WO2006072197A1 - Adjuvant plasmidique pour un traitement par ultrasons focalises a haute intensite et son utilisation - Google Patents

Adjuvant plasmidique pour un traitement par ultrasons focalises a haute intensite et son utilisation Download PDF

Info

Publication number
WO2006072197A1
WO2006072197A1 PCT/CN2005/001361 CN2005001361W WO2006072197A1 WO 2006072197 A1 WO2006072197 A1 WO 2006072197A1 CN 2005001361 W CN2005001361 W CN 2005001361W WO 2006072197 A1 WO2006072197 A1 WO 2006072197A1
Authority
WO
WIPO (PCT)
Prior art keywords
hifu
adjuvant
auxiliary agent
nano
particle diameter
Prior art date
Application number
PCT/CN2005/001361
Other languages
English (en)
French (fr)
Inventor
Zhibiao Wang
Faqi Li
Liping Liu
Yanbing Xiao
Ziwen Xiao
Zhilong Wang
Original Assignee
Chongqing Haifu(Hifu)Technology Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Haifu(Hifu)Technology Co., Ltd filed Critical Chongqing Haifu(Hifu)Technology Co., Ltd
Priority to EP05782127A priority Critical patent/EP1847275A4/en
Priority to JP2007549779A priority patent/JP2008526784A/ja
Priority to AU2005324270A priority patent/AU2005324270B2/en
Priority to US11/794,927 priority patent/US20080260790A1/en
Priority to CA002593632A priority patent/CA2593632A1/en
Priority to BRPI0518495-9A priority patent/BRPI0518495A2/pt
Publication of WO2006072197A1 publication Critical patent/WO2006072197A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/06Aluminium, calcium or magnesium; Compounds thereof, e.g. clay
    • A61K33/10Carbonates; Bicarbonates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/575Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of three or more carbon atoms, e.g. cholane, cholestane, ergosterol, sitosterol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/66Phosphorus compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/42Phosphorus; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0028Disruption, e.g. by heat or ultrasounds, sonophysical or sonochemical activation, e.g. thermosensitive or heat-sensitive liposomes, disruption of calculi with a medicinal preparation and ultrasounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0052Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N7/02Localised ultrasound hyperthermia

