WO2006073194A1 - Optical waveguide, optical device and optical communication device - Google Patents

Optical waveguide, optical device and optical communication device Download PDF

Info

Publication number
WO2006073194A1
WO2006073194A1 PCT/JP2006/300111 JP2006300111W WO2006073194A1 WO 2006073194 A1 WO2006073194 A1 WO 2006073194A1 JP 2006300111 W JP2006300111 W JP 2006300111W WO 2006073194 A1 WO2006073194 A1 WO 2006073194A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
mode
light
photonic crystal
refractive index
Prior art date
Application number
PCT/JP2006/300111
Other languages
French (fr)
Japanese (ja)
Inventor
Akiko Gomiyou
Jun Ushida
Hirohito Yamada
Tou Thu
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to JP2006550911A priority Critical patent/JPWO2006073194A1/en
Publication of WO2006073194A1 publication Critical patent/WO2006073194A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1225Basic optical elements, e.g. light-guiding paths comprising photonic band-gap structures or photonic lattices

Definitions

  • Optical waveguide, optical device, and optical communication apparatus are Optical waveguide, optical device, and optical communication apparatus.
  • the present invention relates to an optical waveguide made of a photonic crystal obtained by arranging two or more kinds of substances having different refractive indexes in a one-dimensional, two-dimensional, or three-dimensional period, an optical device including the same, and an optical communication Relates to the device.
  • Photonic crystals in which two or more types of materials with different refractive indices are arranged in a multidimensional period in the order of the wavelength of light (usually 0.3 to 0.7 m) have strong light confinement due to the photonic band gap. It is expected to be effective, and it is expected to be applied to various optical devices and micro optical circuits using this. It is also known that an optical waveguide is formed inside a photonic crystal by providing a linear defect in the photonic crystal (see, for example, Non-Patent Document 1).
  • Non-Patent Document 1 J. D. Joannopoulos, P. R. Villeneuve, and S. Fan Photonic Crystal: pu tting a new twist on light, Nature 386 ⁇ 143 pages 1997
  • Non-Patent Document 2 Proceedings of the 51st Joint Conference on Applied Physics, Kitagawa et al., 3rd pp. 1169, Lecture No. 31a-M-3
  • Non-Patent Document 3 Physical 'Review' Letters (2001), Notomi et al., No. 87, No. 25, 25 pages 3902 to 253905
  • An electromagnetic wave (light) in an optical waveguide made of a photonic crystal includes an optical waveguide mode that can be guided (light propagates) and a slab mode that cannot be guided (no light propagates). Or there is a radiation mode.
  • linear defect optical waveguide An optical waveguide obtained by providing a linear defect in the above-described photonic crystal (hereinafter referred to as a linear defect optical waveguide) is sandwiched between two slab mode bands obtained by providing a linear defect.
  • Line-defect waveguide mode formed in the photonic band gap It is common to use it.
  • Non-Patent Document 2 proposes a photonic crystal structure that realizes polarization independence in the photonic band gap.
  • optical waveguides made of photonic crystals a configuration capable of guiding both of the two optical waveguide modes orthogonal to the light traveling direction has been realized.
  • the present invention has been made in view of a serious problem, and it is possible to use two optical waveguide modes orthogonal to the traveling direction of light to improve the degree of design freedom. It is an object of the present invention to provide an optical waveguide and an optical device.
  • the optical waveguide according to the first invention of the present application is an optical waveguide comprising a photonic crystal obtained by arranging two or more kinds of substances having different refractive indexes in a one-dimensional, two-dimensional or three-dimensional period.
  • a refractive index guide mode which is an optical waveguide mode with the lowest frequency.
  • the optical waveguide according to the second invention of the present application is such that light travels in an optical waveguide made of a photonic crystal obtained by arranging two or more kinds of substances having different refractive indexes in a one-dimensional, two-dimensional or three-dimensional cycle.
  • an optical waveguide made of a photonic crystal obtained by arranging two or more kinds of substances having different refractive indexes in a one-dimensional, two-dimensional or three-dimensional cycle.
  • a line defect waveguide mode is used for the first optical waveguide mode
  • the second optical waveguide mode is characterized in that light is propagated by using a refractive index guide mode which is an optical waveguide mode having the lowest frequency in the dispersion relationship of the photonic crystal. (See Figure 9 and Figure 11)
  • An optical waveguide according to the third invention of the present application is an optical waveguide made of a photonic crystal obtained by arranging two or more kinds of substances having different refractive indexes in a one-dimensional, two-dimensional or three-dimensional period. Light is propagated in two optical waveguide modes orthogonal to the traveling direction of light using a refractive index guide mode which is an optical waveguide mode of the lowest frequency in the dispersion relationship of the photonic crystal. (See Figure 10)
  • the refractive index guide mode which is the optical waveguide mode with the lowest frequency, is used for light propagation, so that the optical waveguide has a direction substantially perpendicular to the light traveling direction.
  • Two optical waveguide modes with electric field vectors can propagate.
  • two optical waveguide modes each having an electric field vector in a direction substantially perpendicular to the traveling direction of light can be used in an optical waveguide made of a photonic crystal. Therefore, the degree of freedom in designing the optical waveguide and various optical devices using the optical waveguide is improved.
  • FIG. 1 is a perspective view showing a configuration example of a line defect optical waveguide provided in a photonic crystal.
  • FIG. 2 is a perspective view showing an example of an electric field vector of light propagating in the line defect optical waveguide shown in FIG.
  • FIG. 3 is a graph showing the dispersion relationship of the optical waveguide mode shown in FIG.
  • FIG. 4 is a graph showing the light transmission characteristics of the optical waveguide mode shown in FIG.
  • FIG. 5 is a perspective view showing a second example of an electric field vector of light propagating in the line defect optical waveguide shown in FIG. 1.
  • FIG. 6 is a graph showing the dispersion relationship of the optical waveguide mode shown in FIG.
  • FIG. 7 is a graph showing the light transmission characteristics of the optical waveguide mode shown in FIG.
  • FIG. 8 is a perspective view showing another configuration example of a photonic crystal in which a line defect optical waveguide is formed.
  • FIG. 9 is a perspective view showing another configuration example of a photonic crystal in which a line defect optical waveguide is formed.
  • FIG. 10 is a perspective view showing another configuration example of a photonic crystal in which a line defect optical waveguide is formed.
  • FIG. 11 is a perspective view showing another configuration example of a photonic crystal in which a line defect optical waveguide is formed.
  • FIG. 12 is a graph showing light transmission characteristics when TE-like mode light propagates in a line-defect waveguide mode in a line-defect optical waveguide formed in a photonic crystal.
  • FIG. 13 is a graph showing light transmission characteristics when TM-like mode light propagates in a line defect optical waveguide formed in a photonic crystal by a refractive index guide mode.
  • FIG. 14 is a graph showing light transmission characteristics including a wavelength band corresponding to a mode gap when TM-like mode light propagates through a refractive index guide mode in a line defect optical waveguide formed in a photonic crystal.
  • FIG. 6 is a graph showing light transmission characteristics including a wavelength band corresponding to a mode gap when TM-like mode light propagates in a waveguide by a refractive index guide mode.
  • FIG. 18 is a plan view showing a configuration example of an optical device including the optical waveguide of the present invention.
  • FIG. 19 is a perspective view showing a configuration example of an optical switch including the optical waveguide of the present invention.
  • FIG. 20 is a plan view showing a configuration example of an optical multiplexing / demultiplexing device including the optical waveguide of the present invention.
  • FIG. 21 is a perspective view showing a configuration example of an optical communication device including the optical waveguide of the present invention. Explanation of symbols
  • This refractive index guide mode is an optical waveguide mode in which light is guided by a refractive index difference formed by providing a linear defect in a photonic crystal.
  • FIG. 1 is a perspective view showing a configuration example of a line defect optical waveguide provided in a photonic crystal
  • FIG. 2 shows an example of an electric field vector of light propagating in the line defect optical waveguide shown in FIG. FIG.
  • the optical waveguide shown in FIG. 1 includes, as a photonic crystal 1, a slab layer having a large number of vacancies 10 and also having a silicon (Si) force, and a line in which no vacancies 10 are formed.
  • a defect region is provided.
  • the refractive index of the linear defect region is set to a value larger than the average refractive index of the photonic crystal.
  • This linear defect region becomes a line defect optical waveguide 2, and light travels in the direction of the arrow (Ei) in FIG.
  • the TE-like mode light propagates by the refractive index guide mode, which is an optical waveguide mode at the lowest frequency.
  • the reason why TE-like mode light propagates in the line defect optical waveguide 2 provided in the photonic crystal 1 by the refractive index guide mode is as follows.
  • Non-Patent Document 3 has already revealed that a refractive index guide mode based on the structure of a line-defect optical waveguide exists at the lowest frequency of the slab mode band.
  • This refractive index guide mode is formed by a refractive index difference in a direction orthogonal to the light traveling direction of the line defect optical waveguide 2.
  • the refractive index guide mode based on the structure of the line defect optical waveguide overlaps the frequency band force S slab mode band as shown in the graph of FIG. For this reason, it has been conventionally considered that the refractive index guide mode cannot be used as an optical waveguide mode with a large propagation loss of light (TE-like mode).
  • this refractive index guide mode has a dispersion relationship close to that of a simple thin-line optical waveguide using the material constituting the photonic crystal 1. Therefore, even if the refractive index guide mode frequency band is close to or within the slab mode, light propagates while feeling a weak refractive index difference on the plane orthogonal to the light traveling direction.
  • FIG. 4 is a graph showing the results of calculating the light transmission characteristics of the line defect waveguide 2 shown in FIG. 1 using the FDTD (Finite Difference Time Domain) method.
  • FDTD Finite Difference Time Domain
  • the frequency band with a flat light transmission characteristic shown in FIG. 4 (a) is a line defect waveguide mode region, and the frequency band with a flat light transmission characteristic shown in FIG. 4 (b) is a refractive index guide mode. It is an area.
  • the refractive index guide mode is similar to the line defect waveguide mode (FIG. 4 (a)) formed in the well-known photonic band gap. Light can be propagated with little propagation loss. In other words, the refractive index guide mode can propagate light in a lower frequency band than the line defect waveguide mode. In particular, in the region where the standard wavenumber k is close to the edge of the Brillian zone, the difference between the wave number in the slab mode band becomes large, and the light propagates only in the refractive index guide mode because the coupling between the two modes is weak.
  • This refractive index guide mode is desirably used as an optical waveguide mode when the standard wavenumber k is in the range of 0.25 or more and 0.5 or less in the dispersion relationship of the photonic crystal. The reason is explained below.
  • the refractive index guide mode light propagating in the line defect optical waveguide 2 provided in the photonic crystal 1 is present in the vicinity of the frequency band slab mode or in the slab mode. However, it propagates while feeling a weak difference in refractive index on a plane orthogonal to the traveling direction of light.
  • This refractive index guide mode often exists in the slab mode in the region where the standard wavenumber k is less than 0.25.
  • the light confinement effect by the refractive index guide mode is weak, so the propagation loss of guided light becomes very large, and it propagates only by traveling a distance of about several meters. The light intensity drops from 1/100 to less than 1/1000.
  • the inventors of the present application have confirmed by simulation or the like that there is almost no propagation loss in the propagating light even after traveling through the optical waveguide more than several hundreds of meters.
  • the value of the standard wave number k is equivalent to the case where all wave numbers are considered, considering the values from 0 to 0.5 in the first Brillian zone. Therefore, it is desirable that the standard wavenumber k of the refractive index guide mode is 0.25 or more and 0.5 or less.
  • the electric field vector of the light propagating through the line-defect optical waveguide provided in the photonic crystal is perpendicular to the slab surface of the photonic crystal as shown in Fig. 5, which is only in the TE-like mode direction shown in Fig. 2. There is also a direction (Ex vector in Fig. 5) that is orthogonal to the traveling direction of light.
  • the line-defect optical waveguide provided in the photonic crystal 1 as shown in FIG. 6, it is further away from the lower end frequency of the continuous slab mode band, and is formed based on the structure of the line-defect optical waveguide. It is possible to propagate light by the refractive index guide mode.
  • the optical waveguide mode is called a TM-like mode.
  • the reason why TM-like mode light can be propagated in the refractive index guide mode is that the TE-like mode light described above is used. This is the same as the reason for propagation.
  • the TM-like mode light propagating in the refractive index guide mode also has a frequency band overlapping with the slab mode band as in the case of the TE-like mode light. For this reason, in the refractive index guide mode, it has been conventionally considered that TM-like mode light cannot be used as an optical wave mode because of its large propagation loss.
  • the well-known line-defect waveguide mode has an electric field vector in which a photonic band gap is formed between two optical waveguide modes orthogonal to the light traveling direction. Only one polarized light (TE-like mode) can be propagated, and TM-like mode light cannot be propagated.
  • TE-like mode Only one polarized light (TE-like mode) can be propagated, and TM-like mode light cannot be propagated.
  • the optical waveguide using the refractive index guide mode which is a feature of the present invention, not only the TE-like mode but also the TM-like mode light can be propagated, so the optical waveguide and the optical device using the optical waveguide are designed. The degree of freedom when doing so is improved.
