WO2006070948A1 - Gas detection system - Google Patents

Gas detection system Download PDF

Info

Publication number
WO2006070948A1
WO2006070948A1 PCT/JP2005/024289 JP2005024289W WO2006070948A1 WO 2006070948 A1 WO2006070948 A1 WO 2006070948A1 JP 2005024289 W JP2005024289 W JP 2005024289W WO 2006070948 A1 WO2006070948 A1 WO 2006070948A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio wave
gas
gas detection
detection
target area
Prior art date
Application number
PCT/JP2005/024289
Other languages
French (fr)
Japanese (ja)
Inventor
Fujio Kurokawa
Toshiyuki Tanaka
Osamu Hirose
Original Assignee
Sumitomo Chemical Co
Fujio Kurokawa
Toshiyuki Tanaka
Osamu Hirose
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co, Fujio Kurokawa, Toshiyuki Tanaka, Osamu Hirose filed Critical Sumitomo Chemical Co
Priority to JP2006550883A priority Critical patent/JPWO2006070948A1/en
Publication of WO2006070948A1 publication Critical patent/WO2006070948A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N22/00Investigating or analysing materials by the use of microwaves or radio waves, i.e. electromagnetic waves with a wavelength of one millimetre or more

Definitions

  • the present invention relates to invisible hydrogen gas, carbon dioxide gas, helium gas, etc.
  • the present invention relates to a gas detection system capable of accurately detecting a gas, and a gas detection system capable of detecting a gas characteristic (even if the relative permittivity for air is a mixture ratio of multiple gases).
  • the present invention provides a gas detection sensor that can accurately detect even colorless hydrogen gas, carbon dioxide, and the like, a gas monitoring system, and an image processing device that visualizes information detected by the gas detection sensor. With the goal. Means to achieve the objective
  • At least one gas detection radio wave transmission means that emits a gas detection radio wave; and the same number or more as the gas detection radio wave transmission means that receives the gas detection radio wave that has passed through the gas detection target area.
  • Radio wave phase detection means for detecting a phase difference on the time axis of the gas detection radio wave received by the gas detection radio wave reception means
  • gas detection means in the target area for detecting whether or not gas is present in the gas detection target area
  • a gas detection system comprising:
  • the radio wave phase detection means detects the presence of gas in the gas detection target region
  • the radio wave phase detection means further comprises a gas type detection means for detecting the gas type.
  • the display means displays the gas detection result on a display superimposed on an image taken by the imaging means.
  • At least one gas detection radio wave transmission means that emits a gas detection radio wave and the same number of gas detection radio wave transmission means as the gas detection radio wave transmission means that receive the gas detection radio wave that has passed through the gas detection target area.
  • a radio wave receiving / receiving unit for gas detection comprising a radio wave receiving means for
  • Radio wave phase detection means for detecting a phase difference between the gas detection radio wave received by the gas detection radio wave reception means and the reference radio wave received by the reference radio wave reception means;
  • gas detection means in the target area for detecting whether or not gas is present in the gas detection target area
  • a gas detection system with a special feature.
  • At least one of the gas detection radio wave transmission means, the gas detection radio wave reception means, the reference radio wave transmission means, and the reference radio wave reception means has directivity.
  • a display means for displaying an image photographed by the photographing means for photographing an area including the gas detection target area
  • the display means displays the gas detection result on a display superimposed on an image taken by the imaging means.
  • At least one omnidirectional gas detection means for emitting gas detection radio waves
  • At least one gas detection radio wave receiving means for receiving the gas detection radio wave passing through the gas detection target area
  • Radio wave phase detection means for detecting a difference between phases of the gas detection radio waves received by the gas detection radio wave reception means
  • the gas detection target area gas detection means for detecting whether or not gas exists in the gas detection target area
  • a gas detection system comprising:
  • the radio wave phase detection means detects the presence of gas in the gas detection target region
  • the radio wave phase detection means includes gas type detection means for detecting the gas type.
  • the gas detection system described in 1. 1 1. It is provided with a display means for displaying an image photographed by the photographing means and the photographing means for ilfing the area including the gas detection target area,
  • the display means displays the gas detection result on a display superimposed on an image taken by the imaging means.
  • Thermal noise receiving means for receiving thermal noise generated by gas
  • a thermal noise detecting means for detecting whether the thermal noise received by the thermal noise receiving means exceeds a predetermined threshold
  • a gas detection system comprising:
  • thermo noise detection means detects a gas type according to the frequency of the received thermal noise.
  • a gas detection system for measuring characteristics of a gas present in a propagation path of a radio wave based on the phase difference detected by the radio wave phase difference detection means.
  • the characteristic of the gas is a relative dielectric constant of gas existing in a propagation path of the radio wave with respect to air.
  • FIG. 1 is a block diagram showing a gas detection system of the present invention.
  • FIG. 2 is a diagram illustrating a state in which the gas detection result is displayed on the display of the display unit so as to be superimposed on the image captured by the imaging unit.
  • FIG. 3 is an explanatory diagram of the first embodiment of the present invention, in which (A) is a perspective view of the plant and (B) is a plan view of the plant.
  • FIG. 4 is a diagram showing a point of zero amplitude in a healthy state received by the receiving antenna.
  • FIG. 5 is an explanatory diagram of a second embodiment of the present invention, where (A) is a perspective view of a blunt, and (B) is a plan view of the plant.
  • FIG. 6 is an explanatory diagram of a third embodiment of the present invention, where (A) is a perspective view of the plant and (B) is a plan view of the plant.
  • FIG. 7 is a block diagram showing the gas detection system of the present invention.
  • FIG. 8 is an explanatory view of a fourth embodiment of the present invention, where (A) is a perspective view of the plant and (B) is a plan view of the plant.
  • FIGS 9A and 9B are diagrams showing an example of radio waves generated by the gas detection radio wave transmitting means of the present invention.
  • FIG. 10 is a diagram showing a configuration of a gas detection system for detecting a relative dielectric constant.
  • Figure 11 shows the measured phase difference of the received wave.
  • Figure 12 shows a plot of the theoretical curve for the phase difference.
  • Fig. 13 shows the case where the measurement gas occupying the radio wave propagation path has a constant length d, and a mixed gas of helium and oxygen is injected into the resin sample container. It is a figure which shows the result of having measured the phase difference about each when decreasing a helium density
  • FIG. 1 is a block diagram showing a gas detection system 1 of the present invention.
  • the gas detection system 1 includes a gas detection radio wave transmission / reception unit 1 1, a reference radio wave transmission / reception unit 1 2, a radio wave phase detection means 1 3, an in-target gas detection means 1 4, and a gas type detection. Means 15, photographing means 16, and display means 17 are provided.
  • the gas detection radio wave transmission / reception unit 1 1 passes through at least one (1 in this embodiment) gas detection radio wave transmission means 1 1 1 that emits the gas detection radio wave D and the gas detection target area A.
  • Gas detection radio wave transmission means 1 1 2 for receiving the gas detection radio wave D 1 1 1 1 is provided.
  • the reference radio wave transmission / reception unit 1 2 is used for reference without passing through the gas detection target region A and at least one reference radio wave transmission means 1 2 1 that emits the reference radio wave R (one in this embodiment). It consists of reference radio wave receiving means 1 2 2 for receiving radio wave R.
  • the gas detection radio wave transmission means 1 1 1, the gas detection radio wave reception means 1 1 2, the reference radio wave transmission means 1 2 1 and the reference radio wave reception means 1 2 2 have directivity.
  • the radio wave uses a frequency in the submillimeter wave band.
  • the radio wave phase detection means 13 detects the phase difference between the gas detection radio wave D received by the gas detection radio wave reception means 1 1 2 and the reference radio wave R received by the reference radio wave reception means 1 2 2.
  • the gas detection means 14 in the target area 14 detects whether or not the gas G exists in the gas detection target area A based on the phase difference ⁇ detected by the radio wave phase detection means 13.
  • the gas type detection means 15 detects the gas type.
  • the imaging means 16 images an area including the gas detection target area A. Further, the display means 17 can display the image photographed by the photographing means 16. When the radio wave phase detection means 13 detects that gas G is present in the gas detection target area A, the display means 17 is superimposed on the image taken by the photographing means 16 as shown in FIG. The gas detection result can be displayed on the display 1 7 1. In addition, gas leaks and fire alarms may be automatically generated by image recognition. In addition to gas or gas flame information, sound information collected from a microphone can be embedded in the image from the camera and displayed with sound.
  • FIGS. 3 (A), (B) and FIG. In Fig. 3 (A) and (B) ((A) is a perspective view and (B) is a plan view), a radio wave for gas detection outside the plant P (for example, a space of 5 Om in length, width, and height).
  • a radio wave for gas detection outside the plant P for example, a space of 5 Om in length, width, and height.
  • transmitting means indicated by reference numeral “11 1” in FIG. 1
  • receiving antennas bl to function as radio wave receiving means for gas detection
  • the pair of the transmitting antenna a 1 and the receiving antenna b 1 is a gas.
  • the transmission antennas a 1 to a 6 and the reception antennas b 1 to b 6 have directivity.
  • the gas detection radio waves D transmitted from the transmitting antennas a 1 to a 6 (the radio waves simultaneously function as reference radio waves R) are synchronized.
  • the points of zero amplitude when received by the receiving antennas b 1 to b 6 are shown in Fig. 4 as (1) to (6).
  • FIGS. 5 (A) and 5 (B) ((A) is a perspective view and (B) is a plan view).
  • radio wave transmission means for gas detection outside plant P Transmitting antennas a 1 and a 2 that function as (indicated by reference numeral “1 1 1” in FIG. 1) and receiving antennas that function as radio wave detection means for gas detection (indicated by reference numeral “1 1 2” in FIG. 1) b 1 to b 10 are installed.
  • the transmitting antennas a 1 and a 2 are omnidirectional, but the receiving antennas b :! to b 10 have directivity.
  • the gas detection radio waves D transmitted from the transmitting antennas a 1 and a 2 are synchronized.
  • the phase fluctuates. Therefore, when the phase of the gas detection radio wave D received by one of the receiving antennas b 1 to “b 10” fluctuates, gas is generated between the transmitting antenna and the corresponding transmitting antenna.
  • FIGS. 6 (A) and 6 (B) ((A) is a perspective view and (B) is a plan view).
  • the transmitting antenna a 1 functioning as a gas detection radio wave transmission means (indicated by reference numeral “1 1 1” in FIG. 1) outside the plant P
  • a gas detection radio reception means Receiving antenna b 1 that functions as (indicated by “1 1 2” in Fig. 1) is installed, and relay antennas c 1 and c 2 are installed inside plant P.
  • FIG. 7 and FIG. 8 (A), (B) ((A) is a perspective view, (B) is a plan view) A fourth embodiment will be described.
  • the portable terminal 21 includes a thermal noise receiving unit 2 11, a thermal noise detecting unit 2 1 2, and an alarm unit 2 1 3.
  • the mobile terminal 21 is applied to a device using hydrogen gas as a fuel (in FIG. 7, a plant), but is used in other types of gas devices (including equipment such as tanks and piping). It can also be applied.
  • hydrogen gas is detected, but it can also be detected by a stationary receiver.
  • the thermal noise receiving means 2 1 1 is provided with a thermal noise receiving antenna d, and can receive thermal noise N generated by gas.
  • the thermal noise detection means 2 112 can detect whether or not the thermal noise N received by the thermal noise reception means 2 11 1 exceeds a predetermined threshold value.
  • the alarm means 2 1 3 can issue an alarm when the thermal noise received by the thermal noise detection means 2 1 2 exceeds a predetermined threshold value. Since this alarm is usually a mobile terminal 21, the warning sound on the display is accompanied by a warning sound. '
  • 8 (A) and 8 (B) show a case where the mobile terminal 21 transmits a radio wave to the plant side and detects the response.
  • Figures 9 (A) and 9 (B) show examples of radio waves emitted by Ryoaki's gas detection radio transmission means (indicated by the symbol “1 1 2” in Fig. 1).
  • the radio wave transmitting means for gas detection can be transmitted by sweeping the frequency in a sawtooth shape.
  • various gases can be detected.
  • various types of gases can be detected by emitting radio waves containing harmonic components such as square waves and obtaining the phase for each frequency on the receiving side.
  • an image display procedure on the display unit 17 will be described below.
  • Imager 16 (CCD camera, etc.) Reads an image from force (S101), and gas detection means 14 (see Fig. 1) in the target area detects a gas leak ("YES" in S102). The gas generated by the seed detection means 15 is specified (S 103).
  • the display means 16 refers to the gas color and movement database (not shown in FIG. 1) prepared in advance and detects the gas from the sensor detecting the gas.
  • a gas-like graphic is displayed on the monitor screen of the location of occurrence based on the information, such as an expression expressing transparency or an expression with a predetermined color (S104).
  • the movement of the gas due to the wind is detected, and the situation is activated graphically (S106).
  • the information is also useful for recognition by gas moving image processing. Since the weight varies depending on the type of gas, the moving image processing can be used to identify the type of gas. For moving image processing, methods using differences between screens, methods using optical flow, etc. are effective.
  • FIG. 10 shows the configuration of a gas detection system for detecting the relative permittivity.
  • the network analyzer 1 0 1 generates radio waves to be transmitted, radiates radio waves via the transmit antenna 1 0 2 and the derivative lens (lens made of PTFE) 1 0 3, and PTFE lenses 1 0 4 and 1 0 5 It has the function of receiving radio waves via the receiving antenna and analyzing the phase difference on the time axis of the received radio waves.
  • the length d of the measurement target gas region in the radio wave propagation path is a container that can be measured.
  • Fig. 11 shows the reception when the effective frequency range is changed from 50 GHz to 75 GHz using a gas mixture of helium 80% and oxygen 20% as the measurement target gas. Wave phase difference is measured and plotted. First, the same atmosphere as the laboratory atmosphere is sealed in a 10-resin sample container, radio waves of each frequency are transmitted and received, and the network analyzer is calibrated based on the phase difference at each frequency.
  • the frequency of the transmitted and received radio waves is f [H z], and the measurement target gas region in the radio wave propagation path
  • the length is d [m]
  • the velocity of radio waves in the air is c [m / s]
  • the relative permittivity of the gas to be measured is s ag
  • the wavelength of the radio waves in the air is ⁇ [m]
  • the gas to be measured If the wavelength of the radio wave is ⁇ 3 ⁇ Cm] and the phase difference that occurs when the radio wave passes through the measurement target gas is ⁇ [radian], the phase difference ⁇ can be calculated by the following equation.
  • the approximate concentration (gas mixture ratio) of the target measurement gas is calculated. Can be measured.
  • Figure 13 shows that the length d of the gas region to be measured in the radio wave propagation path is constant, and the resin sample container contains 80% helium and 20 ° oxygen.
  • the results of measuring the phase difference ⁇ for each of (e X 0 3) and (e X 0 4) from which helium concentration was reduced by natural diffusion are shown. According to this, it can be seen that the phase difference is smaller in e X 04 with obviously small helium concentration.
  • it is possible to know the approximate mixing ratio of the measurement target gas by measuring the phase difference in advance by changing the gas mixing ratio and comparing it with the phase difference obtained from the measurement target gas. it can. Industrial applicability
  • the present invention can detect all kinds of gases, and the first, second, and third inventions can detect from a long distance (for example, a distance of 50 m or more).
  • the gas leakage status or the like can be graphically displayed on the display by the image processing technology, or the gas leakage status or the like can be automatically and accurately recognized by the image processing.
  • the first to fourth inventions not only gas leakage in the blunt, but also gas leakage in automobiles such as hydrogen fuel cells can be observed from the road side (highway toll booth etc.).
  • the fifth invention it is possible to measure the characteristics of the gas in the radio wave propagation path, mainly the relative permittivity with respect to the air, and a plurality of expected mixing ratios.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Emergency Alarm Devices (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