Definitions

  • the present invention relates to the field of medicine and medical treatment, and more particularly to the field of ultrasonic therapy, and more particularly, the present invention relates to a HIFU therapeutic plasmid adjuvant capable of increasing tissue energy deposition in a target area during HIFU treatment and application. Background technique
  • High-intensity focused ultrasound (HIFU) technology has been clinically recognized as a new approach to the treatment of tumors and other diseases. It focuses on ultrasound to form high-intensity, continuous ultrasound energy on the lesion, resulting in transient high-temperature effects (65 to 100 ° C), cavitation, mechanical and sonochemical effects, selectively causing coagulative necrosis of the lesion , the ability of the tumor to lose proliferation, infiltration and metastasis.
  • HIFU High-intensity focused ultrasound
  • Another object of the present invention is to provide a method for the energy deposition of a target region in the treatment of HIFU by the HIFU therapeutic plasmid adjuvant of the present invention.
  • Still another object of the present invention is to provide a use of the HIFU therapeutic plasmid-based adjuvant of the present invention for enhancing the effect of HIFU in treating diseases.
  • the substance which is an auxiliary agent for HIFU treatment in the present invention is preferably a nano-scale biocompatible solid selected from magnetic biomaterials such as superparamagnetic nanoparticles (SPIO), hydroxyapatite (HAP) and carbonic acid.
  • SPIO superparamagnetic nanoparticles
  • HAP hydroxyapatite
  • Carbonic acid is more preferably hydroxyapatite
  • the auxiliary agent has a particle diameter of from 1 to 500 nm, preferably from 1 to 200 nm, more preferably from 10 to 100 nm.
  • auxiliary agent for example, a nano-sized biocompatible solid of a desired particle size, for example, a magnetic biomaterial such as superparamagnetic nanoparticles (SPIO), hydroxyapatite (HAP) And calcium carbonate, formulated with an aqueous medium at a concentration A suspension of 0.1-150 g/L.
  • a mixing device such as an ultrasonic shaker to completely and uniformly disperse the nanoscale biocompatible solids in the aqueous suspension medium.
  • nanoscale refers to a particle size of greater than 1 nm and less than 1000 nm.
  • a preferred technical solution of the present invention provides a HIFU therapeutic plasmid-based auxiliary agent comprising a core composed of a film-forming material.
  • a continuous phase composed of a discontinuous phase and an aqueous medium, wherein the discontinuous phase is uniformly dispersed in the continuous phase, and the discontinuous phase has a particle diameter of 10 to 1000 nm, preferably 10 to 500 nm, more preferably 10 to 200 nm;
  • the film-forming material is contained in the auxiliary agent in an amount of 0.1 to 100 g/L, preferably 0.5 to 20 g/L, more preferably 0.5 to 10 g/L; and the core material is nano-scale biocompatible.
  • SPIO superparamagnetic nanoparticles
  • HAP hydroxyapatite
  • calcium carbonate preferably hydroxyapatite
  • the film-forming material includes a lipid such as 3-sn-phosphatidylcholine (lecithin), 1,2-dipalmitoyl-sn-glycero-3-phosphatidylglycerol Base-sodium salt, 1,2-distearoyl-sn-glycero-3-phosphatidylcholine, 1,2-dipalmitoyl-sn-glycero-3-phosphatidyl-sodium salt, 1, 2-dipalmitoyl-sn-glycero-3-phosphatidylcholine, phosphatidylserine, hydrogenated phosphatidylserine, cholesterol, glycolipids; sugars, including, for example, glucose, fructose, sucrose, starch, and their different chains Long degradation products; proteins, including, for example, albumin, globulin, fibrinogen, fibrin, hemoglobin, and degradation products of plant chain proteins of different chain lengths, and the like.
  • lipid such as 3-sn-
  • the aqueous medium is distilled water, physiological saline or a glucose solution.
  • the concentration of the glucose solution can reach 50% (w/V), but the aqueous medium used for the HIFU treatment for diabetic patients cannot use a glucose solution in the aqueous medium.
  • the auxiliary agent may further contain sodium carboxymethyl cellulose (CMC-Na) or/and glycerol (glycerol), etc., and the content of the CMC-Na in the auxiliary agent is 0.01. It is preferably from 10 to 10 g/L, more preferably from 0.05 to 0.6 g/L, still more preferably from 0.1 to 0.3 g/L.
  • glycerol in the auxiliary agent is 5 to 100 g/L.
  • Other preferred adjuvants may also contain potassium carboxymethylcellulose, sodium carboxyethylcellulose, potassium carboxyethylcellulose, sodium carboxypropylcellulose, potassium carboxypropylcellulose, and the like.
  • the pH of the auxiliary agent is adjusted to 3.0 to 6.5, preferably to 5.0 to 6.0.
  • Both inorganic or organic acids can be used to adjust the pH of the adjuvant, preferably using acetic acid to adjust the pH of the adjuvant.
  • a substance having a specific affinity for the tumor tissue or the lesion site may be added to the adjuvant.
  • tumor antibodies Such as tumor antibodies.
  • the HIFU therapeutic plasmid-based adjuvant provided by the present invention preferably encapsulates nano-scale magnetic biomaterial, hydroxyapatite and/or calcium carbonate with a lipid (more preferably phospholipid), which enables the adjuvant to pass through the blood smoothly. It circulates and is quickly swallowed by tissues rich in reticuloendothelial cells in the human body. It can be deposited in human tissues in a large amount of time, which can significantly change the acoustic environment of human tissues, thereby significantly enhancing the absorption characteristics of human tissue. Increases the energy deposition of target tissue during HIFU treatment, which can significantly improve the efficiency of HIFU treatment of tumors.
  • nano-scale biocompatible solids coated with the film of the present invention it can be prepared as follows -
  • the mixed solution obtained in the above step (1) is placed in a sound vibrometer, and subjected to sound vibration for 2 to 3 minutes under the conditions of a power of 400 to 800 W to form a uniformly dispersed and stable suspension.
  • the mixture is sonicated twice to form a more dispersed, more stable suspension.
  • the preparation method of the HIFU therapeutic plasmid auxiliary agent provided by the invention only needs to prepare the biocompatible solid into nanometer-sized particles; the sonic vibration meter can realize the uniform dispersion of the discontinuous phase in the aqueous medium, and
  • the invention solves the problem that the nano-sized particles are easy to aggregate and increase the particle size, the equipment investment is small, the operation is simple, the uniform dispersion effect is good, and the production cost is low.
  • the invention also provides a method for increasing energy deposition in a target area during HIFU treatment, characterized in that the patient is injected with an effective dose of the HIFU of the present invention by intravenous rapid infusion or bolus injection 0 to 168 hours before HIFU treatment.