  • the refractive index guide mode is an optical waveguide in which the normalized wavenumber k is in the range of 0.25 to 0.5. It is desirable to use it as a mode.
  • TE-like mode light can be propagated by using a well-known line defect waveguide mode.
  • light in the TE-like mode and the TM-like mode can be propagated by using the refractive index guide mode.
  • the band structure of photonic crystal 1 is optimized using the refractive index difference, periodicity (ratio of high refractive index material and low refractive index material, periodic structure) and slab layer thickness as parameters. By setting, it is possible to propagate the TE-like mode and TM-like mode light into the line defect optical waveguide 2 while maintaining the same light intensity. Like mode and TM-like mode light can be propagated in the same frequency band.
  • the SiO layer is formed with a thickness of about 1 ⁇ m.
  • the substrate has a plurality of holes.
  • a triangular lattice hole-type photonic crystal is formed.
  • This lattice constant is about 0.3
  • the line defect optical waveguide 2 is formed by providing a linear defect that does not form a hole in the light traveling direction. Then, the length of the line defect optical waveguide 2 is set to about 600 m with 20 m force. With such a structure, it is possible to propagate light in the TE-like mode and the TM-like mode to the optical waveguide made of the photonic crystal 1 that has been considered difficult.
  • TE-like mode is an example in which light in the TE-like mode and TM-like mode propagates in the same frequency band in the line defect optical waveguide 2 provided in the photonic crystal 1. It is also possible to propagate mode and TM-like mode light in different frequency bands.
  • the optical waveguide shown in FIG. 8 shows the configuration of an optical waveguide made of a general photonic crystal including the optical waveguide shown in FIG. Each of the photonic crystal regions 3 is formed. In such a configuration, the light traveling direction is the + y direction. Further, the optical waveguide shown in FIG. 8 has a configuration in which the refractive index distribution in the X direction in FIG. Furthermore, when looking at the slab structure of the photonic crystal region 3 and its refractive index distribution in the vertical direction (z-axis direction), the refractive index increases on the slab surface of the photonic crystal region 3.
  • the width and height of the line defect region 6 are appropriately determined, and the line defect region 6 Compared to 6, the slab layer of the photonic crystal region 5 is formed thinner. Even in such a configuration, similarly to the optical waveguide shown in FIG. 8, light having an electric field vector substantially parallel to the X direction and light having an electric field vector substantially parallel to the z direction can be propagated in the refractive index guide mode, respectively. .
  • the lattice constant is 0.38 ⁇ m
  • the hole diameter is 0.16 ⁇ m
  • the line defect region is The width of the slab is about 0.25 m and the slab layer thickness of the photonic crystal region is about 0.05 m.
  • the optical waveguide shown in FIG. 10 has a configuration using a square lattice rod type having a plurality of square lattice rods in the photonic crystal region 7 formed on both sides of the line defect region 8. Have. Even with such a configuration, light having an electric field vector substantially parallel to the X direction and light having an electric field vector substantially parallel to the z direction can be propagated in the refractive index guide mode, similarly to the optical waveguide shown in FIG.
  • the optical waveguide shown in FIG. 11 has a configuration using a three-dimensional photonic crystal structure in which a plurality of rod-shaped substances are laminated in the photonic crystal region 10 with a predetermined gap.
  • the line defect region 11 is formed by providing a material having a refractive index higher than that of the photonic crystal region 10 at a position surrounded by the photonic crystal region 10. Even with such a configuration, similarly to the optical waveguide shown in FIG. 8, two lights having an electric field vector in a direction substantially orthogonal to the light traveling direction can be propagated in the respective refractive index guide modes.
  • the sample used for the measurement has a so-called air bridge structure in which Si is used as the slab layer of the photonic crystal and a large number of vacancies are provided on both sides of the linear defect. SiO in each hole
  • TE-like mode light whose wavelength band is around 1550 nm and whose electric field vector direction is parallel to the slab surface of the photonic crystal is propagated in the sample by the line defect waveguide mode. .
  • the light transmission characteristics of the line defect optical waveguide at this time are as shown in FIG. In Fig. 12, the transmitted light level is about 20 dB overall.
  • the coupling loss between the recessed optical waveguide and the optical fiber for entering light into the line-defect optical waveguide is about 10 dB, and the optical fiber that receives light emitted from the line-defect optical waveguide and the line-defect optical waveguide The coupling loss is about -10dB. Therefore, there is almost no propagation loss of the line defect optical waveguide itself formed in the photonic crystal.
  • the direction of the electric field vector of the incident light is rotated by 90 degrees, and TM-like mode light orthogonal to the slab surface of the photonic crystal is incident on the sample.
  • the light transmission characteristics of the line defect optical waveguide at this time are as shown in FIG.
  • a line defect optical waveguide formed by providing a line defect in a photonic crystal has the same transmission characteristics for two lights having an electric field vector in a direction substantially orthogonal to the light traveling direction.
  • the light of the refractive index guide mode is folded (reflected) at the edge of the Brilliant zone in the wave number space of the refractive index guide mode shown in Figs. That is, a mode gap is formed at the end of the Brillian zone because a periodic structure with a refractive index in the traveling direction of light exists.
  • the mode gap when the optical waveguide mode is the TE-like mode is as shown in FIG. 3, and the mode gap when the optical waveguide mode is the TM-like mode is as shown in FIG.
  • the normalized wave number k is 0.25 or more in the dispersion relationship of the photonic crystal. In the range of 5 or less, light propagates with little loss. On the other hand, in the frequency band of the mode gap, light does not propagate through the line defect optical waveguide.
  • FIG. 14 shows the result of calculation by the FDTD method for the light transmission characteristics when light having an electric field vector orthogonal to the slab surface is incident in the line defect optical waveguide.
  • Figure 15 shows the results of measuring the over-characteristics.
  • Fig. 16 shows the ratio of the lattice constant (a) to the hole radius (r) (rZa) in a triangular lattice hole type photonic crystal as an example of controlling the mode gap frequency and gap width. This shows how the mode gap frequency changes when) is changed as a parameter.
  • Figure 17 shows how the gap width ( ⁇ ) changes when (r Za) is changed as a parameter.
  • Figures 16 and 17 both show the results calculated by the FDTD method.
  • band-2 in Fig. 16 is the standard frequency.
  • Figure 17 shows the change in the gap width ( ⁇ ) with respect to the change in the ratio (rZa) of the lattice constant (a) to the hole radius (r) when light in the 1550nm band is propagated.
  • the frequency and gap width of the mode gap can be controlled by changing the ratio (rZa) of the lattice constant (a) to the hole radius (r) so that the graph forces in Figs. 16 and 17 are also divided. . It can also be seen that a practically effective wavelength width of 1 nm or more and lOnm or less can be obtained as the gap width.
  • the optical waveguide shown in FIG. 18 is an SOI wafer having a SiZSiO ZSi structure on the substrate (Si layer
  • a photonic crystal on the Si layer with a thickness of about 0 ⁇ 25; z m and a SiO layer thickness of about 1 m
  • thin wire optical waveguides 131 and 132 made of Si are connected to the light input / output side of the line defect optical waveguide. Furthermore, trapezoidal interface portions 141 and 142 having a length of about 0.3 / zm are provided between the thin-line optical waveguides 131 and 132 and the line-defect optical waveguide in order to reduce the coupling loss of light.
  • the holes provided in the substrate are formed, for example, by forming a resist having an opening in a hole forming region by an electron beam exposure method and removing the Si layer by dry etching using the resist as a mask. . After that, SiO is embedded in the pores with a thickness of about.
  • a tip single-mode optical fiber is connected to the end faces of the thin-line optical waveguides 131 and 132, and light in the TE-like mode and TM-like mode with a wavelength of 1550 nm is guided through the refractive index.
  • the same results as in FIGS. 12 to 15 are obtained as the light transmission characteristics.
  • the optical waveguide using the refractive index guide mode which is a feature of the present invention, is used, the same transmission characteristics can be obtained for light in the TE-like mode and the TM-like mode, respectively. Therefore, the degree of freedom in designing an optical device including this optical waveguide is improved.
  • a material having a refractive index of about 3 or more such as GaAs, InP, a compound thereof (eg, GalnAsP) or an A1 compound, is selected instead of Si. It is also possible to do this. In that case, to set the light transmission wavelength to the 1550nm band, adjust the lattice constant and the hole diameter, respectively.
  • the optical switch includes two line-defect optical waveguides provided in the photonic crystal 22 and a thin-line optical waveguide connected to the input / output side of the two line-defect waveguides.
  • Spot size converters 241 and 242 for converting the spot size of light are connected to the tips of the thin optical waveguides 231 to 234 connected to the input and output sides of the line defect waveguide, respectively.
  • the thin-line optical waveguides 231 and 232 connected to the input side of the line defect waveguide have different spot sizes.
  • the thin-line optical waveguides 233 and 234 branched at the input end near the converter 241 and connected to the output side of the line defect waveguide are joined immediately before the spot size converter 242.
  • a micro heater 25 is provided in the vicinity of one of the line defect optical waveguides.
  • the light incident through the spot size converter 241 is branched in two directions by the thin-line optical waveguides 231 and 232 and is input to the line-defect optical waveguide made of a photonic crystal, respectively.
  • the light output from the two line defect optical waveguides is combined by the thin line optical waveguides 233 and 234 and output through the spot size change 242.
  • the temperature of the photonic crystal is changed by heating one of the line-defect optical waveguides with the microheater 25, and the effective refractive index of the line-defect optical waveguide is changed.
  • This change in refractive index makes it possible to change the phase difference of the output light from the two line-defect optical waveguide forces from 0 to ⁇ .
  • the output light of the line defect optical waveguide has the same light intensity as the input light, and when the phase difference is ⁇ , the output light of the line defect optical waveguide has a light intensity of zero.
  • an optical switch can be realized by forming two line-defect optical waveguides in a photonic crystal.
  • the above-described refractive index guide mode is used as the optical waveguide mode in the line defect optical waveguide! /.
  • the present embodiment it is possible to switch light in the TE-like mode and the TM-like mode by using the optical waveguide using the refractive index guide mode, which is a feature of the present invention. Therefore, the degree of freedom in designing the optical switch is improved.
  • the optical multiplexing / demultiplexing device includes two photonic crystals 321 and 322 arranged in parallel and forming a line defect optical waveguide, and an input / output side of the line defect waveguide, respectively. And thin wire optical waveguides 331 to 334 to be connected.
  • the thin optical waveguides 331 to 334 connected to the input / output side of the line defect waveguide respectively form a directional coupler by being partly arranged on the input side and the output side.
  • the distance between the cores of the thin optical waveguides 331 to 334 is about 0.2 m, and the length of the coupling site is 2 Set to about 5 ⁇ m. In this case, the complete coupling length is about 5 ⁇ m, and 3 dB couplers 341 and 342 are formed as directional couplers.
  • the light input from port 1 of the thin optical waveguide 331 is branched in two directions by the 3 dB force bra 341.
  • the branched light is reflected by the line defect optical waveguide, and further passes through the 3 dB force bra 341 to be multiplexed.
  • the output light is output as drop light from port 2 of the thin optical waveguide 332.
  • TE-like mode light and TM-like mode light can be multiplexed / demultiplexed by using an optical waveguide using the refractive index guide mode, which is a feature of the present invention.
  • the degree of freedom in designing an optical multiplexing / demultiplexing device is improved.
  • the photonic crystal 42 and the channel waveguide 43 are formed on the SOI substrate 41, and the line defect optical waveguide formed in the photonic crystal 42 is formed.
  • an optical fiber 44 is connected to the waveguide via a channel waveguide 43.
  • the direction of the electric field vector of the light incident on the line defect optical waveguide is indefinite.
  • the direction of the electric field vector of the light incident on the line-defect optical waveguide can be any direction (Ex) shown in (1), (2), and (3) of FIG.
  • a light beam having a line defect is generated without causing any propagation loss regardless of the direction of the electric field vector. Can propagate light.
  • FIG. 21 only the configuration of the light input side of the line defect optical waveguide formed in the photonic crystal 42 is shown, but this configuration is also possible in the configuration in which one optical fiber is connected to the output side of the line defect optical waveguide.
  • the electric field of light supplied to the fiber The direction of the vector can be set freely.
  • the optical waveguide made of the photonic crystal of the present invention is suitable for application to various optical devices including the optical waveguide.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

An optical waveguide and an optical device consisting of photonic crystal which enable the use of two optical waveguide modes perpendicular to the advancing direction of light to thereby enhance a degree of freedom of designing. Light is propagated in an optical waveguide consisting of photonic crystal using a refractive index guide mode that is an optical waveguide mode at a minimum frequency in dispersion relation with photonic crystal. Or, light is propagated using a line defect waveguide mode as the first optical waveguide mode out of two optical waveguide modes perpendicular to the advancing direction of light and using the above refractive index guide mode as the second optical waveguide mode. Alternatively, light is propagated using a refractive index guide mode that is an optical waveguide mode at a minimum frequency in dispersion relation with the photonic crystal as respectively two optical waveguide modes perpendicular to the advancing direction of light.

