Appareil de détection portable permettant de détecter sur le terrain des éléments marqués par fluorescence
L'invention concerne le domaine de la détection de marqueurs fluorescents par excitation dans le visible et ré-émission dans le visible (0,4 - 0,7 μm). L'invention concerne plus particulièrement un appareil portable permettant de détecter sur le terrain des éléments marqués par fluorescence.
Il existe de plus en plus de produits comprenant des éléments fluorescents détectables optiquement, comme par exemple les billets de banque ou les pièces d'identité. Des encres (par exemple invisibles), enductions ou autres produits solides ou liquides utilisés dans ce type d'application possèdent une fluorescence pouvant être révélée par un rayonnement UV dont le spectre est compris environ entre 0,01 μm et 0,385 μm ou par un rayonnement IR dont le spectre est compris entre 0,76 μm et 1 mm.
Il est connu dans l'art antérieur, en particulier par le document WO 02/10295 du même demandeur des systèmes de détection par épifluorescence d'une encre « invisible » du type comprenant des molécules fluorescentes. Cette détection est généralement réalisée à l'aide d'un microscope à épifluorescence comportant une source lumineuse émettant dans le visible, combinée à un jeu de filtres pour provoquer l'excitation des molécules fluorescentes contenues dans l'encre autp_uii_d!une— longueur— d'onde déterminée et sélectionner les longueurs d'onde de l'émission par fluorescence. Ainsi les éléments de marquage permettant de tracer secrètement chaque produit peuvent être observés visuellement par l'intermédiaire d'un microscope à épifluorescence doté d'un miroir dichroïque disposé entre oculaire et objectif. Ce miroir permet de faire réfléchir le rayonnement d'une source lumineuse en direction du produit formant le support des éléments de marquage. Le produit marqué est disposé sous l'objectif et peut être observé
visuellement par l'oculaire lorsqu'un jeu approprié de filtres est utilisé de façon à laisser passer le rayonnement de la molécule fluorescente utilisée et de la source lumineuse. Les filtres sont également adaptés à la surface du produit marqué ; en effet il est souvent nécessaire d'appuyer le contraste entre cette surface et la fluorescence des particules à détecter en raison du bruit de fond propre au support.
Le jeu de filtres permet notamment d'isoler les photons de l'émission fluorescente des photons d'excitation émis par la source lumineuse et réfléchis par le miroir dichroïque. Un premier filtre d'excitation est disposé entre la source et le miroir et un second filtre est prévu entre le miroir et l'oculaire pour constituer un filtre d'arrêt ou d'émission. Le filtre d'excitation favorisera le passage des longueurs d'ondes spécifiques du rayonnement provenant de la source lumineuse choisie émettant dans le visible. Le filtre d'arrêt ne laisse passer qu'une ou plusieurs plages de longueurs d'ondes dans la plage choisie comprise entre 0,4 μm et 0,7 μm. Ce filtre d'arrêt est très important car il permet :
- d'empêcher le passage des ondes transmises, c'est-à-dire non réfléchies par le miroir dichroïque, issues de la réflexion de la lumière incidente sur le produit marqué et directement de la source lumineuse et, " de sélectionner les ondes d'émission émises par la fluorescence.
Le document WO 02/10295 décrit également des systèmes de détection permettant d'observer la fluorescence par épifluorescence sans utiliser un microscope. Ces systèmes de détection comprennent une source lumineuse telle qu'une lampe à vapeur de mercure de 100 Watts logée dans un boîtier percé et équipée d'un réflecteur pour réfléchir la lumière vers le perçage. Un tel système de détection comprend en outre un jeu de filtres adapté aux caractéristiques de la molécule fluorescente utilisée et de la source lumineuse ainsi qu'à la surface du produit marqué.
Un inconvénient de ce type de système est qu'il reste encore encombrant, avec notamment l'utilisation d'une lampe à vapeur de mercure ou autre générateur de lumière équivalent (halogène/xénon), ce qui empêche une utilisation courante comme détecteur de terrain.
11 est connu, par le document WO 2004/088387, un ensemble d'éclairage pour un microscope à fluorescence de laboratoire. Cet ensemble comporte un boîtier connectable à une structure porteuse du microscope. Ce boîtier incorpore une unité lumineuse composé d'une diode électroluminescente (LED) et d'un élément optique collimateur associé pour acheminer la lumière produite par la LED sous la forme d'un faisceau (parallèle) de rayons lumineux vers une fenêtre latérale du microscope. L'inconvénient de ce type de solution est que l'encombrement latéral et en hauteur reste important. Il est alors nécessaire de prévoir une structure de base importante pour supporter l'appareil complet. Il existe donc un besoin pour des outils plus compacts adaptés à des détections de routine.