  • an effective dose of the HIFU of the present invention by intravenous rapid infusion or bolus injection 0 to 168 hours before HIFU treatment.
  • the effective dose will vary depending on factors such as tumor type, patient weight, tumor location, tumor volume, and the like. However, the physician or pharmacist has the ability to determine the appropriate amount of injection for different patients. For example, it may be selected within the range of 0.1 to 10 ml of adjuvant/kg body weight, preferably within the range of 0.1 to 5 ml of adjuvant/kg body weight, more preferably 0.5 to 5 ml/kg of body weight.
  • the term "injury” as used herein refers to a substantial change in the physiological state of a tumor or normal tissue, usually referred to as coagulative necrosis of a tumor or normal tissue.
  • the unit volume of target tissue is quantified by the energy efficiency factor (EEF) of the ultrasonic energy required for damage.
  • EEF energy efficiency factor
  • F / V (J/ mm 3 ), which is defined as the ultrasound energy required to damage a tumor or normal tissue per unit volume.
  • P the total sound power (W) of the HIFU source
  • t the total treatment time (s)
  • V is the damage volume (mm 3 ).
  • HAP purchased from Biomaterial Engineering Research Center of Sichuan University
  • lecithin for injection purchased from Shanghai Chemical Reagent Co., Ltd.
  • CMC-Na purchased from Shanghai Chemical Reagent
  • the particle diameter of the auxiliary discontinuous phase prepared is 10 to 1000 nm, and is mainly concentrated in 100 to 500 nm.
  • Nano-sized hydroxyapatite was purchased from the Biomaterials Engineering Research Center of Sichuan University. It is a white powder with a particle size of 10 ⁇ 200nm and a normal distribution. HAP was prepared into a milky white suspension with a concentration of 25 g/L and 50 g/L with 9% physiological saline, and shaken for 2 minutes by ultrasonic vibration at 600 W before use to completely disperse uniformly.
  • Example 1 The combination of the auxiliaries prepared and the JC type HIFU tumor treatment system
  • the administration group irradiated 24 hours after the injection was referred to as the first administration group, and the administration group irradiated 48 hours after the injection was referred to as the second administration group.
  • the TC type HIFU tumor treatment system (produced by Chongqing Haifu (HIFU) Technology Co., Ltd.) was subjected to spot irradiation of rabbit livers of one control group and two administration groups, respectively.
  • JC type HIFU tumor treatment system is mainly composed of adjustable power generator, B-super monitoring system, therapeutic probe, mechanical motion control system, treatment bed and acoustic coupling device.
  • the treatment head has a diameter of 150mm, a focal length of 150mm, an acoustic focal length of 2.3 x 2.4x26mm, a working frequency of ⁇ , a circulating degassing water standard of 3ppm and a mean sound intensity of 5500W7cm 2 .
  • the irradiation power was 220 W
  • the frequency was 1.0 MHz
  • the irradiation depth was 20 mm
  • the irradiation time was 15 seconds.
  • EEF energy efficiency factor
  • the CZF-1 type HIFU therapy device consists of a power source, a treatment head and circulating water. See Chinese Invention Patent No. 01144259.X.
  • the working parameters are as follows: frequency 9.85MHz, power 5W, focal length 4mm, treatment method using fixed-point irradiation.
  • Each liver was irradiated in groups of 2 to 3, each group was 3 points, and the irradiation time was 10 seconds. The incision was sutured after surgery. After 24 hours, rabbits were sacrificed by rapidly injecting air 10 ml into the ear vein, and the focal volume of the formed coagulative necrosis was measured, and the energy efficiency factor (EEF) was calculated.
  • EEF energy efficiency factor
  • the rabbit liver can be seen in the target area after the end of focused ultrasound treatment to form a clear round-like gray-white coagulative necrosis with clear boundaries.
  • the volume of the focal field formed by the different HAP dosage groups after focused ultrasound treatment was significantly increased compared with the corresponding saline group, and the required energy efficiency factor was significantly reduced.
  • Very significant P ⁇ 0.001.
  • the volume of the focal region formed increased significantly, and the required energy efficiency factor decreased significantly. The difference was significant (PO.001).
  • Table 3 shows the comparison of the focal volume and energy efficiency factor ( ⁇ s) of the experimental groups with different HAP dosages. Dosage amount n V/mm 3 EEF
  • HAP group 50mg/kg 30 153.1 ⁇ 41.8 0.24 ⁇ 0.05
  • the control group (10 rats) was given physiological saline 2 ml/kg, and HIFU liver scan was performed 24 hours later. Preoperative animals were treated with 8% sodium sulfide in the right chest and abdomen, and a new 0.2 ml/kg intramuscular anesthesia was given to the JC-A HIFU treatment device.
  • the nano-HAP group could form a larger coagulative necrosis than the control group (p ⁇ 0.05), and the energy-efficiency factor required for HIFU treatment was also significantly reduced, and 24 hours and 48 hours after administration.
  • the formation of the focal region necrosis volume is the largest, and the required energy efficiency factor is also the smallest, suggesting that this may be the best time for HIFU treatment after HAP medication.
  • the volume of necrotic lesions formed gradually decreases.
  • the therapeutic effect of HIFU was better enhanced than before administration (p ⁇ 0.05).
  • Table 4 Comparison between different time groups and control groups after treatment. Time after treatment n Average treatment time (s) Average focal volume (mm 3 ) Average EEF control group 16 15 546.67 7.39 ⁇ 4.99
  • n is the actual number of irradiation points in the table.
  • nano-level HAP can significantly enhance the in vitro therapeutic effect of HIFU, and HIFU treatment at 48 to 72 hours after administration can produce the best enhancement effect on HIFU treatment.
  • the HIFU therapeutic plasmid adjuvant provided by the invention can significantly improve the acoustic environment of the target region, and can reduce the ultrasonic energy required for the damage of the target tissue (tumor/non-tumor tissue) per unit volume, so that it can be high under a certain power. Efficiently treat deep, bulky tumors without damaging normal tissue on the acoustic pathway.
  • the use of the adjuvant of the present invention makes it possible to effectively perform HIFU treatment on liver tumor patients without removing the ribs on the patient's therapeutic acoustic channel.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Inorganic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Birds (AREA)
  • Dermatology (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Description