Description

明 細 書  Specification
光導波路、光デバイス及び光通信装置  Optical waveguide, optical device, and optical communication apparatus
技術分野  Technical field
[0001] 本発明は、屈折率が異なる 2種類以上の物質を、 1次元、 2次元又は 3次元周期で 配列して得られるフォトニック結晶からなる光導波路並びにそれを備えた光デバイス 及び光通信装置に関する。  The present invention relates to an optical waveguide made of a photonic crystal obtained by arranging two or more kinds of substances having different refractive indexes in a one-dimensional, two-dimensional, or three-dimensional period, an optical device including the same, and an optical communication Relates to the device.
背景技術  Background art
[0002] 屈折率が異なる 2種類以上の物質が、光の波長オーダー (通常 0. 3〜0. 7 m)で 多次元周期に配列されたフォトニック結晶は、フォトニックバンドギャップによる強い光 閉じ込め効果が期待でき、これを利用した種々の光デバイス及び微小光回路等への 応用が期待されている。また、フォトニック結晶に線状欠陥を設けることにより、フォト ニック結晶内部に光導波路が形成されることも知られている(例えば、非特許文献 1 参照)。  [0002] Photonic crystals in which two or more types of materials with different refractive indices are arranged in a multidimensional period in the order of the wavelength of light (usually 0.3 to 0.7 m) have strong light confinement due to the photonic band gap. It is expected to be effective, and it is expected to be applied to various optical devices and micro optical circuits using this. It is also known that an optical waveguide is formed inside a photonic crystal by providing a linear defect in the photonic crystal (see, for example, Non-Patent Document 1).
[0003] 非特許文献 1: J. D. Joannopoulos, P. R. Villeneuve, and S. Fan Photonic Crystal: pu tting a new twist on light, Nature 386卷 143頁 1997年  [0003] Non-Patent Document 1: J. D. Joannopoulos, P. R. Villeneuve, and S. Fan Photonic Crystal: pu tting a new twist on light, Nature 386 卷 143 pages 1997
非特許文献 2 :第 51回応用物理学関係連合講演会予稿集、北川等、第 3卷 1169頁、 講演番号 31a-M-3  Non-Patent Document 2: Proceedings of the 51st Joint Conference on Applied Physics, Kitagawa et al., 3rd pp. 1169, Lecture No. 31a-M-3
非特許文献 3 :フィジカル'レビュー'レターズ (2001年)、納富等、第 87卷第 25号 25 3902頁〜 253905頁の図 3  Non-Patent Document 3: Physical 'Review' Letters (2001), Notomi et al., No. 87, No. 25, 25 pages 3902 to 253905
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] フォトニック結晶からなる光導波路内の電磁波(光)には、導波が可能な (光が伝搬 する)光導波モードと、導波できな ヽ (光が伝搬しな 、)スラブモード又は放射モード とが存在する。 [0004] An electromagnetic wave (light) in an optical waveguide made of a photonic crystal includes an optical waveguide mode that can be guided (light propagates) and a slab mode that cannot be guided (no light propagates). Or there is a radiation mode.
[0005] 上述したフォトニック結晶に線状欠陥を設けることで得られる光導波路(以下、線欠 陥光導波路と称す)は、線状欠陥を設けることで得られる 2つのスラブモード帯に挟ま れたフォトニックバンドギャップ中に形成される線欠陥導波路モードを光導波モードと して利用するのが一般的である。 [0005] An optical waveguide obtained by providing a linear defect in the above-described photonic crystal (hereinafter referred to as a linear defect optical waveguide) is sandwiched between two slab mode bands obtained by providing a linear defect. Line-defect waveguide mode formed in the photonic band gap It is common to use it.
[0006] そのため、従来のフォトニック結晶からなる光導波路では、光の進行方向と直交す る 2つの光導波モードのうち、フォトニックバンドギャップが形成されるような電界べタト ルを持つ一方の偏波光し力 f云搬できず、光導波路及びそれを利用した光デバイスを 設計する際の自由度が低いという問題点があった。  [0006] Therefore, in an optical waveguide made of a conventional photonic crystal, one of the two optical waveguide modes orthogonal to the light traveling direction has an electric field vector that forms a photonic band gap. There was a problem that the degree of freedom in designing an optical waveguide and an optical device using the optical waveguide was low because the polarized light could not be transmitted.
[0007] 例えば、非特許文献 2には、フォトニックバンドギャップにおける偏波無依存ィ匕を実 現するフォトニック結晶構造が提案されている。し力しながら、フォトニック結晶からな る光導波路について、光の進行方向と直交する 2つの光導波モードのいずれも導波 可能な構成は実現されて!ヽなかった。  [0007] For example, Non-Patent Document 2 proposes a photonic crystal structure that realizes polarization independence in the photonic band gap. However, for optical waveguides made of photonic crystals, a configuration capable of guiding both of the two optical waveguide modes orthogonal to the light traveling direction has been realized.
[0008] 本発明は力かる問題点に鑑みてなされたものであって、光の進行方向と直交する 2 つの光導波モードの利用を可能にして設計の自由度を向上させたフォトニック結晶 カゝらなる光導波路及び光デバイスを提供することを目的とする。  [0008] The present invention has been made in view of a serious problem, and it is possible to use two optical waveguide modes orthogonal to the traveling direction of light to improve the degree of design freedom. It is an object of the present invention to provide an optical waveguide and an optical device.
課題を解決するための手段  Means for solving the problem
[0009] 本願第 1発明に係る光導波路は、屈折率が異なる 2種類以上の物質を、 1次元、 2 次元又は 3次元周期で配列して得られるフォトニック結晶からなる光導波路において 前記フォトニック結晶の分散関係において、最低周波数の光導波モードである屈折 率ガイドモードを用いて光を伝搬することを特徴とする。(図 1及び図 3参照) [0009] The optical waveguide according to the first invention of the present application is an optical waveguide comprising a photonic crystal obtained by arranging two or more kinds of substances having different refractive indexes in a one-dimensional, two-dimensional or three-dimensional period. In the dispersion relation of crystals, light is propagated using a refractive index guide mode which is an optical waveguide mode with the lowest frequency. (See Figure 1 and Figure 3)
[0010] 本願第 2発明に係る光導波路は、屈折率が異なる 2種類以上の物質を、 1次元、 2 次元又は 3次元周期で配列して得られるフォトニック結晶からなる光導波路において 光の進行方向と直交する 2つの光導波モードのうち、 [0010] The optical waveguide according to the second invention of the present application is such that light travels in an optical waveguide made of a photonic crystal obtained by arranging two or more kinds of substances having different refractive indexes in a one-dimensional, two-dimensional or three-dimensional cycle. Of the two optical waveguide modes orthogonal to the direction,
第 1の光導波モードに、線欠陥導波路モードを用い、  A line defect waveguide mode is used for the first optical waveguide mode,
第 2の光導波モードに、前記フォトニック結晶の分散関係において、最低周波数の 光導波モードである屈折率ガイドモードを用いて光を伝搬することを特徴とする。(図 9及び図 11参照)  The second optical waveguide mode is characterized in that light is propagated by using a refractive index guide mode which is an optical waveguide mode having the lowest frequency in the dispersion relationship of the photonic crystal. (See Figure 9 and Figure 11)
[0011] 本願第 3発明に係る光導波路は、屈折率が異なる 2種類以上の物質を、 1次元、 2 次元又は 3次元周期で配列して得られるフォトニック結晶からなる光導波路において 光の進行方向と直交する 2つの光導波モードに、前記フォトニック結晶の分散関係 において、最低周波数の光導波モードである屈折率ガイドモードを夫々用いて光を 伝搬することを特徴とする。(図 10参照) [0011] An optical waveguide according to the third invention of the present application is an optical waveguide made of a photonic crystal obtained by arranging two or more kinds of substances having different refractive indexes in a one-dimensional, two-dimensional or three-dimensional period. Light is propagated in two optical waveguide modes orthogonal to the traveling direction of light using a refractive index guide mode which is an optical waveguide mode of the lowest frequency in the dispersion relationship of the photonic crystal. (See Figure 10)
[0012] 本発明に係る光導波路では、フォトニック結晶の分散関係において、最低周波数 の光導波モードである屈折率ガイドモードを光の伝搬に用いることで、光の進行方向 にほぼ直交する方向の電界ベクトルを持つ 2つの光導波モードの光を夫々伝搬でき る。 [0012] In the optical waveguide according to the present invention, in the dispersion relationship of the photonic crystal, the refractive index guide mode, which is the optical waveguide mode with the lowest frequency, is used for light propagation, so that the optical waveguide has a direction substantially perpendicular to the light traveling direction. Two optical waveguide modes with electric field vectors can propagate.
発明の効果  The invention's effect
[0013] 本発明によれば、フォトニック結晶からなる光導波路において、光の進行方向にほ ぼ直交する方向の電界ベクトルを持つ 2つの光導波モードを夫々利用できる。従って 、光導波路及びそれを用いる各種光デバイスを設計する際の自由度が向上する。 図面の簡単な説明  [0013] According to the present invention, two optical waveguide modes each having an electric field vector in a direction substantially perpendicular to the traveling direction of light can be used in an optical waveguide made of a photonic crystal. Therefore, the degree of freedom in designing the optical waveguide and various optical devices using the optical waveguide is improved. Brief Description of Drawings
[0014] [図 1]フォトニック結晶に設けた線欠陥光導波路の一構成例を示す斜視図である。  FIG. 1 is a perspective view showing a configuration example of a line defect optical waveguide provided in a photonic crystal.
[図 2]図 1に示した線欠陥光導波路内を伝搬する光の電界ベクトルの一例を示す斜 視図である。  FIG. 2 is a perspective view showing an example of an electric field vector of light propagating in the line defect optical waveguide shown in FIG.
[図 3]図 2に示した光導波モードの分散関係を示すグラフである。  FIG. 3 is a graph showing the dispersion relationship of the optical waveguide mode shown in FIG.
[図 4]図 2に示した光導波モードの光透過特性を示すグラフである。  4 is a graph showing the light transmission characteristics of the optical waveguide mode shown in FIG.
[図 5]図 1に示した線欠陥光導波路内を伝搬する光の電界ベクトルの第二例を示す 斜視図である。  FIG. 5 is a perspective view showing a second example of an electric field vector of light propagating in the line defect optical waveguide shown in FIG. 1.
[図 6]図 5に示した光導波モードの分散関係を示すグラフである。  6 is a graph showing the dispersion relationship of the optical waveguide mode shown in FIG.
[図 7]図 5に示した光導波モードの光透過特性を示すグラフである。  7 is a graph showing the light transmission characteristics of the optical waveguide mode shown in FIG.
[図 8]線欠陥光導波路が形成されるフォトニック結晶の他の構成例を示す斜視図であ る。  FIG. 8 is a perspective view showing another configuration example of a photonic crystal in which a line defect optical waveguide is formed.
[図 9]線欠陥光導波路が形成されるフォトニック結晶の他の構成例を示す斜視図であ る。  FIG. 9 is a perspective view showing another configuration example of a photonic crystal in which a line defect optical waveguide is formed.
[図 10]線欠陥光導波路が形成されるフォトニック結晶の他の構成例を示す斜視図で ある。 圆 11]線欠陥光導波路が形成されるフォトニック結晶の他の構成例を示す斜視図で ある。 FIG. 10 is a perspective view showing another configuration example of a photonic crystal in which a line defect optical waveguide is formed. FIG. 11 is a perspective view showing another configuration example of a photonic crystal in which a line defect optical waveguide is formed.
[図 12]フォトニック結晶に形成した線欠陥光導波路内に TE— likeモードの光を線欠 陥導波路モードにより伝搬するときの光透過特性を示すグラフである。  FIG. 12 is a graph showing light transmission characteristics when TE-like mode light propagates in a line-defect waveguide mode in a line-defect optical waveguide formed in a photonic crystal.
[図 13]フォトニック結晶に形成した線欠陥光導波路内に TM— likeモードの光を屈折 率ガイドモードにより伝搬するときの光透過特性を示すグラフである。  FIG. 13 is a graph showing light transmission characteristics when TM-like mode light propagates in a line defect optical waveguide formed in a photonic crystal by a refractive index guide mode.
[図 14]フォトニック結晶に形成した線欠陥光導波路内に TM— likeモードの光を屈折 率ガイドモードにより伝搬するときのモードギャップに相当する波長帯を含む光透過 特性を示すグラフである。  FIG. 14 is a graph showing light transmission characteristics including a wavelength band corresponding to a mode gap when TM-like mode light propagates through a refractive index guide mode in a line defect optical waveguide formed in a photonic crystal.
圆 15]空孔に SiOを埋め込んだ構造を持つフォトニック結晶に形成した線欠陥光導 [15] Line defect light formed in photonic crystal with a structure in which SiO is embedded in the hole
2  2
波路内に TM— likeモードの光を屈折率ガイドモードにより伝搬するときのモードギヤ ップに相当する波長帯を含む光透過特性を示すグラフである。 6 is a graph showing light transmission characteristics including a wavelength band corresponding to a mode gap when TM-like mode light propagates in a waveguide by a refractive index guide mode.