Un premier but de l'invention est de proposer un appareil de détection de faibles dimensions (léger, portable, préhensible de préférence avec une seule main) et pouvant fonctionner de façon autonome (sur pile par exemple) pour exciter et détecter, exclusivement dans le visible, des particules fluorescentes servant à marquer un produit.
Un second but de l'invention est de proposer un appareil permettant une détection rapide et facile sur le terrain, par opposition à l'utilisation des équipements de laboratoire. L'invention vise ainsi à permettre de faciliter le contrôle du traçage ou de l'authentification des articles marqués de façon secrète.
A cet effet, l'invention propose un appareil portable de détection optique pour détecter sur une zone de marquage déterminée des éléments marqués par fluorescence, ledit appareil comportant au moins une source lumineuse destinée à l'excitation de particules incluant une fonction fluorophore, caractérisé en ce que la source lumineuse comporte au moins un organe d'émission d'un faisceau lumineux focalisé constitué d'une diode électroluminescente ou d'un laser, chaque organe d'émission ayant un pic d'émission semblable autour d'une longueur d'onde déterminée, l'appareil portable de détection comprenant :
- un boîtier pour loger respectivement la source lumineuse, une interface utilisateur pour commander la source lumineuse et des moyens d'alimentation électrique pour alimenter la source lumineuse, cette source lumineuse étant conçue pour émettre dans le visible, le boîtier comportant une sortie lumineuse orientée vers la zone de marquage ; et
- des moyens optiques intégrés ou non dans le boîtier, comprenant une première extrémité permettant à l'utilisateur de détecter instantanément dans le visible la fluorescence des éléments marqués excités dans le visible par l'intermédiaire de la source lumineuse, une seconde extrémité opposée à la dite première extrémité et apte à venir à proximité ou affleurer ladite zone de marquage, un filtre étant prévu entre ces deux extrémités pour éliminer au moins les rayonnements de longueur d'onde inférieure à un seuil déterminé, lesdites extrémités laissant passer ainsi la lumière pour au moins une gamme de longueur d'onde du visible. Lesdites extrémités sont séparées entre elles d'une distance déterminée pouvant dépasser 2 cm.
Ainsi, à l'inverse d'un assemblage encombrant de laboratoire, l'appareil selon l'invention permet de regrouper tous les éléments de génération du faisceau lumineux dans un boîtier compact qui intègre les moyens optiques facilitant la visualisation ou qui est étroitement associé à ces moyens optiques.
Selon une autre particularité, la source lumineuse comporte une pluralité de diodes électroluminescentes regroupées de façon adjacente dans un ensemble orienté dans une directiQrjL-ay_ant— une— composant€ transversale par rapport à l'axe d'alignement des extrémités des moyens optiques.
Selon une autre particularité, ledit organe d'émission d'un faisceau lumineux focalisé est constitué d'au moins une ampoule miniature xénon ou halogène associée à un filtre bande passante pour former ladite source lumineuse.
Selon une autre particularité, les deux extrémités des moyens optiques sont alignées et disposées dans le boîtier qui est du type préhensible.
Selon une autre particularité, le boîtier est sensiblement parallélépipédique, de type format de poche et comporte sur un même côté l'interface utilisateur et ladite première extrémité des moyens optiques.
Selon une autre particularité, les moyens optiques comprennent un axe longitudinal correspondant à un axe de visualisation des éléments marqués par fluorescence, la distance entre les extrémités des moyens optiques étant comprise entre 2 et 35 cm.
Selon une autre particularité, la distance entre les extrémités des moyens optiques est comprise entre 2 et 15 cm.
Selon une autre particularité, le boîtier comporte un logement pour recevoir des batteries permettant une utilisation autonome de l'appareil, ledit boîtier comportant un axe longitudinal correspondant à l'orientation du faisceau lumineux focalisé au niveau de la source lumineuse et ayant transversalement un périmètre inférieur à 25 cm.
Selon une autre particularité, au moins une dizaine de diodes électroluminescentes sont montées dans une disposition en nid d'abeille sur une carte support pour former la source lumineuse.
Selon une autre particularité, les diodes électroluminescentes sont connectées à une unité électronique agencée pour contrôler l'alimentation des diodes.
