WO2006075930A1 - Procede pour obtenir de l'eau distillee et dispositif de sa mise en oeuvre - Google Patents

Procede pour obtenir de l'eau distillee et dispositif de sa mise en oeuvre Download PDF

Info

Publication number
WO2006075930A1
WO2006075930A1 PCT/RU2005/000562 RU2005000562W WO2006075930A1 WO 2006075930 A1 WO2006075930 A1 WO 2006075930A1 RU 2005000562 W RU2005000562 W RU 2005000562W WO 2006075930 A1 WO2006075930 A1 WO 2006075930A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
tank
distilled water
pipeline
level
Prior art date
Application number
PCT/RU2005/000562
Other languages
English (en)
Russian (ru)
Inventor
Victor Alexandrovich Chernysh
Sergey Victorovich Chaykin
Original Assignee
Victor Alexandrovich Chernysh
Sergey Victorovich Chaykin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Alexandrovich Chernysh, Sergey Victorovich Chaykin filed Critical Victor Alexandrovich Chernysh
Publication of WO2006075930A1 publication Critical patent/WO2006075930A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/046Treatment of water, waste water, or sewage by heating by distillation or evaporation under vacuum produced by a barometric column
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Definitions

  • a method of obtaining distilled water and a device for its implementation A method of obtaining distilled water and a device for its implementation.
  • the invention relates to methods for desalination of sea water and devices for its implementation and may find application in the design and manufacture of desalination plants for fresh water for agriculture (watering cultivated plant crops), for industry and utilities.
  • desalination The removal of salts from water to a limit close to their content in distilled water (several mg / l) is called desalination, and the removal of salts to concentrations acceptable for drinking water (up to 1 g / l) is called desalination.
  • Desalination of water by electrodialysis or reverse osmosis is characterized by significantly lower energy costs compared to distillation.
  • electrodialysis selective, ion-exchange membranes are used.
  • Electricity consumption per 1 m 3 of water desalted by electrodialysis is up to 30 kWh, and reverse osmosis up to 15 kWh.
  • water can be desalted by 90%, reverse osmosis - by 98%.
  • water desalination by electrodialysis or reverse osmosis is associated with significant energy costs, the manufacture of quite complex and expensive desalination plants, constant monitoring of their performance, repair, replacement of membranes with a limited service life, etc.
  • Desalination of sea water by distillation is based on the evaporation of water with further condensation of steam.
  • the evaporation rate depends on the temperature of the water and the pressure difference between the pressure above its surface and the pressure of saturated vapors at a given temperature. When the pressure above the surface of the water is equal to the pressure of saturated water vapor at a given temperature, evaporation will stop. If continuously formed water vapor is formed, the evaporation process will continue. This can be achieved in two ways: by pumping out the vapors with a vacuum pump followed by their condensation outside the zone of reduced pressure or by condensation of the vapor and removal of condensate from the zone of reduced pressure. As a third option, a combination of these methods is used.
  • the first method is not used due to high energy costs.
  • the third method is used, for example, in the inventions [4, 5].
  • the second method is used in the invention [6], and it is the closest prototype of the claimed method.
  • the disadvantage of this method is the very low productivity of the desalination plant. This is due to the fact that solar heaters have a very low specific (per 1 square meter) power. It is known that per 1 square meter of the earth’s surface, at the equator only 157 watts of energy from the sun fall, and the specific heat of vaporization at room temperature is 2450 kJ / kg. Therefore, to evaporate one kilogram of water per second, a solar heater with an area of 15605 square meters is needed. If we take into account the efficiency of the heater, then we obtain the cyclopean dimensions of the solar heater. But that's not all. To condense the vapors, the same amount of energy must be taken from the vapor.
  • a common drawback of all these desalination methods is that with any method, water molecules must undergo a phase transition twice. First, the water goes into steam, and then the steam goes into water, but physically these transitions are carried out in different places with different working fluids. At the first transition, energy is taken from desalinated water, which is then cooled very much, and to compensate for the losses, it has to be heated. And at the second transition, energy is taken from the steam, while the condenser heats up, the cooling of which, without additional energy costs, takes place too slowly.
  • the aim of the present invention is to remedy these disadvantages.
  • the body itself is raised above sea level to such a height that the water level in the tank is slightly higher than the pipeline with hot refrigerant, which is about 10 meters. This creates the conditions for obtaining a vacuum above the surface of the water in the tank.
  • the invention is illustrated in the figure.
  • the desalination plant device for implementing the proposed method is a sealed tank 1 mounted on a stand 2.
  • the upper end of the tank is above the level of the water column 3 in the tube (the level of the water column in the Torricelli barometer at a given atmospheric pressure), the upper end of which is sealed, and the lower end dipped in water 4.
  • the tank has three pipelines: injection 5 for sea water, drain 6 for brine and distilled water 7.
  • the lower ends of all pipelines are located below the level of desalinated water.
  • the discharge pipe 5 is equipped with a water intake with a filter 8 and a pump 9.
  • the lower end of the drain pipe 6 is equipped with a locking device (valve) 10, opening or closing it.
  • a locking device valve
  • a refrigerator 11 is located next to the tank 1.
  • the pipeline with refrigerated refrigerant 13 is used to condense water vapor, which flows from it into the pipeline for distilled water 7, and from it into the tank for distilled water 14.
  • the pipeline for distilled water 7 contains a locking device (valve) 15. At the top of the tank there is a non-return valve 16, which opens when the pressure in it increases and closes when the pressure drops below atmospheric pressure and the tank is full. This sensor signals that the tank is full with water. Inside the tank there is a sensor for the lower limit level of water 18. The height of the lower limit level of water 19 is selected from the condition that the pipeline with heated refrigerant 12 should always be below the water level in the tank, that is, completely closed by water.
  • the principle of operation of the desalination plant is to create a reduced pressure above the surface of the water, which leads to its boiling, intense vaporization and subsequent condensation of water vapor in a special receiver. Water vapor condenses and merges into the receiver 14.
  • the Torricelli principle is used. Desalinated water is pumped into tank 1 with closed taps of drain 10 and pumping out 15 pipelines. Air from the tank exits through a check valve 16 located at the top of the tank. When the tank 1 is filled, and water begins to pour out of it through the check valve, at the signal from the tank fullness sensor 17, the taps 10 of the drain pipe and 15 of the pipe for distilled water open.
  • Water under its own weight, tends to go down, but atmospheric pressure counteracts it, so the water level will drop to about 10 meters above sea level.
  • the exact height of the water level depends on the atmospheric pressure at a given moment, at a given geographical point on the earth.
  • the refrigerator 11 designed to condense water vapor.
  • the pipeline with heated refrigerant 12 is below the water level in the tank and gives off its heat, and the pipeline with cooled refrigerant 13 is above the water level in the tank and is used to condense water vapor that flows into the distilled water pipeline 7.
  • Condensed water flows by gravity into a pipeline for distilled water 7 and through it to a container for distilled water 14.
  • the tank fullness sensor 17 At the moment when water begins to pour out of the tank through the non-return valve 16, the tank fullness sensor 17 generates a signal that opens the taps on the drain pipe 10 and the distilled water pipe 15. The non-return valve of the tank 16 closes, the water level drops, again above the water surface reduced pressure is created and the distillation process resumes.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

