WO2006071976A2 - Improved electroblowing web formation process - Google Patents
Improved electroblowing web formation process Download PDFInfo
- Publication number
- WO2006071976A2 WO2006071976A2 PCT/US2005/047395 US2005047395W WO2006071976A2 WO 2006071976 A2 WO2006071976 A2 WO 2006071976A2 US 2005047395 W US2005047395 W US 2005047395W WO 2006071976 A2 WO2006071976 A2 WO 2006071976A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- spinneret
- polymer
- electrode
- stream
- spinning nozzle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/0007—Electro-spinning
- D01D5/0061—Electro-spinning characterised by the electro-spinning apparatus
- D01D5/0092—Electro-spinning characterised by the electro-spinning apparatus characterised by the electrical field, e.g. combined with a magnetic fields, using biased or alternating fields
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/70—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
- D04H1/72—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
- D04H1/728—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/0007—Electro-spinning
- D01D5/0061—Electro-spinning characterised by the electro-spinning apparatus
- D01D5/0069—Electro-spinning characterised by the electro-spinning apparatus characterised by the spinning section, e.g. capillary tube, protrusion or pin
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/58—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
- D01F6/66—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyethers
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/54—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
- D04H1/56—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving in association with fibre formation, e.g. immediately following extrusion of staple fibres
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H3/00—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
- D04H3/02—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments
- D04H3/03—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments at random
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H3/00—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
- D04H3/08—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
- D04H3/16—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
Definitions
- the present invention relates to a process for forming a fibrous web wherein a polymer stream is spun through a spinning nozzle into an electric field of sufficient strength to impart electrical charge on the polymer and wherein a forwarding gas stream aids in transporting the polymer away from the spinning nozzle.
- PCT publication no. WO 03/080905A discloses an apparatus and method for producing a nanofiber web.
- the method comprises feeding a polymer solution to a spinning nozzle to which a high voltage is applied while compressed gas is used to envelop the polymer solution in a forwarding gas stream as it exits the nozzle, and collecting the resulting nanofiber web on a grounded suction collector.
- One disadvantage of the prior art is the necessity of using a quite high voltage. In order to impart electrical charge on the polymer, an electrical field of sufficient strength is needed. Due to the distances involved between the spinning nozzle and the collector, high voltage is used to maintain the electric field. An object of this invention is to lower the voltage used.
- Still another disadvantage of the prior art is the coupling of the spinning nozzle to collector distance to the voltage used. During operation of the prior art process, it may be desirable to change the distance of the spinning nozzle to the collector. However, by changing that distance the electric field generated between the spinning nozzle and the collector changes. This requires changing the voltage in order to maintain the same electric field. Another objective of this invention is to decouple the spinning nozzle to collector distance from the electric field.
- a first embodiment of the present invention is directed to an eiectroblowing process for forming a fibrous web comprising issuing an electrically charged polymer stream from a spinning nozzle in a spinneret, passing the polymer stream by an electrode which is substantially grounded, wherein a voltage is applied to the spinneret such that an electric field is generated between the spinneret and the electrode of sufficient strength to impart said electrical charge to the polymer stream as it issues from the spinning nozzle, and collecting nanofibers formed from the charged polymer stream on a collector as a fibrous web.
- electro-blown spinning refer interchangeably to a process for forming a fibrous web by which a forwarding gas stream is directed generally towards a collector, into which gas stream a polymer stream is injected from a spinning nozzle, thereby forming a fibrous web which is collected on the collector, wherein a voltage differential is maintained between the spinning nozzle and an electrode and the voltage differential is of sufficient strength to impart charge on the polymer as it issues from the spinning nozzle.
- nanofibers refers to fibers having diameters of less than 1 ,000 nanometers.
- Figure 1 is an illustration of the prior art eiectroblowing apparatus.
- Figure 2 is a schematic of a process and apparatus according to the present invention.
- a polymer stream comprising a polymer and a solvent, or a polymer melt
- a spinning nozzle 104 also referred to as a "die" located in a spinneret 102 through which the polymer stream is discharged.
- the polymer stream passes through an electric field generated between spinneret 102 and electrodes 140 and 142 as it is discharged from the spinneret 102.
- Compressed gas which may optionally be heated or cooled in a gas temperature controller 108, is issued from gas nozzles 106 disposed adjacent to or peripherally to the spinning nozzle 104.