Selon une autre particularité, les moyens optiques sont formés dans un ensemble sensiblement cylindrique apte à s'aligner avec un dispositif annulaire formant une couronne dotée de logements pour recevoir des diodes électroluminescentes orientées vers un point de focalisation situé du côté opposé aux moyens optiques.
Selon une autre particularité, le boîtier est constitué d'un dispositif d'émission laser.
071
Selon une autre particularité, le dispositif d'émission laser est du type ayant une longueur d'onde de l'ordre de 532 nm pour émettre un faisceau de lumière verte.
Selon une autre particularité, les moyens optiques comportent un moyen support doté d'un bras pour fixer de façon amovible le dispositif d'émission laser.
Selon une autre particularité, la première extrémité des moyens optiques comporte un pourtour adapté pour permettre l'ajout et/ou la solidarisation à l'appareil d'un élément optique de grossissement qui peut s'avérer nécessaire pour que l'utilisateur visualise la fluorescence des éléments marqués. Ainsi, des particules fluorescentes peu visibles peuvent être détectées, comme par exemple des microbilles à fluorescence de diamètre inférieur à 5 μm.
Selon une autre particularité, un filtre d'excitation (du type bande passante) est prévu pour affiner chromatiquement l'émission issue de la source lumineuse.
Selon un aspect essentiel de l'invention, les moyens optiques comportent un bloc filtre incluant un filtre d'émission pour empêcher au moins le passage des ondes visibles provenant du ou des organes d'émission et pour laisser passer les longueurs d'ondes spécifiques d'émission de la fluorescence des éléments marqués.
Selon une autre particularité, le boîtier comporte un axe longitudinal et au moins un alignement de diodes électroluminescentes selon cet axe longitudinal" Un autre but de l'invention est de proposer une utilisation de l'appareil portable pour authentifier rapidement des produits ayant une zone de marquage révélable optiquement.
Ce but est atteint par une utilisation de l'appareil selon l'invention, caractérisée en ce que ledit appareil portable sert à détecter des particules fluorescentes contenues dans tout ou partie d'un produit à authentifier.
Selon une autre particularité, ledit appareil portable sert à détecter des particules fluorescentes contenues dans une zone de marquage associée à un produit pour en assurer le marquage.
Selon une autre particularité, la zone de marquage consiste en un composé d'adhésion ou d'enduction comprenant une proportion minimale de molécules fluorescentes, invisibles à la lumière du jour mais détectables optiquement par épifluorescence dans une plage de longueur d'onde d'excitation comprise dans le visible.
Selon une autre particularité, la fluorescence à détecter provient d'au moins un fil ou fibre de 3 à 20 mm de longueur appelée fibrette.
Selon une autre particularité, le fil ou fibrette est associé à un papier de sécurité.
Selon une autre particularité, la fluorescence à détecter provient de corps de très petite taille dont le volume est inférieur à 0,1 mm3. Selon une autre particularité, la fluorescence à détecter provient de microsphères dont le diamètre est compris entre 0,2 et 20 μm.
Selon une autre particularité, les microsphères sont associées à un papier de sécurité.
Selon une autre particularité, les microsphères sont dispersées dans une huile de lubrification ou d'un traitement de surface de pièces métalliques.
Selon une autre particularité, l'appareil est utilisé pour la détection de la fluorescence provenant de microsphères signalant une hybridation d'ADN sur des biopuces ou puces à ADN. D'autres particularités et avantages de la présente invention apparaîtront plus clairement à la lecture de la description ci-après faite en référence aux dessins annexés dans lesquels :
- la figure 1 représente schématiquement un appareil selon l'invention permettant l'observation par épifluorescence d'un produit marqué à l'aide de particules fluorescentes ;
- la figure 2 représente un agencement de diodes de type LED (Light-Emitting Diode) en couronne ;
- la figure 3 représente schématiquement un appareil selon l'invention doté d'une source lumineuse de type laser ;
- la figure 4 montre un exemple d'appareil avec des diodes électroluminescentes dans une variante de réalisation de l'invention. L'invention s'applique à la détection de tout type de produit pouvant être marqué par fluorescence. Dans ce qui suit, on doit comprendre par particule fluorescente une particule qui absorbe et ré-émet respectivement dans des longueurs d'onde du visible (0,4-0,7 μm).
