WO2006072979A1 - Semiconductor transistor - Google Patents

Semiconductor transistor Download PDF

Info

Publication number
WO2006072979A1
WO2006072979A1 PCT/JP2005/000036 JP2005000036W WO2006072979A1 WO 2006072979 A1 WO2006072979 A1 WO 2006072979A1 JP 2005000036 W JP2005000036 W JP 2005000036W WO 2006072979 A1 WO2006072979 A1 WO 2006072979A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
pad
semiconductor transistor
source
cells
Prior art date
Application number
PCT/JP2005/000036
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuhiro Iyomasa
Koji Yamanaka
Masatoshi Nakayama
Tadashi Takagi
Hiroshi Ohtsuka
Tetsuo Kunii
Makoto Matsunaga
Yukinobu Tarui
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to PCT/JP2005/000036 priority Critical patent/WO2006072979A1/en
Publication of WO2006072979A1 publication Critical patent/WO2006072979A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0207Geometrical layout of the components, e.g. computer aided design; custom LSI, semi-custom LSI, standard cell technique

Definitions

  • the present invention relates to a microwave high-power semiconductor transistor used as a high-power amplifier for a terrestrial microwave, a millimeter-wave communication device, a mobile communication device, a satellite communication device, a radar device, etc.
  • the present invention relates to a semiconductor transistor that suppresses stable operation.
  • High-frequency high-power transistors include a structure in which a plurality of transistor cells (hereinafter referred to as “cells” as appropriate) are connected in parallel.
  • the high-power transistor chip includes a drain electrode and a source electrode. Comb transistors that are alternately arranged in a comb shape are used.
  • the source electrode is connected to the source pad via an air wiring called an air bridge, and further connected to the back electrode of the semi-insulating GaAs substrate by a via hole.
  • an air wiring called an air bridge
  • 12 gate fingers constitute one transistor cell, and one gate pad is provided for the 12 gate fingers.
  • Each gate finger is supplied with power through a gate bus.
  • all cells were connected by a gate bus! /, And! /.
  • the high-frequency, high-power transistors connected in parallel may oscillate when a DC voltage is applied or when a high-frequency signal is input.
  • the signals from the transistors connected in parallel are not synthesized with the same amplitude and phase because of the uneven electrical characteristics between the transistors connected in parallel. It is said that oscillation occurs when there is gain in the potential difference loop of the signal (see Non-Patent Document 1, for example).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 11 103072
  • Non-Patent Document 1 Ito, Takagi, "Basics and Applications of MMIC Technology", Realize, 1996, pp. 1
  • Non-Patent Document 2 T.TAKAGI, at el., "Analysis of High Power Amplifier Instability due to fo / 2 Loop Oscillation, IEICE Trans on Electron. E78- C [8], pp. 936-943 (March 1995)
  • the present invention has been made to solve the above-described problems, and the signal of each cell force is not synthesized with the same amplitude and in-phase due to the non-uniformity of the characteristics and impedance between the cells. It is an object of the present invention to obtain a semiconductor transistor capable of suppressing the oscillation phenomenon caused by applying DC voltage or inputting a high frequency signal.
  • a plurality of drain electrodes and a plurality of source electrodes are alternately arranged in a comb shape via transistor cell force gate fingers arranged in parallel, and adjacent transistor cells.
  • a source pad is provided between the drain pads, and this source pad is connected to the source pad on the gate pad side to electrically isolate the transistor cells from each other.
  • FIG. 1 is a configuration diagram illustrating a semiconductor transistor according to a first embodiment of the present invention.
  • FIG. 2 is a configuration diagram showing a semiconductor transistor according to a second embodiment of the present invention.
  • FIG. 3 is a configuration diagram showing a semiconductor transistor according to a third embodiment of the present invention.
  • FIG. 4 is a configuration diagram showing a semiconductor transistor according to a fourth embodiment of the present invention.
  • FIG. 5 is a configuration diagram showing a semiconductor transistor according to a fifth embodiment of the present invention.
  • FIG. 6 is a configuration diagram showing a semiconductor transistor according to a sixth embodiment of the present invention.
  • FIG. 7 is a configuration diagram showing a semiconductor transistor according to a seventh embodiment of the present invention.
  • FIG. 8 is a configuration diagram showing a semiconductor transistor according to an eighth embodiment of the present invention.
  • FIG. 9 is a configuration diagram showing a semiconductor transistor according to a ninth embodiment of the present invention.
  • FIG. 10 is a configuration diagram showing a semiconductor transistor according to Embodiment 10 of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a configuration diagram of a semiconductor transistor according to Embodiment 1 of the present invention.
  • the semiconductor transistor according to the first embodiment is an example in which four transistor cells constitute one transistor chip, and the transistor cells are connected in parallel to obtain high output. And
  • the semiconductor transistor of the first embodiment is a comb transistor in which the drain electrode 1 and the source electrode 2 are alternately arranged in a comb shape. Further, the source electrode 2 is connected to the source pad 4 through an air wiring called an air bridge 3.
  • gate fingers (gate electrodes) 5 constitute one transistor cell.
  • One gate pad 6 is provided for the 12 gate fingers 5.
  • Seven drain electrodes 1 are drawn from one drain pad 8 per cell, and three source electrodes 2 are drawn from one source pad 4 per cell. And The drain electrode 1 and the source electrode 2 are alternately arranged facing each other across the gate finger 5.
  • the gate finger 5 is configured to be supplied with power through the gate bus 7. Further, the source electrode 2 is connected to the source pad 4 via the air wiring called the air bridge 3 as described above so as not to contact the gate bus 7.
  • a source pad 4 is provided between a drain pad 8 provided in a cell and a drain pad 8 of an adjacent cell, and the source pad is arranged on the gate pad 6 side.
  • the wiring from 4 is configured to be connected to the source pad 4 provided between the drain pads 8 described above.
  • the drain electrode 1 and the drain pad 8 are formed on a semi-insulating substrate (semiconductor substrate) 9 made of GaAs or the like.
  • each cell is separated by a wiring between source pads on the gate side and the drain side in units of one cell (hereinafter referred to as one block) It is characterized by constituting a transistor chip. That is, with such a configuration, the cells are electrically separated from each other.
  • the transistor cells are connected to a gate bus.
  • a plurality of striped drain electrodes connected to the drain pad via a plurality of striped gate electrodes and a plurality of striped source electrodes connected to the source pad provided on the gate bus side are comb-shaped. So that the transistor cells are electrically separated from each other by providing source pads between the drain pads of adjacent transistor cells and connecting the source pads to the source pads on the gate bus side.
  • the conventional state of the transistor is such that the electrical state of each cell does not affect other cells.
  • the loop circuit is eliminated arising among the cells in the transistor chip, there is an effect that can lower the possibility of oscillation occurring between transistor cells.
  • each cell is electrically separated, there is an effect that oscillation can be prevented by providing an isolation resistor in an external circuit. In this way, it is possible to suppress the instability caused by the unbalance operation between cells as described in the problem, and to further improve the operation stability of the transistor. Also, an isolation resistor is added to the external circuit. By providing, the above-described transistor chip reliability problem can be avoided.
  • on-wafer evaluation can be performed for each cell, and transistors with uniform characteristics can be found between the cells. For this reason, it is possible to find a transistor that can provide a desired output with a small unbalance between cells.
  • FIG. 2 is a configuration diagram of a semiconductor transistor according to the second embodiment of the present invention.
  • the semiconductor transistor of the second embodiment is composed of the drain electrode 1 and the semi-insulating substrate 9, and the definition of the function of each component in the figure is the same as that of the first embodiment.
  • the arrangement of the gate electrode and the drain electrode in each cell, such as the comb-shaped portion, is the same as in the first embodiment.
  • the semiconductor transistor according to the second embodiment has two cells as a unit (the case where the number of cells per block is two is shown as an embodiment), and the source pad 4 on the gate side and the drain side 4
  • the semiconductor transistor is characterized in that a transistor chip is formed by electrically separating cells from each other by wiring therebetween.
  • the same configuration as in the first embodiment has an effect of reducing the possibility of oscillation occurring between the transistor cells, and If you increase the number of cells per block in advance, it will not oscillate! If you know that it is! /, You can use multiple cells per block as in this Embodiment 2.
  • the number of wiring between the source pads between the cells and the source pads arranged on the drain side is reduced. This has the effect of reducing the size of the transistor chip.
  • FIG. 3 is a configuration diagram of a semiconductor transistor according to the third embodiment of the present invention.
  • the semiconductor transistor of the third embodiment is composed of the drain electrode 1 and the semi-insulating substrate 9, and the definition of the function of each component in the figure is the same as that of the first embodiment.
  • the arrangement of the comb-shaped portion of the gate electrode and the drain electrode in each cell is the same as in the first embodiment. Take as an example.