A gas detection system includes: a gas detection radio wave transmission/reception unit (11) having at least one gas detection radio wave transmission means (111) and gas detection radio wave reception means (112); a reference radio wave transmission /reception unit (12) having at lest one reference radio wave transmission means (121) for emitting a reference radio wave and the same number of reference radio wave reception means (121) as the number of reference radio wave transmission means (121), for receiving the reference radio wave without passing through the gas detection object region; radio wave phase detection means (13) for detecting a phase difference between the gas detection radio wave received by the gas detection radio wave reception means and the reference radio wave received by the reference radio wave reception means; and gas-in-object region detection means (14) for detecting whether gas exists in the gas detection object region according to the phase difference detected by the radio wave phase detection means.

Description

ガス検出システム  Gas detection system
技術分野 本発明は、 目視できない水素ガス、 二酸化炭素ガス、 ヘリウムガス等を C C Dカメラ 明 TECHNICAL FIELD The present invention relates to invisible hydrogen gas, carbon dioxide gas, helium gas, etc.
によらずに的確に検出できるガス検出システム、 およびガスの特性 (たとえあ、 空気に 対する比誘電率ある ヽは複数のガスの混合比等書) を検出できるガス検出システムに関す る。 The present invention relates to a gas detection system capable of accurately detecting a gas, and a gas detection system capable of detecting a gas characteristic (even if the relative permittivity for air is a mixture ratio of multiple gases).
背景技術 近年、 化学プラントにおいては、 コスト低減、 人員削減あるいは安全性の向上を図るた めに、 画像処理を用いたガス漏れ、 火災発生等の自動監視技術が種々提案されている。 ガス漏れ等を化学反応検出式のガスセンサを用いて検出することもできるが、 プラン ト内部に電気回路内蔵のガスセンサを用いなければならないため、 電気回路のスパーク 等による事故発生の危険がある。 このような事情から、 C C Dカメラにより化学ブラント C Pの検出対象地域を撮影し、 ガス煙や水蒸気の発生や動きの変化を動き検出手段により検出することで、 ガス漏れや 火災発生等を検出し、 表示手段によりディスプレイに表示している。 Background Art In recent years, chemical plants have proposed various automatic monitoring technologies for gas leaks and fires using image processing in order to reduce costs, reduce personnel, or improve safety. Gas leaks can also be detected using chemical reaction detection type gas sensors, but there is a risk of accidents due to electrical circuit sparks, etc., because a gas sensor with a built-in electric circuit must be used inside the plant. For this reason, the area where the chemical blunt CP is detected is photographed with a CCD camera, and the occurrence of gas smoke and water vapor and changes in movement are detected by the motion detection means to detect gas leaks and fires. It is displayed on the display by the display means.
発明の開示 し力 し、 化学プラントにおいては、 検出対象となるべきガスや炎には、 無色のもの (撮影できにくいもの) が多く含まれているため、 C C Dカメラでは画像として取り込 むこと自体が不可能な場合が多い。 Disclosure of the invention In chemical plants, gases and flames to be detected are colorless. Since many of them are difficult to capture, it is often impossible to capture them as images with a CCD camera.
また、 赤外線カメラを用いて熱変化等を検出する技術も提案されているが、 たとえば、 検出 ¾ ^は可燃ガスに限られるし、 しかも常態で透明な可燃ガス (水素ガス等) につい ては、 燃焼前 (すなわち事故発生前) に検出することはできない。  In addition, technologies that detect thermal changes using an infrared camera have also been proposed. For example, detection ¾ ^ is limited to flammable gases, and for flammable gases that are normally transparent (hydrogen gas, etc.) It cannot be detected before combustion (ie before an accident).
本発明は、 無色の水素ガス、 二酸化炭素等であっても正確に検出できる気体検出セン サ、 気体監視システム、 および気体検出センサにより検出した情報を可視ィ匕する画像処 理装置を提供することを目的とする。 目的を達成するための手段  The present invention provides a gas detection sensor that can accurately detect even colorless hydrogen gas, carbon dioxide, and the like, a gas monitoring system, and an image processing device that visualizes information detected by the gas detection sensor. With the goal. Means to achieve the objective
上記の目的を達成するために、 本発明は、 以下を要旨とする。  In order to achieve the above object, the present invention is summarized as follows.
1 . ガス検出用電波を発射する少なくとも 1つのガス検出用電波発信手段と、 ガス検出対象領域を通過した前記ガス検出用電波を受信する、 前記ガス検出用電波発 信手段と同数またはそれ以上のガス検出用電波受信手段と、  1. At least one gas detection radio wave transmission means that emits a gas detection radio wave; and the same number or more as the gas detection radio wave transmission means that receives the gas detection radio wave that has passed through the gas detection target area. Radio wave receiving means for gas detection;
前記ガス検出用電波受信手段が受信した前記ガス検出用電波の、 時間軸上での位相差 を検出する電波位相検出手段と、  Radio wave phase detection means for detecting a phase difference on the time axis of the gas detection radio wave received by the gas detection radio wave reception means;
前記電波位相検出手段が検出した前記位相差に基づき、 前記ガス検出対象領域にガス が存在するか否かを検出する対象領域内ガス検出手段と、  Based on the phase difference detected by the radio wave phase detection means, gas detection means in the target area for detecting whether or not gas is present in the gas detection target area;
を備えたことを特徴とするガス検出システム。 A gas detection system comprising:
2 . 前記ガス検出用電波発信手段、 前記ガス検出用電波受信手段の少なくとも;!つが 指向性を有することを特徴とする請求項 1力、ら 4の何れかに記載のガス検出システム。 3 . さらに、 前記電波位相検出手段が前記ガス検出対象領域にガスが存在することを 検出したときは、 当該ガス種を検出するガス種検出手段を備えたことを特徴とする請求 項 1または 2に記載のガス検出システム。 2. The gas detection system according to claim 1, wherein at least one of the gas detection radio wave transmission means and the gas detection radio wave reception means has directivity. 3. Further, when the radio wave phase detection means detects the presence of gas in the gas detection target region, the radio wave phase detection means further comprises a gas type detection means for detecting the gas type. The gas detection system described in 1.
4 . 前記ガス検出対象領域を含む領域を撮影する撮影手段および当該撮影手段により 撮影した画像を表示する表示手段を備え、  4. provided with a photographing means for photographing an area including the gas detection target area and a display means for displaying an image photographed by the photographing means;
前記電波位相検出手段が前記ガス検出対象領域にガスが存在することを検出したとき は、 前記表示手段は前記撮影手段により撮影した画像に重畳してガス検出結果をディス プレイに表示することを特徴とする請求項 1力 ら 3の何れかに記載のガス検出システム。  When the radio wave phase detection means detects the presence of gas in the gas detection target area, the display means displays the gas detection result on a display superimposed on an image taken by the imaging means. The gas detection system according to any one of claims 1 to 3.
5 . ガス検出用電波を発射する少なくとも 1つのガス検出用電波発信手段と、 ガス検 出対象領域を通過した Ιΐίϊ己ガス検出用電波を受信する前記ガス検出用電波発信手段と同 数のガス検出用電波受信手段とからなるガス検出用電波送受信ュ-ットと、  5. At least one gas detection radio wave transmission means that emits a gas detection radio wave and the same number of gas detection radio wave transmission means as the gas detection radio wave transmission means that receive the gas detection radio wave that has passed through the gas detection target area. A radio wave receiving / receiving unit for gas detection comprising a radio wave receiving means for
参照用電波を発射する少なくとも 1つの参照用電波発信手段と、 前記ガス検出対象領 域を通過せずに前記参照用電波を受信する前記参照用電波発信手段と同数の参照用電波 受信手段とからなる参照用電波送受信ュ-ットと、  From at least one reference radio wave transmitting means for emitting a reference radio wave, and the same number of reference radio wave receiving means as the reference radio wave transmitting means for receiving the reference radio wave without passing through the gas detection target area A reference radio transmission / reception unit,
前記ガス検出用電波受信手段が受信した前記ガス検出用電波と、 前記参照用電波受信 手段が受信した前記参照用電波との位相差を検出する電波位相検出手段と、  Radio wave phase detection means for detecting a phase difference between the gas detection radio wave received by the gas detection radio wave reception means and the reference radio wave received by the reference radio wave reception means;
前記電波位相検出手段が検出した前記位相差に基づき、 前記ガス検出対象領域にガス が存在するか否かを検出する対象領域内ガス検出手段と、  Based on the phase difference detected by the radio wave phase detection means, gas detection means in the target area for detecting whether or not gas is present in the gas detection target area;
を備えたことを特 ί敷とするガス検出システム。 A gas detection system with a special feature.