圆 16]三角格子空孔型のフォトニック結晶に形成した線欠陥光導波路において、格 子定数と空孔半径の比 (rZa)をパラメータとして変化させたときのモードギャップの 周波数の変化の様子を示すグラフである。 圆 16] In a line-defect optical waveguide formed in a triangular lattice hole-type photonic crystal, how the mode gap frequency changes when the ratio of the lattice constant to the hole radius (rZa) is changed as a parameter. It is a graph to show.
圆 17]三角格子空孔型のフォトニック結晶に形成した線欠陥光導波路において、格 子定数と空孔半径の比 (rZa)をパラメータとして変化させたときのモードギャップの ギャップ幅の変化の様子を示すグラフである。 圆 17] Changes in the gap width of the mode gap when the ratio of the lattice constant to the hole radius (rZa) is changed as a parameter in a line-defect optical waveguide formed in a triangular lattice hole-type photonic crystal It is a graph which shows.
圆 18]本発明の光導波路を備えた光デバイスの一構成例を示す平面図である。 圆 19]本発明の光導波路を備えた光スィッチの一構成例を示す斜視図である。 圆 20]本発明の光導波路を備えた光合分波デバイスの一構成例を示す平面図であ る。 FIG. 18 is a plan view showing a configuration example of an optical device including the optical waveguide of the present invention. FIG. 19 is a perspective view showing a configuration example of an optical switch including the optical waveguide of the present invention. FIG. 20 is a plan view showing a configuration example of an optical multiplexing / demultiplexing device including the optical waveguide of the present invention.
圆 21]本発明の光導波路を備えた光通信装置の一構成例を示す斜視図である。 符号の説明 FIG. 21 is a perspective view showing a configuration example of an optical communication device including the optical waveguide of the present invention. Explanation of symbols
1、 12、 22、 321、 322、 42 フォトニック結晶  1, 12, 22, 321, 322, 42 photonic crystal
2 線欠陥光導波路  2-wire defect optical waveguide
3、 5、 7、 10 フォトニック結晶領域  3, 5, 7, 10 Photonic crystal region
4、 6、 8、 11 線欠陥領域 131、 132、 231〜234、 331〜334 細線光導波路 4, 6, 8, 11 line defect area 131, 132, 231 to 234, 331 to 334
141、 142 インタフェース §  141, 142 interface §
241、 242 スポットサイズ変  241 、 242 Spot size change
25 マイクロヒータ  25 Micro heater
341、 342 3dBカプラ  341, 342 3dB coupler
41 SOI基板  41 SOI substrate
43 チャネル導波路  43 channel waveguide
44 光ファイバ一  44 Optical fiber
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 次に、本発明の好適実施形態について添付の図面を参照して説明する。 Next, preferred embodiments of the present invention will be described with reference to the accompanying drawings.
(光導波路)  (Optical waveguide)
先ず、本発明の第 1実施形態に係る光導波路について説明する。先ず、本実施形 態の光導波路で利用する屈折率ガイドモードについて説明する。この屈折率ガイド モードは、フォトニック結晶に線状欠陥を設けることで形成される屈折率差によって光 を導波する光導波モードである。  First, the optical waveguide according to the first embodiment of the present invention will be described. First, the refractive index guide mode used in the optical waveguide of this embodiment will be described. This refractive index guide mode is an optical waveguide mode in which light is guided by a refractive index difference formed by providing a linear defect in a photonic crystal.
[0017] 図 1はフォトニック結晶に設けた線欠陥光導波路の一構成例を示す斜視図であり、 図 2は図 1に示した線欠陥光導波路内を伝搬する光の電界ベクトルの一例を示す斜 視図である。  FIG. 1 is a perspective view showing a configuration example of a line defect optical waveguide provided in a photonic crystal, and FIG. 2 shows an example of an electric field vector of light propagating in the line defect optical waveguide shown in FIG. FIG.
[0018] 図 1に示す光導波路は、フォトニック結晶 1として、多数の空孔 10が配設されたシリ コン (Si)力もなるスラブ層を備え、その一部に空孔 10が形成されない線状欠陥領域 が設けられた構成である。なお、線状欠陥領域の屈折率はフォトニック結晶の平均屈 折率よりも大きい値に設定される。この線状欠陥領域が線欠陥光導波路 2となり、この 線欠陥光導波路 2内では、図 1の矢印方向(Ei)に光が進行する。  The optical waveguide shown in FIG. 1 includes, as a photonic crystal 1, a slab layer having a large number of vacancies 10 and also having a silicon (Si) force, and a line in which no vacancies 10 are formed. In this configuration, a defect region is provided. Note that the refractive index of the linear defect region is set to a value larger than the average refractive index of the photonic crystal. This linear defect region becomes a line defect optical waveguide 2, and light travels in the direction of the arrow (Ei) in FIG.
[0019] ここで、線欠陥光導波路 2内を進行する光の電界ベクトルの向きは、例えば、図 2に 示すように、フォトニック結晶 1のスラブ面に対して平行であって、光の進行方向と直 交する方向(図 2の Exベクトル)である。以下、フォトニック結晶 1内を伝搬する光の電 界べクトルが図 2に示す Exベクトルの向きにあるとき、その光導波モードを TE— like モードと呼ぶ。 [0020] 図 3は図 2に示した光導波モードの分散関係を示すグラフである。図 3に示すように 、図 1に示した線欠陥光導波路 2内では、規格ィ匕波数 k=0の近傍かつ k≠0におい て、連続したスラブモード帯の下端周波数よりも更に低い周波数側に存在し、最低周 波数の光導波モードである屈折率ガイドモードにより、 TE— likeモードの光が伝搬 する。このフォトニック結晶 1に設けた線欠陥光導波路 2内で、屈折率ガイドモードに より、 TE— likeモードの光が伝搬する理由は以下による。 Here, the direction of the electric field vector of the light traveling in the line defect optical waveguide 2 is parallel to the slab surface of the photonic crystal 1 as shown in FIG. 2, for example. The direction perpendicular to the direction (Ex vector in Fig. 2). Hereinafter, when the electric field vector of light propagating in the photonic crystal 1 is in the direction of the Ex vector shown in FIG. 2, the optical waveguide mode is called a TE-like mode. FIG. 3 is a graph showing the dispersion relationship of the optical waveguide mode shown in FIG. As shown in FIG. 3, in the line defect optical waveguide 2 shown in FIG. 1, in the vicinity of the standard frequency k = 0 and k ≠ 0, the frequency side lower than the lower end frequency of the continuous slab mode band. The TE-like mode light propagates by the refractive index guide mode, which is an optical waveguide mode at the lowest frequency. The reason why TE-like mode light propagates in the line defect optical waveguide 2 provided in the photonic crystal 1 by the refractive index guide mode is as follows.
[0021] スラブモード帯の最低周波数に線欠陥光導波路の構造に基づく屈折率ガイドモー ドが存在することは、例えば、非特許文献 3により既に明らかにされている。この屈折 率ガイドモードは、線欠陥光導波路 2の光の進行方向に対して直交する方向に有す る屈折率差によって形成される。  [0021] For example, Non-Patent Document 3 has already revealed that a refractive index guide mode based on the structure of a line-defect optical waveguide exists at the lowest frequency of the slab mode band. This refractive index guide mode is formed by a refractive index difference in a direction orthogonal to the light traveling direction of the line defect optical waveguide 2.
[0022] 線欠陥光導波路の構造に基づく屈折率ガイドモードは、図 3のグラフから分力るよう に周波数帯力 Sスラブモード帯と重なっている。そのため、従来、屈折率ガイドモードは 、光 (TE— likeモード)の伝搬損失が大きぐ光導波モードとして利用できないと考え られていた。  [0022] The refractive index guide mode based on the structure of the line defect optical waveguide overlaps the frequency band force S slab mode band as shown in the graph of FIG. For this reason, it has been conventionally considered that the refractive index guide mode cannot be used as an optical waveguide mode with a large propagation loss of light (TE-like mode).
[0023] し力しながら、この屈折率ガイドモードは、フォトニック結晶 1を構成する物質を用い た単純な細線光導波路の分散関係と近い分散関係を備えている。そのため、屈折率 ガイドモードの周波数帯がスラブモードに近接に又はスラブモード内に存在していて も、光の進行方向と直交する面で弱い屈折率差を感じつつ光が伝搬する。  However, this refractive index guide mode has a dispersion relationship close to that of a simple thin-line optical waveguide using the material constituting the photonic crystal 1. Therefore, even if the refractive index guide mode frequency band is close to or within the slab mode, light propagates while feeling a weak refractive index difference on the plane orthogonal to the light traveling direction.
[0024] 図 4は図 1に示した線欠陥導波路 2の光透過特性を FDTD (Finite Difference Time Domain)法を用いて算出した結果を示すグラフである。  FIG. 4 is a graph showing the results of calculating the light transmission characteristics of the line defect waveguide 2 shown in FIG. 1 using the FDTD (Finite Difference Time Domain) method.
[0025] 図 4の (a)で示す光透過特性が平坦な周波数帯は線欠陥導波路モード領域であり 、図 4の (b)で示す光透過特性が平坦な周波数帯は屈折率ガイドモード領域である。  [0025] The frequency band with a flat light transmission characteristic shown in FIG. 4 (a) is a line defect waveguide mode region, and the frequency band with a flat light transmission characteristic shown in FIG. 4 (b) is a refractive index guide mode. It is an area.
[0026] 図 4の(b)に示すように、屈折率ガイドモードは、従来よく知られたフォトニックバンド ギャップ内に形成される線欠陥導波路モード (図 4 (a) )と同様に、少な 、伝搬損失で 光を伝搬できる。すなわち、屈折率ガイドモードは、線欠陥導波路モードよりも低い周 波数帯で光を伝搬させることが可能である。特に、規格ィ匕波数 kがブリリアンゾーン端 に近い領域では、スラブモード帯における波数との差が大きくなるため、両モード間 の結合が弱くなつて屈折率ガイドモードのみで光が伝搬する。 [0027] この屈折率ガイドモードは、フォトニック結晶の分散関係において規格ィ匕波数 kが 0 . 25以上 0. 5以下の範囲で光導波モードとして利用することが望ましい。以下、その 理由を説明する。 As shown in FIG. 4 (b), the refractive index guide mode is similar to the line defect waveguide mode (FIG. 4 (a)) formed in the well-known photonic band gap. Light can be propagated with little propagation loss. In other words, the refractive index guide mode can propagate light in a lower frequency band than the line defect waveguide mode. In particular, in the region where the standard wavenumber k is close to the edge of the Brillian zone, the difference between the wave number in the slab mode band becomes large, and the light propagates only in the refractive index guide mode because the coupling between the two modes is weak. This refractive index guide mode is desirably used as an optical waveguide mode when the standard wavenumber k is in the range of 0.25 or more and 0.5 or less in the dispersion relationship of the photonic crystal. The reason is explained below.
[0028] 上述したように、フォトニック結晶 1中に設けた線欠陥光導波路 2内を伝搬する屈折 率ガイドモードの光は、その周波数帯力スラブモードに近接あるいはスラブモード内 に存在していても、光の進行方向と直交する面で弱い屈折率差を感じつつ伝搬する 。この屈折率ガイドモードは規格ィ匕波数 kが 0. 25よりも少ない領域ではスラブモード 内に存在している場合が多い。また、規格化波数 kが 0. 25よりも少ない領域では屈 折率ガイドモードによる光の閉じ込め効果が弱いため、導波光の伝搬損失が非常に 大きくなり、数 m程度の距離を進行だけで伝搬光の強度が 100分の 1から 1000分 の 1程度以下にまで低下してしまう。これに対して、規格化波数 kが 0. 25以上では屈 折率ガイドモードによる光の閉じ込め効果が強くなり、屈折率ガイドモードはスラブモ ードから離れて低周波数側に存在する。そのため、屈折率ガイドモードとしての性質 が強く現れ、より低い損失で光を伝搬できる。この場合、光導波路中を数 100 m以 上進行した後でも伝搬光に殆ど伝搬損失が無いことを、本願発明者等はシミュレ一 シヨン等により確認している。なお、規格ィ匕波数 kの値は、第 1ブリリアンゾーンである 0から 0. 5までの値を考えれば、全ての波数について考えた場合と等価になる。従つ て、屈折率ガイドモードの規格ィ匕波数 kは 0. 25以上 0. 5以下であることが望ましい。  [0028] As described above, the refractive index guide mode light propagating in the line defect optical waveguide 2 provided in the photonic crystal 1 is present in the vicinity of the frequency band slab mode or in the slab mode. However, it propagates while feeling a weak difference in refractive index on a plane orthogonal to the traveling direction of light. This refractive index guide mode often exists in the slab mode in the region where the standard wavenumber k is less than 0.25. In addition, in the region where the normalized wave number k is less than 0.25, the light confinement effect by the refractive index guide mode is weak, so the propagation loss of guided light becomes very large, and it propagates only by traveling a distance of about several meters. The light intensity drops from 1/100 to less than 1/1000. On the other hand, when the normalized wavenumber k is 0.25 or more, the optical confinement effect by the refractive index guide mode becomes strong, and the refractive index guide mode exists on the low frequency side away from the slab mode. Therefore, the property as a refractive index guide mode appears strongly, and light can be propagated with lower loss. In this case, the inventors of the present application have confirmed by simulation or the like that there is almost no propagation loss in the propagating light even after traveling through the optical waveguide more than several hundreds of meters. Note that the value of the standard wave number k is equivalent to the case where all wave numbers are considered, considering the values from 0 to 0.5 in the first Brillian zone. Therefore, it is desirable that the standard wavenumber k of the refractive index guide mode is 0.25 or more and 0.5 or less.