  • the gate bus 7 and the drain pad 8 are cut in units of two cells. In the enlarged portion (circular portion) in the figure, the gate bus 7 being cut is shown, and therefore the air bridge 3 of the source electrode 2 is omitted, and only the gate bus 7 and the gate finger 5 are shown.
  • 10 gate fingers 5 fed via the gate bus 7 constitute one transistor cell, and one gate pad is provided for the 10 gate fingers 5. 6 is provided. Further, five drain electrodes 1 are drawn from one drain pad 8 per cell, and three source electrodes 2 are drawn from one source pad 4 per cell. The drain electrode 1 and the source electrode 2 are alternately arranged opposite to each other across the gate finger 5.
  • the cells are electrically isolated by cutting the gate bus 7 and the drain pad 8 in units of two cells.
  • the transistor cells are connected to a gate bus.
  • a plurality of striped drain electrodes connected to the drain pad via a plurality of striped gate electrodes and a plurality of striped source electrodes connected to the source pad provided on the gate bus side are comb-shaped.
  • one or more transistor cells are used as a unit, and at least one of the gate bus or drain pad between adjacent transistor cells is cut to electrically isolate the transistor cells from each other. As a result, the electrical state of each cell does not affect other cells. There is an effect that can lower the gel the possibility of oscillation occurring between Ranjisutaseru.
  • the gate bus is disconnected in accordance with conditions such as the impedance of the matching circuit connected to the transistor and the high-frequency signal input to the gate electrode.
  • FIG. 4 is a configuration diagram of a semiconductor transistor according to the fourth embodiment of the present invention.
  • the drain pad 8 is all connected.
  • the cell is electrically isolated by cutting the gate bus 7 in units of one cell, and the transistor chip is separated. It is a semiconductor transistor characterized by comprising. Note that the enlarged portion (circular portion) in the figure represents the gate bus 7 that has been cut, so the air bridge 3 of the source electrode 2 is omitted, and only the gate bus 7 and the gate finger 5 are shown! .
  • the gate bus between adjacent transistor cells is cut in units of one or more transistor cells to electrically isolate the transistor cells from each other.
  • the possibility of oscillation occurring between transistor cells in which the electrical state of each cell does not affect other cells can be reduced.
  • the drain pad 8 since the drain pad 8 is not cut and is continuous, the degree of freedom for wire bonding is increased, and there is an advantage in mounting.
  • FIG. 5 is a configuration diagram of a semiconductor transistor according to the fifth embodiment of the present invention.
  • the gate buses 7 are connected, but the cell is electrically isolated by cutting the drain pad 8 in units of one cell, thereby forming a transistor chip.
  • This is a semiconductor transistor.
  • the number of force cells is not necessarily one, as an example where one cell is used as a unit.
  • the drain pad 8 between adjacent transistor cells is cut in units of one or more transistor cells to electrically isolate the transistor cells. As a result, it is possible to reduce the possibility of oscillation occurring between transistor cells in which the electrical state of each cell does not affect other cells.
  • FIG. 6 is a configuration diagram of a semiconductor transistor according to the sixth embodiment of the present invention.
  • the semiconductor transistor of the sixth embodiment is composed of a drain electrode 1 and a single metal wire 10, and the definitions relating to the functions of the components in the figure are the same as those of the first embodiment except for the metal wire 10. Further, the arrangement of the comb-shaped portion including the gate finger 5 and the drain electrode 1 in each cell is the same as that in the first embodiment.
  • the semiconductor transistor according to the sixth embodiment is provided with the metal wire 10 connected to the ground from the source pad 4 on the gate pad 6 side and the drain pad 8 side in the semiconductor transistor of the first embodiment.
  • the force is shown in which the source pad 4 on both the gate pad 6 side and the drain pad 8 side is connected to the ground. Even if the metal wire is connected to only one side of the source pad 4 good.
  • At least one of the part on the gate bus side or the part on the drain pad side in the source pad is connected to the ground. Since it has a metal wire, it has the effect of operating stably as a source-grounded semiconductor transistor.
  • FIG. 7 is a configuration diagram of a semiconductor transistor according to the seventh embodiment of the present invention.
  • the semiconductor transistor of the seventh embodiment is composed of a drain electrode 1 and one metal wire 10, and the definition of the functions of each component in the figure is the same as in the first embodiment except for the metal wire 10.
  • the arrangement of the comb-shaped portion including the gate finger 5 and the drain electrode 1 in each cell is the same as that of the third embodiment.
  • the semiconductor transistor according to the seventh embodiment is characterized in that the semiconductor wire of the third embodiment is provided with a metal wire 10 connected to the ground on the source pad 4 on the gate pad 6 side. It is a semiconductor transistor.
  • the semiconductor transistor of the seventh embodiment since the metal wire for connecting to the source pad force ground is provided, it is possible to stably operate as a source grounded type semiconductor transistor. There is.
  • FIG. 8 is a configuration diagram of a semiconductor transistor according to the eighth embodiment of the present invention.
  • the semiconductor transistor of the eighth embodiment is composed of one drain electrode 1 and a via hole 11. Except for the via hole 11, the definition of the function of each component in the figure is the same as that of the first embodiment. In addition, the arrangement of the gate fingers 5 and the comb-shaped portions of the drain electrode 1 in each cell is the same as that in the first embodiment.
  • the semiconductor transistor in the eighth embodiment is the same as the semiconductor transistor in the first embodiment.
  • the semiconductor transistor is characterized in that the source pad 4 on the gate pad 6 side has a via hole 11 connected to the ground.
  • the source transistor is stably operated as a grounded source type semiconductor transistor.
  • the inductance component between the source and the ground can be reduced as compared with the case where the metal wire is wired from the source node to the ground. Since the amount of feedback is reduced, there is an effect of higher frequency, higher gain, and higher output.
  • FIG. 9 is a configuration diagram of a semiconductor transistor according to the ninth embodiment of the present invention.
  • the semiconductor transistor of the ninth embodiment is composed of one drain electrode 1 and a via hole 11. Except for the via hole 11, the definition of the function of each component in the figure is the same as that of the first embodiment. In addition, the arrangement of the comb-shaped portions of the gate electrode and the drain electrode in each cell is the same as that of the second embodiment.
  • the semiconductor transistor in the ninth embodiment includes the via hole 11 connected to the ground in the source pad 4 on the gate pad 6 side and the drain pad 8 side in the semiconductor transistor in the second embodiment.
  • the semiconductor transistor of the ninth embodiment since the via hole for connecting to the ground is provided in the source pad, there is an effect that the semiconductor transistor operates stably as a source-grounded semiconductor transistor, Compared to the case of the eighth embodiment, since the number of via holes is large, there is an effect that the inductance component between the source and the ground can be further reduced.
  • FIG. 10 is a configuration diagram of a semiconductor transistor according to the tenth embodiment of the present invention.
  • the semiconductor transistor of the tenth embodiment includes a drain electrode 1 and a via hole 11. Except for the via hole 11, the definition of the function of each component in the figure is the same as that of the first embodiment.
  • the arrangement of the gate fingers 5 and the comb-shaped portion of the drain electrode 1 in each cell is The same thing as Embodiment 3 is mentioned as an example.
  • the semiconductor transistor according to the tenth embodiment has the via hole 11 connected to the ground in the source pad 4 on the gate pad 6 side in the semiconductor transistor according to the third embodiment. It is.
  • the semiconductor transistor of the tenth embodiment since the via hole for connecting to the ground is provided in the source pad, there is an effect that the semiconductor transistor operates stably as a grounded source type semiconductor transistor.
  • the semiconductor transistor of Embodiment 10 when the semiconductor transistor of Embodiment 10 is applied to a semiconductor amplifier, the inductance component between the source and ground can be reduced and the amount of feedback can be reduced as compared with the case where the metal wire is wired from the source pad to the ground. Therefore, there are effects of high frequency, high gain, and high output.
  • the force applied to the third embodiment is used, and the semiconductor transistor shown in the fourth and fifth embodiments is used to similarly connect the source pad and the ground with a via hole. Thus, the same effect can be obtained.
  • the semiconductor transistor according to the present invention suppresses oscillation in a semiconductor transistor in which a plurality of transistor cells are arranged in parallel on a semiconductor substrate, and is suitable for use in a high-power amplifier or the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

Transistor cells arranged in parallel are formed by arranging a plurality of drain electrodes (1) and a plurality of source electrodes (2), which are connected to a source pad (4) provided on a side of a gate pad (6), to alternately face in comb-shape, through a plurality of gate fingers (5). The source pads (4) are provided between drain pads (8) of the adjacent transistor cells, the source pad (4) is connected to the source pad (4) on the side of the gate pad (6), and the transistor cells are electrically isolated from each other.

