従って、かかる条件下で、配列番号: 1若しくは配列番号: 3に記載の塩基配列若しくはその一部力 なる DNAと相補的な 塩基配列からなる DNA配列とストリンジェントな条件下でハイブリダィズする DNAが コードするタンパク質のアミノ酸配列は、配列番号: 2に記載のアミノ酸配列と高い相 同性を有し、同一の機能を有するものと考えられる。当業者であれば、温度や塩濃度 を調整することによって、ストリンジェントな条件を適宜選択することができる。 In addition, the nucleic acid according to the present invention is hybridized under stringent conditions with the nucleotide sequence set forth in SEQ ID NO: 1 or SEQ ID NO: 3, or a DNA sequence having a complementary nucleotide sequence to the partial DNA. It also includes monkey-derived nucleic acids that encode proteins that are drug-metabolizing enzymes. A nucleic acid that hybridizes under stringent conditions with a DNA sequence that also has a base sequence ability complementary to the base sequence set forth in SEQ ID NO: 1 or SEQ ID NO: 3 or a part thereof, is SEQ ID NO: 1 or It is considered that a protein encoded with high homology with the base sequence described in SEQ ID NO: 3 is likely to have the same function. The stringent conditions include, for example, 5% Denhardt's Solution (containing 0.1% Polycol 1 (Pharmacia), 0.1% polybutyrrolidone, 0.1% ushi serum albumin), 0.5% This refers to the conditions of washing at 65 ° C in 6X SSC solution containing SDS and 100 i ug / ml salmon sperm DNA (l X SSC is 0.15 M NaCl, 15 mM sodium citrate). Stringency can be controlled by salt concentration (ionic strength), temperature, etc. Under conditions of higher stringency, i.e., conditions of lower salt concentration and higher temperature, only DNA with sufficiently high homology But no, it's going to give it. Accordingly, a DNA that hybridizes under stringent conditions with a DNA sequence consisting of the base sequence set forth in SEQ ID NO: 1 or SEQ ID NO: 3 or a base sequence complementary to the DNA that is a part of the base sequence is encoded. The amino acid sequence of the protein is considered to have high homology with the amino acid sequence set forth in SEQ ID NO: 2 and the same function. Those skilled in the art can appropriately select stringent conditions by adjusting the temperature and salt concentration.
[0008] 本発明に係るタンパク質および核酸は、そのアミノ酸配列、塩基配列および Zまた は機能により本発明に含まれると解される限り、その由来は限定されないが、好ましく はサル由来であり、さらに好ましくは、力-クイザル、ァカゲザル、アフリカミドリザル等 の旧世界ザル由来力、、コモン'マーモセット等の新世界ザル由来である。 [0008] The origin of the protein and nucleic acid according to the present invention is not limited as long as it is understood that the protein and nucleic acid are included in the present invention by its amino acid sequence, base sequence and Z or function. Preferably, it is derived from power-old monkeys such as cynomolgus monkeys, monkey monkeys, and African green monkeys, and from new world monkeys such as common marmoset.
なお、本明細書において「サル」は、旧世界ザル、新世界ザル、原猿類等を含み、 大型類人猿を除く霊長類を意味する。  In the present specification, “monkey” means primates excluding large apes including old world monkeys, new world monkeys, and original monkeys.
[0009] また、本発明は、本発明に係る DNAが挿入されたベクターを提供する。本発明で 用いられるベクターは、挿入した DNAを安定に保持するものであれば、特に限定さ れず、例えば、大腸菌由来のプラスミド(例えば、 pBR322、 pBR325)、枯草菌由来 のプラスミド(例えば、 pUB110、 pTP5)、酵母由来のプラスミド(例えば、 pSH19、 p SH15)等が挙げられる。大腸菌を宿主とする場合は、 λファージ系ゃ M13ファージ 系などのパクテリオファージがよく用いられる。また、動物細胞を宿主とする場合は、 ベクターとして、 SV40、パピローマウィルス、ワクシニアウィルス、レトロウイルス、バキ ュロウィルスなどのウィルス DNAを用いることができる。 [0009] The present invention also provides a vector into which the DNA according to the present invention is inserted. In the present invention The vector to be used is not particularly limited as long as it stably holds the inserted DNA. For example, plasmids derived from E. coli (eg, pBR322, pBR325), plasmids derived from Bacillus subtilis (eg, pUB110, pTP5), Examples include plasmids derived from yeast (eg, pSH19, pSH15). When E. coli is used as a host, pacteriophages such as λ phage and M13 phage are often used. When animal cells are used as hosts, viral DNAs such as SV40, papilloma virus, vaccinia virus, retrovirus, and baculovirus can be used as vectors.
さらに、宿主内で、本発明に係るタンパク質が効率よく発現されるよう、宿主に適し た、プロモータ配列、ェンハンサー配列、シャインダルガーノ配列、シグナル配列、ポ リ Aシグナルなどを適宜選択し、ベクターに挿入することができる。  Furthermore, a promoter sequence, an enhancer sequence, a Shine-Dalgarno sequence, a signal sequence, a poly A signal, etc. suitable for the host are appropriately selected so that the protein according to the present invention is efficiently expressed in the host, and the vector is used. Can be inserted.
本発明に係る DNAの上記ベクターへの挿入は、例えば、制限酵素を用いてベクタ 一を切断し、リガーゼ反応によって、 DNAを該切断部位に連結することにより行うこと ができる。  The DNA of the present invention can be inserted into the vector by, for example, cleaving the vector with a restriction enzyme and ligating the DNA to the cleavage site by ligase reaction.
[0010] 本発明は、上記本発明に係るベクターで形質転換させた形質転換体も含む。本発 明の形質転換体は、本発明に係る DNAが挿入されたベクターに適した宿主を選択 し、この宿主に前記ベクターを導入することにより得られる。宿主としては、例えば大 腸菌ゃ緑膿菌などのグラム陰性菌、枯草菌などのグラム陽性菌、放線菌、酵母、糸 状菌、動植物培養細胞、昆虫培養細胞などが挙げられ、中でも大腸菌が好ましい。 ベクターの導入方法としては、宿主が大腸菌である場合には塩ィ匕カルシウム法、枯 草菌を宿主とする場合にはコンビテントセル法や酢酸リチウム法、枯草菌、放線菌、 酵母などにはプロトプラスト法、動植物細胞、酵母、細菌などに広く用いられる方法と してリン酸カルシウム共沈法、エレクト口ポレーシヨン法、 DEAE—デキストランやポリ プレンなどのポリマーと複合体を形成させる方法など力も適宜選択することができる。 カチオン性脂質のリボソームと複合体を形成させるリポフエクトァミン (Invitrogen社)を 用いることちでさる。  [0010] The present invention also includes a transformant transformed with the vector according to the present invention. The transformant of the present invention can be obtained by selecting a host suitable for the vector into which the DNA of the present invention is inserted and introducing the vector into this host. Examples of the host include Gram-negative bacteria such as E. coli and Pseudomonas aeruginosa, Gram-positive bacteria such as Bacillus subtilis, actinomycetes, yeast, filamentous fungi, animal and plant culture cells, and insect culture cells. preferable. As a method for introducing a vector, when the host is Escherichia coli, the salt-calcium calcium method is used. When the host is Bacillus subtilis, the competent cell method, the lithium acetate method, Bacillus subtilis, actinomycetes, or yeast is used. The protoplast method, methods widely used for animal and plant cells, yeast, bacteria, etc. should be selected as appropriate, such as calcium phosphate coprecipitation method, electopore position method, DEAE—a method of forming a complex with a polymer such as dextran or polypropylene. Can do. This can be done by using lipofectamine (Invitrogen) which forms a complex with the ribosome of the cationic lipid.
[0011] 本発明はまた、上記形質転換体を培養して、本発明に係るタンパク質を生成させる ことを特徴とする、タンパク質の製造方法も含む。形質転換体の培養は、宿主細胞の 特性、発現するタンパク質の特性、プロモータの特性などにより選択することができ、 例えば MEM培地、 DMEM培地、 Williams E培地(G¾co社)等の公知の培地を 使用することができる。また、例えば抗生物質耐性を有するプラスミドを用いた場合は 、当該抗生物質を培地に添加することにより目的タンパク質の発現を調節することが でき、又ラタトース依存性プラスミドを使用した場合は IPTGを培地に添加して発現を 誘導することができる。 [0011] The present invention also includes a method for producing a protein, wherein the transformant is cultured to produce the protein according to the present invention. The culture of the transformant can be selected according to the characteristics of the host cell, the characteristics of the expressed protein, the characteristics of the promoter, etc. For example, a known medium such as MEM medium, DMEM medium, Williams E medium (G¾co) can be used. For example, when a plasmid having antibiotic resistance is used, the expression of the target protein can be regulated by adding the antibiotic to the medium, and when a ratatose-dependent plasmid is used, IPTG is added to the medium. It can be added to induce expression.
このようにして得た形質転換体を培養して発現させた本発明に係るタンパク質は、 通常のタンパク質の精製方法を用いて精製することができ、使用した発現系により、 例えば各種クロマトグラフィー、限外濾過法、塩析、浸透圧ショック法、超音波処理な どを組み合わせて精製することができる。クロマトグラフィー法としては、例えば、水溶 液中で行うイオン交換クロマトグラフィー、ゲル濾過、疎水クロマトグラフィー、ァフィ- ティークロマトグラフィー、有機溶媒を用いる逆相クロマトグラフィーなどが挙げられる The protein according to the present invention expressed by culturing the transformant thus obtained can be purified using a normal protein purification method, and depending on the expression system used, for example, various chromatography, It can be purified by a combination of external filtration, salting out, osmotic shock, and ultrasonic treatment. Examples of the chromatography method include ion exchange chromatography performed in an aqueous solution, gel filtration, hydrophobic chromatography, affinity chromatography, and reverse phase chromatography using an organic solvent.
。本発明はこれらの精製方法を用いて精製されたタンパク質も含む。 . The present invention also includes proteins purified using these purification methods.
また、発現させたタンパク質は、精製前または精製後に適当なタンパク質修飾酵素 を用いて修飾をカ卩えたり部分的にペプチドを除去したりすることもでき、これらの修飾 されたタンパク質も本発明に含まれる。タンパク質修飾酵素としては、トリプシン、キモ トリプシン、プロテインキナーゼゃダルコシダーゼなどが挙げられる。尚、当業者は、 発現したタンパク質が遊離した状態であれば塩に、塩として得られた場合に遊離した 状態に容易に変えることができる。  In addition, the expressed protein can be modified or partially removed by using an appropriate protein modifying enzyme before or after purification, and these modified proteins are also included in the present invention. included. Examples of protein modifying enzymes include trypsin, chymotrypsin, protein kinase dalcosidase, and the like. A person skilled in the art can easily change the expressed protein to a salt if it is released, or to a released state if it is obtained as a salt.
本発明は、また、本発明に係るタンパク質または当該タンパク質の部分ペプチドに 結合する抗体をも提供する。本発明にかかる抗体は、新規 mfCYP2Cタンパク質、 新規 mfCYP2Cと機能的に同質なタンパク質 (配列番号: 2に記載のアミノ酸配列に おいて、 1若しくは数個のアミノ酸が置換、欠失、付加および/または挿入されたアミ ノ酸配列からなり、薬物代謝酵素であるタンパク質)、またはそれらの部分ペプチドに 特異的に結合するものであればよぐポリクローナル抗体であっても、モノクローナル 抗体であってもよ 、。ヒト以外の哺乳動物を本タンパク質で免疫することによって得た 抗体のほか、ヒト化抗体や、遺伝子組換えにより得られた抗体も、本発明に係るタン ノ^質またはその部分ペプチドに特異的に結合する限り本発明に含まれる。本発明 にかかる抗体は、自体公知またはそれに準じた方法により製造することができるが、 以下に代表的方法を例示する。 The present invention also provides an antibody that binds to the protein of the present invention or a partial peptide of the protein. The antibody according to the present invention is a novel mfCYP2C protein, a protein functionally equivalent to the novel mfCYP2C (in the amino acid sequence described in SEQ ID NO: 2, one or several amino acids are substituted, deleted, added and / or A protein consisting of an inserted amino acid sequence and a protein that is a drug-metabolizing enzyme), or a polyclonal antibody that binds specifically to a partial peptide thereof, or a monoclonal antibody, . In addition to antibodies obtained by immunizing mammals other than humans with this protein, humanized antibodies and antibodies obtained by genetic recombination are also specific for the protein according to the present invention or a partial peptide thereof. As long as they are combined, they are included in the present invention. The antibody according to the present invention can be produced by a method known per se or a method analogous thereto, A typical method is illustrated below.