- the gas is directed generally in the direction of the polymer stream flow, in a forwarding gas stream which forwards the newly issued polymer stream and aids in the formation of the fibrous web. While not wishing to be bound by theory, it is believed that the forwarding gas stream provides the majority of the forwarding forces in the initial stages of drawing of the fibers from the issued polymer stream and in the case of polymer solution, simultaneously strips away the mass boundary layer along the individual fiber surface thereby greatly increasing the diffusion rate of solvent from the polymer solution in the form of gas during the formation of the fibrous web.
- the local electric field around polymer stream is of sufficient strength that the electrical force becomes the dominant drawing force which ultimately draws individual fibers from the polymer stream to diameters measured in the hundreds of nanometers or less.
- the angular geometry of the tip of the spinning nozzle 104 also referred to as the "die tip," creates an intense electric field in the three-dimensional space surrounding the tip which causes charge to be imparted to the polymer stream.
- the die tip may be in the form of a capillary of any desired cross-sectional shape, or in the form of a linear array of such capillaries.
- the forwarding gas stream is issued from gas nozzles 106 on each side of the spinneret 102.
- the gas nozzles are in the form of slots formed between elongated knife edges, one on each side of the spinneret 102, along the length of the linear capillary array, and the spinneret 102.
- the gas nozzle 106 may be in the form of a circumferential slot surrounding the spinneret 102.
- the gas nozzles 106 are directed toward the spinning nozzle, generally in the direction of the polymer stream flow.
- the angular die tip, and therefore the spinning nozzle(s) is positioned such that it extends beyond the end of the spinneret and gas nozzles a distance "e" (Fig. 2).
- the electric field combined with the charge on the polymer stream provides spreading forces which act on the fibers and fibrils formed therein, causing the web to be better dispersed and providing for very uniform web laydown on the collection surface of the collector.
- the polymer solution is electrically conductive.
- polymers for use in the invention may include polyimide, nylon, polyaramide, polybenzimidazole, polyetherimide, polyacrylonitrile, PET (polyethylene terephthalate), polypropylene, polyaniline, polyethylene oxide, PEN (polyethylene naphthalate), PBT (polybutylene terephthalate), SBR (styrene butadiene rubber), polystyrene, PVC (polyvinyl chloride), polyvinyl alcohol, PVDF (polyvinylidene fluoride), polyvinyl butylene and copolymer or derivative compounds thereof.
- the polymer solution is prepared by selecting a solvent suitable to dissolve the polymer.
- the polymer solution can be mixed with additives including any resin compatible with an associated polymer, plasticizer, ultraviolet ray stabilizer, crosslink agent, curing agent, reaction initiator, electrical dopant, etc. Any polymer solution known to be suitable for use in a conventional electrospinning process may be used in the process of the invention.
- the polymer stream fed to the spin pack and discharged through the nozzle in the spinneret is a polymer melt. Any polymer known to be suitable for use in a melt electrospinning process may be used in the process in the form of a polymer melt.
- the polymer discharge pressure is in the range of about 0.01 kg/cm 2 to about 200 kg/cm 2 , more advantageously in the range of about 0.1 kg/cm 2 to about 20 kg/cm 2
- the polymer stream throughput per hole is in the range of about 0.1 cc/min to about 15 cc/min.
- the velocity of the compressed gas issued from gas nozzles 106 is advantageously between about 10 and about 20,000 m/min, and more advantageously between about 100 and about 3,000 m/min.
- Electrodes 140 and 142 can be combined into one unit as a ring-shaped electrode or kept separate as bars. Whereas a ring-shaped electrode can be used for one or more spinning nozzles, bar electrodes extending substantially the entire length of the spinning beam and/or the capillary array, can be used for a beam containing a linear array of spinning nozzles.
- the distance between the spinning nozzle and the electrode (also referred to as the "die to electrode distance" or "DED”) is in the range of about 0.01 to about 100 cm, and more advantageously in the range of about 0.1 to about 25 cm.
- the electrode can also be placed between the spinning nozzle and the spinneret within a distance "e" (Fig. 2), wherein the distance from the spinning nozzle to the collector is less than the distance from the electrode to the collector.
- this embodiment provides a less effective electric field than the embodiment of having the electrode located after spinning nozzle.