L'invention appartient au domaine des procédés de dessalage d'eau de mer et des dispositifs de leurs mise en oeuvre; elle peut s'utiliser dans la conception et la fabrication de stations de dessalage à des fins de production d'eau douce destinée à l'agriculture, à l'industrie et aux services municipaux. Le fonctionnement de cette installation de dessalage est fondé sur la création d'une pression réduite au-dessus de la surface de l'eau, ce qui provoque sa mise en ébullition, la formation intense de vapeur puis la condensation de la vapeur d'eau dans un refroidisseur spécialement conçu. Afin de ne pas gaspiller l'énergie pour créer un vide dans le réservoir, on utilise le principe de Toricelli. Un réservoir étanche est placé à une hauteur d'environ 10,5 m. Il comprend trois tuyaux, un d'amenée, un autre de refoulement et un troisième destiné à l'eau distillée. Leurs extrémités inférieures se trouvent en dessous du niveau de l'eau à dessaler. L'eau, sous l'effet de son propre poids, a tendance à descendre mais elle est contrée par la pression atmosphérique, ce qui fait que le niveau d'eau va baisser jusqu'à un niveau qui se trouve à environ 10 m au-dessus du niveau de mer. Une dépression se crée au-dessus de l'eau dans le réservoir. Une pompe est montée sur le tuyau d'amenée, qui amène en continu de l'eau fraîche dans le réservoir; de là, l'eau s'écoule par gravité vers la mer dans le tuyau de refoulement. De cette manière, l'eau se retrouve dans la zone de basse pression dans laquelle se produit son intense évaporation. Près du réservoir l'on a disposé un refroidisseur qui est muni de deux tuyaux pour les caloporteurs froid et réchauffé, qui se trouvent à l'intérieur du réservoir. Le refroidisseur est destiné à la condensation des vapeurs d'eau. Le tuyau avec le caloporteur réchauffé se trouve en dessous du niveau dans le réservoir et lui communique sa chaleur, et le tuyau avec le caloporteur froid se trouve en dessus du niveau d'eau dans le réservoir et prend la chaleur de la vapeur. La vapeur est condensée sur le tuyau froid et s'écoule en suivant ce tuyau dans le tuyau pour l'eau distillée, puis dans le réservoir pour l'eau distillée.
PCT/RU2005/000562 2005-01-12 2005-11-14 Procede pour obtenir de l'eau distillee et dispositif de sa mise en oeuvre WO2006075930A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2005100268 2005-01-12
RU2005100268/15A RU2005100268A (ru) 2005-01-12 2005-01-12 Способ получения дистиллированной воды и устройство для его реализации

