WO2006070924A1 - Coke pushing method and coke pusher machine - Google Patents

Coke pushing method and coke pusher machine Download PDF

Info

Publication number
WO2006070924A1
WO2006070924A1 PCT/JP2005/024240 JP2005024240W WO2006070924A1 WO 2006070924 A1 WO2006070924 A1 WO 2006070924A1 JP 2005024240 W JP2005024240 W JP 2005024240W WO 2006070924 A1 WO2006070924 A1 WO 2006070924A1
Authority
WO
WIPO (PCT)
Prior art keywords
coke
vibration
extrusion
ram head
mass
Prior art date
Application number
PCT/JP2005/024240
Other languages
French (fr)
Japanese (ja)
Inventor
Kazushige Ishino
Teturo Uchida
Shunichi Kamezaki
Yasuhiro Fukushima
Original Assignee
Jfe Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfe Steel Corporation filed Critical Jfe Steel Corporation
Priority to EP05844863A priority Critical patent/EP1832644B1/en
Priority to CN2005800370169A priority patent/CN101048481B/en
Publication of WO2006070924A1 publication Critical patent/WO2006070924A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B45/00Other details
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B33/00Discharging devices; Coke guides
    • C10B33/08Pushers, e.g. rams
    • C10B33/10Pushers, e.g. rams for horizontal chambers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B41/00Safety devices, e.g. signalling or controlling devices for use in the discharge of coke
    • C10B41/02Safety devices, e.g. signalling or controlling devices for use in the discharge of coke for discharging coke

Definitions

  • the present invention relates to a coke pushing method and a coke pusher machine for extruding generated coke from a carbonization chamber in a coke oven.
  • a coke extrusion method that reduces the pushing load, reduces damage to the coke oven wall, and extends the life-prolonging of the furnace wall.
  • the present invention relates to a coke extrusion device.
  • the coke oven refers to a chamber-type coal-tease furnace.
  • a chamber-type coke oven has a heat storage chamber at the bottom of the furnace body, and combustion chambers and carbonization chambers are arranged alternately above it.
  • Soviet Patent No. 9 8 1 3 4 0 discloses a device for carrying out the coatas by causing the horizontal shovel to vibrate up and down to collapse the coatas in the carbonization chamber into the bucket.
  • the Soviet Patent No. 9 8 1 3 4 0 does not use the extrusion device that is the subject of this application, but causes the horizontal shovel attached to the bucket to vibrate up and down, causing the coke in the carbonization chamber to fall into the bucket.
  • the coke in the furnace is scooped out many times in the bucket, and it takes much time to carry out the coatas compared to the coke oven using an extrusion device.
  • the present invention has been made in view of the above circumstances, and when extruding a coke lump from a coking chamber of a coke oven, the extrusion load is accurately reduced to prevent damage to the coke oven wall. It is an object of the present invention to provide a coke extrusion method and a coke extrusion device that can be reduced. Disclosure of the invention
  • the present invention has the following features.
  • a cortas extrusion device that pushes the ramhead from the carbonization chamber by pressing the ramhead against the cotus mass in the coking chamber of the coke oven, and the ramhead vibration means for vibrating the ramhead
  • a coke extrusion device characterized by comprising:
  • the coke lump is pushed out from the carbonization chamber while applying vibration to the coatus lump, so that the friction between the coke lump and the carbonization chamber furnace wall causes static friction. From friction to kinetic friction, the coefficient of friction decreases, thereby reducing the extrusion load. As a result, damage to the furnace wall can be suppressed, operation delays caused by clogging can be avoided, and productivity can be increased.
  • the maximum extrusion load current does not exceed the control level, making it very easy to manage the blended coal.
  • low cost volatile coal, low volatile coal, or high expansion pressure coal can be used.
  • the “cotus mass” referred to in the present invention refers to the entire coke in the carbonization chamber, and does not mean only the block-shaped cotus mass in which the cotas are fixed.
  • the coatus cracks during the cooling process, but during the extrusion process, the coatus can come into close contact with each other and transmit vibration to the entire coatus, so there is no need for the block form to which the coatus is fixed.
  • FIG. 1 is a side view for explaining an embodiment of the present invention.
  • FIG. 2 is a perspective view of a coatus extrusion device according to an embodiment of the present invention.
  • Fig. 3 is a diagram showing the effect of the present invention.
  • Fig. 4 shows the vibration test equipment using a small coke oven of lmXO.8mX0.4m.
  • Fig. 5 Changes in pushing force when the excitation frequency is 40Hz and the excitation level is about 1G.
  • Fig. 6 Changes in pushing force when the excitation frequency is 50Hz and the excitation level is about 1G.
  • Fig. 7 Excitation frequency change at 60 Hz, excitation level approx. 1. 5G.
  • Fig. 8 Changes in push force when the excitation frequency is 30 Hz and the excitation level is about 0.2G.
  • Figure 9 Relationship between volatile matter (VM) of blended coal and maximum extrusion load current ratio.
  • Figure 10 Relationship between expansion pressure (kPa) of blended coal and maximum extrusion load current ratio.
  • Fig. 11 Shows the relationship between blending ratio of high expansion pressure coal and maximum extrusion load current ratio.
  • FIG. 1 is a side view for explaining an embodiment of the present invention
  • FIG. 2 is a perspective view of a coke extrusion device according to an embodiment of the present invention.
  • Fig. 1 10 is a coking oven carbonization chamber, in which a cotus mass 11 is generated.
  • reference numeral 20 denotes a coatus extrusion device according to an embodiment of the present invention, which includes a pushing ram 21 and a pushing ram drive unit (not shown).
  • Ram head 2 2 provided at the tip of the extrusion ram 2 1 and the pressing surface of the ram head 2 2 pressed against the coke lump 1 1 is the upper pressing surface 2 in the vertical direction.
  • the vibrator 2 When the push-out load (push-out load) exceeds a predetermined value (specifically, for example, when the load current value of the push-out ram drive device exceeds the predetermined value), the vibrator 2 The intermediate pressing surface 2 2 b is vibrated in the pushing direction by 3 and the ram head 2 2 is moved forward while applying vibration to the coke lump 1 1.
  • the detection of the push load is calculated from the load current value of the push ram drive device, for example.
  • the friction applied between the cotas lump 11 and the furnace wall of the carbonization chamber 10 changes from static friction to dynamic friction due to the vibration applied to the coke lump 1 1.
  • the coefficient of friction decreases, thereby reducing the extrusion load.
  • damage to the furnace wall can be suppressed, operation delays due to clogging can be avoided, and productivity can be increased.
  • vibration is applied to the coke block 11 and when the extrusion load becomes smaller than the predetermined value, the application of vibration is stopped.
  • the push load is usually maximized because the ram head 2 2 has moved forward 1 m to 1.5 m from the push start position. If the distance exceeds 1.5 m, you can stop applying vibration to the coke block 1 1. Further, vibration may always be applied from the start of extrusion to the end of extrusion.
  • Vibration form of the ram head of the present invention can be either the vertical direction or the extrusion direction of the furnace as long as vibration can be applied to the entire coke mass.
  • it is difficult to reliably transmit vibration from the ram head to the entire coke mass for example, vibrations mainly in the vertical direction of the furnace.
  • a plurality of protrusions are provided on the ram head to create a coke mass. It is necessary to devise such as piercing the protrusion.
  • the vibration direction of the ram head of the present invention is the vibration direction including the vibration component of the push-out direction, and the structure of the ram head of the present invention can be simplified. This is preferable because the drive capacity of the vibrator can be reduced. More preferably, a vibration direction mainly including a vibration component in the extrusion direction is more preferable. More specifically, the vibration according to the present invention is preferably applied in parallel with the extrusion direction, but may be applied in an obliquely upward direction or a diagonally downward direction.
  • the vibrator 2 3 is connected only to the intermediate pressing surface 2 2 b, but the vibrator is also connected to the upper pressing surface 2 2 a and the lower pressing surface 2 2 c. Then, one or more pressing surfaces to be vibrated may be appropriately selected and vibrated. -In this embodiment, the pressing surface of the ram head 2 2 is divided into three parts, and the pressing force of the intermediate pressing surface 2 2 b of the ram head 2 2 b is maximized as required. Select the number to divide and the ratio of the pressing area. Of course, the pressing surface of the ram head 2 2 may not be divided.
  • the vibration frequency band is preferably a single frequency of 2 Hz to 100 Hz, but two or more types of frequency components in this band may be included. Regular vibration or irregular vibration may be used.
  • the vibration frequency band exceeds 10 OHz, the vibration amplitude decreases, so the vibration effect on the coke mass decreases. More preferably, it is 6 OHz or less.
  • the frequency band of vibration is less than 2 Hz, it is necessary to increase the energy input to the shaker in order to obtain sufficient acceleration, The effect of vibration is likely to be insufficient. In particular, a force of 30 Hz to 60 Hz is preferable.
  • the vibration waveform is preferably a device that vibrates the ram head with a waveform including one or more types of sine waves. Further, it is not necessarily a sine wave, and a waveform such as a triangular wave, a rectangular wave, a continuous inpulse wave, or a mixed waveform thereof may be used.
  • the vibration acceleration level should be at least 0.5 G to give effective vibration to the coke mass.
  • An acceleration level of 1 G or higher is even more preferable.
  • a force of 10 G or less is preferable.
  • an accelerometer attached to the vibration part of the test ram