Les exemples de produits marqués par fluorescence à l'aide d'une encre incolore cités dans le document WO 02/10295 peuvent tous faire l'objet d'une authentification grâce à l'appareil de terrain de la présente invention. Le produit marqué (6) comporte une zone déterminée (60) dans laquelle des éléments marqués par fluorescence ont été insérés. Cette zone de marquage (60) peut comprendre un revêtement formé par application d'un produit liquide adhérent ou d'enduction, contenant des molécules fluorescentes, détectables par épifluorescence. L'épiscopie se distingue de la diascopie par le fait que dans la première, le rayonnement d'excitation de l'objet observé ne traverse pas ce dernier, alors que dans la diascopie, la source lumineuse est de l'autre côté de l'objet observé par rapport à l'observateur.
Dans ce qui suit, il sera fait référence à un exemple pour lequel la fluorescence de molécules se traduit par un pic d'absorption à environ 570 nm. Il doit être compris que d'autres molécules ayant un pic différent^ejjyent_
être utilisées. Les molécules fluorescentes que l'appareil doit détecter sont par exemple invisibles à l'œil nu sur le produit marqué. L'authentification du produit ne peut pas non plus se faire par des moyens classiques utilisant, comme dans le domaine des encres sécurisées, des rayonnements UV et IR. Les molécules fluorescentes sont généralement présentes en faible concentration et ne peuvent être détectées par épifluorescence que si d'une part celles-ci sont excitées par une plage de longueur d'onde déterminée du spectre d'émission d'une source lumineuse et si d'autre part on filtre l'émission de la fluorescence. Dans d'autres cas, les particules sont
concentrées mais très localisées et ne peuvent être détectées par épifluorescence qu'en étant d'une part excitées par une plage de longueur d'onde déterminée du spectre d'émission d'une source lumineuse et d'autre part en étant observées après grossissement et filtrage de l'émission de la fluorescence.
En référence à la figure 1 , l'appareil selon l'invention comporte une source lumineuse (2) incorporée dans un boîtier (1) de type format de poche et aisément préhensible. L'appareil est donc facilement transportable, à la différence des équipements de type microscope à épifluorescence. Contrairement aux sources lumineuses de type lampe à vapeur de mercure généralement associées à un microscope à épifluorescence, la source lumineuse (2) envisagée dans l'invention est plus compacte et légère pour permettre une utilisation sur le terrain de l'appareil. L'appareil portable de détection optique est considérablement simplifié par rapport à la plupart des appareils de détection de fluorescence et permet d'authentifier de manière fiable des éléments marqués par fluorescence sur une zone de marquage déterminée (60).
La source lumineuse (2) est conçue pour émettre dans le visible. Selon l'invention, la source lumineuse (2) comporte au moins un organe d'émission d'un faisceau lumineux focalisé constitué d'une diode électroluminescente ou d'un laser pour l'excitation des particules ayant la fonction fluorophore. Pour cela chaque organe d'émission a un pic d'émission semblable autour d'une longueur d^onde__déterminée quL
ccirïe^p^^
"s^nslbïëment à la longueur d'onde d'excitation des fluorophores. Dans une variante de réalisation, ledit organe d'émission d'un faisceau lumineux focalisé peut être constitué d'au moins une ampoule miniature xénon ou halogène associée à un filtre bande passante pour former ladite source lumineuse (2).
L'excitation des molécules fluorescentes se produit environ entre 0,385 et 0,7 μm, ce qui permet l'obtention d'une émission fluorescente dans une plage de longueur d'onde appartenant à la plage des rayonnements visibles par l'œil humain. Cette émission ne s'effectue que pour une intensité
lumineuse d'excitation déterminée. Dans le mode de réalisation de la figure
1 , la source lumineuse (2) comporte une pluralité de diodes électroluminescentes regroupées de façon adjacente. L'ensemble de diodes permet d'obtenir une intensité lumineuse suffisante pour exciter les fluorophores. Au moins une dizaine de diodes électroluminescentes peuvent être montées dans une disposition en nid d'abeille sur une carte support pour former la source lumineuse (2). Il peut aussi être envisagé d'utiliser une seule diode de type LED1 cette diode devant posséder des caractéristiques déterminées d'intensité et d'angle d'ouverture pour générer une luminosité d'au moins 0,1 lumen.