- the electrode may be grounded or substantially grounded.
- substantially grounded is meant that the electrode preferentially may be held at a low voltage level, i.e., between about -100 V and about +100 V.
- the electrode can have a significant voltage provided the spinneret has a voltage that maintains the desired voltage differential between the electrode and the spinneret.
- This voltage differential can have a positive or negative polarity with respect to the ground potential.
- the spinneret and the electrode can have the same voltage but with different polarities.
- the voltage differential between the electrode and the spinneret is in the range of about 1 to about 100 kV, and even in the range of about 2 to about 50 kV, and even as low as about 2 to about 30 kV.
- the process of the invention allows for the use of lower voltage due to a shorter distance between the spinneret and the electrode versus a longer distance between the spinneret and the collector as described above.
- Located a distance below the spinneret 102 is a collector for collecting the fibrous web produced. In Fig.
- the collector comprises a moving belt 110 onto which the fibrous web is collected, and can include a porous fibrous scrim which is moving on said moving belt, onto which the fibrous web formed by the present process is deposited.
- the belt 110 is advantageously made from a porous material such as a metal screen so that a vacuum can be drawn from beneath the belt through vacuum chamber 114 from the inlet of blower 112.
- the collection belt is grounded.
- the collected fibrous web of nanofibers is sent to a wind-up roll, not shown. It has been found that the distance between the spinneret and the collection surface (also referred to as the "die to collector distance" or "DCD"; illustrated in Fig. 2) is in the range of about 1 to about 200 cm, and more advantageously in the range of about 10 to about 50 cm.
- PEO Poly(ethylene oxide)
- Mv viscosity average molecular weight
- the solution electrical conductivity is measured to be 47 Micro-Siemens/cm using a VWR digital conductivity meter available from VWR Scientific Products (VWR International, Inc., West Chester, PA.).
- the solution is spun in a single orifice electroblowing apparatus comprising a 26 gauge blunt syringe needle, in a concentric forwarding air jet. The needle tip protrudes 2.5 mm below the conductive face of the spin pack body. A high voltage is applied to the spin pack body and the spin orifice.
- the PEO solution is directed through a ring-shaped electrode, which is electrically grounded through an ammeter. Suitable process conditions are in the Table, below. PEO fibers are formed via this process and are collected on a conductive surface and examined under a scanning electron microscope. Nanofibers are collected having fiber diameters ranging from about 100 to about 700 nanometers.
- Example 2 The procedure of Example 1 is followed except with a smaller inside diameter electrode, with the electrode located closer to the die tip and with a lower voltage applied to the spinneret. Suitable process conditions are listed in the Table, below. Nanofibers are collected having fiber diameters ranging from about 100 to about 700 nanometers. The procedure of Example 2 shows that by decreasing the electrode inside diameter and decreasing the DED, the applied voltage to the spinneret can be reduced and still generate similar sized fibers as Example 1.
- Example 3 The procedure of Example 1 is followed except with a smaller inside diameter electrode, with the electrode located closer to the die tip and with a lower voltage applied to the spinneret. Suitable process conditions are listed in the Table, below. Nanofibers are collected having fiber diameters ranging from about 100 to about 700 nanometers. The procedure of Example 2 shows that by decreasing the electrode inside diameter and decreasing the DED, the applied voltage to the spinneret can be reduced and still generate similar sized fibers as Example 1.
- Example 3 Example 3
- Nanofibers are collected having fiber diameters ranging from about 100 to about 700 nanometers.
- BASF Corporation, Mount Olive, NJ) in formic acid (obtained from Kemira Industrial Chemicals, Helsinki, Finland) was electroblown through a spinneret of 100 mm wide, having 11 nozzles at a throughput rate of 1.5 cc/hole.