一种髙强度聚焦超声治疗用质粒类助剂及其应用 技术领域
本发明涉及医药及医疗领域, 具体地说, 本发明涉及超声治疗 领域, 更具体地说, 本'发明涉及一种能够增加 HIFU治疗时靶区组织 能量沉积的 HIFU治疗用质粒类助剂及其应用。 背景技术
高强度聚焦超声 (High-intensity focused ultrasound, HIFU) 技 术作为一种治疗肿瘤和其他疾病的新方法已经得到临床的认可。它通 过聚焦超声波, 在病灶上形成高强度、连续超声能量, 从而产生瞬态 高温效应 (65〜100°C ) 、 空化效应、 机械效应和声化学效应, 选择 性地使病灶组织凝固性坏死, 使肿瘤失去增殖、 浸润和转移的能力。
有研究表明, 超声波在人体组织中传播的过程, 其能量随传播 距离的增加呈指数级衰减 (刘宝琴等人, 中国超声医学杂志, 2002,
18 ( 8 ) : 565 - 568 ) 。 另外, 超声波在软组织中传播的能量衰减来 自组织吸收、 散射、 折射、 衍射等, 其中最主要的能量损失来自于吸 收和散射 (冯若, 王智彪 主编, 实用超声治疗学, 北京: 中国科学 技术文献出版社, 2002.14 ) 。 因此, 运用 HIFU技术治疗位置较深、 体积较大的肿瘤时, 由于能量的衰减必将导致靶区能量偏低,治疗效 率下降, 治疗时间延长。
当然, 为了提高治疗效率, 可以单纯地加大超声换能器的发射 '功率, 但是, 在高强度的超声环境中, 超声波传播通道上的正常组织 被烧伤的可能性就会大大增加。
另外,目前临床上在运用 HIFU技术治疗声通道上有肋骨阻挡的 肝脏肿瘤时, 为了增加治疗靶区的能量沉积,提高治疗速度和治疗效 果, 常要在切除声通道上的肋骨后再治疗, 这有悖于. HIFU无创治疗 的理念, 因而很难得到患者和医生的认可。
这些因素的存在必会在一定程度上影响和限制 HIFU作为一门 临床适用技术的推广和普及。 因此, 如何增加 HIFU治疗时靶区的能 量沉积,使得能高效率地治疗深部肿瘤而又不损伤声通道上的正常组 织或在不切除肋骨的情况下治疗被肋骨阻挡的肝脏肿瘤,就成为迫切 需要解决的技术问题。 发明内容
本发明的一个目的是提供一种能够增加 HIFU 治疗时靶区组织 能量沉积的 HIFU治疗用质粒类助剂。
本发明的另一个目的是提供本发明 HIFU 治疗用质粒类助剂增 加 HIFU治疗时靶区能量沉积的方法。
本发明的再一个目的是提供本发明 HIFU 治疗用质粒类助剂用 于增强 HIFU治疗疾病效果的用途。
为实现上述目的, 本发明提供了一种 HIFU治疗用质粒类助剂。 本发明的助剂能够在施用给生物体后有助于加强待 HIFU 治疗靶区 吸收超声能量, 即能降低单位体积的靶组织 (肿瘤 /非肿瘤组织) 被 损伤所需的超声能量的物质。在本发明中, 对作为 HIFU治疗用助剂 的物质的类型没有过多的限制,只要该物质是纳米级生物相容性固体 并在施用给靶组织后能改变该靶组织的声环境,促进靶组织对治疗性 超声能量的吸收和沉积即可。
具体而言,在本发明中作为 HIFU治疗用助剂的物质优选为纳米 级生物相容性固体, 选自磁性生物材料如超顺磁性纳米粒子 (SPIO)、 羟基磷灰石 (HAP)和碳酸钙, 更优选为羟基磷灰石; 所述助剂的粒径 为 l〜500nm, 优选为 l〜200nm, 更优选为 10〜100nm。
另一方面,本发明提供了纳米级生物相容性固体用于制备 HIFU 治疗用助剂的用途,其中所述纳米级生物相容性固体优选选自磁性生 物材料如超顺磁性纳米粒子 (SPIO)、 羟基磷灰石 (HAP)和碳酸钙, 更 优选为羟基磷灰石,所述助剂的粒径为 l〜500nm,优选为 l〜200nm, 更优选为 10〜: I00nm。
对于该助剂的制备方法没有特别的限制, 例如, 可将所需粒径 的纳米级生物相容性固体,例如,磁性生物材料如超顺磁性纳米粒子 (SPIO)、 羟基磷灰石(HAP)和碳酸钙, 用水性介质配成浓度在 0.1-150g/L的悬浮液。 在使用前, 最好釆用混合装置如超声振荡仪将 所述悬浮液匀化,以使纳米级生物相容性固体完全均匀地分散在所述 水性悬浮介质中。
本文所用的术语 "纳米级"指粒径为大于 lnm而小于 1000nm。 为了防止纳米级生物相容性固体在水性介质中发生聚集或沉 淀,本发明的一个优选的技术方案提供了一种 HIFU治疗用质粒类助 剂,该助剂包括由成膜材料包裹芯构成的非连续相和水性介质构成的 连续相,其中所述非连续相均勾地分散在所述连续相中,所述非连续 相的粒径为 10〜1000nm,优选为 10〜500nm,更优选为 10〜200nm; 所述成膜材料在助剂中的含量为 0.1〜100g/L, 优选为 0.5〜20g/L, 更优选为 0.5〜10g/L; 所述芯材料采用纳米级生物相容性固体,选自 磁性生物材料如超顺磁性纳米粒子 (SPIO)、 羟基磷灰石 (HAP)和碳酸 钙, 优选为羟基磷灰石, 所述纳米级生物相容性固体的粒径为 1〜 500nm, 优选为 l〜200nm, 更优选为 10〜100nm; 所述芯材料在助 剂中的含量为 0.1〜150g/L,优选为 10〜100g/L,更优选为 20〜80g/L。
在本发明的上述技术方案中, 所述成膜材料包括脂类, 如 3-sn- 磷脂酰胆碱 (卵磷脂) 、 1,2-二棕榈酰基 -sn-甘油基 -3-磷脂酰甘油基- 钠盐、 1,2-二硬脂酰基 -sn-甘油基 -3-磷脂酰胆碱、 1,2-二棕榈酰基 -sn- 甘油基 -3-磷脂酰酸-钠盐、 1,2-二棕榈酰基 -sn-甘油基 -3-磷脂酰胆碱、 磷脂酰丝氨酸、 氢化磷脂酰丝氨酸、 胆固醇、 糖脂; 糖类, 包括(例 如) 葡萄糖、 果糖、 蔗糖、 淀粉及其不同链长的降解产物; 蛋白类, 包括(例如) 白蛋白、 球蛋白、 纤维蛋白原、 纤维蛋白、 血红蛋白和 植物蛋白的不同链长的降解产物等。
在本发明的上述技术方案中, 所述水性介质为蒸馏水、 生理盐 水或葡萄糖溶液。 所述葡萄糖溶液浓度可达 50% ( W/V) , 但糖尿病 患者使用的 HIFU 治疗用质粒类助剂中水性介质不可采用葡萄糖溶 液。 . 在优选的技术方案中, 所述助剂还可含有羧甲基纤维素钠 ( CMC-Na) 或 /和丙三醇 (甘油) 等, 所述 CMC-Na在助剂中的含 量为 0.01〜10g/L, 优选为 0.05〜0.6g/L, 更优选为 0.1〜0.3g/L。 所 述丙三醇在助剂中的含量为 5〜100g/L。 其他优选助剂还可含有羧甲 基纤维素钾、 羧乙基纤维素钠、 羧乙基纤维素钾、 羧丙基纤维素钠、 羧丙基纤维素钾等。
在更为优选的技术方案中, 为了增加所述助剂的稳定性, 调节 该助剂的 pH值至 3.0〜6.5, 优选调至 5.0〜6.0。 无机或有机的酸都 可用于调节所述助剂的 pH值, 优选使用乙酸来调节所述助剂的 pH 值。
另外,为了使本发明的 HIFU治疗用质粒类助剂靶向特定的肿瘤 组织或病灶部位,还可在该助剂的中加入对所述的肿瘤组织或病灶部 位有特异亲和性的物质, 如肿瘤抗体等。