6 . 前記ガス検出用電波発信手段、 前記ガス検出用電波受信手段、 前記参照用電波発 信手段、 前記参照用電波受信手段の少なくとも 1つが指向性を有することを特徴とする 請求項 5に記載のガス検出システム。 6. At least one of the gas detection radio wave transmission means, the gas detection radio wave reception means, the reference radio wave transmission means, and the reference radio wave reception means has directivity. The gas detection system according to claim 5.
7. .さらに、 前記電波位相検出手段が前記ガス検出対象領域にガスが存在することを 検出したときは、 当該ガス種を検出するガス種検出手段を備えたことを特徴とする請求 項 5または 6に記載のガス検出システム。  7. The method according to claim 5, further comprising gas type detection means for detecting the gas type when the radio wave phase detection means detects the presence of gas in the gas detection target region. 6. The gas detection system according to 6.
8 . 前記ガス検出対象領域を含む領域を撮影する撮影手段おょぴ当該 »手段により 撮影した画像を表示する表示手段を備え、  8. a display means for displaying an image photographed by the photographing means for photographing an area including the gas detection target area;
前記電波位相検出手段が前記ガス検出対象領域にガスが存在することを検出したとき は、 前記表示手段は前記撮影手段により撮影した画像に重畳してガス検出結果をディス プレイに表示することを特徴とする請求項 5力ら 7の何れかに記載のガス検出システム。  When the radio wave phase detection means detects the presence of gas in the gas detection target area, the display means displays the gas detection result on a display superimposed on an image taken by the imaging means. The gas detection system according to any one of claims 5 and 7.
9 . ガス検出用電波を発射する少なくとも 1つの無指向性のガス検出用電波発信手段 と、  9. at least one omnidirectional gas detection means for emitting gas detection radio waves;
ガス検出対象領域を通過した前記ガス検出用電波を受信する少なくとも 1つのガス検 出用電波受信手段と、  At least one gas detection radio wave receiving means for receiving the gas detection radio wave passing through the gas detection target area;
前記各ガス検出用電波受信手段が受信した前記ガス検出用電波の位相同士の差を検出 する電波位相検出手段と、  Radio wave phase detection means for detecting a difference between phases of the gas detection radio waves received by the gas detection radio wave reception means;
前記電波位相検出手段が検出した前記位相同士の差に基づき、 前記ガス検出対象領域 にガスが存在するか否かを検出する対象領域内ガス検出手段と、  Based on the difference between the phases detected by the radio wave phase detection means, the gas detection target area gas detection means for detecting whether or not gas exists in the gas detection target area,
を備えたことを特徴とするガス検出システム。 A gas detection system comprising:
1 0 . さらに、 前記電波位相検出手段が前記ガス検出対象領域にガスが存在すること を検出したときは、 当該ガス種を検出するガス種検出手段を備えたことを特徴とする請 求項 9に記載のガス検出システム。 1 1 . 前記ガス検出対象領域を含む領域を ilfする ϋ¾手段および当該撮影手段によ り撮影した画像を表示する表示手段を備え、 10. Further, when the radio wave phase detection means detects the presence of gas in the gas detection target region, the radio wave phase detection means includes gas type detection means for detecting the gas type. The gas detection system described in 1. 1 1. It is provided with a display means for displaying an image photographed by the photographing means and the photographing means for ilfing the area including the gas detection target area,
前記電波位相検出手段が前記ガス検出対象領域にガスが存在することを検出したとき は、 前記表示手段は前記撮影手段により撮影した画像に重畳してガス検出結果をディス プレイに表示することを特徴とする請求項 9または 1 0に記載のガス検出システム。  When the radio wave phase detection means detects the presence of gas in the gas detection target area, the display means displays the gas detection result on a display superimposed on an image taken by the imaging means. The gas detection system according to claim 9 or 10.
1 2 . 前記ガス検出用電波発信手段および前記ガス検出用電波受信手段が指向性を有 することを特徴とする請求項 9から 1 1の何れかに記載のガス検出システム。  12. The gas detection system according to any one of claims 9 to 11, wherein the gas detection radio wave transmission means and the gas detection radio wave reception means have directivity.
1 3 . 可燃ガスまたは有害ガスを使用する装置に使用されるガス検出システムであつ て、  1 3. Gas detection system used in equipment that uses flammable gas or harmful gas,
ガスが発生する熱雑音を受信する熱雑音受信手段と、  Thermal noise receiving means for receiving thermal noise generated by gas;
熱雑音受信手段が受信した熱雑音が所定のしきい値を超えたカゝ否かを検出する熱雑音 検出手段と、  A thermal noise detecting means for detecting whether the thermal noise received by the thermal noise receiving means exceeds a predetermined threshold;
前記熱雑音検出手段が受信した熱雑音が所定のしきい値を超えたときは警報を発する 警報手段と、  An alarm means for issuing an alarm when the thermal noise received by the thermal noise detection means exceeds a predetermined threshold;
を備えたことを特徴とするガス検出システム。 A gas detection system comprising:
1 4 . 前記熱雑音検出手段は、 受信した熱雑音の周波数に応じてガスの種類を検出す ることを特@:とする請求項 1 3に記載のガス検出システム。  14. The gas detection system according to claim 13, wherein the thermal noise detection means detects a gas type according to the frequency of the received thermal noise.
1 5 . 電波送信手段および電波受信手段の組と、 前記電波受信手段が受信した電波の 時間軸上での位相差を検出する電波位相差検出手段とを備え、  1 5. A set of radio wave transmission means and radio wave reception means, and radio wave phase difference detection means for detecting a phase difference on the time axis of the radio wave received by the radio wave reception means,
前記電波位相差検出手段が検出した前記位相差に基づき、 電波の伝播経路中に存在す る気体の特性を計測することを特徴とするガス検出システム。 1 6 . 前記気体の特性は、 前記電波の伝播経路中に存在するガスの空気に対する比誘電 率であることを特徴とする請求項 1 5に記載のガス検出システム。 A gas detection system for measuring characteristics of a gas present in a propagation path of a radio wave based on the phase difference detected by the radio wave phase difference detection means. 16. The gas detection system according to claim 15, wherein the characteristic of the gas is a relative dielectric constant of gas existing in a propagation path of the radio wave with respect to air.
1 7 . 前記気体の特十生は、 前記電波の伝播経路中に存在する複数のガスの混合比である ことを特徴とする請求項 1 5に記載のガス検出システム。 図面の簡単な説明  17. The gas detection system according to claim 15, wherein the special life of the gas is a mixing ratio of a plurality of gases existing in a propagation path of the radio wave. Brief Description of Drawings
図 1は、 本発明のガス検出システムを示すプロック図である。  FIG. 1 is a block diagram showing a gas detection system of the present invention.
図 2は、 撮影手段により撮影した画像に重畳してガス検出結果を表示手段のディスプ レイに表示した様子を示す図である。  FIG. 2 is a diagram illustrating a state in which the gas detection result is displayed on the display of the display unit so as to be superimposed on the image captured by the imaging unit.
図 3は、 本発明の第 1実施形態の説明図であり、 (A) はプラントの斜視図、 (B) はプラントの平面図である。  FIG. 3 is an explanatory diagram of the first embodiment of the present invention, in which (A) is a perspective view of the plant and (B) is a plan view of the plant.
図 4は、 受信アンテナにより受信した健全時の振幅ゼロの点を示す図である。 図 5は、 本発明の第 2実施形態の説明図であり、 (A) はブラントの斜視図、 (B) はプラントの平面図である。  Fig. 4 is a diagram showing a point of zero amplitude in a healthy state received by the receiving antenna. FIG. 5 is an explanatory diagram of a second embodiment of the present invention, where (A) is a perspective view of a blunt, and (B) is a plan view of the plant.
図 6は、 本発明の第 3実施形態の説明図であり、 (A) はプラントの斜視図、 (B ) はプラントの平面図である。  FIG. 6 is an explanatory diagram of a third embodiment of the present invention, where (A) is a perspective view of the plant and (B) is a plan view of the plant.
図 7は、 本発明のガス検出システムを示すプロック図である。 図 8は、 本発明の第 4実施形態の説明図であり、 (A) はプラントの斜視図、 (B) はプラントの平面図である。 FIG. 7 is a block diagram showing the gas detection system of the present invention. FIG. 8 is an explanatory view of a fourth embodiment of the present invention, where (A) is a perspective view of the plant and (B) is a plan view of the plant.
図 9は、 (A) , (B) は、 本発明のガス検出用電波発信手段が発生する電波の一例 を示す図である。  9A and 9B are diagrams showing an example of radio waves generated by the gas detection radio wave transmitting means of the present invention.
図 1 0は、 比誘電率を検出するためのガス検出システムの構成を示す図。  FIG. 10 is a diagram showing a configuration of a gas detection system for detecting a relative dielectric constant.
図 1 1は、 受信波の位相差を計測してプロットした図である。  Figure 11 shows the measured phase difference of the received wave.
図 1 2は、 位相差の理論曲線を求めてプロットした図である。  Figure 12 shows a plot of the theoretical curve for the phase difference.