- a forwarding air stream was introduced through air nozzles at a flow rate of 4 scfm (2 liters per second). The air was heated to about
- Examples 1 -3 demonstrate that the use of an electrode positioned and charged in accordance with the present invention requires less voltage than the method of the prior art to produce nanofibers with similar fiber diameters.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
- Nonwoven Fabrics (AREA)
Priority Applications (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP05855886A EP1834020B1 (en) | 2004-12-27 | 2005-12-27 | Improved electroblowing web formation process |
| DE602005025161T DE602005025161D1 (enExample) | 2004-12-27 | 2005-12-27 | |
| JP2007549628A JP5204493B2 (ja) | 2004-12-27 | 2005-12-27 | 改良された電気ブローイング・ウェブ形成方法 |
| BRPI0517589-5A BRPI0517589A (pt) | 2004-12-27 | 2005-12-27 | processo de eletro-sopro para a formação de uma rede fibrosa |
| CN2005800486589A CN101137781B (zh) | 2004-12-27 | 2005-12-27 | 改进的电吹网状物形成工艺 |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/023,068 | 2004-12-27 | ||
| US11/023,068 US7585451B2 (en) | 2004-12-27 | 2004-12-27 | Electroblowing web formation process |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| WO2006071976A2 true WO2006071976A2 (en) | 2006-07-06 |
| WO2006071976A3 WO2006071976A3 (en) | 2006-11-09 |
Family
ID=36190717
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2005/047395 Ceased WO2006071976A2 (en) | 2004-12-27 | 2005-12-27 | Improved electroblowing web formation process |
Country Status (8)
| Country | Link |
|---|---|
| US (1) | US7585451B2 (enExample) |
| EP (1) | EP1834020B1 (enExample) |
| JP (1) | JP5204493B2 (enExample) |
| KR (1) | KR101260529B1 (enExample) |
| CN (1) | CN101137781B (enExample) |
| BR (1) | BRPI0517589A (enExample) |
| DE (1) | DE602005025161D1 (enExample) |
| WO (1) | WO2006071976A2 (enExample) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR100890192B1 (ko) * | 2007-07-10 | 2009-03-25 | 한국기계연구원 | 나노섬유 제조장치 |
| US10150743B2 (en) | 2012-05-18 | 2018-12-11 | Sumitomo Dainippon Pharma Co., Ltd. | Carboxylic acid compounds |
Families Citing this family (32)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2005096744A2 (en) * | 2004-03-31 | 2005-10-20 | The Regents Of The University Of California | Oriented polymer fibers and methods for fabricating thereof |
| US8808608B2 (en) * | 2004-12-27 | 2014-08-19 | E I Du Pont De Nemours And Company | Electroblowing web formation process |
| US7465159B2 (en) * | 2005-08-17 | 2008-12-16 | E.I. Du Pont De Nemours And Company | Fiber charging apparatus |
| JP3918179B1 (ja) * | 2006-07-21 | 2007-05-23 | 廣瀬製紙株式会社 | 微細繊維集合体の製造方法 |
| US20080105626A1 (en) * | 2006-11-02 | 2008-05-08 | David Charles Jones | Fuel filter |
| US8361365B2 (en) * | 2006-12-20 | 2013-01-29 | E I Du Pont De Nemours And Company | Process for electroblowing a multiple layered sheet |
| JP5226558B2 (ja) * | 2009-02-16 | 2013-07-03 | パナソニック株式会社 | ナノファイバ製造装置、ナノファイバ製造方法 |
| WO2010107503A1 (en) | 2009-03-19 | 2010-09-23 | Millipore Corporation | Removal of microorganisms from fluid samples using nanofiber filtration media |
| CN102803585A (zh) * | 2010-02-15 | 2012-11-28 | 康奈尔大学 | 电纺丝设备及由其生产的纳米纤维 |
| JP5417244B2 (ja) * | 2010-04-02 | 2014-02-12 | パナソニック株式会社 | ナノファイバ製造装置、ナノファイバ製造方法 |
| ES2792823T3 (es) | 2010-07-02 | 2020-11-12 | Procter & Gamble | Artículo de estructura de trama fibrosa soluble que comprende principios activos |
| CN108579207A (zh) | 2010-08-10 | 2018-09-28 | Emd密理博公司 | 用于去除反转录病毒的方法 |
| ES2886043T3 (es) | 2011-04-01 | 2021-12-16 | Emd Millipore Corp | Estructuras compuestas que contienen nanofibras |