[0029] 次に、図 1に示した線欠陥光導波路中を伝搬する他の光導波モードについて説明 する。フォトニック結晶に設けた線欠陥光導波路中を伝搬する光の電界ベクトルは、 図 2に示した TE— likeモードの向きだけでなぐ図 5に示すようにフォトニック結晶の スラブ面に対して垂直であり、かつ光の進行方向と直交する(図 5の Exベクトル)向き もある。このとき、フォトニック結晶 1に設けた線欠陥光導波路内では、図 6に示すよう に連続したスラブモード帯の下端周波数よりも更に低周波数側に離れ、線欠陥光導 波路の構造に基づいて形成される屈折率ガイドモードによって光を伝搬することがで きる。以下、線欠陥光導波路 2内を伝搬する光の電界ベクトルが図 5に示す Exベタト ルの向きにあるとき、その光導波モードを TM— likeモードと呼ぶ。屈折率ガイドモー ドにより TM— likeモードの光を伝搬できる理由は、上述した TE— likeモードの光を 伝搬できる理由と同様である。 Next, another optical waveguide mode propagating in the line defect optical waveguide shown in FIG. 1 will be described. The electric field vector of the light propagating through the line-defect optical waveguide provided in the photonic crystal is perpendicular to the slab surface of the photonic crystal as shown in Fig. 5, which is only in the TE-like mode direction shown in Fig. 2. There is also a direction (Ex vector in Fig. 5) that is orthogonal to the traveling direction of light. At this time, in the line-defect optical waveguide provided in the photonic crystal 1, as shown in FIG. 6, it is further away from the lower end frequency of the continuous slab mode band, and is formed based on the structure of the line-defect optical waveguide. It is possible to propagate light by the refractive index guide mode. Hereinafter, when the electric field vector of light propagating in the line-defect optical waveguide 2 is in the direction of the Ex solid shown in FIG. 5, the optical waveguide mode is called a TM-like mode. The reason why TM-like mode light can be propagated in the refractive index guide mode is that the TE-like mode light described above is used. This is the same as the reason for propagation.
[0030] この屈折率ガイドモードにより伝搬する TM— likeモードの光も、図 6に示すように T E— likeモードの光と同様に周波数帯がスラブモード帯と重なっている。そのため、屈 折率ガイドモードでは、従来、 TM— likeモードの光も伝搬損失が大きいために光導 波モードとして利用できな 、と考えられて 、た。  As shown in FIG. 6, the TM-like mode light propagating in the refractive index guide mode also has a frequency band overlapping with the slab mode band as in the case of the TE-like mode light. For this reason, in the refractive index guide mode, it has been conventionally considered that TM-like mode light cannot be used as an optical wave mode because of its large propagation loss.
[0031] し力しながら、図 7に示す FDTD法により求めた光透過特性の算出結果で示すよう に、 TM— likeモードの伝搬損失も少なぐ光導波モードとして利用可能である。  [0031] However, as shown in the calculation result of the light transmission characteristic obtained by the FDTD method shown in Fig. 7, it can be used as an optical waveguide mode with little propagation loss of the TM-like mode.
[0032] 上述したように、従来よく知られた線欠陥導波路モードでは、光の進行方向と直交 する 2つの光導波モードのうち、フォトニックバンドギャップが形成されるような電界べ タトルを持つ一方の偏波光 (TE— likeモード)しか伝搬できず、 TM— likeモードの 光を伝搬することができな力つた。本発明の特徴である屈折率ガイドモードを用いた 光導波路によれば、 TE— likeモードだけでなく TM— likeモードの光も伝搬できるよ うになるため、光導波路及びそれを用いる光デバイスを設計する際の自由度が向上 する。  [0032] As described above, the well-known line-defect waveguide mode has an electric field vector in which a photonic band gap is formed between two optical waveguide modes orthogonal to the light traveling direction. Only one polarized light (TE-like mode) can be propagated, and TM-like mode light cannot be propagated. According to the optical waveguide using the refractive index guide mode, which is a feature of the present invention, not only the TE-like mode but also the TM-like mode light can be propagated, so the optical waveguide and the optical device using the optical waveguide are designed. The degree of freedom when doing so is improved.
[0033] なお、 TM— likeモードの光を伝搬させる際、上述した TE— likeモードと同様に、 屈折率ガイドモードは、規格化波数 kが 0. 25以上 0. 5以下の範囲で光導波モードと して利用することが望ましい。  [0033] When propagating TM-like mode light, as in the above-described TE-like mode, the refractive index guide mode is an optical waveguide in which the normalized wavenumber k is in the range of 0.25 to 0.5. It is desirable to use it as a mode.
[0034] 次に、上記 TE— likeモード及び TM— likeモードの光を夫々伝搬させる光導波路 の具体例にっ 、て説明する。  Next, a specific example of an optical waveguide that propagates the light in the TE-like mode and the TM-like mode will be described.
[0035] 上述したように、フォトニック結晶に設けた線欠陥光導波路 2内では、従来からよく 知られた線欠陥導波路モードを利用することで TE— likeモードの光を伝搬させること ができる。更に、本発明の光導波路では、屈折率ガイドモードを利用することで TE— likeモード及び TM— likeモードの光を夫々伝搬させることができる。  [0035] As described above, in the line defect optical waveguide 2 provided in the photonic crystal, TE-like mode light can be propagated by using a well-known line defect waveguide mode. . Furthermore, in the optical waveguide of the present invention, light in the TE-like mode and the TM-like mode can be propagated by using the refractive index guide mode.
[0036] その際、フォトニック結晶 1の構造、フォトニック結晶 1の格子定数、フォトニック結晶  [0036] At that time, the structure of the photonic crystal 1, the lattice constant of the photonic crystal 1, the photonic crystal
1を構成する 2種類の物質の屈折率差、周期性 (高屈折率物質と低屈折率物質の比 率、周期構造)及びスラブ層厚をパラメータとして、フォトニック結晶 1のバンド構造を 最適に設定することで、 TE— likeモード及び TM— likeモードの光を同程度の光強 度を保ちながら線欠陥光導波路 2内に夫々伝搬させることが可能であり、また、 TE- likeモード及び TM— likeモードの光を同周波数帯で夫々伝搬させることも可能であ る。 The band structure of photonic crystal 1 is optimized using the refractive index difference, periodicity (ratio of high refractive index material and low refractive index material, periodic structure) and slab layer thickness as parameters. By setting, it is possible to propagate the TE-like mode and TM-like mode light into the line defect optical waveguide 2 while maintaining the same light intensity. Like mode and TM-like mode light can be propagated in the same frequency band.
[0037] 具体的には、 Si/SiO  [0037] Specifically, Si / SiO
2 ZSi基板(SOI基板)を用い、最上層の Si層の厚さを 0. 25 2 Use a ZSi substrate (SOI substrate) and set the thickness of the top Si layer to 0.25.
IX m程度、 SiO層の厚さを 1 μ m程度で形成する。また、上記基板に複数の空孔を The SiO layer is formed with a thickness of about 1 μm. In addition, the substrate has a plurality of holes.
2  2
三角格子状に形成することで、三角格子空孔型のフォトニック結晶を形成する。この 格子定数は 0. 程度とし、空孔径 rは rZa = 0. 3程度とする。更に、光の進行方 向に空孔を形成しない線状欠陥を設けることで、線欠陥光導波路 2を形成する。そし て、この線欠陥光導波路 2の長さを 20 m力も 600 m程度にする。このような構造 にすると、従来、困難とされてきたフォトニック結晶 1からなる光導波路に、 TE-like モード及び TM— likeモードの光を夫々伝搬させることが可能になる。  By forming a triangular lattice, a triangular lattice hole-type photonic crystal is formed. This lattice constant is about 0.3, and the hole diameter r is about rZa = 0.3. Furthermore, the line defect optical waveguide 2 is formed by providing a linear defect that does not form a hole in the light traveling direction. Then, the length of the line defect optical waveguide 2 is set to about 600 m with 20 m force. With such a structure, it is possible to propagate light in the TE-like mode and the TM-like mode to the optical waveguide made of the photonic crystal 1 that has been considered difficult.
[0038] なお、上記説明では、フォトニック結晶 1に設けた線欠陥光導波路 2内に TE— like モード及び TM— likeモードの光を夫々同周波数帯で伝搬させる例を示した力 TE — likeモード及び TM— likeモードの光を互いに異なる周波数帯で伝搬させることも 可能である。 [0038] In the above description, TE-like mode is an example in which light in the TE-like mode and TM-like mode propagates in the same frequency band in the line defect optical waveguide 2 provided in the photonic crystal 1. It is also possible to propagate mode and TM-like mode light in different frequency bands.
[0039] 次に、本実施形態の線欠陥光導波路が形成されるフォトニック結晶の他の構成例 について説明する。  Next, another configuration example of the photonic crystal in which the line defect optical waveguide of this embodiment is formed will be described.
[0040] 図 8に示す光導波路は、図 1に示した光導波路を含む一般的なフォトニック結晶か らなる光導波路の構成を示したものであり、線欠陥領域 4を挟んでその両側にフォト ック結晶領域 3が夫々形成された構成を有する。このような構成では、光の進行方 向が +y方向になる。また、図 8に示す光導波路は、図 8の X方向の屈折率分布が線 欠陥領域 4で高くなる構成を有する。更に、フォトニック結晶領域 3のスラブ構造とそ の上下方向(z軸方向)の屈折率分布を見たとき、フォト ック結晶領域 3のスラブ面 で屈折率が高くなる構造である。  [0040] The optical waveguide shown in FIG. 8 shows the configuration of an optical waveguide made of a general photonic crystal including the optical waveguide shown in FIG. Each of the photonic crystal regions 3 is formed. In such a configuration, the light traveling direction is the + y direction. Further, the optical waveguide shown in FIG. 8 has a configuration in which the refractive index distribution in the X direction in FIG. Furthermore, when looking at the slab structure of the photonic crystal region 3 and its refractive index distribution in the vertical direction (z-axis direction), the refractive index increases on the slab surface of the photonic crystal region 3.
[0041] 図 8に示すように、 X軸及び z軸の両方向に線欠陥領域 4の平均的な屈折率が高く なる構造を設けることで、 X方向にほぼ平行な電界ベクトルを持つ光 (TE— likeモー ド)と z方向にほぼ平行な電界ベクトルを持つ光 (TM— likeモード)を夫々屈折率ガ イドモードにより伝搬できる。  [0041] As shown in FIG. 8, by providing a structure in which the average refractive index of the line defect region 4 is increased in both the X-axis and z-axis directions, light having an electric field vector substantially parallel to the X direction (TE (Like mode) and light with an electric field vector almost parallel to the z direction (TM—like mode) can be propagated by the refractive index guide mode.
[0042] 一方、図 9に示す光導波路は、線欠陥領域 6の幅と高さとを適宜決め、線欠陥領域 6に比べてフォトニック結晶領域 5のスラブ層を薄く形成した構成を有する。このような 構成でも、図 8に示す光導波路と同様に、 X方向にほぼ平行な電界ベクトルを持つ光 と z方向にほぼ平行な電界ベクトルを持つ光とを夫々屈折率ガイドモードで伝搬でき る。より具体的には、上記三角格子空孔型のフォトニック結晶を用いて線欠陥光導波 路を形成する場合、例えば、格子定数を 0. 38 μ m、孔径 0. 16 μ m、線欠陥領域の 幅を 0. 25 m程度、フォトニック結晶領域のスラブ層厚を 0. 05 m程度で形成す る。 On the other hand, in the optical waveguide shown in FIG. 9, the width and height of the line defect region 6 are appropriately determined, and the line defect region 6 Compared to 6, the slab layer of the photonic crystal region 5 is formed thinner. Even in such a configuration, similarly to the optical waveguide shown in FIG. 8, light having an electric field vector substantially parallel to the X direction and light having an electric field vector substantially parallel to the z direction can be propagated in the refractive index guide mode, respectively. . More specifically, when a line defect optical waveguide is formed using the triangular lattice hole photonic crystal, for example, the lattice constant is 0.38 μm, the hole diameter is 0.16 μm, the line defect region is The width of the slab is about 0.25 m and the slab layer thickness of the photonic crystal region is about 0.05 m.
[0043] また、図 10に示す光導波路は、線欠陥領域 8を挟んでその両側に形成されるフォト ニック結晶領域 7に、複数の正方格子ロッドを備えた正方格子ロッド型を用いた構成 を有する。このような構成でも、図 8に示す光導波路と同様に、 X方向にほぼ平行な電 界ベクトルを持つ光と z方向にほぼ平行な電界ベクトルを持つ光を夫々屈折率ガイド モードで伝搬できる。  In addition, the optical waveguide shown in FIG. 10 has a configuration using a square lattice rod type having a plurality of square lattice rods in the photonic crystal region 7 formed on both sides of the line defect region 8. Have. Even with such a configuration, light having an electric field vector substantially parallel to the X direction and light having an electric field vector substantially parallel to the z direction can be propagated in the refractive index guide mode, similarly to the optical waveguide shown in FIG.