図 1 3は、 電波伝播経路に占める計測対象ガス領域の長さ dを一定にして、 樹脂製試 料容器にヘリウム、 酸素の混合ガスを注入した場合、 および、 そこから自然拡散によつ てヘリゥム濃度を減少させた場合のそれぞれについて、 位相差を計測した結果を示す図 である。 発明を実施するための最良の形態  Fig. 13 shows the case where the measurement gas occupying the radio wave propagation path has a constant length d, and a mixed gas of helium and oxygen is injected into the resin sample container. It is a figure which shows the result of having measured the phase difference about each when decreasing a helium density | concentration. BEST MODE FOR CARRYING OUT THE INVENTION
図 1は本発明のガス検出システム 1を示すプロック図である。  FIG. 1 is a block diagram showing a gas detection system 1 of the present invention.
図 1において、 ガス検出システム 1は、 ガス検出用電波送受信ュニット 1 1と、 参照 用電波送受信ュニット 1 2と、 電波位相検出手段 1 3と、 対象領域内ガス検出手段 1 4 と、 ガス種検出手段 1 5と、 撮影手段 1 6と、 表示手段 1 7とを備えている。  In FIG. 1, the gas detection system 1 includes a gas detection radio wave transmission / reception unit 1 1, a reference radio wave transmission / reception unit 1 2, a radio wave phase detection means 1 3, an in-target gas detection means 1 4, and a gas type detection. Means 15, photographing means 16, and display means 17 are provided.
ガス検出用電波送受信ュニット 1 1は、 ガス検出用電波 Dを発射する少なくとも 1つ (本実施形態では 1つ) のガス検出用電波発信手段 1 1 1と、 ガス検出対象領域 Aを通- 過したガス検出用電波 Dを受信するガス検出用電波発信手段 1 1 1と同数のガス検出用 電波受信手段 1 1 2からなる。 参照用電波送受信ユニット 1 2は、 参照用電波 Rを発射する少なくとも 1つ (本実施 形態では 1つ) の参照用電波発信手段 1 2 1と、 ガス検出対象領域 Aを通過せずに参照 用電波 Rを受信する参照用電波受信手段 1 2 2とからなる。 The gas detection radio wave transmission / reception unit 1 1 passes through at least one (1 in this embodiment) gas detection radio wave transmission means 1 1 1 that emits the gas detection radio wave D and the gas detection target area A. Gas detection radio wave transmission means 1 1 2 for receiving the gas detection radio wave D 1 1 1 1 is provided. The reference radio wave transmission / reception unit 1 2 is used for reference without passing through the gas detection target region A and at least one reference radio wave transmission means 1 2 1 that emits the reference radio wave R (one in this embodiment). It consists of reference radio wave receiving means 1 2 2 for receiving radio wave R.
本実施形態では、 ガス検出用電波発信手段 1 1 1、 ガス検出用電波受信手段 1 1 2、 参照用電波発信手段 1 2 1および参照用電波受信手段 1 2 2は指向性を有している。 本 実施形態および以下の実施形態では、 電波は、 サブミリ波帯の周波数を用いる。  In this embodiment, the gas detection radio wave transmission means 1 1 1, the gas detection radio wave reception means 1 1 2, the reference radio wave transmission means 1 2 1 and the reference radio wave reception means 1 2 2 have directivity. . In the present embodiment and the following embodiments, the radio wave uses a frequency in the submillimeter wave band.
電波位相検出手段 1 3は、 ガス検出用電波受信手段 1 1 2が受信したガス検出用電波 Dと、 参照用電波受信手段 1 2 2が受信した参照用電波 Rとの位相差を検出する。 対象領域内ガス検出手段 1 4は、 電波位相検出手段 1 3が検出した位相差 Φに基づ き、 ガス検出対象領域 Aにガス Gが存在する力否かを検出する。  The radio wave phase detection means 13 detects the phase difference between the gas detection radio wave D received by the gas detection radio wave reception means 1 1 2 and the reference radio wave R received by the reference radio wave reception means 1 2 2. The gas detection means 14 in the target area 14 detects whether or not the gas G exists in the gas detection target area A based on the phase difference Φ detected by the radio wave phase detection means 13.
ガス種検出手段 1 5は、 電波位相検出手段 1 3がガス検出対象領域 Aにガス Gが存在 することを検出したときは、 そのガス種を検出する。  When the radio wave phase detection means 13 detects that the gas G exists in the gas detection target area A, the gas type detection means 15 detects the gas type.
撮影手段 1 6は、 ガス検出対象領域 Aを含む領域を撮影する。 また、 表示手段 1 7は、 撮影手段 1 6により撮影した画像を表示することができる。 電波位相検出手段 1 3がガ ス検出対象領域 Aにガス Gが存在することを検出したときは、 図 2に示すように、 表示 手段 1 7は撮影手段 1 6により撮影した画像に重畳してガス検出結果をディスプレイ 1 7 1に表示することができる。 また、 また、 画像認識により、 ガス漏れや火災の警報も 自動的に発生するようにしてもよい。 なお、 ガスあるいはガス炎の情報の他にマイクか ら収集した音の情報をカメラからの画像に埋め込んで、 音声とともに表示するようにす ることもできる。  The imaging means 16 images an area including the gas detection target area A. Further, the display means 17 can display the image photographed by the photographing means 16. When the radio wave phase detection means 13 detects that gas G is present in the gas detection target area A, the display means 17 is superimposed on the image taken by the photographing means 16 as shown in FIG. The gas detection result can be displayed on the display 1 7 1. In addition, gas leaks and fire alarms may be automatically generated by image recognition. In addition to gas or gas flame information, sound information collected from a microphone can be embedded in the image from the camera and displayed with sound.
図 3 (A) , (B ) および図 4により、 本発明の第 1実施形態を説明する。 図 3 (A) , (B) ( (A) は斜視図、 (B) は平面図) ではプラント P (たとえば、 縦、 横、 高さがそれぞれ 5 Omの空間) の外部にガス検出用電波発信手段 (図 1では符 号 「11 1」 で示す) として機能する送信アンテナ a l〜a 6と、 ガス検出用電波受信 手段 (図 1では符号 「112」 で示す) として機能する受信アンテナ b l〜b 6とが設 置されている。 本実施例ではプラントの 1区画が 5 Om程度であるものとする。 A first embodiment of the present invention will be described with reference to FIGS. 3 (A), (B) and FIG. In Fig. 3 (A) and (B) ((A) is a perspective view and (B) is a plan view), a radio wave for gas detection outside the plant P (for example, a space of 5 Om in length, width, and height). Transmitting antennas al to a 6 that function as transmitting means (indicated by reference numeral “11 1” in FIG. 1) and receiving antennas bl to function as radio wave receiving means for gas detection (indicated by reference numeral “112” in FIG. 1) b 6 and are installed. In this example, it is assumed that one section of the plant is about 5 Om.
本実施形態では、 送信アンテナ a X, 受信アンテナ b x (χ=1, 2, 3, 4, 5, 6) とが対をなしており、 たとえば送信アンテナ a 1, 受信アンテナ b 1の対がガス検 出用電波送受信ユニット (図 1では符号 「11」 で示す) のアンテナとして機能すると きは、 送信アンテナ a 1, 受信アンテナ b 1の対にとっては、 他の送信アンテナ a x, 受信アンテナ b x (x = 2, 3, 4, 5, 6) が参照用電波送受信ユニット (図 1の符 号 「12」 参照) のアンテナとなる。  In this embodiment, the transmitting antenna a X and the receiving antenna bx (χ = 1, 2, 3, 4, 5, 6) are paired. For example, the pair of the transmitting antenna a 1 and the receiving antenna b 1 is a gas. When functioning as an antenna for a detection radio wave transmission / reception unit (indicated by reference numeral “11” in FIG. 1), for a pair of transmission antenna a 1 and reception antenna b 1, another transmission antenna ax, reception antenna bx (x = 2, 3, 4, 5, 6) are the antennas of the reference radio wave transmitting / receiving unit (see symbol “12” in Fig. 1).
本実施形態では、 送信アンテナ a l〜a 6および受信アンテナ b l〜b 6は指向性を 有している。 送信アンテナ a l〜a 6が発信する各ガス検出用電波 D (この電波は、 同 時に参照用電波 Rとしても機能する) は同期している。 受信アンテナ b l〜b 6により 受信した健全時の振幅ゼロの点を図 4に (1) 〜 (6) で示す。  In the present embodiment, the transmission antennas a 1 to a 6 and the reception antennas b 1 to b 6 have directivity. The gas detection radio waves D transmitted from the transmitting antennas a 1 to a 6 (the radio waves simultaneously function as reference radio waves R) are synchronized. The points of zero amplitude when received by the receiving antennas b 1 to b 6 are shown in Fig. 4 as (1) to (6).
送信アンテナ a l〜a 6が発信するガス検出用電波 D力 ガスを通過すると、 位相が 変動する。 したがって、 受信アンテナ b l〜b 6の何れかが受信するガス検出用電波 D の位相が変動したときは、 送信ァンテナと対応する送信ァンテナとの間にガスが発生し たことになる。  Transmitting antenna a 1 to a 6 Radio wave for gas detection transmitted from D 6 When the gas passes through, the phase changes. Therefore, when the phase of the gas detection radio wave D received by any of the receiving antennas b1 to b6 fluctuates, gas is generated between the transmitting antenna and the corresponding transmitting antenna.
図 5 (A) , (B) ( (A) は斜視図、 (B) は平面図) により、 本発明の第 2実施 形態を説明する。 図 5 (A) , (B) ではプラント Pの外部にガス検出用電波発信手段 (図 1では符号 「1 1 1」 で示す) として機能する送信アンテナ a 1, a 2と、 ガス検 出用電波受信手段 (図 1では符号 「1 1 2」 で示す) として機能する受信アンテナ b 1 〜b 1 0とが設置されている。 A second embodiment of the present invention will be described with reference to FIGS. 5 (A) and 5 (B) ((A) is a perspective view and (B) is a plan view). In Figs. 5 (A) and (B), radio wave transmission means for gas detection outside plant P Transmitting antennas a 1 and a 2 that function as (indicated by reference numeral “1 1 1” in FIG. 1) and receiving antennas that function as radio wave detection means for gas detection (indicated by reference numeral “1 1 2” in FIG. 1) b 1 to b 10 are installed.