本发明提供的 HIFU治疗用质粒类助剂优选采用脂类(更优选磷 脂) 包裹纳米级磁性生物材料、 羟基磷灰石和 /或碳酸钙, 这使得该 助剂能够经静脉注射,顺利通过血液循环, 并很快被人体内富含网状 内皮细胞的组织所吞噬,一定时间里能够大量沉积于人体组织内,从 而能显著改变人体组织的声环境,进而显著增强人体组织对声波的吸 收特性, 增加了 HIFU治疗时靶区组织的能量沉积, 最终可显著提高 HIFU治疗肿瘤的效率。
本发明所用的纳米级生物相容性固体可从市场上购得, 也可以 釆用本领域技术人员已知的方法将生物相容性固体制备成纳米级颗 粒。
对于本发明有膜包裹的纳米级生物相容性固体, 可以按下述步 骤制备-
(1)分别按照 0.1〜100g/L、 0.1〜150g/L的含量计算称取成膜材 料和纳米级生物相容性固体,加入水性介质至预定体积并搅拌,形成 混合液;
(2)将上述步骤 (1)所得的混合液置于声振仪中, 在功率为 400〜 800W的条件下进行声振 2〜3分钟, 形成均勾分散、 稳定的混悬液。 优选的是,对所述混合液进行两次声振以形成更加分散均匀的、更加 稳定的混悬液。
在本发明 HIFU治疗用质粒类助剂的制备方法中,在所述步骤 (1) 加入水性介质前, 优选加入羧甲基纤维素钠或 /和丙三醇。 在更为优 选的技术方案中, 在所述步骤 (1)加入水性介质搅勾后, 加入乙酸调 节混合液的 pH值至 3.0〜6.5, 优选调至 5.0〜6.0。
本发明提供的 HIFU治疗用质粒类助剂的制备方法,只需把生物 相容性固体制备成纳米级颗粒;采用声振仪即可实现非连续相在水性 介质中的均勾分散, 还可解决纳米级颗粒易于凝聚使粒径增大的问 题, 设备投入少, 操作简单, 均匀分散效果好, 生产成本低。
本发明还提供了一种增加 HIFU治疗时靶区能量沉积的方法,其 特征在于, 在 HIFU治疗前 0〜168小时通过静脉连续快速滴注或团 注方式给患者注射有效剂量的本发明 HIFU治疗用质粒类助剂。所述 的有效剂量会随肿瘤类型、患者的体重、肿瘤位置、肿瘤体积等因素 有所变化。但是, 医师或药剂师有能力为不同的患者确定出合适的注 射量。例如,可在 0.1〜10ml助剂 /kg体重的范围内选择,优选在 0.1〜 5ml助剂 /kg体重的范围内选择,更优选在 0.5〜5ml/kg体重的范围内 选择。
本文所用的术语 "损伤"是指肿瘤或正常组织的生理状态发生 实质性改变,通常是指肿瘤或正常组织的凝固性坏死。所述单位体积 的靶组织被损伤所需的超声能量的多 可用能效因子 (energy efficiency factor, EEF ) 来量化。 F = / V (J/mm 3), 即定义为损伤 单位体积的肿瘤或正常组织所需的超声能量。式中 n表示 HIFU换能 器聚焦系数,它反映 HIFU换能器对超声能量汇聚的能力',取 11 =0.7; P是 HIFU源总声功率 (W); t是治疗总时间 (s) ; V是损伤体积 (mm3)。 在一种物质施用给靶组织后, 如果靶组织的能效因子下降程度的越 大, 该物质越适合用作本发明的 HIFU助剂。
本发明的 HIFU治疗用助剂, 在施用给靶组织后, 能使靶组织的 EEF下降,从而该组织在施用 HIFU助剂前测得的基础 EEF (即, EEF (a m与该组织在施用 HIFU助剂后测得的 EEF (即, EEF m )间的比率 大于 1, 优选大于 2, 更优选大于 4。 对于该比率的上限没有限制, 应 该是越大越好。 具体实施方式
实施例 1
分别称取粒径范围为 l〜100nm的 HAP (购自四川大学生物材 料工程研究中心) 2.5g、注射用卵磷脂(购自上海化学试剂公司) 0.3g 和 CMC-Na (购自上海化学试剂公司) 0.3g, 混合, 加入蒸镏水至
100ml。 混合均匀后, 用乙酸调节混合液的 pH值至 5.0。 将上述混合 液置于声振仪的声振室内, 声振仪的发射头置于混合液的液面下 1.5cm处,在声振功率 400W下对混合液声振 2分钟,形成均勾分散、 稳定的乳白色混悬液。 所制得助剂非连续相的粒径为 10〜1000nm, 主要集中在 100〜500mn。 实施例 2
分别称取粒径范围为 l〜100nm的 HAP (购自四川大学生物材 料工程研究中心) 2.5g、注射用卵磷脂(购自上海化学试剂公司) 0.3g 和注射用甘油 lml, 混合, 加入蒸馏水至 100ml。 混合均匀后, 用乙 酸调节混合液的 pH值至 5.0。将上述混合液置于声振仪的声振室内, 声'振仪的发射头置于混合液的液面下 1.5cm处,在声振功率 400W下 对混合液声振 2分钟, 形成均匀分散、稳定的乳白色混悬液。所制得 助剂非连续相的粒径为 10〜1000nm, 主要集中在 100〜500nm。 实施例 3 ~ 5
按照与实施例 1 .所述的相同的方法和步骤, 按照下表 1所使用 的材料和配比获得了下列本发明的 HIFU治疗用质粒类助剂,相应的 参数如下表 1所示- 表 1
Figure imgf000008_0001
实施例 6
纳米级羟基磷灰石 (HAP ) 购自四川大学生物材料工程研究中 心, 为白色粉末, 粒径为 10〜200nm, 呈正态分布。 将 HAP用 9 % 生理盐水分别配成浓度为 25g/L, 50g/L的乳白色混悬液, 使用前经 超声振荡仪 600W振荡 2分钟, 使其完全分散均匀。 试验例 1
实施例 1制得的助剂和 JC型 HIFU肿瘤治疗系统的联合使用
取新西兰大白兔 36只 (重庆医科大学动物实验中心提供) , 体 重 2kg左右, 随机分成 1个对照组和 2个给药组, 每组 12只。 对照 组大白兔按 2ml/kg的量经耳缘静脉快速注射给予生理盐水。 2个给 药组按 2ml/kg的量经耳缘静脉快速注射给予实施例 1制得的助剂, 并给予 1ml生理盐水冲洗, 确保药物完全进入体内。 2个给药组分别 在注射后 24小时及 48小时进行辐照。 注射后 24小时进行辐照的给 药组称为第一给药组, 注射后 48小时进行辐照的给药组称为第二给 药组。 使用: TC型 HIFU肿瘤治疗系统 (由重庆海扶 (HIFU) 技术有 限公司生产)分别对 1个对照组和 2个给药组的家兔肝脏进行定点辐 照。 JC型 HIFU肿瘤治疗系统主要由可调功率发生器、 B超监控系统、 治疗探头、 机械运动控制系统、 治疗床和声耦合装置等五部分组成。 该系统治疗头的直径为 150mm,焦距 150mm,声焦域 2.3 x2.4x26mm, 工作频率 ΙΜΗζ , 循环脱气水标准为含气量 3ppm , 平均声强为 5500W7cm2。辐照的功率为 220W,频率为 1.0MHz,辐照深度为 20mm, 辐照时间为 15秒。 辐照完成后, 解剖实验动物取材, 计算凝固性坏 死灶的体积。 1个对照组和 2个给药组在家兔肝脏形成一定凝固性坏 死灶所需的能效因子 (EEF ) 如下表 2所示- 表 2