[0044] 更に、図 11に示す光導波路は、フォトニック結晶領域 10に、複数のロッド状の物質 を所定の空隙を有して積層した 3次元フォトニック結晶構造を使用した構成を有する 。線欠陥領域 11はフォトニック結晶領域 10で囲まれる位置に、フォトニック結晶領域 10よりも屈折率が高い物質を設けることで形成する。このような構成でも、図 8に示す 光導波路と同様に、光の進行方向とほぼ直交する方向に電界ベクトルを持つ 2つの 光を夫々屈折率ガイドモードで伝搬することができる。  Furthermore, the optical waveguide shown in FIG. 11 has a configuration using a three-dimensional photonic crystal structure in which a plurality of rod-shaped substances are laminated in the photonic crystal region 10 with a predetermined gap. The line defect region 11 is formed by providing a material having a refractive index higher than that of the photonic crystal region 10 at a position surrounded by the photonic crystal region 10. Even with such a configuration, similarly to the optical waveguide shown in FIG. 8, two lights having an electric field vector in a direction substantially orthogonal to the light traveling direction can be propagated in the respective refractive index guide modes.
[0045] 次に、第 1実施形態で示した光導波路の検証結果について説明する。 Next, the verification result of the optical waveguide shown in the first embodiment will be described.
[0046] 以下では、三角格子空孔型のフォトニック結晶に線欠陥光導波路を形成した試料 を用いて、この光導波路の光透過特性を測定した結果を示す。なお、測定に用いる 試料は、フォトニック結晶のスラブ層として Siを用い、線状欠陥の両側に多数の空孔 を有する所謂エアブリッジ構造である。各空孔に SiO In the following, the results of measuring the light transmission characteristics of an optical waveguide using a sample in which a line defect optical waveguide is formed on a triangular lattice hole type photonic crystal are shown. The sample used for the measurement has a so-called air bridge structure in which Si is used as the slab layer of the photonic crystal and a large number of vacancies are provided on both sides of the linear defect. SiO in each hole
2力もなる絶縁膜を埋め込んだ 構成でも、以下に記載する効果と同様の効果を得ることができる。  Even with a structure in which an insulating film having two strengths is embedded, the same effects as described below can be obtained.
[0047] 先ず、波長帯が 1550nm付近であり、電界ベクトルの向きがフォトニック結晶のスラ ブ面に対して平行な TE— likeモードの光を、線欠陥導波路モードにより試料中を伝 搬させる。このときの上記線欠陥光導波路の光透過特性は図 12に示すようになる。 なお、図 12では透過光のレベルが全体的に約 20dBとなっている力 これは線欠 陥光導波路と該線欠陥光導波路へ光を入射するための光ファイバ一との結合損失 が約 10dBであり、線欠陥光導波路と該線欠陥光導波路からの出射光を受光する 光ファイバ一との結合損失が約— 10dBのためである。従って、フォトニック結晶に形 成した線欠陥光導波路自体の伝搬損失はほとんど無 、。 [0047] First, TE-like mode light whose wavelength band is around 1550 nm and whose electric field vector direction is parallel to the slab surface of the photonic crystal is propagated in the sample by the line defect waveguide mode. . The light transmission characteristics of the line defect optical waveguide at this time are as shown in FIG. In Fig. 12, the transmitted light level is about 20 dB overall. The coupling loss between the recessed optical waveguide and the optical fiber for entering light into the line-defect optical waveguide is about 10 dB, and the optical fiber that receives light emitted from the line-defect optical waveguide and the line-defect optical waveguide The coupling loss is about -10dB. Therefore, there is almost no propagation loss of the line defect optical waveguide itself formed in the photonic crystal.
[0048] 次に、入射光の電界ベクトルの向きを 90度回転させてフォトニック結晶のスラブ面 に直交する TM— likeモードの光を試料に入射する。このときの線欠陥光導波路の 光透過特性は図 13に示すようになる。  [0048] Next, the direction of the electric field vector of the incident light is rotated by 90 degrees, and TM-like mode light orthogonal to the slab surface of the photonic crystal is incident on the sample. The light transmission characteristics of the line defect optical waveguide at this time are as shown in FIG.
[0049] 図 13に示すように、入射光の電界ベクトルの向きを 90度回転させ、 TM— likeモー ドの光を屈折率ガイドモードで伝搬させても、波長帯が 1550nm付近の光の透過特 性は図 12に示したグラフと同程度となる。このように、フォトニック結晶に線状欠陥を 設けることで形成される線欠陥光導波路は、光の進行方向とほぼ直交する方向に電 界ベクトルを持つ 2つの光に対して夫々同等の透過特性を有して 、る。  [0049] As shown in Fig. 13, even if the direction of the electric field vector of the incident light is rotated by 90 degrees and light in the TM-like mode is propagated in the refractive index guide mode, transmission of light having a wavelength band near 1550 nm is possible. The characteristics are similar to the graph shown in Fig. 12. In this way, a line defect optical waveguide formed by providing a line defect in a photonic crystal has the same transmission characteristics for two lights having an electric field vector in a direction substantially orthogonal to the light traveling direction. Have
[0050] 次に、図 1に示した線欠陥光導波路の屈折率ガイドモードが有するモードギャップ について説明する。  Next, the mode gap of the refractive index guide mode of the line defect optical waveguide shown in FIG. 1 will be described.
[0051] 図 3及び図 6で示した屈折率ガイドモードの波数空間におけるブリリアンゾーン端で は、この屈折率ガイドモードの光が折り返される(反射する)。即ち、ブリリアンゾーン 端では、光の進行方向に対する屈折率による周期構造が存在するために、モードギ ヤップが形成される。光導波モードが TE— likeモードの場合のモードギャップは図 3 に示すとおりであり、光導波モードが TM— likeモードの場合のモードギャップは図 6 に示すとおりである。  [0051] The light of the refractive index guide mode is folded (reflected) at the edge of the Brilliant zone in the wave number space of the refractive index guide mode shown in Figs. That is, a mode gap is formed at the end of the Brillian zone because a periodic structure with a refractive index in the traveling direction of light exists. The mode gap when the optical waveguide mode is the TE-like mode is as shown in FIG. 3, and the mode gap when the optical waveguide mode is the TM-like mode is as shown in FIG.
[0052] フォトニック結晶に形成した線欠陥光導波路内に屈折率ガイドモードにより光を伝 搬させる場合、上述したように、フォトニック結晶の分散関係において、規格化波数 k が 0. 25以上 0. 5以下の範囲では、光が少ない損失で伝搬する。一方、上記モード ギャップの周波数帯では、この線欠陥光導波路中を光が伝搬しない。  [0052] When light is propagated in the line defect optical waveguide formed in the photonic crystal by the refractive index guide mode, as described above, the normalized wave number k is 0.25 or more in the dispersion relationship of the photonic crystal. In the range of 5 or less, light propagates with little loss. On the other hand, in the frequency band of the mode gap, light does not propagate through the line defect optical waveguide.
[0053] 図 14は、線欠陥光導波路内にスラブ面と直交する電界ベクトルを持つ光を入射し た場合の光透過特性について、 FDTD法により算出した結果を示す。  FIG. 14 shows the result of calculation by the FDTD method for the light transmission characteristics when light having an electric field vector orthogonal to the slab surface is incident in the line defect optical waveguide.
[0054] 図 14に示すように、 TM— likeモードのモードギャップに相当する波長帯には光の 透過率が顕著に低下する領域がある。 [0055] 次に、フォトニック結晶の空孔に SiOを埋め込んだ構造を持つ試料を用いて光透 As shown in FIG. 14, there is a region where the light transmittance is significantly reduced in the wavelength band corresponding to the mode gap of the TM-like mode. [0055] Next, light transmission is performed using a sample having a structure in which SiO is embedded in the holes of the photonic crystal.
2  2
過特性を測定した結果を図 15に示す。  Figure 15 shows the results of measuring the over-characteristics.
[0056] 図 15に示すように、波長 1600nm近傍に波長幅 10nm程度で光透過が急激に低 下するモードギャップの存在が実際に観測される。 [0056] As shown in FIG. 15, the existence of a mode gap in which the light transmission rapidly decreases at a wavelength width of about 10 nm is observed in the vicinity of the wavelength of 1600 nm.
[0057] 上記モードギャップの周波数及びギャップ幅を制御するためには、フォトニック結晶 を構成する物質の屈折率差、フォトニック結晶の格子定数及び周期性を制御する必 要がある。 [0057] In order to control the frequency and gap width of the mode gap, it is necessary to control the difference in refractive index of the materials constituting the photonic crystal, the lattice constant of the photonic crystal, and the periodicity.
[0058] 図 16は、モードギャップの周波数及びギャップ幅を制御する例として、三角格子空 孔型のフォトニック結晶にお 、て、格子定数 (a)と空孔半径 (r)の比 (rZa)をパラメ一 タとして変化させたときのモードギャップの周波数の変化の様子を示す。図 17は、(r Za)をパラメータとして変化させたときのギャップ幅(Δ λ )の変化の様子を示す。な お、図 16及び図 17はいずれも FDTD法により算出した結果を示している。また、図 1 6の band— 1は規格ィ匕波数 k=0. 5におけるモードギャップ(図 3参照)の下側の周 波数 (低周波数側)であり、図 16の band— 2は規格ィ匕波数 k=0. 5におけるモードギ ヤップの上側の周波数 (高周波数側)である。また、図 17は 1550nm帯の光を伝搬さ せたときの格子定数 (a)と空孔半径 (r)の比 (rZa)の変化に対するギャップ幅( Δ λ ) の変化を示している。  [0058] Fig. 16 shows the ratio of the lattice constant (a) to the hole radius (r) (rZa) in a triangular lattice hole type photonic crystal as an example of controlling the mode gap frequency and gap width. This shows how the mode gap frequency changes when) is changed as a parameter. Figure 17 shows how the gap width (Δλ) changes when (r Za) is changed as a parameter. Figures 16 and 17 both show the results calculated by the FDTD method. Band-1 in Fig. 16 is the lower frequency (low frequency side) of the mode gap (see Fig. 3) at the standard frequency k = 0.5, and band-2 in Fig. 16 is the standard frequency. This is the upper frequency (high frequency side) of the mode gap at a wave number of k = 0.5. Figure 17 shows the change in the gap width (Δλ) with respect to the change in the ratio (rZa) of the lattice constant (a) to the hole radius (r) when light in the 1550nm band is propagated.
[0059] 図 16及び図 17のグラフ力も分力るように、格子定数 (a)と空孔半径 (r)の比 (rZa) を変化させることで、モードギャップの周波数とギャップ幅を制御できる。また、ギヤッ プ幅として lnm以上 lOnm以下の実用上有効な波長幅が得られることが分かる。  [0059] The frequency and gap width of the mode gap can be controlled by changing the ratio (rZa) of the lattice constant (a) to the hole radius (r) so that the graph forces in Figs. 16 and 17 are also divided. . It can also be seen that a practically effective wavelength width of 1 nm or more and lOnm or less can be obtained as the gap width.
[0060] 図 18に図 1に示したフォトニック結晶からなる線欠陥光導波路への光の挿入損失を 低減するため、線欠陥光導波路に対する光の入出力部に周知のチャネル光導波路 を設けた構成を示す。  [0060] In order to reduce the insertion loss of light into the line defect optical waveguide composed of the photonic crystal shown in FIG. 1 in FIG. 18, a well-known channel optical waveguide is provided at the light input / output portion for the line defect optical waveguide. The configuration is shown.
[0061] 図 18に示す光導波路は、基板に SiZSiO ZSi構造を有する SOIウェハ(Si層の  [0061] The optical waveguide shown in FIG. 18 is an SOI wafer having a SiZSiO ZSi structure on the substrate (Si layer
2  2
厚さが 0· 25 ;z m程度、 SiO層の厚さが 1 m程度)を用い、 Si層にフォトニック結晶  A photonic crystal on the Si layer, with a thickness of about 0 · 25; z m and a SiO layer thickness of about 1 m)
2  2
構造を備えた構成である。  It is the structure provided with the structure.
[0062] フォトニック結晶 12には、複数の空孔を三角格子状に配列した三角格子空孔型を 用い、格子定数 aを 0. 程度、空孔径 r¾:Za = 0. 3程度とし、光の進行方向に 空孔を設けな ヽことで線欠陥光導波路を形成する。 [0062] The photonic crystal 12 uses a triangular lattice hole type in which a plurality of holes are arranged in a triangular lattice shape, the lattice constant a is about 0, the hole diameter r¾: Za = 0.3, In the direction of travel A line-defect optical waveguide is formed by not providing holes.
[0063] また、線欠陥光導波路の光の入出力側には、 Siからなる細線光導波路 131、 132 を接続する。更に、細線光導波路 131、 132と線欠陥光導波路間には、光の結合損 失を低減するために、長さ 0. 3 /z m程度の台形状のインタフェース部 141、 142を設 ける。  [0063] Further, thin wire optical waveguides 131 and 132 made of Si are connected to the light input / output side of the line defect optical waveguide. Furthermore, trapezoidal interface portions 141 and 142 having a length of about 0.3 / zm are provided between the thin-line optical waveguides 131 and 132 and the line-defect optical waveguide in order to reduce the coupling loss of light.
[0064] 基板に設ける空孔は、例えば空孔の形成領域に開口を有するレジストを電子ビー ム露光法により形成し、このレジストをマスクにするドライエッチングにより Si層を除去 すること〖こより形成する。その後、空孔内に厚さ 程度で SiOを埋め込む。  [0064] The holes provided in the substrate are formed, for example, by forming a resist having an opening in a hole forming region by an electron beam exposure method and removing the Si layer by dry etching using the resist as a mask. . After that, SiO is embedded in the pores with a thickness of about.
2  2