まず、ポリクローナル抗体は、新規 mfCYP2Cまたはその部分ペプチドを用いて哺 乳動物、好ましくはマウスやラット等のげつ歯目、ゥサギ目、サルなどの霊長目の動物 を免疫し、血清を得て、この血清を新規 mfCYP2Cまたはその部分ペプチドを固定し たァフィユティーカラムに通して精製することにより得ることができる。  First, polyclonal antibodies immunize mammals, preferably primates such as rodents, maggots, monkeys such as mice and rats, using new mfCYP2C or its partial peptides, and obtain serum. This serum can be obtained by purifying through a affinity column to which the novel mfCYP2C or a partial peptide thereof is immobilized.
またモノクローナル抗体は、まず同様に哺乳動物を免疫し、この動物から得た抗体 産生細胞と、増殖力の強いミエローマ細胞とを融合させ、個々の融合細胞を分離し、 求める抗体の生産能を検定することによって抗原の一つのェピトープに特異的に反 応する抗体分子を 1種だけ生産する細胞を選択し、この細胞を培養することによって 製造することができる。またモノクローナル抗体は、モノクローナル抗体のアミノ酸配 列をコードする DNAをベクターに挿入し、このベクターを宿主に導入して産生させて 遺伝子工学的方法で得ることもできる。ヒト抗体遺伝子を導入したトランスジエニック 動物を免疫すれば、ヒト抗体を産生することもでき、マウスのモノクローナル抗体の抗 原結合部位をコードする cDNAとヒトの IgG遺伝子の定常部をコードする遺伝子を連 結してこれを Bリンパ球に導入すればキメラ抗体分子を生産させることも可能であり、 これらの抗体も本発明に含まれる。本発明の抗体は、本発明に係るタンパク質または 部分ペプチドを特異的に認識して結合する限り、フラグメントや修飾された抗体であ つてもよい。抗体のフラグメントとしては例えば、 F (ab)、 F (ab') 2、 Fcフラグメント、ま たは single chainFvなどが挙げられ、修飾された抗体としては例えばポリエチレン グリコールなどの化合物と結合された抗体などが挙げられる。本発明の抗体は、新規 mfCYP2Cの精製や検出、定量に用いることができるし、また新規 mfCYP2Cの生 物学的活性を亢進または抑制する作用を有する場合には、ァゴ-ストまたはアンタゴ 二ストとなりうる。  Monoclonal antibodies can also be used to immunize mammals first, fuse antibody-producing cells obtained from these animals with highly proliferative myeloma cells, isolate individual fused cells, and test the ability to produce the desired antibodies. Thus, cells can be produced by selecting cells that produce only one type of antibody molecule that specifically reacts with one epitope of the antigen, and culturing these cells. A monoclonal antibody can also be obtained by a genetic engineering method by inserting a DNA encoding the amino acid sequence of a monoclonal antibody into a vector, introducing the vector into a host, and producing the vector. Human antibodies can also be produced by immunizing a transgenic animal into which a human antibody gene has been introduced. A cDNA encoding the antigen-binding site of a mouse monoclonal antibody and a gene encoding the constant region of a human IgG gene. It is also possible to produce chimeric antibody molecules by linking them and introducing them into B lymphocytes, and these antibodies are also included in the present invention. The antibody of the present invention may be a fragment or modified antibody as long as it specifically recognizes and binds to the protein or partial peptide of the present invention. Examples of antibody fragments include F (ab), F (ab ') 2, Fc fragments, and single chain Fv.Modified antibodies include, for example, antibodies bound to compounds such as polyethylene glycol. Is mentioned. The antibody of the present invention can be used for purification, detection, and quantification of a novel mfCYP2C, and when it has an action of enhancing or suppressing the biological activity of the novel mfCYP2C, it is an agonist or antagonist. It can be.
上述したように、本発明に係る新規 mfCYP2Cは、サル特有のタンパク質であるた め、新規 mfCYP2Cが代謝に関与する化合物については、サルと大型類人猿 (ヒト、 チンパンジー、オランウータン等)において代謝パターンが異なる可能性が高い。 従って、ある医薬品候補化合物の代謝試験、薬効試験、安全性試験を行う前に、 in vitroで、新規 mfCYP2Cが当該候補ィ匕合物の代謝に関与するかどうかを確認する ことにより、サルをモデル動物として試験することの可否を評価することができる。例え ば、新規 mfCYP2Cが、代謝に深く関与していれば、当該候補ィ匕合物のヒトにおける 代謝はサルと大きく異なる可能性が示唆され、サルをモデル動物として試験を行うこ とは望ましくないものと評価される。一方、新規 mfCYP2Cが当該候補ィ匕合物の代謝 に関与していない場合は、当該候補ィ匕合物はヒトと相同性の高い別の代謝酵素によ つて代謝される可能性が示唆され、サルをモデル動物とした試験の結果を利用して、 ヒトにおける代謝を類推することが可能と考えられる。 As described above, since the novel mfCYP2C according to the present invention is a monkey-specific protein, the metabolic patterns of monkeys and large apes (humans, chimpanzees, orangutans, etc.) differ for the compounds involved in the metabolism of the novel mfCYP2C. Probability is high. Therefore, before conducting a metabolic test, efficacy test, or safety test for a drug candidate compound, confirm whether the new mfCYP2C is involved in the metabolism of the candidate compound in vitro. Thus, it is possible to evaluate whether or not a monkey can be tested as a model animal. For example, if the new mfCYP2C is deeply involved in metabolism, it is suggested that the metabolism of the candidate compound in humans may be significantly different from that in monkeys, and it is not desirable to test monkeys as model animals. It is evaluated as a thing. On the other hand, if the novel mfCYP2C is not involved in the metabolism of the candidate compound, it is suggested that the candidate compound may be metabolized by another metabolic enzyme with high homology with humans. It is considered possible to estimate the metabolism in humans using the results of tests using monkeys as model animals.
このように新規 mfCYP2Cを用いることによって、無駄な試験を省略し、試験を迅速 化することも可能である。  By using the new mfCYP2C in this way, it is possible to eliminate unnecessary tests and speed up the tests.
[0014] また、これまでに、新規 mfCYP2C以上にヒト CYPとの相同性が低いサル CYP遺 伝子は見出されていないため、ヒトとサルにおいて代謝パターンが異なる薬物は、新 規 mfCYP2Cがその代謝に関与している可能性が高いことが推測される。そこで、ヒ トとサルにおいて代謝パターンが異なる薬物を新規 mfCYP2Cと接触させ、適当な 条件でインキュベートし、新規 mfCYP2Cの当該薬物代謝への関与を測定すること によって、この代謝パターンの相違の原因を評価することが可能である。  [0014] Furthermore, since no monkey CYP gene with low homology with human CYP has been found so far than new mfCYP2C, a new mfCYP2C is a drug that has a different metabolic pattern in humans and monkeys. It is presumed that the possibility of being involved in metabolism is high. Therefore, the cause of this difference in metabolic patterns is assessed by contacting drugs with different metabolic patterns in humans and monkeys with new mfCYP2C, incubating under appropriate conditions, and measuring the involvement of new mfCYP2C in the drug metabolism. Is possible.
このような方法により、代謝パターンの相違が新規 mfCYP2Cに起因することがわ かれば、サルをモデル動物とした試験結果に拘束されて試験を無駄に停止すること なぐ試験を継続、迅速ィ匕することが可能である。  If it is found that the difference in metabolic pattern is due to the new mfCYP2C by such a method, the test will be restrained by the test results using monkeys as model animals and the test will be continued and stopped quickly. It is possible.
[0015] 本発明はさらに、サルをモデル動物とした、ヒト用の医薬品候補ィ匕合物についての 代謝、薬効および Zまたは安全性を試験の評価に用いられる、新規 mfCYP2Cを含 むキットも提供する。カゝかるキットは、新規 mfCYP2Cが基質を代謝するのに必要な 試薬、容器、装置等を含んでいてもよい。このようなキットは、サルをモデル動物とし た試験結果と略同様の結果がヒトにおける試験でも得られるかどうかの推測や、ヒトと サルとにおいて試験結果が異なる場合の原因の究明、あるいは、サルをモデル動物 として試験をすることの是非の検討等に用いることができる。  [0015] The present invention further provides a kit containing a novel mfCYP2C, which is used for evaluation of metabolism, efficacy and Z or safety of a human drug candidate compound using a monkey as a model animal. To do. The profitable kit may contain reagents, containers, devices, etc. necessary for the new mfCYP2C to metabolize the substrate. Such a kit can be used to estimate whether results similar to those obtained using a monkey as a model animal can be obtained in a human test, to investigate the cause of a test result that differs between a human and a monkey, Can be used to examine whether or not to test as a model animal.
実施例  Example
[0016] 〔組織サンプルの調製および RNAの抽出〕  [0016] [Tissue sample preparation and RNA extraction]
組織サンプルは、 6匹の力-クイザル (雄雌各 3匹)、 2匹のァカゲザル (雄)、 2匹のコ モン'マーモセットから採取した。 Tissue samples consisted of 6 force-quizzed monkeys (3 males and 3 females), 2 akage monkeys (male), 2 Collected from Mon 'marmoset.
また、オランウータンとチンパンジーの組織サンプルも用意した。  Orangutan and chimpanzee tissue samples were also prepared.
RNA分解を防ぐため、すべてのサンプルは採取直後に液体窒素により凍結させ、 液体窒素存在下で乳鉢と乳棒を用いてすりつぶし、粉状にした。  In order to prevent RNA degradation, all samples were frozen with liquid nitrogen immediately after collection, and ground with a mortar and pestle in the presence of liquid nitrogen to form a powder.
続いて、 Polytron PT1200E (Kinematica社)を用いて、粉状になった組織を TRIzol (I nvitrogen社)中でホモジナイズし、製品の指示書に従って全 RNAを抽出した後、電気 泳動によって RNAサンプルの完全性(integrity)を確認した。抽出した全 RNAは、 DNa se I (Takara社)で処理した後、 GenElute Mammalian Total RNA Mini Kit (Sigma- Aldr ich社)により精製した。  Subsequently, using Polytron PT1200E (Kinematica), the powdered tissue was homogenized in TRIzol (Invitrogen), and the total RNA was extracted according to the product instructions. The integrity was confirmed. The extracted total RNA was treated with DNase I (Takara) and then purified with GenElute Mammalian Total RNA Mini Kit (Sigma-Aldrich).
一方、アフリカミドリザルのサンプルとしての COS1細胞(ATCCより入手)、及び、ヒト 肝細胞のサンプルとしての H印 G2細胞 (理ィ匕学研究所より入手)は、サイトウらの方法 (Saito et al., J Biol Chem, (2001) 276:38010-38022)によって培養した。細胞からの RNA抽出と、それに続く DNase I処理は、 RNeasy Mini Kit (QIAGEN社)を用い、製品 の指示書に従って行った。  On the other hand, COS1 cells (obtained from ATCC) as samples of African green monkeys and H-marked G2 cells (obtained from RIKEN) as samples of human hepatocytes (Saito et al. , J Biol Chem, (2001) 276: 38010-38022). RNA extraction from cells and subsequent DNase I treatment were performed using the RNeasy Mini Kit (QIAGEN) according to the product instructions.
〔力-クイザル CYP2Cの cDNAの単離〕 [Strength-quizal CYP2C cDNA isolation]
まず、力-クイザルの肝臓 cDNAライブラリーをスクリーニングにすることにより、ヒト C YPに相同的の高いクローンを同定した。同定したクローンについて、インサートの全 長を PCRにより増幅した。 PCRは、以下を含む全量 20 1の反応液中で行った。  First, clones with high homology to human CYP were identified by screening a force-quizal liver cDNA library. For the identified clones, the entire length of the insert was amplified by PCR. PCR was performed in a total volume of 201 containing the following.
'プライマー(各 0.4 M)  'Primers (0.4 M each)
FW:5,- TCAGTGGATGTTGCCTTTAC- 3' (配列番号: 4)  FW: 5, -TCAGTGGATGTTGCCTTTAC-3 '(SEQ ID NO: 4)
RV:5'- TGTGGGAGGTTTTTTCTCTA- 3' (配列番号: 5)  RV: 5'-TGTGGGAGGTTTTTTCTCTA-3 '(SEQ ID NO: 5)
· άΝΤΡ (0.22 ^ Μ)  · ΆΝΤΡ (0.22 ^ Μ)
•MgCl (2mM)  MgCl (2mM)
2  2
•Ampli faq uold Taq polymerase (Applied Biosystems社バ 1 unit)  Ampli faq uold Taq polymerase (Applied Biosystems 1 unit)