| KR20140136993A (ko) | 2012-03-19 | 2014-12-01 | 코넬 유니버시티 | 하전된 나노섬유들과 그 제조방법 |
| US9090996B2 (en) | 2012-08-15 | 2015-07-28 | E I Du Pont De Nemours And Company | Multizone electroblowing process |
| CZ2012834A3 (cs) * | 2012-11-23 | 2013-11-06 | Nafigate Corporation, A.S. | Zpusob a zarízení pro výrobu nanovláken elektrostatickým zvláknováním roztoku nebo taveniny polymeru |
| CN102965743B (zh) * | 2012-12-17 | 2016-01-27 | 厦门大学 | 一种带辅助电极的纳米纤维低压电纺装置 |
| US10106915B2 (en) * | 2013-12-18 | 2018-10-23 | Anf Inc. | Electro-spinning type pattern forming apparatus |
| US20150315350A1 (en) | 2014-04-22 | 2015-11-05 | The Procter & Gamble Company | Compositions in the Form of Dissolvable Solid Structures |
| ES2962695T3 (es) | 2014-06-26 | 2024-03-20 | Emd Millipore Corp | Dispositivo de filtración de fluidos con capacidad de retención de suciedad mejorada |
| WO2016167871A1 (en) | 2015-04-17 | 2016-10-20 | Emd Millipore Corporation | Method of purifying a biological materia of interest in a sample using nanofiber ultrafiltration membranes operated in tangential flow filtration mode |
| BR112018069478B1 (pt) | 2016-02-25 | 2023-04-25 | Avintiv Specialty Materials Inc | Panos de não tecido com propriedades de aprimoramento de barreira aditivas |
| US10138574B2 (en) * | 2016-10-17 | 2018-11-27 | Fanavaran Nano-Meghyas Company (Ltd) | Blowing-assisted electrospinning |
| KR101972843B1 (ko) * | 2017-03-31 | 2019-04-29 | 한양대학교 산학협력단 | 폴리(2-시아노-p-페닐렌 테레프탈아미드) 나노섬유 및 이로부터 유래된 탄소 나노섬유의 제조방법 |
| WO2019016605A1 (en) | 2017-07-21 | 2019-01-24 | Merck Millipore Ltd | MEMBRANES OF NONWOVEN FIBERS |
| CZ307745B6 (cs) * | 2017-09-07 | 2019-04-10 | Technická univerzita v Liberci | Způsob pro výrobu polymerních nanovláken elektrickým nebo elektrostatickým zvlákňováním roztoku nebo taveniny polymeru, zvlákňovací elektroda pro tento způsob, a zařízení pro výrobu polymerních nanovláken osazené alespoň jednou takovou zvlákňovací elektrodou |
| US10391449B2 (en) | 2017-11-08 | 2019-08-27 | Cummins Emission Solutions Inc. | Nanofiber augmented diesel particulate filters |
| CN108456935A (zh) * | 2018-05-31 | 2018-08-28 | 苏州大学 | 低压纺丝装置及低压纺丝方法 |
| US12209330B1 (en) * | 2019-07-10 | 2025-01-28 | American Nano Llc | Electrospinning apparatus and methods |
| US12194205B2 (en) | 2020-04-30 | 2025-01-14 | Research Triangle Institute | Multi-layer air filtration media with integrated disinfection capability |
| CN114657649B (zh) * | 2020-12-24 | 2025-07-22 | 长胜纺织科技发展(上海)有限公司 | 一种静电纺丝装置 |
| US20220333274A1 (en) * | 2021-04-20 | 2022-10-20 | Jack L. Skinner | Precisely controlled fiber deposition by electrostatic fields |
Family Cites Families (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3387326A (en) * | 1964-06-04 | 1968-06-11 | Du Pont | Apparatus for charging and spreading a web |
| US3319309A (en) * | 1964-06-04 | 1967-05-16 | Du Pont | Charged web collecting apparatus |
| JPH01168953A (ja) * | 1987-12-23 | 1989-07-04 | Toray Ind Inc | 不織繊維成型体とその製造方法 |
| WO1989009298A1 (fr) | 1988-03-21 | 1989-10-05 | Automatik Apparate-Maschinenbau Gmbh | Procede et dispositif pour produire des non-tisses |
| US5227172A (en) * | 1991-05-14 | 1993-07-13 | Exxon Chemical Patents Inc. | Charged collector apparatus for the production of meltblown electrets |
| US5296172A (en) * | 1992-07-31 | 1994-03-22 | E. I. Du Pont De Nemours And Company | Electrostatic field enhancing process and apparatus for improved web pinning |
| US5498463A (en) * | 1994-03-21 | 1996-03-12 | Kimberly-Clark Corporation | Polyethylene meltblown fabric with barrier properties |