[0065] このような構成において、細線光導波路 131、 132の端面に先球単一モード光ファ ィバーを接続し、波長が 1550nm帯の TE— likeモード及び TM— likeモードの光を 屈折率ガイドモードにより伝搬させると、光透過特性として上記図 12〜図 15と同様の 結果が得られる。  [0065] In such a configuration, a tip single-mode optical fiber is connected to the end faces of the thin-line optical waveguides 131 and 132, and light in the TE-like mode and TM-like mode with a wavelength of 1550 nm is guided through the refractive index. When propagating according to the mode, the same results as in FIGS. 12 to 15 are obtained as the light transmission characteristics.
[0066] このように、本発明の特徴である屈折率ガイドモードを利用する光導波路を使用す れば、 TE— likeモード及び TM— likeモードの光に対して夫々同等の透過特性が 得られるため、この光導波路を備える光デバイスの設計の自由度が向上する。  [0066] As described above, when the optical waveguide using the refractive index guide mode, which is a feature of the present invention, is used, the same transmission characteristics can be obtained for light in the TE-like mode and the TM-like mode, respectively. Therefore, the degree of freedom in designing an optical device including this optical waveguide is improved.
[0067] なお、フォトニック結晶 12の物質には、 Siに代えて、 GaAs、 InP、これらの化合物( 例えば、 GalnAsP等)又は A1ィ匕合物等の屈折率が 3程度以上の物質を選択すること も可能である。その場合、光透過波長を 1550nm帯に設定するためには、格子定数 と空孔径を夫々調整すればょ 、。  [0067] For the material of the photonic crystal 12, a material having a refractive index of about 3 or more, such as GaAs, InP, a compound thereof (eg, GalnAsP) or an A1 compound, is selected instead of Si. It is also possible to do this. In that case, to set the light transmission wavelength to the 1550nm band, adjust the lattice constant and the hole diameter, respectively.
[0068] (光スィッチ)  [0068] (Optical switch)
次に、本発明の第 1実施形態の屈折率ガイドモードを利用した光導波路を、光スィ ツチに適用した第 2実施形態について、説明する。  Next, a second embodiment in which the optical waveguide using the refractive index guide mode of the first embodiment of the present invention is applied to an optical switch will be described.
[0069] 図 19に示すように、光スィッチは、フォトニック結晶 22に設けられた 2つの線欠陥光 導波路と、 2つの線欠陥導波路の入出力側に夫々接続される細線光導波路 231〜2 34とを有する。線欠陥導波路の入出力側に夫々接続される細線光導波路 231〜23 4の先端には、光のスポットサイズを変換するためのスポットサイズ変換器 241、 242 が夫々接続される。  As shown in FIG. 19, the optical switch includes two line-defect optical waveguides provided in the photonic crystal 22 and a thin-line optical waveguide connected to the input / output side of the two line-defect waveguides. With ~ 34. Spot size converters 241 and 242 for converting the spot size of light are connected to the tips of the thin optical waveguides 231 to 234 connected to the input and output sides of the line defect waveguide, respectively.
[0070] 線欠陥導波路の入力側に接続される細線光導波路 231、 232は、スポットサイズ変 換器 241近傍の入力端で分岐し、線欠陥導波路の出力側に接続される細線光導波 路 233、 234は、スポットサイズ変換器 242の直前で合流している。また、線欠陥光導 波路の一方の近傍にはマイクロヒータ 25が設けられている。 [0070] The thin-line optical waveguides 231 and 232 connected to the input side of the line defect waveguide have different spot sizes. The thin-line optical waveguides 233 and 234 branched at the input end near the converter 241 and connected to the output side of the line defect waveguide are joined immediately before the spot size converter 242. A micro heater 25 is provided in the vicinity of one of the line defect optical waveguides.
[0071] このような構成において、スポットサイズ変換器 241を通して入射された光は、細線 光導波路 231、 232により 2方向に分岐され、夫々フォトニック結晶からなる線欠陥光 導波路へ入力される。 In such a configuration, the light incident through the spot size converter 241 is branched in two directions by the thin-line optical waveguides 231 and 232 and is input to the line-defect optical waveguide made of a photonic crystal, respectively.
[0072] 一方、 2つの線欠陥光導波路から出力された光は、細線光導波路 233、 234で合 波され、スポットサイズ変 242を通して出力される。このとき、一方の線欠陥光導 波路をマイクロヒータ 25にて加熱することにより、フォトニック結晶の温度を変化させ、 この線欠陥光導波路の実効的な屈折率を変化させる。この屈折率の変化によって 2 つの線欠陥光導波路力も出力される光の位相差を 0から πまで変化させることが可 能になる。 2つの光の位相差力^であるとき線欠陥光導波路の出力光は入力光と同じ 光強度となり、位相差が πであるとき線欠陥光導波路の出力光は光強度が 0になる。  On the other hand, the light output from the two line defect optical waveguides is combined by the thin line optical waveguides 233 and 234 and output through the spot size change 242. At this time, the temperature of the photonic crystal is changed by heating one of the line-defect optical waveguides with the microheater 25, and the effective refractive index of the line-defect optical waveguide is changed. This change in refractive index makes it possible to change the phase difference of the output light from the two line-defect optical waveguide forces from 0 to π. When the phase difference force between the two lights, the output light of the line defect optical waveguide has the same light intensity as the input light, and when the phase difference is π, the output light of the line defect optical waveguide has a light intensity of zero.
[0073] このように、フォトニック結晶に 2つの線欠陥光導波路を形成することで、光スィッチ を実現できる。なお、本実施例では、この線欠陥光導波路内の光導波モードとして上 述した屈折率ガイドモードを利用することは 、うまでもな!/、。  [0073] Thus, an optical switch can be realized by forming two line-defect optical waveguides in a photonic crystal. In this embodiment, it is a matter of course that the above-described refractive index guide mode is used as the optical waveguide mode in the line defect optical waveguide! /.
[0074] 本実施形態によれば、本発明の特徴である屈折率ガイドモードを利用した光導波 路を用いることにより、 TE— likeモード及び TM— likeモードの光を夫々スイッチング することが可能になるため、光スィッチを設計する際の自由度が向上する。  [0074] According to the present embodiment, it is possible to switch light in the TE-like mode and the TM-like mode by using the optical waveguide using the refractive index guide mode, which is a feature of the present invention. Therefore, the degree of freedom in designing the optical switch is improved.
[0075] (光合分波デバイス)  [0075] (Optical multiplexing / demultiplexing device)
次に、本発明の第 1実施形態の屈折率ガイドモードを利用した光導波路を、光合分 波デバイスに適用した第 3実施形態について説明する。  Next, a third embodiment in which the optical waveguide using the refractive index guide mode of the first embodiment of the present invention is applied to an optical multiplexing / demultiplexing device will be described.
[0076] 図 20に示すように、光合分波デバイスは、並列に配置され、線欠陥光導波路が形 成された 2つのフォトニック結晶 321、 322と、線欠陥導波路の入出力側に夫々接続 される細線光導波路 331〜334とを有する。線欠陥導波路の入出力側に夫々接続さ れる細線光導波路 331〜334は、入力側及び出力側でその一部が近接して配置さ れることで夫々方向性結合器を形成する。  As shown in FIG. 20, the optical multiplexing / demultiplexing device includes two photonic crystals 321 and 322 arranged in parallel and forming a line defect optical waveguide, and an input / output side of the line defect waveguide, respectively. And thin wire optical waveguides 331 to 334 to be connected. The thin optical waveguides 331 to 334 connected to the input / output side of the line defect waveguide respectively form a directional coupler by being partly arranged on the input side and the output side.
[0077] 細線光導波路 331〜334のコアの間隔は 0. 2 m程度にし、結合部位の長さは 2 . 5 μ m程度にする。この場合、完全結合長が 5 μ m程度となり、方向性結合器として 3dBカプラ 341、 342が形成される。細線光導波路 331のポート 1から入力された光 は 3dB力ブラ 341により 2方向へ分岐される。このとき、線欠陥光導波路で形成される 屈折率ガイドモードのバンドギャップ間に相当する波長では、分岐光が夫々線欠陥 光導波路にて反射され、更に 3dB力ブラ 341を通過することで合波された光が細線 光導波路 332のポート 2よりドロップ光として出力される。 [0077] The distance between the cores of the thin optical waveguides 331 to 334 is about 0.2 m, and the length of the coupling site is 2 Set to about 5 μm. In this case, the complete coupling length is about 5 μm, and 3 dB couplers 341 and 342 are formed as directional couplers. The light input from port 1 of the thin optical waveguide 331 is branched in two directions by the 3 dB force bra 341. At this time, at the wavelength corresponding to the band gap of the refractive index guide mode formed by the line defect optical waveguide, the branched light is reflected by the line defect optical waveguide, and further passes through the 3 dB force bra 341 to be multiplexed. The output light is output as drop light from port 2 of the thin optical waveguide 332.
[0078] その他の波長光は、出力側の 3dB力ブラ 342を通過することで合波され、細線光導 波路 334のポート 4より出力される。また、細線光導波路 333のポート 3からポート 2と 同じ波長の光を入力することでポート 4から合波させた光を出力させることも可能であ る。 Other wavelength light passes through the output-side 3 dB force bra 342 and is combined and output from the port 4 of the thin-line optical waveguide 334. In addition, it is possible to output light combined from port 4 by inputting light having the same wavelength as that of port 2 from port 3 of the thin optical waveguide 333.
[0079] 本実施形態によれば、本発明の特徴である屈折率ガイドモードを利用した光導波 路を用いることで TE— likeモード及び TM— likeモードの光を夫々合分波できるた め、光合分波デバイスを設計する際の自由度が向上する。  According to the present embodiment, TE-like mode light and TM-like mode light can be multiplexed / demultiplexed by using an optical waveguide using the refractive index guide mode, which is a feature of the present invention. The degree of freedom in designing an optical multiplexing / demultiplexing device is improved.
[0080] (光通信装置)  [0080] (Optical communication device)
次に、本発明の第 1実施形態の屈折率ガイドモードを利用する光導波路を、光通 信装置に適用した第 4実施形態について、説明する。  Next, a fourth embodiment in which the optical waveguide using the refractive index guide mode of the first embodiment of the present invention is applied to an optical communication device will be described.
[0081] 図 21に示すように、本実施形態の光通信装置は、 SOI基板 41上にフォトニック結 晶 42及びチャネル導波路 43が形成され、フォトニック結晶 42に形成された線欠陥光 導波路にチャネル導波路 43を介して光ファイバ一 44が接続された構成である。  As shown in FIG. 21, in the optical communication device of this embodiment, the photonic crystal 42 and the channel waveguide 43 are formed on the SOI substrate 41, and the line defect optical waveguide formed in the photonic crystal 42 is formed. In this configuration, an optical fiber 44 is connected to the waveguide via a channel waveguide 43.
[0082] 一般に、光ファイバ一 44内では、電界ベクトルの向きが回転しつつ光が伝搬する。  In general, in the optical fiber 44, light propagates while the direction of the electric field vector rotates.
そのため、線欠陥光導波路へ入射される光の電界ベクトルの向きは不定となる。すな わち、線欠陥光導波路へ入射される光の電界ベクトルの向きは、図 21の(1)、(2)、 ( 3)で示すいずれの方向(Ex)も可能性がある。  Therefore, the direction of the electric field vector of the light incident on the line defect optical waveguide is indefinite. In other words, the direction of the electric field vector of the light incident on the line-defect optical waveguide can be any direction (Ex) shown in (1), (2), and (3) of FIG.
[0083] 本発明の実施形態の屈折率ガイドモードを利用した光導波路を使用することにより 、どのような向きの電界ベクトルを持つ光が入射されても、伝搬損失を生じることなく 線欠陥光導波路により光を伝搬できる。なお、図 21では、フォトニック結晶 42に形成 された線欠陥光導波路の光の入力側の構成のみを示しているが、線欠陥光導波路 の出力側に光ファイバ一を接続した構成でもこの光ファイバ一へ供給する光の電界 ベクトルの向きを自由に設定することができる。 [0083] By using the optical waveguide utilizing the refractive index guide mode of the embodiment of the present invention, a light beam having a line defect is generated without causing any propagation loss regardless of the direction of the electric field vector. Can propagate light. In FIG. 21, only the configuration of the light input side of the line defect optical waveguide formed in the photonic crystal 42 is shown, but this configuration is also possible in the configuration in which one optical fiber is connected to the output side of the line defect optical waveguide. The electric field of light supplied to the fiber The direction of the vector can be set freely.
産業上の利用可能性 Industrial applicability
以上のように、本発明のフォトニック結晶からなる光導波路は、光導波路を備える各 種光デバイスに適用して好適である。  As described above, the optical waveguide made of the photonic crystal of the present invention is suitable for application to various optical devices including the optical waveguide.

