WO2006077864A1 - Method for producing light-emitting body, light-emitting body and light-emitting device - Google Patents

Method for producing light-emitting body, light-emitting body and light-emitting device Download PDF

Info

Publication number
WO2006077864A1
WO2006077864A1 PCT/JP2006/300610 JP2006300610W WO2006077864A1 WO 2006077864 A1 WO2006077864 A1 WO 2006077864A1 JP 2006300610 W JP2006300610 W JP 2006300610W WO 2006077864 A1 WO2006077864 A1 WO 2006077864A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light emitter
base material
inorganic
voltage
Prior art date
Application number
PCT/JP2006/300610
Other languages
French (fr)
Japanese (ja)
Inventor
Jiro Kanamori
Yoshisada Hayashi
Original Assignee
T. Chatani & Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by T. Chatani & Co., Ltd. filed Critical T. Chatani & Co., Ltd.
Priority to US11/814,186 priority Critical patent/US20090033229A1/en
Priority to EP06711879A priority patent/EP1860171A1/en
Publication of WO2006077864A1 publication Critical patent/WO2006077864A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7701Chalogenides
    • C09K11/7703Chalogenides with alkaline earth metals

Definitions

  • the present invention relates to a method for manufacturing a light emitter using a rare earth sulfide as a base material, a light emitter, and a light emitting device using the light emitter.
  • Electric-mouth luminescence elements are light-emitting elements that utilize a light-emitting phenomenon that occurs when an electric field is applied to a substance.
  • An organic substance such as an aluminum quinolinol complex is used as a base material.
  • the organic EL elements are roughly classified into inorganic EL elements that are based on inorganic materials such as ZnS and SrS. Among these, inorganic EL elements have superior durability compared to organic EL elements and can reduce power consumption. Therefore, they can be applied to lighting devices such as backlights, night lights, and emergency lights for liquid crystal display devices. Is expected.
  • inorganic EL element using ZnS as a base material a device in which a trace amount of Mn is added to a base material or a trace amount of Cu or C1 is known.
  • the former is yellow-orange, The latter has been confirmed to emit blue-green light (for example, see Patent Document 1).
  • inorganic EL elements using SrS as a base material are known in which a small amount of Ce is added to the base material, and it has been confirmed to emit blue-green light.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-241753
  • the conventional inorganic EL element has low emission luminance, it can be applied to the backlight, overnight light, emergency light, etc. of the liquid crystal display device as described above when considering practical aspects. It has the problem of being difficult. For example, in a liquid crystal display device, light is absorbed by liquid crystal molecules, phosphors, polarizing plates, etc., and the intensity of light is reduced to about 10% of the original, so that a back light having an emission luminance of at least several thousand cdZm 2 is obtained. A light is requested.
  • the relatively high-intensity inorganic EL element described in Patent Document 1 has an emission luminance of about 500 cd / m 2 , and at present, inorganic EL elements are used. Therefore, it has been difficult to produce a liquid crystal display device having sufficient brightness for practical use.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a method for manufacturing a light emitter capable of manufacturing a high-luminance light emitter, and a high-luminance light emitter.
  • Another object of the present invention is to provide a light-emitting device that can emit light with high luminance and can achieve a long life.
  • a method for manufacturing a light emitter according to a first aspect of the present invention is a method for manufacturing a light emitter using rare earth sulfide as a base material, comprising the base material, Pr, Mn, and Au, and activating the base material A mixture with an activator is produced, and the produced mixture is heated to activate the base material.
  • a mixture of a base material made of rare earth sulfide and an activator containing Pr, Mn, and Au is generated, and the resulting mixture is heated to activate the base material
  • the method for manufacturing a light emitter according to the second invention is the method for manufacturing a light emitter according to the first invention.
  • the rare earth sulfide is SrS.
  • a light emitter having a luminance of about OOcd / m 2 is obtained.
  • a method for manufacturing a light emitter according to a third invention is the method for manufacturing a light emitter according to the first invention or the second invention, wherein the base material is activated and then added with GaAs and InP, and sulfur is added. It is characterized by firing at a temperature of 798 ° C or higher in a nitrogen atmosphere containing gas.
  • a light emitter according to a fourth invention is characterized in that, in a light emitter using a rare earth sulfide as a base material, Pr, Mn, and Au are added to the base material.
  • light emission with high luminance can be obtained by adding Pr, Mn, and Au to the base material made of rare earth sulfide.
  • a light emitter according to a fifth invention is the light emitter according to the fourth invention, wherein the rare earth sulfide is
  • emission luminance of about 3000 cd / m 2 can be obtained by adding Pr, Mn, and Au to the base material made of SrS.
  • a light emitter according to a sixth invention is the light emitter according to the fourth invention or the fifth invention, characterized in that GaAs and InP are further added.
  • An emission luminance of about / m 2 can be obtained.
  • a light-emitting device is characterized by comprising the light-emitting body according to any one of the fourth to sixth inventions, and means for applying an alternating voltage to the light-emitting body.
  • high luminance light emission is achieved by comprising the light emitter described in the fourth to sixth inventions and means for applying an AC voltage to the light emitter. Is obtained
  • a light-emitting device is the light-emitting device according to the seventh invention, further comprising means for controlling the magnitude of the AC voltage so as to make the light emission intensity of the light emitter constant.
  • a light emitting device is the light emitting device according to the seventh invention, wherein the light emitting device according to the seventh invention is applied to the light emitter based on the light emission intensity measured by the means and the light emission intensity measured by the light emitter. And means for controlling the magnitude of the alternating voltage to be provided.
  • a mixture of a base material made of a rare earth sulfide and an activator containing Pr, Mn, and Au is generated, and the base material is activated by heating the generated mixture.
  • the illuminant manufactured in this way has higher brightness and light emission brightness than conventional inorganic EL materials, and can be applied to backlights, emergency lights, overnight lights, etc. of liquid crystal display devices. Become.
  • a mixture of a base material composed of SrS and an activator containing Pr, Mn, and Au is generated, and the generated mixture is heated to activate the base material.
  • the luminous body manufactured in this way has a luminance of about 3000 cd / m 2 and can be used as a backlight of a liquid crystal display device, for example.
  • GaAs and InP are added and baked at a temperature of 798 ° C or higher in a nitrogen atmosphere containing sulfur gas.
  • the light-emitting body thus manufactured has a luminance of about 4500 cd / m 2 and can be used as a backlight of a liquid crystal display device, for example.
  • Pr, Mn, and Au are added to the base material made of rare earth sulfide.
  • Such a light emitter has higher emission brightness than conventional inorganic EL materials, and can be applied to backlights, emergency lights, all-night lights, etc. of liquid crystal display devices.
  • Pr, Mn, and Au are added to the base material made of SrS.
  • a light-emitting body can be used as, for example, a backlight of a liquid crystal display device because it can emit light having a luminance of about 3000 cd / m 2 .
  • GaAs and InP are further added.
  • Such a light-emitting body can be used as a backlight of a liquid crystal display device, for example, because it can obtain a light emission luminance of about 4 500 cd / m 2 .
  • the light emitter described in the fourth to sixth inventions and means for applying an alternating voltage to the light emitter. Since such a light emitting device can emit light with high luminance, it can be applied to lighting devices such as a backlight, an emergency light, and an all-night light of a liquid crystal display device.
  • the pressure is controlled.
  • the light-emitting device since the luminance of the light-emitting body can be increased and the life of the light-emitting device can be increased, the light-emitting device can be practically used as a backlight of a liquid crystal display device, for example.
  • the means for measuring the light emission intensity of the light emitter and the configuration for controlling the magnitude of the AC voltage to be applied to the light emitter based on the measured light emission intensity are employed.
  • the luminous body can have a high luminance and a long lifetime, and can be put to practical use as a backlight of a liquid crystal display device, for example.
  • FIG. 1 is a schematic configuration diagram showing a configuration of a light emitting device according to Embodiment 1.
  • FIG. 2 is a graph showing temporal changes in light emission luminance.
  • FIG. 3 is a chart showing emission luminance after the start time, after 24 hours, and after 100 hours.
  • FIG. 4 is a schematic configuration diagram showing a configuration of a light emitting device according to Embodiment 2.
  • FIG. 5 is a graph showing an example of setting an applied voltage.
  • FIG. 6 is a graph showing temporal changes in light emission luminance.
  • FIG. 7 is a block diagram showing a configuration of a light emitting device according to Embodiment 3.
  • FIG. 1 is a schematic configuration diagram showing a configuration of the light emitting device according to Embodiment 1.
  • reference numeral 10 denotes an inorganic EL element formed by laminating a back electrode 11, a dielectric layer 12, a light emitting layer 13, a dielectric layer 14, and a transparent electrode 15 in this order.
  • the light emitting device according to the present embodiment is provided with this inorganic EL element 10 and an AC power source 20, and generates EL emission in the light emitting layer 13 by applying an AC voltage to the inorganic EL element 10. It is the composition which makes it.
  • the inorganic EL element 10 is sealed with a PET film 16 (PET: Polyethyrene terephthalete) in order to enhance the moisture-proof effect on the inorganic EL element 10.
  • PET Polyethyrene terephthalete
  • a laminating method can be used for the encapsulation with the PET fine film 16.
  • the back electrode 11 is formed by screen-printing conductive carbon on a substrate such as glass or plastic.
  • the electrode may be provided by screen printing using a silver paste in which a fine powder of silver (Ag) is kneaded into an epoxy resin.