L'appareil est doté également de moyens optiques, intégrés ou non dans le boîtier (1). Ces moyens optiques peuvent comporter des moyens de grossissement de type loupe ou éléments de grossissement du type utilisés dans un microscope. Dans un mode de réalisation de l'invention, les moyens optiques réalisent une fonction de grossissement suffisante pour permettre la détection de particules de petite taille, par exemple de 5 μm. Si la fluorescence est suffisamment intense et que la lumière utilisée est sélective, l'authentification peut se faire sans de tels moyens de grossissement. Ces derniers peuvent donc être supprimés, un accessoire de grossissement pouvant par ailleurs être associé aux moyens optiques le cas échéant. Comme illustré à la figure 1, les moyens optiques comprennent par exemple une première extrémité (E1) permettant à l'utilisateur de visualiser instantanément la fluorescence des éléments marqués et une seconde extrémité (E2) opposée apte à venir à proximité ou affleurer la zone de marquage (60). Les extrémités (E1, E2) sont par exemple alignées et laissent passer la lumière pour au moins une gamme de longueur d'onde du visible. La détection du marquage s'effectue par une observation directe de la surface du produit au travers des moyens optiques, sans destruction ou détérioration de la surface du produit concerné. La première extrémité (E1) des moyens optiques peut comporter un pourtour (11) adapté pour permettre l'ajout et/ou la solidarisation à l'appareil d'un élément optique de grossissement qui peut s'avérer nécessaire pour que l'utilisateur visualise la
fluorescence des éléments marqués. En particulier, il est permis avec un tel élément optique de grossissement de détecter (ou mieux distinguer) de petites particules fluorescentes.
L'ensemble de diodes illustré à la figure 1 est orienté dans une direction ayant une composante transversale par rapport à l'axe d'alignement des extrémités (E1, E2) des moyens optiques. Le trajet du rayonnement d'excitation (5) issu de la source lumineuse (2) traverse par exemple un filtre d'excitation (F1) prévu pour affiner chromatiquement l'émission et est ensuite réfléchi par un miroir (14) de type dichroïque. Le miroir (14) réfléchit ce rayonnement en direction de la zone de marquage (60) formée sur le support, afin d'éclairer par-dessus cette zone (60). Le produit marqué est disposé sous la seconde extrémité et peut être observé visuellement comme représenté par la référence (3). Le filtre d'excitation (F1) favorise le passage des longueurs d'ondes spécifiques du rayonnement provenant de la source lumineuse choisie émettant dans le visible. Ces longueurs d'ondes seront déterminées en fonction du fluorochrome, c'est à dire de la matière fluorescente choisie pour produire sous une longueur d'onde d'excitation donnée du visible, une longueur d'onde d'émission fluorescente dans le spectre des rayonnements visibles. Le miroir dichroïque (14) est adapté aux deux spectres de longueur d'onde excitatrice et d'émission.
Dans le mode de réalisation de la figure 1 , le boîtier (1) de l'appareil portable de détection est avantageusement préhensible et permet de loger non seulement la source lumineuse (2) mais également les moyens optiques avec un bloc filtre (BF) adéquat. Une interface utilisateur (10) pour commander notamment la source lumineuse (2) et des moyens d'alimentation électrique pour alimenter la source lumineuse (2) sont en outre disposés dans le boîtier (1). Le logement (12) permet de recevoir des batteries (9V PP3 ou analogue) pour une utilisation autonome de l'appareil. Ce boîtier (1) compact peut ainsi délimiter la totalité de l'appareil ce qui le rend aisé à manipuler. Dans un mode de réalisation de l'invention, le boîtier (1) comporte un axe longitudinal correspondant à l'orientation du faisceau
lumineux focalisé au niveau de la source lumineuse (2) et possède transversalement un périmètre inférieur à 25 cm. Les extrémités (E1 , E2) des moyens optiques sont par exemple séparées entre elles d'une distance déterminée (d, d') de l'ordre de quelques centimètres et pouvant dépasser 2 cm (une distance d'environ 4 cm étant suffisante). La distance (d) peut naturellement être plus courte pour des variantes de réalisation où lesdits moyens optiques sont externes au boîtier incluant la source lumineuse (2). Selon certaines formes de réalisation de l'invention, les moyens optiques comprennent un axe longitudinal correspondant à un axe de visualisation des éléments marqués par fluorescence et la distance (d') entre les extrémités des moyens optiques est comprise entre 2 et 35 cm. Cette distance (d, d') est par exemple comprise entre 2 et 15 cm. La première extrémité (E1) peut comporter un filtre (F2), par exemple rouge lorsque l'excitation est réalisée au-delà de 600 nm, le filtre d'excitation (F1) étant par exemple un filtre vert, ce filtre rouge formant alors un filtre d'émission. Ce filtre (F2) permet notamment d'isoler les photons de l'émission fluorescente (4) des photons d'excitation (5) émis par la source lumineuse (2) et réfléchis par le miroir (14). Il est alors facile de visualiser la fluorescence de molécules ayant un pic d'émission par exemple à 605 nm. On comprend que les moyens optiques peuvent comporter un bloc filtre (BF) incluant un tel filtre d'émission (F2) pour filtrer les longueurs d'ondes spécifiques d'émission de la fluorescence des éléments marqués. Cela permet la visualisation des particules fluorescentes dans la zone de marquage (60). Le filtre d'émission (F2), disposé entre les deux extrémités (E1 , E2), permet d'éliminer au moins les rayonnements de longueur d'onde inférieur à un seuil déterminé. En pratique, ce filtre (2) permet donc de filtrer les rayonnements d'excitation pour ne laisser passer que les rayonnements d'émission dans le visible des éléments marqués. Dans des variantes de réalisation où le rayonnement d'excitation est rendu monochromatique, par exemple grâce au premier filtre (F1) d'excitation, ce second filtre (F2) peut être supprimé. Dans le cas de l'observation par épifluorescence de fluorescences émettant dans I1UV (à la différence de la présente invention),
le filtre d'émission (F2) n'est pas nécessaire. En effet, les ondes d'excitation étant très peu visibles, la réflexion des ondes d'excitation ne gêne pas l'observation des ondes émises issues de la fluorescence.