Claims

請求の範囲 The scope of the claims
[1] 屈折率が異なる 2種類以上の物質を、 1次元、 2次元又は 3次元周期で配列して得 られるフォトニック結晶からなる光導波路において、  [1] In an optical waveguide made of a photonic crystal obtained by arranging two or more kinds of materials having different refractive indexes with a one-dimensional, two-dimensional or three-dimensional period,
前記フォトニック結晶の分散関係において、最低周波数の光導波モードである屈折 率ガイドモードを用いて光を伝搬することを特徴とする光導波路。  An optical waveguide characterized in that light is propagated using a refractive index guide mode which is an optical waveguide mode having a lowest frequency in the dispersion relationship of the photonic crystal.
[2] 屈折率が異なる 2種類以上の物質を、 1次元、 2次元又は 3次元周期で配列して得 られるフォトニック結晶からなる光導波路において、 [2] In an optical waveguide made of a photonic crystal obtained by arranging two or more kinds of substances having different refractive indexes in a one-dimensional, two-dimensional or three-dimensional period,
光の進行方向と直交する 2つの光導波モードのうち、  Of the two optical waveguide modes that are orthogonal to the light traveling direction,
第 1の光導波モードに、線欠陥導波路モードを用い、  A line defect waveguide mode is used for the first optical waveguide mode,
第 2の光導波モードに、前記フォトニック結晶の分散関係において、最低周波数の 光導波モードである屈折率ガイドモードを用いて光を伝搬することを特徴とする光導 波路。  An optical waveguide characterized in that light is propagated to the second optical waveguide mode by using a refractive index guide mode which is an optical waveguide mode having the lowest frequency in the dispersion relationship of the photonic crystal.
[3] 屈折率が異なる 2種類以上の物質を、 1次元、 2次元又は 3次元周期で配列して得 られるフォトニック結晶からなる光導波路において、  [3] In an optical waveguide made of a photonic crystal obtained by arranging two or more kinds of materials having different refractive indexes with a one-dimensional, two-dimensional or three-dimensional period,
光の進行方向と直交する 2つの光導波モードに、前記フォトニック結晶の分散関係 にお 、て、最低周波数の光導波モードである屈折率ガイドモードをそれぞれ用いて 光を伝搬することを特徴とする光導波路。  It is characterized by propagating light by using a refractive index guide mode, which is an optical waveguide mode of the lowest frequency, in two dispersion modes of the photonic crystal in two optical waveguide modes orthogonal to the light traveling direction. Optical waveguide.
[4] 前記屈折率ガイドモードは、 [4] The refractive index guide mode is:
前記フォトニック結晶の分散関係において規格ィ匕波数 kが 0. 25以上 0. 5以下の範 囲であることを特徴とする請求項 1乃至 3のいずれか 1項に記載の光導波路。  4. The optical waveguide according to claim 1, wherein in the dispersion relationship of the photonic crystal, the standard wavenumber k is in a range of 0.25 or more and 0.5 or less.
[5] 光の進行方向に周期性を持つ請求項 1乃至 4のいずれか 1項に記載の光導波路。 5. The optical waveguide according to any one of claims 1 to 4, wherein the optical waveguide has periodicity in a light traveling direction.
[6] 請求項 1乃至 4のいずれか 1項に記載のフォトニック結晶からなる光導波路を備えた 光デバイス。 6. An optical device comprising an optical waveguide comprising the photonic crystal according to any one of claims 1 to 4.
[7] 請求項 1乃至 4のいずれか 1項に記載のフォトニック結晶からなる光導波路を備えた 光通信装置。  7. An optical communication device comprising an optical waveguide made of the photonic crystal according to any one of claims 1 to 4.
PCT/JP2006/300111 2005-01-06 2006-01-06 Optical waveguide, optical device and optical communication device WO2006073194A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006550911A JPWO2006073194A1 (en) 2005-01-06 2006-01-06 Optical waveguide, optical device, and optical communication apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005001882 2005-01-06
JP2005-001882 2005-01-06

Publications (1)

Publication Number Publication Date
WO2006073194A1 true WO2006073194A1 (en) 2006-07-13

Family

ID=36647671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/300111 WO2006073194A1 (en) 2005-01-06 2006-01-06 Optical waveguide, optical device and optical communication device

Country Status (2)

Country Link
JP (1) JPWO2006073194A1 (en)
WO (1) WO2006073194A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010073708A1 (en) * 2008-12-26 2010-07-01 日本電気株式会社 Wavelength filter
JP2015162787A (en) * 2014-02-27 2015-09-07 国立大学法人大阪大学 Directional coupler and multiplexer/demultiplexer device
WO2023100343A1 (en) * 2021-12-03 2023-06-08 富士通株式会社 Optical waveguide device, quantum operation device, and method for manufacturing optical waveguide device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11218627A (en) * 1998-02-02 1999-08-10 Nippon Telegr & Teleph Corp <Ntt> Photonic crystal waveguide and its manufacture
JP2001281480A (en) * 2000-03-29 2001-10-10 Nec Corp Photonic crystal optical waveguide and directional coupler
US20020150366A1 (en) * 2001-01-12 2002-10-17 Marko Loncar Methods for controlling positions of the guided modes of the photonic crystal waveguides
JP2002350657A (en) * 2000-12-27 2002-12-04 Nippon Telegr & Teleph Corp <Ntt> Photonic crystal waveguide
JP2002365453A (en) * 2001-06-07 2002-12-18 Nec Corp Waveguide

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11218627A (en) * 1998-02-02 1999-08-10 Nippon Telegr & Teleph Corp <Ntt> Photonic crystal waveguide and its manufacture
JP2001281480A (en) * 2000-03-29 2001-10-10 Nec Corp Photonic crystal optical waveguide and directional coupler
JP2002350657A (en) * 2000-12-27 2002-12-04 Nippon Telegr & Teleph Corp <Ntt> Photonic crystal waveguide
US20020150366A1 (en) * 2001-01-12 2002-10-17 Marko Loncar Methods for controlling positions of the guided modes of the photonic crystal waveguides
JP2002365453A (en) * 2001-06-07 2002-12-18 Nec Corp Waveguide

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010073708A1 (en) * 2008-12-26 2010-07-01 日本電気株式会社 Wavelength filter
US8705920B2 (en) 2008-12-26 2014-04-22 Nec Corporation Wavelength filter
JP2015162787A (en) * 2014-02-27 2015-09-07 国立大学法人大阪大学 Directional coupler and multiplexer/demultiplexer device
WO2023100343A1 (en) * 2021-12-03 2023-06-08 富士通株式会社 Optical waveguide device, quantum operation device, and method for manufacturing optical waveguide device

Also Published As

Publication number Publication date
JPWO2006073194A1 (en) 2008-06-12

Similar Documents

Publication Publication Date Title
JP6365855B2 (en) Apparatus and method for a waveguide polarizer with a series of bends
US6728457B2 (en) Waveguides in two dimensional slab photonic crystals with noncircular holes
JP6289401B2 (en) Spot size converter
WO2014030575A1 (en) Optical waveguide element
US7693384B2 (en) Waveguide structure
JPWO2008084584A1 (en) Optical waveguide device and polarization separation method
JP2001281480A (en) Photonic crystal optical waveguide and directional coupler
JP2007072433A (en) Optical integrated device and optical control device
Zhou et al. Hyperuniform disordered network polarizers
WO2014030578A1 (en) Optical waveguide element
Khavasi et al. Significant crosstalk reduction using all-dielectric CMOS-compatible metamaterials
WO2014030576A1 (en) Optical waveguide element
Xu et al. Proposal for compact polarization splitter using asymmetrical three-guide directional coupler
Dhingra et al. Ultralow loss and high extinction ratio TM-pass polarizer in silicon photonics
JP6798313B2 (en) Rib-type optical waveguide and optical waveguide using it
WO2006073194A1 (en) Optical waveguide, optical device and optical communication device
He et al. On-chip silicon three-mode (de) multiplexer employing subwavelength grating structure
Li et al. Hybrid plasmonic waveguide crossing based on the multimode interference effect
US20090285522A1 (en) Optical waveguide, optical device, and optical communication device
JP2013041146A (en) Wavelength-selective multimode interference waveguide device
JP2004045709A (en) Coupled optical waveguide
Kabir et al. Anisotropic subwavelength grating perturbation enables zero crosstalk in a leaky mode
Sharkawy et al. Analysis and applications of photonic crystals coupled waveguide theory
Wei et al. Loss-induced high-density multi-mode integrated waveguides array
JP2009265123A (en) Optical wavelength filter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006550911

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06702056

Country of ref document: EP

Kind code of ref document: A1