  • the dielectric layers 12 and 14 are formed with a thickness of about 10 ⁇ on the upper layer of the back electrode 11 and the upper layer of the light emitting layer 13 by screen printing using barium titanate-containing ink or the like. By forming the dielectric layers 12 and 14, the yield when forming the back electrode 11, the light emitting layer 13, and the transparent electrode 15 is improved, and a stable element that is resistant to dielectric breakdown during light emission is obtained. It is done.
  • the light emitting layer 13 is a mixture of the light emitter according to the present invention and a binder made of an ultraviolet curable dielectric material, and is formed on the dielectric layer 12 by screen printing. As the thickness increases, the light emission luminance decreases, and when it is too thin, luminance unevenness occurs. Therefore, in the present embodiment, the light emitting layer 13 having a thickness of 20 to 100 ⁇ m is provided.
  • the transparent electrode 15 is formed on the dielectric layer 14 by screen printing using indium oxide (ITO), zinc oxide (ZnO) or the like.
  • ITO indium oxide
  • ZnO zinc oxide
  • a silver pace is formed on a part of the surface of the transparent electrode 15. It is good also as a structure which provides separately the current collection electrode formed with the tow.
  • 100g of the blended raw materials are placed in a plastic bottle with 8g of manganese (Mn) and gold (Au) lg, and mechanically mixed for 20 minutes with a stirrer.
  • Mn manganese
  • Au gold
  • the dried calcined cake is pulverized with a vortex theory classifier to a particle size of 5 to 20 ⁇ m. Then, put it in a plastic bottle with gallium arsenide (GaAs) and indium phosphide (InP) with a particle size of ⁇ 3 ⁇ m, and stir and mix with a mechanical stirrer for 20 minutes.
  • the mixture obtained by stirring is placed in a crucible installed in a cylindrical tubular electric furnace, and fired in nitrogen gas with 6% sulfur gas in a quartz tube at a temperature of about 800 ° C for about 3 hours to induce a crystal transition of praseodymium.
  • the crystal transition of praseodymium is from the hexagonal system to the cubic system, and its transition temperature is 798 ° C. For this reason, it is fired at a temperature of 798 ° C or higher to induce a crystal transition.
  • the mixture is washed with a mixed solution in which 150 ml of glacial acetic acid is mixed with deionized water 11 to remove excess compounds, compatible additives, and impurities. Then wash with deionized water to pH 6 or lower, filter the washed product and dry at about 180 ° C for 2 hours. After cooling the product, sieving with a vortex theory classifier is performed to obtain the luminescent material of the present invention.
  • Fig. 2 is a graph showing the change in emission luminance over time
  • Fig. 3 shows the start time, 24 hours later
  • It is a graph which shows the light-emitting luminance after 100-hour progress.
  • the horizontal axis of the graph shown in FIG. 2 represents the elapsed time from the time when the AC voltage was applied (start time), and the vertical axis represents the luminance of the light emitting layer 13.
  • the curve with the label of Sample A is based on a light-emitting body manufactured from a conventional inorganic EL material containing ZnS as a base material and Cu and C1 added thereto.
  • the curves labeled Sample B and Sample C are both produced by the force S of the illuminant of the present invention, and for Sample B, the process before adding GaAs and InP (first process) is the final process.
  • the light-emitting body, sample C is a light-emitting body manufactured using a material that has been baked in a nitrogen atmosphere containing 6% sulfur gas with GaAs and InP added.
  • the illuminant of sample A had a luminance of 691 cdZm 2 when an AC voltage was applied, and the luminance may monotonously decrease with the elapsed time. I understand.
  • the half-life of sample A that can be read from the graph is about 120 hours.
  • the illuminant of Sample B had a luminance of 2800 cd / m 2 when an AC voltage was applied, and it was found that the luminance could be improved by a factor of about 4 over conventional inorganic EL materials.
  • the half-life of Sample B, which can be read from the graph power is about 140 hours.
  • the luminance of Sample C's illuminant can be further improved, and it has a luminance of 4411 / m 2 at the start of application of AC voltage, which is about 6 times the luminance of conventional inorganic EL materials. did.
  • the half-life of sample C, which can be read from the graph, was about 185 hours, and it was found that the lifetime of the device could also be improved.
  • a constant AC voltage is applied to the inorganic EL element 10, but the applied AC voltage is controlled to make the emission intensity (luminance) of the inorganic EL element 10 substantially constant. You may make it keep.
  • FIG. 4 is a schematic configuration diagram showing a configuration of the light emitting device according to Embodiment 2.
  • the light emitting device according to the present embodiment includes an inorganic EL element 10 and a light emission intensity control unit 30.
  • the inorganic EL element 10 is the same as that described in Embodiment 1, and is formed by laminating the back electrode 11, the dielectric layer 12, the light emitting layer 13, the dielectric layer 14, and the transparent electrode 15 in this order. It is a thing.
  • the inorganic EL element 10 is sealed with a PET film 16.
  • the emission intensity control unit 30 controls the inorganic E element 10 in order to keep the emission intensity of the inorganic EL element 10 substantially constant. Controls the voltage applied to L element 10. Therefore, the emission intensity control unit 30 includes an AC power source connected to the inorganic EL element 10, a memory that stores setting values for applied voltage, and a microcomputer that drives the AC power source according to the setting values stored in the memory ( (Not shown).
  • FIG. 5 is a graph showing an example of setting the applied voltage.
  • the horizontal axis represents the elapsed time from the time when the AC voltage is applied to the light emitting layer 13, and the vertical axis represents the set value for the applied voltage.
  • the applied voltage at the start time is set to VI (for example, 180V). Then, the applied voltage is monotonously increased until the elapsed time becomes hi (for example, 120 hours), and when the elapsed time becomes hi, the applied voltage is set to V2 (for example, 240V). It is set to keep the applied voltage at V2.
  • the above-mentioned memory stores the applied voltage (set value) specified for the elapsed time, and the microcomputer reads the set value from the memory based on the output of the built-in timer (not shown) and reads the set value.
  • the AC power supply is controlled according to the value.
  • the memory may store the values on the graph as discrete functions or as a function of the elapsed time.
  • Figure 6 is a graph showing the time variation of the emission brightness.
  • the horizontal axis represents the elapsed time from the time when the AC voltage is applied (start time), and the vertical axis represents the luminance of the light emitting device according to Embodiment 3.
  • start time the time when the AC voltage is applied
  • vertical axis represents the luminance of the light emitting device according to Embodiment 3.
  • the luminance change with time when a constant AC voltage is applied to the sample C described in Embodiment 1 is also drawn. Both have the same illuminant used for the luminescent layer 13, but it has been found from the results of investigations by the inventors that a phenomenon is observed in which the luminance is stabilized by optimizing the applied voltage. That is, by controlling the applied voltage as shown in FIG.
  • the emission luminance of the inorganic EL element 10 enters a stable state in about 120 hours, and thereafter no fluctuation in the emission luminance is observed for at least 1000 hours. I understood.
  • the half-life of EL emission estimated from the decay prediction curve based on the graph in Fig. 6 was 20000 hours or more, indicating that it was possible to manufacture a light-emitting device with a practically sufficient lifetime.
  • the AC voltage applied to inorganic EL element 10 is set according to a predetermined set value. However, it is also possible to measure the intensity of light emitted from the inorganic EL element 10 and determine the voltage applied to the inorganic EL element 10 based on the measured value.
  • FIG. 7 is a block diagram showing a configuration of the light emitting device according to Embodiment 3.
  • the light emitting device according to the present embodiment includes an optical sensor 41, a comparison circuit 42, a light emission intensity setting unit 43, and an inverter circuit 44 in addition to the inorganic EL element 10 described in the first embodiment.
  • the optical sensor 41 includes a photodiode or the like not shown in the drawing in order to measure the intensity of light emitted from the inorganic EL element 10.
  • the optical sensor 41 converts the photocurrent flowing through the photodiode into a voltage when irradiated with light, and outputs the value (voltage value) to the comparison circuit 42.
  • the emission intensity setting unit 43 determines a set value for the emission intensity of the inorganic EL element 10. This set value is, for example, a value that is arbitrarily set when the product is shipped or in the user's installation environment.
  • the comparison circuit 42 is a circuit that compares the voltage value output from the optical sensor 41 with the set value in the light emission intensity setting unit 43 and changes the output according to the comparison result.
  • the inverter circuit 44 is a power supply circuit for driving the inorganic EL element 10, and the applied voltage at the time of driving is controlled by the output of the comparison circuit 42.
  • the optical sensor 41 outputs a voltage value (referred to as S1) corresponding to the intensity to the comparison circuit 42.
  • the comparison circuit 42 compares the voltage value S1 with the set value (referred to as S2) set in the emission intensity setting unit 43. As a result, when it is determined that the voltage value S1 is smaller than the set value S2, it can be determined that the light emission intensity is weak. Therefore, in order to increase the voltage applied to the inorganic EL element 10, the output of the comparison circuit 42 is increased. At this time, the inverter circuit 44 operates to increase the emission intensity of the inorganic EL element 10.
  • the comparison circuit 42 compares the voltage value S1 of the light sensor 41 with the setting value S2 of the light emission intensity setting unit 43 and determines that the voltage value S1 is larger than the setting value S2, Since it can be determined that the emission intensity of the inorganic EL element 10 has increased due to the rise or the heat generation of the light emitting device itself, the output of the comparison circuit 42 is reduced in order to reduce the voltage applied to the inorganic EL element 10. At this time, the inverter circuit 44 operates so as to weaken the emission intensity of the inorganic EL element 10.
  • the light emitting device of the present embodiment operates so that the voltage value S1 of the optical sensor 41 and the set value S2 of the light emission intensity setting unit 43 are equalized by the feedback operation.
  • the light emission intensity (luminance) of the inorganic EL element 10 is kept substantially constant, and a long-life light-emitting device is configured as in the second embodiment.

Abstract

Disclosed is a method for producing a light-emitting body having high luminance and long life. Also disclosed are a light-emitting body and a light-emitting device, specifically an inorganic EL device wherein a backside electrode, a dielectric layer, a light-emitting layer, a dielectric layer and a transparent electrode are sequentially arranged in this order. The light-emitting body is produced by mixing an activator containing Pr, Mn and Au into strontium sulfide (SrS) as the host material, heating the resulting for activating the host material, and then adding GaAs and InP thereinto and firing the resulting in a nitrogen atmosphere containing a sulfur gas. A light-emitting layer can be obtained by mixing the thus-produced light-emitting body with a ultraviolet-curable dielectric substance.

Description

明 細 書  Specification
発光体の製造方法、発光体、及び発光装置  Method for manufacturing light emitter, light emitter, and light emitting device
技術分野  Technical field
[0001] 本発明は、希土類硫化物を母体材料とした発光体の製造方法、発光体、及び該発 光体を用いた発光装置に関する。  TECHNICAL FIELD [0001] The present invention relates to a method for manufacturing a light emitter using a rare earth sulfide as a base material, a light emitter, and a light emitting device using the light emitter.
背景技術  Background art
[0002] エレクト口ルミネッセンス素子(以下、 EL素子とレ、う)は、物質に電界をかけた際に発 生する発光現象を利用した発光素子であり、アルミキノリノール錯体等の有機物質を 母体材料とする有機 EL素子と、 ZnS、 SrS等の無機物質を母体材料とする無機 EL 素子とに大別される。このうち無機 EL素子は、有機 EL素子と比較して耐久性に優れ 、消費電力を低く抑えることができることができるため、液晶ディスプレイ装置のバック ライト、終夜灯、緊急灯等の照明装置への応用が期待されている。  [0002] Electric-mouth luminescence elements (hereinafter referred to as EL elements) are light-emitting elements that utilize a light-emitting phenomenon that occurs when an electric field is applied to a substance. An organic substance such as an aluminum quinolinol complex is used as a base material. The organic EL elements are roughly classified into inorganic EL elements that are based on inorganic materials such as ZnS and SrS. Among these, inorganic EL elements have superior durability compared to organic EL elements and can reduce power consumption. Therefore, they can be applied to lighting devices such as backlights, night lights, and emergency lights for liquid crystal display devices. Is expected.
[0003] ZnSを母体材料とする無機 EL素子としては、母体材料に対し微量の Mnを添加し たもの、又は微量の Cu、 C1を添加したもの等が知られており、前者は黄橙色、後者 は青緑色に発光することが確認されている(例えば、特許文献 1参照)。また、 SrSを 母体材料とする無機 EL素子としては、母体材料に対し微量の Ceを添カ卩したものが 知られており、青緑色に発光することが確認されている。  [0003] As an inorganic EL element using ZnS as a base material, a device in which a trace amount of Mn is added to a base material or a trace amount of Cu or C1 is known. The former is yellow-orange, The latter has been confirmed to emit blue-green light (for example, see Patent Document 1). In addition, inorganic EL elements using SrS as a base material are known in which a small amount of Ce is added to the base material, and it has been confirmed to emit blue-green light.
特許文献 1 :特開 2002— 241753号公報  Patent Document 1: Japanese Patent Laid-Open No. 2002-241753
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] し力、しながら、従来の無機 EL素子は発光輝度が低いため、実用面を考慮した場合 、前述したような液晶ディスプレイ装置のバックライト、終夜灯、緊急灯等に適用する ことが困難であるという問題点を有している。例えば、液晶ディスプレイ装置では、液 晶分子、蛍光体、偏光板等により光の吸収が起こり、当初の 10%程度まで光の強度 が低減するため、少なくとも数千 cdZm2程度の発光輝度を有するバックライトが要 求される。し力 ながら、特許文献 1に記載されている比較的高輝度な無機 EL素子 であっても、その発光輝度は 500cd/m2程度であり、現状では無機 EL素子を用い て実用上十分な明るさを持つ液晶ディスプレイ装置を作成することは困難であった。 However, since the conventional inorganic EL element has low emission luminance, it can be applied to the backlight, overnight light, emergency light, etc. of the liquid crystal display device as described above when considering practical aspects. It has the problem of being difficult. For example, in a liquid crystal display device, light is absorbed by liquid crystal molecules, phosphors, polarizing plates, etc., and the intensity of light is reduced to about 10% of the original, so that a back light having an emission luminance of at least several thousand cdZm 2 is obtained. A light is requested. However, even the relatively high-intensity inorganic EL element described in Patent Document 1 has an emission luminance of about 500 cd / m 2 , and at present, inorganic EL elements are used. Therefore, it has been difficult to produce a liquid crystal display device having sufficient brightness for practical use.
[0005] また、無機 EL素子への印加電圧を上げることにより発光輝度を高めることも可能で あるが、無機 EL素子の寿命(すなわち、 EL発光の半減期)は印加電圧に比例して 短くなるという現象が見られるため、 EL発光の半減期を低下させることなく高輝度発 光を得ることができる発光装置の開発が望まれている。 [0005] Although it is possible to increase the emission luminance by increasing the voltage applied to the inorganic EL element, the lifetime of the inorganic EL element (that is, the half-life of EL emission) decreases in proportion to the applied voltage. Therefore, the development of a light-emitting device that can obtain high-intensity light emission without reducing the half-life of EL light emission is desired.
[0006] 本発明は斯かる事情に鑑みてなされたものであり、高輝度の発光体を製造すること ができる発光体の製造方法、及び高輝度の発光体を提供することを目的とする。 [0006] The present invention has been made in view of such circumstances, and an object thereof is to provide a method for manufacturing a light emitter capable of manufacturing a high-luminance light emitter, and a high-luminance light emitter.
[0007] 本発明の他の目的は、高輝度の発光が可能であり、し力 長寿命化を実現すること が可能な発光装置を提供することにある。 [0007] Another object of the present invention is to provide a light-emitting device that can emit light with high luminance and can achieve a long life.
課題を解決するための手段  Means for solving the problem
[0008] 第 1発明に係る発光体の製造方法は、希土類硫化物を母体材料とする発光体の製 造方法において、前記母体材料と Pr、 Mn、及び Auを含み、前記母体材料を活性 化する活性化剤との混合物を生成し、生成した混合物を加熱して前記母体材料を活 性化することを特徴とする。 [0008] A method for manufacturing a light emitter according to a first aspect of the present invention is a method for manufacturing a light emitter using rare earth sulfide as a base material, comprising the base material, Pr, Mn, and Au, and activating the base material A mixture with an activator is produced, and the produced mixture is heated to activate the base material.
[0009] 第 1発明にあっては、希土類硫化物からなる母体材料と Pr、 Mn、及び Auを含む活 性化剤との混合物を生成し、生成した混合物を加熱して母体材料を活性化すること により、発光輝度の高い発光体が得られる。 [0009] In the first invention, a mixture of a base material made of rare earth sulfide and an activator containing Pr, Mn, and Au is generated, and the resulting mixture is heated to activate the base material By doing so, a light emitter with high light emission luminance can be obtained.
[0010] 第 2発明に係る発光体の製造方法は、第 1発明に係る発光体の製造方法において[0010] The method for manufacturing a light emitter according to the second invention is the method for manufacturing a light emitter according to the first invention.
、前記希土類硫化物は、 SrSであることを特徴とする。 The rare earth sulfide is SrS.
[0011] 第 2発明にあっては、 SrSからなる母体材料と Pr、 Mn、及び Auを含む活性化剤と の混合物を生成し、生成した混合物を加熱して母体材料を活性化することにより、 30[0011] In the second invention, a mixture of a matrix material composed of SrS and an activator containing Pr, Mn, and Au is produced, and the resulting mixture is heated to activate the matrix material. , 30
OOcd/m2程度の輝度を有する発光体が得られる。 A light emitter having a luminance of about OOcd / m 2 is obtained.
[0012] 第 3発明に係る発光体の製造方法は、第 1発明又は第 2発明に係る発光体の製造 方法において、前記母体材料を活性化した後、 GaAs及び InPを添カ卩し、硫黄ガスを 含む窒素雰囲気下、 798°C以上の温度で焼成することを特徴とする。 [0012] A method for manufacturing a light emitter according to a third invention is the method for manufacturing a light emitter according to the first invention or the second invention, wherein the base material is activated and then added with GaAs and InP, and sulfur is added. It is characterized by firing at a temperature of 798 ° C or higher in a nitrogen atmosphere containing gas.