本実施形態では、 送信アンテナ a 1 , a 2は無指向性であるが、 受信アンテナ b:!〜 b 1 0は指向性を有している。  In this embodiment, the transmitting antennas a 1 and a 2 are omnidirectional, but the receiving antennas b :! to b 10 have directivity.
この場合にも送信アンテナ a 1, a 2が発信する各ガス検出用電波 Dは同期している。 第 1実施形態と同様、 送信アンテナ a 1, a 2が発信するガス検出用電波 Dが、 ガスを 通過すると、 位相が変動する。 したがって、 受信アンテナ b l〜"b 1 0の一方が受信す るガス検出用電波 Dの位相が変動したときは、 送信ァンテナと対応する送信ァンテナと の間にガスが発生したことになる。  Also in this case, the gas detection radio waves D transmitted from the transmitting antennas a 1 and a 2 are synchronized. As in the first embodiment, when the gas detection radio wave D transmitted from the transmission antennas a 1 and a 2 passes through the gas, the phase fluctuates. Therefore, when the phase of the gas detection radio wave D received by one of the receiving antennas b 1 to “b 10” fluctuates, gas is generated between the transmitting antenna and the corresponding transmitting antenna.
図 6 (A) , (B ) ( (A) は斜視図、 (B ) は平面図) により、 本発明の第 3実施 形態を説明する。 図 6 (A) , (B) ではプラント Pの外部にガス検出用電波発信手段 (図 1では符号 「1 1 1」 で示す) として機能する送信アンテナ a 1と、 ガス検出用電 波受信手段 (図 1では符号 「1 1 2」 で示す) として機能する受信アンテナ b 1とが設 置されており、 プラント Pの内部に中継アンテナ c 1, c 2が設置されている。 なお、 図示はしないが、 本実施形態でも、 第 1, 第 2実施形態におけるように、 参照用電波送 受信ユニット (図 1では符号 「1 2」 で示す) のアンテナとして機能する他の送信アン テナと受信アンテナとの対があるものとする。 第 3実施形態では、 たとえば、 建造物と 建造物との間に設置されたガス管からのガス漏れを監視するような場合には、 適宜個所 に中継アンテナを配置することができる。  A third embodiment of the present invention will be described with reference to FIGS. 6 (A) and 6 (B) ((A) is a perspective view and (B) is a plan view). 6 (A) and 6 (B), the transmitting antenna a 1 functioning as a gas detection radio wave transmission means (indicated by reference numeral “1 1 1” in FIG. 1) outside the plant P, and a gas detection radio reception means Receiving antenna b 1 that functions as (indicated by “1 1 2” in Fig. 1) is installed, and relay antennas c 1 and c 2 are installed inside plant P. Although not shown, in this embodiment, as in the first and second embodiments, other transmission antennas functioning as antennas for the reference radio wave transmission / reception unit (indicated by reference numeral “1 2” in FIG. 1). Assume that there is a pair of a tena and a receiving antenna. In the third embodiment, for example, when monitoring gas leakage from a gas pipe installed between buildings, a relay antenna can be arranged at an appropriate place.
図 7および図 8 (A) , (B ) ( (A) は斜視図、 (B ) は平面図) により、 本発明 の第 4実施形態を説明する。 FIG. 7 and FIG. 8 (A), (B) ((A) is a perspective view, (B) is a plan view) A fourth embodiment will be described.
図 Ίに示すように、 携帯端末 2 1は、 熱雑音受信手段 2 1 1と、 熱雑音検出手段 2 1 2と、 警報手段 2 1 3とを有している。 本実施形態では、 携帯端末 2 1は、 水素ガスを 燃料とする装置 (図 7では、 プラント) に適用されているが、 他の種類のガス装置 (タ ンク, 配管等の設備も含む) に適用することもできる。 また、 図 7では、 水素ガスを検 出しているが、 据え置き型の受信装置により水素ガスを検出するようにもできる。 熱雑音受信手段 2 1 1には、 熱雑音受信アンテナ dが備えられており、 ガスが発生す る熱雑音 Nを受信することができる。  As shown in FIG. 8, the portable terminal 21 includes a thermal noise receiving unit 2 11, a thermal noise detecting unit 2 1 2, and an alarm unit 2 1 3. In the present embodiment, the mobile terminal 21 is applied to a device using hydrogen gas as a fuel (in FIG. 7, a plant), but is used in other types of gas devices (including equipment such as tanks and piping). It can also be applied. In FIG. 7, hydrogen gas is detected, but it can also be detected by a stationary receiver. The thermal noise receiving means 2 1 1 is provided with a thermal noise receiving antenna d, and can receive thermal noise N generated by gas.
熱雑音検出手段 2 1 2は、 熱雑音受信手段 2 1 1が受信した熱雑音 Nが所定のしきい 値を超えた力否かを検出することができる。  The thermal noise detection means 2 112 can detect whether or not the thermal noise N received by the thermal noise reception means 2 11 1 exceeds a predetermined threshold value.
警報手段 2 1 3は、 熱雑音検出手段 2 1 2が受信した熱雑音が所定のしきい値を超え たときは警報を発することができる。 この警報は、 通常は携帯端末 2 1のでディスプレ ィ上での警告表示に警告音を伴う。 '  The alarm means 2 1 3 can issue an alarm when the thermal noise received by the thermal noise detection means 2 1 2 exceeds a predetermined threshold value. Since this alarm is usually a mobile terminal 21, the warning sound on the display is accompanied by a warning sound. '
図 8 (A) , (B ) では、 携帯端末 2 1が電波をプラント側に発信して、 その応答を 検出する場合を示している。  8 (A) and 8 (B) show a case where the mobile terminal 21 transmits a radio wave to the plant side and detects the response.
図 9 (A) , (B ) に本亮明のガス検出用電波発信手段 (図 1では符号 「1 1 2」 で 示す) が発射する電波の例を示す。 ガス検出用電波発信手段は、 図 9 (A) に示すよう に周波数を鋸状に掃引して発信することができる。 このような周波数掃引した電波を用 いることで、 多種のガスを検出することができる。 また、 図 9 (B ) に示すように方形 波等の高調波成分を含む電波を発射し、 受信側で周波数毎の位相を得ることにより、 多 種のガスを検出することができる。 以下、 表示手段 17への画像表示手順を以下に説明する。 Figures 9 (A) and 9 (B) show examples of radio waves emitted by Ryoaki's gas detection radio transmission means (indicated by the symbol “1 1 2” in Fig. 1). As shown in Fig. 9 (A), the radio wave transmitting means for gas detection can be transmitted by sweeping the frequency in a sawtooth shape. By using such a frequency-swept radio wave, various gases can be detected. Also, as shown in Fig. 9 (B), various types of gases can be detected by emitting radio waves containing harmonic components such as square waves and obtaining the phase for each frequency on the receiving side. Hereinafter, an image display procedure on the display unit 17 will be described below.
撮影手段 16 (CCDカメラ等) 力 らの画像を読み込み (S 101) 、 対象領域内ガ ス検出手段 14 (図 1参照) がガス漏れを検出したときは (S 102の 「YES」 ) 、 ガス種検出手段 15により発生しているガスを特定する (S 103) 。  Imager 16 (CCD camera, etc.) Reads an image from force (S101), and gas detection means 14 (see Fig. 1) in the target area detects a gas leak ("YES" in S102). The gas generated by the seed detection means 15 is specified (S 103).
表示手段 16は、 ガスが特定されたときは、 予め用意しておいたガスの色や動きのデ ータベース (図 1には示していない) を参照して、 ガスを検知しているセンサからの情 報を元にした発生位置のモニタ画面に透明感を表す表現あるいは予め決めた色を付けた 表現等でガスらしいグラフィックを表示する (S 104) 。  When the gas is identified, the display means 16 refers to the gas color and movement database (not shown in FIG. 1) prepared in advance and detects the gas from the sensor detecting the gas. A gas-like graphic is displayed on the monitor screen of the location of occurrence based on the information, such as an expression expressing transparency or an expression with a predetermined color (S104).
燃焼時には、 水素ガス等ではこの状況でも人の目には見えないので、 燃えていること を人が判断できるように炎らしく表現する (S 105) 。  At the time of combustion, hydrogen gas is not visible to the human eye even in this situation, so it is expressed like a flame so that the person can judge that it is burning (S105).
ガスセンサからの情報を元に、 風等によるガスの移動を検知し、 その状況をグラフィ ックに活力す (S 106) 。 また、 その情報をガスの動画像処理による認識にも役立て る。 ガスの種類により、 重さ等が異なるために、 その動画像処理によりガスの種類の識 別に役立てることが出来る。 動画像処理としては、 画面間の差分を用いる方式、 ォプテ ィカルフローを用いる方式等が有効である。  Based on the information from the gas sensor, the movement of the gas due to the wind is detected, and the situation is activated graphically (S106). The information is also useful for recognition by gas moving image processing. Since the weight varies depending on the type of gas, the moving image processing can be used to identify the type of gas. For moving image processing, methods using differences between screens, methods using optical flow, etc. are effective.
これらの情報は、 記録され、 それらを元に三次元化されたグラフィックも表示する (S 107) 。  These pieces of information are recorded and displayed as 3D graphics based on them (S107).
CCDカメラの旋回、 ズーム等の画面の変化、 昼、 夜、 雨等による、 明るさの変化に も対応させる (S 108) 。  It also responds to changes in brightness due to changes in the screen, such as turning the CCD camera and zooming, daytime, night, and rain (S108).
人が最終的にはガスの漏れ等を判断するが、 表示された画面を元に画像処理技術の観 点からもガスの種類等の識別を行い、 ガス検知の精度を高める (S 109) 。 図 1 0力 ら図 1 3により第 5発明の実施形態を説明する。 Although the person finally judges gas leaks, etc., the type of gas is also identified from the viewpoint of image processing technology based on the displayed screen to improve the accuracy of gas detection (S109). An embodiment of the fifth invention will be described with reference to FIG. 10 and FIG.