反応条件は、最初の変性を 95°C10分で行った後、 95°C20秒、 55°C20秒、 72°C3分 のサイクルを 35回繰り返し、最終伸長を 72°C10分とした。  As the reaction conditions, after the first denaturation was performed at 95 ° C for 10 minutes, a cycle of 95 ° C for 20 seconds, 55 ° C for 20 seconds and 72 ° C for 3 minutes was repeated 35 times, and the final extension was 72 ° C for 10 minutes.
1 %ァガロースゲル上で解析した後、 PCR産物を精製し、 ABI Prism BigDye Terrain ator νό.Ο Ready Reactionし ycle Sequencing Kit (Applied Biosystems社)【こよる塩 配列解析に用いた後、 ABI- 3730 DNA Analyzer (Applied Biosystems社)を使用して 電気泳動を行った。 After analysis on a 1% agarose gel, the PCR product is purified, ABI Prism BigDye Terrain ator νό.Ο Ready Reaction ycle Sequencing Kit (Applied Biosystems) After being used for sequence analysis, electrophoresis was performed using ABI-3730 DNA Analyzer (Applied Biosystems).
ほ己列解析〕 Homoto column analysis)
得られた配列データを配列解析のために DNASIS Pro (Hitachi Software社)にイン ポートした。ベクターの配列をトリミングした後、すべてのデータを視覚的に精査し、 配列の質が不適切な領域を除去してから、各配列を統合した。  The obtained sequence data was imported into DNASIS Pro (Hitachi Software) for sequence analysis. After trimming the vector sequences, all data were visually inspected to remove regions with inadequate sequence quality before combining each sequence.
ホモロン1 ~~ ·サ1 ~~テは、 BLAS Γ program (National し enter for Biotechnology Informa tion)によって行った。相同性の高い CYPcDNA配列を識別するために、 cDNAおよび アミノ酸配列につ 、て Clustral Wを用 、たマルチプル ·ァライメントを実行した。 Homolone 1 ~~ · 1 ~ ~ was performed by BLAS Γ program (National and enter for Biotechnology Information). In order to identify highly homologous CYP cDNA sequences, multiple alignments using Clustral W were performed on cDNA and amino acid sequences.
発明者らが見出した 21の力-クイザルの CYPのうち、 mfCYP2C9vl、 mfCYP2C9v3お よび新規 mfCYP2C、ならびに公知の力-クイザル CYP遺伝子である mfCYP2C20のマ ルチプル 'ァライメントの結果を図 2に示す。上段から m!CYP2C20 (配列番号: 6)、 mf CYP2C9vl (配列番号: 7)、 mfCYP2C9v3 (配列番号: 8)、新規 mfCYP2C (配列番号: 9)である。  FIG. 2 shows the results of the multiple alignment of mfCYP2C9vl, mfCYP2C9v3 and new mfCYP2C, and mfCYP2C20, which is a known force-quizal CYP gene, among 21 CYPs of the force-quizal monkeys found by the inventors. From the top, m! CYP2C20 (SEQ ID NO: 6), mf CYP2C9vl (SEQ ID NO: 7), mfCYP2C9v3 (SEQ ID NO: 8), and new mfCYP2C (SEQ ID NO: 9).
尚、新規 mfCYP2C、 mfCYP2C9vl、及び m!CYP2C9v3は、 the Committee on Standa rdized P450 Nomenclatureにより、それぞれ CYP2C76、 CYP2C43、及び CYP2C75と 名付けられ、 GenBankに、 accession number DQ074806、 DQ074805、 DQ074807とし てそれぞれ登録された。  The new mfCYP2C, mfCYP2C9vl, and m! CYP2C9v3 were named CYP2C76, CYP2C43, and CYP2C75, respectively, by the Committee on Standarized P450 Nomenclature, and registered as accession numbers DQ074806, DQ074805, and DQ074807, respectively.
新規 m!CYP2Cの cDNAの塩基配列(配列番号: 1)を図 1に示す。  The nucleotide sequence of the novel m! CYP2C cDNA (SEQ ID NO: 1) is shown in FIG.
新規 m!CYP2Cの cDNAは、アミノ酸数力 489であるオープン 'リーディング 'フレーム を有しており、これまでに知られているヒト及びサルのすベての CYP2Cよりも一残基少 なかった。塩基配列から推測されるアミノ酸配列は、疎水性が非常に高い N末端や、 ヘム結合領域、 6つの基質認識部位等(Gotoh, (1992), J. Biol Chem 267:83-90)、他 の CYP2C分子に共通するアミノ酸配列を含んでいた。  The new m! CYP2C cDNA has an open 'reading' frame with an amino acid power of 489, one residue less than all known human and monkey CYP2C. The amino acid sequence deduced from the base sequence includes the N-terminus, which has a very high hydrophobicity, a heme binding region, six substrate recognition sites (Gotoh, (1992), J. Biol Chem 267: 83-90), and other It contained an amino acid sequence common to CYP2C molecules.
cDNAの塩基配列を用いて、ヒト及びチンパンジーゲノムに対して、 mfCYP2Cホモ口 グの Blat検索(UCSC Genome Bioinformatics)も行った。  Using the cDNA sequence, Bf search (UCSC Genome Bioinformatics) of mfCYP2C homologue was also performed on human and chimpanzee genomes.
相同性検索の結果を表 1に示す。  The results of the homology search are shown in Table 1.
[表 1]
Figure imgf000016_0001
[table 1]
Figure imgf000016_0001
m!CYP2C9vlおよび mfCYP2C9v3は、ヒト CYP2Cのアミノ酸に対して約 92%の相同 性を示し、これは CYP2C20等、公知の力-クイザルの CYP2C遺伝子と同じレベルで あった。 m! CYP2C9vl and mfCYP2C9v3 showed about 92% homology to the amino acids of human CYP2C, which was at the same level as CYP2C20 and other known force-cynomolgus CYP2C genes.
しかしながら、新規 mfCYP2Cのアミノ酸は、いずれのヒト CYP2Cのアミノ酸に対して も相同性が約 71%しかなぐまた GenBankデータベースにおいてもこれ以上の相同 性を示すヒト cDNAは存在しなかった。  However, the new mfCYP2C amino acid is only about 71% homologous to any human CYP2C amino acid, and there was no human cDNA showing any more homology in the GenBank database.
塩基配列の結果は、デフォルト 'パラメータによる PHYLIPを使用して分子進化系統 榭を描くためにも用いた。分子進化系統榭を図 3に示す。この結果、新規 mfCYP2C ( CYP2C76)は、全てのヒト CYP2C及び他の力-クイザル CYP2Cから、離れたクレード に属することがわ力つた。  The base sequence results were also used to draw molecular evolution lines using PHYLIP with default 'parameters. Figure 3 shows the molecular evolution line. As a result, it was found that the new mfCYP2C (CYP2C76) belongs to a distant clade from all human CYP2C and other force-cynomolgus CYP2C.
〔他の霊長類における新規 mfCYP2Cに対応する cDNAのクロー-ング〕  [Cloning of cDNA corresponding to novel mfCYP2C in other primates]
そこで、新規 mfCYP2C力 サルに特異的に存在する遺伝子なのか、従来ヒトのホモ ログが見出されて ヽな 、だけなのかを確認するため、 、くつかの遺伝子特異的プライ マーを用いて RT- PCRを行い、他の霊長類における、新規 mfCYP2Cの orthologus遺 伝子の有無を調べた。  Therefore, in order to confirm whether the gene exists specifically in the new mfCYP2C-powered monkey or whether a human homologue has been found in the past, it was necessary to use RT with several gene-specific primers. -PCR was performed to determine the presence of the novel mfCYP2C orthologus gene in other primates.
他種のサルからの新規 mfCYP2Cホモログは、肝(ァカゲザル、コモン'マーモセット 、オランウータンおよびチンパンジー)または COS1細胞(アフリカミドリザル)由来の R NAサンプルを用いて、 RT-PCRにより同定した。 RT反応は、 M- MLV reverse transcri ptase (Toyobo社)を用い、 1 gの全 RNAとオリゴ(dT)プライマーまたはランダムプライ マーを使用して、 37°Cで 1時間行った。得られた RT産物は、 25倍に希釈して PCRに供 した。ヒトについては、市販の肝 RT産物(BD Biosciences社)を使用した。いくつかの プライマーペアを試したところ、ァカゲザル、ミドリザルおよびコモン.マーモセットの C YP2Cホモログの cDNAは、それぞれ以下の塩基配列を有するプライマーペアにより 増幅することができた。 New mfCYP2C homologues from other species of monkeys were identified by RT-PCR using RNA samples derived from liver (rhesus monkey, common 'marmoset, orangutan and chimpanzee) or COS1 cells (African green monkey). RT reaction was performed using M-MLV reverse transcriptase (Toyobo), 1 g of total RNA and oligo (dT) primer or random ply. For 1 hour at 37 ° C. The obtained RT product was diluted 25 times and subjected to PCR. For humans, a commercially available liver RT product (BD Biosciences) was used. When several primer pairs were tested, the CYP2C homologue cDNAs of rhesus monkey, green monkey, and common marmoset were able to be amplified by primer pairs having the following base sequences, respectively.
ァカゲザノレ  Akagezanole
FW: mfCYP2C (5rt2) 5し CCCAGCAATGGATCTCTTCA- 3' (配列番号: 10) RV: mlCYP2C (3polyA2a) 5'— TGCCTAGACAGGTAGATAGGAGTG— 3' (配列 番号: 11)  FW: mfCYP2C (5rt2) 5 and CCCAGCAATGGATCTCTTCA-3 '(SEQ ID NO: 10) RV: mlCYP2C (3polyA2a) 5'— TGCCTAGACAGGTAGATAGGAGTG— 3' (SEQ ID NO: 11)
アフリカミドリザル  African green monkey
FW: mfCYP2C (5rt2) 5し CCCAGCAATGGATCTCTTCA- 3' (配列番号: 10) RV: mlCYP2C (3ex4b) 5 '-GAAAAGTGGGATC AC AGGGA-3 ' (配列番号: 12) コモン ·マーモセット  FW: mfCYP2C (5rt2) 5 and CCCAGCAATGGATCTCTTCA-3 '(SEQ ID NO: 10) RV: mlCYP2C (3ex4b) 5' -GAAAAGTGGGATC AC AGGGA-3 '(SEQ ID NO: 12) Common marmoset
FW: mfCYP2C (5ex2a) 5'- GTATTTTCTGGCCGAGGGAG- 3' (配列番号: 13) RV: mlCYP2C (3ex4a) 5'- ACAGGGAACACAACCCAGAA- 3' (配列番号: 14) 増幅は、 KOD Plus DNA polymerase (Toyobo社)を使用して MJ Research thermal c ycler (MJ Research社)によって行い、最初の変性を 95°C2分で行った後、 95°C20秒、 55°C20秒、 72°C2分のサイクルを 30回繰り返し、最終伸長を 72°C10分とした。  FW: mfCYP2C (5ex2a) 5'- GTATTTTCTGGCCGAGGGAG-3 '(SEQ ID NO: 13) RV: mlCYP2C (3ex4a) 5'- ACAGGGAACACAACCCAGAA-3' (SEQ ID NO: 14) Amplification was performed using KOD Plus DNA polymerase (Toyobo) Using the MJ Research thermal cycler (MJ Research), the first denaturation was performed at 95 ° C for 2 minutes, followed by 30 cycles of 95 ° C for 20 seconds, 55 ° C for 20 seconds, 72 ° C for 2 minutes, The final extension was 72 ° C for 10 minutes.
3'A- overhangを付加した後、 PCR産物を、 TOPO TA Cloning Kit (Invitrogen社)を 用いてベクターにクロー-ングした。続いて、 ABI Prism BigDye Terminator v3.0 Rea dy Reaction Cycle Sequencing Kit (Applied Biosystems社)を用 ヽて、インサ ~~トの塩 基配列解析を行い、 ABI PRISM 3730 DNA Analyzer (Applied Biosystems社)により 電気泳動を行った。  After adding 3'A-overhang, the PCR product was cloned into a vector using TOPO TA Cloning Kit (Invitrogen). Subsequently, using the ABI Prism BigDye Terminator v3.0 Ready Reaction Cycle Sequencing Kit (Applied Biosystems), the base sequence analysis of the insert was performed, and the electricity was analyzed using the ABI PRISM 3730 DNA Analyzer (Applied Biosystems). Electrophoresis was performed.
この結果、増幅産物は、旧世界ザル (力-クイザル、ァカゲザル、アフリカミドリザル) および新世界ザル(コモン'マーモセット)には見られ、これらのサルが新規 mfCYP2C のホモログを有しており、互いに 99%以上の相同性を有することが確認された。この 結果は、これらのサルが進化系統的に近 、種であることを示して 、る。  As a result, amplification products were found in Old World monkeys (Power-Cyrus monkeys, Rhesus monkeys, African green monkeys) and New World monkeys (Common 'marmoset), and these monkeys have new mfCYP2C homologues that are % Homology was confirmed. This result shows that these monkeys are evolutionary phylogenetic close and species.
結果を図 4〜6に示す。図 4および 5はそれぞれ新規 m!CYP2Cの cDNAの塩基配列 を示し、上段から、力-クイザル (配列番号: 15)、ァカゲザル (配列番号: 16)、ァフリ 力ミドリザル(配列番号: 17)およびコモン ·マーモセット(配列番号: 18)である。図 6 は新規 mfCYP2Cタンパク質のアミノ酸配列を示し、上段から、力-クイザル (配列番号 : 2)、ァカゲザル (配列番号: 19)、アフリカミドリザル (配列番号: 20)およびコモン · マーモセット(配列番号: 21)である。 The results are shown in Figs. Figures 4 and 5 show the nucleotide sequence of the new m! CYP2C cDNA, respectively. From the top, force-cynomolgus monkey (SEQ ID NO: 15), lizard monkey (SEQ ID NO: 16), daffodil green monkey (SEQ ID NO: 17) and common marmoset (SEQ ID NO: 18). Figure 6 shows the amino acid sequence of the novel mfCYP2C protein. From the top, force-cynomolgus (SEQ ID NO: 2), Rhesus monkey (SEQ ID NO: 19), African green monkey (SEQ ID NO: 20), and common marmoset (SEQ ID NO: 21). ).
一方、ヒトや、チンパンジーおよびオランウータン等の大型類人猿由来のサンプル 力もは検出可能なバンドが得られなかった(data not shown) 0さらに、 Blastによるヒト およびチンパンジーのゲノム'データベース検索でも、新規 mfCYP2Cに 90%以上の 相同性を有する遺伝子が発見されないことから、新規 m!CYP2Cは、サル特異的であ ることが示された。 On the other hand, and human, sample force from great apes such as chimpanzees and orangutans also did not give detectable band (data not shown) 0 Furthermore, in the genome 'Database searches of the human and chimpanzee by Blast, the new MfCYP2C 90 Since no genes with a homology of more than% were found, the new m! CYP2C was shown to be monkey-specific.
