JPH03165492A - Method and device for manufacturing semiconductor device - Google Patents

Method and device for manufacturing semiconductor device

Info

Publication number
JPH03165492A
JPH03165492A JP1302114A JP30211489A JPH03165492A JP H03165492 A JPH03165492 A JP H03165492A JP 1302114 A JP1302114 A JP 1302114A JP 30211489 A JP30211489 A JP 30211489A JP H03165492 A JPH03165492 A JP H03165492A
Authority
JP
Japan
Prior art keywords
semiconductor device
compound
manufacturing
light emitting
luminescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1302114A
Other languages
Japanese (ja)
Inventor
Masatoshi Shiiki
正敏 椎木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1302114A priority Critical patent/JPH03165492A/en
Publication of JPH03165492A publication Critical patent/JPH03165492A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To provide an EL element of a high luminance brightness and a high efficiency by forming the light emitting matrix of a thin film EL element by a physical deposition process and independently supplying light emitting ions with more than one kinds of organic compounds as supply sources of the light emitting ions. CONSTITUTION:A light emitting layer matrix is formed by physical deposition process used in forming EL light emitting layers. An EL emitting layer is formed by evaporating more than one organic compounds in the light emitting center and independently supplying them. As the deposition process, any physical deposition process including the resistance wire heated deposition process, EB process, SP process, molecular beam epitaxy process, ion plating process, and others may be used. As the organic metallic compound, any such compound of the temperature for obtaining a vapor pressure higher than 10<34>Pa is lower than the decomposition temperature, preferably a compound having a softening temperature lower than that of glass (about 600 deg.C) may be used. The compound meeting the conditions described above and not containing oxygen, may be chosen out of the compounds in the forms of (C5H5)3X, (CH3C5H4)3X (where X denotes Ce, Eu, Tb, Sm, Tm, Er, Pr, Dy or Ho), (C5H5)2Mn, and (CH3C5H4)2Mn.

Description

【発明の詳細な説明】 【産業上の利用分野1 本発明は、任意の発光色を提供するための半導体装置、
特に薄膜エレクトロルミネッセンス素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field 1] The present invention relates to a semiconductor device for providing an arbitrary luminescent color;
In particular, it relates to thin film electroluminescent devices.

[従来の技術] 従来薄膜EL素子の発光層を形成する製法として使用さ
れているのは、抵抗線加熱蒸着法、イオンブレーティン
グ法、特に−数的手法は電子線蒸着(以下、EBと記す
)法あるいはスパッタリング(以下、SPと記す)法で
ある。
[Prior Art] Conventionally, the methods used to form the light-emitting layer of thin-film EL devices include resistance wire heating evaporation, ion blating, and especially electron beam evaporation (hereinafter referred to as EB). ) method or sputtering (hereinafter referred to as SP) method.

これらの物理蒸着法では、ZnSに代表される発光層母
体と遷移金属のMnや希土類元素(Ce。
In these physical vapor deposition methods, a light-emitting layer matrix typified by ZnS and a transition metal such as Mn or a rare earth element (Ce) are used.

E u + T b *  S m r T rn +
 E r * P r + D y若しくはHo )な
どを発光中心とし、これらを適当な混合比で混合攪拌し
任意の形状に成型し焼成した粉末を蒸発源として使用す
る。そのため、ZnSに限らすCaSやSrSなども手
軽に薄膜化でき種々の発光色が得られている。このよう
な製法で形成した薄膜中には、発光層の母体材料と発光
中心材料の蒸気圧特性の差異から各々の蒸発速度にムラ
が生じ発光層中に発光中心の濃度ムラあるいはクラスタ
が存在し輝度の低下をもたすことが知られている。
E u + T b * S m r T rn +
E r * P r + D y or Ho), etc. are used as the luminescent center, and these are mixed and stirred at an appropriate mixing ratio, molded into an arbitrary shape, and fired, and the powder is used as an evaporation source. Therefore, not only ZnS but also CaS, SrS, etc. can be easily made into thin films, and various luminous colors can be obtained. In a thin film formed by such a manufacturing method, differences in vapor pressure characteristics between the host material of the luminescent layer and the luminescent center material cause uneven evaporation rates of each, resulting in uneven concentration or clusters of luminescent centers in the luminescent layer. It is known to cause a decrease in brightness.

EB法で形成したZ n S : M n膜の問題につ
いては、ジャーナル・アプライド・コイジンクス第53
巻6号(1982年)第4146頁から第4151(J
、App 1.Phys、53(1982)4146−
4151.)において論しられている。
Regarding the problem of ZnS:Mn films formed by the EB method, see Journal Applied Coijinx No. 53.
Volume 6 (1982), pages 4146 to 4151 (J
, App 1. Phys, 53 (1982) 4146-
4151. ) is discussed.

またZnS:Tb、F膜については、プロシーデインゲ
ス・オブ・ザ・サード・インタナショナル・デイスプレ
ィ・リサーチ・コンファレンス、1983年、神戸、第
84頁から第87頁(Proceedj、ngsof 
the3rd 1nternational disp
lay researchconference 84
−87(1,983)Kobe)に論じられている。
Regarding ZnS:Tb,F films, see Proceedings of the Third International Display Research Conference, Kobe, 1983, pp. 84 to 87 (Proceedj, ngsof).
the3rd 1international disp
lay research conference 84
-87 (1,983) Kobe).