図 1 0は、 比誘電率を検出するためのガス検出システムの構成を示したものである。 ネットワークアナライザ 1 0 1は、 送信する電波を発生し、 送信アンテナ 1 0 2および 誘導体レンズ (P T F Eを素材にしたレンズ) 1 0 3を介して電波を放射し、 P T F E レンズ 1 0 4および 1 0 5受信アンテナを介して電波を受信し、 受信した電波の時間軸 上の位相差を解析する機能を有する。 電波の伝播経路中に、 樹脂製試料容器 1 0 6に計 測対象ガスを封入したものを配置する。 本実施形態では、 電波伝播経路に占める計測対 象ガス領域の長さ dは計測可能な容器としてある。  FIG. 10 shows the configuration of a gas detection system for detecting the relative permittivity. The network analyzer 1 0 1 generates radio waves to be transmitted, radiates radio waves via the transmit antenna 1 0 2 and the derivative lens (lens made of PTFE) 1 0 3, and PTFE lenses 1 0 4 and 1 0 5 It has the function of receiving radio waves via the receiving antenna and analyzing the phase difference on the time axis of the received radio waves. Place the measurement target gas sealed in a plastic sample container 10 6 in the radio wave propagation path. In this embodiment, the length d of the measurement target gas region in the radio wave propagation path is a container that can be measured.
図 1 1は、 計測対象ガスとしてヘリゥム 8 0 %、 酸素 2 0 %の混合ガスを用いて、 有 効な周波数範囲を 5 0 GH zから 7 5 GH zまでの範囲で変化させたときの受信波の位 相差を計測してプロットしたものである。 まず、 1 0 6樹脂製試料容器に実験室雰囲気 と同じ大気を封入して、 各周波数の電波を送受信し、 このときの各周波数での位相差を 基にネットワークアナライザの校正を行う。  Fig. 11 shows the reception when the effective frequency range is changed from 50 GHz to 75 GHz using a gas mixture of helium 80% and oxygen 20% as the measurement target gas. Wave phase difference is measured and plotted. First, the same atmosphere as the laboratory atmosphere is sealed in a 10-resin sample container, radio waves of each frequency are transmitted and received, and the network analyzer is calibrated based on the phase difference at each frequency.
校正後に同一の大気を計測すると、 図中で 「e x 3 0校正」 と記しがプロットのよう に、 位相差ゼロ付近で推移するような計測値が得られる。 この状態で樹脂製試料容器 1 0 6に計測対象ガスを封入し、 同様の計測を行うと、 同図に示した 「e X 3 0校正」 以 外のプロットのように、 電波の周波数が増加するにつれて位相差が大きくなるような右 上がりのプロットが得られる。 位相差の増加量は、 電波伝播経路に占める計測対象ガス 領域の長さ d (図 1 0参照) が長いほど大きくなる。  When the same atmosphere is measured after calibration, a measured value that shifts in the vicinity of zero phase difference is obtained, as shown in the plot of “ex 30 calibration” in the figure. In this state, if the measurement target gas is sealed in the plastic sample container 10 6 and the same measurement is performed, the frequency of the radio wave increases as shown in the plot other than “e X 3 0 calibration” shown in the figure. As you go up, you get a plot that goes up to the right where the phase difference increases. The amount of increase in the phase difference increases as the length d (see Fig. 10) of the measurement target gas region occupying the radio wave propagation path increases.
次に、 図 1 1のようなプロットから計測対象ガスの特性を求める方法を説明する。 送受信される電波の周波数を f [H z ] 、 電波伝播経路に占める計測対象ガス領域の 長さを d [m] 、 空気中の電波の速度を c [m/s] 、 計測対象ガスの空気に対する比 誘電率を sag、 空気中の電波の波長を λ [m] 、 計測対象ガス中の電波の波長を λ Cm] 、 計測対象ガス中を電波が通過したときに生じる位相差を Θ [r a d i a n] と すると、 位相差 Θは次式で求められる。
Figure imgf000016_0001
Next, a method for obtaining the characteristics of the measurement target gas from the plot shown in Fig. 11 will be described. The frequency of the transmitted and received radio waves is f [H z], and the measurement target gas region in the radio wave propagation path The length is d [m], the velocity of radio waves in the air is c [m / s], the relative permittivity of the gas to be measured is s ag , the wavelength of the radio waves in the air is λ [m], and the gas to be measured If the wavelength of the radio wave is λ Cm] and the phase difference that occurs when the radio wave passes through the measurement target gas is Θ [radian], the phase difference Θ can be calculated by the following equation.
Figure imgf000016_0001
あるいは、 式 (1) を書き換えて、 計測対象ガスの空気に対する比誘電率を sagは次 式で求められる。
Figure imgf000016_0002
Alternatively, by rewriting the equation (1), s ag dielectric constant to air of the measurement target gas is given by the following equation.
Figure imgf000016_0002
これらの式を用いて、 たとえば、 図 11において、 f = 60GHz、 d = 325mm のときの位相差 Θは、 およそ 4. 8 [d e g r e e] (□ 0. 084 [r a d i a n] ) と読み取れるので、 これらの値を式 (2) へ代入することにより、 計測対象ガス の空気に対する比誘電率は、 およそ、 £ag=l. 0004程度であることが分かる。 また、 sag=l. 0004を式 (1) に代入し、 周波数 f [Hz] および計測対象ガ ス領域の長さ d [m] の値を変化させることにより、 図 11のプロットの理論値を求め ることができる。 dの値として、 実験に用いた 80 mm 1 1 Omm, 16 Omm, 2 O 0mm、 25 Omm, 325 mmの 6通りに変化させ、 周波数 f を 40 GH zから 7 5 GH z程度まで変化させて位相差 Θの理論曲線を求めた結果を図 12に示す。 これら は、 図 11に示した実験値とよく一致していることが分かる。 Using these equations, for example, in Fig. 11, the phase difference Θ at f = 60 GHz and d = 325 mm can be read as approximately 4.8 [degree] (□ 0. 084 [radian]). By substituting the value into Equation (2), it can be seen that the relative dielectric constant of the measurement target gas with respect to air is about £ ag = l.0004 . Furthermore, by substituting s ag = l. 0004 into equation (1) and changing the frequency f [Hz] and the length of the measurement target gas region d [m], the theoretical values of the plot in Fig. 11 are obtained. Can be requested. The value of d is changed in six ways of 80 mm 1 1 Omm, 16 Omm, 2 O 0 mm, 25 Omm, and 325 mm used in the experiment, and the frequency f is changed from 40 GHz to about 75 GHz. Figure 12 shows the theoretical curve for the phase difference Θ. These are in good agreement with the experimental values shown in Fig. 11.
また、 本実施形態によれば、 ff十測対象ガスのおおよその濃度 (ガスの混合比率) を計 測することができる。 In addition, according to the present embodiment, the approximate concentration (gas mixture ratio) of the target measurement gas is calculated. Can be measured.
図 1 3は、 電波伝播経路に占める計測対象ガス領域の長さ dを一定にして、 樹脂製試 料容器にヘリゥム 8 0 %、 酸素 2 0 ° /。の混合ガスを注入した場合 ( e X 0 3 ) 、 および、 そこから自然拡散によってヘリゥム濃度を減少させた^ ( e X 0 4 ) のそれぞれにつ いて、 位相差 Θを計測した結果を示す。 これによると、 明らかにヘリウム濃度が小さい e X 0 4の方が位相差が小さくなつていることが分かる。 これを利用して、 あらかじめ ガスの混合比率を変化させて位相差を計測しておき、 測対象ガスから得られた位相差と 比較することにより、 計測対象ガスのおおよその混合比率を知ることができる。 産業上の利用可能性  Figure 13 shows that the length d of the gas region to be measured in the radio wave propagation path is constant, and the resin sample container contains 80% helium and 20 ° oxygen. The results of measuring the phase difference Θ for each of (e X 0 3) and (e X 0 4) from which helium concentration was reduced by natural diffusion are shown. According to this, it can be seen that the phase difference is smaller in e X 04 with obviously small helium concentration. Using this, it is possible to know the approximate mixing ratio of the measurement target gas by measuring the phase difference in advance by changing the gas mixing ratio and comparing it with the phase difference obtained from the measurement target gas. it can. Industrial applicability
本発明は、 あらゆる種類の気体を検出対象にでき、 第 1 , 第 2, 第 3発明では遠距離 (たとえば 5 0 m以上離れた距離) からの検出が可能である。  The present invention can detect all kinds of gases, and the first, second, and third inventions can detect from a long distance (for example, a distance of 50 m or more).
また、 第 1〜第 4発明では画像処理技術により、 ガス漏れ状況等をディスプレイにグ ラフイクス表示し、 あるいは画像処理によりガス漏れ状況等を的確にかつ立体的に自動 認識することができる。  Further, in the first to fourth inventions, the gas leakage status or the like can be graphically displayed on the display by the image processing technology, or the gas leakage status or the like can be automatically and accurately recognized by the image processing.
さらに、 第 1〜第 4発明ではブラントにおけるガス漏れ等のみならず、 水素燃料電池 等の自動車等のガス漏れ等を道路側 (高速道路の料金所等) カゝら観測することもできる。 第 5発明では、 電波伝播経路中にある気体の特性、 おもに空気に対する比誘電率およ び複数の期待の混合比を計測することができる。  Furthermore, in the first to fourth inventions, not only gas leakage in the blunt, but also gas leakage in automobiles such as hydrogen fuel cells can be observed from the road side (highway toll booth etc.). In the fifth invention, it is possible to measure the characteristics of the gas in the radio wave propagation path, mainly the relative permittivity with respect to the air, and a plurality of expected mixing ratios.