L'interface utilisateur (10) peut comprendre au moins deux boutons pour permettre soit d'allumer des diodes de type LED pour un simple éclairage permettant de facilement se positionner sur la zone de marquage (60), soit allumer l'ensemble à diodes permettant d'exciter les fluorophores sur la zone de marquage (60). Pour permettre ces différents types d'allumage, les diodes électroluminescentes sont connectées à une unité électronique (8) de traitement agencée pour contrôler l'alimentation des diodes. Dans l'exemple de particules ayant un pic d'excitation à 570 nm, une lumière rouge issue d'une ou plusieurs sources délocalisées permet ainsi de se placer sur la zone (60) et une lumière verte permet l'excitation des fluorophores. Les sources délocalisées sont disposées en dehors de l'optique mais dans le boîtier (1), par exemple en position adjacente au verre formant la seconde extrémité (E2). Ce verre (ou élément transparent analogue) peut être antireflet pour améliorer la visualisation, en limitant les pertes dues à la réflexion des rayons d'excitation et d'émission.
Comme illustré à la figure 1 , le boîtier (1) est sensiblement parallélépipédique, de type format de poche et comporte sur un même côté l'interface utilisateur (10) et ladite première extrémité (E1) des moyens optiques.
Les moyens optiques permettent un grossissement déterminé qui peut être fonction la taille des particules à observer. Ces particules consistent par exemple en des microsphères (ayant un diamètre pouvant être compris entre 0,2 et 20 μm), par exemple du type décrit dans le brevet WO 01/30936 du même demandeur. Le nombre de diodes LED ainsi que le grossissement de l'optique dépendent de la taille des microsphères à observer : un objectif de grossissement par 10 peut être prévu par exemple pour détecter des microsphères de l'ordre de 10 μm. Dans le mode de réalisation de la figure, l'objectif (non représenté) peut être un élément distinct du boîtier (1), de sorte que le boîtier (1) convient à tout type
molécules fluorescentes lorsque l'on utilise en complément l'objectif approprié. L'objectif peut se disposer contre la seconde extrémité (E2) des moyens optiques.
En référence à la figure 2, les moyens optiques sont formés dans un ensemble sensiblement cylindrique apte à s'aligner avec un dispositif annulaire constituant ledit boîtier (1'). Dans cette variante de réalisation, le corps (21) du boîtier (1') forme une couronne (21) dotée de logements pour recevoir des diodes électroluminescentes (20) orientées vers le centre de la couronne. Les logements du corps (11) peuvent être inclinés en direction d'un côté inférieur de la couronne, tandis que les moyens optiques sont disposés du côté supérieur de la couronne (21).
Avec l'agencement de diodes en couronne, les diodes (LEDs) sont focalisées en un même point afin d'augmenter la quantité de lumière sur la zone de marquage (60) à observer. Cet agencement permet d'exciter les fluorophores de la zone de marquage ou corps à observer. Pour des microsphères de 8 à 10 μm, un objectif de grossissement X10 peut être utilisé et la couronne (21) comporte 4 LEDs focalisées. Pour visualiser des microsphères plus petites, par exemple de 5μm, il est préférable d'utiliser un système comportant 8 LEDs focalisées avec un objectif de grossissement supérieur, par exemple X45. Le nombre de diodes peut toutefois varier en fonction des caractéristiques intrinsèques de chaque diode (luminosité, angle d'ouverture, niveau d'alimentation). Des LEDs bleues à pic d'émission autour de 470 nm peuvent convenir pour la détection de molécules fluorescentes ayant leur pic d'absorption à 570 nm, même si l'excitation est alors à 30 % de son maximum. Le spectre d'émission des LEDs bleues ne dépassant pas
600 nm, il est possible de se passer de filtre d'excitation (F1) en utilisant un filtre d'émission de type à bande passe-haut à 610 nm. Dans des variantes de réalisation avec couronne (21), un filtre d'excitation peut aussi être envisagé, le filtre (F1) étant alors annulaire (non représenté) ou composé d'une pluralité de filtres associés chacun à une ou plusieurs diodes (20).
L'agencement avec couronne ou forme analogue (tronc de cône, pyramide,
etc.) permet une grande souplesse pour être associé à des moyens optiques dotés d'un grossissement plus ou moins élevé.
Un mode de réalisation de l'invention va à présent être plus particulièrement décrit en référence à la figure 3. Le boîtier (1") est constitué d'un dispositif d'émission laser (7) dans l'exemple de la figure 3. Le circuit de pompe (73) du dispositif d'émission laser est ajusté à une longueur d'onde atteignant environ 532 nm pour générer une lumière verte. Un dispositif d'émission laser du type ayant une longueur d'onde de l'ordre de 532 nm peut convenir pour exciter efficacement des molécules ayant un pic d'absorption à environ 570 nm.
Les moyens optiques utilisés avec le dispositif d'émission laser (7) peuvent comporter un moyen support (70) doté d'un bras (75) pour fixer de façon amovible le boîtier (1") incorporant la source lumineuse laser (2). L'utilisation d'une source de type laser permet d'obtenir un éclairage puissant focalisé sur une surface réduite (de diamètre inférieur à 5 mm) et le boîtier (1") de type cylindrique contenant la source laser est d'un encombrement extrêmement réduit. Le boîtier (1") a alors une taille comparable à un stylo. Une telle utilisation est avantageuse pour observer des corps de très petite taille, comme par exemple des microsphères ayant un diamètre compris entre 0,2 et 5μm.
La longueur d'onde des lasers verts du type émettant à 532 nm permet d'exciter une famille de molécules fluorescentes qui s'excitent autour de 570 nm et émettent au-delà de 610 nm (longueur d'onde du rouge). L'excitation à 532 nm n'est certes pas optimale puisque le pic d'absorption est à 570 nm, néanmoins la puissance lumineuse des lasers peut compenser le décalage entre le pic d'émission de la source et le pic d'absorption (dans la mesure où il y a un recouvrement). Par ailleurs, la précision chromatique d'un dispositif à émission laser (7) permet de s'affranchir de l'utilisation des filtres d'excitation (F1) qui sont nécessaires lorsque l'on utilise des LEDs par exemple vertes ou blanches comme sources lumineuses.
Dans ce mode de réalisation, les moyens optiques peuvent consister en un objectif conventionnel, avec ou sans oculaire et sans filtre d'émission. L'objectif peut être analogue à ceux utilisés comme élément de grossissement d'un microscope. Le dispositif d'émission laser (7) peut être du type courant ayant une puissance inférieure à 5 mW pour se conformer aux normes de sécurité. A titre d'exemple non limitatif, le dispositif d'émission laser (7) comporte une diode laser du fabricant Sony, génère une onde constante dont la longueur d'onde est 532 nm. Il a une puissance en sortie d'alimentation 4,99 mW et une durée de vie en fonctionnement de l'ordre de 2000 à 3000 heures. Le boîtier (1") comporte en outre un logement pour au moins une batterie, et par exemple 2 accumulateurs de type AAA.
La figure 4 illustre une variante de réalisation dans laquelle le boîtier comporte un axe longitudinal et au moins un alignement de diodes électroluminescentes selon cet axe longitudinal. Une barre (B) de LEDs peut être incorporée dans le boîtier et alimentée par des batteries ou une alimentation secteur, une interface utilisateur permettant de contrôler l'allumage/extinction de la source lumineuse ainsi constituée. Les moyens optiques peuvent consister en un dispositif de type loupe (L) auquel est associé un filtre d'émission (F2). Le dispositif de type loupe ou un moyen de grossissement analogue peut être rendu solidaire et articulé par rapport au boîtier. Un filtre d'excitation (non représenté) peut éventuellement être prévu, par exemple en position adjacente à la barre (B) de diodes électroluminescentes. Le boîtier peut comporter un profil en L avec une partie support pour poser le produit à authentifier et une partie latérale où est disposée la source lumineuse.