  • B & K's Piezoelectric Charge Accelerometer model number Type 4383 is converted by a charge amplifier (B & K's Charge Amplifier model number Type 2635) and recorded on a personal computer.
  • the structure of the vibrator used in the present invention is preferably a device that can arbitrarily adjust the frequency and acceleration level, and a motor, hydraulic pressure, hydraulic pressure, or the like can be adopted as the driving method.
  • a vibration mechanism that can be mounted in a narrow space from a high temperature load, for example, a Pibro hammer or an air hammer can be used.
  • Volatility of blended coal that can be applied to the present invention Applicable to coal blends of 9 mass% or more, or 25 mass% or less.
  • the volatile content of blended coal brands is measured and controlled by sampling coal in units of lots such as coal mines and ships. In consideration of the volatile content of each lot before charging into the coke oven, the amount of coal input in each lot is blended. The weighted average volatile content was obtained by multiplying the input amount of each mouth by the volatile content and dividing by the total input amount.
  • the analysis of volatile matter in each lot conforms to JISM 8812.
  • the sample in a crucible with a lid to avoid contact with air, determine the mass fraction of the sample for heating loss when heated at 900 ° C for 7 minutes, and subtract the moisture measured at the same time to remove the volatile content.
  • the volatile content of blended coal reaches 29 mass% or more, the amount of carbon deposition increases, and the carbon attached to the furnace wall grows. It becomes difficult to perform proper extrusion.
  • the cake can be extruded without staying in contact with the carbon and the coatus cake.
  • the maximum load average volatile content of the blended coal lot applicable to the present invention is usually 40 mass% since the maximum volatile content of the coking coal brand is 40 mass S %.
  • the vibration extruder of the present invention when the volatile content of coal blend is less than 25 mass%, the gap between the furnace wall and the coke cake becomes small, and if there is a convex part on the furnace wall, the convex part and the coke cake come into contact with each other, making it impossible to perform a smooth extrusion. .
  • the minimum value of the load average volatile content of each blended coal spout applicable to the present invention is usually 15 raass% since the minimum volatile content of the coking coal brand is 15 mass%.
  • the blended coal used in the present invention can be applied even when the load-average expansion pressure of each blended coal spit, which could not be applied conventionally, is 6 kPa or more.
  • the expansion pressure of each blended coal outlet is sampled and controlled by sampling the coal in units of lots such as each coal mine and every ship.
  • the amount of coal input for each lot is blended in consideration of the expansion pressure for each lot before being charged into the coke oven.
  • the weighted average expansion pressure was calculated by multiplying the input amount of each lot by the expansion pressure and dividing by the total input amount.
  • the expansion pressure is measured by adjusting the coal to l-3 ram, putting it in a crucible with a diameter of 50 mm and a height of 70 mm, and adjusting the bulk density to 775 kg / m 3 , covering the crucible and covering the differential pressure gauge with the coal. Insert inside. Raise the temperature of the crucible to 1000 ° C at 4 ° C / min and read the maximum value of the differential pressure during the temperature raising process.
  • the expansion pressure of blended coal is high, the shrinkage during dry distillation is reduced and the gap between the furnace wall and the coke cake is reduced. If there is a convex part on the furnace wall, the convex part and the coke cake come into contact with each other, and a smooth extrusion is possible. Disappear. By using the vibratory extruder of the present invention, the friction between the convex part and the coatus cake is reduced, and the extrusion is performed without the cake remaining. It becomes possible.
  • the maximum value of the weight average expansion pressure of the blended coal brand applicable to the present invention is normally 9 kPa because the maximum expansion pressure of the coking coal brand is 9 kPa.
  • the blended coal used in the present invention has a blending ratio of high expansion pressure coal that cannot be applied conventionally, 2 Omassy. It is applicable also to the above.
  • FIG. 4 An excitation experiment was conducted to examine the effect of vibration.
  • a small coke oven 30 of IraXO.8mX0.'4m shown in Fig. 4 was charged with the cotas lump 11 produced in advance in a small coke oven of the same size as the simulated coke oven, and applied to the side wall 31.
  • a force was applied and pressed, and vibration was applied from the end face with a test ram (frequency 1 to 1 10 Hz, acceleration level 0.3 to 12 G, sine wave), and the required force was measured.
  • Half of the test ram 32 was vibrated, and was vibrated from the back with the vibrator 33.
  • Figures 5 to 8 show examples of the pushing force transition.
  • the horizontal axis represents time (the position is indicated because the speed is constant), and the vertical axis represents the test ram force.
  • the acceleration level is converted by the charge amplifier 39 (B & K Charge Amplifier model Type 2635) from the acceleration pickup 38 (B & K Piezoelectric Charge Accelerometer model number 4383) attached to the excitation part of the test ram. And recorded it on a computer.
  • the pushing force was measured with a load cell 34.
  • a vibration motor high-speed rotation of an eccentric weight
  • the force became almost constant, and when the vibration was turned on, the pushing force decreased to about 1/2. It can be seen that when the vibration is turned off, the level returns to the level after the start. From this, it can be seen that the pushing force can be reduced to about 1/2 by vibration.
  • the excitation frequency at this time was 40 Hz, and the excitation level was about 1G.
  • Fig. 6 shows an excitation frequency of 50 Hz and an acceleration level of about 1 G.
  • Fig. 7 shows an excitation frequency of 60 Hz and an acceleration level of about 1.5 G. As a result, the pushing force could be reduced to about 1/2.
  • the pushing force can be reduced.
  • the pushing force was greatly reduced when the excitation frequency was 30-60 Hz.
  • the excitation frequency was 30 Hz and the acceleration level was about 0.2 G.
  • the acceleration level was outside the scope of the present invention and was small, the pushing force could not be reduced. Note that even when the excitation frequency outside the scope of the present invention was 1 Hz and the acceleration level was about 1 G, the pushing force did not drop significantly during the process. As a comparative example, there was no significant drop in the pushing force in the middle of the force in which the experiment was not performed.
  • the coke extrusion apparatus 20 shown in FIGS. 1 and 2 was used to perform extrusion while applying vibration to the coke mass.
  • the acceleration level was measured in the same manner as in Example 1.
  • the vibration frequency was 40Hz and the acceleration level was 1G.
  • the blended coal used in the examples had a load average volatile content of 27.2% for each lot, a load average expansion pressure for each lot of 4.3 kPa, and a high expansion pressure coal blending ratio. 17%.
  • the coke lump was extruded without applying vibration as before.
  • the extrusion load ratio (relative ratio) in the present invention example and the comparative example is shown in FIG. 3.
  • the maximum extrusion load ratio is significantly reduced compared to the comparative example.
  • the extrusion load ratio is shown as a relative ratio with the peak value of the extrusion load of the comparative example being 1.0.
  • extrusion was performed in an actual coke oven using the coke extrusion apparatus 20 shown in FIG. 1 and FIG.
  • the acceleration level was measured in the same manner as in Example 1.
  • the vibration frequency was 50 Hz and the acceleration level was 2G.
  • the blended coal used in this example had a load average volatile content of 24% to 31% for each lot, and a load average expansion pressure for each lot of 4. l kPa to 7.2 kPa, high expansion.
  • the effect of the present invention was examined by changing the blending ratio of the compressed coal in the range of 11% to 26%.
  • the temperature at the bottom of the combustion chamber of the coke oven at this time is 1240 ° C, and the total carbonization time is 18-19 hours.
  • Figure 9 shows the volatile matter (VM) and the maximum extrusion load current ratio (relative ratio) when the average expansion pressure for each lot is 4.5 kPa and the blending ratio of the high expansion pressure coal is 15%. ) Is shown.
  • Figure 10 shows the blended coal expansion pressure (kPa) and maximum extrusion load current when the load average volatile content for each lot is 27.3% and the high expansion pressure coal blending ratio is 15%. The relationship of the ratio (contrast) is shown.
  • Figure 11 shows the blending ratio of high expansion pressure coal in the case where the load average volatile content per lot is 27.3% and the load average expansion pressure per mouth is 5.1 kPa.
  • the maximum extrusion load current ratio (relative ratio).
  • the maximum extrusion load current ratio is shown as a relative ratio with a management value (management level) of 1.00.
  • the maximum extrusion load current exceeds the control level regardless of the volatile content of the blended coal, the expansion pressure of the blended coal, and the blending amount of the high expansion pressure coal. Because there is no, management of blended coal is very easy. In addition, low cost volatile coal, low volatile coal, or high expansion pressure coal can be used, resulting in a large cost advantage.
  • the Cotas mass is pushed out of the carbonization chamber while applying vibration to the coke mass, so that the friction between the Cotas mass and the chamber wall changes from static friction to dynamic friction.
  • the coefficient of friction is lowered, thereby reducing the extrusion load.
  • damage to the furnace wall can be suppressed, operation delays due to clogging can be avoided, and productivity can be increased.
  • the maximum extrusion load current does not exceed the control level, making it very easy to manage the blended coal.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Coke Industry (AREA)