【発明が解決しようとする課題] 上記従来技術は、発光中心を独立に分散良く添加する点
について配慮が十分になされていなかった。
[Problems to be Solved by the Invention] In the above-mentioned conventional technology, sufficient consideration was not given to the point of adding luminescent centers independently and in a well-distributed manner.

異なる化合物を含む一つの蒸発源を用いて薄膜形成を行
うと構成分子の昇華あるいは蒸気圧特性の違いから1発
光層の形成過程中あるいは層中で発光中心が2分子、3
分子、さらにはクラスタを形成する。その結果、非輻射
中心やエネルギの失活中心として働くクラスタなどが薄
膜中に存在し、薄膜EL素子の励起効率さらに発光効率
の低下をもたらすなどの問題があった。
When forming a thin film using one evaporation source containing different compounds, two or three luminescent centers may be formed during the formation process of one luminescent layer or within a layer due to sublimation or differences in vapor pressure characteristics of the constituent molecules.
Form molecules and even clusters. As a result, clusters that act as non-radiative centers or energy deactivation centers are present in the thin film, resulting in problems such as a decrease in excitation efficiency and luminous efficiency of the thin film EL device.

本発明は発光中心を均一に発光層に添加する技術を提供
することを目的としており、さらに高輝度で高効率の薄
膜EL素子を実現することを目的とする。
The present invention aims to provide a technique for uniformly adding luminescent centers to a light emitting layer, and further aims to realize a thin film EL element with high brightness and high efficiency.

本発明の他の目的は発光中心を均一に添加できる半導体
製造装置を提供することである。
Another object of the present invention is to provide a semiconductor manufacturing apparatus that can uniformly add luminescent centers.

[a題を解決するための手段] 上記本発明の目的を達成するために、本発明の半導体発
光素子、特に薄膜EL素子の発光層に適用した技術的手
段について説明する。
[Means for Solving Problem A] In order to achieve the above object of the present invention, technical means applied to the light emitting layer of the semiconductor light emitting device, particularly the thin film EL device, of the present invention will be described.

発光層中の発光中心を均一に添加するためには、発光中
心を独立に制御し供給することが有効である。例えばZ
 n S : M n薄膜を形成する場合は、ZnSと
Mn化合物の蒸発源をそれぞれ準備し独立に蒸発源への
入力パワーを制御することで基板上に深さ方向のM n
 p度が均一なZ n S : M n膜を形成するこ
とができる。しかし発光中心であるMnは、分子化ある
いはクラスタ化しやすい。そこで蒸発源のMn化合物に
は、空間中あるいは基板上でMnyK子間の相互作用が
少なく適当な距離を保てるような化合物が必要であり、
それには有機Mn化合物が適当であると考えられる。上
記者えはすべてのEL発光層と発光中心の組合せに応用
でき1発光中心のドーピングには上記のような有機化合
物を用いることが有効であると考えられる。
In order to uniformly add the luminescent centers in the luminescent layer, it is effective to control and supply the luminescent centers independently. For example, Z
nS: When forming a Mn thin film, by preparing evaporation sources for ZnS and Mn compounds and independently controlling the input power to the evaporation sources, the Mn thin film can be formed on the substrate in the depth direction.
A ZnS:Mn film with uniform p degree can be formed. However, Mn, which is the luminescent center, easily becomes molecules or clusters. Therefore, the Mn compound used as the evaporation source needs to be a compound that has little interaction between MnyK molecules in space or on the substrate and can maintain an appropriate distance.
Organic Mn compounds are considered suitable for this purpose. The above method can be applied to all combinations of EL light-emitting layers and light-emitting centers, and it is considered effective to use the above-mentioned organic compounds for doping one light-emitting center.

そこで上記目的を達成するために、従来からEL発光層
の形成に用いられている物理蒸着法で発光層母体を形成
すると共に1種以上の発光中心の有機化合物を気化させ
て独立に供給しEL発光膜を形成する手法を提案した。
Therefore, in order to achieve the above objective, a light emitting layer matrix is formed by the physical vapor deposition method conventionally used for forming an EL light emitting layer, and at the same time, one or more kinds of organic compounds having a luminescence center are vaporized and supplied independently. We proposed a method to form a light-emitting film.

蒸着法として抵抗線加熱蒸着法、EB、SP法、分子線
エピタキシ法、あるいはイオンブレーティング法の他あ
らゆる物理蒸着法が使用できる。
As the vapor deposition method, any physical vapor deposition method such as resistance wire heating vapor deposition method, EB, SP method, molecular beam epitaxy method, or ion blating method can be used.

有機金属化合物としては、10”Pa以上の蒸気圧を得
る温度が分解温度より低い化合物、好ましくは分解温度
がガラスの軟化点(約600℃)より低い化合物がすべ
て使用できる。このような条件を満たす有機化合物とし
て以下の化合物が考えられる。
As the organometallic compound, any compound whose temperature at which a vapor pressure of 10"Pa or more is obtained is lower than the decomposition temperature, preferably a compound whose decomposition temperature is lower than the softening point of glass (approximately 600°C) can be used. The following compounds can be considered as organic compounds that meet the requirements.

上記の条件を満たし、さらに酸素を含まない化合物とし
て、(C5H5)2X、(CH,C5H5)2X(ここ
でXは、Ce、Eu、Tb、Sm、Tm。
Compounds that satisfy the above conditions and do not contain oxygen include (C5H5)2X, (CH,C5H5)2X (where X is Ce, Eu, Tb, Sm, or Tm.