| FR2792656B1 (fr) * | 1999-04-23 | 2001-06-01 | Icbt Perfojet Sa | Dispositif permettant d'assurer l'ouverture et la repartition d'un faisceau de filaments lors de la realisation d'une nappe textile non tissee |
| US6641773B2 (en) * | 2001-01-10 | 2003-11-04 | The United States Of America As Represented By The Secretary Of The Army | Electro spinning of submicron diameter polymer filaments |
| AU2002241221A1 (en) | 2001-03-20 | 2002-10-03 | Nicast Ltd. | Electrospinning nonwoven materials with rotating electrode |
| KR100549140B1 (ko) * | 2002-03-26 | 2006-02-03 | 이 아이 듀폰 디 네모아 앤드 캄파니 | 일렉트로-브로운 방사법에 의한 초극세 나노섬유 웹제조방법 |
| WO2003090805A1 (fr) | 2002-04-26 | 2003-11-06 | Menicon Co., Ltd. | Procede de production d'un materiau hydrogel ameliore au niveau de l'absorption de medicaments et permettant une liberation continue de medicaments |
| KR100484320B1 (ko) * | 2002-11-08 | 2005-04-20 | 경창산업주식회사 | 주차 브레이크 레버 |
| US7465159B2 (en) | 2005-08-17 | 2008-12-16 | E.I. Du Pont De Nemours And Company | Fiber charging apparatus |
-
2004
- 2004-12-27 US US11/023,068 patent/US7585451B2/en active Active
-
2005
- 2005-12-27 DE DE602005025161T patent/DE602005025161D1/de active Active
- 2005-12-27 KR KR1020077017269A patent/KR101260529B1/ko not_active Expired - Fee Related
- 2005-12-27 BR BRPI0517589-5A patent/BRPI0517589A/pt not_active IP Right Cessation
- 2005-12-27 EP EP05855886A patent/EP1834020B1/en not_active Ceased
- 2005-12-27 CN CN2005800486589A patent/CN101137781B/zh not_active Expired - Fee Related
- 2005-12-27 WO PCT/US2005/047395 patent/WO2006071976A2/en not_active Ceased
- 2005-12-27 JP JP2007549628A patent/JP5204493B2/ja not_active Expired - Fee Related
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR100890192B1 (ko) * | 2007-07-10 | 2009-03-25 | 한국기계연구원 | 나노섬유 제조장치 |
| US10150743B2 (en) | 2012-05-18 | 2018-12-11 | Sumitomo Dainippon Pharma Co., Ltd. | Carboxylic acid compounds |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2008525669A (ja) | 2008-07-17 |
| CN101137781A (zh) | 2008-03-05 |
| KR101260529B1 (ko) | 2013-05-06 |
| WO2006071976A3 (en) | 2006-11-09 |
| EP1834020B1 (en) | 2010-12-01 |
| JP5204493B2 (ja) | 2013-06-05 |
| KR20070091220A (ko) | 2007-09-07 |
| EP1834020A2 (en) | 2007-09-19 |
| BRPI0517589A (pt) | 2008-10-14 |
| DE602005025161D1 (enExample) | 2011-01-13 |
| US7585451B2 (en) | 2009-09-08 |
| CN101137781B (zh) | 2011-05-18 |
| US20060138711A1 (en) | 2006-06-29 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP1834020B1 (en) | Improved electroblowing web formation process | |
| US8808608B2 (en) | Electroblowing web formation process | |
| US7582247B2 (en) | Electroblowing fiber spinning process | |
| US20060012084A1 (en) | Electroblowing web formation process | |
| EP2390388B1 (en) | Improved fiber charging apparatus | |
| JP4047286B2 (ja) | ナノ繊維ウエブの製造方法及び製造装置 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| WWE | Wipo information: entry into national phase |
Ref document number: 200580048658.9 Country of ref document: CN |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
| WWE | Wipo information: entry into national phase |
Ref document number: 4872/DELNP/2007 Country of ref document: IN |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2007549628 Country of ref document: JP |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2005855886 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 1020077017269 Country of ref document: KR |
|
| ENP | Entry into the national phase |
Ref document number: PI0517589 Country of ref document: BR |