Description

明 細 書  Specification
半導体トランジスタ 技術分野  Semiconductor transistor technology
[0001] この発明は、例えば、地上マイクロ波、ミリ波通信装置、移動体通信装置、衛星通 信装置、レーダ装置等の高出力増幅器として用いるマイクロ波高出力半導体トランジ スタに関するものであり、特に不安定動作を抑圧するようにした半導体トランジスタに 関するものである。  TECHNICAL FIELD [0001] The present invention relates to a microwave high-power semiconductor transistor used as a high-power amplifier for a terrestrial microwave, a millimeter-wave communication device, a mobile communication device, a satellite communication device, a radar device, etc. The present invention relates to a semiconductor transistor that suppresses stable operation.
背景技術  Background art
[0002] 従来の高周波の高出力トランジスタは、複数のトランジスタセル (以下、適宜「セル」 という)を並列接続した構成をとるものがあり、上記高出力トランジスタチップとしては、 ドレイン電極とソース電極を櫛状に交互に対向配置させた櫛形トランジスタが用いら れている。  [0002] Conventional high-frequency high-power transistors include a structure in which a plurality of transistor cells (hereinafter referred to as “cells” as appropriate) are connected in parallel. The high-power transistor chip includes a drain electrode and a source electrode. Comb transistors that are alternately arranged in a comb shape are used.
[0003] また、ソース電極は、エアブリッジと呼ばれる空中配線を介してソースパッドに接続 され、更にヴィァホールにより半絶縁性 GaAs基板の裏面電極に接続されている。従 来では、例えば、 12本のゲートフィンガがーつのトランジスタセルを構成しており、こ の 12本のゲートフィンガに対してゲートパッドが一つ設けられている。また、各ゲート フィンガ〖こは、ゲートバスを介して給電される。また、全てのセルがゲートバスで接続 されて!/、ると!/、つた構成であった。  [0003] In addition, the source electrode is connected to the source pad via an air wiring called an air bridge, and further connected to the back electrode of the semi-insulating GaAs substrate by a via hole. Conventionally, for example, 12 gate fingers constitute one transistor cell, and one gate pad is provided for the 12 gate fingers. Each gate finger is supplied with power through a gate bus. In addition, all cells were connected by a gate bus! /, And! /.
[0004] ところで、並列接続された高周波高出力トランジスタは、直流電圧を印カロした時、あ るいは高周波入力時に発振することがある。発振のメカニズムについては、並列接続 された各トランジスタ間の電気特性の不揃いが原因で、並列に接続されている各トラ ンジスタカゝらの信号が等振幅、同位相で合成されず、この際に生じる信号の電位差 力 ループ内で利得を有する場合に、発振が生じるとされている(例えば、非特許文 献 1参照)。  [0004] By the way, the high-frequency, high-power transistors connected in parallel may oscillate when a DC voltage is applied or when a high-frequency signal is input. As for the oscillation mechanism, the signals from the transistors connected in parallel are not synthesized with the same amplitude and phase because of the uneven electrical characteristics between the transistors connected in parallel. It is said that oscillation occurs when there is gain in the potential difference loop of the signal (see Non-Patent Document 1, for example).
[0005] トランジスタが発振を起こすと、信号が出力されなくなったり不必要な信号が増幅さ れたりといったことからトランジスタの動作が不安定となり、また合成効率も著しく低下 してしまうという問題がある。そこで、並列に接続されたトランジスタの信号が等振幅、 同位相でうまく合成されないに際に生じる発振対策として、並列に接続されたトランジ スタのゲート端子直近にゲート端子同士を接続するようにアイソレーション抵抗を装 荷し、不均一動作時に生じる電位差をアイソレーション抵抗で減らすと 、う方法があ つた (例えば、非特許文献 2参照)。 [0005] When the transistor oscillates, there is a problem that the operation of the transistor becomes unstable because the signal is not output or an unnecessary signal is amplified, and the synthesis efficiency is remarkably reduced. Therefore, the signals of the transistors connected in parallel are of equal amplitude, As a countermeasure against oscillation that occurs when they are not synthesized well in the same phase, an isolation resistor is mounted so that the gate terminals are connected in close proximity to the gate terminals of the transistors connected in parallel, and the potential difference that occurs during non-uniform operation is isolated. There is a method of reducing the resistance with the resistance (for example, see Non-Patent Document 2).
[0006] また、トランジスタの発振現象を抑圧する上記方法を用いて、トランジスタチップ内 で生じる発振現象を抑えるために、セル間のゲートバスやドレインパッド間にアイソレ ーシヨン抵抗を設けた半導体装置があった (例えば、特許文献 1参照)。 [0006] In addition, there is a semiconductor device in which an isolation resistor is provided between a gate bus or a drain pad between cells in order to suppress an oscillation phenomenon that occurs in a transistor chip by using the above-described method for suppressing the oscillation phenomenon of a transistor. (For example, see Patent Document 1).
[0007] 特許文献 1:特開平 11 103072号公報 Patent Document 1: Japanese Patent Application Laid-Open No. 11 103072
非特許文献 1 :伊藤,高木, "MMIC技術の基礎と応用",リアライズ社, 1996, pp. 1 Non-Patent Document 1: Ito, Takagi, "Basics and Applications of MMIC Technology", Realize, 1996, pp. 1
60-164 60-164
非特許文献 2 : T.TAKAGI, at el., "Analysis of High Power Amplifier Instability due to fo/2 Loop Oscillation , IEICE Trans on Electron. E78- C [8] , pp. 936- 943 ( August 1995)  Non-Patent Document 2: T.TAKAGI, at el., "Analysis of High Power Amplifier Instability due to fo / 2 Loop Oscillation, IEICE Trans on Electron. E78- C [8], pp. 936-943 (August 1995)
[0008] し力しながら、このような従来の半導体装置では、アイソレーション抵抗を設けるた めにプロセスが複雑になる等の課題があった。また、トランジスタチップ内部にァイソ レーシヨン抵抗を設けているので、アイソレーション抵抗自身の物理的な大きさが小さ くなるため耐電力には限界があり、大きな耐電力を実現するのは困難であるという課 題があった。  However, in such a conventional semiconductor device, there are problems such as a complicated process for providing an isolation resistor. In addition, since the isolation resistance is provided inside the transistor chip, the physical resistance of the isolation resistor itself is small, so there is a limit to the withstand power, and it is difficult to realize a large withstand power. There was a problem.
[0009] この発明は上記のような課題を解決するためになされたもので、各セル間の特性や インピーダンスの不揃いなどの原因により、各セル力 の信号が等振幅、同相合成さ れないことによって生じる、直流電圧印加時あるいは高周波信号入力時の発振現象 を抑制することのできる半導体トランジスタを得ることを目的とする。  [0009] The present invention has been made to solve the above-described problems, and the signal of each cell force is not synthesized with the same amplitude and in-phase due to the non-uniformity of the characteristics and impedance between the cells. It is an object of the present invention to obtain a semiconductor transistor capable of suppressing the oscillation phenomenon caused by applying DC voltage or inputting a high frequency signal.
発明の開示  Disclosure of the invention
[0010] この発明に係る半導体トランジスタは、並列配置されるトランジスタセル力 ゲートフ インガを介して、複数のドレイン電極と複数のソース電極とが櫛状に交互に対向配置 され、かつ、隣接するトランジスタセルのドレインパッドの間にソースパッドを設け、こ のソースパッドをゲートパッド側のソースパッドと接続して、トランジスタセル同士を電 気的に分離するようにしたものである。 [0011] このことによって、各セルの電気的な状態が他のセルに対して影響を与えることが なぐトランジスタセル間で生じる発振の可能性を下げることができる効果がある。 図面の簡単な説明 [0010] In the semiconductor transistor according to the present invention, a plurality of drain electrodes and a plurality of source electrodes are alternately arranged in a comb shape via transistor cell force gate fingers arranged in parallel, and adjacent transistor cells. A source pad is provided between the drain pads, and this source pad is connected to the source pad on the gate pad side to electrically isolate the transistor cells from each other. [0011] This has the effect of reducing the possibility of oscillation occurring between transistor cells, where the electrical state of each cell does not affect other cells. Brief Description of Drawings
[0012] [図 1]この発明の実施の形態 1による半導体トランジスタを示す構成図である。  FIG. 1 is a configuration diagram illustrating a semiconductor transistor according to a first embodiment of the present invention.
[図 2]この発明の実施の形態 2による半導体トランジスタを示す構成図である。  FIG. 2 is a configuration diagram showing a semiconductor transistor according to a second embodiment of the present invention.
[図 3]この発明の実施の形態 3による半導体トランジスタを示す構成図である。  FIG. 3 is a configuration diagram showing a semiconductor transistor according to a third embodiment of the present invention.