Abstract

Provided are a coke pushing method and a coke pusher machine which can appropriately reduce a pushing load when a lump coke is pushed out from a carbonization chamber, to thereby reduce the damage to a coke oven wall. A coke pushing method and a coke pusher machine, wherein a pushing face (22b) toward a lump coke (11) of a ram head (22) is vibrated in the pushing direction by a vibrator (23), to thereby carry out pushing while imparting vibration to the lump coke (11).

Description

明細書  Specification
コークス押し出し方法及びコークス押し出し装置 技術分野  Coke extrusion method and coke extrusion apparatus
本発明は、 コークス炉(coke oven)において、 生成されたコータス(coke)を炭化 室 (carbonization chamber) から押し出すためのコ一タス押し出し方法(coke pushing method)及びコークス押し出し装置(coke pusher machine)に関し、 特に、 押し出し負荷(pushing load)を低減して、 コークス炉壁(coke oven wall)の損傷を 軽減し、 炉壁の延命化(life- prolonging)を図ることができるコ一クス押し出し方 法及びコークス押し出し装置に関するものである。 なお、 本発明では、 特に断らな い限り、 コークス炉は、 室炉式コ一タス炉のことを言う。 室炉式コ一クス炉は、 炉 体の下部に蓄熱室があり、 その上部に燃焼室と炭化室とが交互に配列されている。 背景技術  The present invention relates to a coke pushing method and a coke pusher machine for extruding generated coke from a carbonization chamber in a coke oven. In particular, a coke extrusion method that reduces the pushing load, reduces damage to the coke oven wall, and extends the life-prolonging of the furnace wall. The present invention relates to a coke extrusion device. In the present invention, unless otherwise specified, the coke oven refers to a chamber-type coal-tease furnace. A chamber-type coke oven has a heat storage chamber at the bottom of the furnace body, and combustion chambers and carbonization chambers are arranged alternately above it. Background art
コークス炉において、 炭化室内で石炭(coal)を乾留(dry distillation)して生成 されたコ一タス (コークス塊(lump coke) ) を押し出し装置を用いて炭化室から押 し出す際に、 炭化室内でコータスの押し詰り (sticking) を起こし、 その結果、 押 し出し負荷が増大して、 コークス炉炭化室の炉壁 (oven wall)に大きな力が作用し、 炉壁を損傷することがある。 押し詰りが激しい場合には、 炉壁を破壊したり、 ある いは押し出し装置で押し出すことができず炉の温度を下げてから、人力でコークス を搔き出したりする。 このため、 炉壁の補修費(repairing work cost)が増大する と力 \ 炉の停止による生産量(amount of production)の低減を余儀なくされるなど の問題を抱えている。  In a coke oven, when cous (coke lump) produced by dry distillation of coal (coal) in the carbonization chamber is pushed out from the carbonization chamber using an extrusion device, As a result, cotus sticking occurs, and as a result, the pushing load increases and a large force acts on the oven wall of the coke oven carbonization chamber, which may damage the furnace wall. If the clogging is severe, the furnace wall will be destroyed, or it will not be possible to extrude with an extruding device, and the coke will be burned out manually after the furnace temperature is lowered. For this reason, there is a problem that if the repairing work cost of the furnace wall increases, it will be necessary to reduce the amount of production due to the shutdown of the power reactor.
それに対して、押し出し負荷を低減し、炉壁の損傷を防止するための技術として、 以下のようなものが提案されている。  On the other hand, the following technologies have been proposed to reduce the extrusion load and prevent damage to the furnace wall.
例えば、コークス炉の炭化室の炉底レンガ(oven floor brick)を補修する際に、 乾燥粉コータス(dried coke powder)を炭化室に入れ、 乾燥粉コ一タスが炉底レン ガ表面の凹部を埋めて平坦にすることによって、コークス押し出し時におけるコー クス塊と炉底間の摩擦 (friction)を低減する方法が提案されている (例えば、特開 昭 5 9— 1 8 7 0 8 2号公報参照。 ) 。 For example, when repairing an oven floor brick in a coke oven carbonization chamber, dry coke powder is placed in the carbonization chamber, and the dry powder cotas removes the recess on the surface of the furnace bottom leg. By filling and flattening, the coke at the time of coke extrusion A method for reducing the friction between the coke lump and the bottom of the furnace has been proposed (see, for example, Japanese Patent Application Laid-Open No. 59-1808.82).
また、 原料石炭を炭化室内へ装入するに先立ち、 粒状 (5 mm以下) の耐火材料 (fire proof material) (グラフアイ ト(graphite)や S i 3N4など) を傾斜付きの 炉底に敷き詰めておき、コークス押し出し時におけるコータス塊と炉底間の摩擦を 低減して、 結果として炉壁損傷を防ぐという技術も提案されている (例えば、 特開 平 8— 1 2 0 2 7 8号公報参照。 ) 。 In addition, prior to charging raw coal into the carbonization chamber, granular (less than 5 mm) fire proof material (graphite, Si 3 N 4 etc.) is placed on the inclined furnace bottom. A technique has also been proposed in which the friction between the coatus mass and the bottom of the furnace during coke extrusion is reduced, and as a result, damage to the furnace wall is prevented (for example, Japanese Patent Laid-Open No. Hei 8- 1 2 0 2 7 8 See the official gazette.)
また、 ソビエト特許番号 9 8 1 3 4 0は、水平シャベルを上下に振動させて、 炭 化室内のコータスをバケツト内に崩落させて、コータスを搬出する装置が開示され ている。  In addition, Soviet Patent No. 9 8 1 3 4 0 discloses a device for carrying out the coatas by causing the horizontal shovel to vibrate up and down to collapse the coatas in the carbonization chamber into the bucket.
しかしながら、前記の特開昭 5 9 - 1 8 7 0 8 2号公報、特開平 8— 1 2 0 2 7 8号公報に記載されている技術では、 十分な押し出し負荷低減には結びつかなレ、。 すなわち、前記の特開昭 5 9 - 1 8 7 0 8 2号公報、特開平 8— 1 2 0 2 7 8号 公報に記載されている技術は、 いずれも、 コータス塊と炭化室炉底との摩擦力低減 を図ろうとするものであるが、コータスの押し詰りの発生及び押し出し負荷の増大 の主原因は、 コークス塊と炭化室炉底との摩擦力ではなく、押し出し装置を用いて コータス塊の押し出しを行う際に、 押し出し装置のラムへッド (ram head)で押され たコークス塊が変形(deformation) ·崩壊(breakdown)して、押し出し方向と直交す る水平方向にひろがることにより、コータス塊と炭化室側壁との摩擦力が増チこと にあるからである。  However, with the techniques described in the above-mentioned Japanese Patent Application Laid-Open Nos. Sho 5 9-1870 082 and Japanese Patent Application Laid-Open No. Hei 8-1 2 0 2 7 8, . That is, the techniques described in the above-mentioned Japanese Patent Application Laid-Open Nos. 59-187072 and Japanese Patent Application Laid-open No. 8-1202078 are all related to the coatus mass, the bottom of the coking chamber, However, the main cause of the occurrence of coutus clogging and the increase in the extrusion load is not the frictional force between the coke mass and the bottom of the carbonization chamber, but by using an extrusion device. When extruding, the coke mass pushed by the ram head of the extrusion device is deformed, broken down, and expanded in a horizontal direction perpendicular to the extrusion direction. This is because the frictional force between the coatus mass and the carbonization chamber side wall is increased.
また、 ソビエト特許番号 9 8 1 3 4 0は、本願が対象としている押し出し装置を 使用せずに、バケツトに取付られた水平シャベルを上下に振動させて、炭化室内の コークスをバケツト内に崩落させて、バケツトで炉内にあるコークスを何度もすく い出すもので、押し出し装置を用いるコ一クス炉に比べて、 コータスの搬出作業に 多くの時間を要する。  In addition, the Soviet Patent No. 9 8 1 3 4 0 does not use the extrusion device that is the subject of this application, but causes the horizontal shovel attached to the bucket to vibrate up and down, causing the coke in the carbonization chamber to fall into the bucket. In addition, the coke in the furnace is scooped out many times in the bucket, and it takes much time to carry out the coatas compared to the coke oven using an extrusion device.
本発明は、上記の事情に鑑みてなされたものであり、 コークス炉の炭化室からコ 一クス塊を押し出す際に、的確に押し出し負荷を低減して、 コークス炉壁の損傷を 軽減することができるコークス押し出し方法及びコークス押し出し装置を提供す ることを目的とするものである。 発明の開示 The present invention has been made in view of the above circumstances, and when extruding a coke lump from a coking chamber of a coke oven, the extrusion load is accurately reduced to prevent damage to the coke oven wall. It is an object of the present invention to provide a coke extrusion method and a coke extrusion device that can be reduced. Disclosure of the invention
上記課題を解決するために、 本発明は以下の特徴を有する。  In order to solve the above problems, the present invention has the following features.
1 .コークス炉の炭化室内のコータス塊に押し出し装置のラムへッドを押し当てて 炭化室からコークス塊を押し出すに際し、コータス塊に振動を付与しながら押し出 すことを特徴とするコータス押し出し方法。  1. Coutus extrusion method characterized in that when the coke mass is pushed out of the carbonization chamber by pushing the ram head of the extrusion device against the cotas mass in the carbonization chamber of the coke oven, the cotas mass is pushed out while applying vibration. .
2 . 押し出し荷重が所定値以上の場合に、 コークス塊に振動 (vibration)を付与す ることを特徴とする前記 1に記載のコータス押し出し方法。  2. The cortus extrusion method according to 1 above, wherein vibration is applied to the coke mass when the extrusion load is a predetermined value or more.
3 . 押し出し開始位置からのラムヘッドの移動距離 (moving distance)が所定の範 囲にある場合に、コータス塊に振動を付与することを特徴とする前記 1に記載のコ 一タスの押し出し方法。  3. The method of pushing out the cotas according to the above 1, characterized in that vibration is applied to the coatus mass when the moving distance of the ram head from the pushing start position is within a predetermined range.
4 . 前記振動は、 ラムヘッドを振動させることによって付与することを特徴とする 前記 1〜 3のいずれかに記載のコークス押し出し方法。  4. The coke extrusion method according to any one of 1 to 3, wherein the vibration is applied by vibrating a ram head.
5 . 前記ラムへッドは、 高さ方向に複数個に分割されており、 少なくともその内の 1個を振動させることを特徴とする前記 4に記載のコータス押し出し方法。  5. The coatus extrusion method according to 4 above, wherein the ram head is divided into a plurality in the height direction, and at least one of the ram heads is vibrated.
6 . 前記 1〜5において、前記ラムへッドの振動方向は少なくとも押し出し方向成 分を含んだ振動であるコークス押し出し方法。  6. The coke extrusion method according to 1 to 5, wherein the vibration direction of the ram head is vibration including at least a component in the extrusion direction.
7 . 前記 1〜6において、 前記ラムヘッドの振動は、 2 H z〜l 0 0 H zの周波数 成分を 1種類以上含んだ振動であるコークス押し出し方法。  7. The coke extrusion method according to 1 to 6, wherein the vibration of the ram head is a vibration including one or more frequency components of 2 Hz to 100 Hz.