〔新規 m!CYP2Cの遺伝子構造〕 [New m! CYP2C gene structure]
ェクソンとイントロンの構造を決定するため、 4種類の mlCYP2C (miCYP2C9vl、 mfC YP2C9v3、 CYP2C20および新規 m!CYP2C)の cDNAの塩基配列を比較して、遺伝子 特異的プライマーを各ェクソン上に設計し、すべてのイントロンを long PCRによって増 幅した。 PCRは、 LA Taq PCR kit (Takara社)を使用し、 5p moleのフォワードおよびリ バースプライマー(表 2)、 0.5mMの dNTPゝ 2mMの MgCl、 1単位の LA Taq polymerase  To determine the structure of exons and introns, compare the nucleotide sequences of four mlCYP2C (miCYP2C9vl, mfC YP2C9v3, CYP2C20 and new m! CYP2C) cDNAs and design gene-specific primers on each exon. The intron was amplified by long PCR. For PCR, LA Taq PCR kit (Takara) was used, 5p mole forward and reverse primers (Table 2), 0.5mM dNTP ゝ 2mM MgCl, 1 unit LA Taq polymerase.
2  2
(Takara株式会社)を用いて全量 20 μ 1として行った。  (Takara Co., Ltd.) was used for a total amount of 20 μ1.
[表 2] [Table 2]
¾JIJH3<is j¾id ssn SJU SO A SUOJn XIUd 3UIisds¾0sbsso S3ul3-•■ ¾JIJH3 <is j¾id ssn SJU SO A SUOJn XIUd 3UIisds¾0sbsso S3ul3-
PJ Θ3.19ΛJ5AJOPJ Θ3.19ΛJ5AJO
s - (,ε ,)s (-の9) t f ¾3us9nCT9 eolfcnl s-(, ε,) s (--9) t f ¾3us9nCT9 eolfcnl
oe)KdAi (¾eeE oe) KdAi (¾eeE
0Ο寸ε)3ΛΙΛ*e0i ()3dAge χθΕes  0ΟDimensionε) 3ΛΙΛ * e0i () 3dAge χθΕes
(9g)02dAyecjex(9g) 02dAyecjex
Figure imgf000019_0001
½)
Figure imgf000019_0001
½)
3UV¾W-!UVUUS  3UV¾W-! UVUUS
Figure imgf000019_0002
Figure imgf000019_0002
PCRは、 95°C2分で変性させてから、 95°C20秒、 55°C30秒、 72°C5分のサイクルを 35 回繰り返し、最終伸長を 72。C20分として行った。 0.8%ァガロースゲル上で電気泳動 した後、 PCR産物はゲル精製し、 TOPO TAまたは XL cloning kit (Invitrogen社)を使 用して、製品の指示書に従ってベクターにクローユングし、配列解析した。 PCR was denatured at 95 ° C for 2 minutes, and then cycled at 95 ° C for 20 seconds, 55 ° C for 30 seconds, and 72 ° C for 5 minutes 35 times for a final extension of 72. C20 minutes were done. Electrophoresis on 0.8% agarose gel After that, the PCR product was gel-purified, cloned into a vector using TOPO TA or XL cloning kit (Invitrogen) according to the product instructions, and sequenced.
配列解析は上述の方法に従って行い、 initial sequencingには、以下の M13フォヮ一 ドおよびリバースプライマーを用いた。  Sequence analysis was performed according to the method described above, and for initial sequencing, the following M13 forward and reverse primers were used.
プライマー  Primer
FW: M13FW 5 -GTAAAACGACGGCCAG-3' (配列番号: 38)  FW: M13FW 5 -GTAAAACGACGGCCAG-3 '(SEQ ID NO: 38)
RV: M13RV 5 -CAGGAAACAGCTATGAC-3' (配列番号: 39)  RV: M13RV 5 -CAGGAAACAGCTATGAC-3 '(SEQ ID NO: 39)
すべてのイントロンの塩基配列はプライマーウォーキング法により完全に決定され、 当該配列は、 DNASIS Pro (Hitachi Software社)〖こより、各イントロンの全長に統合さ れた。  The base sequences of all introns were completely determined by the primer walking method, and the sequences were integrated into the full length of each intron from DNASIS Pro (Hitachi Software).
この結果、新規 mfCYP2Cは約 19.6kbにおよび(配列番号: 3)、すべてのヒト CYP2C と同様に 9つのェクソンを有する遺伝子であることが確認された(図 7)。ェクソンおよ びイントロンのサイズは、それぞれ 142-693bp、 937-4307bpであった。表 3に示すよう に、ェクソン (小文字) イントロン(大文字)の境界のほとんどは、 GU-AC則に従って いたが(太字)、イントロン 8の 5'スプライス部位は GUが GCに置換されていた。  As a result, it was confirmed that the novel mfCYP2C has a length of about 19.6 kb (SEQ ID NO: 3) and is a gene having 9 exons as in all human CYP2C (FIG. 7). The sizes of exon and intron were 142-693bp and 937-4307bp, respectively. As shown in Table 3, most of the boundaries of the exon (lowercase) intron (uppercase) followed the GU-AC rule (bold), but in the 5 'splice site of intron 8, GU was replaced by GC.
[表 3] [Table 3]
l≤ UOX uou L」 c c ί ί」 -ul≤ UOX uou L '' c c ί ί '' -u
Figure imgf000021_0001
Figure imgf000021_0001
o ao o  o ao o
S寸 in  S dimension in
D  D
w w  w w
Wi Wi
5¥:L.1SV 44-Wef> @  5 ¥: L.1SV 44-Wef> @
6219- 卜 οε寸  6219- 卜 οε dimension
ρυβΡΒϋ,-
Figure imgf000021_0002
ρυβΡΒϋ,-
Figure imgf000021_0002
10 卜  10 卜
air ajr ajr  air ajr ajr
3  Three
Figure imgf000021_0003
ο C οto οm co- cト g o oooォ SS
Figure imgf000021_0003
ο C οto οm co- c to go ooo SS
ΛΙ  ΛΙ
〔サル CYP2C遺伝子座のゲノム構造〕 [Genomic structure of the monkey CYP2C locus]
新規 m!CYP2Cの種特異性を確認するために、サルの CYP2C BACクローンを用い て、ゲノムにおける新規 m!CYP2C遺伝子座を解析した。力-クイザルの BACライブラ リーは入手不可能であったため、代わりにァカゲザルの BACライブラリーを使用した。 ァカゲザル BACライブラリー(BACPAC)を、 CYP2C9v3及び新規 mfCYP2Cの cDNA をプローブとしてスクリーニングし、 CYP2Cを含む BACクローンを単離した。ライブラリ ~ ·フィルターとのハイブリダィゼーシヨンは、 BACPACの指示書に従って行い、プロ ーブは、 [ ]32P-dCTP (Amersham Biosciences社)の存在下で、 RadPrime DNA labe ling system (Invitrogen社)を用いて合成した。同定された BACクローンを BACPACよ り入手し、 BAC DNAを DNA PhasePrep™ BAC DNA Kit (Sigma- Aldrich社)により精 製した。各 BAC DNAに含まれる CYP2C遺伝子を同定するため、精製された DNAをテ ンプレートとして、 AmpliTaq Gold DNA p To confirm the species specificity of the new m! CYP2C, we analyzed the novel m! CYP2C locus in the genome using monkey CYP2C BAC clones. Force-quizal BAC library Lee was not available, so we used the Rhesus monkey BAC library instead. The rhesus monkey BAC library (BACPAC) was screened using CYP2C9v3 and a novel mfCYP2C cDNA as probes, and a BAC clone containing CYP2C was isolated. Hybridization with the library ~ · filter is performed according to the instructions of BACPAC. The probe is in the presence of [] 32 P-dCTP (Amersham Biosciences), and RadPrime DNA labeling system (Invitrogen) Was synthesized. The identified BAC clone was obtained from BACPAC, and BAC DNA was purified using DNA PhasePrep ™ BAC DNA Kit (Sigma-Aldrich). To identify the CYP2C gene contained in each BAC DNA, use AmpliTaq Gold DNA p
olymerase (Applied Biosystems社)及び各遺伝子の 5'及び 3'末端に特異的なプライマ 一を用いて、 PCRを行った。 PCR was performed using olymerase (Applied Biosystems) and primers specific for the 5 'and 3' ends of each gene.
プライマーペアは、各遺伝子のェクソン 1及び 9で設計し、位置は、 macaqueの cDNA とヒトの CYP2C遺伝子とを比較して決定した。相同性の高!、CYP2C9vl及び CYP2C9 v3では、設計したプライマーは遺伝子特異的な増幅パターンを示さな力つた。そこで 、 macaqueゲノムデータを検索してこれらの遺伝子の遺伝子特異的 indelを同定し、そ れらの indel (insertion/deletion)を認識するプライマーを設計した。  Primer pairs were designed in exons 1 and 9 of each gene, and the position was determined by comparing macaque cDNA with the human CYP2C gene. High homology! With CYP2C9vl and CYP2C9 v3, the designed primers did not show gene-specific amplification patterns. Therefore, we searched the macaque genome data to identify gene-specific indels of these genes, and designed primers that recognize these indels (insertion / deletion).
使用したプライマーを表 4に示す。 Grayらの方法(Gray IC et al., Genomics, (1995) 28:328-332)に従い、増幅パターンを用いてゲノムにおける CYP2C遺伝子のアレンジ メントを決定した。同様の目的で、 BACPACの指示書に従い、 DNAは、 BAC end sequ encing及び BamHIまたは EcoRIによる制限酵素マッピングにも用いた。  The primers used are shown in Table 4. According to the method of Gray et al. (Gray IC et al., Genomics, (1995) 28: 328-332), the arrangement of CYP2C genes in the genome was determined using the amplification pattern. For the same purpose, DNA was also used for BAC end sequencing and restriction enzyme mapping with BamHI or EcoRI according to BACPAC instructions.
[表 4] [Table 4]
()s ¾5usben† () s ¾5usben †
P- 3SJ3>Jeyvsl  P-3SJ3> Jeyvsl
-g &脚〕 賺 &ー脚αο I一)¾ΗυϋisΗ l  -g & leg) 賺 &-leg αο I 1) ¾ΗυϋisΗ l
(雜一)i一:
Figure imgf000023_0001
co 9卜s/k
(Keiichi) iichi:
Figure imgf000023_0001
co 9 卜 s / k
-ε &eevSivss!-v VSDW-v (一)uuwuisi si ivslcluushl-u-l-寸--.  -ε & eevSivss! -v VSDW-v (1) uuwuisi si ivslcluushl-u-l-size--.
Figure imgf000023_0002
Figure imgf000023_0002
この実験の過程で、ァカゲザルのゲノムの一部の配列が明らかにされ、ヒト CYP2C1 遺伝子の塩基配列と非常に相同性が高い遺伝子が存在することがわ力つた。そこ で、この CYP2C18様遺伝子に特異的なプライマーを設計して、 BACクローンの増幅 に使用した。 In the course of this experiment, the sequence of a part of the genome of the monkey monkey was clarified, and it was found that there was a gene having a very high homology with the base sequence of the human CYP2C1 gene. There Thus, a primer specific to this CYP2C18-like gene was designed and used to amplify the BAC clone.
各遺伝子の増幅パターンから、 5つの CYP2C遺伝子は、サルゲノムでは一つのクラ スタ内に存在することがわかった(図 8)。さらに、 BAC end sequencing及び制限酵素 マッピングにより、新規 mfCYP2C (図中 CYP2C76で表される)がそのクラスタの末端、 即ち、ヒトゲノムにおける CYP2Cクラスタとそれに隣接する遺伝子の間の領域に位置 することが確認された。この結果は、新規 m!CYP2C遺伝子が種特異的に存在するこ とを強く裏付けるものである。  From the amplification pattern of each gene, it was found that five CYP2C genes exist in one cluster in the monkey genome (Fig. 8). In addition, BAC end sequencing and restriction enzyme mapping confirmed that the new mfCYP2C (represented by CYP2C76 in the figure) is located at the end of the cluster, ie, the region between the CYP2C cluster and the adjacent gene in the human genome. It was. This result strongly supports the existence of a novel m! CYP2C gene in a species-specific manner.
〔遺伝子発現の組織分布解析〕 [Tissue distribution analysis of gene expression]
新規 m!CYP2C、 CYP2C20, CYP2C9vl、及び CYP2C9v3の遺伝子発現の組織分布 を決定するため、脳、肺、心臓、肝臓、腎臓、副腎、空腸、精巣、卵巣及び子宮由来 の RNAを用いて、リアルタイム RT-PCRを行った。  Real-time RT using RNA from brain, lung, heart, liver, kidney, adrenal gland, jejunum, testis, ovary and uterus to determine tissue distribution of new m! CYP2C, CYP2C20, CYP2C9vl, and CYP2C9v3 gene expression -PCR was performed.
各遺伝子に特異的なプライマー及び TaqMan (登録商標) MGBプローブは、 Primer Express sftware (Applied Biosystems社リ 用 ヽて設十し、 Applied Biosystems社で合 成された。各プライマー及びプローブの塩基配列を表 5に示す。  Primers specific to each gene and TaqMan (registered trademark) MGB probe were prepared by Primer Express sftware (Applied Biosystems) and synthesized by Applied Biosystems. Shown in 5.
[表 5] [Table 5]
Gene Direction Sequence (5,→ 3') Gene Direction Sequence (5 → 3 ')
CYP2C20 Forward TTTCTGGAAGAGGCATTTTGC (配列番号: 76 ) CYP2C20 Forward TTTCTGGAAGAGGCATTTTGC (SEQ ID NO: 76)
Reverse TCCATCTCTTTCCATTGCTGG (配列番号: 77) Reverse TCCATCTCTTTCCATTGCTGG (SEQ ID NO: 77)
Probe AACGGACTTGGAATCA (配列番号 : 78) Probe AACGGACTTGGAATCA (SEQ ID NO: 78)
CYP2C43 Forward GCCATTTCCCACTGTTTGAAA (配列番号 : 79)  CYP2C43 Forward GCCATTTCCCACTGTTTGAAA (SEQ ID NO: 79)
Reverse GCAGCGTCATGAGGGAGAA (配列番号 : 80)  Reverse GCAGCGTCATGAGGGAGAA (SEQ ID NO: 80)
Probe ACAATTCCAAATCTTCT (配列番号:81 )  Probe ACAATTCCAAATCTTCT (SEQ ID NO: 81)
CYP2C75 Forward TTCCATTGGCTGACAGAGCTAA (配列番号: 82)  CYP2C75 Forward TTCCATTGGCTGACAGAGCTAA (SEQ ID NO: 82)
Reverse CCGCAGTGTCATGAGGGAA (配列番号 : 83)  Reverse CCGCAGTGTCATGAGGGAA (SEQ ID NO: 83)
Probe CGATTCCAAATCCT (配列番号:84)  Probe CGATTCCAAATCCT (SEQ ID NO: 84)