组别 · 辐照点数 V (mm3) EEF (J/mm3) 对照组 24 582.50±353.93 7.39±4.99 第一给药组 45 1281.56 ± 884.56 2.71 ± 1.29 第二给药组 17 1525.63 ± 1007.46 2·25 ± 1·61 从上表 2 中可以看出, 在相同条件下, 在注射后 24小时及 48 小时进行辐照, 辐照相同的时间, 给药组较对照组在 HIFU治疗过程 中形成凝固性坏死灶体积均明显增大,所需的能效因子明显减小。在 形成凝固性坏死灶体积和能效因子方面,给药组和对照组之间的差异 均具有显著性意义 (P<0.05)。 试验例 2
实施例 6制得的 HIFU治疗用质粒类助剂的体内实臉研究
新西兰大白兔 40只, 来源于重庆医科大学动物实验中心, 体重 平均 2.7±0.3kg/只, 雌雄不论。 随机分为 3个 HAP实验组和一个对 照组, 每组 10只。
HIFU治疗前 24小时, HAP实验组每只大白兔分别按 2〜3ml/kg 的量经耳缘静脉快速推注实施例 6制得的不同浓度 HAP混悬液, 5 秒内推完, 并给予 1ml 生理盐水冲洗, 确保药物完全进入体内; 对 照组每只家兔分别推注生理盐水 2ml/kg。家兔右胸腹部 8 %硫化钠脱 毛, 术前速眠新 0.2ml/kg肌注麻醉, 于无菌手术下切开腹壁, 充分 暴露肝脏。
采用 CZF-1型 HIFU治疗仪 (由重庆海扶 (HIFU)技术有限公司 生产) 实施对兔肝脏的辐照。 CZF-1型 HIFU治疗仪由功率源、 治疗 头和循环水三部分组成,参见中国发明专利 No.01144259.X。工作参数 如下:频率 9.85MHz,功率 5W,焦距 4mm, 治疗方式采用定点辐照。 每个肝脏辐照 2〜3组,每组 3点,辐照时间为 10秒。术后缝合切口, 24小时后经耳缘静脉快速推注空气 10毫升处死家兔,测量所形成的 凝固性坏死灶焦域体积, 并计算能效因子 (EEF ) 。
采用组间比较的 t检验及相关分析。
家兔肝脏在聚焦超声治疗结束后即可见靶区形成明显圆点状灰 白色凝固性坏死, 边界清楚。 在各组内, 在辐照相同的时间后, 不同 HAP 用量实验组经聚焦超声治疗后所形成的焦域体积均较相应的生 理盐水组明显增大,所需能效因子明显缩小,差异均具有极显著性意 义 (P<0.001 ) 。 不同纳米级 HAP用量组内比较, 随着 HAP的用量 增加,所形成的焦域体积亦随之明显增加,所需能效因子随之明显减 小, 差异均具有显著性意义(PO.001 ) 。 下表 3显示了不同 HAP用 量实验组的作用焦域体积及能效因子比较 ( ±s)。 药物 用量 n V/mm3 EEF
对照组 2ml/kg 30 95.3±21.6 0.39±0.09
HAP组 50mg/kg 30 153.1±41.8 0.24±0.05
HAP组 100mg/kg 25 223.2±55.1 0.19±0.01
HAP组 150mg/kg 21 287.7±47.9 0.13±0.00
注: 表中 n表示辐照的点数。
从上述实验可以得出, 纳米级 HAP可以明显增强 HIFU的体内 试验例 3 实施例 6制得的 HIFU治疗用质粒类助剂的体外实验研究 健康新西兰兔 80只 (重庆医科大学动物实验中心提供) , 雌雄 不论, 体重 2.5±0.3kg, 治疗前 24小时禁食, 每只家兔按 2ml/kg的 量经耳缘静脉快速注射给予实施例 6制得的 25g/L的 HAP乳白色混 悬液, 并以生理盐水 lml冲洗。 分别于用药后 24小时 (20只) , 48 小时 (25只) , 72小时 (10只) 和 168小时 (15只) 进行 HFIU肝 脏扫描。 对照组 (10只)给予生理盐水 2ml/kg, 之后 24小时时进行 HIFU肝脏扫描。术前动物右胸腹部 8 %硫化钠脱毛,速眠新 0.2ml/kg 肌注麻醉, 固定于 JC-A型 HIFU治疗仪上。
JC-A型高强度聚焦超声肿瘤治疗系统由重庆医科大学医学超声 工程研究所研制(国家药品监督管理局已批准生产, 注册号 99 第 301032号)。 该系统包括超声实时监控定位和治疗设备二大部分。 采 用循环脱气水作声耦合剂, 其含气量< 3>< 10— 6。 治疗参数为: 功率 220W, 频率 1ΜΗζ, 焦距 150mm, 声焦域 2.3X2.4X26mm, 治疗头 可在 X, Y, Z三个方向随意移动。
家兔胸腹部浸泡于循环脱气水中, 肝脏于 B超下显示清楚, 定 位辐照点, 固定治疗时间为 15秒, 治疗深度为 20mm, 每个肝脏可 辐照 1〜2点。 然后于术后 24小时从兔耳缘静脉快速推入 10ml空气 处死动物, 取出肝脏, 沿声通道方向切开兔肝组织, 显示其最大损伤 坏死灶切面, 观察其形状并测量大小 (以 TTC染色为界) 。 然后计 算 EEF。
采用组间比较的 t检验及相关分析。
在相同的治疗条件下, 纳米级 HAP用药组较对照组可以形成更 大的凝固性坏死灶 (p<0.05 ) , HIFU治疗所需的能效因子也明显縮 小, 且在用药后 24小时和 48小时后进行 HIFU扫描, 形成的焦域坏 死体积最大, 所需能效因子也最小, 提示此时可能是 HAP用药后进 行 HIFU治疗的最佳时机。 随着用药后时间的延长, 形成的坏死灶体 积则逐渐缩小。但即使在用药后 2周,也较用药前能更好的增强 HIFU 的治疗效果 (p<0.05 ) 。 (见表 4) 表 4 用药后不同时间组与对照组之间的比较情况 用药后时间 n 平均治疗时间 (s ) 平均焦域体积(mm3 ) 平均 EEF 对照组 16 15 546.67 7.39±4.99
24小时 57 15.88 1291.56 2.68± 1.29
48小时 17 15.6 1525.63 2.32± 1.61
72小时 27 16.15 1153.26 3.28 ± 1.35
168小时 26 15 920 2.51 ±0.87 注: 表中 n为实际辐照点数。
从上述实验可以得出, 纳米级 HAP可以明显增强 HIFU的体外 治疗效果, 并且于用药后 48〜72 小时进行 HIFU 治疗能够产生对 HIFU治疗最好的增强效果。 产业上的实用性
本发明提供的 HIFU 治疗用质粒类助剂能够显著改善靶区的声 环境, 能降低单位体积的靶组织 (肿瘤 /非肿瘤组织) 被损伤所需的 超声能量, 使得在一定功率下, 可以高效率地治疗位置较深、体积较 大的肿瘤,而又不损伤声通道上的正常组织。采用本发明的助剂使得 在不切除患者的治疗声通道上的肋骨的情况下对肝肿瘤患者有效实 施 HIFU治疗称为可能。
尽管结合优选实施例对本发明进行了说明, 但本发明并不局限 于上述实施例, 应该理解, 在本发明构思的引导下, 本领域技术人员 可进行各种修改和改进, 所附权利要求概括了本发明的范围。