[図 4]この発明の実施の形態 4による半導体トランジスタを示す構成図である。  FIG. 4 is a configuration diagram showing a semiconductor transistor according to a fourth embodiment of the present invention.
[図 5]この発明の実施の形態 5による半導体トランジスタを示す構成図である。  FIG. 5 is a configuration diagram showing a semiconductor transistor according to a fifth embodiment of the present invention.
[図 6]この発明の実施の形態 6による半導体トランジスタを示す構成図である。  FIG. 6 is a configuration diagram showing a semiconductor transistor according to a sixth embodiment of the present invention.
[図 7]この発明の実施の形態 7による半導体トランジスタを示す構成図である。  FIG. 7 is a configuration diagram showing a semiconductor transistor according to a seventh embodiment of the present invention.
[図 8]この発明の実施の形態 8による半導体トランジスタを示す構成図である。  FIG. 8 is a configuration diagram showing a semiconductor transistor according to an eighth embodiment of the present invention.
[図 9]この発明の実施の形態 9による半導体トランジスタを示す構成図である。  FIG. 9 is a configuration diagram showing a semiconductor transistor according to a ninth embodiment of the present invention.
[図 10]この発明の実施の形態 10による半導体トランジスタを示す構成図である。 発明を実施するための最良の形態  FIG. 10 is a configuration diagram showing a semiconductor transistor according to Embodiment 10 of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
[0013] 以下、この発明をより詳細に説明するために、この発明を実施するための最良の形 態について、添付の図面に従って説明する。 Hereinafter, in order to describe the present invention in more detail, the best mode for carrying out the present invention will be described with reference to the accompanying drawings.
実施の形態 1.  Embodiment 1.
図 1はこの発明の実施の形態 1による半導体トランジスタの構成図である。  FIG. 1 is a configuration diagram of a semiconductor transistor according to Embodiment 1 of the present invention.
[0014] 本実施の形態 1における半導体トランジスタは、その一例として、 4個のトランジスタ セルが一つのトランジスタチップを構成し、このトランジスタセルを並列接続して高出 力を得るようにしたものを示して 、る。 [0014] The semiconductor transistor according to the first embodiment is an example in which four transistor cells constitute one transistor chip, and the transistor cells are connected in parallel to obtain high output. And
[0015] 本実施の形態 1の半導体トランジスタは、ドレイン電極 1とソース電極 2を櫛状に交 互に対向配置させた櫛形トランジスタである。また、ソース電極 2は、エアブリッジ 3と 呼ばれる空中配線を介してソースパッド 4に接続されている。 [0015] The semiconductor transistor of the first embodiment is a comb transistor in which the drain electrode 1 and the source electrode 2 are alternately arranged in a comb shape. Further, the source electrode 2 is connected to the source pad 4 through an air wiring called an air bridge 3.
[0016] また、ゲートフィンガ(ゲート電極) 5が 12本で一つのトランジスタセルを構成しており[0016] Also, 12 gate fingers (gate electrodes) 5 constitute one transistor cell.
、この 12本のゲートフィンガ 5に対して一つのゲートパッド 6が設けられている。 One gate pad 6 is provided for the 12 gate fingers 5.
[0017] ドレイン電極 1は、一つのドレインパッド 8から 1セルあたり 7本引き出されており、ソ ース電極 2は、一つのソースパッド 4から 1セルあたりで 3本引き出されている。そして これらドレイン電極 1およびソース電極 2は、ゲートフィンガ 5を跨いで交互に対向配 置されている。また、ゲートフィンガ 5は、ゲートバス 7を介して給電されるよう構成され ている。更に、ソース電極 2はゲートバス 7に接触させないようにするため、上述したよ うに、エアブリッジ 3と呼ばれる空中配線を介してソースパッド 4に接続されている。 [0017] Seven drain electrodes 1 are drawn from one drain pad 8 per cell, and three source electrodes 2 are drawn from one source pad 4 per cell. And The drain electrode 1 and the source electrode 2 are alternately arranged facing each other across the gate finger 5. The gate finger 5 is configured to be supplied with power through the gate bus 7. Further, the source electrode 2 is connected to the source pad 4 via the air wiring called the air bridge 3 as described above so as not to contact the gate bus 7.
[0018] また、 1個のセルを単位として、セルに設けられるドレインパッド 8と、隣接するセル のドレインパッド 8との間にソースパッド 4が設けられ、ゲートパッド 6側に配されたソー スパッド 4からの配線は、上記したドレインパッド 8間に設けたソースパッド 4と接続され るよう構成されている。また、これらドレイン電極 1一ドレインパッド 8は、 GaAs等から なる半絶縁性基板 (半導体基板) 9上に形成されて ヽる。  [0018] In addition, with one cell as a unit, a source pad 4 is provided between a drain pad 8 provided in a cell and a drain pad 8 of an adjacent cell, and the source pad is arranged on the gate pad 6 side. The wiring from 4 is configured to be connected to the source pad 4 provided between the drain pads 8 described above. The drain electrode 1 and the drain pad 8 are formed on a semi-insulating substrate (semiconductor substrate) 9 made of GaAs or the like.
[0019] 本実施の形態 1における半導体トランジスタでは、 1個のセルを単位として(以下、 1 ブロックと称す)、ゲート側、ドレイン側のソースパッド間の配線によって各セル同士を 分離することにより、トランジスタチップを構成することを特徴とするものである。即ち、 このような構成により、セル同士を電気的に分離するようにしている。  In the semiconductor transistor according to the first embodiment, each cell is separated by a wiring between source pads on the gate side and the drain side in units of one cell (hereinafter referred to as one block) It is characterized by constituting a transistor chip. That is, with such a configuration, the cells are electrically separated from each other.
[0020] 以上のように、実施の形態 1の半導体トランジスタによれば、半導体基板上に複数 個のトランジスタセルを並列配置する半導体トランジスタにお 、て、トランジスタセルを 、ゲートバスに接続された複数のストライプ状のゲート電極を介して、ドレインパッドに 接続された複数のストライプ状のドレイン電極と、ゲートバス側に設けられたソースパ ッドに接続された複数のストライプ状のソース電極とを櫛状に交互に対向配置させて 形成すると共に、隣接するトランジスタセルのドレインパッドの間にソースパッドを設け 、ソースパッドをゲートバス側のソースパッドと接続して、トランジスタセル同士を電気 的に分離するようにしたので、各セルの電気的な状態が他のセルに対して影響を与 えることがなぐ従来の形のトランジスタに比べて、トランジスタチップ内の各セル間に 生じるループ回路がなくなるので、トランジスタセル間で生じる発振の可能性を下げる ことができる効果がある。  As described above, according to the semiconductor transistor of the first embodiment, in a semiconductor transistor in which a plurality of transistor cells are arranged in parallel on a semiconductor substrate, the transistor cells are connected to a gate bus. A plurality of striped drain electrodes connected to the drain pad via a plurality of striped gate electrodes and a plurality of striped source electrodes connected to the source pad provided on the gate bus side are comb-shaped. So that the transistor cells are electrically separated from each other by providing source pads between the drain pads of adjacent transistor cells and connecting the source pads to the source pads on the gate bus side. As a result, the conventional state of the transistor is such that the electrical state of each cell does not affect other cells. Compared to, since the loop circuit is eliminated arising among the cells in the transistor chip, there is an effect that can lower the possibility of oscillation occurring between transistor cells.
[0021] また、各セル同士が電気的に分離されているため、アイソレーション抵抗を外部回 路に設けることで発振を防ぐことができる効果がある。このようにすれば、課題で述べ たような各セル間のアンバランス動作に起因する不安定性を抑え、更に、トランジスタ の動作の安定性を向上させることができる。また、外部回路にアイソレーション抵抗を 設けることで、上記したトランジスタチップの信頼性上の問題も回避できる効果がある [0021] Further, since each cell is electrically separated, there is an effect that oscillation can be prevented by providing an isolation resistor in an external circuit. In this way, it is possible to suppress the instability caused by the unbalance operation between cells as described in the problem, and to further improve the operation stability of the transistor. Also, an isolation resistor is added to the external circuit. By providing, the above-described transistor chip reliability problem can be avoided.
[0022] また、本実施の形態 1では、各セル毎にオンウェハ評価を行うことが可能となり、各 セル間で特性のそろったトランジスタを見出すことができる。このため、セル間のアン バランスが小さぐ所望の出力が得られるトランジスタを見出すことが可能となるという 効果もある。 In the first embodiment, on-wafer evaluation can be performed for each cell, and transistors with uniform characteristics can be found between the cells. For this reason, it is possible to find a transistor that can provide a desired output with a small unbalance between cells.
[0023] 実施の形態 2.  [0023] Embodiment 2.