[0013] 第 3発明にあっては、母体材料を活性化した後、 GaAs及び InPを添カ卩し、硫黄ガ スを含む窒素雰囲気下、 798°C以上の温度で焼成することにより、 4500cd/m2程 度の輝度を有する発光体が得られる。 [0014] 第 4発明に係る発光体は、希土類硫化物を母体材料とする発光体において、前記 母体材料に対し Pr、 Mn、及び Auを添加してあることを特徴とする。 In the third invention, after activating the base material, GaAs and InP are added, and firing is performed at a temperature of 798 ° C. or higher in a nitrogen atmosphere containing sulfur gas. A luminous body having a luminance of about / m 2 is obtained. [0014] A light emitter according to a fourth invention is characterized in that, in a light emitter using a rare earth sulfide as a base material, Pr, Mn, and Au are added to the base material.
[0015] 第 4発明にあっては、希土類硫化物からなる母体材料に対し Pr、 Mn、及び Auを添 加する構成とすることにより、高輝度の発光が得られる。 In the fourth invention, light emission with high luminance can be obtained by adding Pr, Mn, and Au to the base material made of rare earth sulfide.
[0016] 第 5発明に係る発光体は、第 4発明に係る発光体において、前記希土類硫化物は[0016] A light emitter according to a fifth invention is the light emitter according to the fourth invention, wherein the rare earth sulfide is
、 SrSであることを特徴とする。 , SrS.
[0017] 第 5発明にあっては、 SrSからなる母体材料に対し Pr、 Mn、及び Auを添加する構 成とすることにより、 3000cd/m2程度の発光輝度が得られる。 In the fifth invention, emission luminance of about 3000 cd / m 2 can be obtained by adding Pr, Mn, and Au to the base material made of SrS.
[0018] 第 6発明に係る発光体は、第 4発明又は第 5発明に係る発光体において、 GaAs及 び InPを更に添カ卩してあることを特徴とする。 [0018] A light emitter according to a sixth invention is the light emitter according to the fourth invention or the fifth invention, characterized in that GaAs and InP are further added.
[0019] 第 6発明にあっては、 GaAs及び InPを更に添加する構成とすることにより、 4500cdIn the sixth invention, by adding GaAs and InP, 4500 cd
/m2程度の発光輝度が得られる。 An emission luminance of about / m 2 can be obtained.
[0020] 第 7発明に係る発光装置は、第 4発明乃至第 6発明の何れか 1つに記載の発光体 と、該発光体に交流電圧を印加する手段とを備えることを特徴とする。 [0020] A light-emitting device according to a seventh invention is characterized by comprising the light-emitting body according to any one of the fourth to sixth inventions, and means for applying an alternating voltage to the light-emitting body.
[0021] 第 7発明にあっては、第 4発明から第 6発明に記載した発光体と、この発光体に対し て交流電圧を印加する手段とを備える構成とすることにより、高輝度の発光が得られ[0021] In the seventh invention, high luminance light emission is achieved by comprising the light emitter described in the fourth to sixth inventions and means for applying an AC voltage to the light emitter. Is obtained
、各種の光源として機能することとなる。 It will function as various light sources.
[0022] 第 8発明に係る発光装置は、第 7発明に係る発光装置において、前記発光体の発 光強度を一定にすべく前記交流電圧の大きさを制御する手段を更に備えることを特 徴とする。 [0022] A light-emitting device according to an eighth invention is the light-emitting device according to the seventh invention, further comprising means for controlling the magnitude of the AC voltage so as to make the light emission intensity of the light emitter constant. And
[0023] 第 8発明にあっては、発光強度を一定にするために発光体に印加すべき交流電圧 の大きさを制御する構成としているため、高輝度発光かつ長寿命化が実現される。  [0023] In the eighth invention, since the AC voltage to be applied to the light emitter is controlled in order to make the light emission intensity constant, high luminance light emission and long life can be realized.
[0024] 第 9発明に係る発光装置は、第 7発明に係る発光装置において、前記発光体の発 光強度を計測する手段と、該手段にて計測した発光強度に基づいて前記発光体に 印加すべき交流電圧の大きさを制御する手段とを備えることを特徴とする。  [0024] A light emitting device according to a ninth invention is the light emitting device according to the seventh invention, wherein the light emitting device according to the seventh invention is applied to the light emitter based on the light emission intensity measured by the means and the light emission intensity measured by the light emitter. And means for controlling the magnitude of the alternating voltage to be provided.
[0025] 第 9発明にあっては、発光体の発光強度を計測する手段と、計測した発光強度に 基づいて発光体に印加すべき交流電圧の大きさを制御する構成としているため、高 輝度発光かつ長寿命化が実現される。 発明の効果 [0025] In the ninth invention, since the configuration is such that the means for measuring the light emission intensity of the light emitter and the magnitude of the AC voltage to be applied to the light emitter are controlled based on the measured light emission intensity, Light emission and longer life are realized. The invention's effect
[0026] 第 1発明による場合は、希土類硫化物からなる母体材料と Pr、 Mn、及び Auを含む 活性化剤との混合物を生成し、生成した混合物を加熱して母体材料を活性化する。 このようにして製造された発光体は、従来の無機 EL材料と比較して高レ、発光輝度を 有しており、液晶ディスプレイ装置のバックライト、緊急灯、終夜灯等への適用が可能 となる。  [0026] In the case of the first invention, a mixture of a base material made of a rare earth sulfide and an activator containing Pr, Mn, and Au is generated, and the base material is activated by heating the generated mixture. The illuminant manufactured in this way has higher brightness and light emission brightness than conventional inorganic EL materials, and can be applied to backlights, emergency lights, overnight lights, etc. of liquid crystal display devices. Become.
[0027] 第 2発明による場合は、 SrSからなる母体材料と Pr、 Mn、及び Auを含む活性化剤 との混合物を生成し、生成した混合物を加熱して母体材料を活性化する。このように して製造された発光体は、 3000cd/m2程度の輝度を有しており、例えば、液晶デ イスプレイ装置のバックライトとして利用することができる。 [0027] In the case of the second invention, a mixture of a base material composed of SrS and an activator containing Pr, Mn, and Au is generated, and the generated mixture is heated to activate the base material. The luminous body manufactured in this way has a luminance of about 3000 cd / m 2 and can be used as a backlight of a liquid crystal display device, for example.
[0028] 第 3発明による場合は、母体材料を活性化した後、 GaAs及び InPを添カ卩し、硫黄 ガスを含む窒素雰囲気下、 798°C以上の温度で焼成する。このようにして製造された 発光体は、 4500cd/m2程度の輝度を有しており、例えば、液晶ディスプレイ装置 のバックライトとして利用することができる。 [0028] In the case of the third invention, after activating the base material, GaAs and InP are added and baked at a temperature of 798 ° C or higher in a nitrogen atmosphere containing sulfur gas. The light-emitting body thus manufactured has a luminance of about 4500 cd / m 2 and can be used as a backlight of a liquid crystal display device, for example.
[0029] 第 4発明による場合は、希土類硫化物からなる母体材料に対し Pr、 Mn、及び Auを 添加している。このような発光体は、従来の無機 EL材料と比較して発光輝度が高ぐ 液晶ディスプレイ装置のバックライト、緊急灯、終夜灯等への適用が可能となる。  [0029] In the case of the fourth invention, Pr, Mn, and Au are added to the base material made of rare earth sulfide. Such a light emitter has higher emission brightness than conventional inorganic EL materials, and can be applied to backlights, emergency lights, all-night lights, etc. of liquid crystal display devices.
[0030] 第 5発明による場合は、 SrSからなる母体材料に対し Pr、 Mn、及び Auを添カ卩して いる。このような発光体は、 3000cd/m2程度の発光輝度が得られるため、例えば、 液晶ディスプレイ装置のバックライトとして利用することができる。 [0030] In the case of the fifth invention, Pr, Mn, and Au are added to the base material made of SrS. Such a light-emitting body can be used as, for example, a backlight of a liquid crystal display device because it can emit light having a luminance of about 3000 cd / m 2 .
[0031] 第 6発明による場合は、 GaAs及び InPを更に添加している。このような発光体は、 4 500cd/m2程度の発光輝度が得られるため、例えば、液晶ディスプレイ装置のバッ クライトとして利用することができる。 [0031] In the case of the sixth invention, GaAs and InP are further added. Such a light-emitting body can be used as a backlight of a liquid crystal display device, for example, because it can obtain a light emission luminance of about 4 500 cd / m 2 .
[0032] 第 7発明による場合は、第 4発明から第 6発明に記載した発光体と、この発光体に 対して交流電圧を印加する手段とを備えている。このような発光装置は、高輝度の発 光が得られるため、液晶ディスプレイ装置のバックライト、緊急灯、終夜灯等の照明装 置への適用が可能となる。  [0032] According to the seventh invention, there is provided the light emitter described in the fourth to sixth inventions, and means for applying an alternating voltage to the light emitter. Since such a light emitting device can emit light with high luminance, it can be applied to lighting devices such as a backlight, an emergency light, and an all-night light of a liquid crystal display device.