Claims

1. 纳米级生物相容性固体的用途, 其用于制备高强度聚焦超声 (HIFU) 治疗用助剂。
2. 根据权利要求 1所述的用途, 其特征在于, 所述纳米级生物 相容性固体的粒径为 l〜500nm, 选自磁性生物材料、 羟基磷灰石和 碳酸钙。
3. 根据权利要求 2所述的用途, 其特征在于, 所述纳米级生物 相容性固体采用羟基磷灰石。
4. 根据权利要求 2所述的用途, 其特征在于, 所述纳米级生物 相容性固体的粒径为 l〜200nm。
5. 根据权利要求 4所述的用途, 其特征在于, 所述纳米级生物 相容性固体的粒径为 10〜100nm。
6. 一种 HIFU治疗用助剂, 该助剂包括由成膜材料包裹芯构成 的非连续相和水性介质构成的连续相,其中所述非连续相均勾地分散 在所述连续相中, 所述非连续相的粒径为 10〜1000nm, 所述成膜材 料在助剂中的含量为 0.1〜100g/L, 所述芯材料釆用纳米级生物相容 性固体, 在助剂中的含量为 0.1〜150g/L。
7. 根据权利要求 6所述的助剂, 其特征在于, 所述非连续相的 粒径为 10〜500nm。
8. 根据权利要求 7所述的助剂, 其特征在于, 所述非连续相的 粒径为 10〜200nm。
9. 根据权利要求 6所述的助剂, 其特征在于, 所述纳米级生物 相容性固体的粒径为 l〜500nm, 选自磁性生物材料、 羟基磷灰石和 碳酸钙。
10. 根据权利要求 9所述的助剂,其特征在于, 所述纳米级生物 相容性固体釆用羟基磷灰石。
11. 根据权利要求 9所述的助剂,其特征在于,所述纳米级生物 相容性固体的粒径为 l〜200nm。
12. 根据权利要求 11所述的助剂, 其特征在于, 所述纳米级生 物相容性固体的粒径为 10〜100nm。
13. 根据权利要求 6所述的助剂,其特征在于,所述成膜材料选 自磷脂、 胆固醇和糖脂中的一种或多种物质。
14, 根据权利要求 13所述的助剂, 其特征在于, 所述成膜材料 釆用磷脂, 选自 3-sn-磷脂酰胆碱、 1,2-二棕榈酰基 -sn-甘油基 -3-磷脂 酰甘油基-钠盐、 1,2-二硬脂酰基 -sn-甘油基 -3-磷脂酰胆碱、 1,2-二棕 榈酰基 -sn-甘油基 -3-磷脂酰酸-钠盐、 1,2-二棕榈酰基 -sn-甘油基 -3-磷 脂酰胆碱、 磷脂酰丝氨酸和氢化磷脂酰丝氨酸。
15. 根据权利要求 6所述的助剂,其特征在于,所述成膜材料在 助剂中的含量为 0.5〜20g/L。
16. 根据权利要求 15所述的助剂, 其特征在于, 所述成膜材料 在助剂中的含量为 0.5〜10g/L。
17. 根据权利要求 6所述的助剂,其特征在于,所述芯材料在助 剂中的含量为 10〜100g/L。
18. 根据权利要求 17所述的助剂, 其特征在于, 所述芯材料在 助剂中的含量为 20〜80g/L。
19. 根据权利要求 6所述的助剂,其特征在于,所述水性介质为 蒸馏水、 生理盐水或葡萄糖溶液。
20. 根据权利要求 6— 19任一项所述的助剂,其特征在于,所述 助剂还含有 0.01〜10g/L 的羧甲基纤维素钠或 /和 5〜100g/L 的丙三 醇。
21. 一种增加 HIFU治疗时靶区能量沉积的方法, 其特征在于, 在患者的靶区进行 HIFU治疗前 0〜168小时通过静脉连续快速滴注 或团注方式给患者注射有效剂量的权利要求 1一 20 任一项所述的 HIPU治疗用质粒类助剂。
PCT/CN2005/001361 2005-01-10 2005-08-30 Adjuvant plasmidique pour un traitement par ultrasons focalises a haute intensite et son utilisation WO2006072197A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP05782127A EP1847275A4 (en) 2005-01-10 2005-08-30 PLASMIDIC ADJUVANT FOR HIGH INTENSITY FOCUSED ULTRASONIC TREATMENT AND USE THEREOF
JP2007549779A JP2008526784A (ja) 2005-01-10 2005-08-30 高密度焦点式超音波治療に対するプラスミド増強剤およびその使用
AU2005324270A AU2005324270B2 (en) 2005-01-10 2005-08-30 A high-intensity focused ultrasound plasmid adjuvant and its use
US11/794,927 US20080260790A1 (en) 2005-01-10 2005-08-30 Plasmid Enhancement Agent for High Intensity Focused Ultrasound Treatment and Use Thereof
CA002593632A CA2593632A1 (en) 2005-01-10 2005-08-30 Plasmid enhancement agent for high intensity focused ultrasound treatment and use thereof
BRPI0518495-9A BRPI0518495A2 (pt) 2005-01-10 2005-08-30 adjuvante plasmÍdio para ultra-som focalizado de alta intensidade e seu uso

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200510000344.3 2005-01-10
CN200510000344A CN100574810C (zh) 2005-01-10 2005-01-10 一种高强度聚焦超声治疗用质粒类助剂及其应用