図 2は、この発明の実施の形態 2による半導体トランジスタの構成図である。 実施の形態 2の半導体トランジスタは、ドレイン電極 1一半絶縁性基板 9からなり、図 中の各構成の機能に関する定義は実施の形態 1と同様である。また、各セルにおけ るゲート電極やドレイン電極の櫛型部分などの配置などは実施の形態 1と同様のもの を例として挙げている。  FIG. 2 is a configuration diagram of a semiconductor transistor according to the second embodiment of the present invention. The semiconductor transistor of the second embodiment is composed of the drain electrode 1 and the semi-insulating substrate 9, and the definition of the function of each component in the figure is the same as that of the first embodiment. In addition, the arrangement of the gate electrode and the drain electrode in each cell, such as the comb-shaped portion, is the same as in the first embodiment.
[0024] 本実施の形態 2における半導体トランジスタは、 2個のセルを単位として(1ブロック あたりのセル数が 2の場合を実施の形態として示したもの)、ゲート側、ドレイン側のソ ースパッド 4間の配線によってセル同士を電気的に分離することにより、トランジスタ チップを構成することを特徴とする半導体トランジスタである。  [0024] The semiconductor transistor according to the second embodiment has two cells as a unit (the case where the number of cells per block is two is shown as an embodiment), and the source pad 4 on the gate side and the drain side 4 The semiconductor transistor is characterized in that a transistor chip is formed by electrically separating cells from each other by wiring therebetween.
[0025] 以上で明らかなように、この実施の形態 2によれば、実施の形態 1と同様の構成によ り、トランジスタセル間で生じる発振の可能性を下げることができる効果があると共に、 予め 1ブロック当たりのセル数を増やしても発振しな!ヽと!、うことがわかって!/、るような 場合、本実施の形態 2のように、 1ブロック当たりのセルを複数にして構成することで、 本実施の形態 1に比べて、セル間のソースパッドと、ドレイン側に配置されるソースパ ッド間の配線の数が減るため、同じゲート幅のトランジスタチップで考えた場合、トラン ジスタチップを小型にすることができる効果がある。  As apparent from the above, according to the second embodiment, the same configuration as in the first embodiment has an effect of reducing the possibility of oscillation occurring between the transistor cells, and If you increase the number of cells per block in advance, it will not oscillate! If you know that it is! /, You can use multiple cells per block as in this Embodiment 2. By configuring, compared to the first embodiment, the number of wiring between the source pads between the cells and the source pads arranged on the drain side is reduced. This has the effect of reducing the size of the transistor chip.
[0026] 実施の形態 3.  Embodiment 3.
図 3は、この発明の実施の形態 3による半導体トランジスタの構成図である。 実施の形態 3の半導体トランジスタは、ドレイン電極 1一半絶縁性基板 9からなり、図 中の各構成の機能に関する定義は実施の形態 1と同様である。また、各セルにおけ るゲート電極やドレイン電極の櫛型部分などの配置等は実施の形態 1と同様のものを 例として挙げている。 FIG. 3 is a configuration diagram of a semiconductor transistor according to the third embodiment of the present invention. The semiconductor transistor of the third embodiment is composed of the drain electrode 1 and the semi-insulating substrate 9, and the definition of the function of each component in the figure is the same as that of the first embodiment. In addition, the arrangement of the comb-shaped portion of the gate electrode and the drain electrode in each cell is the same as in the first embodiment. Take as an example.
[0027] 本実施の形態 3による半導体トランジスタは、 4個のトランジスタセルが一つのトラン ジスタチップを構成し、このトランジスタセルを並列接続して高出力を得るようにしたも のである。また、本実施の形態 3では、 2個のセルを単位として、ゲートバス 7とドレイ ンパッド 8を切断している。図中の拡大部(円形部分)では、切断しているゲートバス 7 を表わすため、ソース電極 2のエアブリッジ 3を省略し、ゲートバス 7とゲートフィンガ 5 のみを示している。  In the semiconductor transistor according to the third embodiment, four transistor cells constitute one transistor chip, and these transistor cells are connected in parallel to obtain a high output. In the third embodiment, the gate bus 7 and the drain pad 8 are cut in units of two cells. In the enlarged portion (circular portion) in the figure, the gate bus 7 being cut is shown, and therefore the air bridge 3 of the source electrode 2 is omitted, and only the gate bus 7 and the gate finger 5 are shown.
[0028] 本実施の形態 3では、ゲートバス 7を介して給電されるゲートフィンガ 5が 10本で一 つのトランジスタセルを構成しており、この 10本のゲートフィンガ 5に対して一つのゲ ートパッド 6が設けられている。また、ドレイン電極 1は、一つのドレインパッド 8から 1セ ルあたり 5本引き出されており、ソース電極 2は、一つのソースパッド 4から 1セルあたり で 3本引き出されている。そしてこれらドレイン電極 1およびソース電極 2は、ゲートフィ ンガ 5を跨 、で交互に対向配置されて 、る。  In the third embodiment, 10 gate fingers 5 fed via the gate bus 7 constitute one transistor cell, and one gate pad is provided for the 10 gate fingers 5. 6 is provided. Further, five drain electrodes 1 are drawn from one drain pad 8 per cell, and three source electrodes 2 are drawn from one source pad 4 per cell. The drain electrode 1 and the source electrode 2 are alternately arranged opposite to each other across the gate finger 5.
[0029] 本実施の形態 3における半導体トランジスタは、 2個のセルを単位として、ゲートバス 7およびドレインパッド 8を切断することにより、セルを電気的に分離している。  In the semiconductor transistor according to the third embodiment, the cells are electrically isolated by cutting the gate bus 7 and the drain pad 8 in units of two cells.
また、ここでは 2個のセルを単位とする場合を例としてあげた力 それぞれのブロック 内のセル数が同じであれば、セル数が 2個である必要はない。  Also, here, the power given by taking the case of two cells as an example. If the number of cells in each block is the same, the number of cells need not be two.
[0030] 以上のように、実施の形態 3の半導体トランジスタによれば、半導体基板上に複数 個のトランジスタセルを並列配置する半導体トランジスタにお 、て、トランジスタセルを 、ゲートバスに接続された複数のストライプ状のゲート電極を介して、ドレインパッドに 接続された複数のストライプ状のドレイン電極と、ゲートバス側に設けられたソースパ ッドに接続された複数のストライプ状のソース電極とを櫛状に交互に対向配置させて 形成すると共に、 1個以上のトランジスタセルを単位として、隣接するトランジスタセル 間におけるゲートバスまたはドレインパッドの少なくともいずれか一方を切断し、トラン ジスタセル同士を電気的に分離するようにしたので、各セルの電気的な状態が他の セルに対して影響を与えることがなぐトランジスタセル間で生じる発振の可能性を下 げることができる効果がある。また、トランジスタに接続する整合回路のインピーダンス や、ゲート電極に入力される高周波信号といった条件に合わせて、ゲートバスを切断 するカゝドレインパッドを切断するかといった選択を行うことにより、確実にトランジスタの 分離状態を確保することができる効果がある。 As described above, according to the semiconductor transistor of the third embodiment, in a semiconductor transistor in which a plurality of transistor cells are arranged in parallel on a semiconductor substrate, the transistor cells are connected to a gate bus. A plurality of striped drain electrodes connected to the drain pad via a plurality of striped gate electrodes and a plurality of striped source electrodes connected to the source pad provided on the gate bus side are comb-shaped. In addition, one or more transistor cells are used as a unit, and at least one of the gate bus or drain pad between adjacent transistor cells is cut to electrically isolate the transistor cells from each other. As a result, the electrical state of each cell does not affect other cells. There is an effect that can lower the gel the possibility of oscillation occurring between Ranjisutaseru. In addition, the gate bus is disconnected in accordance with conditions such as the impedance of the matching circuit connected to the transistor and the high-frequency signal input to the gate electrode. By selecting whether the drain pad to be cut is to be cut, there is an effect that the isolation state of the transistor can be surely ensured.
[0031] 実施の形態 4.  [0031] Embodiment 4.
図 4は、この発明の実施の形態 4による半導体トランジスタの構成図である。  FIG. 4 is a configuration diagram of a semiconductor transistor according to the fourth embodiment of the present invention.
図 4において、図中の記号の定義は実施の形態 1と同様である。また、各セルにお けるゲートフィンガ 5やドレイン電極 1からなる櫛型部分の配置等は実施の形態 3と同 様のものを例として挙げて!/、る。  In FIG. 4, the definitions of symbols in the figure are the same as those in the first embodiment. Further, the arrangement of the comb-shaped portion composed of the gate finger 5 and the drain electrode 1 in each cell is taken as an example similar to the third embodiment.
[0032] 本実施の形態 4における半導体トランジスタは、ドレインパッド 8は全て接続している 力 1個のセルを単位として、ゲートバス 7を切断することによりセルを電気的に分離し 、トランジスタチップを構成することを特徴とする半導体トランジスタである。尚、図中 の拡大部(円形部分)では、切断しているゲートバス 7を表わすため、ソース電極 2の エアブリッジ 3を省略し、ゲートバス 7とゲートフィンガ 5のみを示して!/、る。 [0032] In the semiconductor transistor according to the fourth embodiment, the drain pad 8 is all connected. The cell is electrically isolated by cutting the gate bus 7 in units of one cell, and the transistor chip is separated. It is a semiconductor transistor characterized by comprising. Note that the enlarged portion (circular portion) in the figure represents the gate bus 7 that has been cut, so the air bridge 3 of the source electrode 2 is omitted, and only the gate bus 7 and the gate finger 5 are shown! .