CYP2C76 Forward TGGCCGAGGGAGTTTTCC (配列番号: 85)  CYP2C76 Forward TGGCCGAGGGAGTTTTCC (SEQ ID NO: 85)
Reverse AGAGAGAAACGC CGAAT T GC (配列番号 : 86) Reverse AGAGAGAAACGC CGAAT T GC (SEQ ID NO: 86)
Probe CCAAGGATTCGGAGTTA (配列番号 : 87) Probe CCAAGGATTCGGAGTTA (SEQ ID NO: 87)
プローブは、 5'末端を FAM fluorescence reporter dyeにより標識した。 RT反応は、ラ ンダムプライマーを用いて行 、、得られた反応産物を 25倍に希釈して PCRに供した。 PCRは、全量 25 μ 1として TaqMan Universal PCR Master Mix (Applied Biosystems社) を用い、 ABI Prism 7700 sequence detection system (Applied Biosystems社)により? T つた。各プライマーの最終濃度は、 CYP2C20、及び CYP2C9vlは 0.3 μ M、 CYP2C9v 3は 0.9 μ Μ、新規 m!CYP2Cは 0.1 μ Μとした。全 CYP2Cに対し、プローブの最終濃度 は 0.25 μ Μとした。サーマルサイクラ一の条件は、 50°Cで 2分、 95°Cで 10分の後、 95 °C15秒、 60°C1分を 40サイクルとした。 The probe was labeled with FAM fluorescence reporter dye at the 5 ′ end. The RT reaction was performed using random primers, and the resulting reaction product was diluted 25-fold and subjected to PCR. PCR was performed using Aq Prism 7700 sequence detection system (Applied Biosystems) using TaqMan Universal PCR Master Mix (Applied Biosystems) in a total volume of 25 μl. The final concentration of each primer was 0.3 μM for CYP2C20 and CYP2C9vl, 0.9 μΜ for CYP2C9v3, and 0.1 μΜ for new m! CYP2C. The final probe concentration was 0.25 μ プ ロ ー ブ for all CYP2C. The conditions for the thermal cycler were 50 ° C for 2 minutes, 95 ° C for 10 minutes, 95 ° C for 15 seconds, and 60 ° C for 1 minute for 40 cycles.
すべての CYP2C遺伝子に対し、アツセィの特異性の確認は、予想されたサイズの 目的 PCR産物が単一のバンドとしてゲル上にあらわれること、及び、標的遺伝子の cD NAプラスミド力 他の CYP2C遺伝子に対し少なくとも 500倍増幅されることを確かめる ことにより、行った。各遺伝子の相対的な発現レベルは、 Applied Byiosystems社製の キットにより、 18Sリボソーム RNAレベルを測定することにより標準化した。各遺伝子に ついて、少なくとも 3回の増幅を行った。 結果を図 9に示す。新規 mfCYP2C (図中 CYP2C76で表される)、肝臓における発現 が圧倒的に多カゝつたが、他の組織でも発現が見られた。また、追加の解析により、心 臓、筋肉、脳等、通常 P450が発現しない種々の組織においても新規 mfCYP2Cの発 現が見られ、また雄と雌では約 2倍の発現量の差があることが認められた(図 10)。 〔新規 m!CYP2C遺伝子のためのレポーター ·プラスミドの構築および配列解析〕For all CYP2C genes, Atsy's specificity can be confirmed by confirming that the desired PCR product of the expected size appears on the gel as a single band, and that the target gene cDNA plasmid strength against other CYP2C genes. This was done by making sure that it was amplified at least 500 times. The relative expression level of each gene was standardized by measuring 18S ribosomal RNA levels using a kit manufactured by Applied Byiosystems. At least three amplifications were performed for each gene. The results are shown in FIG. New mfCYP2C (represented by CYP2C76 in the figure) and liver expression were overwhelmingly numerous, but expression was also observed in other tissues. Furthermore, additional analysis shows that new mfCYP2C is expressed in various tissues that do not normally express P450, such as the heart, muscle, and brain, and that there is a difference in the expression level between males and females by about a factor of two. Was observed (Figure 10). [Construction and sequence analysis of a reporter plasmid for a novel m! CYP2C gene]
Inverse PCRにより、 5'フランキング領域を同定した。以下に、方法を説明する。まず 、各力-クイザル由来のゲノム DNAの 1 μ gを Pstl存在下、 37°Cでー晚消化した。この 生成物を、フエノール:クロ口ホルム(1 : 1)の溶媒で抽出精製した後、エタノール沈殿 を行った。得られた DNAを Ligation high (Toyobo社)を用いて 16°Cでセルフライゲー シヨンさせた後、同様の方法で精製した。精製した DNAは、 KOD plus DNA polymera se (Toyobo社)および新規 mfCYP2C cDNA配列の 5'末端をもとに設計した以下に示 す 2つのプライマーと共に、 PCRに供した。 The 5 'flanking region was identified by Inverse PCR. The method will be described below. First, 1 μg of genomic DNA derived from each force-cynomolgus monkey was digested at 37 ° C in the presence of Pstl. This product was extracted and purified with a solvent of phenol: chloroform (1: 1), followed by ethanol precipitation. The obtained DNA was self-ligated at 16 ° C. using Ligation high (Toyobo) and then purified by the same method. The purified DNA was subjected to PCR together with two primers shown below based on KOD plus DNA polymerase (Toyobo) and the 5 'end of the novel mfCYP2C cDNA sequence.
プライマー  Primer
FW: mfCYP2C (5inv3) 5'- TCCTCTCCCCGTTATTGGAA- 3' (配列番号: 88) RV: mlCYP2C (3inv2) 5'- CACCAGGATGATGAAGAGATCC- 3' (配列番号: 8 FW: mfCYP2C (5inv3) 5'-TCCTCTCCCCGTTATTGGAA-3 '(SEQ ID NO: 88) RV: mlCYP2C (3inv2) 5'- CACCAGGATGATGAAGAGATCC-3' (SEQ ID NO: 8)
9) 9)
増幅した DNAを 1%ァガロースゲルでゲル精製した後、 m!CYP2C (5inv3)を用いて シーケンスを行い、 5'フランキング領域の最末端の塩基配列を決定した。この配列に 基づき、 2つのプライマーをさらに設計した。  The amplified DNA was gel purified on a 1% agarose gel and then sequenced using m! CYP2C (5inv3) to determine the base sequence at the end of the 5 ′ flanking region. Two primers were further designed based on this sequence.
プライマー  Primer
FW: mfCYP2C (5flklaK) 5し CGGGGTACCGCAGGCCAACATTCAAATTC— 3' ( 配列番号: 90)  FW: mfCYP2C (5flklaK) 5 and CGGGGTACCGCAGGCCAACATTCAAATTC— 3 '(SEQ ID NO: 90)
RV: mlCYP2C (3flklaH) 5'— CCCAAGCTTGCTGGGCTCTTTGAAAAC— 3' (配列 番号: 91)  RV: mlCYP2C (3flklaH) 5'— CCCAAGCTTGCTGGGCTCTTTGAAAAC— 3 ′ (SEQ ID NO: 91)
PCRは上述の方法で行い、 PCR産物は pGL3- basicベクター(Promega社)にクロー ニングした。インサートの全長の塩基配列を決定した後、決定した配列では、 TRANS FACを使用した調節エレメント探索を行い、構築物は、レポーターアツセィに用いた。  PCR was performed as described above, and the PCR product was cloned into pGL3-basic vector (Promega). After determining the base sequence of the full length of the insert, a regulatory element search using TRANS FAC was performed on the determined sequence, and the construct was used for reporter assembly.
TRANSFACプログラムによる解析では、主要な肝臓の転写因子の結合部位が見出 された(threshold score≥75.0) (図 11)。各結合部位の位置(location)は、転写開始 部位をゼロとして示されて 、る。 Analysis by the TRANSFAC program found binding sites for major liver transcription factors. (Threshold score≥75.0) (Figure 11). The location of each binding site is indicated with the transcription initiation site as zero.
〔新規 m!CYP2C遺伝子の 5'フランキング領域のレポーターアツセィ〕  [Reporter assembly of the 5 'flanking region of the novel m! CYP2C gene]
HepG2細胞を独立行政法人理化学研究所から購入し、 Dulbecco's modified Eagle' s Medium (日水製薬株式会社)に、 10%のゥシ胎児血清(Cambrex Bioscience Walke rsville社)、非必須アミノ酸(ICN社)および ImMのピルビン酸ナトリウム(Invitrogen社) を添カ卩した培地で、 37°C5%CO供給下で培養した。 12ゥエルのプレートに、 2 X 105 HepG2 cells were purchased from RIKEN, Dulbecco's modified Eagle's Medium (Nissui Pharmaceutical Co., Ltd.), 10% urine fetal serum (Cambrex Bioscience Walkersville), non-essential amino acids (ICN) The cells were cultured in a medium supplemented with ImM sodium pyruvate (Invitrogen) at 37 ° C with 5% CO. 2 x 10 5 on 12 well plate
2  2
個/ゥエルとなるように移した後、 24時間インキュベートした。 After inoculating the cells / well, the cells were incubated for 24 hours.
次に、これらの細胞を、レポーター構築物(0.45 g)、 pRL- SV40 (0.05 g ; Promega 社;内部標準)により形質転換した (FuGENE6 (Roche Diagnostics社)を使用)。アツセ ィの際、必要に応じて、肝臓の主要な転写因子である HNF1 a、 HNF3 βおよび HNF 4 aの overexpression vectorをカロ た。  These cells were then transformed with a reporter construct (0.45 g), pRL-SV40 (0.05 g; Promega; internal standard) (using FuGENE6 (Roche Diagnostics)). During the assembly, the overexpression vectors of HNF1a, HNF3β and HNF4a, which are the major transcription factors of the liver, were selected as necessary.
48時間後、これらの細胞をリン酸緩衝生理食塩水で洗浄し、製品の指示書に従つ X aual-luciferas e assay (Promega社)に供し 7こ。  After 48 hours, these cells are washed with phosphate buffered saline and subjected to X aual-luciferase assay (Promega) according to the product instructions.
結果を図 22に示す。  The results are shown in FIG.
すべての転写因子が新規 mfCYP2Cの発現を著しく亢進させ、中でも HNF1 aによる 効果が最も大きカゝつた。これらの結果は、新規 mfCYP2C遺伝子の発現調節にこれら の転写因子が重要な機能を果たすことを示す。また、新規 mfCYP2C力 RT-PCRで 解析した組織の中で、肝臓にお!ヽて高く発現して ヽた結果と一致する。  All transcription factors markedly enhanced the expression of the novel mfCYP2C, with HNF1a being the most effective. These results indicate that these transcription factors play important functions in regulating the expression of the novel mfCYP2C gene. In addition, in the tissue analyzed by the new mfCYP2C force RT-PCR, it is consistent with the result that the expression was very high in the liver.
〔E.Coliにおける 4つのサル CYP2Cタンパク質の発現〕 [Expression of four monkey CYP2C proteins in E. coli]
新規 m!CYP2C、 mfCYP2C9vl、 mfCYP2c9v3および CYP2C20の cDNAを用いて、 Iwa taらの方法(Iwata, H. et al., Biochem Pharmacol (1998) 55:1315-1325)に従って各タ ンパク質を発現させた。タンパク質の発現レベルを上昇させるために、各 cDNAのォ 一プン.リーディング 'フレーム(ORF)を、表 6に示すプライマーと KOD Plus DNA pol ymerase (Toyobo社)を用いて増幅することにより、 N末端の 8残基を、ゥシ CYP17の N 末端の 8残基である MALLLAVFに置換した(Barnes, HJ et al., Proc Natl Acad Sci U SA (1991) 88:5597-5601)。  Using the new m! CYP2C, mfCYP2C9vl, mfCYP2c9v3 and CYP2C20 cDNAs, each protein was expressed according to the method of Iwata et al. (Iwata, H. et al., Biochem Pharmacol (1998) 55: 1315-1325). . To increase the level of protein expression, each cDNA's open reading frame (ORF) is amplified by using the primers shown in Table 6 and KOD Plus DNA polymerase (Toyobo). Were replaced with MALLLAVF, which is the N-terminal 8 residues of ushi CYP17 (Barnes, HJ et al., Proc Natl Acad Sci USA (1991) 88: 5597-5601).
[表 6]
Figure imgf000028_0001
[Table 6]
Figure imgf000028_0001
Ndel認識部位と Xbal認識部位をそれぞれ含むフォワードおよびリバースプライマー を用いることにより、 PCR産物を、 Iwataらカ ヒト 'レダクターゼ cDNAと共発現させるよ うに pCWベクター(Barnes, HJ., Methods Enzymol (1996) 272:3- 14)をもとに作製した ベクターに直接クローユングした。本発明者らは、この構築物をそれぞれの cDNAの 由来に因んで、 pCW- CYP2C20/OR、 pCW- mfCYP2C9vl/OR、 pCW- m!CYP2C9v2/ ORおよび pCW-新規 m!CYP2C/ORと名付けた。 By using forward and reverse primers containing an Ndel recognition site and an Xbal recognition site, respectively, the pCW vector (Barnes, HJ., Methods Enzymol (1996) 272) can be used to co-express PCR products with Iwata et al. : 3) Cloned directly to the vector prepared based on 14). We have used this construct for each cDNA. Due to their origin, they were named pCW-CYP2C20 / OR, pCW-mfCYP2C9vl / OR, pCW-m! CYP2C9v2 / OR, and pCW-new m! CYP2C / OR.
DH5 a competent cells (Invitrogen社)を形質転換した後、インサートの塩基配列と 配向性をシーケンシングにより確認した。ノ クテリアは、 100 g/mlのアンピシリンを含 む Luria-bertani broth中でー晚培養した後、 Iwataらの方法(1998)に従って調整した 。 Terrific Brothで 100倍に希釈し、 200 μ g/mlのアンピシリン存在下、 30°Cで 6時間か ら 12時間、 OD が約 0.6〜0.8になるまで培養した。  After transformation of DH5 a competent cells (Invitrogen), the nucleotide sequence and orientation of the insert were confirmed by sequencing. Nocteria was cultured in Luria-bertani broth containing 100 g / ml ampicillin and then prepared according to the method of Iwata et al. (1998). After diluting 100 times with Terrific Broth, the cells were cultured in the presence of 200 µg / ml ampicillin at 30 ° C for 6 to 12 hours until the OD was about 0.6 to 0.8.