8 . 前記 1〜7において、 前記ラムヘッドの振動は、 1種類以上の正弦波を含んだ 波形の振動であるコータス押し出し方法。  8. The coatus extrusion method according to 1 to 7, wherein the vibration of the ram head is a waveform vibration including one or more sine waves.
9 . 前記 1〜8において、 前記ラムヘッドの振動は、 少なくとも 0 . 5 G〜1 0 G の加速度レべノレ (acceleration) であるコークス押し出し方法。  9. The coke extrusion method according to 1 to 8, wherein the vibration of the ram head is at least 0.5 G to 10 G acceleration.
1 0 . 配合炭をコークス炉内に装入して、 コークスを生成し、 コークス炉の炭化室 内のコークス塊に押し出し装置のラムへッドを押し当てて炭化室からコークス塊 を押し出すに際し、コークス塊に振動を付与しながら押し出すコータスの製造方法。 1 1. 前記 10において、 前記配合炭のロットの荷重平均の揮発分が、 29mass% 以上、 あるいは、 25 mass%以下であるコータスの製造方法。 1 0. When blended coal is charged into a coke oven to produce coke, the coke lump in the coke oven chamber is pressed against the coke mass in the coke oven and the ram head of the extruding device is pressed to extrude the coke mass from the carbonization chamber, A manufacturing method of cortas that extrudes while giving vibration to the coke mass. 1 1. The method of producing coatus according to 10, wherein the load-average volatile content of the blended coal lot is 29 mass% or more or 25 mass% or less.
12.前記 10または、 1 1において、前記配合炭のロットの荷重平均の膨張圧が、 6 k P a以上であるコータスの製造方法。  12. The method of producing coatus according to 10 or 11 above, wherein the load-average expansion pressure of the blended coal lot is 6 kPa or more.
13: 前記 10〜 12において、 前記配合炭の内、膨張圧が 20 k P a以上の石炭 の配合率が、 2 Oniass%以上であるコータスの製造方法。  13: The method of producing coatus according to 10 to 12, wherein a blending ratio of coal having an expansion pressure of 20 kPa or more among the blended coals is 2 Oniass% or more.
14.コークス炉の炭化室内のコータス塊にラムへッドを押し当ててコータス塊を 炭化室から押し出すコータスの押し出し装置であって、ラムへッドを振動させるた めのラムへッド振動手段を備えていることを特徴とするコークス押し出し装置。 14. A cortas extrusion device that pushes the ramhead from the carbonization chamber by pressing the ramhead against the cotus mass in the coking chamber of the coke oven, and the ramhead vibration means for vibrating the ramhead A coke extrusion device characterized by comprising:
15. ラムへッドが上下方向に複数個に分割されており、前記ラムへッド振動手段 は、少なくともその内の 1個を振動させるものであることを特徴とする前記 14に 記載のコークス押し出し装置。 15. The coke according to 14 above, wherein the ram head is divided into a plurality of parts in the vertical direction, and the ram head vibration means vibrates at least one of them. Extruder device.
16. 前記 14または、 15において、 前記ラムへッドの振動方向は少なくとも押 し出し方向成分を含んだ振動であるコークス押し出し装置。  16. The coke pushing apparatus according to the above 14 or 15, wherein the vibration direction of the ram head is a vibration containing at least a pushing direction component.
17. 前記 14〜16において、 前記ラムへッドの振動は、 2Hz〜100Hzの 周波数成分を 1種類以上含んだ振動であるコークス押し出し装置。  17. The coke extrusion device according to the above 14 to 16, wherein the vibration of the ram head is vibration including one or more types of frequency components of 2 Hz to 100 Hz.
18. 前記 14〜1 7において、 前記ラムへッドの振動が、 1種類以上の正弦波を 含んだ波形であるコークス押し出し装置。  18. The coke extrusion device according to 14 to 17, wherein the vibration of the ram head is a waveform including one or more types of sine waves.
19. 前記 14〜18において、 前記ラムヘッドの振動は、 少なくとも 0. 5G〜 1 OGの加速度レベルであるコークス押し出し装置。  19. The coke pushing apparatus according to the above 14 to 18, wherein the vibration of the ram head has an acceleration level of at least 0.5 G to 1 OG.
本発明においては、コータス塊に振動を付与しながらコークス塊を炭化室から押 し出すようにしているので、その振動によって、 コ一クス塊と炭化室炉壁との間の 摩擦が静摩擦(static friction)から動摩擦(kinetic friction)に変化して、 摩擦 係数(coefficient of friction)が低下し、それによつて押し出し負荷が低減する。 その結果、炉壁の損傷を抑止することができるとともに、押し詰まりによる操業遅 延が回避され、 生産性 (productivity)をあげることが可能となる。  In the present invention, the coke lump is pushed out from the carbonization chamber while applying vibration to the coatus lump, so that the friction between the coke lump and the carbonization chamber furnace wall causes static friction. From friction to kinetic friction, the coefficient of friction decreases, thereby reducing the extrusion load. As a result, damage to the furnace wall can be suppressed, operation delays caused by clogging can be avoided, and productivity can be increased.
また、配合炭の揮発分や配合炭の膨張圧、高膨張圧炭の配合量に関わらず最高押 出負荷電流が、管理レベルを超えることが無いので、配合炭の管理が非常に楽であ る。 また、 コストの安い揮発分の多い炭や揮発分の少ない炭あるいは、膨張圧の高 い炭を使用できるので、 コストメリットが大きレ、。 In addition, regardless of the volatile content of the blended coal, the expansion pressure of the blended coal, and the blending amount of the high expansion pressure coal, the maximum extrusion load current does not exceed the control level, making it very easy to manage the blended coal. The In addition, low cost volatile coal, low volatile coal, or high expansion pressure coal can be used.
なお、 本発明で言うコ一タス塊は、 炭化室内にあるコークス全体のことを言い、 コータス同士が、 固着したブロック状のコ一タス塊だけを意味するものではない。 コータスは、 冷却過程で、 ひび割れるが、 押し出し過程で、 コータス同士が、 お互 いに密に接触し、 コータス全体に振動を伝えることができるので、 コータスが固着 したブロック状である必要はない。 図面の簡単な説明  The “cotus mass” referred to in the present invention refers to the entire coke in the carbonization chamber, and does not mean only the block-shaped cotus mass in which the cotas are fixed. The coatus cracks during the cooling process, but during the extrusion process, the coatus can come into close contact with each other and transmit vibration to the entire coatus, so there is no need for the block form to which the coatus is fixed. Brief Description of Drawings
図 1 : 本発明の一実施形態を説明するための側面図である。  FIG. 1 is a side view for explaining an embodiment of the present invention.
図 2: 本発明の一実施形態におけるコータス押し出し装置の斜視図である。 図 3: 本発明の効果を示す図である。  FIG. 2 is a perspective view of a coatus extrusion device according to an embodiment of the present invention. Fig. 3 is a diagram showing the effect of the present invention.
図 4 : lmXO.8mX0.4mの小型のコークス炉を用いた加振実験装置を示す。 図 5 :加振周波数 40Hz、 加振レベル 約 1Gの場合の押出力の変化を示す。 図 6 :加振周波数 50Hz、 加振レベル 約 1Gの場合の押出力の変化を示す。 図 7 :加振周波数 60 Hz、 加振レベル 約 1. 5Gの場合の押出力の変化を示 す。  Fig. 4 shows the vibration test equipment using a small coke oven of lmXO.8mX0.4m. Fig. 5: Changes in pushing force when the excitation frequency is 40Hz and the excitation level is about 1G. Fig. 6: Changes in pushing force when the excitation frequency is 50Hz and the excitation level is about 1G. Fig. 7: Excitation frequency change at 60 Hz, excitation level approx. 1. 5G.
図 8 :加振周波数 30 Hz、 加振レベル 約 0. 2Gの場合の押出力の変化を示 す。  Fig. 8: Changes in push force when the excitation frequency is 30 Hz and the excitation level is about 0.2G.
図 9 :配合炭の揮発分 (VM) と最高押出負荷電流比の関係を示す。  Figure 9: Relationship between volatile matter (VM) of blended coal and maximum extrusion load current ratio.
図 10 :配合炭の膨張圧 (kPa) と最高押出負荷電流比の関係を示す。  Figure 10: Relationship between expansion pressure (kPa) of blended coal and maximum extrusion load current ratio.
図 1 1 :配合炭の高膨張圧炭の配合率と最高押出負荷電流比の関係を示す。  Fig. 11: Shows the relationship between blending ratio of high expansion pressure coal and maximum extrusion load current ratio.
(符号の説明) (Explanation of symbols)
10 炭化室  10 Carbonization chamber
20 コータス押し出し装置  20 coatus extrusion equipment
21 押し出しラム  21 Extrusion ram
22, 32 ラムへッド 2 2 a、 3 2 a 上部押し当て面(upper pushing face) 22, 32 Ramhead 2 2 a, 3 2 a upper pushing face
2 2 b、 3 2 b 中間押し当て面(middle pushing face)  2 2 b, 3 2 b middle pushing face
2 2 c、 3 2 c 下部押し当て面(lower pushing face)  2 2 c, 3 2 c lower pushing face
2 3 , 3 3 加振機(vibrator)  2 3, 3 3 Vibrator
2 4 カロ振口ッ (vibration rod)  2 4 Caro shaker (vibration rod)
3 0 fe:擬コ一クス炉(^simulated coke oven)  3 0 fe: ^ simulated coke oven
3 1 壁  3 1 wall
3 4 ロードセル(load cell)  3 4 load cell
3 5 油圧シジンター (hydraulic cylinder)  3 5 Hydraulic cylinder
3 6 変換器(converter)  3 6 converter
3 7 †測 s ( P C ) (measurement equipment , personal computer)  3 7 † Measurement equipment (personal computer)
3 8 加速度ピックアップ(B&K 4383) (acceleration pickup)  3 8 Acceleration pickup (B & K 4383) (acceleration pickup)
3 9 チャージァアンプ(B&K 2635) (charge amplifier) 発明を実施するための最良の形態  3 9 Charger Amplifier (B & K 2635) (charge amplifier) BEST MODE FOR CARRYING OUT THE INVENTION
本発明の一実施形態を図面に基づいて説明する。  An embodiment of the present invention will be described with reference to the drawings.
図 1は、 本発明の一実施形態を説明するための側面図であり、 図 2は、 本発明の 一実施形態におけるコークス押し出し装置の斜視図である。  FIG. 1 is a side view for explaining an embodiment of the present invention, and FIG. 2 is a perspective view of a coke extrusion device according to an embodiment of the present invention.
図 1中、 1 0がコークス炉の炭化室で、 その中でコータス塊 1 1が生成される。 そして、 図 1、 図 2において、 2 0が本発明の一実施形態におけるコータス押し 出し装置であり、押し出しラム(pushing ram) 2 1と、押し出しラム駆動装置 (drive unit) (図示せず) と、 押し出しラム 2 1の先端に設けられたラムヘッド 2 2とを 備えているとともに、コークス塊 1 1に押し当てられるラムへッド 2 2の押し当て 面が、 上下方向に、 上部押し当て面 2 2 a、 中間押し当て面 2 2 b、 下部押し当て 面 2 2 cの 3個の押し当て面に分割されていて、その内の押し当て面積が一番大き い中間押し当て面 2 2 bを加振ロッド 2 4を介して押し出し方向に振動させるた めの加振機 2 3が押し出しラム 2 1に取り付けられている。 上記のように構成されたコークス押し出し装置 2 0を用いて、コークス塊 1 1を 炭化室 1 0から押し出す場合の手順を以下に示す。 In Fig. 1, 10 is a coking oven carbonization chamber, in which a cotus mass 11 is generated. 1 and 2, reference numeral 20 denotes a coatus extrusion device according to an embodiment of the present invention, which includes a pushing ram 21 and a pushing ram drive unit (not shown). Ram head 2 2 provided at the tip of the extrusion ram 2 1 and the pressing surface of the ram head 2 2 pressed against the coke lump 1 1 is the upper pressing surface 2 in the vertical direction. 2 a, Intermediate pressing surface 2 2 b, Lower pressing surface 2 2 c Divided into three pressing surfaces, of which the largest pressing area is the intermediate pressing surface 2 2 b A vibration exciter 2 3 for vibrating in the push-out direction via a vibration rod 2 4 is attached to the push-out ram 21. The procedure for extruding the coke lump 11 from the coking chamber 10 using the coke extrusion apparatus 20 configured as described above is shown below.