また、ここでは 1個のセルを単位とする場合を例としてあげた力 各ブロック内のセ ル数が同じであれば、セル数が 1個である必要はない。  Also, here is an example of the case where one cell is used as a unit. If the number of cells in each block is the same, the number of cells need not be one.
[0033] 以上のように、実施の形態 4の半導体トランジスタによれば、 1個以上のトランジスタ セルを単位として、隣接するトランジスタセル間におけるゲートバスを切断し、トランジ スタセル同士を電気的に分離するようにしたので、各セルの電気的な状態が他のセ ルに対して影響を与えることがなぐトランジスタセル間で生じる発振の可能性を下げ ることができる効果がある。また、実施の形態 4では、ドレインパッド 8は切断せず、連 続しているため、ワイヤボンディングする自由度が増え、実装上の利点がある。 As described above, according to the semiconductor transistor of the fourth embodiment, the gate bus between adjacent transistor cells is cut in units of one or more transistor cells to electrically isolate the transistor cells from each other. As a result, there is an effect that the possibility of oscillation occurring between transistor cells in which the electrical state of each cell does not affect other cells can be reduced. In the fourth embodiment, since the drain pad 8 is not cut and is continuous, the degree of freedom for wire bonding is increased, and there is an advantage in mounting.
[0034] 実施の形態 5. [0034] Embodiment 5.
図 5は、この発明の実施の形態 5による半導体トランジスタの構成図である。  FIG. 5 is a configuration diagram of a semiconductor transistor according to the fifth embodiment of the present invention.
図 5において、図中の記号の定義は実施の形態 1と同様である。また、各セルにお けるゲートフィンガ 5やドレイン電極 1からなる櫛型部分の配置等は実施の形態 3と同 様のものを例として挙げて!/、る。  In FIG. 5, the definitions of symbols in the figure are the same as those in the first embodiment. Further, the arrangement of the comb-shaped portion composed of the gate finger 5 and the drain electrode 1 in each cell is taken as an example similar to the third embodiment.
本実施の形態 5における半導体トランジスタは、ゲートバス 7は全て接続しているが 、 1個のセルを単位として、ドレインパッド 8を切断することによりセルを電気的に分離 し、トランジスタチップを構成することを特徴とする半導体トランジスタである。 また、ここでは 1個のセルを単位とする場合を例として挙げている力 セル数が 1個 である必要はない。 In the semiconductor transistor according to the fifth embodiment, all the gate buses 7 are connected, but the cell is electrically isolated by cutting the drain pad 8 in units of one cell, thereby forming a transistor chip. This is a semiconductor transistor. Also, here, the number of force cells is not necessarily one, as an example where one cell is used as a unit.
[0035] 以上のように、実施の形態 5の半導体トランジスタによれば、 1個以上のトランジスタ セルを単位として、隣接するトランジスタセル間におけるドレインパッド 8を切断し、トラ ンジスタセル同士を電気的に分離するようにしたので、各セルの電気的な状態が他 のセルに対して影響を与えることがなぐトランジスタセル間で生じる発振の可能性を 下げることができる効果がある。  As described above, according to the semiconductor transistor of the fifth embodiment, the drain pad 8 between adjacent transistor cells is cut in units of one or more transistor cells to electrically isolate the transistor cells. As a result, it is possible to reduce the possibility of oscillation occurring between transistor cells in which the electrical state of each cell does not affect other cells.
[0036] 実施の形態 6.  [0036] Embodiment 6.
図 6は、この発明の実施の形態 6による半導体トランジスタの構成図である。  FIG. 6 is a configuration diagram of a semiconductor transistor according to the sixth embodiment of the present invention.
実施の形態 6の半導体トランジスタは、ドレイン電極 1一金属ワイヤ 10からなり、金 属ワイヤ 10を除き、図中の各構成の機能に関する定義は実施の形態 1と同様である 。また、各セルにおけるゲートフィンガ 5やドレイン電極 1からなる櫛型部分の配置等 は実施の形態 1と同様のものを例として挙げている。  The semiconductor transistor of the sixth embodiment is composed of a drain electrode 1 and a single metal wire 10, and the definitions relating to the functions of the components in the figure are the same as those of the first embodiment except for the metal wire 10. Further, the arrangement of the comb-shaped portion including the gate finger 5 and the drain electrode 1 in each cell is the same as that in the first embodiment.
[0037] 本実施の形態 6における半導体トランジスタは、実施の形態 1の半導体トランジスタ において、ゲートパッド 6側およびドレインパッド 8側のソースパッド 4からグランドへ接 続する金属ワイヤ 10が設けられていることを特徴とする半導体トランジスタである。  [0037] The semiconductor transistor according to the sixth embodiment is provided with the metal wire 10 connected to the ground from the source pad 4 on the gate pad 6 side and the drain pad 8 side in the semiconductor transistor of the first embodiment. The semiconductor transistor characterized by the above.
[0038] この例では、ゲートパッド 6側およびドレインパッド 8側の両方のソースパッド 4からグ ランドへ接続した例を挙げた力 ソースパッド 4のどちらか一方の側のみ金属ワイヤを 接続しても良い。  [0038] In this example, the force is shown in which the source pad 4 on both the gate pad 6 side and the drain pad 8 side is connected to the ground. Even if the metal wire is connected to only one side of the source pad 4 good.
[0039] 以上のように、実施の形態 6の半導体トランジスタによれば、ソースパッドにおけるゲ ートバス側の部分、またはドレインパッド側の部分のうち、少なくともいずれか一方の 部分力 グランドに接続するための金属ワイヤを備えたので、ソース接地形式の半導 体トランジスタとして安定に動作する効果がある。  As described above, according to the semiconductor transistor of the sixth embodiment, at least one of the part on the gate bus side or the part on the drain pad side in the source pad is connected to the ground. Since it has a metal wire, it has the effect of operating stably as a source-grounded semiconductor transistor.
[0040] また、実施の形態 1、 2で説明した半導体トランジスタにおいて、ヴィァホールプロセ スが適用できない場合にも、ソース接地形式の半導体トランジスタとして適用できる効 果がある。  [0040] In addition, in the semiconductor transistors described in the first and second embodiments, even when the via hole process cannot be applied, there is an effect that the semiconductor transistor can be applied as a common source semiconductor transistor.
[0041] 更に、本実施の形態 6の半導体トランジスタを半導体増幅器に適用した場合、ゲー トパッド 6側、ドレインパッド 8側に配置された両方のソースパッド 4からグランドへ金属 ワイヤ 10を配線することにより、片側のソースパッド 4だけ力も配線した場合に比べて[0041] Further, when the semiconductor transistor of the sixth embodiment is applied to a semiconductor amplifier, the metal from both the source pads 4 arranged on the gate pad 6 side and the drain pad 8 side to the ground. By wiring wire 10, compared to the case where only the source pad 4 on one side is also wired
、ソースとグランド間のインダクタンス成分を下げることができ、フィードバック量が減る ため、高周波化、高利得化、高出力化を図ることができる効果がある。 Since the inductance component between the source and ground can be reduced and the amount of feedback is reduced, there is an effect that high frequency, high gain, and high output can be achieved.
[0042] 実施の形態 7. [0042] Embodiment 7.
図 7は、この発明の実施の形態 7による半導体トランジスタの構成図である。  FIG. 7 is a configuration diagram of a semiconductor transistor according to the seventh embodiment of the present invention.
実施の形態 7の半導体トランジスタは、ドレイン電極 1一金属ワイヤ 10からなり、金 属ワイヤ 10を除き、図中の各構成の機能に関する定義は実施の形態 1と同様である The semiconductor transistor of the seventh embodiment is composed of a drain electrode 1 and one metal wire 10, and the definition of the functions of each component in the figure is the same as in the first embodiment except for the metal wire 10.
。また、各セルにおけるゲートフィンガ 5やドレイン電極 1からなる櫛型部分等の配置 は実施の形態 3と同様のものを例として挙げている。 . In addition, the arrangement of the comb-shaped portion including the gate finger 5 and the drain electrode 1 in each cell is the same as that of the third embodiment.
[0043] 実施の形態 7における半導体トランジスタは、実施の形態 3の半導体トランジスタに ぉ 、て、ゲートパッド 6側のソースパッド 4にグランドへ接続する金属ワイヤ 10が設け られて 、ることを特徴とする半導体トランジスタである。 The semiconductor transistor according to the seventh embodiment is characterized in that the semiconductor wire of the third embodiment is provided with a metal wire 10 connected to the ground on the source pad 4 on the gate pad 6 side. It is a semiconductor transistor.
[0044] 以上のように、この実施の形態 7の半導体トランジスタによれば、ソースパッド力 グ ランドに接続するための金属ワイヤを備えたので、ソース接地形式の半導体トランジ スタとして安定に動作する効果がある。 As described above, according to the semiconductor transistor of the seventh embodiment, since the metal wire for connecting to the source pad force ground is provided, it is possible to stably operate as a source grounded type semiconductor transistor. There is.