E r ! P r + D y若しくはHOを表す)
、(C5H,)。
Er! (represents P r + D y or HO)
, (C5H,).

Mn、(CH3C,H4) 、Mnよりなる群から選ば
れる化合物がある。
There are compounds selected from the group consisting of Mn, (CH3C,H4), and Mn.

共付活中心も同時に添加できる化合物として、(cs 
Hs)z X  M 、(ここでXは、 Ce + E
 u 、 T b +Sm、Tmy Er、Pr、Dy
若しくはHOを、またMは、F + CI + B r
若しくはIを表す)よりなる群から選ばれる化合物があ
る。
(cs
Hs)z X M, (where X is Ce + E
u, T b + Sm, Tmy Er, Pr, Dy
or HO, or M is F + CI + B r
or I).

また、(R1R2C3HO,)3X(ここでXは、Ce
Also, (R1R2C3HO,)3X (here, X is Ce
.

Eu、Tb、Sm、Tm、Er、Pr、Dy若しくはH
Oを、またR1及びR2は、CH3,C(CH,)。
Eu, Tb, Sm, Tm, Er, Pr, Dy or H
O, and R1 and R2 are CH3, C(CH,).

若しくはCF、を表す)よりなる群から選ばれる化合物
も用いることができる。
or CF) can also be used.

発光層母体材料としては、II−Vl化合物に限らず、
すべての螢光体母材を用いることができる。
The light-emitting layer host material is not limited to II-Vl compounds,
Any phosphor matrix can be used.

上記半導体装置の製造方法を実施するために、半導体の
製造装置の物理蒸着用の容器に有機金属化合物の供給口
を少なくとも1つ設けた。
In order to carry out the above method for manufacturing a semiconductor device, at least one supply port for an organometallic compound was provided in a physical vapor deposition container of a semiconductor manufacturing apparatus.

また上記の目的を達成するために、R,X(ここで又は
、S、Se若しくはTeを、またRは。
In addition, to achieve the above object, R, X (or S, Se or Te, or R).

1(、CH,若しくはC,H,を表す)より少なくとも
1つの化合物を選び同時に供給する。
At least one compound is selected from 1 (representing , CH, or C, H) and supplied simultaneously.

上記の手法を実施するために、半導体の製造装置に化合
物R2X(ここでXは、S、Se若しくはTeを、また
Rは、H,CH,若しくはC2H,を表す)の供給口を
少なくとも1つ設けた。この他、酸化物螢光体を発光層
とする場合は、酸素の導入も可能である。
In order to implement the above method, at least one supply port for the compound R2X (where X represents S, Se, or Te, and R represents H, CH, or C2H) is provided in the semiconductor manufacturing equipment. Established. In addition, when an oxide phosphor is used as a light emitting layer, oxygen can also be introduced.

[作用) 本発明に係る半導体装置の製造方法によれば。[effect] According to the method for manufacturing a semiconductor device according to the present invention.

発光母材と発光中心の蒸発源をそれぞれ準備するため、
例えばZnS等はより高純度のまま製造プロセスに用い
ることができ、蒸発速度も安定に制御できZnSに最適
の昇華エネルギのみを与えることで高品質な膜が得られ
る。また、発光中心のドーピングが独立に制御できるた
め、発光中心濃度が均一な薄膜を形成でき膜中濃度も容
易に変化させることができる。発光イオンは、大きな分
子で導入され基板の表面エネルギで分解するためZnS
の格子位置に置換し易く基板に到達するまでも分子の立
体障害のため発光イオンのクラスタ化に起因する非輻射
センターの形成が抑制できるため高輝度高効率の薄膜E
L索子が得られる。
In order to prepare the luminescent base material and the evaporation source of the luminescent center,
For example, ZnS and the like can be used in the manufacturing process with higher purity, and the evaporation rate can be stably controlled, and a high-quality film can be obtained by applying only the optimal sublimation energy to ZnS. Furthermore, since the doping of the luminescent centers can be controlled independently, a thin film with a uniform luminescent center concentration can be formed and the concentration in the film can be easily changed. Luminescent ions are introduced as large molecules and decomposed by the surface energy of the substrate, so ZnS
The formation of non-radiative centers caused by clustering of light-emitting ions can be suppressed due to the steric hindrance of the molecules even before they reach the substrate, making it possible to easily substitute them in the lattice positions of E.
L cords are obtained.

[実施例] つぎに本発明の実施例を図面とともに説明する。[Example] Next, embodiments of the present invention will be described with reference to the drawings.

(第1の実施例) 第1の実施例では、電子線蒸着法でZnSを蒸着源とし
水素キャリヤガスで発光中心の原料である(CH,C,
H,)、Mn (BCPMと略す)を導入しなからZn
S:Mn薄膜を形成した。
(First Example) In the first example, an electron beam evaporation method is used to use ZnS as a deposition source and a hydrogen carrier gas as a luminescent-centered raw material (CH, C,
H, ), Mn (abbreviated as BCPM), Zn
A S:Mn thin film was formed.

第1図は本発明による半導体装置の製造方法の一実施例
における製造装置を示す図である。真空排気ポンプ(図
示省略)を有する真空容器10内には、電子線蒸着@1
1、基板加熱用ヒータをもつ基板ホルダ12、ガス原料
を導入するためのノズル13と硫化水素等の反応性ガス
を導入するためのガスノズル14が設置されている。発
光中心原料は、温度調節された原料シリンダ15から流
量制御されたキャリヤガスにより導入される。反応性ガ
スは、直接流量制御されて導入される。
FIG. 1 is a diagram showing a manufacturing apparatus in an embodiment of the method for manufacturing a semiconductor device according to the present invention. Inside the vacuum container 10 having a vacuum evacuation pump (not shown), electron beam evaporation@1
1. A substrate holder 12 having a heater for heating the substrate, a nozzle 13 for introducing a gas raw material, and a gas nozzle 14 for introducing a reactive gas such as hydrogen sulfide are installed. The luminescence center raw material is introduced from the temperature-controlled raw material cylinder 15 by a carrier gas whose flow rate is controlled. The reactive gas is introduced with direct flow control.

第2図は本発明で形成したZnS:Mn薄膜を用いた薄
膜EL素子の構造を示す。素子構造は。
FIG. 2 shows the structure of a thin film EL device using a ZnS:Mn thin film formed according to the present invention. What is the element structure?

ガラス基板20上に酸化インジウム錫(ITO)の透明
Mm21を介して、 T a 20H/ S i Ox
積層膜の第1の誘電体層221本発明によるZnS二M
n膜の発光層23、そして第2の誘電体膜24、さらに
Alの上部電極25により構成されている。薄膜の金膜
、IQは約2μmである。
T a 20H/S i Ox is formed on the glass substrate 20 via a transparent Mm 21 of indium tin oxide (ITO).
First dielectric layer 221 of the laminated film ZnS2M according to the present invention
It is composed of an n-film light emitting layer 23, a second dielectric film 24, and an Al upper electrode 25. The thin gold film has an IQ of about 2 μm.

ZnS:Mn膜の発光層23の形成は、以下の手順で実
施した。第1の誘電体層22まで形成したガラス基板2
0を基板ホルダ13にセットし。
The light emitting layer 23 of ZnS:Mn film was formed by the following procedure. Glass substrate 2 formed up to the first dielectric layer 22
0 into the board holder 13.

そして電子線蒸着源11にZnSペレットを装着したの
ち真空排気を行う。圧力がlXl0”T。
After the ZnS pellets are attached to the electron beam evaporation source 11, vacuum evacuation is performed. The pressure is lXl0”T.

rr以下でZnSペレットの脱ガスを行い、基板温度が
200℃に到達後蒸着を開始した。発光中心原料である
BCPMは、原料シリンダ15の温度を5℃とし、水素
キャリヤガスの流量を2cc/ m i nとして真空
容器10中に導入した。この蒸着時の真空度は〜lXl
03sTorrで、ZnS : M n膜の蒸着速度は
約30nm/minで発光層13の膜厚は600nmと
した。このように形成したZ n S : M n薄膜
EL素子は、60Hz正弦波電圧駆動で120V以上で
黄橙色発光を示した6また150Vでの輝度は、従来の
1.5〜2倍の値が得られた。
The ZnS pellets were degassed at a temperature below rr, and vapor deposition was started after the substrate temperature reached 200°C. BCPM, which is a luminescence center raw material, was introduced into the vacuum vessel 10 with the temperature of the raw material cylinder 15 at 5° C. and the flow rate of hydrogen carrier gas at 2 cc/min. The degree of vacuum during this vapor deposition is ~1Xl
The deposition rate of the ZnS:Mn film was approximately 30 nm/min, and the thickness of the light emitting layer 13 was 600 nm. The ZnS:Mn thin film EL device thus formed emitted yellow-orange light at 120V or higher when driven with a 60Hz sine wave voltage.6The luminance at 150V was 1.5 to 2 times that of the conventional one. Obtained.

(第2の実施例) 第2の実施例では、RFスパッタリング法でZnS:F
をターゲットとしアルゴンキャリヤガスで発光中心のJ
JX料である(C,H,) 3Tb (CPTbと略す
)を導入しながらZnS:Tb、F簿膜を形成した。
(Second Example) In the second example, ZnS:F was deposited by RF sputtering method.
Target the luminescent center J using argon carrier gas.
A ZnS:Tb,F film was formed while introducing a JX material (C,H,)3Tb (abbreviated as CPTb).

第3図は本発明による半導体装置の製造方法の一実施例
における製造装置を示す図である。真空容器30内には
、ターゲット支持装置31、基板加熱用ヒータを内蔵し
た陽極32、ガス原料の導入口33と不活性ガス供給口
34、そしてガスの真空排気口35が設けられている。
FIG. 3 is a diagram showing a manufacturing apparatus in an embodiment of the method for manufacturing a semiconductor device according to the present invention. Inside the vacuum container 30, there are provided a target support device 31, an anode 32 with a built-in heater for heating the substrate, a gas raw material inlet 33, an inert gas supply port 34, and a gas evacuation port 35.

発光中心原料は、温度調節された原料シリンダ36から
流量制御されたキャリヤガスにより導入される。不活性
ガスは、直接流量制御されて導入される。
The luminescent center raw material is introduced from a temperature-controlled raw material cylinder 36 by a carrier gas whose flow rate is controlled. The inert gas is introduced under direct flow control.