Il est possible grâce à l'appareil portable de détection de révéler un marquage sécurisé en excitant les molécules fluorescentes directement sur un textile fabriqué à partir de fils ensimés. Le fluorophore est préalablement inséré dans l'huile d'ensimage recouvrant le fil.
Il doit être compris que l'invention propose un appareil permettant de détecter des marquages dans divers domaines, par exemple pour des
œuvres d'art, des textiles, du verre creux ou plat (par traitement de surface, par sérigraphie, ou par jet d'encre), des caractères et dessins imprimés par transfert thermique, offset ou héliogravure, des pièces détachées métalliques (par traitement de surface ou par utilisation d'une huile de lubrification), des blisters aluminium et hologrammes (par héliogravure ou par flexographie), des papiers de sécurité, des billets de banque et des papiers de scellement de type bandelettes fiscales. Par papier de sécurité, on entendra par exemple des papiers couchés tels que des chèques, des titres, des pièces d'identité, des étiquettes, des bandelettes fiscales ou tout autre papier à vocation infalsifiable. Une application de l'appareil peut être envisagée dans le domaine de la biologie moléculaire, en particulier pour la détection de microsphères fluorescentes signalant une hybridation d'ADN sur des biopuces ou puces à ADN. Ces microsphères fluorescentes servent alors de marqueur par fixation sur au moins un brin d'ADN hybride. Pour ce type d'application, seuls les brins d'ADN hybrides pourront se fixer sur les microsphères fluorescentes, par exemple par une liaison biotine - streptavidine.
L'appareil portable de détection optique permet de visualiser facilement des particules fluorescentes contenues dans tout ou partie d'un produit à authentifier, par exemple dans une zone de marquage (60) associée à un produit. L'utilisateur doit simplement appuyer sur un bouton de l'interface (10) pour exciter les particules fluorescentes. La zone de marquage (60) formée sur le support devant être observé gjâκse_àJ^ppajre|L
consiste par exemple en un composé d'adhésion ou d'enduction, par exemple des encres invisibles, comprenant une proportion minimale de molécules fluorescentes.
Ces molécules, par exemple incorporées dans des corps de très petite taille ayant un volume inférieur à 0,1 mm3, dans des microsphères de quelques microns de diamètre, sont invisibles à la lumière du jour mais détectables optiquement par épifluorescence dans une plage de longueur d'onde d'excitation comprise dans le visible. L'appareil selon l'invention constitue donc avantageusement un détecteur de terrain pour authentifier
des produits contenant un marquage secret par des particules fluorescentes, cette détection pouvant être réalisée rapidement sur place sans nécessiter l'envoi du produit dans un laboratoire équipé avec un matériel lourd de type microscope à épifluorescence. La fluorescence à détecter peut aussi résider dans au moins un fil ou fibrette. La détection peut ainsi être réalisée pour des particules fluorescentes imprégnant ou recouvrant au moins un fil ou fibrette associée à un produit pour en assurer le marquage. Un tel fil ou fibrette est par exemple associé à un papier de sécurité. En variante, la fluorescence à détecter peut provenir de microsphères. La demande de brevet WO 01/30936 du même demandeur décrit un exemple spécifique de microsphères disposant de liaisons avec des molécules fluorescentes. De telles microsphères fluorescentes peuvent être également associées à un papier de sécurité, des billets de banque, des papiers de scellement, des matériaux à base de polymères, ou d'autres types de support tels que cuir, textile... De telles microsphères fluorescentes peuvent aussi être dispersées dans une huile de lubrification ou un traitement de surface de pièces métalliques.
On comprend que la visualisation peut aussi bien être réalisée à travers les moyens optiques de l'appareil selon l'invention, directement par l'œil humain (3), ou par l'intermédiaire d'un dispositif de type caméra numérique, par exemple caméra CCD (Charge Coupled Device), pouvant éventuellement se fixer du côté de la première extrémité (E1) des moyens optiques de façon à permettre une visualisation de la zone (60) à observer sur un écran. Une cellule photosensible permet également la détection grâce à sa sensibilité aux photons. Il peut ainsi être envisagé une détection sans visualisation, un signal de détection pouvant être traduit de façon sonore (connexion à une alarme) ou par une mesure de luminosité.
Il doit être évident pour les personnes versées dans l'art que la présente invention permet des modes de réalisation sous de nombreuses autres formes spécifiques sans l'éloigner du domaine d'application de l'invention comme revendiqué.