[0045] また、実施の形態 3に記載の半導体トランジスタにおいて、ヴィァホールプロセスが 適用できな 、場合にも、ソース接地形式の半導体トランジスタとして適用できる効果 がある。 [0045] In addition, in the semiconductor transistor described in Embodiment 3, when the via hole process is not applicable, there is an effect that the semiconductor transistor can be applied as a common source type semiconductor transistor.
[0046] 尚、ここでは実施の形態 3に適用した場合について説明した力 実施の形態 4、実 施の形態 5で示した半導体トランジスタを用いて、同様に金属ワイヤをソースパッドと グランド間を接続することで、同様の効果が得られる。  [0046] Here, the force described in the case of applying to the third embodiment is used. Similarly, using the semiconductor transistor shown in the fourth embodiment and the fifth embodiment, a metal wire is connected between the source pad and the ground. By doing so, the same effect can be obtained.
[0047] 実施の形態 8.  [0047] Embodiment 8.
図 8は、この発明の実施の形態 8による半導体トランジスタの構成図である。  FIG. 8 is a configuration diagram of a semiconductor transistor according to the eighth embodiment of the present invention.
実施の形態 8の半導体トランジスタは、ドレイン電極 1一ヴィァホール 11からなり、ヴ ィァホール 11を除き、図中の各構成の機能に関する定義は実施の形態 1と同様であ る。また、各セルにおけるゲートフィンガ 5やドレイン電極 1の櫛型部分等の配置は実 施の形態 1と同様のものを例として挙げている。  The semiconductor transistor of the eighth embodiment is composed of one drain electrode 1 and a via hole 11. Except for the via hole 11, the definition of the function of each component in the figure is the same as that of the first embodiment. In addition, the arrangement of the gate fingers 5 and the comb-shaped portions of the drain electrode 1 in each cell is the same as that in the first embodiment.
[0048] 即ち、実施の形態 8における半導体トランジスタは、実施の形態 1の半導体トランジ スタにおいて、ゲートパッド 6側のソースパッド 4に、グランドに接続するヴィァホール 1 1を有することを特徴とする半導体トランジスタである。 That is, the semiconductor transistor in the eighth embodiment is the same as the semiconductor transistor in the first embodiment. The semiconductor transistor is characterized in that the source pad 4 on the gate pad 6 side has a via hole 11 connected to the ground.
[0049] 以上のように、この実施の形態 8によれば、ソースパッドにグランドに接続するため のヴィァホールを設けたので、ソース接地形式の半導体トランジスタとして安定に動 作する効果がある。 As described above, according to the eighth embodiment, since the via hole for connecting to the ground is provided on the source pad, there is an effect that the source transistor is stably operated as a grounded source type semiconductor transistor.
[0050] また、実施の形態 8の半導体トランジスタを、半導体増幅器に適用した場合、ソース ノ ッドからグランドへ金属ワイヤで配線した場合に比べて、ソースとグランド間のイン ダクタンス成分を下げることができ、フィードバック量が減るため、高周波化、高利得 ィ匕、高出力化の効果がある。  [0050] When the semiconductor transistor of Embodiment 8 is applied to a semiconductor amplifier, the inductance component between the source and the ground can be reduced as compared with the case where the metal wire is wired from the source node to the ground. Since the amount of feedback is reduced, there is an effect of higher frequency, higher gain, and higher output.
[0051] 実施の形態 9.  [0051] Embodiment 9.
図 9は、この発明の実施の形態 9による半導体トランジスタの構成図である。  FIG. 9 is a configuration diagram of a semiconductor transistor according to the ninth embodiment of the present invention.
実施の形態 9の半導体トランジスタは、ドレイン電極 1一ヴィァホール 11からなり、ヴ ィァホール 11を除き、図中の各構成の機能に関する定義は実施の形態 1と同様であ る。また、各セルにおけるゲート電極やドレイン電極の櫛型部分などの配置などは実 施の形態 2と同様のものを例として挙げている。  The semiconductor transistor of the ninth embodiment is composed of one drain electrode 1 and a via hole 11. Except for the via hole 11, the definition of the function of each component in the figure is the same as that of the first embodiment. In addition, the arrangement of the comb-shaped portions of the gate electrode and the drain electrode in each cell is the same as that of the second embodiment.
[0052] 即ち、実施の形態 9における半導体トランジスタは、実施の形態 2の半導体トランジ スタにお 、て、ゲートパッド 6側およびドレインパッド 8側のソースパッド 4に、グランド に接続するヴィァホール 11を有することを特徴とする半導体トランジスタである。  That is, the semiconductor transistor in the ninth embodiment includes the via hole 11 connected to the ground in the source pad 4 on the gate pad 6 side and the drain pad 8 side in the semiconductor transistor in the second embodiment. This is a semiconductor transistor.
[0053] 以上のように、実施の形態 9の半導体トランジスタによれば、ソースパッドにグランド に接続するためのヴィァホールを設けたので、ソース接地形式の半導体トランジスタ として安定に動作する効果があると共に、実施の形態 8の場合に比べて、ヴィァホー ルの数が多いので、ソースとグランド間のインダクタンス成分を更に下げることができ る効果がある。  As described above, according to the semiconductor transistor of the ninth embodiment, since the via hole for connecting to the ground is provided in the source pad, there is an effect that the semiconductor transistor operates stably as a source-grounded semiconductor transistor, Compared to the case of the eighth embodiment, since the number of via holes is large, there is an effect that the inductance component between the source and the ground can be further reduced.
[0054] 実施の形態 10.  [0054] Embodiment 10.
図 10は、この発明の実施の形態 10による半導体トランジスタの構成図である。 実施の形態 10の半導体トランジスタは、ドレイン電極 1一ヴィァホール 11からなり、 ヴィァホール 11を除き、図中の各構成の機能に関する定義は実施の形態 1と同様で ある。また、各セルにおけるゲートフィンガ 5やドレイン電極 1の櫛型部分等の配置は 実施の形態 3と同様のものを例として挙げている。 FIG. 10 is a configuration diagram of a semiconductor transistor according to the tenth embodiment of the present invention. The semiconductor transistor of the tenth embodiment includes a drain electrode 1 and a via hole 11. Except for the via hole 11, the definition of the function of each component in the figure is the same as that of the first embodiment. The arrangement of the gate fingers 5 and the comb-shaped portion of the drain electrode 1 in each cell is The same thing as Embodiment 3 is mentioned as an example.
[0055] 即ち、実施の形態 10における半導体トランジスタは、実施の形態 3の半導体トラン ジスタにおいて、ゲートパッド 6側のソースパッド 4に、グランドに接続するヴィァホー ル 11を有することを特徴とする半導体トランジスタである。  That is, the semiconductor transistor according to the tenth embodiment has the via hole 11 connected to the ground in the source pad 4 on the gate pad 6 side in the semiconductor transistor according to the third embodiment. It is.
[0056] 以上のように、実施の形態 10の半導体トランジスタによれば、ソースパッドにグラン ドに接続するためのヴィァホールを設けたので、ソース接地形式の半導体トランジス タとして安定に動作する効果があると共に、実施の形態 10の半導体トランジスタを半 導体増幅器に適用した場合、ソースパッドからグランドへ金属ワイヤで配線した場合 に比べて、ソースとグランド間のインダクタンス成分を下げることができ、フィードバック 量が減るため、高周波化、高利得化、高出力化の効果がある。  As described above, according to the semiconductor transistor of the tenth embodiment, since the via hole for connecting to the ground is provided in the source pad, there is an effect that the semiconductor transistor operates stably as a grounded source type semiconductor transistor. In addition, when the semiconductor transistor of Embodiment 10 is applied to a semiconductor amplifier, the inductance component between the source and ground can be reduced and the amount of feedback can be reduced as compared with the case where the metal wire is wired from the source pad to the ground. Therefore, there are effects of high frequency, high gain, and high output.
[0057] 尚、ここでは実施の形態 3に適用した場合について述べた力 実施の形態 4、実施 の形態 5で示した半導体トランジスタを用いて、同様にソースパッドとグランド間をヴィ ァホールで接続することで、同様の効果が得られる。  Note that here, the force applied to the third embodiment is used, and the semiconductor transistor shown in the fourth and fifth embodiments is used to similarly connect the source pad and the ground with a via hole. Thus, the same effect can be obtained.
産業上の利用可能性  Industrial applicability
[0058] 以上のように、この発明に係る半導体トランジスタは、半導体基板上に複数個のトラ ンジスタセルを並列配置した半導体トランジスタにおける発振を抑えるものであり、高 出力増幅器などに用いるのに適している。 [0058] As described above, the semiconductor transistor according to the present invention suppresses oscillation in a semiconductor transistor in which a plurality of transistor cells are arranged in parallel on a semiconductor substrate, and is suitable for use in a high-power amplifier or the like. .