600  600
続、てイソプロピル- B- D-チォガラタトシド (IPTG)を最終濃度が 1.5mMとなるように 培養液に添加した。 16時間から 20時間後、公知の方法(Omura, T. et al, J Biol Che m (1964) 239:2379-2385)に従い、 U- 3000 spectrophotometer (Shimadzu社)を使用 して、培養物の P450スペクトルを求めた。結果を図 13に示す。  Subsequently, isopropyl-BD-thiogalatatoside (IPTG) was added to the culture solution to a final concentration of 1.5 mM. After 16 to 20 hours, according to known methods (Omura, T. et al, J Biol Chem (1964) 239: 2379-2385), using a U-3000 spectrophotometer (Shimadzu), P450 of the culture The spectrum was determined. The results are shown in FIG.
P450の発現を確認した後、培養した細胞を採取し、細胞膜画分を調製した。そして 、 Iwataらの方法(1998)に従って、 P450および NAPDH- P450レダクターゼの濃度を測 疋した。  After confirming the expression of P450, the cultured cells were collected and a cell membrane fraction was prepared. Then, the concentrations of P450 and NAPDH-P450 reductase were measured according to the method of Iwata et al. (1998).
〔4つのサル CYP2Cの代謝活性〕  [Metabolic activity of four monkeys CYP2C]
すべて組換え CYP2Cタンパク質を用いて、 4つの基質、 taxol、 tolbutamide, S- meph enytoinおよび testosteroneに対する新規 m!CYP2C、 CYP2C20, CYP2C9vl、及び CY P2C9v3の代謝活性を解析した。  All of the recombinant CYP2C proteins were used to analyze the metabolic activities of novel m! CYP2C, CYP2C20, CYP2C9vl, and CYP2C9v3 against four substrates, taxol, tolbutamide, S-methylentoin and testosterone.
反応混合物は、以下のように調製した。まず、 "C- taxol (6 μ M), "C- tolbutamide (1 00 μ M)ゝ 14C— testosterone (50 μ M)ゝ "C— S— mephenytoin (50 μ M)と、サル肝ミクロゾ ーム若しくは精製した組換え CYP2Cとを、チューブに用意し、 37°Cで 5分、インキュべ ートした。続いて、代謝反応を開始させるため、 1.3mMの NADP+、 3.3mMのダルコ一 ス -6-リン酸、 0.4U/mlのグルコース- 6-リン酸デヒドロゲナーゼ、および 3.3mMの塩化 マグネシゥを溶解させた 100mMリン酸ナトリゥム緩衝液を含む NADPH再生系を添カロ した。最終濃度は、 lmg protein/mL、または 200pmol P450/mLであった。 The reaction mixture was prepared as follows. First, “C-taxol (6 μM),” C-tolbutamide (1 00 μM) ゝ14 C— testosterone (50 μM) ゝ “C—S—mephenytoin (50 μM), monkey liver microzoa Or purified recombinant CYP2C was prepared in a tube and incubated for 5 minutes at 37 ° C. Subsequently, 1.3 mM NADP +, 3.3 mM Darcos- A NADPH regeneration system containing 100 mM sodium phosphate buffer in which 6-phosphate, 0.4 U / ml glucose-6-phosphate dehydrogenase, and 3.3 mM magnesium chloride was dissolved was added, and the final concentration was lmg protein. / mL, or 200 pmol P450 / mL.
taxolと testosteroneにつ ヽ飞は 37°しで 15分、 ¾— mephenytoinにつ ヽては 45分、 tolbu tamideにつ!/、ては 60分インキュベートした後、等量のメタノールを加えて反応を停止 させた。組換え m!CYP2Cタンパク質の場合は、いずれの化合物についてもインキュ ベーシヨンは 30分とした。反応終了後、サンプルは、遠心分離され、各ァリコットは、 乾燥するまで上清を蒸発させ、残渣を 15 μ 1のメタノールに溶解させた。 Taxol and testosterone are incubated at 37 ° for 15 minutes, ¾—mephenytoin is incubated for 45 minutes, tolbu tamide is incubated for 60 minutes, and after 60 minutes of incubation, an equal amount of methanol is added to react. Stopped. In the case of recombinant m! CYP2C protein, Bastion was 30 minutes. After completion of the reaction, the sample was centrifuged, and each aliquot was evaporated to dryness and the residue was dissolved in 15 μl of methanol.
6 α - hydroxytaxolと 3- hydroxytaxolの分析は、藤野らの方法(Fujino, H. et al., J Ch romatogr B Biomed Sci Appl (2001) 757:143-150)に従って行った。各上清 2 μ 1ずつ を、 TLCプレート (Silicagel 60F254, 20x20 cm, Merck)にスポットし、展開溶媒(トルェ ン -アセトン-ギ酸 (60:39:l,v/V/v))と共に、溶媒蒸気で飽和させた水平な TLC展開槽 に 12cm展開した。 6 α-hydroxytaxol and 3-hydroxytaxol were analyzed according to the method of Fujino et al. (Fujino, H. et al., J Chromatogr B Biomed Sci Appl (2001) 757: 143-150). 2 μl of each supernatant is spotted onto a TLC plate (Silicagel 60F254, 20x20 cm, Merck), and with a developing solvent (toluene-acetone-formic acid (60: 39: l, v / V / v)) Expanded 12cm into a horizontal TLC tank saturated with steam.
6 β - hydroxytestosteroneの場合は、展開溶媒をジクロロメタン アセトン(4:1, v/v) とし、 16cm展開した。  In the case of 6 β-hydroxytestosterone, the developing solvent was dichloromethane acetone (4: 1, v / v), and 16 cm was developed.
4— nydroxytolbutamideは、 Ludwigらの方法 (Ludwig, E. et al., J Chromatogr B Biom ed Sci Appl (1998) 707:347-350)に従って、展開溶媒をトルエン アセトンーギ酸 (60 :39:l,v/v/v)とし、 10cm展開した。  4— nydroxytolbutamide can be obtained according to the method of Ludwig et al. (Ludwig, E. et al., J Chromatogr B Biomed Sci Appl (1998) 707: 347-350) and the developing solvent is toluene acetone-formic acid (60: 39: l, v / v / v) and expanded 10 cm.
b-mephenytoin 4— hydroxylase?舌 '性は、 Shimadaらの方法 ( himada, T. et al., Anal Biochem (1985) 147:174-179)に従って測定し、展開溶媒をクロ口ホルム メタノール 28%アンモニア (90: 10:1, v/v/v)とし 12cm展開した。  b-mephenytoin 4—hydroxylase? tongue 'was measured according to the method of Shimada et al. (himada, T. et al., Anal Biochem (1985) 147: 174-179), and the developing solvent was black mouth form methanol 28% ammonia (90: 10: 1, v / v / v) and expanded 12 cm.
TLCプレートを乾燥し、 phosphor imaging plate (IP)に接触させて 12時間静置した。 化合物と代謝産物の量の変化は、 BAS-2500 (富士フィルム社)を使用して測定した。 放射性を示す代謝産物の Rf値が、標識なしの標準に比較して明確に識別された。 結果を図 14に示す。レーン 1はサルの肝ミクロゾーム、レーン 2は CYP2C20、レーン 3は CYP2C9vl、レーン 4は CYP2C9v3、レーン 5は新規 mfCYP2Cである。  The TLC plate was dried and allowed to stand for 12 hours in contact with phosphor imaging plate (IP). Changes in the amount of compounds and metabolites were measured using BAS-2500 (Fuji Film). The Rf values for radioactive metabolites were clearly identified compared to unlabeled standards. The results are shown in FIG. Lane 1 is monkey liver microsome, lane 2 is CYP2C20, lane 3 is CYP2C9vl, lane 4 is CYP2C9v3, and lane 5 is new mfCYP2C.
新規 m!CYP2Cは、 4つの基質のうち、 tolbutamideと testosteroneを代謝することが確 れ /こ。  The new m! CYP2C is able to metabolize tolbutamide and testosterone out of four substrates.
これに対し、 mfCYP2C20は、 taxolを代謝した力 他の化合物に対しては代謝活性 を しな; ^つた。また、 m!LYP2し 9v3iitolbutamiae、 ¾— mephenytoin、 testosterone 、 mlCYP2C9vlは、 S-mephenytoinと testosteroneを代謝することが確認された。  In contrast, mfCYP2C20 has the ability to metabolize taxol and has no metabolic activity against other compounds. It was also confirmed that m! LYP2 and 9v3iitolbutamiae, ¾-mephenytoin, testosterone, and mlCYP2C9vl metabolize S-mephenytoin and testosterone.
新規 m!CYP2C、 mfCYP2C9vl、 mfCYP2C9v3は、いずれも testosteroneを基質とした 代謝活性を示したが、代謝産物は同一ではなカゝつた。  The new m! CYP2C, mfCYP2C9vl, and mfCYP2C9v3 all showed metabolic activity using testosterone as a substrate, but the metabolites were not identical.
以上から、サル特異的な新規 mfCYP2Cタンパク質が、ある種の薬物に対して代謝 活性を示すことが確認された。このことは、新規 m!CYP2Cがサルとそれ以外の霊長類 における代謝パターンの相違の一因となっていることを示唆するものである。 Based on the above, a new monkey-specific mfCYP2C protein is metabolized against certain drugs. It was confirmed to show activity. This suggests that the novel m! CYP2C contributes to the metabolic pattern differences between monkeys and other primates.
〔抗新規 m!CYP2C抗体の作製及びィムノブロッテイング〕 [Preparation of anti-new m! CYP2C antibody and immunoblotting]
新規 m!CYP2Cに対するポリクローナル抗体は、このタンパク質の特異的なアミノ酸 配列を有するペプチドを合成し、このペプチドでゥサギを免疫することによって、 Neo MPS社(SanDiego,CA)で産生された。まず、 4つの m!CYP2Cの配列を比較することに よって選択した特異的なアミノ酸配列をもとに以下の 2つのペプチドを合成した。  A novel polyclonal antibody against m! CYP2C was produced by Neo MPS (San Diego, Calif.) By synthesizing a peptide having a specific amino acid sequence of this protein and immunizing a rabbit with this peptide. First, the following two peptides were synthesized based on specific amino acid sequences selected by comparing the sequences of four m! CYP2Cs.
(A) H-CQLNTKNISKSISMLA-NH (配列番号: 98)  (A) H-CQLNTKNISKSISMLA-NH (SEQ ID NO: 98)
2  2
(B) H-CLYNAFPHLRVL-NH (配列番号: 99)  (B) H-CLYNAFPHLRVL-NH (SEQ ID NO: 99)
2  2
合成したペプチドは精製し、 C末端のシスティン残基のチオール基を介して Keyhol e Limpet Hemocyanin (キャリアタンパク質)に結合させ、 New Zealand White Rabbitを 免疫し、ゥサギ抗新規 mfCYP2C抗体を得た(図 15)。  The synthesized peptide was purified, bound to Keyhol Limpet Hemocyanin (carrier protein) via the thiol group of the C-terminal cysteine residue, and immunized with New Zealand White Rabbit to obtain a rabbit anti-new mfCYP2C antibody (Fig. 15). ).
遺伝子組換え P450タンパク質として、サル CYP2Cから CYP2C20、 CYP2C9vl、 CYP 2C9v3、及び新規 m!CYP2C、またヒト CYP2Cから CYP2C8、 CYP2C9、 CYP2C18、及 び CYP2C19 (各 l.Opmol)を 10%SDSポリアクリルアミドゲルで電気泳動し、 Hybond-P f ilter (Amersham Biosciences社)上に移行した。このフィルターを用いて、ゥサギ抗新 規 m!CYP2C抗体(1:250)、及びホースラディッシュペルォキシダーゼにコンジュゲート されたロバ抗ゥサギ IgG抗体(SantaCruz Biotechnology社)を用いたィムノブロッテイン グを行つ 7こ。製 f口の旨不 【こ従 ヽ、 ECL Western Blotting detection reagent (Amers ham Biosciences社)により可視化したところ、抗体 (A)を使用した場合のみ、新規 mfC YP2C (CYP2C76)に相当するバンド力 つのみ得られ、免疫特異性が確認された(図 16 (A) ) 0 As recombinant P450 proteins, monkey CYP2C to CYP2C20, CYP2C9vl, CYP 2C9v3, and new m! CYP2C, and human CYP2C to CYP2C8, CYP2C9, CYP2C18, and CYP2C19 (each l.Opmol) in 10% SDS polyacrylamide gel. Electrophoresis and transfer onto Hybond-P filter (Amersham Biosciences). Using this filter, immunoblotting using a rabbit anti-new m! CYP2C antibody (1: 250) and a donkey anti-usagi IgG antibody conjugated to horseradish peroxidase (SantaCruz Biotechnology) 7 lines. The effect of the mouth of the product is not visible. [Visualization with ECL Western Blotting detection reagent (Amersham Biosciences)] Only when the antibody (A) is used, only the band strength corresponding to the new mfC YP2C (CYP2C76) is obtained. And immunospecificity was confirmed (Fig. 16 (A)) 0
また、ヒト、チンパンジー、オランウータン、力-クイザル、及びァカゲザルの 5種類の 霊長類カゝら調製した肝ミクロソームを使用した抗新規 mfCYP2C (CYP2C76)抗体によ るィムノブロッテイングも行った。期待されたサイズのバンド力 力-クイザル及びァカ ゲザルのサンプルにお 、てのみ確認され、新規 m!CYP2C遺伝子の発現パターンと 一致した結果が得られた (図 16 (B) )。  In addition, immunoblotting with an anti-new mfCYP2C (CYP2C76) antibody was performed using liver microsomes prepared from five primate primates, human, chimpanzee, orangutan, force-quizal, and akage monkey. Band power of the expected size-confirmed only in samples of cynomolgus monkey and monkey monkey, and obtained results consistent with the expression pattern of the novel m! CYP2C gene (Fig. 16 (B)).