[0033] 第 8発明による場合は、発光強度を一定にするために発光体に印加すべき交流電 圧の大きさを制御する構成としている。このような発光装置では、発光体の高輝度化 かつ長寿命化を図ることができるため、例えば、液晶ディスプレイ装置のバックライトと して実用化が可能となる。 [0033] In the case of the eighth invention, the AC power to be applied to the light emitter to make the light emission intensity constant. The pressure is controlled. In such a light-emitting device, since the luminance of the light-emitting body can be increased and the life of the light-emitting device can be increased, the light-emitting device can be practically used as a backlight of a liquid crystal display device, for example.
[0034] 第 9発明による場合は、発光体の発光強度を計測する手段と、計測した発光強度 に基づいて発光体に印加すべき交流電圧の大きさを制御する構成としている。この ような発光装置では、発光体の高輝度化かつ長寿命化を図ることができるため、例え ば、液晶ディスプレイ装置のバックライトとして実用化が可能となる。 [0034] According to the ninth aspect of the invention, the means for measuring the light emission intensity of the light emitter and the configuration for controlling the magnitude of the AC voltage to be applied to the light emitter based on the measured light emission intensity are employed. In such a light-emitting device, the luminous body can have a high luminance and a long lifetime, and can be put to practical use as a backlight of a liquid crystal display device, for example.
図面の簡単な説明  Brief Description of Drawings
[0035] [図 1]実施の形態 1に係る発光装置の構成を示す模式的構成図である。  FIG. 1 is a schematic configuration diagram showing a configuration of a light emitting device according to Embodiment 1.
[図 2]発光輝度の時間変化を示すグラフである。  FIG. 2 is a graph showing temporal changes in light emission luminance.
[図 3]開始時点、 24時間経過後、及び 100時間経過後の発光輝度を示す図表であ る。  FIG. 3 is a chart showing emission luminance after the start time, after 24 hours, and after 100 hours.
[図 4]実施の形態 2に係る発光装置の構成を示す模式的構成図である。  FIG. 4 is a schematic configuration diagram showing a configuration of a light emitting device according to Embodiment 2.
[図 5]印加電圧の設定例を示すグラフである。  FIG. 5 is a graph showing an example of setting an applied voltage.
[図 6]発光輝度の時間変化を示すグラフである。  FIG. 6 is a graph showing temporal changes in light emission luminance.
[図 7]実施の形態 3に係る発光装置の構成を示すブロック図である。  FIG. 7 is a block diagram showing a configuration of a light emitting device according to Embodiment 3.
符号の説明  Explanation of symbols
[0036] 10 無機 EL素子  [0036] 10 Inorganic EL device
11 袅 [¾ 極  11 袅 [¾ pole
12 誘電体層  12 Dielectric layer
13 発光層  13 Light emitting layer
14 誘電体層  14 Dielectric layer
15 透明電極  15 Transparent electrode
16 PETフィルム  16 PET film
20 交流電源  20 AC power supply
30 発光強度制御部  30 Luminescence intensity controller
41 光センサ  41 Optical sensor
42 比較回路 43 発光強度設定部 42 Comparison circuit 43 Emission intensity setting section
44 インバータ回路  44 Inverter circuit
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0037] 以下、本発明をその実施の形態を示す図面に基づいて具体的に説明する。 Hereinafter, the present invention will be specifically described with reference to the drawings illustrating embodiments thereof.
実施の形態 1  Embodiment 1
[0038] 図 1は実施の形態 1に係る発光装置の構成を示す模式的構成図である。図中 10は 、裏面電極 11、誘電体層 12、発光層 13、誘電体層 14、及び透明電極 15をこの順 に積層して形成した無機 EL素子である。本実施の形態に係る発光装置は、この無 機 EL素子 10と交流電源 20とを備えており、無機 EL素子 10に対して交流電圧を印 加することにより発光層 13内で EL発光を発生させる構成となっている。なお、本実施 の形態では、無機 EL素子 10に対する防湿効果を高めるために、無機 EL素子 10を PETフィルム 16 (PET: Polyethyrene terephthalete)により封入している。 PETフィノレ ム 16による封入は、例えばラミネート加工法を利用することができる。  FIG. 1 is a schematic configuration diagram showing a configuration of the light emitting device according to Embodiment 1. In the figure, reference numeral 10 denotes an inorganic EL element formed by laminating a back electrode 11, a dielectric layer 12, a light emitting layer 13, a dielectric layer 14, and a transparent electrode 15 in this order. The light emitting device according to the present embodiment is provided with this inorganic EL element 10 and an AC power source 20, and generates EL emission in the light emitting layer 13 by applying an AC voltage to the inorganic EL element 10. It is the composition which makes it. In the present embodiment, the inorganic EL element 10 is sealed with a PET film 16 (PET: Polyethyrene terephthalete) in order to enhance the moisture-proof effect on the inorganic EL element 10. For example, a laminating method can be used for the encapsulation with the PET fine film 16.
[0039] 以下、無機 EL素子 10の構成について説明する。  Hereinafter, the configuration of the inorganic EL element 10 will be described.
裏面電極 11は、ガラス、プラスチック等の基板上に導電性カーボンをスクリーン印 刷することによって形成される。なお、エポキシ樹脂に銀 (Ag)の微粉末を練り込んだ 銀ペーストを用いてスクリーン印刷を行レ、、電極を設ける構成としてもよい。  The back electrode 11 is formed by screen-printing conductive carbon on a substrate such as glass or plastic. The electrode may be provided by screen printing using a silver paste in which a fine powder of silver (Ag) is kneaded into an epoxy resin.
[0040] 誘電体層 12, 14は、チタン酸バリウム含有インク等を用いたスクリーン印刷により、 裏面電極 11の上層、及び発光層 13の上層に 10 μ ΐη程度の厚みで形成される。誘 電体層 12, 14を形成することによって、裏面電極 11、発光層 13、及び透明電極 15 を形成する際の歩留まりが向上すると共に、発光中の絶縁破壊に強い、安定した素 子が得られる。  The dielectric layers 12 and 14 are formed with a thickness of about 10 μΐη on the upper layer of the back electrode 11 and the upper layer of the light emitting layer 13 by screen printing using barium titanate-containing ink or the like. By forming the dielectric layers 12 and 14, the yield when forming the back electrode 11, the light emitting layer 13, and the transparent electrode 15 is improved, and a stable element that is resistant to dielectric breakdown during light emission is obtained. It is done.
[0041] 発光層 13は、本発明に係る発光体と紫外線硬化型誘電物質からなるバインダとを 混合したものであり、スクリーン印刷によって誘電体層 12上に形成される。厚みが増 すと発光輝度が低くなり、薄すぎる場合には輝度ムラが起こるため、本実施の形態で は、 20〜: 100 μ mの厚みを持つ発光層 13を設けている。  [0041] The light emitting layer 13 is a mixture of the light emitter according to the present invention and a binder made of an ultraviolet curable dielectric material, and is formed on the dielectric layer 12 by screen printing. As the thickness increases, the light emission luminance decreases, and when it is too thin, luminance unevenness occurs. Therefore, in the present embodiment, the light emitting layer 13 having a thickness of 20 to 100 μm is provided.
[0042] 透明電極 15は、酸化インジウム(ITO)、酸化亜鉛(ZnO)等を用いたスクリーン印 刷により、誘電体層 14上に形成される。また、透明電極 15の表面の一部に銀ペース トにより形成した集電電極を別途設ける構成としてもよい。 The transparent electrode 15 is formed on the dielectric layer 14 by screen printing using indium oxide (ITO), zinc oxide (ZnO) or the like. In addition, a silver pace is formed on a part of the surface of the transparent electrode 15. It is good also as a structure which provides separately the current collection electrode formed with the tow.
[0043] 次に、発光層 13で用いる発光体の製造方法について説明する。製造方法は、大 別して 2つの工程に分かれる。  [0043] Next, a method for producing a light emitter used in the light emitting layer 13 will be described. The manufacturing method is roughly divided into two steps.
[0044] (第 1工程) [0044] (First step)
硫化ストロンチウム(SrS)と、主たる活性化剤としてのプラセォジゥム硫黄(S: Pr+3) 及び炭酸ストロンチウム(SrCO )と、 TaCl 、 MgCl 、 NaClのような融剤物質とを Strontium sulfide (SrS), prasedium sulfur (S: Pr +3 ) and strontium carbonate (SrCO 3 ) as main activators, and flux materials such as TaCl, MgCl, NaCl
4 12 2  4 12 2
配合した原材料 100gを、マンガン(Mn) 8g、及び金 (Au) lgと共にプラスチックボト ルに入れ、攪拌機により 20分間機械的に混合する。  100g of the blended raw materials are placed in a plastic bottle with 8g of manganese (Mn) and gold (Au) lg, and mechanically mixed for 20 minutes with a stirrer.
[0045] 攪拌して得られた混合物をボートに入れ、真空(10— 5Torr)にしたベルジャー中、 2 250°Cの温度で 1時間程度焼成して焼成ケークを形成する。そして、焼成ケークをべ ルジャーから取り出した後、冷却し、脱イオン水で pH6以下になるまで洗浄する。脱 イオン水で洗浄することにより融剤物質を除去し、乾燥させる。 [0045] stirred placed in the boat and the resultant mixture in bell jar was evacuated (10- 5 Torr), to form a fired cake was fired for about 1 hour at a temperature of 2 250 ° C. Then, after removing the fired cake from the bell jar, it is cooled and washed with deionized water until the pH is 6 or less. Remove the flux material by washing with deionized water and dry.
[0046] (第 2工程)  [0046] (Second step)
次レヽで、乾燥させた焼成ケークをボルテックス理論の分級粉砕機により粉砕して粒 径 5〜20 μ mにする。そして、粒径:!〜 3 μ mの砒化ガリウム(GaAs)及び燐化インジ ゥム (InP)と共にプラスチックボトルに入れ、機械的攪拌機により攪拌混合を 20分間 行う。攪拌して得られた混合物を円筒管状電気炉内に設置した坩堝に入れ、石英管 中硫黄ガス 6%の窒素気体中略 800°Cの温度で 3時間程度焼成してプラセォジゥム の晶系転移を誘発させる。プラセォジゥムの晶系転移は六方晶系から立方晶系への 転移であり、その転移温度は 798°Cである。そのため、 798°C以上の温度で焼成して 晶系転移を誘発させるようにしている。  At the next stage, the dried calcined cake is pulverized with a vortex theory classifier to a particle size of 5 to 20 μm. Then, put it in a plastic bottle with gallium arsenide (GaAs) and indium phosphide (InP) with a particle size of ~~ 3 μm, and stir and mix with a mechanical stirrer for 20 minutes. The mixture obtained by stirring is placed in a crucible installed in a cylindrical tubular electric furnace, and fired in nitrogen gas with 6% sulfur gas in a quartz tube at a temperature of about 800 ° C for about 3 hours to induce a crystal transition of praseodymium. Let The crystal transition of praseodymium is from the hexagonal system to the cubic system, and its transition temperature is 798 ° C. For this reason, it is fired at a temperature of 798 ° C or higher to induce a crystal transition.
[0047] その後、焼成された生成物 100g当たり、脱イオン水 11に対し 150mlの氷酢酸を混 合した混合液にて洗浄し、過剰の化合物、融和添加剤、及び不純物を除去する。そ して、脱イオン水で pH6以下になるまで洗浄し、洗浄された生成物を濾過し、約 180 °Cで 2時間乾燥させる。生成物を冷却した後、ボルテックス理論の分級機による篩い 分けを行い、本発明の発光体を得る。  [0047] Then, per 100 g of the calcined product, the mixture is washed with a mixed solution in which 150 ml of glacial acetic acid is mixed with deionized water 11 to remove excess compounds, compatible additives, and impurities. Then wash with deionized water to pH 6 or lower, filter the washed product and dry at about 180 ° C for 2 hours. After cooling the product, sieving with a vortex theory classifier is performed to obtain the luminescent material of the present invention.
[0048] 次に、前述のようにして製造された発光体の特性について説明する。  [0048] Next, characteristics of the light emitter manufactured as described above will be described.
図 2は発光輝度の時間変化を示すグラフであり、図 3は開始時点、 24時間経過後、 及び 100時間経過後の発光輝度を示す図表である。図 2に示したグラフの横軸は、 交流電圧を印加した時点(開始時点)からの経過時間、縦軸は発光層 13の輝度を表 している。ここで、試料 Aのラベルを付した曲線は、 ZnSを母体材料とし、 Cu及び C1 を添加した従来の無機 EL材料により製造された発光体によるものである。試料 B及 び試料 Cのラベルを付した曲線は何れも本発明の発光体によるものである力 S、試料 B については GaAs及び InPを添加する前の工程 (第 1工程)を最終工程として製造さ れた発光体、試料 Cについては GaAs及び InPを添加し、 6%の硫黄ガスを含む窒素 雰囲気下で焼成処理を施した材料を用いて製造された発光体である。 Fig. 2 is a graph showing the change in emission luminance over time, and Fig. 3 shows the start time, 24 hours later, It is a graph which shows the light-emitting luminance after 100-hour progress. The horizontal axis of the graph shown in FIG. 2 represents the elapsed time from the time when the AC voltage was applied (start time), and the vertical axis represents the luminance of the light emitting layer 13. Here, the curve with the label of Sample A is based on a light-emitting body manufactured from a conventional inorganic EL material containing ZnS as a base material and Cu and C1 added thereto. The curves labeled Sample B and Sample C are both produced by the force S of the illuminant of the present invention, and for Sample B, the process before adding GaAs and InP (first process) is the final process. The light-emitting body, sample C, is a light-emitting body manufactured using a material that has been baked in a nitrogen atmosphere containing 6% sulfur gas with GaAs and InP added.
[0049] 図 2のグラフに示したように、試料 Aの発光体については交流電圧を印加した時点 で 691cdZm2の輝度を有しており、経過時間と共に輝度が単調に減少してゆくこと が分かる。なお、グラフから読みとれる試料 Aの半減期は 120時間程度である。試料 Bの発光体にっレ、ては交流電圧を印加した時点で 2800cd/m2の輝度を有してお り、従来の無機 EL材料に対して輝度を 4倍程度改善できることが分かった。グラフ力 ら読みとれる試料 Bの半減期は 140時間程度である。試料 Cの発光体については更 に輝度を改善することができ、交流電圧の印加開始時点で 4411/m2の輝度を有し ており、従来の無機 EL材料に対して 6倍程度輝度が改善した。また、グラフから読み とれる試料 Cの半減期は 185時間程度であり、素子の寿命についても改善できること が分かった。 [0049] As shown in the graph of FIG. 2, the illuminant of sample A had a luminance of 691 cdZm 2 when an AC voltage was applied, and the luminance may monotonously decrease with the elapsed time. I understand. The half-life of sample A that can be read from the graph is about 120 hours. The illuminant of Sample B had a luminance of 2800 cd / m 2 when an AC voltage was applied, and it was found that the luminance could be improved by a factor of about 4 over conventional inorganic EL materials. The half-life of Sample B, which can be read from the graph power, is about 140 hours. The luminance of Sample C's illuminant can be further improved, and it has a luminance of 4411 / m 2 at the start of application of AC voltage, which is about 6 times the luminance of conventional inorganic EL materials. did. The half-life of sample C, which can be read from the graph, was about 185 hours, and it was found that the lifetime of the device could also be improved.
実施の形態 2  Embodiment 2
[0050] 実施の形態 1では、無機 EL素子 10に対して一定の交流電圧を印加する構成とし たが、印可する交流電圧を制御し、無機 EL素子 10の発光強度 (輝度)を略一定に 保つようにしてもよい。  [0050] In the first embodiment, a constant AC voltage is applied to the inorganic EL element 10, but the applied AC voltage is controlled to make the emission intensity (luminance) of the inorganic EL element 10 substantially constant. You may make it keep.
[0051] 図 4は実施の形態 2に係る発光装置の構成を示す模式的構成図である。本実施の 形態に係る発光装置は、無機 EL素子 10と発光強度制御部 30とを備えている。無機 EL素子 10は、実施の形態 1で説明したものと同一であり、裏面電極 11、誘電体層 1 2、発光層 13、誘電体層 14、及び透明電極 15をこの順に積層して形成されたもので ある。また、無機 EL素子 10は PETフィルム 16により封入されている。  FIG. 4 is a schematic configuration diagram showing a configuration of the light emitting device according to Embodiment 2. The light emitting device according to the present embodiment includes an inorganic EL element 10 and a light emission intensity control unit 30. The inorganic EL element 10 is the same as that described in Embodiment 1, and is formed by laminating the back electrode 11, the dielectric layer 12, the light emitting layer 13, the dielectric layer 14, and the transparent electrode 15 in this order. It is a thing. The inorganic EL element 10 is sealed with a PET film 16.
[0052] 発光強度制御部 30は、無機 EL素子 10の発光強度を略一定に保っために無機 E L素子 10に対する印加電圧を制御する。そのため、発光強度制御部 30は、無機 EL 素子 10に接続された交流電源、印加電圧についての設定値を記憶したメモリ、及び このメモリに記憶されている設定値に従って交流電源を駆動するマイクロコンピュータ (不図示)等を備えている。 [0052] The emission intensity control unit 30 controls the inorganic E element 10 in order to keep the emission intensity of the inorganic EL element 10 substantially constant. Controls the voltage applied to L element 10. Therefore, the emission intensity control unit 30 includes an AC power source connected to the inorganic EL element 10, a memory that stores setting values for applied voltage, and a microcomputer that drives the AC power source according to the setting values stored in the memory ( (Not shown).
[0053] 図 5は印加電圧の設定例を示すグラフである。横軸は発光層 13に交流電圧を印加 した時点からの経過時間、縦軸は印加電圧に対する設定値を表している。この例で は、開始時点の印加電圧を VI (例えば、 180V)とすることが設定されている。そして 、経過時間が hi (例えば、 120時間)になるまで印加電圧を単調に増加させてゆき、 経過時間が hiとなった時点で印加電圧を V2 (例えば、 240V)に設定し、 hi以降の 印加電圧を V2に保持することが設定されている。前述したメモリには経過時間に対 して規定した印加電圧(設定値)が記憶されており、マイクロコンピュータは図に示し ていない内蔵タイマの出力を基にメモリから設定値を読み出し、読み出した設定値に 従って交流電源の駆動を制御する。なお、メモリには、グラフ上の値を離散的に記憶 するようにしてもよぐ経過時間に対する関数として記憶するようにしてもょレ、。  FIG. 5 is a graph showing an example of setting the applied voltage. The horizontal axis represents the elapsed time from the time when the AC voltage is applied to the light emitting layer 13, and the vertical axis represents the set value for the applied voltage. In this example, the applied voltage at the start time is set to VI (for example, 180V). Then, the applied voltage is monotonously increased until the elapsed time becomes hi (for example, 120 hours), and when the elapsed time becomes hi, the applied voltage is set to V2 (for example, 240V). It is set to keep the applied voltage at V2. The above-mentioned memory stores the applied voltage (set value) specified for the elapsed time, and the microcomputer reads the set value from the memory based on the output of the built-in timer (not shown) and reads the set value. The AC power supply is controlled according to the value. Note that the memory may store the values on the graph as discrete functions or as a function of the elapsed time.
[0054] 印加電圧を可変とした場合の発光装置の輝度特性を次に説明する。図 6は発光輝 度の時間変化を示すグラフである。横軸は交流電圧を印加した時点(開始時点)から の経過時間、縦軸は実施の形態 3に係る発光装置の輝度を表している。なお、比較 対象として、実施の形態 1で説明した試料 Cに一定の交流電圧を印加した場合の輝 度の時間変化を併せて描レ、てレ、る。両者は発光層 13に用いる発光体を同一のもの としているが、発明者らの検討結果により、印加電圧を最適化することで発光輝度が 安定化する現象が見られることが分かった。すなわち、印加電圧を図 5に示したように 可変制御することによって、無機 EL素子 10の発光輝度がおよそ 120時間で安定状 態に入り、その後、少なくとも 1000時間にわたって発光輝度の変動が観測されない ことが分かった。図 6のグラフに基づく減衰予想曲線から見積もった EL発光の半減 期は 20000時間以上となり、実用上十分な寿命を有する発光装置の製造が可能で あることが分かった。  Next, luminance characteristics of the light emitting device when the applied voltage is variable will be described. Figure 6 is a graph showing the time variation of the emission brightness. The horizontal axis represents the elapsed time from the time when the AC voltage is applied (start time), and the vertical axis represents the luminance of the light emitting device according to Embodiment 3. As a comparison object, the luminance change with time when a constant AC voltage is applied to the sample C described in Embodiment 1 is also drawn. Both have the same illuminant used for the luminescent layer 13, but it has been found from the results of investigations by the inventors that a phenomenon is observed in which the luminance is stabilized by optimizing the applied voltage. That is, by controlling the applied voltage as shown in FIG. 5, the emission luminance of the inorganic EL element 10 enters a stable state in about 120 hours, and thereafter no fluctuation in the emission luminance is observed for at least 1000 hours. I understood. The half-life of EL emission estimated from the decay prediction curve based on the graph in Fig. 6 was 20000 hours or more, indicating that it was possible to manufacture a light-emitting device with a practically sufficient lifetime.
実施の形態 3  Embodiment 3
[0055] 実施の形態 2では、無機 EL素子 10に印加する交流電圧を予め定めた設定値に従 つて制御する構成としたが、無機 EL素子 10から放射される光の強度を計測し、計測 した値に基づいて無機 EL素子 10に対する印加電圧を定めるようにしてもよい。 In Embodiment 2, the AC voltage applied to inorganic EL element 10 is set according to a predetermined set value. However, it is also possible to measure the intensity of light emitted from the inorganic EL element 10 and determine the voltage applied to the inorganic EL element 10 based on the measured value.
[0056] 図 7は実施の形態 3に係る発光装置の構成を示すブロック図である。本実施の形態 に係る発光装置は、実施の形態 1で説明した無機 EL素子 10の他、光センサ 41、比 較回路 42、発光強度設定部 43、及びインバータ回路 44を備えている。  FIG. 7 is a block diagram showing a configuration of the light emitting device according to Embodiment 3. The light emitting device according to the present embodiment includes an optical sensor 41, a comparison circuit 42, a light emission intensity setting unit 43, and an inverter circuit 44 in addition to the inorganic EL element 10 described in the first embodiment.
[0057] 光センサ 41は、無機 EL素子 10から放射される光の強度を計測するために、図に 示していないフォトダイオード等を備えている。光センサ 41は、光が照射されたときに フォトダイオードに流れる光電流を電圧に変換し、その値(電圧値)を比較回路 42へ 出力する。  The optical sensor 41 includes a photodiode or the like not shown in the drawing in order to measure the intensity of light emitted from the inorganic EL element 10. The optical sensor 41 converts the photocurrent flowing through the photodiode into a voltage when irradiated with light, and outputs the value (voltage value) to the comparison circuit 42.
[0058] 発光強度設定部 43は、無機 EL素子 10の発光強度に対する設定値を定めている 。この設定値は、例えば、製品の出荷時、又はユーザの設置環境下において任意に 設定される値である。比較回路 42は、光センサ 41から出力される電圧値と発光強度 設定部 43での設定値とを比較し、その比較結果に応じて出力を変化させる回路であ る。インバータ回路 44は、無機 EL素子 10を駆動するための電源回路であり、駆動す る際の印加電圧は比較回路 42の出力により制御される。  The emission intensity setting unit 43 determines a set value for the emission intensity of the inorganic EL element 10. This set value is, for example, a value that is arbitrarily set when the product is shipped or in the user's installation environment. The comparison circuit 42 is a circuit that compares the voltage value output from the optical sensor 41 with the set value in the light emission intensity setting unit 43 and changes the output according to the comparison result. The inverter circuit 44 is a power supply circuit for driving the inorganic EL element 10, and the applied voltage at the time of driving is controlled by the output of the comparison circuit 42.
[0059] 次に、前述した構成の発光装置の動作について説明する。無機 EL素子 10がある 強度で発光している場合、光センサ 41はその強度に応じた電圧値(S1とする)を比 較回路 42へ出力する。比較回路 42は、その電圧値 S1と発光強度設定部 43にて設 定されている設定値(S2とする)とを比較する。その結果、電圧値 S1が設定値 S2より も小さいと判断した場合、発光強度が弱いと判断できるため、無機 EL素子 10に対す る印加電圧を高くするために比較回路 42の出力を大きくする。このとき、インバータ 回路 44は無機 EL素子 10の発光強度を強くするように動作する。  Next, the operation of the light emitting device having the above-described configuration will be described. When the inorganic EL element 10 emits light at a certain intensity, the optical sensor 41 outputs a voltage value (referred to as S1) corresponding to the intensity to the comparison circuit 42. The comparison circuit 42 compares the voltage value S1 with the set value (referred to as S2) set in the emission intensity setting unit 43. As a result, when it is determined that the voltage value S1 is smaller than the set value S2, it can be determined that the light emission intensity is weak. Therefore, in order to increase the voltage applied to the inorganic EL element 10, the output of the comparison circuit 42 is increased. At this time, the inverter circuit 44 operates to increase the emission intensity of the inorganic EL element 10.
[0060] 一方、比較回路 42が光センサ 41の電圧値 S1と発光強度設定部 43の設定値 S2と を比較した結果、電圧値 S1が設定値 S2よりも大きいと判断した場合、環境温度の上 昇、又は発光装置自体の発熱等により無機 EL素子 10の発光強度が強くなつたと判 断できるため、無機 EL素子 10に対する印加電圧を低くするために比較回路 42の出 力を小さくする。このとき、インバータ回路 44は無機 EL素子 10の発光強度を弱くす るように動作する。 このように、本実施の形態の発光装置は、フィードバック動作によって光センサ 41 の電圧値 S1と発光強度設定部 43の設定値 S2とが等しくなるように動作する。その結 果、無機 EL素子 10の発光強度 (輝度)が略一定に保持され、実施の形態 2と同様に 長寿命の発光装置を構成する。 [0060] On the other hand, if the comparison circuit 42 compares the voltage value S1 of the light sensor 41 with the setting value S2 of the light emission intensity setting unit 43 and determines that the voltage value S1 is larger than the setting value S2, Since it can be determined that the emission intensity of the inorganic EL element 10 has increased due to the rise or the heat generation of the light emitting device itself, the output of the comparison circuit 42 is reduced in order to reduce the voltage applied to the inorganic EL element 10. At this time, the inverter circuit 44 operates so as to weaken the emission intensity of the inorganic EL element 10. As described above, the light emitting device of the present embodiment operates so that the voltage value S1 of the optical sensor 41 and the set value S2 of the light emission intensity setting unit 43 are equalized by the feedback operation. As a result, the light emission intensity (luminance) of the inorganic EL element 10 is kept substantially constant, and a long-life light-emitting device is configured as in the second embodiment.

Claims

請求の範囲 The scope of the claims
[1] 希土類硫化物を母体材料とする発光体の製造方法にぉレ、て、  [1] A method of manufacturing a light emitter using a rare earth sulfide as a base material,
前記母体材料と Pr、 Mn、及び Auを含み、前記母体材料を活性化する活性化剤と の混合物を生成し、生成した混合物を加熱して前記母体材料を活性化することを特 徴とする発光体の製造方法。  A mixture of the base material and an activator that includes Pr, Mn, and Au and activates the base material is generated, and the generated mixture is heated to activate the base material. A method for manufacturing a luminous body.
[2] 前記希土類硫化物は、 SrSであることを特徴とする請求項 1に記載の発光体の製 造方法。 [2] The method for manufacturing a light emitter according to claim 1, wherein the rare earth sulfide is SrS.
[3] 前記母体材料を活性化した後、 GaAs及び InPを添加し、硫黄ガスを含む窒素雰 囲気下、 798°C以上の温度で焼成することを特徴とする請求項 1又は請求項 2に記 載の発光体の製造方法。  [3] The method according to claim 1 or 2, wherein after activating the base material, GaAs and InP are added, and firing is performed at a temperature of 798 ° C or higher in a nitrogen atmosphere containing sulfur gas. The manufacturing method of the light-emitting body as described.
[4] 希土類硫化物を母体材料とする発光体において、  [4] In a light emitter using a rare earth sulfide as a base material,
前記母体材料に対し Pr、 Mn、及び Auを添加してあることを特徴とする発光体。  A light emitter comprising Pr, Mn, and Au added to the base material.
[5] 前記希土類硫化物は、 SrSであることを特徴とする請求項 4に記載の発光体。  [5] The light emitter according to claim 4, wherein the rare earth sulfide is SrS.
[6] GaAs及び InPを更に添加してあることを特徴とする請求項 4又は請求項 5に記載 の発光体。  [6] The light emitter according to claim 4 or 5, wherein GaAs and InP are further added.
[7] 請求項 4乃至請求項 6の何れ力、 1つに記載の発光体と、該発光体に交流電圧を印 加する手段とを備えることを特徴とする発光装置。  [7] A light-emitting device comprising: the light-emitting body according to any one of claims 4 to 6; and means for applying an alternating voltage to the light-emitting body.
[8] 前記発光体の発光強度を一定にすべく前記交流電圧の大きさを制御する手段を 更に備えることを特徴とする請求項 7に記載の発光装置。 8. The light emitting device according to claim 7, further comprising means for controlling the magnitude of the AC voltage so as to make the light emission intensity of the light emitter constant.
[9] 前記発光体の発光強度を計測する手段と、該手段にて計測した発光強度に基づ いて前記発光体に印加すべき交流電圧の大きさを制御する手段とを備えることを特 徴とする請求項 7に記載の発光装置。 [9] It comprises: means for measuring the light emission intensity of the light emitter; and means for controlling the magnitude of the AC voltage to be applied to the light emitter based on the light emission intensity measured by the means. The light emitting device according to claim 7.
PCT/JP2006/300610 2005-01-19 2006-01-18 Method for producing light-emitting body, light-emitting body and light-emitting device WO2006077864A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/814,186 US20090033229A1 (en) 2005-01-19 2006-01-18 Manufacturing method for luminous body, luminous body, and light-emitting apparatus
EP06711879A EP1860171A1 (en) 2005-01-19 2006-01-18 Method for producing light-emitting body, light-emitting body and light-emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-011877 2005-01-19
JP2005011877A JP2006199794A (en) 2005-01-19 2005-01-19 Method for producing illuminant, illuminant and light-emitting apparatus

Publications (1)

Publication Number Publication Date
WO2006077864A1 true WO2006077864A1 (en) 2006-07-27

Family

ID=36692253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/300610 WO2006077864A1 (en) 2005-01-19 2006-01-18 Method for producing light-emitting body, light-emitting body and light-emitting device

Country Status (6)

Country Link
US (1) US20090033229A1 (en)
EP (1) EP1860171A1 (en)
JP (1) JP2006199794A (en)
KR (1) KR20070095421A (en)
CN (1) CN101107341A (en)
WO (1) WO2006077864A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4769627B2 (en) * 2006-04-28 2011-09-07 富士フイルム株式会社 Inorganic dispersion type electroluminescence device
JP2007299606A (en) * 2006-04-28 2007-11-15 Fujifilm Corp Distributed type electroluminescence element
JP2009167351A (en) 2008-01-18 2009-07-30 Fujifilm Corp Inorganic phosphor
JP2010037370A (en) * 2008-07-31 2010-02-18 Fujifilm Corp Inorganic phosphor particle
JP4974036B2 (en) 2009-11-19 2012-07-11 株式会社ジャパンディスプレイセントラル Manufacturing method of organic EL device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01231293A (en) * 1987-11-09 1989-09-14 Hitachi Ltd Thin film el element
JPH0298092A (en) * 1988-10-04 1990-04-10 Ricoh Co Ltd White light-emitting thin film electroluminescent device
JPH02225589A (en) * 1989-02-28 1990-09-07 Komatsu Ltd Red el element
JPH03165492A (en) * 1989-11-22 1991-07-17 Hitachi Ltd Method and device for manufacturing semiconductor device
JPH0471192A (en) * 1990-07-11 1992-03-05 Komatsu Ltd Thin film type el element
JPH04196088A (en) * 1990-11-28 1992-07-15 Tosoh Corp Thin film el element
JP2004107522A (en) * 2002-09-19 2004-04-08 Tottori Univ Electroluminescence luminescent layer thin film, inorganic thin film electroluminescent element, and method for producing luminescent layer thin film
JP2004224843A (en) * 2003-01-20 2004-08-12 Nippon Hoso Kyokai <Nhk> Red-emitting phosphor and thin film electroluminescent element using the phosphor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4725344A (en) * 1986-06-20 1988-02-16 Rca Corporation Method of making electroluminescent phosphor films

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01231293A (en) * 1987-11-09 1989-09-14 Hitachi Ltd Thin film el element
JPH0298092A (en) * 1988-10-04 1990-04-10 Ricoh Co Ltd White light-emitting thin film electroluminescent device
JPH02225589A (en) * 1989-02-28 1990-09-07 Komatsu Ltd Red el element
JPH03165492A (en) * 1989-11-22 1991-07-17 Hitachi Ltd Method and device for manufacturing semiconductor device
JPH0471192A (en) * 1990-07-11 1992-03-05 Komatsu Ltd Thin film type el element
JPH04196088A (en) * 1990-11-28 1992-07-15 Tosoh Corp Thin film el element
JP2004107522A (en) * 2002-09-19 2004-04-08 Tottori Univ Electroluminescence luminescent layer thin film, inorganic thin film electroluminescent element, and method for producing luminescent layer thin film
JP2004224843A (en) * 2003-01-20 2004-08-12 Nippon Hoso Kyokai <Nhk> Red-emitting phosphor and thin film electroluminescent element using the phosphor

Also Published As

Publication number Publication date
US20090033229A1 (en) 2009-02-05
EP1860171A1 (en) 2007-11-28
JP2006199794A (en) 2006-08-03
KR20070095421A (en) 2007-09-28
CN101107341A (en) 2008-01-16

Similar Documents

Publication Publication Date Title
JP5627839B2 (en) Light source with improved dimming behavior
JP5599483B2 (en) Light emitting device using non-stoichiometric tetragonal alkaline earth silicate phosphor
CN1264228C (en) Light-emitting semi-conductor component with luminescence conversion element
JP5236397B2 (en) Light emitting device using non-stoichiometric tetragonal alkaline earth silicate phosphor
JP2007500776A (en) Light emitting device having a silicate fluorescent phosphor
WO2006077864A1 (en) Method for producing light-emitting body, light-emitting body and light-emitting device
KR20090093202A (en) White light emitting diode and its manufacture method
JP2013028667A (en) Fluorescent material of yttrium-aluminum garnet type, and light-emitting device using the same
CN104529165B (en) Yellow afterglow microcrystalline glass for AC-LED and preparation technology thereof
JP4309242B2 (en) Red phosphor material, white light emitting diode using red phosphor material, and lighting device using white light emitting diode
KR100846483B1 (en) Ba-sr-ca containing compound and white light emitting device including the same
JP2007031503A (en) Red fluorescent substance and white emission device
CN104696752A (en) Light emitting diode light source, backlight module, display device and lighting device
CN101826518A (en) White light-emitting diode (LED) and color temperature-adjusting method thereof
WO2011109975A1 (en) White light emitting diode (led) lighting device
KR101588314B1 (en) Phosphor white light emitting device including phosphor and method for preparing phosphor
JPH05152073A (en) Manufacture of fluorescent medium for electroluminescent lamp
CN1913182A (en) White light LED
JP4786026B2 (en) Long-life electroluminescent phosphor and electroluminescent device using the same
JPH0790262A (en) Production of fluorescent material for electroluminescence element
JP2002235080A (en) Electroluminescent fluorescent substance of high luminance and electroluminescent element using the same
JP4178271B2 (en) Oxide electroluminescent material and electroluminescent device using the same
Chirauri et al. An Insights into Non-RE Doped Materials for Opto-Electronic Display Applications
JP2010021085A (en) Electroluminescent element
KR101457056B1 (en) Electroluminescence panel and method for the production thereof using sintered ceramic phosphor sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11814186

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200680002723.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006711879

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077018846

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2006711879

Country of ref document: EP