Publications (1)

Publication Number Publication Date
WO2006075930A1 true WO2006075930A1 (fr) 2006-07-20

Family

ID=36677904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2005/000562 WO2006075930A1 (fr) 2005-01-12 2005-11-14 Procede pour obtenir de l'eau distillee et dispositif de sa mise en oeuvre

Country Status (2)

Country Link
RU (1) RU2005100268A (fr)
WO (1) WO2006075930A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016013997A1 (fr) * 2014-07-24 2016-01-28 Hse Hi̇ti̇t Solar Enerji̇ Anoni̇m Şi̇rketi̇ Système de purification d'eau à colonne barométrique
CN112431257A (zh) * 2020-11-16 2021-03-02 张广英 一种太阳能发电加热气泡泵水系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2664943C2 (ru) * 2016-06-14 2018-08-23 Федеральное государственное бюджетное военное образовательное учреждение высшего образования "Военно-космическая академия имени А.Ф.Можайского" Министерства обороны Российской Федерации Способ вакуумного опреснения солёной воды и устройство для его осуществления
CN117582684B (zh) * 2024-01-19 2024-03-29 大庆亿鑫化工股份有限公司 一种生产工业用烷烃清洗剂用提取装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4880504A (en) * 1987-02-24 1989-11-14 Cellini John V Vacumm distillation system with spiralled cold coil
US4985122A (en) * 1986-06-18 1991-01-15 Vaqua Limited Vacuum distillation apparatus and method with pretreatment
RU2087421C1 (ru) * 1992-08-14 1997-08-20 Азербайджанский научно-исследовательский институт водоснабжения, канализации, гидротехнических ссоружения и инженерной гидрогеологии "АзВОДГЕО" Опреснительная установка
RU2238782C2 (ru) * 2002-10-02 2004-10-27 Луганцева Анна Игоревна Устройство для обработки воды

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4985122A (en) * 1986-06-18 1991-01-15 Vaqua Limited Vacuum distillation apparatus and method with pretreatment
US4880504A (en) * 1987-02-24 1989-11-14 Cellini John V Vacumm distillation system with spiralled cold coil
RU2087421C1 (ru) * 1992-08-14 1997-08-20 Азербайджанский научно-исследовательский институт водоснабжения, канализации, гидротехнических ссоружения и инженерной гидрогеологии "АзВОДГЕО" Опреснительная установка
RU2238782C2 (ru) * 2002-10-02 2004-10-27 Луганцева Анна Игоревна Устройство для обработки воды

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016013997A1 (fr) * 2014-07-24 2016-01-28 Hse Hi̇ti̇t Solar Enerji̇ Anoni̇m Şi̇rketi̇ Système de purification d'eau à colonne barométrique
CN112431257A (zh) * 2020-11-16 2021-03-02 张广英 一种太阳能发电加热气泡泵水系统

Also Published As

Publication number Publication date
RU2005100268A (ru) 2006-06-20

Similar Documents

Publication Publication Date Title
CN100584765C (zh) 自然真空低温蒸馏海水淡化方法及装置
US20170233264A1 (en) Desalination system for the production of potable water
CN201201907Y (zh) 一种自然真空低温蒸馏海水淡化装置
KR101811394B1 (ko) 해수담수화장치
US7811420B2 (en) Isothermal gas-free water distillation
KR20110099841A (ko) 해수와 히트펌프 시스템을 이용하여 식음용 해양 청정수를 제조하는 방법 및 제조 장치
JP2007309295A (ja) 淡水化発電プラント
US10954138B2 (en) Liquid purification with film heating
CN211595081U (zh) 一种液体重力蒸馏法海水淡化装置
RU2309125C2 (ru) Устройство для опреснения морской воды
WO2006075930A1 (fr) Procede pour obtenir de l'eau distillee et dispositif de sa mise en oeuvre
JP5398046B2 (ja) 減圧沸騰形海水淡水化装置、及び方法
CN101993122A (zh) 低温热能驱动的双容器负压蒸发水蒸馏分离装置
US10550008B2 (en) Low energy fluid purification system
CN1093341A (zh) 冷冻与蒸发相结合的海水淡化方法及装置
KR20110080215A (ko) 진공증발식 정수설비
DE202006000195U1 (de) Energiesparende solare Entsalzungsanlage
US20050115878A1 (en) System for desalinating and purifying seawater and devices for the system
RU2723858C1 (ru) Устройство для опреснения воды
RU2296715C2 (ru) Устройство для опреснения морской воды
RU2184592C2 (ru) Способ получения пресной воды и опреснитель для его осуществления
EP3299073A1 (fr) Appareil thermique de dessalement
CN206635061U (zh) 一种海水淡化装置
RU2767322C1 (ru) Солнечная станция для дистилляции воды
NL2026420B1 (en) Desalination unit, desalination plant, method for desalination of saline water in order to obtain freshwater, and desalinated water

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05818147

Country of ref document: EP

Kind code of ref document: A1