〔免疫組織化学〕 力-クイザルの肝臓の切片を用いて、標準的方法に従い、抗新規 mfCYP2C抗体に よる免疫組織化学染色を行った。一次抗体は 50倍に希釈し、切片に接触させて 4°C でー晚放置した。結合した抗体を、 EnVision+System及び liquid diaminobenzidine (い ずれも DakoCytomation社)を用い、製品の指示書に従って検出した。スライドを、 harr is hematoxylinにより対照染色した。ネガティブ ·コントロールとして、ゥサギの preimmu ne血清を一次抗体の代わりに使用した。免疫組織ィ匕学特異性を検証するために、抗 体は、過剰量の新規 m!CYP2C特異的ペプチド(0.05mg/ml)と共に 4°Cでー晚プレイ ンキュペートし、一次抗体の代わりに使用した。この結果、肝細胞は強く染色された 1S 胆管ゃ血管の細胞は染色されなかった。ブロッキングペプチドまたは免疫前血清 の存在下では、染色は見られず(図 17)、染色が新規 mfCYP2Cに特異的であること が示唆された。 [Immunohistochemistry] Immunohistochemical staining with anti-novel mfCYP2C antibody was performed using a section of force-cynomolgus liver according to standard methods. The primary antibody was diluted 50-fold, brought into contact with the section and left at 4 ° C. The bound antibody was detected using EnVision + System and liquid diaminobenzidine (both from DakoCytomation) according to the product instructions. Slides were control stained with harr is hematoxylin. Usagi preimmune serum was used in place of the primary antibody as a negative control. To verify the immunohistochemical specificity, the antibody was pre-cured at 4 ° C with an excess of novel m! CYP2C-specific peptide (0.05 mg / ml) and used in place of the primary antibody. did. As a result, hepatocytes were strongly stained, and the 1S bile duct and vascular cells were not stained. No staining was seen in the presence of blocking peptide or preimmune serum (Figure 17), suggesting that the staining is specific for the novel mfCYP2C.
図面の簡単な説明 Brief Description of Drawings
[図 1]図 1上段は、新規 mfCYP2Cの cDNAの塩基配列(配列番号: 1)を、下段は新規 m!CYP2Cタンパク質のアミノ酸配列(配列番号: 2)を示す。枠で囲まれているのは、 ヘム結合領域と推定される領域である。 Alternative polyadenylationにより長い 3'非翻 訳領域をもつ transcript variantにおける延長部分(281塩基)には下線が引かれてい る。破線の引かれたアミノ酸配列は、抗新規 mfCYP2C抗体を産生する際に用いたぺ プチドの配列である。 cDNAは 1666塩基長からなり、 489アミノ酸残基のオープン 'リー デイング'フレームを含んでいる。 [FIG. 1] The upper part of FIG. 1 shows the base sequence of the novel mfCYP2C cDNA (SEQ ID NO: 1), and the lower part shows the amino acid sequence of the novel m! CYP2C protein (SEQ ID NO: 2). The region surrounded by the frame is the region estimated to be a hem coupling region. The extension (281 bases) of the transcript variant with a long 3 'non-translated region is underlined by alternative polyadenylation. The amino acid sequence drawn with a broken line is the sequence of the peptide used to produce the anti-new mfCYP2C antibody. The cDNA is 1666 bases long and contains an open 'reading' frame of 489 amino acid residues.
[図 2]4種のサル CYP2Cタンパク質のアミノ酸配列のマルチプル ·ァライメントである。 上段から、 CYP2C20 (配列番号: 11)、 mfCYP2C9vl (配列番号: 12)、 mfCYP2C9v3 ( 配列番号: 13)、新規 mfCYP2C (配列番号: 14)のアミノ酸配列を示す。新規 m!CYP2 Cは 489アミノ酸残基を有し、他のサル CYP2Cタンパク質およびヒト CYP2Cタンパク質 より 1残基短い。  [Fig. 2] Multiple alignment of amino acid sequences of four monkey CYP2C proteins. From the top, the amino acid sequences of CYP2C20 (SEQ ID NO: 11), mfCYP2C9vl (SEQ ID NO: 12), mfCYP2C9v3 (SEQ ID NO: 13), and novel mfCYP2C (SEQ ID NO: 14) are shown. The new m! CYP2 C has 489 amino acid residues and is one residue shorter than other monkey CYP2C and human CYP2C proteins.
[図 3]-ヮトリ (c)、ヒ Kh)、ブタ (pig)、ィヌ (dog)、ゥサギ (rab)、マウス )、力-クイザル (mf )、ラット (r)、の CYP2Cのアミノ酸配列を使用して描いた分子進化系統樹である。新規 m!CYP2Cの配列は、ヒトよりも他の動物種のものに、より類似することが示された。  [Fig.3] Amino acid sequences of CYP2C in chick (c), chick Kh), pig (pig), inu (dog), rabbit (rab), mouse), force-quizal (mf), rat (r) It is a molecular evolutionary phylogenetic tree drawn using. The sequence of the new m! CYP2C was shown to be more similar to that of other animal species than humans.
[図 4]他のサルにおける新規 m!CYP2Cホモログの cDNAのマルチプル.ァライメントで ある。上段から、力二クイザル (配列番号: 1の一部)、ァカゲザル (配列番号: 15)、ァ フリカミドリザル(配列番号: 16)、コモン'マーモセット(配列番号: 17)の cDNAの塩基 配列を示す。配列の種差により、コード領域を完全に増幅できたのはァカゲザルだけ であり、アフリカミドリザルおよびコモン'マーモセットについては、それぞれェクソン 1- 4およびェクソン 2-4が増幅された。種間において、数個の残基が異なるのみであり、 100%に近 、相同性が見られた。 [Fig.4] Multiple alignment of new m! CYP2C homolog cDNAs in other monkeys is there. From the top, the base sequences of cDNAs of Riki quizal (part of SEQ ID NO: 1), monkey (SEQ ID NO: 15), African monkey (SEQ ID NO: 16), and common 'marmoset (SEQ ID NO: 17) are shown. . Due to the species differences, only the akage monkey was able to completely amplify the coding region, and exon 1-4 and exon 2-4 were amplified for African green monkey and common 'marmoset, respectively. Among the species, only a few residues differed, and close to 100% showed homology.
[図 5]図 15の続きであり、他のサルにおける新規 mfCYP2Cホモログの cDNAのマルチ プル.ァライメントを示す。  FIG. 5 is a continuation of FIG. 15 and shows multiple alignment of cDNA of a novel mfCYP2C homolog in other monkeys.
[図 6]他のサルにおける新規 m!CYP2Cホモログのタンパク質のアミノ酸配列のマルチ プル 'ァライメントである。上段から、力-クイザル (配列番号: 2)、ァカゲザル (配列番 号: 18)、アフリカミドリザル(配列番号: 19)、コモン.マーモセット(配列番号: 20)の 新規 m!CYP2Cタンパク質ホモログのアミノ酸配列を示す。  [Fig. 6] Multiple alignment of amino acid sequences of proteins of a novel m! CYP2C homolog in other monkeys. From the top, the amino acid sequence of a new m! CYP2C protein homologue of force-quizal (SEQ ID NO: 2), akage monkey (SEQ ID NO: 18), African green monkey (SEQ ID NO: 19), common marmoset (SEQ ID NO: 20) Indicates.
[図 7]各ェクソン上で設計された遺伝子特異的プライマーを使用して long-distance P CRを行い、全イントロンの配列を解析することにより決定した、新規 mfCYP2Cのェクソ ン一イントロン構造である。新規 m!CYP2C遺伝子は、ヒト CYP2C遺伝子と同様に、 9つ のェクソンを含んで 、ることが確認された。  [FIG. 7] A novel mfCYP2C exon-intron structure determined by long-distance PCR using gene-specific primers designed on each exon and analyzing the sequence of all introns. The new m! CYP2C gene was confirmed to contain 9 exons, similar to the human CYP2C gene.
[図 8]CYP2C BACクローンの PCR増幅パターン、制限酵素マッピング、 end- sequenci ngにより決定されたサル CYP2C遺伝子の構造を示す。尚、 CYP2C9vl及び CYP2C9v 3 (図中それぞれ CYP2C43及び CYP2C75と表される)は相互に相同性が高ぐゲノム 上の位置が決定できな力つたため、仮の順序で描かれている。サル特異的な新規 mf CYP2C (図中 CYP2C76と表される)は、 CYP2Cクラスタの末端に位置する力 この位 置は、ヒトのゲノムの対応する領域においては遺伝子と遺伝子の間の領域である。破 線は明確な増幅が起こらな力つた BACクローンを示す。  FIG. 8 shows the PCR amplification pattern of CYP2C BAC clones, restriction enzyme mapping, and the structure of the monkey CYP2C gene determined by end sequencing. Note that CYP2C9vl and CYP2C9v3 (represented as CYP2C43 and CYP2C75 in the figure, respectively) are drawn in a tentative order because they have the power to determine positions on the genome that are highly homologous to each other. The new monkey-specific mf CYP2C (denoted CYP2C76 in the figure) is a force located at the end of the CYP2C cluster. This position is the region between genes in the corresponding region of the human genome. Broken lines indicate BAC clones that did not undergo clear amplification.
[図 9]サル CYP2C遺伝子発現の組織分布を示す。 10種類の組織サンプルから得た全 RNAを使用して、リアルタイム RT-PCRを行った。すべての CYP2Cについて肝臓での 発現がもっとも高ぐ新規 mfCYP2C (CYP2C76)の発現力もっとも顕著であった。  FIG. 9 shows the tissue distribution of monkey CYP2C gene expression. Real-time RT-PCR was performed using total RNA from 10 tissue samples. For all CYP2C, the new mfCYP2C (CYP2C76) with the highest expression in the liver was most prominent.
[図 10]雄と雌における新規 m!CYP2Cの発現量の差を測定した結果である。雄の発現 量は、雌の約 2倍であった。 [図 11]TRNASFACプログラムによって同定された(threshold score≥ 75.0)、主な肝臓 特異的転写因子(HNF1 a、 HNF3 β、 HNF4 a )に対する DNA結合エレメントである。 各エレメントの位置は、転写開始点をゼロとして計算されて 、る。 FIG. 10 shows the results of measuring the difference in the expression level of new m! CYP2C in males and females. Male expression was approximately twice that of females. [FIG. 11] DNA binding elements for major liver-specific transcription factors (HNF1 a, HNF3 β, HNF4 a) identified by the TRNASFAC program (threshold score ≥ 75.0). The position of each element is calculated with the transfer start point as zero.
[図 12]約 lkbの 5'フランキング領域をルシフェラーゼアツセィにより分析した。アツセィ は、 HepG2細胞中の pGL-lkb構築物を使用して行い、必要に応じて転写因子を加え た。全ての因子、特〖こ HNF1 aは、新規 mfCYP2Cの発現を著しく亢進させた。  [FIG. 12] The 5 ′ flanking region of about 1 kb was analyzed by luciferase assay. Atsei performed using the pGL-lkb construct in HepG2 cells and added transcription factors as needed. All factors, Tokuko HNF1a, markedly enhanced the expression of novel mfCYP2C.
[図 13]大腸菌における組換え新規 m!CYP2Cタンパク質の発現を確認する CO- differe nce spectraである。 P450タンパク質に特有のピーク (450nm)が確認できる。  [FIG. 13] CO-differentience spectra confirming the expression of recombinant novel m! CYP2C protein in E. coli. A peak peculiar to P450 protein (450 nm) can be confirmed.
[図 14]E.Coli中で発現させたサル CYP2Cの代謝活性を示す。レーン 1〜5は、それぞ れサル肝ミクロゾーム、 CYP2C20、 CYP2C9vl、 CYP2C9v3、及び新規 mfCYP2Cを示 す。  FIG. 14 shows the metabolic activity of monkey CYP2C expressed in E. coli. Lanes 1-5 show monkey liver microsomes, CYP2C20, CYP2C9vl, CYP2C9v3, and new mfCYP2C, respectively.
[図 15]図 1に示されるアミノ酸配列を有する合成ペプチドでゥサギを免疫して作製し た抗体である。図 25Aは、ペプチド H- CQLNTKNISKSISMLA-NH (配列番号: 29)を  FIG. 15 shows an antibody prepared by immunizing a rabbit with a synthetic peptide having the amino acid sequence shown in FIG. Figure 25A shows the peptide H-CQLNTKNISKSISMLA-NH (SEQ ID NO: 29).
2  2
抗原として、同図 Bは、ペプチド H- CLYNAFPHLRVL-NH (配列番号: 30)を抗原と Fig. B shows the peptide H-CLYNAFPHLRVL-NH (SEQ ID NO: 30) as the antigen.
2  2
して得られた抗体である。 It is the antibody obtained by doing.
[図 16]A.抗新規 mfCYP2C抗体を使用したィムノブロッテイングの結果を示す。サル 及びヒトの 8種類の P450を電気泳動後 PVDFフィルターに移行させ、抗新規 m!CYP2C 抗体を結合させた。新規 m!CYP2C (CYP2C76)のバンドのみが検出できた。 B. Aと同 様の方法で、複数の動物の肝ミクロゾームにおける新規 mfCYP2Cのホモログを探索 した。コントロールとしての PDIタンパク質は、全てのサンプルにおいて検出された力 新規 m!CYP2Cタンパク質は、力-クイザルとァ力ゲザルのみでしか検出されなかった  FIG. 16 shows the results of immunoblotting using A.anti-new mfCYP2C antibody. Eight types of monkey and human P450 were electrophoresed and then transferred to PVDF filters to bind anti-new m! CYP2C antibody. Only the new m! CYP2C (CYP2C76) band could be detected. B. A novel mfCYP2C homologue in liver microsomes of multiple animals was searched for in the same manner as A. The PDI protein as a control was the force detected in all samples. The novel m! CYP2C protein was detected only in the force-quizal and the keystone.
[図 17]肝における新規 m!CYP2Cタンパク質の免疫組織ィ匕学染色の結果を示す。 (A) は、抗新規 mfCYP2C抗体による免疫染色、(B)は、ペプチドブロッキングによる前処 理を行った場合、(C)は、免疫前染色を行った場合の結果を示す。肝細胞における 強 、染色が確認されたが、胆管 (矢印)及び静脈 (三角)の上皮細胞では確認されな 力つた。(B)および(C)ではほとんど染色されなかった。実線のスケールは 100 mを 示す。 FIG. 17 shows the results of immunohistochemical staining of novel m! CYP2C protein in the liver. (A) shows immunostaining with an anti-new mfCYP2C antibody, (B) shows the results of pretreatment with peptide blocking, and (C) shows the results of preimmune staining. Strong and staining were confirmed in hepatocytes, but not in bile duct (arrow) and vein (triangle) epithelial cells. (B) and (C) hardly stained. The solid scale shows 100 m.