( 1 ) まず、 図 1に示すように炭化室 1 0外に待機している状態から、 押し出し ラム 2 1を作動させて、 ラムへッド 2 2の各押し当て面 2 2 a、 2 2 b , 2 2 cを 炭化室 1 0内のコータス塊 1 1に押し当て、 ラムへッド 2 2を前進させる。  (1) First, as shown in Fig. 1, from the state of waiting outside the carbonization chamber 10, push the pushing ram 2 1 and press the pressing surfaces 2 2 a, 2 2 of the ram head 2 2 Press b, 2 2 c against the coatus mass 1 1 in the coking chamber 10 to advance the ram head 2 2.
( 2 ) 次に、 押し出し荷重 (押し出し負荷) が所定の値以上 (具体的には、 例え ば、 押し出しラム駆動装置の負荷電流値が所定値を超えた場合) になったら、加振 機 2 3によって中間押し当て面 2 2 bを押し出し方向に振動させて、コークス塊 1 1に振動を付与しながら、 ラムヘッド 2 2を前進させる。 なお、 押し出し荷重の検 出は、 例えば、 押し出しラム駆動装置の負荷電流値から算定する。  (2) Next, when the push-out load (push-out load) exceeds a predetermined value (specifically, for example, when the load current value of the push-out ram drive device exceeds the predetermined value), the vibrator 2 The intermediate pressing surface 2 2 b is vibrated in the pushing direction by 3 and the ram head 2 2 is moved forward while applying vibration to the coke lump 1 1. The detection of the push load is calculated from the load current value of the push ram drive device, for example.
( 3 ) そして、 押し出し荷重 (pushing load)が、 所定の値より小さくなつたとこ ろで、 中間押し当て面 2 2 bの振動を停止し、 その状態で引き続き押し出しラム 2 1を前進させる。  (3) Then, when the pushing load becomes smaller than the predetermined value, the vibration of the intermediate pressing surface 2 2 b is stopped, and the pushing ram 21 is continuously advanced in this state.
( 4 ) 最後に、 コークス塊 1 1全体が炭化室 1 0力 ら押し出されたら、 押し出し ラム 2 1を当初の待機位置(position in readiness)まで後退させる。  (4) Finally, when the entire coke lump 1 1 is pushed out from the coking chamber 10 force, the pushing ram 2 1 is moved back to the initial waiting position (position in readiness).
上記のようにしてコータス塊 1 1の押し出しを行うことによって、コークス塊 1 1に付与される振動で、コータス塊 1 1と炭化室 1 0の炉壁との間の摩擦が静摩擦 から動摩擦に変化して、摩擦係数が低下し、それによって押し出し負荷が低減する。 その結果、炉壁の損傷を抑止することができるとともに、押し詰まりによる操業遅 延が回避され、 生産性をあげることが可能となる。  By extruding the cortas lump 11 as described above, the friction applied between the cotas lump 11 and the furnace wall of the carbonization chamber 10 changes from static friction to dynamic friction due to the vibration applied to the coke lump 1 1. Thus, the coefficient of friction decreases, thereby reducing the extrusion load. As a result, damage to the furnace wall can be suppressed, operation delays due to clogging can be avoided, and productivity can be increased.
なお、 上記では、 押し出し荷重が所定の値以上になったら、 コークス塊 1 1に振 動を付与し、押し出し荷重が所定の値より小さくなつたら、振動を付与するのを停 止するようにしているが、 通常、 押し出し荷重が最大になるのは、 押し出し開始位 置からのラムへッド 2 2の前進移動距離が 1 m〜 1 . 5 mになったところなので、 ラムヘッド 2 2の前進移動距離が 1 . 5 mを超えたら、 コークス塊 1 1に振動を付 与するのを停止するようにしてもよレ、。また、押出開始時点から押出終了時点まで、 常に振動を付与しておいても構わない。  In the above, when the extrusion load exceeds a predetermined value, vibration is applied to the coke block 11 and when the extrusion load becomes smaller than the predetermined value, the application of vibration is stopped. However, the push load is usually maximized because the ram head 2 2 has moved forward 1 m to 1.5 m from the push start position. If the distance exceeds 1.5 m, you can stop applying vibration to the coke block 1 1. Further, vibration may always be applied from the start of extrusion to the end of extrusion.
( 5 ) 本発明のラムヘッドの振動形態 なお、本発明のラムへッドの振動方向は、 コークス塊全体に振動を付与すること ができれば、炉の上下方向や押し出し方向のいずれも用いることができる。しかし、 炉の上下方向への振動を主体とした振動は、ラムへッドからコークス塊全体に確実 に振動を伝えることが難しく、例えば、 ラムへッドに複数の突起を設けてコークス 塊に突起を突き刺す等の工夫が必要である。 し力 し、 この場合、 ラムヘッドの突起 を突き刺されたコ一タス塊の周辺部分のみが振動し、その部分のみのコータス塊が 崩壊する可能性が高く、 コークス塊全体に振動を伝えにくくなる。 さらに、 上下方 向の振動方向を主体とした場合は、 コークス塊を持ち上げる方向を含むので、加振 機の負荷が大きく、 加振機の駆動能力を大きくする必要がある。 (5) Vibration form of the ram head of the present invention The vibration direction of the ram head of the present invention can be either the vertical direction or the extrusion direction of the furnace as long as vibration can be applied to the entire coke mass. However, it is difficult to reliably transmit vibration from the ram head to the entire coke mass, for example, vibrations mainly in the vertical direction of the furnace. For example, a plurality of protrusions are provided on the ram head to create a coke mass. It is necessary to devise such as piercing the protrusion. However, in this case, only the peripheral part of the Koitas lump pierced by the protrusion of the ram head vibrates, and it is highly likely that only the Cotas lump will collapse, and it is difficult to transmit vibration to the entire coke lump. Furthermore, when the main direction is the upward and downward vibration direction, it includes the direction of lifting the coke mass, so the load on the shaker is large and the drive capacity of the shaker needs to be increased.
以上のことから、本発明のラムへッドの振動方向は、押し出し方向の振動成分を含. んだ振動方向の場合が、本発明のラムへッドの構造を簡単することができ、加振機 の駆動能力を小さくできるので、 好ましい。 さらに好適には、 押し出し方向の振動 成分を主体とした振動方向がより好ましい。 さらに具体的には、 本発明の振動は、 押し出し方向に平行に振動を与えるのが好ましいが、 斜め上方方向、 あるいは、斜 め下方方向に振動を与えても良い。 From the above, the vibration direction of the ram head of the present invention is the vibration direction including the vibration component of the push-out direction, and the structure of the ram head of the present invention can be simplified. This is preferable because the drive capacity of the vibrator can be reduced. More preferably, a vibration direction mainly including a vibration component in the extrusion direction is more preferable. More specifically, the vibration according to the present invention is preferably applied in parallel with the extrusion direction, but may be applied in an obliquely upward direction or a diagonally downward direction.
また、 上記では、 中間押し当て面 2 2 bにのみ加振機 2 3を連結しているが、 上 部押し当て面 2 2 a、下部押し当て面 2 2 cにもそれぞれ加振機を連結して、振動 させる押し当て面を適宜 1個以上選択して振動させてもよい。 - また、 この実施形態では、 ラムヘッド 2 2の押し当て面を 3個に分割し、 その内 の中間押し当て面 2 2 bの押し当て面積が一番大きくなるようにしている力 必要 に応じて、 分割する個数や押し当て面積の割合を選定すればよレ、。 もちろん、 ラム へッド 2 2の押し当て面を分割しなぐともよい。  In the above example, the vibrator 2 3 is connected only to the intermediate pressing surface 2 2 b, but the vibrator is also connected to the upper pressing surface 2 2 a and the lower pressing surface 2 2 c. Then, one or more pressing surfaces to be vibrated may be appropriately selected and vibrated. -In this embodiment, the pressing surface of the ram head 2 2 is divided into three parts, and the pressing force of the intermediate pressing surface 2 2 b of the ram head 2 2 b is maximized as required. Select the number to divide and the ratio of the pressing area. Of course, the pressing surface of the ram head 2 2 may not be divided.
また、振動の周波数帯域は、 2 H z〜1 0 0 H zの単一周波数が制御上好ましい が、 この帯域の周波数成分が、 2種類以上含まれてもよい。 規則振動あるいは、 不 規則振動でも良い。 振動の周波数帯域が、 1 0 O H zを超えると、振動の振幅が小 さくなるので、 コークス塊に与える振動の効果が、 小さくなる。 より好ましくは、 6 O H z以下である。 また、 振動の周波数帯域が、 2 H z未満になると、 十分な加 速度を得るために加振機への投入エネルギーの増大が必要であり、コータス塊に与 える振動の効果が、 不十分になりがちである。 特に、 3 0 H z〜6 0 H z力 好ま しい。 In addition, the vibration frequency band is preferably a single frequency of 2 Hz to 100 Hz, but two or more types of frequency components in this band may be included. Regular vibration or irregular vibration may be used. When the vibration frequency band exceeds 10 OHz, the vibration amplitude decreases, so the vibration effect on the coke mass decreases. More preferably, it is 6 OHz or less. In addition, if the frequency band of vibration is less than 2 Hz, it is necessary to increase the energy input to the shaker in order to obtain sufficient acceleration, The effect of vibration is likely to be insufficient. In particular, a force of 30 Hz to 60 Hz is preferable.
振動波形は、 1種類以上の正弦波を含んだ波形でラムへッドを振動させる装置が 好ましい。 また、 必ずしも正弦波である必要はなく、 三角波や矩形波あるいは、 連 続したィンパルス波のような波形やそれらが混在した波形でも良い。  The vibration waveform is preferably a device that vibrates the ram head with a waveform including one or more types of sine waves. Further, it is not necessarily a sine wave, and a waveform such as a triangular wave, a rectangular wave, a continuous inpulse wave, or a mixed waveform thereof may be used.
振動の加速度レベルは、 コークス塊に有効な振動を与えるために 0 . 5 G以上の 加速度レベルがあれば良い。 さらに 1 G以上の加速度レベルがさらに好ましい。 ま た、 押し出し装置の機械的強度を考慮して 1 0 G以下力 好ましい。 なお、 加速度 レベルの" G" は重力加速度で lG=9. 8m/s2である。 なお、 加速度レベルの測定は、 特に、 規定しなレ、。 例えば、試験ラムの加振部分に取り付けた加速度ピックアップThe vibration acceleration level should be at least 0.5 G to give effective vibration to the coke mass. An acceleration level of 1 G or higher is even more preferable. In addition, considering the mechanical strength of the extrusion device, a force of 10 G or less is preferable. The acceleration level “G” is gravitational acceleration and lG = 9.8 m / s 2 . Note that the acceleration level measurement is not specifically regulated. For example, an accelerometer attached to the vibration part of the test ram
(B&K社製 Piezoelectric Charge Accelerometer型番 Type 4383) の信号をチヤ ージアンプ (B&K社製 Charge Amplifier型番 Type 2635)で変換し、 パソコンで記 録して求めることができる。 (B & K's Piezoelectric Charge Accelerometer model number Type 4383) is converted by a charge amplifier (B & K's Charge Amplifier model number Type 2635) and recorded on a personal computer.
なお、本発明で用いる加振機の構造は、周波数と加速度レベルを任意に調整でき る装置が好ましく、その駆動方法は、モーター、油圧、水圧等が採用できる。但し、 高温負荷から狭いスペースに搭載可能な加振機構として、例えば、パイブロハンマ 一やエア一ハンマー等が使用可能である。  Note that the structure of the vibrator used in the present invention is preferably a device that can arbitrarily adjust the frequency and acceleration level, and a motor, hydraulic pressure, hydraulic pressure, or the like can be adopted as the driving method. However, as a vibration mechanism that can be mounted in a narrow space from a high temperature load, for example, a Pibro hammer or an air hammer can be used.
( 6 ) 本発明に適用可能な配合炭の揮発分 (volatile matter,以降 VMと称す) 本願発明で用いる配合炭は、従来適用できなかった配合炭のロット毎の荷重平均 の揮発分が、 2 9 mass%以上、 あるいは、 2 5 mass%以下の配合炭にも適用可能で ある。 なお、 配合炭の銘柄の揮発分は、 炭坑毎、 船毎等のロット単位に石炭をサン プリングし、 揮発分が、 測定され、 管理されている。 コークス炉に投入前にロット 毎の揮発分を考慮して、 各ロットの石炭の投入量が、 配合される。 加重平均の揮発 分は、 各口ッ'トの投入量と揮発分を掛け算し、 全投入量で除して求めた。 各ロット の揮発分の分析は J I S M 8812に準拠する。 試料を蓋つきのルツボに入れ空 気との接触を避けるようにして 900°Cで 7分間加熱したときの加熱減量の試料に対 する質量分率を求め、 これから同時に測定した水分を差し引いて揮発分とする。 一般に配合炭の揮発分が 2 9 mass%以上になるとカーボン析出量が増加し、炉壁 に付着したカーボンが成長し、押し出し時に、 コータスケーキと炉壁に付着した力 一ボンが接触し、潤滑な押し出しが出来にくくなる。本願発明の振動押し出し機を 使用することにより、カーボンとコータスケーキの接触時にケーキが留まることな く押し出しが可能となる。 なお、本願発明に適用できる配合炭のロットの荷重平均 の揮発分の最大値は、 通常、 原料炭の銘柄の最大揮発分が 40masS%であるので、 40mass%である。一方、一般に配合炭の揮発分が 2 5 mass%以下になると炉壁とコ ークスケーキの隙間が小さくなり炉壁に凸部がある場合、凸部とコークスケーキが 接触し、潤滑な押し出しが出来なくなる。本願発明の振動押し出し機を使用するこ とにより、凸部とコークスケーキ間の摩擦が小さくなり、 ケーキが留まることなぐ 押し出しが可能となる。本願発明に適用できる配合炭の口ット毎の荷重平均の揮発 分の最小値は、通常、原料炭の銘柄の最小揮発分が 15mass%であるので、 15raass% である。 (6) Volatility of blended coal that can be applied to the present invention (volatile matter, hereinafter referred to as VM) Applicable to coal blends of 9 mass% or more, or 25 mass% or less. The volatile content of blended coal brands is measured and controlled by sampling coal in units of lots such as coal mines and ships. In consideration of the volatile content of each lot before charging into the coke oven, the amount of coal input in each lot is blended. The weighted average volatile content was obtained by multiplying the input amount of each mouth by the volatile content and dividing by the total input amount. The analysis of volatile matter in each lot conforms to JISM 8812. Put the sample in a crucible with a lid to avoid contact with air, determine the mass fraction of the sample for heating loss when heated at 900 ° C for 7 minutes, and subtract the moisture measured at the same time to remove the volatile content. And Generally, when the volatile content of blended coal reaches 29 mass% or more, the amount of carbon deposition increases, and the carbon attached to the furnace wall grows. It becomes difficult to perform proper extrusion. By using the vibratory extruder of the present invention, the cake can be extruded without staying in contact with the carbon and the coatus cake. It should be noted that the maximum load average volatile content of the blended coal lot applicable to the present invention is usually 40 mass% since the maximum volatile content of the coking coal brand is 40 mass S %. On the other hand, generally, when the volatile content of coal blend is less than 25 mass%, the gap between the furnace wall and the coke cake becomes small, and if there is a convex part on the furnace wall, the convex part and the coke cake come into contact with each other, making it impossible to perform a smooth extrusion. . By using the vibration extruder of the present invention, the friction between the convex portion and the coke cake is reduced, and the extrusion can be performed without the cake remaining. The minimum value of the load average volatile content of each blended coal spout applicable to the present invention is usually 15 raass% since the minimum volatile content of the coking coal brand is 15 mass%.
( 7 ) 本願発明で適用可能な配合炭の膨張圧  (7) Expansion pressure of blended coal applicable in the present invention
本願発明で用いる配合炭は、従来適用できなかった配合炭の口ット毎の荷重平均 の膨張圧が、 6 k P a以上にも適用可能である。 なお、配合炭の口ット毎の膨張圧 は、 炭坑毎、 船毎等のロット単位に石炭をサンプリングし、 膨張圧が、 測定され、 管理されている。 コークス炉に投入前にロット毎の膨張圧を考慮して、各ロットの 石炭の投入量が、配合される。 加重平均の膨張圧は、 各ロットの投入量と膨張圧を 掛け算し、 全投入量で除して求めた。 膨張圧の測定方法は、 石炭を l-3ramに整粒し 直径 50讓、 高さ 70mmのルツボにいれ嵩密度 775kg/m3になるよう調整し、ルツボの 上から蓋をし差圧計を石炭中にさしこむ。ルツボを 1000°Cまで 4°C/minで昇温し、 昇温過程における差圧の最大値をよみとる。 The blended coal used in the present invention can be applied even when the load-average expansion pressure of each blended coal spit, which could not be applied conventionally, is 6 kPa or more. The expansion pressure of each blended coal outlet is sampled and controlled by sampling the coal in units of lots such as each coal mine and every ship. The amount of coal input for each lot is blended in consideration of the expansion pressure for each lot before being charged into the coke oven. The weighted average expansion pressure was calculated by multiplying the input amount of each lot by the expansion pressure and dividing by the total input amount. The expansion pressure is measured by adjusting the coal to l-3 ram, putting it in a crucible with a diameter of 50 mm and a height of 70 mm, and adjusting the bulk density to 775 kg / m 3 , covering the crucible and covering the differential pressure gauge with the coal. Insert inside. Raise the temperature of the crucible to 1000 ° C at 4 ° C / min and read the maximum value of the differential pressure during the temperature raising process.
一般に配合炭の膨張圧が高いと乾留時の収縮が少なくなり炉壁とコークスケー キの隙間が小さくなり、 炉壁に凸部がある場合、 凸部とコークスケーキが接触し、 潤滑な押し出しが出来なくなる。本願発明の振動押し出し機を使用することにより、 凸部とコータスケーキ間の摩擦が小さくなり、ケーキが留まることなく押し出しが 可能となる。 本願発明に適用できる配合炭の銘柄の荷重平均の膨張圧の最大値は、 通常、 原料炭の銘柄の最大膨張圧力が 9 k P aであるので、 9 k P aである。 Generally, when the expansion pressure of blended coal is high, the shrinkage during dry distillation is reduced and the gap between the furnace wall and the coke cake is reduced. If there is a convex part on the furnace wall, the convex part and the coke cake come into contact with each other, and a smooth extrusion is possible. Disappear. By using the vibratory extruder of the present invention, the friction between the convex part and the coatus cake is reduced, and the extrusion is performed without the cake remaining. It becomes possible. The maximum value of the weight average expansion pressure of the blended coal brand applicable to the present invention is normally 9 kPa because the maximum expansion pressure of the coking coal brand is 9 kPa.
. (8) 本願発明で適用可能な配合炭の高膨張圧炭の配合率 (8) Mixing rate of high expansion pressure coal that can be applied in the present invention
本願発明で用いる配合炭は、従来適用できなかった配合炭の高膨張圧炭の配合率 が、 2 Omassy。以上にも適用可能である。  The blended coal used in the present invention has a blending ratio of high expansion pressure coal that cannot be applied conventionally, 2 Omassy. It is applicable also to the above.
一般に配合炭の内、 高膨張圧炭(2000mmH20超え、 20 kPa超え)の配合率が、 2 0 mass f上であると乾留時の収縮が少なくなり炉壁とコークスケーキの隙間が小 さくなり、 炉壁に凸部がある場合、 凸部とコータスケーキが接触し、潤滑な押し出 しが出来なくなる。本願発明の振動押し出し機を使用することにより、 凸部とコー クスケーキ間の摩擦が小さくなり、ケーキが留まることなく押し出しが可能となる。 本願発明に適用できる配合炭の内、高膨張圧炭の配合率の最大値は、 100maSS%であ る。 なお、 高膨張圧炭の銘柄として、 ブルークリーク (米国) : 68 k P a (69 40mmH2O) , サウスャクト (ロシア) : 34 k P a (3453mmH20) , ノーウィッチ (豪州) : 73 k P a (7450mmH2O) 、 ジャーマンクリーク (豪州) : 43 k P a (4420mmH2O) がある。 実施例 1 Of general coal blend, (beyond 2000mmH 2 0, 20 kPa greater than) high expansion圧炭blending ratio of, 2 0 mass f is the contraction at the time of carbonization is a gap of less and less furnace wall and the coke cake small fence Therefore, if there is a convex part on the furnace wall, the convex part and the coatus cake come into contact with each other, making it impossible to perform a smooth extrusion. By using the vibration extruder of the present invention, the friction between the convex part and the coke cake is reduced, and the cake can be extruded without staying. Among the blended coals applicable to the present invention, the maximum blending ratio of the high expansion pressure coal is 100 ma SS %. Blue Creek (US): 68 k Pa (69 40mmH 2 O), South Nacht (Russia): 34 k Pa (3453mmH 2 0), Norwich (Australia): 73k Pa (7450mmH 2 O), German Creek (Australia): 43k Pa (4420mmH 2 O). Example 1