Publications (1)

Publication Number Publication Date
WO2006072197A1 true WO2006072197A1 (fr) 2006-07-13

Family

ID=36647405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2005/001361 WO2006072197A1 (fr) 2005-01-10 2005-08-30 Adjuvant plasmidique pour un traitement par ultrasons focalises a haute intensite et son utilisation

Country Status (10)

Country Link
US (1) US20080260790A1 (zh)
EP (1) EP1847275A4 (zh)
JP (1) JP2008526784A (zh)
KR (1) KR20070091645A (zh)
CN (1) CN100574810C (zh)
AU (1) AU2005324270B2 (zh)
BR (1) BRPI0518495A2 (zh)
CA (1) CA2593632A1 (zh)
RU (1) RU2359701C2 (zh)
WO (1) WO2006072197A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100427142C (zh) * 2005-01-10 2008-10-22 重庆海扶(Hifu)技术有限公司 一种高强度聚焦超声治疗用助剂及其筛选方法
CN100431581C (zh) * 2006-01-20 2008-11-12 丽珠医药集团股份有限公司 治疗禽流感的中药组合物、制备方法及其用途
WO2013059358A2 (en) 2011-10-17 2013-04-25 Butterfly Network, Inc. Transmissive imaging and related apparatus and methods
US9667889B2 (en) 2013-04-03 2017-05-30 Butterfly Network, Inc. Portable electronic devices with integrated imaging capabilities

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4767610A (en) * 1984-10-19 1988-08-30 The Regents Of The University Of California Method for detecting abnormal cell masses in animals
US5344640A (en) * 1991-10-22 1994-09-06 Mallinckrodt Medical, Inc. Preparation of apatite particles for medical diagnostic imaging

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6165932A (ja) * 1984-09-05 1986-04-04 Bridgestone Corp 防振装置
US5320906A (en) * 1986-12-15 1994-06-14 Vestar, Inc. Delivery vehicles with amphiphile-associated active ingredient
US5352435A (en) * 1989-12-22 1994-10-04 Unger Evan C Ionophore containing liposomes for ultrasound imaging
US6551576B1 (en) * 1989-12-22 2003-04-22 Bristol-Myers Squibb Medical Imaging, Inc. Container with multi-phase composition for use in diagnostic and therapeutic applications
US6088613A (en) * 1989-12-22 2000-07-11 Imarx Pharmaceutical Corp. Method of magnetic resonance focused surgical and therapeutic ultrasound
US6613306B1 (en) * 1990-04-02 2003-09-02 Bracco International B.V. Ultrasound contrast agents and methods of making and using them
DE19716732C2 (de) * 1997-03-07 1999-03-25 Max Delbrueck Centrum Spezifische Magnetosomen, Verfahren zu ihrer Herstellung und ihre Verwendung
US7686763B2 (en) * 1998-09-18 2010-03-30 University Of Washington Use of contrast agents to increase the effectiveness of high intensity focused ultrasound therapy
CN100427142C (zh) * 2005-01-10 2008-10-22 重庆海扶(Hifu)技术有限公司 一种高强度聚焦超声治疗用助剂及其筛选方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4767610A (en) * 1984-10-19 1988-08-30 The Regents Of The University Of California Method for detecting abnormal cell masses in animals
US5344640A (en) * 1991-10-22 1994-09-06 Mallinckrodt Medical, Inc. Preparation of apatite particles for medical diagnostic imaging

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1847275A4 *

Also Published As

Publication number Publication date
AU2005324270A1 (en) 2006-07-13
EP1847275A4 (en) 2008-04-23
RU2007127665A (ru) 2009-01-27
AU2005324270B2 (en) 2008-08-07
US20080260790A1 (en) 2008-10-23
CN100574810C (zh) 2009-12-30
CA2593632A1 (en) 2006-07-13
CN1803197A (zh) 2006-07-19
KR20070091645A (ko) 2007-09-11
EP1847275A1 (en) 2007-10-24
BRPI0518495A2 (pt) 2008-11-25
JP2008526784A (ja) 2008-07-24
RU2359701C2 (ru) 2009-06-27

Similar Documents

Publication Publication Date Title
Wang et al. Injectable and responsively degradable hydrogel for personalized photothermal therapy
Xu et al. Magnetic hyperthermia ablation of tumors using injectable Fe3O4/calcium phosphate cement
WO2006072198A1 (fr) Adjuvant pour un traitement par ultrasons focalises a haute intensite et son procede de depistage
KR20100029207A (ko) 혈액 혈소판을 사용한 마이크로입자 및 나노입자의 전달
Zhou et al. Folate-targeted perfluorohexane nanoparticles carrying bismuth sulfide for use in US/CT dual-mode imaging and synergistic high-intensity focused ultrasound ablation of cervical cancer
WO2006072200A1 (fr) Adjuvant d’emulsions au fluorocarbure pour un traitement hifu et utilisation de celui-ci
WO2006072201A1 (fr) Adjuvant sous forme de particules pour un traitement hifu et son utilisation
WO2006072197A1 (fr) Adjuvant plasmidique pour un traitement par ultrasons focalises a haute intensite et son utilisation
CN110575551B (zh) 一种超声造影剂及其制备方法
WO2017001686A1 (en) Polymeric nanoparticles for enhancing hifu-induced ablation
KR20120077931A (ko) 엠알유도 고강도집속초음파 치료 및 진단용 인지질 나노입자 및 이의 제조방법
Sari et al. Application of Stichopus hermanni Nanoparticle Gel in the Healing of Traumatic Ulcers
CN105641704B (zh) 一种产泡聚乳酸羟基乙酸泡腾药物及制备方法和应用
JP4585967B2 (ja) 誘電加熱による癌治療法に使用する補助剤
CN113413468B (zh) 一种光热-硬化联合治疗的靶向纳米药物递送系统
Liu et al. Combination of high-intensity focused ultrasound irradiation and hydroxyapatite nanoparticle injection to injure normal goat liver tissue in vivo without costal bone incision

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020077015584

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007549779

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005324270

Country of ref document: AU

Ref document number: 2593632

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007127665

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2005324270

Country of ref document: AU

Date of ref document: 20050830

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005324270

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2005782127

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005782127

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11794927

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0518495

Country of ref document: BR