ZnS:Tb、F膜の発光!23の形成は、以下の手順
で実施した。第1の誘電体層22まで形成したガラス基
板2oを陽極32.ターゲット支持装置31にZnSと
ZnF、を9:1の重量比で混合したターゲットを装着
したのち真空排気を行う。
Luminescence of ZnS:Tb,F film! Formation of No. 23 was carried out according to the following procedure. The glass substrate 2o formed up to the first dielectric layer 22 is used as an anode 32. After a target containing a mixture of ZnS and ZnF at a weight ratio of 9:1 is mounted on the target support device 31, vacuum evacuation is performed.

アルゴン雰囲気中でプレスパツタを行い、基板温度が2
00℃に到達したのちスパッタリングを開始した。Tb
原料であるCPTbは、シリンダおよび配管温度を20
0℃としてアルゴンキャリヤガス流量を5 c c /
 m i nで導入した。スパッタリング時の真空度は
0.02Torrに維持した。このときのZnS:Tb
、F膜の蒸着速度は約20nm/minで発光層13の
膜厚は600nmとした。このように形成したZnS 
:Tb。
Press sputtering is performed in an argon atmosphere, and the substrate temperature is 2.
After reaching 00°C, sputtering was started. Tb
CPTb, which is a raw material, has a cylinder and piping temperature of 20
The argon carrier gas flow rate was 5 c c /
It was introduced by min. The degree of vacuum during sputtering was maintained at 0.02 Torr. ZnS at this time: Tb
The deposition rate of the F films was approximately 20 nm/min, and the thickness of the light emitting layer 13 was 600 nm. ZnS formed in this way
:Tb.

F薄膜EL素子は、60Hz正弦波電圧駆動で180V
以上で緑色発光を示した。
F thin film EL element is 180V driven by 60Hz sine wave voltage.
In this way, green light was emitted.

本素子で得られたELスペクトルを第4図に示す。この
スペクトルは、発光中心Tb31イオンの内殻遷移であ
る’D4−7F、遷移に起因する545nm付近のライ
ンを主ピークとしている。
FIG. 4 shows the EL spectrum obtained with this device. This spectrum has a main peak at a line around 545 nm caused by 'D4-7F, which is the inner shell transition of the Tb31 ion at the emission center.

次に1本発明によるZnS:Tb、F薄膜EL素子の譚
度−印加電圧特性と従来の電子線蒸着法で形成した従来
例を第5図に示す。輝度のしきい電圧が本発明で約20
V低いのは、素子膜厚の違いによると考えられる。しき
い電圧から30Vの点での相対発光輝度は1本発明が従
来例の約1.5倍であった。
Next, FIG. 5 shows the temperature-applied voltage characteristics of the ZnS:Tb,F thin film EL device according to the present invention and a conventional example formed by the conventional electron beam evaporation method. The brightness threshold voltage is about 20 in the present invention.
The reason why V is low is considered to be due to the difference in element film thickness. The relative luminance of the present invention at a point of 30 V from the threshold voltage was about 1.5 times that of the conventional example.

(第3の実施例) 第3の実施例では、電子線蒸着法でSrSを蒸着源とし
反応性ガスである硫化水素(Has)と窒素キャリヤガ
スで発光中心の原料である( CSH,) 、Ce−C
Iを導入しながらS rS : Ce。
(Third Example) In the third example, SrS is used as a deposition source using an electron beam evaporation method, and hydrogen sulfide (Has), which is a reactive gas, and a nitrogen carrier gas are used as raw materials for luminescence (CSH,), Ce-C
S rS : Ce while introducing I.

C1薄膜を形成した。A C1 thin film was formed.

SrS:Ce、CI膜の発光層13の形成は、以下の手
順で実施した。第1の実施例で示したように第1の誘電
体M12まで形成したガラス基板10を基板ホルダ13
.電子線蒸着源11にSrSペレットを装着したのち真
空排気を行う。圧力がlXl0”Torr以下でSrS
ペレットの脱ガスを行い、基板温度が500℃に到達後
蒸着を開始した。C0H料である(C5Hi)2 Ce
  C1は、シリンダ温度を150℃として水素キャリ
ヤガス流量を2cc/minで導入した。この蒸着時の
真空度は〜1×108’Torrで、SrS:Ce、C
1膜の蒸着速度は約50 n m / m i nで発
光層13の膜厚は1.5μmとした。このように形成し
たSrS:Ce、C1薄膜EL素子の発光層中のSrに
対する相対的なCelp度の変化を確認するため、Ce
中心の膜厚方向の分布をオージェ分析で調べた。
The light emitting layer 13 of SrS:Ce, CI film was formed by the following procedure. As shown in the first embodiment, the glass substrate 10 formed up to the first dielectric M12 is placed on the substrate holder 13.
.. After SrS pellets are attached to the electron beam evaporation source 11, vacuum evacuation is performed. SrS when the pressure is less than 1X10”Torr
After the pellets were degassed and the substrate temperature reached 500° C., vapor deposition was started. (C5Hi)2Ce which is a C0H material
In C1, the cylinder temperature was set at 150° C., and the hydrogen carrier gas flow rate was introduced at 2 cc/min. The degree of vacuum during this vapor deposition was ~1 x 108'Torr, and SrS:Ce,C
The deposition rate of one film was approximately 50 nm/min, and the thickness of the light emitting layer 13 was 1.5 μm. In order to confirm the change in the Celp degree relative to Sr in the light emitting layer of the SrS:Ce,C1 thin film EL device thus formed, Ce
The distribution of the center in the film thickness direction was investigated by Auger analysis.