振動の効果を調べるために加振実験を行った。 図 4に示す IraXO.8mX0.'4mの小型 の模擬コークス炉 30に予め模擬コークス炉と同形サイズの小型コークス炉で乾 留して生成されたコータス塊 1 1を投入し、側面の壁 31に力を加えて押さえ、端 面から試験ラムで振動 (周波数 1〜1 10Hz, 加速度レベル 0. 3〜12G, 正 弦波) を加えながら一定速度で押し出し、 必要な力を測定した。 試験ラム 32の 1/2を振動可能とし、 背面より加振機 33で加振した。 図 5~8に押し出し力の推 移の一例を示す。 横軸は時間 (速度一定のため位置を表す) 、 縦軸は試験ラムの押 出力を示す。 なお、加速度レベルは、試験ラムの加振部分に取り付けた加速度ピッ クアップ 38 (B&K社製 Piezoelectric Charge Accelerometer 型番 Type 4383) の信号をチャージアンプ 39 (B&K社製 Charge Amplifier型番 Type 2635)で変換 し、 パソコンで記録して求めた。 また、 押出力は、 ロードセル(load cell) 34で 測定した。 なお、 加振機 33は、 振動モータ (偏芯した錘を高速回転) を用いた。 押し出しを開始して一定時間経過後に振動を ONし、 最後に OFFにしその後押し 出しを停止した。 図 5で押し出し開始後、 力はほぼ一定の値となり、 振動を ONす ると約 1/2に押出力が低下した。振動を OFFすると開始後のレベルに復帰している ことがわかる。これより加振により約 1/2に押出力を下げることができることがわ かる。 このときの加振周波数は 40 Hzであり、 加振レベルは約 1Gであった。 また、 図 6は、 加振周波数は 50Hz、 加速度レベルは約 1G、 図 7は、 加振周波 数は 60 Hz、 加速度レベルは約 1. 5Gであったが、 図 6と図 7とも加振により約 1/2に押出力を下げることができた。 図示していないが、 加振周波数が、 2Hz〜l 00Hzおよびカ卩速度レベルが、 0. 5G〜10Gの本願発明範囲にある場合には、 押し出し力を低下させることができた。 特に、加振周波数が、 30〜 60Hzの場 合に押出力が大きく低下した。 An excitation experiment was conducted to examine the effect of vibration. A small coke oven 30 of IraXO.8mX0.'4m shown in Fig. 4 was charged with the cotas lump 11 produced in advance in a small coke oven of the same size as the simulated coke oven, and applied to the side wall 31. A force was applied and pressed, and vibration was applied from the end face with a test ram (frequency 1 to 1 10 Hz, acceleration level 0.3 to 12 G, sine wave), and the required force was measured. Half of the test ram 32 was vibrated, and was vibrated from the back with the vibrator 33. Figures 5 to 8 show examples of the pushing force transition. The horizontal axis represents time (the position is indicated because the speed is constant), and the vertical axis represents the test ram force. The acceleration level is converted by the charge amplifier 39 (B & K Charge Amplifier model Type 2635) from the acceleration pickup 38 (B & K Piezoelectric Charge Accelerometer model number 4383) attached to the excitation part of the test ram. And recorded it on a computer. The pushing force was measured with a load cell 34. As the shaker 33, a vibration motor (high-speed rotation of an eccentric weight) was used. The vibration was turned on after a certain period of time from the start of extrusion, finally turned off, and then the extrusion was stopped. After starting extrusion in Fig. 5, the force became almost constant, and when the vibration was turned on, the pushing force decreased to about 1/2. It can be seen that when the vibration is turned off, the level returns to the level after the start. From this, it can be seen that the pushing force can be reduced to about 1/2 by vibration. The excitation frequency at this time was 40 Hz, and the excitation level was about 1G. Fig. 6 shows an excitation frequency of 50 Hz and an acceleration level of about 1 G. Fig. 7 shows an excitation frequency of 60 Hz and an acceleration level of about 1.5 G. As a result, the pushing force could be reduced to about 1/2. Although not shown in the drawing, when the excitation frequency is 2 Hz to 100 Hz and the speed speed level is within the range of the present invention of 0.5 G to 10 G, the pushing force can be reduced. In particular, the pushing force was greatly reduced when the excitation frequency was 30-60 Hz.
また、 図 8は、 加振周波数は 30Hz、 加速度レベルは約 0. 2Gであったが、 加 速度レベルが、 本願発明範囲を外れ、 小さいので押し出し力を低下させることは、 出来なかった。 なお、 本発明範囲から外れる加振周波数が、 1Hz で、 加速度レ ベルが約 1Gの場合も、 途中で押出力が大きく低下することはなかった。 比較例と して、加振を行わない実験も実施した力 途中で押出力が大きく低下することはな カつた。 実施例 2  In FIG. 8, the excitation frequency was 30 Hz and the acceleration level was about 0.2 G. However, since the acceleration level was outside the scope of the present invention and was small, the pushing force could not be reduced. Note that even when the excitation frequency outside the scope of the present invention was 1 Hz and the acceleration level was about 1 G, the pushing force did not drop significantly during the process. As a comparative example, there was no significant drop in the pushing force in the middle of the force in which the experiment was not performed. Example 2
本発明例として、 実際の室炉式コ一クス炉で、 図 1、 図 2に示したコークス押し 出し装置 20を用いて、前述の手順でコークス塊に振動を付与しながら押し出しを 行った。 なお、 加速度レベルの測定は、 実施例 1と同様に行った。  As an example of the present invention, in an actual chamber-type coke oven, the coke extrusion apparatus 20 shown in FIGS. 1 and 2 was used to perform extrusion while applying vibration to the coke mass. The acceleration level was measured in the same manner as in Example 1.
その振動周波数は、 40Hzで、 加速度レベルは、 1Gであった。 なお、 実施例で 用いた配合炭は、 ロット毎の荷重平均の揮発分は、 27. 2%、 ロット毎の荷重平 均の膨張圧は、 4. 3 kPa、 高膨張圧炭の配合率が、 1 7%、 であった。 一方、 比 較例として、 従来通り、 コークス塊に振動を付与せずに押し出しを行った。 本発明例と比較例における押し出し荷重比 (相対比) を図 3に示すが、 本発明例 においては、 最大押し出し荷重比が比較例に比べて大幅に減少している。 なお、 押 し出し荷重比は、 比較例の押出荷重のピーク値を 1. 0として、 その相対比で示し た。 The vibration frequency was 40Hz and the acceleration level was 1G. The blended coal used in the examples had a load average volatile content of 27.2% for each lot, a load average expansion pressure for each lot of 4.3 kPa, and a high expansion pressure coal blending ratio. 17%. On the other hand, as a comparative example, the coke lump was extruded without applying vibration as before. The extrusion load ratio (relative ratio) in the present invention example and the comparative example is shown in FIG. 3. In the present invention example, the maximum extrusion load ratio is significantly reduced compared to the comparative example. The extrusion load ratio is shown as a relative ratio with the peak value of the extrusion load of the comparative example being 1.0.
これによつて、 本発明の効果が確認された。 実施例 3  Thereby, the effect of the present invention was confirmed. Example 3
本発明例として、 実際のコークス炉で、 図 1および、 図 2に示したコークス押し 出し装置 20を用いて、前述の手順でコークス塊に振動を付与しながら押し出しを 行った。 なお、 加速度レベルの測定は、 実施例 1と同様に行った。  As an example of the present invention, extrusion was performed in an actual coke oven using the coke extrusion apparatus 20 shown in FIG. 1 and FIG. The acceleration level was measured in the same manner as in Example 1.
その振動周波数は、 50 Hzで、 加速度レベルは、 2Gであった。 なお、 この実施 例で用いた配合炭は、 ロット毎の荷重平均の揮発分は、 24%〜31%、 ロット毎 の荷重平均の膨張圧は、 4. l kPa〜7. 2 kPa、 高膨張圧炭の配合率は、 1 1% 〜26%の範囲を変動させて、本願発明の効果を調べた。 このときのコークス炉の 燃焼室底部の温度は 1240°C、 総炭化時間 18〜19時間である。  The vibration frequency was 50 Hz and the acceleration level was 2G. The blended coal used in this example had a load average volatile content of 24% to 31% for each lot, and a load average expansion pressure for each lot of 4. l kPa to 7.2 kPa, high expansion. The effect of the present invention was examined by changing the blending ratio of the compressed coal in the range of 11% to 26%. The temperature at the bottom of the combustion chamber of the coke oven at this time is 1240 ° C, and the total carbonization time is 18-19 hours.
図 9は、 ロット毎の荷重平均の膨張圧が、 4. 5 kPaで、 高膨張圧炭の配合率 が、 15%配合炭の場合の揮発分 (VM) と最高押出負荷電流比 (相対比) の関係を 示す。 図 10は、 ロット毎の荷重平均の揮発分が、 27. 3%で、 高膨張圧炭の配 合率が、 15 %配合炭の場合の配合炭の膨張圧 (kPa) と最高押出負荷電流比 (相 対比) の関係を示す。 図 1 1は、 ロット毎の荷重平均の揮発分が、 27. 3%、 口 ット毎の荷重平均の膨張圧が、 5. 1 k Paの場合の配合炭の高膨張圧炭の配合率 と最高押出負荷電流比 (相対比) の関係を示す。 なお、 最高押出負荷電流比は、 管 理値 (管理レベル) を 1. 00として、 その相対比で示した。  Figure 9 shows the volatile matter (VM) and the maximum extrusion load current ratio (relative ratio) when the average expansion pressure for each lot is 4.5 kPa and the blending ratio of the high expansion pressure coal is 15%. ) Is shown. Figure 10 shows the blended coal expansion pressure (kPa) and maximum extrusion load current when the load average volatile content for each lot is 27.3% and the high expansion pressure coal blending ratio is 15%. The relationship of the ratio (contrast) is shown. Figure 11 shows the blending ratio of high expansion pressure coal in the case where the load average volatile content per lot is 27.3% and the load average expansion pressure per mouth is 5.1 kPa. And the maximum extrusion load current ratio (relative ratio). The maximum extrusion load current ratio is shown as a relative ratio with a management value (management level) of 1.00.
図 9〜1 1から明らかなように、本願発明の場合は、配合炭の揮発分や配合炭の 膨張圧、高膨張圧炭の配合量に関わらず最高押出負荷電流が、管理レベルを超える ことが無いので、 配合炭の管理が非常に楽である。 また、 コス トの安い揮発分の多 い炭や揮発分の少ない炭あるいは、膨張圧の高い炭を使用できるので、 コス トメリ ットが大きレヽ。 一方、本願発明の押出方法を使用しない場合は、適切な配合炭の揮発分範囲と適 切な膨張圧の配合炭や適切な高膨張圧炭配合率にしないと最高押出負荷電流比(相 対比) を超えてしまうので、 使用する配合炭の揮発分や膨張圧さらに、 高膨張圧炭 の配合率を厳密に管理する必要があり、 生産コストが高くなる。 産業上の利用可能性 As is clear from FIGS. 9 to 11, in the case of the present invention, the maximum extrusion load current exceeds the control level regardless of the volatile content of the blended coal, the expansion pressure of the blended coal, and the blending amount of the high expansion pressure coal. Because there is no, management of blended coal is very easy. In addition, low cost volatile coal, low volatile coal, or high expansion pressure coal can be used, resulting in a large cost advantage. On the other hand, when the extrusion method of the present invention is not used, the maximum extrusion load current ratio (comparative) must be made unless the volatile content range of the blended coal and the blended coal with the appropriate expansion pressure or the appropriate high expansion pressure coal blending ratio are used Therefore, it is necessary to strictly control the volatile matter and expansion pressure of the blended coal used, and the blending ratio of the high-expansion pressurized coal, resulting in high production costs. Industrial applicability
本発明においては、コークス塊に振動を付与しながらコータス塊を炭化室から押 し出すようにしているので、 その振動によって、 コータス塊と炭化室炉壁との間の 摩擦が静摩擦から動摩擦に変化して、摩擦係数が低下し、それによつて押し出し負 荷が低減する。 その結果、 炉壁の損傷を抑止することができるとともに、 押し詰ま りによる操業遅延が回避され、 生産性をあげることが可能となる。  In the present invention, the Cotas mass is pushed out of the carbonization chamber while applying vibration to the coke mass, so that the friction between the Cotas mass and the chamber wall changes from static friction to dynamic friction. As a result, the coefficient of friction is lowered, thereby reducing the extrusion load. As a result, damage to the furnace wall can be suppressed, operation delays due to clogging can be avoided, and productivity can be increased.
また、配合炭の揮発分や配合炭の膨張圧、高膨張圧炭の配合量に関わらず最高押 出負荷電流が、管理レベルを超えることが無いので、配合炭の管理が非常に楽であ る。 また、 コス卜の安い揮発分の多い炭や揮発分の少ない炭あるいは、膨張圧の高 い炭を使用できるので、 コス トメリットが大きレ、。  In addition, regardless of the volatile content of the blended coal, the expansion pressure of the blended coal, and the blending amount of the high expansion pressure coal, the maximum extrusion load current does not exceed the control level, making it very easy to manage the blended coal. The In addition, it is possible to use cheap volatile coal with low cost, low volatile content, or high expansion pressure.