Claims

請 求 の 範 囲 The scope of the claims
1 . ガス検出用電波を発射する少なくとも 1つのガス検出用電波発信手段と、 ガス検出対象領域を通過した前記ガス検出用電波を受信する、 前記ガス検出用電波発 信手段と同数またはそれ以上のガス検出用電波受信手段と、  1. At least one gas detection radio wave transmission means that emits a gas detection radio wave; and the same number or more as the gas detection radio wave transmission means that receives the gas detection radio wave that has passed through the gas detection target area. Radio wave receiving means for gas detection;
前記ガス検出用電波受信手段が受信した前記ガス検出用電波の、 時間軸上での位相差 を検出する電波位相検出手段と、  Radio wave phase detection means for detecting a phase difference on the time axis of the gas detection radio wave received by the gas detection radio wave reception means;
前記電波位相検出手段が検出した前記位相差に基づき、 前記ガス検出対象領域にガス が存在するか否かを検出する対象領域内ガス検出手段と、  Based on the phase difference detected by the radio wave phase detection means, gas detection means in the target area for detecting whether or not gas is present in the gas detection target area;
を備えたことを特徴とするガス検出システム。 A gas detection system comprising:
2 . 前記ガス検出用電波発信手段、 前記ガス検出用電波受信手段の少なくとも 1つが 指向性を有することを特徴とする請求項 1から 4の何れかに記載のガス検出システム。  2. The gas detection system according to any one of claims 1 to 4, wherein at least one of the gas detection radio wave transmission means and the gas detection radio wave reception means has directivity.
3 . さらに、 前記電波位相検出手段が前記ガス検出対象領域にガスが存在することを 検出したときは、 当該ガス種を検出するガス種検出手段を備えたことを特徴とする請求 項 1または 2に記載のガス検出システム。  3. Further, when the radio wave phase detection means detects the presence of gas in the gas detection target region, the radio wave phase detection means further comprises a gas type detection means for detecting the gas type. The gas detection system described in 1.
4. 前記ガス検出対象領域を含む領域を撮影する撮影手段および当該撮影手段により 撮影した画像を表示する表示手段を備え、  4. An imaging unit that captures an area including the gas detection target region and a display unit that displays an image captured by the imaging unit,
前記電波位相検出手段が前記ガス検出対象領域にガスが存在することを検出したとき は、 前記表示手段は前記撮影手段により撮影した画像に重畳してガス検出結果をディス プレイに表示することを特徴とする請求項 1力 ら 3の何れかに記載のガス検出システム。  When the radio wave phase detection means detects the presence of gas in the gas detection target area, the display means displays the gas detection result on a display superimposed on an image taken by the imaging means. The gas detection system according to any one of claims 1 to 3.
5 . ガス検出用電波を発射する少なくとも 1つのガス検出用電波発信手段と、 ガス検 出対象領域を通過した前記ガス検出用電波を受信する前記ガス検出用電波発信手段と同 数のガス検出用電波受信手段とからなるガス検出用電波送受信ュニットと、 5. At least one gas detection radio wave transmission means for emitting a gas detection radio wave, A gas detection radio wave transmission / reception unit comprising the same number of gas detection radio wave reception means as the gas detection radio wave transmission means for receiving the gas detection radio wave passing through the emission target area;
参照用電波を発射する少なくとも 1つの参照用電波発信手段と、 前記ガス検出対象領 域を通過せずに前記参照用電波を受信する前記参照用電波発信手段と同数の参照用電波 受信手段とからなる参照用電波送受信ュニットと、  From at least one reference radio wave transmitting means for emitting a reference radio wave, and the same number of reference radio wave receiving means as the reference radio wave transmitting means for receiving the reference radio wave without passing through the gas detection target area A radio wave transmission / reception unit for reference
前記ガス検出用電波受信手段が受信した前記ガス検出用電波と、 前記参照用電波受信 手段が受信した前記参照用電波との位相差を検出する電波位相検出手段と、  Radio wave phase detection means for detecting a phase difference between the gas detection radio wave received by the gas detection radio wave reception means and the reference radio wave received by the reference radio wave reception means;
前記電波位相検出手段が検出した前記位相差に基づき、 前記ガス検出対象領域にガス が存在するか否かを検出する対象領域内ガス検出手段と、  Based on the phase difference detected by the radio wave phase detection means, gas detection means in the target area for detecting whether or not gas is present in the gas detection target area;
を備えたことを特徴とするガス検出システム。 A gas detection system comprising:
6 . 前記ガス検出用電波発信手段、 前記ガス検出用電波受信手段、 前記参照用電波発 信手段、 前記参照用電波受信手段の少なくとも 1つが指向性を有することを特徴とする 請求項 5に記載のガス検出システム。  6. At least one of the gas detection radio wave transmission unit, the gas detection radio wave reception unit, the reference radio wave transmission unit, and the reference radio wave reception unit has directivity. Gas detection system.
7 . さらに、 前記電波位相検出手段が前記ガス検出対象領域にガスが存在することを 検出したときは、 当該ガス種を検出するガス種検出手段を備えたことを特徴とする請求 項 5または 6に記載のガス検出システム。  7. Further, when the radio wave phase detection means detects the presence of gas in the gas detection target region, the radio wave phase detection means includes a gas type detection means for detecting the gas type. The gas detection system described in 1.
8 . 前記ガス検出対象領域を含む領域を撮影する撮影手段および当該撮影手段により 撮影した画像を表示する表示手段を備え、  8. an imaging unit that captures an area including the gas detection target region, and a display unit that displays an image captured by the imaging unit;
前記電波位相検出手段が前記ガス検出対象領域にガスが存在することを検出したとき は、 前記表示手段は前記撮影手段により撮影した画像に重畳してガス検出結果をディス プレイに表示することを特徴とする請求項 5力ら 7の何れかに記載のガス検出システム。 When the radio wave phase detection means detects the presence of gas in the gas detection target area, the display means displays the gas detection result on a display superimposed on an image taken by the imaging means. The gas detection system according to any one of claims 5 and 7.
9 . ガス検出用電波を発射する少なくとも 1つの無指向性のガス検出用電波発信手段 と、 9. at least one omnidirectional gas detection means for emitting gas detection radio waves;
ガス検出対象領域を通過した前記ガス検出用電波を受信する少なくとも 1つのガス検 出用電波受信手段と、  At least one gas detection radio wave receiving means for receiving the gas detection radio wave passing through the gas detection target area;
前記各ガス検出用電波受信手段が受信した前記ガス検出用電波の位相同士の差を検出 する電波位相検出手段と、  Radio wave phase detection means for detecting a difference between phases of the gas detection radio waves received by the gas detection radio wave reception means;
前記電波位相検出手段が検出した前記位相同士の差に基づき、 前記ガス検出対象領域 にガスが存在する力否かを検出する対象領域内ガス検出手段と、  Based on the difference between the phases detected by the radio wave phase detection means, gas detection means in the target area for detecting whether or not the gas exists in the gas detection target area,
を備えたことを特徴とするガス検出システム。 A gas detection system comprising:
1 0. さらに、 前記電波位相検出手段が前記ガス検出対象領域にガスが存在すること を検出したときは、 当該ガス種を検出するガス種検出手段を備えたことを特徴とする請 求項 9に記載のガス検出システム。  10. Further, when the radio wave phase detection means detects the presence of gas in the gas detection target region, it further comprises gas type detection means for detecting the gas type. The gas detection system described in 1.
1 1 . 前記ガス検出対象領域を含む領域を撮影する撮影手段および当該撮影手段によ り撮影した画像を表示する表示手段を備え、  1. An imaging means for imaging an area including the gas detection target area, and a display means for displaying an image captured by the imaging means,
前記電波位相検出手段が前記ガス検出対象領域にガスが存在することを検出したとき は、 前記表示手段は前記撮影手段により撮影した画像に重畳してガス検出結果をディス プレイに表示することを特徴とする請求項 9または 1 0に記載のガス検出システム。  When the radio wave phase detection means detects the presence of gas in the gas detection target area, the display means displays the gas detection result on a display superimposed on an image taken by the imaging means. The gas detection system according to claim 9 or 10.
1 2 . 前記ガス検出用電波発信手段おょぴ前記ガス検出用電波受信手段が指向性を有 することを特^ [とする請求項 9から 1 1の何れかに記載のガス検出システム。  12. The gas detection system according to claim 9, wherein the gas detection radio wave transmission means and the gas detection radio wave reception means have directivity.
1 3 . 可燃ガスまたは有害ガスを使用する装置に使用されるガス検出システムであつ て、 ガスが発生する熱雑音を受信する熱雑音受信手段と、 1 3. Gas detection system used in equipment that uses flammable gas or harmful gas, Thermal noise receiving means for receiving thermal noise generated by gas;
熱雑音受信手段が受信した熱雑音が所定のしきい値を超えたか否かを検出する熱雑音 検出手段と、  Thermal noise detecting means for detecting whether the thermal noise received by the thermal noise receiving means exceeds a predetermined threshold;
前記熱雑音検出手段が受信した熱雑音が所定のしきい値を超えたときは警報を発する 警報手段と、  An alarm means for issuing an alarm when the thermal noise received by the thermal noise detection means exceeds a predetermined threshold;
を備えたことを特徴とするガス検出システム。 A gas detection system comprising:
1 4 . 前記熱雑音検出手段は、 受信した熱雑音の周波数に応じてガスの種類を検出す ることを特徴とする請求項 1 3に記載のガス検出システム。  14. The gas detection system according to claim 13, wherein the thermal noise detection means detects the type of gas according to the frequency of the received thermal noise.
1 5 . 電波送信手段および電波受信手段の組と、 前記電波受信手段が受信した電波の 時間軸上での位相差を検出する電波位相差検出手段とを備え、  1 5. A set of radio wave transmission means and radio wave reception means, and radio wave phase difference detection means for detecting a phase difference on the time axis of the radio wave received by the radio wave reception means,
前記電波位相差検出手段が検出した前記位相差に基づき、 電波の伝播経路中に存在す る気体の特性を計測することを特徴とするガス検出システム。  A gas detection system for measuring characteristics of a gas present in a propagation path of a radio wave based on the phase difference detected by the radio wave phase difference detection means.
1 6 . 前記気体の特性は、 前記電波の伝播経路中に存在するガスの空気に対する比誘電 率であることを特徴とする請求項 1 5に記載のガス検出システム。  16. The gas detection system according to claim 15, wherein the characteristic of the gas is a relative dielectric constant of gas existing in a propagation path of the radio wave with respect to air.
1 7 . 前記気体の特性は、 前記電波の伝播経路中に存在する複数のガスの混合比である ことを特徴とする請求項 1 5に記載のガス検出システム。  17. The gas detection system according to claim 15, wherein the characteristic of the gas is a mixing ratio of a plurality of gases existing in a propagation path of the radio wave.
PCT/JP2005/024289 2004-12-28 2005-12-28 Gas detection system WO2006070948A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006550883A JPWO2006070948A1 (en) 2004-12-28 2005-12-28 Gas detection system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004382178 2004-12-28
JP2004-382178 2004-12-28