第6図は、横軸をスパッタリング時間、縦軸をオージェ
信号強度とし、分析結果を示す、蒸着後の酸素、炭素な
どの付着により薄膜の極表面ではCe濃度のフラツキが
見られるが、膜中ではSrに対して従来より均一にCe
が分散し、その揺らぎは±10%であることが確認でき
た。
Figure 6 shows the analysis results, with the horizontal axis representing the sputtering time and the vertical axis representing the Auger signal intensity.Fluctuations in the Ce concentration can be seen at the extreme surface of the thin film due to adhesion of oxygen, carbon, etc. after deposition, but within the film. In this case, Ce is applied more uniformly to Sr than before.
It was confirmed that the fluctuation was ±10%.

(第4の実施例) 第4の実施例では、電子線蒸着法でSrSを蒸着源とし
反応性ガスである硫化水素(Hi S ’)と水素キャ
リヤガスで2種類の発光中心原料((C(CH,)3)
2−C3H()2) 3P r (P r (D PM
) 、と略す)と(C,H,)、Mn (CPMと略す
)を導入しながらSrS:Pr、Mn薄膜を形成した。
(Fourth Example) In the fourth example, two types of luminescence center raw materials ((C (CH,)3)
2-C3H()2) 3P r (P r (D PM
), (C,H,), and Mn (abbreviated as CPM) were introduced to form a SrS:Pr,Mn thin film.

SrS:Pr、Mn膜の発光層13の形成は、第3の実
施例の手順と同様である。
The formation of the light emitting layer 13 of SrS:Pr,Mn film is the same as the procedure of the third embodiment.

本実施例の特徴は発光中心原料を2種類同時に使用する
ことであり、そのための半導体製造装置の改造部と原料
ガスのフローシーケンスを第7図に示す。発光中心原料
1にP r (D P M ) 3シリンダ(150℃
)、発光中心原料2にCPMシリンダ(60℃)を設置
し水素キャリヤガスで導入する。
The feature of this embodiment is that two types of luminescent center raw materials are used at the same time, and the modified part of the semiconductor manufacturing equipment for this purpose and the flow sequence of the raw material gas are shown in FIG. Luminescent center raw material 1 contains 3 cylinders of P r (D P M ) (150°C
), a CPM cylinder (60° C.) is installed in the luminescence center raw material 2, and hydrogen carrier gas is introduced.

本実施例で作製した薄膜EL素子の構造を第8図に示す
。発光層は、SrS:Prの第1の発光層83aとS 
r S : M nの第2の発光層83bの積層である
。まず、3方バルブv1を○N状態としP r (DP
M)3を真空容器に導入しSrS:Pr膜を10分間形
成する。このとき3方バルブv2はOFF状態でMn原
料は除外装置で処理される1次にv2をONとし、CP
Mを導入しSrS : M n膜を10分間形成する。
FIG. 8 shows the structure of the thin film EL device manufactured in this example. The light emitting layer includes a first light emitting layer 83a of SrS:Pr and SrS:Pr.
rS: This is a stack of M n second light emitting layers 83b. First, the three-way valve v1 is set to ○N state and P r (DP
M) 3 was introduced into a vacuum container and a SrS:Pr film was formed for 10 minutes. At this time, the three-way valve v2 is in the OFF state, and the Mn raw material is processed in the exclusion device.The primary valve v2 is turned on, and the CP
M is introduced to form a SrS:Mn film for 10 minutes.

この動作を繰返しSrS:Pr/SrS:Mnの積層発
光層(500n m厚)を形成した。この発光層中のP
r;:とMnの膜厚方向の分布は、発光層の形成順にP
rとMnが交互に分布しているのが確認できた。
This operation was repeated to form a laminated light emitting layer (500 nm thick) of SrS:Pr/SrS:Mn. P in this luminescent layer
The distribution of r;: and Mn in the film thickness direction is as follows:
It was confirmed that r and Mn were distributed alternately.

[発明の効果] 以上説明したごとく、本発明の半導体装置の製造方法及
び半導体製造装置によれば、発光層中に発光イオンをよ
り均一に添加できるためクラスタ等の非輻射センターの
形成が抑制され高輝度高効率の薄膜EL素子が得られる
。また、発光イオンの添加領域および濃度を簡便に制御
できる。本発明で示した発光中心原料である有機化合物
は、物理蒸着法さらに化学気相成長法にも容易に適用で
きる。
[Effects of the Invention] As explained above, according to the semiconductor device manufacturing method and semiconductor manufacturing apparatus of the present invention, luminescent ions can be added more uniformly into the luminescent layer, so the formation of non-radiative centers such as clusters is suppressed. A thin film EL element with high brightness and high efficiency can be obtained. Furthermore, the addition area and concentration of luminescent ions can be easily controlled. The organic compound as the luminescent center raw material shown in the present invention can be easily applied to physical vapor deposition and chemical vapor deposition.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明において用いた半導体装置の製造装置の
一例を示す概略図、第2図は第1の実施例において作製
した薄膜EL素子の構造の一例を示す模式図、第3図は
第2の実施例において用いた半導体装置の製造装置の一
例を示す概略図、第4図は第2の実施例で作製した薄膜
EL素子の発光スペクトルを示すグラフ、第5図は第2
の実施例で作製した薄膜EL素子の印加電圧と発光坪度
の関係を示すグラフ、第6図は第3の実施例で作製した
発光層中における発光イオンの深さプロファイルを示す
グラフ、第7図は第4の実施例で用いた発光中心原料の
配管系統の一例を示す模式図、第8図は第4の実施例で
作製した薄膜EL索子の構造の一例を示す模式図である
。 符号の説明 10・・・真空容器、11・・・電子線蒸着源、12・
・・基板ホルダ、13・・・ノズル、14・・・ガスノ
ズル、篤 図 纂 巳 葛 5 図 不 図 ヌハ0ヅ7Iしフ゛闘″閤(脚k) ■ 図 第 図
FIG. 1 is a schematic diagram showing an example of the semiconductor device manufacturing apparatus used in the present invention, FIG. 2 is a schematic diagram showing an example of the structure of the thin film EL element manufactured in the first example, and FIG. A schematic diagram showing an example of the semiconductor device manufacturing apparatus used in Example 2, FIG. 4 is a graph showing the emission spectrum of the thin film EL element manufactured in Example 2, and FIG.
FIG. 6 is a graph showing the relationship between the applied voltage and the luminous density of the thin film EL device fabricated in Example 3. FIG. 6 is a graph showing the depth profile of luminescent ions in the luminescent layer fabricated in Example 3. The figure is a schematic diagram showing an example of the piping system for the luminescent center raw material used in the fourth example, and FIG. 8 is a schematic diagram showing an example of the structure of the thin film EL cord produced in the fourth example. Explanation of symbols 10... Vacuum vessel, 11... Electron beam evaporation source, 12.
...Substrate holder, 13...Nozzle, 14...Gas nozzle, Atsushi Atsushi 5

Claims (9)

【特許請求の範囲】[Claims] 1.発光材料を含む半導体装置、特に薄膜エレクトロル
ミネツセンス素子において、発光材料薄膜いわゆる発光
層を作製する際に、発光母体材料を物理蒸着法で形成す
ると共に1種以上の有機化合物を発光イオンの供給源と
して発光イオンを独立に供給することを特徴とする半導
体装置の製造方法。
1. In a semiconductor device containing a luminescent material, especially a thin film electroluminescent element, when producing a luminescent material thin film, so-called luminescent layer, a luminescent host material is formed by physical vapor deposition, and one or more organic compounds are supplied as luminescent ions. A method for manufacturing a semiconductor device, comprising independently supplying luminescent ions as a source.
2.前記有機化合物としては、(C_5H_5)_3X
、(CH_3C_5H_4)_3X(ここでXは、Ce
,Eu,Tb,Sm,Tm,Er,Pr,Dy若しくは
Hoを表す)、(C_5H_5)_2Mn、(CH_3
C_5H_4)_2Mnよりなる群から選ばれる少なく
とも1つの化合物を用いることを特徴とする特許請求の
範囲第1項記載の半導体装置の製造方法。
2. As the organic compound, (C_5H_5)_3X
, (CH_3C_5H_4)_3X (where X is Ce
, Eu, Tb, Sm, Tm, Er, Pr, Dy or Ho), (C_5H_5)_2Mn, (CH_3
The method for manufacturing a semiconductor device according to claim 1, characterized in that at least one compound selected from the group consisting of C_5H_4)_2Mn is used.
3.前記有機化合物として(C_5H_5)_2X−M
(ここでXは、Ce,Eu,Tb,Sm,Tm,Er,
Pr,Dy若しくはHoを、またMは、F,Cl,Br
若しくはlを表す)よりなる群から選ばれる少なくとも
1つの化合物を用いることを特徴とする特許請求の範囲
第1項記載の半導体装置の製造方法。
3. As the organic compound (C_5H_5)_2X-M
(Here, X is Ce, Eu, Tb, Sm, Tm, Er,
Pr, Dy or Ho, and M is F, Cl, Br
2. The method of manufacturing a semiconductor device according to claim 1, wherein at least one compound selected from the group consisting of: (1) or (1) is used.
4.前記有機化合物としては、 (R_1R_2C_3HO_2)_3X(ここでXは、
Ce,Eu,Tb,Sm,Tm,Er,Pr,Dy若し
くはHoを、またR_1及びR_2は、CH_3,C(
CH_3)_3若しくはCF_3を表す)よりなる群か
ら選ばれる少なくとも1つの化合物を用いることを特徴
とする特許請求の範囲第1項記載の半導体装置の製造方
法。
4. The organic compound is (R_1R_2C_3HO_2)_3X (where X is
Ce, Eu, Tb, Sm, Tm, Er, Pr, Dy or Ho, and R_1 and R_2 are CH_3, C(
The method for manufacturing a semiconductor device according to claim 1, characterized in that at least one compound selected from the group consisting of CH_3)_3 or CF_3 is used.
5.特許請求の範囲第1項から第4項のいずれかに記載
の半導体装置の製造方法において、発光層母体材料とし
てZn,Cd,Mg,Ca,Sr,Baの群及びS,S
e,Teの群から各々1つ以上の元素を含む化合物を用
いることを特徴とする半導体装置の製造方法。
5. In the method for manufacturing a semiconductor device according to any one of claims 1 to 4, the light-emitting layer matrix material includes a group of Zn, Cd, Mg, Ca, Sr, Ba, S, and S.
A method for manufacturing a semiconductor device, characterized in that a compound containing one or more elements from the groups e and Te is used.
6.特許請求の範囲第1項から第5項のいずれかに記載
の半導体装置の製造方法において、R_2,X(ここで
Xは、S,Se若しくはTeを、またRは、H,CH_
3若しくはC_2H_5を表す)より少なくとも1つの
化合物を選び同時に供給することを特徴とする半導体装
置の製造方法。
6. In the method for manufacturing a semiconductor device according to any one of claims 1 to 5, R_2,X (where X represents S, Se or Te, and R represents H, CH_
3 or C_2H_5) and simultaneously supplying at least one compound.
7.特許請求の範囲第1項から第6項のいずれかに記載
の半導体装置の製造方法を実施する装置として、前記物
理的蒸着法用の蒸着容器に前記有機化合物の供給口を1
つ以上、前記化合物R_2X(ここでXは、S,Se若
しくはTeを、またRは、H,CH,若しくはC_2H
_5,を表す)のための供給口を少なくとも1つ設けて
いることを特徴とする半導体装置の製造装置。
7. As an apparatus for carrying out the method for manufacturing a semiconductor device according to any one of claims 1 to 6, a supply port for the organic compound is provided in the vapor deposition container for the physical vapor deposition method.
or more, the compound R_2X (where X is S, Se or Te, or R is H, CH, or C_2H
A manufacturing apparatus for a semiconductor device, characterized in that it is provided with at least one supply port for (representing _5).
8.前記発光層母体材料としてZn,Cd,Mg,Ca
,Sr,Baの群及びS,Se,Teの群から各々少な
くとも1つの元素を選んでなる化合物中に任意の発光中
心を特許請求の範囲第3項もしくは第4項に記載の少な
くとも1つの有機化合物を用い化学気相成長法で添加す
ることを特徴とする半導体装置の製造方法。
8. The light-emitting layer matrix material is Zn, Cd, Mg, Ca.
, Sr, Ba, and at least one element selected from the group S, Se, Te. A method for manufacturing a semiconductor device, characterized in that a compound is added by chemical vapor deposition.
9.発光層中の発光イオンの深さプロファイルの濃度の
揺らぎを下限20%、上限20%とした発光材料の薄膜
を用いたことを特徴とする半導体装置。
9. 1. A semiconductor device using a thin film of a light-emitting material with fluctuations in the concentration of a depth profile of light-emitting ions in a light-emitting layer having a lower limit of 20% and an upper limit of 20%.
JP1302114A 1989-11-22 1989-11-22 Method and device for manufacturing semiconductor device Pending JPH03165492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1302114A JPH03165492A (en) 1989-11-22 1989-11-22 Method and device for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1302114A JPH03165492A (en) 1989-11-22 1989-11-22 Method and device for manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
JPH03165492A true JPH03165492A (en) 1991-07-17