Claims

請求の範囲 The scope of the claims
[1] 以下の(a)または (b)のタンパク質。 [1] The following protein (a) or (b):
(a)配列番号: 2に記載のアミノ酸配列力 なるタンパク質。  (a) A protein having the amino acid sequence ability described in SEQ ID NO: 2.
(b)配列番号: 2に記載のアミノ酸配列において、 1若しくは数個のアミノ酸が置換、 欠失、付加および Zまたは挿入されたアミノ酸配列力 なり、薬物代謝酵素であるタ ンパク質。  (b) A protein that is a drug-metabolizing enzyme, in which one or several amino acids are substituted, deleted, added and Z or inserted in the amino acid sequence set forth in SEQ ID NO: 2.
[2] 請求項 1に記載のタンパク質をコードする核酸。  [2] A nucleic acid encoding the protein according to claim 1.
[3] 以下の(c)または(d)の DNA。 [3] DNA of (c) or (d) below.
(c)配列番号: 1若しくは配列番号: 3に記載の塩基配列力 なる DNA、  (c) DNA having a base sequence ability described in SEQ ID NO: 1 or SEQ ID NO: 3,
(d)配列番号: 1若しくは配列番号: 3に記載の塩基配列若しくはその一部力 なる D NAと相補的な塩基配列力 なる DNA配列とストリンジェントな条件下でノヽイブリダィ ズし、薬物代謝酵素であるタンパク質をコードするサル由来の DNA。  (d) a drug-metabolizing enzyme that has been hybridized under stringent conditions with a DNA sequence having a nucleotide sequence complementary to the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 3 or its partial DNA Monkey-derived DNA encoding a protein that is
[4] 請求項 3に記載の DNAを含む組換えベクター。  [4] A recombinant vector comprising the DNA according to claim 3.
[5] 請求項 4に記載の組換えベクターを含む形質転換体。  [5] A transformant comprising the recombinant vector according to claim 4.
[6] 請求項 5に記載の形質転換体を培養し、培養物から請求項 1に記載のタンパク質を 精製することを特徴とする、請求項 1に記載のタンパク質の製造方法。  [6] The method for producing a protein according to claim 1, wherein the transformant according to claim 5 is cultured, and the protein according to claim 1 is purified from the culture.
[7] 請求項 1に記載のタンパク質に対する抗体。 [7] An antibody against the protein according to claim 1.
[8] サルとサル以外の哺乳動物とにおいて被検物質の代謝が異なる場合に、  [8] When the metabolism of the test substance is different between monkeys and non-monkey mammals,
請求項 1に記載のタンパク質と前記被検物質とを接触させる工程 Aと、 前記被検物質の代謝に対する、前記請求項 1に記載のタンパク質の関与の有無を 測定する工程 Bを含む、  A step A for contacting the protein according to claim 1 and the test substance, and a step B for measuring the presence or absence of the protein according to claim 1 with respect to metabolism of the test substance,
前記被検物質の代謝が異なる原因を評価する方法。  A method for evaluating the cause of different metabolism of the test substance.
[9] 前記工程 Aで用いる請求項 1に記載のタンパク質が、請求項 6に記載のタンパク質 の製造方法で製造されたものである、請求項 8に記載の方法。 [9] The method according to claim 8, wherein the protein according to claim 1 used in the step A is produced by the method for producing a protein according to claim 6.
[10] 前記工程 Bにおいて、請求項 1に記載のタンパク質が前記被検物質の代謝に関与 している場合、 [10] In the step B, when the protein according to claim 1 is involved in metabolism of the test substance,
前記サルとサル以外の前記哺乳動物とにおける被検物質の代謝の差異は、種の 違いによるものであると評価する、請求項 8または 9に記載の方法。 The method according to claim 8 or 9, wherein the metabolic difference of the test substance between the monkey and the mammal other than the monkey is evaluated to be due to a difference in species.
[11] サルをモデル動物として、ヒト用の医薬品候補ィ匕合物についての代謝、薬効および[11] Using monkeys as model animals, the metabolism, efficacy and efficacy of human drug candidates
Zまたは安全性を試験する場合に、 Z or when testing safety
前記医薬品候補ィ匕合物の代謝に対する、前記請求項 1に記載のタンパク質の関与 の有無を測定する工程 cと、  Measuring the presence or absence of the involvement of the protein of claim 1 in the metabolism of the drug candidate compound, c.
前記関与が有った場合に、当該医薬品候補ィ匕合物についてのサルをモデル動物 とした代謝、薬効および Zまたは安全性の試験結果は、前記医薬品化合物のヒトに おける代謝、薬効および Zまたは安全性と異なることを予測する工程 Dと、を含む、 代謝、薬効および Zまたは安全性試験の評価方法。  In the case of the above-mentioned involvement, the metabolism, drug efficacy and Z or safety test results of the drug candidate compound using monkeys as model animals are the results of the metabolism, drug efficacy and Z or safety of the drug compound in humans. A method for evaluating metabolism, efficacy and Z or safety testing, including Step D, which is predicted to be different from safety.
[12] 前記工程 Cが、 in vitroで行われる、請求項 11に記載の方法。  [12] The method according to claim 11, wherein the step C is performed in vitro.
[13] サルをモデル動物として、ヒト用の医薬品候補ィ匕合物についての代謝、薬効および Zまたは安全性を試験することの可否を評価する方法であって、 [13] A method for evaluating the feasibility of testing the metabolism, efficacy and Z or safety of a human drug candidate compound using monkeys as model animals,
請求項 1に記載のタンパク質と、前記医薬品候補ィ匕合物を接触させる工程 Eと、 前記医薬品化合物の代謝に対する、前記請求項 1に記載のタンパク質の関与の程 度を測定する工程 Fと、を含み  A step E of contacting the protein of claim 1 with the drug candidate compound; a step F of measuring the degree of involvement of the protein of claim 1 with respect to metabolism of the drug compound; Including
前記関与が所定の程度以上であった場合に、サルをモデル動物として試験するこ とに対して否定的な評価をする、方法。  A method in which a negative evaluation is made for testing a monkey as a model animal when the participation is greater than or equal to a predetermined level.
[14] サルをモデル動物とした、ヒト用の医薬品候補ィ匕合物についての代謝、薬効および Zまたは安全性を試験の評価に用いられる、請求項 1に記載のタンパク質を含むキ ッ卜。 [14] A kit comprising the protein according to claim 1, which is used for evaluation of metabolism, efficacy and Z or safety of a human drug candidate compound using a monkey as a model animal.
PCT/JP2006/300623 2005-01-18 2006-01-18 Novel drug metabolizing enzyme in monkey and nucleic acid encoding the same WO2006077873A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006553924A JP4972413B2 (en) 2005-01-18 2006-01-18 Novel drug metabolizing enzyme of monkey and nucleic acid encoding it

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2005010996 2005-01-18
JP2005-010996 2005-01-18
JP2005-311249 2005-10-26
JP2005311249 2005-10-26
JP2005-340133 2005-11-25
JP2005340133 2005-11-25

Publications (1)

Publication Number Publication Date
WO2006077873A1 true WO2006077873A1 (en) 2006-07-27

Family

ID=36692262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/300623 WO2006077873A1 (en) 2005-01-18 2006-01-18 Novel drug metabolizing enzyme in monkey and nucleic acid encoding the same

Country Status (2)

Country Link
JP (1) JP4972413B2 (en)
WO (1) WO2006077873A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012055274A (en) * 2010-09-10 2012-03-22 Shin Nippon Biomedical Laboratories Ltd New drug-metabolizing enzyme of monkey
JP2014158479A (en) * 2014-03-28 2014-09-04 Shin Nippon Biomedical Laboratories Ltd Novel drug metabolizing enzyme in monkey
JP2014158478A (en) * 2014-03-28 2014-09-04 Shin Nippon Biomedical Laboratories Ltd Novel drug metabolizing enzyme in monkey

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002053775A2 (en) * 2000-12-28 2002-07-11 Epidauros Biotechnologie Ag Identification of genetic determinants of polymorphic cyp3a5 expression
WO2002066635A1 (en) * 2001-02-23 2002-08-29 Gencom Corporation Transgenic animal having drug metabolism enzyme gene and utilization thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002053775A2 (en) * 2000-12-28 2002-07-11 Epidauros Biotechnologie Ag Identification of genetic determinants of polymorphic cyp3a5 expression
WO2002066635A1 (en) * 2001-02-23 2002-08-29 Gencom Corporation Transgenic animal having drug metabolism enzyme gene and utilization thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
IGARASHI T. ET AL.: "Marmoset liver cytochrome P450s: study for expression and molecular cloning of their cDNAs", ARCH. BIOCHEM. BIOPHYS., vol. 339, no. 1, 1997, pages 85 - 91, XP004500189 *
WEAVER R.J. ET AL.: "A comparison of basal and induced hepatic microsomal cytochrome P450 monooxygenase activities in the cynomolgus monkey (Macaca fascicularis) and man", XEOBIOTICA, vol. 29, no. 5, 1999, pages 467 - 482, XP002998005 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012055274A (en) * 2010-09-10 2012-03-22 Shin Nippon Biomedical Laboratories Ltd New drug-metabolizing enzyme of monkey
JP2014158479A (en) * 2014-03-28 2014-09-04 Shin Nippon Biomedical Laboratories Ltd Novel drug metabolizing enzyme in monkey
JP2014158478A (en) * 2014-03-28 2014-09-04 Shin Nippon Biomedical Laboratories Ltd Novel drug metabolizing enzyme in monkey

Also Published As

Publication number Publication date
JP4972413B2 (en) 2012-07-11
JPWO2006077873A1 (en) 2008-06-19

Similar Documents

Publication Publication Date Title
Kanigicherla et al. Anti-PLA2R antibodies measured by ELISA predict long-term outcome in a prevalent population of patients with idiopathic membranous nephropathy
US11035003B2 (en) TRPC6 involved in glomerulonephritis
BROWN et al. Cloning and production of antisera to human placental 11 β-hydroxysteroid dehydrogenase type 2
Stanley et al. Immunochemical detection of arylamine N-acetyltransferase in normal and neoplastic bladder.
CA2437021A1 (en) Adiponectin-associated protein
Mubiru et al. Alternative spliced variants of the alpha-methylacyl-CoA racemase gene and their expression in prostate cancer
JP4972413B2 (en) Novel drug metabolizing enzyme of monkey and nucleic acid encoding it
EP2494362B1 (en) Prostate tumor markers and methods of use thereof
EP1854881B1 (en) METHODS FOR IDENTIFYING PURKINJE CELLS USING THE Corl2 GENE AS A TARGET
WO2003062453A2 (en) Polycystic kidney disease nucleic acids and proteins
US20090053723A1 (en) Peripherin and Neurofilament Light Protein Splice Variants in Amyotrophic Lateral Sclerosis (ALS)
Shigematsu et al. Malignant mesothelioma‐associated antigens recognized by tumor‐infiltrating B cells and the clinical significance of the antibody titers
JP5063117B2 (en) Polymorphism of gene encoding monkey drug-metabolizing enzyme and use thereof
US8323916B2 (en) Method of detecting endometrial cancer comprising measuring levels of fibrocystin-L
JP5782544B2 (en) New drug metabolizing enzymes in monkeys
WO2012029722A1 (en) Screening method
JP2014158479A (en) Novel drug metabolizing enzyme in monkey
JP2012055274A (en) New drug-metabolizing enzyme of monkey
ITRM950434A1 (en) POLYPEPTIDE FOR THE REPAIR OF GENETIC INFORMATION, NUCLEOTIDE SEQUENCE THAT CODES FOR IT AND PROCEDURE FOR ITS
US9200262B2 (en) Method for the diagnosis of the presence of an ovarian cancer
JP2006512075A (en) Canine CYP1A2 sequence
JP2004331570A (en) Method, composition and system for diagnosing, preventing, treating and prognosing disease, disorder or condition of breast
PENG et al. ALTERNATIVELY SPLICED hBRF VARIANTS FUNCTION AT DIFFERENT RNA POLYMERASE III PROMOTERS
EP1357181A1 (en) Novel atopic dermatitis-associated gene and proteins
WO2006122214A2 (en) NOVEL STEROID 5 α -REDUCTASE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006553924

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06711892

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6711892

Country of ref document: EP