Claims

請求の範囲 The scope of the claims
1. コークス炉の炭化室内のコ一タス塊に押し出し装置のラムへッドを押し当て て炭化室からコ一クス塊を押し出すに際し、コ一クス塊に振動を付与しながら押し 出すコークス押し出し方法。 1. Coke extrusion method to extrude the coke lump while applying vibration to the coke lump when pushing the ram head of the extrusion device against the coat mass in the carbonization chamber of the coke oven. .
2. 押し出し荷重が所定値以上の場合に、 コータス塊に振動を付与する請求項 1 に記載のコークス押し出し方法。 2. The coke extrusion method according to claim 1, wherein when the extrusion load is a predetermined value or more, vibration is imparted to the coatus mass.
3. 押し出し開始位置からのラムへッドの移動距離が所定の範囲に.ある場合に、 コ一クス塊に振動を付与する請求項 1に記載のコークス押し出し方法。 3. The coke extrusion method according to claim 1, wherein the coke lump is vibrated when the ram head moving distance from the extrusion start position is within a predetermined range.
4. 前記振動は、 ラムヘッドを振動させることによって付与する請求項 1〜3の いずれかに記載のコークス押し出し方法。 4. The coke extrusion method according to claim 1, wherein the vibration is applied by vibrating a ram head.
5. 前記ラムへッドは、 上下方向に複数個に分割されており、 少なくともその内 の 1個を振動させる請求項 4に記載のコークス押し出し方法。 5. The coke extrusion method according to claim 4, wherein the ram head is divided into a plurality of parts in the vertical direction, and at least one of them is vibrated.
6. 請求項 1〜5において、 前記ラムヘッドの振動方向は少なくとも押し出し方 向成分を含んだ振動であるコークス押し出し方法。 6. The coke extrusion method according to claim 1, wherein the vibration direction of the ram head is vibration including at least an extrusion direction component.
7. 請求項 1〜6において、 前記ラムヘッ ドの振動は、 2Hz〜100Hzの周 波数成分を 1種類以上含んだ振動であるコークス押し出し方法。 7. The coke extrusion method according to claim 1, wherein the vibration of the ram head is vibration including one or more types of frequency components of 2 Hz to 100 Hz.
8. 請求項 1〜7において、 前記ラムヘッドの振動は、 1種類以上の正弦波を含 んだ波形の振動であるコークス押し出し方法。 8. The coke extrusion method according to claim 1, wherein the vibration of the ram head is a vibration of a waveform including one or more types of sine waves.
9. 請求項 1〜8において、 前記ラムヘッドの振動は、 少なくとも 0. 5G〜19. In claim 1-8, the vibration of the ram head is at least 0.5G-1
0 Gの加速度レベルであるコークス押し出し方法。 Coke extrusion method with an acceleration level of 0 G.
1 0. 配合炭をコークス炉内に装入して、 コークスを生成し、 コークス炉の炭化 室内のコータス塊に押し出し装置のラムへッドを押し当てて炭化室からコークス 塊を押し出すに際し、コータス塊に振動を付与しながら押し出すコータスの製造方 法。 1 0. The blended coal is charged into the coke oven to produce coke, and when the coke mass is pushed out of the carbonization chamber by pushing the ram head of the extrusion device against the cotus mass in the carbonization chamber of the coke oven, A manufacturing method of coatus that extrudes while applying vibration to the mass.
1 1. 請求項 1 0において、 前記配合炭のロットの荷重平均の揮発分が、 29 mass%以上、 あるいは、 25 mass%以下であるコータスの製造方法。 1 1. The method of producing coatus according to claim 10, wherein a load-average volatile content of the blended coal lot is 29 mass% or more or 25 mass% or less.
1 2. 請求項 1 0または、 1 1において、 前記配合炭の口ットの荷重平均の膨張 圧が、 6 k P a以上であるコータスの製造方法。 1 2. The manufacturing method of coatus according to claim 10 or 11, wherein a load-average expansion pressure of the blended coal spit is 6 kPa or more.
1 3. 請求項 1 0〜 1 2において、 前記配合炭の内、 膨張庄が 20 k P a以上の 石炭の配合率が、 2 Omass%以上であるコータスの製造方法。 1 3. The method for producing a coatus according to claim 10, wherein the blending ratio of coal having an expansion ratio of 20 kPa or more is 2 Omass% or more.
1 4. コークス炉の炭化室内のコークス塊にラムへッドを押し当ててコータス塊 を炭化室から押し出すコータスの押し出し装置であって、ラムへッドを振動させる ためのラムへッド振動手段を備えているコータス押し出し装置。 1 4. Cortus extrusion device that pushes the ramhead against the coke mass in the coking chamber of the coke oven and pushes out the cotas mass from the carbonization chamber. The ramhead vibration means is used to vibrate the ramhead. Cortus extrusion device equipped with.
1 5. ラムへッドが上下方向に複数個に分割されており、,前記ラムへッド振動手 段は、少なくともその内の 1個を振動させるものであることを特徴とする前記 1 4 に記載のコークス押し出し装置。 1 5. The ram head is divided into a plurality of parts in the vertical direction, and the ram head vibration means vibrates at least one of them. Coke extrusion device described in 1.
1 6. 請求項 14または、 1 5において、 前記ラムへッドの振動方向は少なくと も押し出し方向成分を含んだ振動であるコークス押し出し装置。 1 6. The coke extrusion device according to claim 14 or 15, wherein the vibration direction of the ram head is vibration including at least an extrusion direction component.
1 7. 請求項 14〜1 6において、 前記ラムヘッドの振動は、 2H z〜1 00H zの周波数成分を 1種類以上含んだ振動であるコークス押し出し装置。 1 7. The coke extrusion apparatus according to claim 14 to 16, wherein the vibration of the ram head is a vibration including one or more types of frequency components of 2 Hz to 100 Hz.
' ' -、. (:  ''-,. (:
Ί6 Ί6
18. 請求項 14〜1 7において、前記ラムへッドの振動が、 1種類以上の正弦 波を含んだ波形であるコータス押し出し装置。 18. The coatus extrusion device according to claim 14 to 17, wherein the vibration of the ram head is a waveform including one or more kinds of sine waves.
19. 請求項 14〜18において、 前記ラムヘッドの振動は、 少なくとも 0. 5 G〜l OGの加速度レベルであるコークス押し出し装置。 19. Coke extrusion device according to claims 14-18, wherein the vibration of the ram head is at an acceleration level of at least 0.5 G to l OG.
PCT/JP2005/024240 2004-12-28 2005-12-27 Coke pushing method and coke pusher machine WO2006070924A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05844863A EP1832644B1 (en) 2004-12-28 2005-12-27 Coke pushing method and coke pusher machine
CN2005800370169A CN101048481B (en) 2004-12-28 2005-12-27 Coke pushing method and coke pusher machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-379516 2004-12-28
JP2004379516 2004-12-28

Publications (1)

Publication Number Publication Date
WO2006070924A1 true WO2006070924A1 (en) 2006-07-06

Family

ID=36615029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/024240 WO2006070924A1 (en) 2004-12-28 2005-12-27 Coke pushing method and coke pusher machine

Country Status (5)

Country Link
EP (1) EP1832644B1 (en)
KR (1) KR100893468B1 (en)
CN (1) CN101048481B (en)
TW (1) TWI299359B (en)
WO (1) WO2006070924A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111151089A (en) * 2019-12-25 2020-05-15 太原重工股份有限公司 Coke oven dust pelletizing system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101453659B1 (en) 2013-03-18 2014-10-22 주식회사 포스코 Apparatus for beating aleveller-beam of a extruder
KR101710093B1 (en) 2015-08-21 2017-02-24 주식회사 포스코 Apparatus of shovel of coke oven for preventing oven-sticking by coke
JP6530090B1 (en) * 2018-02-09 2019-06-12 住友重機械プロセス機器株式会社 Guide car

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0726266A (en) * 1993-07-08 1995-01-27 Kawasaki Steel Corp Apparatus for discharging oven front coke from coking chamber of coke oven
JP2003172606A (en) * 2001-12-10 2003-06-20 Nkk Corp Tip position-instructing apparatus and method for coke push-out ram

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4123357B2 (en) * 2001-11-15 2008-07-23 Jfeスチール株式会社 Coke extrusion machine and coke extrusion method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0726266A (en) * 1993-07-08 1995-01-27 Kawasaki Steel Corp Apparatus for discharging oven front coke from coking chamber of coke oven
JP2003172606A (en) * 2001-12-10 2003-06-20 Nkk Corp Tip position-instructing apparatus and method for coke push-out ram

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1832644A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111151089A (en) * 2019-12-25 2020-05-15 太原重工股份有限公司 Coke oven dust pelletizing system
CN111151089B (en) * 2019-12-25 2022-03-29 太原重工股份有限公司 Coke oven dust pelletizing system

Also Published As

Publication number Publication date
EP1832644A4 (en) 2011-03-02
KR20070072896A (en) 2007-07-06
TWI299359B (en) 2008-08-01
EP1832644B1 (en) 2012-04-25
CN101048481B (en) 2011-06-08
EP1832644A1 (en) 2007-09-12
CN101048481A (en) 2007-10-03
KR100893468B1 (en) 2009-04-17
TW200641108A (en) 2006-12-01

Similar Documents

Publication Publication Date Title
JP4830487B2 (en) Coke extrusion method, coke extrusion apparatus and coke manufacturing method
US4375388A (en) Apparatus for filling carbonizing chamber of coke oven with powered coal with vibration applied thereto
US10233392B2 (en) Method for optimizing coke plant operation and output
WO2007149642A3 (en) Method and apparatus for compacting coal for a coal coking process
JPH0768523B2 (en) Coke oven charging material consolidation method and apparatus
WO2006070924A1 (en) Coke pushing method and coke pusher machine
JPS6211794A (en) Device for vibrating and consolidating coal to be fed to coke oven
WO2012018712A3 (en) Method and apparatus for compacting coal for a coal coking process
JPS5918436B2 (en) Pulverized coal pressurization and vibration filling equipment in coke ovens
JP5034339B2 (en) Coke extrusion equipment
JP5686384B2 (en) Method and apparatus for continuously producing a lump of coal suitable for a coke oven room
JP5256587B2 (en) Coke extrusion method and coke manufacturing method
JP5023578B2 (en) Coke extrusion method and coke manufacturing method
JP4977868B2 (en) Coke extrusion method and coke manufacturing method
JP4994931B2 (en) Method for Estimating Coke Pushing Force in Chamber Type Coke Oven and Method for Judging Extrudability of Coke Oven
JP2008007538A (en) Coke extruding method and coke producing method
JP2861837B2 (en) Coal charging control method for coke oven
JP4175199B2 (en) Coke oven carbonization chamber repair method
JP2008007548A (en) Coke pushing method and coke pushing apparatus
JPS6111301A (en) Method and device for supplying packaging machine with water-in-oil type emulsion detonator
JP2008007547A (en) Coke pushing method and coke pushing apparatus
JP3712843B2 (en) Compound filling method and apparatus in CIP molding of sleeve for steel outlet of converter
CN206614644U (en) A kind of brickmaking machine powder feeding device
JP2014168909A (en) Method for manufacturing graphite material
JP5983921B2 (en) Method and apparatus for measuring the amount of protrusion during coke cake extrusion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005844863

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580037016.9

Country of ref document: CN

Ref document number: 1020077009604

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005844863

Country of ref document: EP