Family

ID=17905099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1302114A Pending JPH03165492A (en) 1989-11-22 1989-11-22 Method and device for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH03165492A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006077864A1 (en) * 2005-01-19 2006-07-27 T. Chatani & Co., Ltd. Method for producing light-emitting body, light-emitting body and light-emitting device
JP2008306113A (en) * 2007-06-11 2008-12-18 Showa Denko Kk Manufacturing method of group iii nitride semiconductor, manufacturing method of group iii nitride semiconductor light emitting element, group iii nitride semiconductor light emitting element and lamp

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006077864A1 (en) * 2005-01-19 2006-07-27 T. Chatani & Co., Ltd. Method for producing light-emitting body, light-emitting body and light-emitting device
JP2008306113A (en) * 2007-06-11 2008-12-18 Showa Denko Kk Manufacturing method of group iii nitride semiconductor, manufacturing method of group iii nitride semiconductor light emitting element, group iii nitride semiconductor light emitting element and lamp

Similar Documents

Publication Publication Date Title
KR100327105B1 (en) High luminance-phosphor and method for fabricating the same
CN109713100B (en) Method for preparing active layer of all-inorganic perovskite light-emitting diode
JP2840185B2 (en) Phosphor thin film and thin film EL panel using the same
JPH08127771A (en) Electroluminescent element and production thereof
US5482603A (en) Method of producing electroluminescence emitting film
US6090434A (en) Method for fabricating electroluminescent device
JPH10188840A (en) Emitting particle for field emission display and luminescent layer forming method for field emission display
US4389295A (en) Thin film phosphor sputtering process
JPH06163157A (en) Manufacture of thin film el element
US6025677A (en) Blue light emitting thiogallate phosphor including a thin nucleation layer of strontium sulfide
JPH03165492A (en) Method and device for manufacturing semiconductor device
JPH0760738B2 (en) Method for manufacturing electroluminescent light-emitting film
KR20040088035A (en) Sputter deposition process for electroluminescent phosphors
US6004618A (en) Method and apparatus for fabricating electroluminescent device
CN112403301A (en) OLED material mixing method
JP2537527B2 (en) Method for manufacturing thin film EL element
JP3543414B2 (en) Electroluminescence device and method of manufacturing the same
JPH0834126B2 (en) Phosphor thin film manufacturing method and thin film EL device
JPS6141112B2 (en)
JP3584574B2 (en) EL element and manufacturing method thereof
JP2857624B2 (en) Method for manufacturing electroluminescent element
JPH056792A (en) Manufacture of phosphor thin film
JP2001297877A (en) Manufacturing method and apparatus of thin film electroluminescence element
JP2900814B2 (en) Method and apparatus for manufacturing electroluminescent element
JPH08203672A (en) Manufacture of thin film electroluminescent element, and manufacturing device thereof