Publications (1)

Publication Number Publication Date
WO2006070948A1 true WO2006070948A1 (en) 2006-07-06

Family

ID=36615044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/024289 WO2006070948A1 (en) 2004-12-28 2005-12-28 Gas detection system

Country Status (2)

Country Link
JP (1) JPWO2006070948A1 (en)
WO (1) WO2006070948A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019207197A (en) * 2018-05-30 2019-12-05 LuceXテクノロジー株式会社 Gas density measurement device, and blood-sugar level measurement device including the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05322801A (en) * 1992-03-03 1993-12-07 Tokyo Metropolis Concentration meter
JP2000310577A (en) * 1999-04-27 2000-11-07 Toshiba Corp Device and method for measuring amount of leakage
JP2001255284A (en) * 2000-03-10 2001-09-21 Toshiba Corp Microwave type concentration meter
JP2002520592A (en) * 1998-07-10 2002-07-09 ネレス・フィールド・コントロールズ・オイ Method and apparatus for measuring gas content of fluid
JP2002296142A (en) * 2001-03-29 2002-10-09 Toshiba Corp Leakage detecting device
WO2003056316A1 (en) * 2001-12-24 2003-07-10 Promecon Prozess- Und Messtechnik Conrads Gmbh Microwave measuring device for detecting the charge of a two-phase flow

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05322801A (en) * 1992-03-03 1993-12-07 Tokyo Metropolis Concentration meter
JP2002520592A (en) * 1998-07-10 2002-07-09 ネレス・フィールド・コントロールズ・オイ Method and apparatus for measuring gas content of fluid
JP2000310577A (en) * 1999-04-27 2000-11-07 Toshiba Corp Device and method for measuring amount of leakage
JP2001255284A (en) * 2000-03-10 2001-09-21 Toshiba Corp Microwave type concentration meter
JP2002296142A (en) * 2001-03-29 2002-10-09 Toshiba Corp Leakage detecting device
WO2003056316A1 (en) * 2001-12-24 2003-07-10 Promecon Prozess- Und Messtechnik Conrads Gmbh Microwave measuring device for detecting the charge of a two-phase flow

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KOLBE W. F.: "Microwave spectrometer for the detection of transient aseous species", REV.SCI.INSTRUM., vol. 52, no. 4, 1981, pages 523 - 532 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019207197A (en) * 2018-05-30 2019-12-05 LuceXテクノロジー株式会社 Gas density measurement device, and blood-sugar level measurement device including the same

Also Published As

Publication number Publication date
JPWO2006070948A1 (en) 2008-06-12

Similar Documents

Publication Publication Date Title
KR101904282B1 (en) Apparatus and system for detecting symptom of fire and gas leak
US20070049259A1 (en) Portable communication terminal, evacuation route display system, and emergency alert broadcasting device
CN109564716B (en) System and method for detecting emergency situations
KR101145949B1 (en) Passive microwave fire and intrusion detection system
CN205140120U (en) Long -range monitoring and forewarning system of thing networking image conflagration
KR20140127574A (en) Fire detecting system using unmanned aerial vehicle for reducing of fire misinformation
WO2004008407A1 (en) System and method for territory thermal monitoring
CN109275097A (en) Indoor positioning and monitoring system based on UWB
CN111340746A (en) Fire fighting method and fire fighting system based on Internet of things
KR102507828B1 (en) Systems and methods for monitoring airspace over a wide range of sites
CN105910764A (en) Transformer oil conservator capsule rupture detection apparatus and method
CN201662872U (en) Active gas detection alarm system
KR100831779B1 (en) sensing system for a forest fire having millimeter-wave passive imaging system
WO2006070948A1 (en) Gas detection system
KR102276135B1 (en) Disaster response device and system thereof
CN205788608U (en) Temperature flue gas sensing detector
CN110500138B (en) Colliery belt conflagration early warning system in pit
KR20120033607A (en) System for grasping a present place of rescuer
CN106910308A (en) Smart home security apparatus and system
CN106990072A (en) A kind of opening gas concentration detection apparatus
KR102298627B1 (en) Fire detection system
RU2411539C1 (en) Complex of technical facilities to detect and measure spills of oil or oil products
CN101776593A (en) Active gas detection method and alarm device thereof
CN205352627U (en) Transformer stores up oil tank capsule detection device that breaks
CA3061250C (en) Method and apparatus for sulfur fire-watch and detection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006550883

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05851013

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5851013

Country of ref document: EP