Claims

請求の範囲 The scope of the claims
[1] 半導体基板上に複数個のトランジスタセルを並列配置する半導体トランジスタにお いて、  [1] In a semiconductor transistor in which a plurality of transistor cells are arranged in parallel on a semiconductor substrate,
前記トランジスタセルを、ゲートバスに接続された複数のストライプ状のゲート電極を 介して、ドレインパッドに接続された複数のストライプ状のドレイン電極と、前記ゲート バス側に設けられたソースパッドに接続された複数のストライプ状のソース電極とを櫛 状に交互に対向配置させて形成すると共に、  The transistor cell is connected to a plurality of striped drain electrodes connected to a drain pad and a source pad provided on the gate bus side via a plurality of striped gate electrodes connected to a gate bus. A plurality of striped source electrodes are alternately arranged opposite to each other in a comb shape.
隣接するトランジスタセルの前記ドレインパッドの間にソースパッドを設け、当該ソー スパッドを前記ゲートバス側のソースパッドと接続して、前記トランジスタセル同士を電 気的に分離するようにした半導体トランジスタ。  A semiconductor transistor in which a source pad is provided between the drain pads of adjacent transistor cells, and the source pad is connected to the source pad on the gate bus side to electrically isolate the transistor cells.
[2] 半導体基板上に複数個のトランジスタセルを並列配置する半導体トランジスタにお いて、  [2] In a semiconductor transistor in which a plurality of transistor cells are arranged in parallel on a semiconductor substrate,
前記トランジスタセルを、ゲートバスに接続された複数のストライプ状のゲート電極を 介して、ドレインパッドに接続された複数のストライプ状のドレイン電極と、前記ゲート バス側に設けられたソースパッドに接続された複数のストライプ状のソース電極とを櫛 状に交互に対向配置させて形成すると共に、  The transistor cell is connected to a plurality of striped drain electrodes connected to a drain pad and a source pad provided on the gate bus side via a plurality of striped gate electrodes connected to a gate bus. A plurality of striped source electrodes are alternately arranged opposite to each other in a comb shape, and
1個以上の前記トランジスタセルを単位として、前記隣接するトランジスタセル間に おけるゲートバスまたはドレインパッドの少なくともいずれか一方を切断し、前記トラン ジスタセル同士を電気的に分離するようにした半導体トランジスタ。  A semiconductor transistor in which at least one of a gate bus and a drain pad between adjacent transistor cells is cut in units of one or more of the transistor cells to electrically isolate the transistor cells.
[3] ソースパッドにおけるゲートバス側の部分、またはドレインパッド側の部分のうち、少 なくともいずれか一方の部分力 グランドに接続するための金属ワイヤを備えたことを 特徴とする請求項 1記載の半導体トランジスタ。 [3] The metal wire for connecting to at least one partial force ground of the gate pad side portion or the drain pad side portion of the source pad is provided. Semiconductor transistor.
[4] ソースパッドからグランドに接続するための金属ワイヤを備えたことを特徴とする請 求項 2記載の半導体トランジスタ。 [4] The semiconductor transistor according to claim 2, further comprising a metal wire for connecting the source pad to the ground.
[5] ソースパッドにグランドに接続するためのヴィァホールを設けたことを特徴とする請 求項 1記載の半導体トランジスタ。 [5] The semiconductor transistor according to claim 1, wherein a via hole for connecting to the ground is provided in the source pad.
[6] ソースパッドにグランドに接続するためのヴィァホールを設けたことを特徴とする請 求項 2記載の半導体トランジスタ。 [6] The semiconductor transistor according to claim 2, wherein a via hole for connecting to the ground is provided in the source pad.
PCT/JP2005/000036 2005-01-05 2005-01-05 Semiconductor transistor WO2006072979A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/000036 WO2006072979A1 (en) 2005-01-05 2005-01-05 Semiconductor transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/000036 WO2006072979A1 (en) 2005-01-05 2005-01-05 Semiconductor transistor

Publications (1)

Publication Number Publication Date
WO2006072979A1 true WO2006072979A1 (en) 2006-07-13

Family

ID=36647467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/000036 WO2006072979A1 (en) 2005-01-05 2005-01-05 Semiconductor transistor

Country Status (1)

Country Link
WO (1) WO2006072979A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6481501A (en) * 1987-09-24 1989-03-27 Mitsubishi Electric Corp Microwave semiconductor switch
JPH10233404A (en) * 1997-02-21 1998-09-02 Mitsubishi Electric Corp Semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6481501A (en) * 1987-09-24 1989-03-27 Mitsubishi Electric Corp Microwave semiconductor switch
JPH10233404A (en) * 1997-02-21 1998-09-02 Mitsubishi Electric Corp Semiconductor device

Similar Documents

Publication Publication Date Title
WO2010113779A1 (en) Semiconductor device
WO2001097328A1 (en) Techniques for enhancing gain in a quasi-optic grid array
JPH11251849A (en) High frequency power amplifier
JP4927351B2 (en) Doherty amplifier
JPH11346130A (en) Semiconductor device
JP5711778B2 (en) Semiconductor device
JP2011249485A (en) Switching element, high frequency signal switch and high frequency signal amplification module
JP5550224B2 (en) Semiconductor device
US8421537B2 (en) Electronic circuit
US20020079970A1 (en) RF power amplifier
US20200021255A1 (en) Semiconductor device
WO2006072979A1 (en) Semiconductor transistor
US7030698B2 (en) High-frequency power amplifier
JP2580966B2 (en) Semiconductor device
JP7456517B2 (en) transistor
JP2004055914A (en) Semiconductor device
JP2014207333A (en) Field effect transistor and high frequency amplification circuit
JPH09260412A (en) Semiconductor integrated circuit
US7786830B2 (en) Switch with movable portion
NL2032932B1 (en) Digital rf amplifier
US20240162312A1 (en) Semiconductor device
US11855601B2 (en) High-frequency semiconductor device
JP2013223116A (en) Distortion compensation circuit and amplifier
JP2001053510A (en) High-frequency circuit
JP2001257546A (en) High frequency power amplifier

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05703309

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5703309

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP