WO2006069924A1 - Radarsystem zur überwachung von zielen in verschiedenen entfernungsbereichen - Google Patents

Radarsystem zur überwachung von zielen in verschiedenen entfernungsbereichen Download PDF

Info

Publication number
WO2006069924A1
WO2006069924A1 PCT/EP2005/056864 EP2005056864W WO2006069924A1 WO 2006069924 A1 WO2006069924 A1 WO 2006069924A1 EP 2005056864 W EP2005056864 W EP 2005056864W WO 2006069924 A1 WO2006069924 A1 WO 2006069924A1
Authority
WO
WIPO (PCT)
Prior art keywords
radar
radar system
signal
mixer
scanner
Prior art date
Application number
PCT/EP2005/056864
Other languages
English (en)
French (fr)
Inventor
Thomas Brosche
Sven Czarnecki
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to AU2005321332A priority Critical patent/AU2005321332A1/en
Priority to EP05821748A priority patent/EP1831720A1/de
Priority to JP2007547469A priority patent/JP2008525774A/ja
Priority to BRPI0507128-3A priority patent/BRPI0507128A/pt
Priority to US11/794,282 priority patent/US20080303709A1/en
Publication of WO2006069924A1 publication Critical patent/WO2006069924A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • G01S13/56Discriminating between fixed and moving objects or between objects moving at different speeds for presence detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted, pulse modulated waves
    • G01S13/106Systems for measuring distance only using transmission of interrupted, pulse modulated waves using transmission of pulses having some particular characteristics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted, pulse modulated waves
    • G01S13/18Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein range gates are used
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • G01S13/522Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves

Definitions

  • Radar system for monitoring targets in different distance ranges
  • the invention relates to a radar system for monitoring targets in different distance ranges.
  • CW radar-based burglar alarm systems consist essentially of a simple continuous wave (CW) radar.
  • the Doppler signal produced by moving objects is evaluated and used as a criterion for an alarm.
  • the distance range to be monitored is determined by the range of the CW radar and can not be precisely adjusted or not adjusted, since the range of the system is essentially limited by the transmission power and thus can not be determined with sufficient accuracy.
  • targets with different radar backscatter cross sections also have different ranges.
  • other radar modulation techniques must be used. It is well known that a distance measurement can be made with a pulse radar.
  • a CW carrier signal is amplitude modulated in a pulse shape and transmitted via an antenna. The carrier pulse is reflected at the target object and from the time between emission of the pulse and the arrival of the reflected radiation, the target distance and - using the Doppler effect - the relative speed of the target object can be determined.
  • the receiving side, the Radarsendepulsformer supplied high-frequency signal and the Radarempfangssignal is fed to a mixer, the output of the mixer is a signal evaluation on at least one
  • the sidelobes / sidebands in the frequency spectrum fall off faster or faster at a considered bandwidth. This is due to the relatively long compared to the prior art radar pulses.
  • the hardware cost is low, since only a slight modification of a simple CW radar is necessary. Due to the favorable spectral signal distribution (side lobe limitation), the approval requirements for the released frequency ranges can be adhered to without much effort.
  • a simple and low-effort range limitation for a hybrid form of CW and pulse radar can be realized. There is the possibility of a subdivision into different range limits for target object classification / separation. The current measuring range is not recognizable from the outside, which is particularly advantageous for burglar alarm systems. If a target object moves into the monitoring range of the set range limit, then a Doppler signal can be measured on the basis of the radial direction of movement of the target object relative to the radar sensor.
  • FIG. 1 is a block diagram of the radar system according to the invention.
  • FIG. 2 shows a time diagram of the radar transmission pulses and the reception-side sampling.
  • the structure of the radar system according to the invention is shown in FIG.
  • the oscillator 1 generates a high-frequency signal, e.g. in the GHz range, which passes through the directional coupler 2 and the RF switch 3 (Radarsendepulsformer) to the transmitting antenna 4 and is emitted from this.
  • a portion of the transmission power of the oscillator 1 is coupled to the directional coupler 2 and fed to the receiving mixer 6.
  • Target object 10 reflected electromagnetic wave is passed via the receiving antenna 5 to the receiving mixer 6.
  • a low-frequency Doppler signal whose frequency is proportional to the relative speed between the radar sensor and the target object, is produced at the output of the receiving mixer 6.
  • the mixer output signal is passed through the low frequency switch 7, which acts as a sampler and which is part of the sample and hold stage 8.
  • the output signal of the mixer 6 can also be fed directly to the signal evaluation 9 (without switch 7 and sample and hold stage).
  • Figure 2 For a radar system with range limitation can be realized in which the sidelobes / sidebands drop rapidly in the frequency spectrum, as shown in Figure 2 switch control is applied.
  • the upper and middle parts (zoomed) of Figure 2 show the modulation of the transmission signal.
  • the lower part of Figure 2 shows the switch control in the receiving branch, also in zoomed representation.
  • Radar pulses are, for example, 10 ⁇ s long with a period of 25 ⁇ s.
  • the RF switch 3 is controlled with the control signal TX so that a transmission pulse with a relatively long pulse duration ⁇ j , for example in the ⁇ s range, is emitted with steep edges.
  • the range limit R of the system is set (set delay time).
  • the set range R of the surveillance area can be determined using the familiar formula from radar technology
  • the pulse / sampling duration TR of the low-frequency switch 7 can also correspond to the time ⁇ t.
  • the mixer output signal directly (11) can be used for the signal evaluation 9, the range is not additionally limited and thus represents the maximum range according to the aforementioned radar equation.
  • the sample plus RX (TR) delayed with respect to the transmit pulse TX monitors the entire measuring range at intervals of each delay setting ( ⁇ t-TR)
  • a plurality of samplers connected in parallel may be provided, the delay setting and the sampling times of which are selected so that they can not be operated overlapping in time staggered during the transmission of a radar pulse. This allows you to monitor targets in multiple ranges (zones).
  • the system behaves essentially like a CW radar in the set monitoring area and provides the Doppler signal of a moving target.
  • a better distinction can be made for multi-objective scenarios and, if appropriate, a target object classification.
  • sabotage protection can be implemented for impermissible masking and masking attempts of the system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Bei einem Radarsystem zur Überwachung von Zielen in verschiedenen Entfernungszonen wer den Radarpulse ausgesendet, deren Länge größer ist als es der Laufzeit zwischen zwei voneinander zu trennenden Objekten in verschiedenen Entfernungen entspricht. Empfangsseitig wird das dem Radarsendepulsformer (3) zugeleitete Hochfrequenzsignal und das Radarempfangssignal einem Mischer (6) zugeführt. Das Ausgangssignal des Mischers (6) wird einer Signalauswertung (9) über mindestens einen Abtaster (7, 8) zugeführt, dessen Verzögerungseinstellung gegenüber der Anstiegsflanke des Radarsendepulses die Reichweitengrenze des zu überwachenden Entfernungsbereiches vorgibt.

Description

Radarsystem zur Überwachung von Zielen in verschiedenen Entfernungsbereichen
Stand der Technik
Die Erfindung betrifft ein Radarsystem zur Überwachung von Zielen in verschiedenen Entfernungsbereichen.
Die meisten heutigen auf Radar basierenden Einbrecheralarmanlagen bestehen im wesentlichen aus einem einfachen CW (continous wave) Radar. Bei diesem Radarprinzip wird das durch bewegte Objekte entstehenden Dopplersignal ausgewertet und als Kriterium für eine Alarm herangezogen. Der zu überwachende Entfernungsbereich wird durch die Reichweite des CW-Radars bestimmt und kann nicht exakt eingestellt bzw. nicht verstellt werden, da die Reichweite des Systems im wesentlichen durch die Sendeleistung beschränkt wird und diese somit nicht hinreichend genau bestimmt werden kann. Insbesondere besitzen Ziele mit unterschiedlichen Radar-Rückstreuquerschnitten auch unterschiedliche Reichweiten. Um Abstände einzustellen und/oder messen zu können, müssen andere Radar-Modulationsverfahren verwendet werden. Es ist allgemein bekannt, dass eine Abstandsmessung mit einem Pulsradar vorgenommen werden kann. Hierbei wird ein CW-Trägersignal pulsförmig amplitudenmoduliert und über eine Antenne ausgesendet. Der Trägerpuls wird am Zielobjekt reflektiert und aus der Zeit zwischen Aussenden des Pulses und dem Eintreffen der reflektierten Strahlung können die Zielentfernung und - unter Ausnutzung des Dopplereffekts - die Relativgeschwindigkeit des Zielobjektes bestimmt werden.
Ein auf diesem Prinzip basierendes System ist in abgewandelter Form in der US 6 239 736 Bl beschrieben. Hierbei wird ein Burst-Oszillator verwendet, der in kurzer Folge Pulse aussendet, die mit sich selbst oder den folgend erzeugten Pulsen gemischt werden, um eine Zielinformation über einen Entfernungsbereich zu erhalten. Ein weiteres auf diesem Prinzip basierendes Verfahren gemäß der DE 199 63 006 Al beschreibt das Erzeugen einer veränderlichen virtuellen Barriere in einem bestimmten Abstand zum Sensor bzw. mit einer bestimmten Länge bei gleichzeitiger Entfernungs- und
Geschwindigkeitsmessung. In der DE 199 63 006 Al wird ebenfalls vorgeschlagen, die empfangene Pulse mit Referenzpulsen zu mischen, die eine zum Empfangspuls abweichende verstellbare Pulsdauer besitzen.
Vorteile der Erfindung
Mit den Maßnahmen des Anspruchs 1, d.h. es werden Radarpulse ausgesendet, deren Länge größer ist als es der Laufzeit zwischen zwei voneinander zu trennenden Objekten in verschiedenen Entfernungen bzw. Entfernungsbereichen entspricht, empfangsseitig wird das dem Radarsendepulsformer zugeleitete Hochfrequenzsignal und das Radarempfangssignal einem Mischer zugeführt, das Ausgangssignal des Mischers wird einer Signalauswertung über mindestens einen
Abtaster zugeführt, dessen Verzögerungseinstellung gegenüber der Anstiegsflanke des Radarsendepulses die Reichweitengrenze des zu überwachenden
Entfernungsbereiches vorgibt,
fallen die Nebenkeulen/Seitenbänder im Frequenzspektrum bei einer betrachteten Bandbreite stärker bzw. schneller ab. Dies liegt an den abweichend zum Stand der Technik relativ langen Radarpulsen. Der Hardwareaufwand ist gering, da nur eine geringe Modifikation eines einfachen CW-Radars notwendig ist. Durch die günstige spektrale Signalverteilung (Nebenkeulenbegrenzung) können die Zulassungsvorschriften für die freigegebenen Frequenzbereiche ohne großen Aufwand eingehalten werden. Es kann eine einfache und aufwandsarme Reichweitenbegrenzung für eine Mischform aus CW- und Puls-Radar realisiert werden. Es besteht die Möglichkeit einer Unterteilung in verschiedene Reichweitengrenzen zur Zielobjektklassifizierung/-trennung. Der aktuelle Messbereich ist von außen nicht erkennbar, was insbesondere für Einbruchsalarmanlagen vorteilhaft ist. Bewegt sich ein Zielobjekt in den Überwachungsbereich der eingestellten Reichweitengrenze, dann kann anhand der zum Radarsensor radialen Bewegungsrichtung des Zielobjekts ein Dopplersignal gemessen werden.
Zeichnungen
Anhand der Zeichnungen werden Ausfuhrungsbeispiele des erfindungsgemäßen Radarsystems erläutert. Es zeigen:
Figur 1 ein Blockschaltbild für das Radarsystem nach der Erfindung,
Figur 2 ein Zeitdiagramm der Radarsendepulse und der empfangsseitigen Abtastung.
Beschreibung von Ausführungsbeispielen
Der Aufbau des Radarsystems nach der Erfindung ist in Figur 1 dargestellt. Der Oszillator 1 erzeugt ein hochfrequentes Signal z.B. im GHz-Bereich, das über den Richtkoppler 2 und den HF-Schalter 3 (Radarsendepulsformer) zur Sendeantenne 4 gelangt und von dieser abgestrahlt wird. Ein Teil der Sendeleistung des Oszillators 1 wird am Richtkoppler 2 ausgekoppelt und dem Empfangsmischer 6 zugeführt. Die von
Zielobjekt 10 reflektierte elektromagnetische Welle wird über die Empfangsantenne 5 auf den Empfangsmischer 6 geleitet. Bei einem bewegten Zielobjekt 10 entsteht am Ausgang des Empfangsmischers 6 ein niederfrequentes Dopplersignal, dessen Frequenz proportional zur Relativgeschwindigkeit zwischen dem Radarsensor und dem Zielobjekt ist. Das Mischerausgangssignal wird über den NF-Schalter 7, der als Abtaster wirkt und der ein Teil der Sample and Hold-Stufe 8 ist, geführt. In der Signalauswertung 9 können mehrere Empfangskanäle für die Signalauswertung zusammengefasst werden. Zusätzlich kann das Ausgangssignal des Mischers 6 auch direkt (ohne Schalter 7 und Sample and Hold Stufe) der Signalauswertung 9 zugeführt werden.
Damit ein Radarsystem mit Reichweitenbegrenzung realisiert werden kann, bei dem die Nebenkeulen/Seitenbänder im Frequenzspektrum schnell abfallen, wird eine wie in Figur 2 dargestellte Schalteransteuerung angesetzt. Der obere und der mittlere Teil (gezoomt) der Figur 2 zeigen die Modulation des Sendesignals. Der untere Teil der Figur 2 zeigt die Schalteransteuerung im Empfangszweig, ebenfalls in gezoomter Darstellung. Die - A -
Radarpulse sind beispielsweise 10 μs lang bei einer Periodendauer von 25 μs. Der HF- Schalter 3 wird mit dem Steuersignal TX so angesteuert, dass ein Sendepuls mit einer relativ langen Pulsdauer τj, z.B. im μs Bereich, mit steilen Flanken ausgesendet wird. Durch die Realisierung einer langen Pulsdauer im Sendesignal erhält man das gewünschte Sendesignalspektrum mit schnell abfallenden Seitenbändern.
Mit dem NF-Schalter 7 wird über die Zeit Δt, von der steigenden Flanke des TX-Pulses bis zur fallenden Flanke des RX-Pulses, die Reichweitengrenze R des Systems eingestellt (eingestellte Verzögerungszeit). Die eingestellte Reichweite R des Überwachungsbereichs lässt sich mit der bekannten Formel aus der Radartechnik
2 berechnen, mit c Lichtgeschwindigkeit im entsprechenden Medium. Für die Puls/Sampledauer TR des NF-Schalters 7 gilt: τR <= τT. Diese wird in dem in Figur 2 dargestellten Beispiel auf einen Wert TR< τp beschränkt.
Dadurch erreicht man, dass die Empfangsleistung des am jeweiligen Ziel rückgestreuten Signals innerhalb des überwachten Entfernungsbereich näherungsweise konstant bleibt und bei der voreingestellten Reichweite R ein möglichst abrupter Übergang zum nicht sichtbaren Bereich entsteht. Hierdurch können mehrere Entfernungszonen gleichzeitig parallel überwacht werden. Die Puls/Sampledauer TR des NF-Schalters 7 kann aber auch der Zeit Δt entsprechen. Gleichzeitig kann das Mischer- Ausgangssignal direkt (11) für die Signalauswertung 9 verwendet werden, dessen Reichweite nicht zusätzlich beschränkt wird und somit die maximale Reichweite entsprechend der vorgenannten Radargleichung darstellt. Der gegenüber dem Sendepuls TX verzögerte Sampleplus RX (TR) überwacht bei jeder Verzögerungseinstellung (Δt- TR) den gesamten Messbereich im Abstand von
0m bis zur eingestellten Reichweitengrenze R. Für die Samplepulse RX werden Werte im Nanosekundenbereich gewählt.
Es können mehrere parallel geschaltete Abtaster vorgesehen sein, deren Verzögerungseinstellung und deren Abtastzeiten so gewählt sind, dass sie nicht überlappend zeitlich gestaffelt während der Aussendung eines Radarpulses betreibbar sind. Dadurch lassen sich Ziele in mehreren Entfernungsbereichen (-zonen) überwachen.
Das System verhält sich im eingestellten Überwachungsbereich im wesentlichen wie ein CW-Radar und liefert das Dopplersignal eines sich bewegenden Zielobjektes. Durch den Vergleich mehrerer Entfernungsbereiche kann eine bessere Unterscheidung bei Mehrzielszenarien und gegebenenfalls eine Zielobjektklassifϊzierung vorgenommen werden. Da mit diesem System auch kurze Reichweitengrenzen (R<lm) eingestellt werden können, kann hiermit ein Sabotageschutz (Antimask) für unzulässige Maskierungs- und Abdeckversuche des Systems realisiert werden.

Claims

Patentansprüche
1. Radarsystem zur Überwachung von Zielen in verschiedenen Entfernungsbereichen mit folgenden Maßnahmen: es werden Radarpulse ausgesendet, deren Länge größer ist als es der Laufzeit zwischen zwei voneinander zu trennenden Objekten in verschiedenen Entfernungen bzw. Entfernungsbereichen entspricht. empfangsseitig wird das dem Radarsendepulsformer (3) zugeleitete
Hochfrequenzsignal und das Radarempfangssignal einem Mischer (6) zugeführt, das Ausgangssignal des Mischers (6) wird einer Signalauswertung (9) über mindestens einen Abtaster (7, 8) zugeführt, dessen Verzögerungseinstellung gegenüber der Anstiegsflanke des Radarsendepulses die Reichweitengrenze des zu überwachenden Entfernungsbereiches vorgibt.
2. Radarsystem nach Anspruch 1, dadurch gekennzeichnet, dass das Ausgangssignal des Mischer (6) der Signalauswertung (9) über mehrere parallel geschaltete Abtaster (7,
8) zugeführt wird, wobei jeder Abtaster (7, 8) eine andere Verzögerungseinstellung für eine entsprechend andere Reichweitengrenze aufweist.
3. Radarsystem nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass parallel zu dem mindestens einen Abtaster (7, 8) zwischen Mischer (6) und Signalauswertung (9) eine
Direktverbindung (11) vorgesehen ist.
4. Radarsystem nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Abtaster (7, 8) aus einem Schalter (7) mit nachfolgendem Abtast-Halte-Glied (8) besteht).
5. Radarsystem nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Signalauswertung (9) das Dopplersignal mindestens eines sich bewegenden Zielobjektes auswertet.
6. Radarsystem nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Verzögerungseinstellung des mindestens einen Abtasters (7, 8) sowie die Dauer der Abtastung so gewählt ist, dass die Abtastung noch während der Aussendung des Radarpulses erfolgt.
7. Radarsystem nach einem der Ansprüche 2 bis 6, dadurch gekennzeichnet, dass bei mehreren parallel geschalteten Abtastern (7, 8) deren Verzögerungseinstellung und deren Abtastzeiten so gewählt sind, dass sie nicht überlappend zeitlich gestaffelt während der Aussendung eines Radarpulses betreibbar sind.
8. Radarsystem nach einem der Ansprüche 1 bis 7, dadruch gekennzeichnet, dass durch einen Vergleich innerhalb mehrerer Entfernungsbereiche eine Unterscheidung von Objekten bei Mehrzielszenarien vorgenommen wird und gegebenenfalls eine Zielobjektklassifizierung.
PCT/EP2005/056864 2004-12-23 2005-12-16 Radarsystem zur überwachung von zielen in verschiedenen entfernungsbereichen WO2006069924A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2005321332A AU2005321332A1 (en) 2004-12-23 2005-12-16 Radar system for monitoring targets in different distance ranges
EP05821748A EP1831720A1 (de) 2004-12-23 2005-12-16 Radarsystem zur überwachung von zielen in verschiedenen entfernungsbereichen
JP2007547469A JP2008525774A (ja) 2004-12-23 2005-12-16 種々異なる距離範囲内の物標を監視するためのレーダシステム
BRPI0507128-3A BRPI0507128A (pt) 2004-12-23 2005-12-16 sistema de radar para monitoramento de alvos em diferentes faixas de distáncia
US11/794,282 US20080303709A1 (en) 2004-12-23 2005-12-16 Radar System For Monitoring Targets in Different Distance Ranges

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004062023.7 2004-12-23
DE102004062023.7A DE102004062023B4 (de) 2004-12-23 2004-12-23 Radarsystem zur Überwachung von Zielen in verschiedenen Entfernungsbereichen

Publications (1)

Publication Number Publication Date
WO2006069924A1 true WO2006069924A1 (de) 2006-07-06

Family

ID=35736335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/056864 WO2006069924A1 (de) 2004-12-23 2005-12-16 Radarsystem zur überwachung von zielen in verschiedenen entfernungsbereichen

Country Status (12)

Country Link
US (1) US20080303709A1 (de)
EP (1) EP1831720A1 (de)
JP (1) JP2008525774A (de)
KR (1) KR20070086533A (de)
CN (1) CN101111780A (de)
AU (1) AU2005321332A1 (de)
BR (1) BRPI0507128A (de)
DE (1) DE102004062023B4 (de)
FR (1) FR2880133B1 (de)
GB (1) GB2421650B (de)
IT (1) ITMI20052402A1 (de)
WO (1) WO2006069924A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2051098A1 (de) 2007-10-19 2009-04-22 Ford Global Technologies, LLC Verfahren und System für Anwesenheitsdetektion
KR101044000B1 (ko) * 2008-11-13 2011-06-24 엘아이지넥스원 주식회사 도플러 주파수 측정방법과 장치 및 이를 이용한 레이더 세트의 시험 시스템
US7952515B2 (en) * 2009-02-26 2011-05-31 Mcewan Technologies, Llc Range gated holographic radar
KR101378281B1 (ko) * 2012-08-22 2014-03-25 주성진 전파신호를 이용한 복수표적 검지장치
CN103308911B (zh) * 2013-06-06 2015-09-16 重庆大学 基于距离欺骗技术的微位移测量方法及系统
KR101645681B1 (ko) * 2014-02-25 2016-08-04 주성진 무인보안감시시스템의 복수표적 검지장치
US10620298B2 (en) 2016-08-26 2020-04-14 Infineon Technologies Ag Receive chain configuration for concurrent multi-mode radar operation
DE102018200755A1 (de) * 2018-01-18 2019-07-18 Robert Bosch Gmbh Verfahren und Vorrichtung zum Plausibilisieren einer Querbewegung
EP3865899A1 (de) 2020-02-14 2021-08-18 UTC Fire & Security EMEA BVBA Puls-doppler-radar mit entfernungsauflösung
WO2021189438A1 (zh) * 2020-03-27 2021-09-30 深圳市速腾聚创科技有限公司 基于连续波的测距方法、装置和激光雷达

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0718637A2 (de) * 1994-12-20 1996-06-26 Honda Giken Kogyo Kabushiki Kaisha Radarsystem
US6121915A (en) * 1997-12-03 2000-09-19 Raytheon Company Random noise automotive radar system
US6215438B1 (en) * 1996-06-28 2001-04-10 Cambridge Consultants Limited Vehicle radar system
US6232910B1 (en) * 1998-02-20 2001-05-15 Amerigon, Inc. High performance vehicle radar system
DE10142171A1 (de) * 2001-08-29 2003-03-20 Bosch Gmbh Robert Radaranordnung

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8021849D0 (en) * 1980-07-07 2003-06-18 Emi Ltd A radar apparatus
GB2315628B (en) * 1986-04-17 1998-05-13 Plessey Co Plc Radar systems
CA2113454A1 (en) * 1992-05-18 1993-11-25 Werner Sieprath Process for monitoring a zone
US5608404A (en) * 1993-06-23 1997-03-04 The United States Of America As Represented By The United States Department Of Energy Imaging synthetic aperture radar
US6239736B1 (en) 1999-04-21 2001-05-29 Interlogix, Inc. Range-gated radar motion detector
DE19963006A1 (de) 1999-12-24 2001-06-28 Bosch Gmbh Robert Verfahren und Vorrichtung zur Erfassung und Auswertung von Objekten im Umgebungsbereich eines Fahrzeuges
US6362776B1 (en) * 2000-02-04 2002-03-26 Honeywell International Inc. Precision radar altimeter with terrain feature coordinate location capability
JP3610052B2 (ja) * 2002-04-18 2005-01-12 三菱電機株式会社 レーダ装置
JP4393084B2 (ja) * 2003-03-04 2010-01-06 富士通テン株式会社 レーダ装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0718637A2 (de) * 1994-12-20 1996-06-26 Honda Giken Kogyo Kabushiki Kaisha Radarsystem
US6215438B1 (en) * 1996-06-28 2001-04-10 Cambridge Consultants Limited Vehicle radar system
US6121915A (en) * 1997-12-03 2000-09-19 Raytheon Company Random noise automotive radar system
US6232910B1 (en) * 1998-02-20 2001-05-15 Amerigon, Inc. High performance vehicle radar system
DE10142171A1 (de) * 2001-08-29 2003-03-20 Bosch Gmbh Robert Radaranordnung

Also Published As

Publication number Publication date
ITMI20052402A1 (it) 2006-06-24
US20080303709A1 (en) 2008-12-11
FR2880133B1 (fr) 2009-04-24
EP1831720A1 (de) 2007-09-12
GB2421650A (en) 2006-06-28
BRPI0507128A (pt) 2007-06-19
CN101111780A (zh) 2008-01-23
GB0525721D0 (en) 2006-01-25
FR2880133A1 (fr) 2006-06-30
DE102004062023B4 (de) 2021-12-23
DE102004062023A1 (de) 2006-07-13
KR20070086533A (ko) 2007-08-27
JP2008525774A (ja) 2008-07-17
AU2005321332A1 (en) 2006-07-06
GB2421650B (en) 2008-04-16

Similar Documents

Publication Publication Date Title
EP2507649B1 (de) Verfahren zum eindeutigen bestimmen einer entfernung und/oder einer relativen geschwindigkeit eines objektes, fahrerassistenzeinrichtung und kraftfahrzeug
WO2006069924A1 (de) Radarsystem zur überwachung von zielen in verschiedenen entfernungsbereichen
DE60132605T2 (de) Fmcw-radarsystem
DE102007013266B4 (de) Radarvorrichtung
DE19754720C2 (de) Verfahren zum Betrieb eines Radarsystems
EP1051639B1 (de) Radar-sensorvorrichtung
DE60035314T2 (de) Fahrzeug-Radargerät
EP1340097B1 (de) Radareinrichtung und verfahren zum betreiben einer radareinrichtung
DE602004011514T2 (de) Verfahren und Vorrichtung zur Entfernungsmessung mit einem Pulsradar
DE102018123383A1 (de) Radarerfassung mit Störungsunterdrückung
DE69826070T2 (de) Frequenzmoduliertes Dauerstrichradarsystem
DE10059673A1 (de) Impuls-Radarverfahren sowie Impuls-Radarsensor und System
EP0980008A2 (de) Verfahren zum Betrieb eines Radarsystems
DE10050278A1 (de) Verfahren und Vorrichtung zur Bestimmung von Abstand und Relativgeschwindigkeit eines entfernten Objektes
DE102013200404A1 (de) Verfahren zur zyklischen Messung von Abständen und Geschwindigkeiten von Objekten mit einem FMCW-Radarsensor
DE102008014787A1 (de) Verfahren zum Erfassen einer Interferenz in einem Radarsystem und Radar, das das gleiche verwendet
EP1864155A1 (de) Verfahren und vorrichtung zur abstands- und relativgeschwindigkeitsmessung mehrerer objekte
DE10208332A1 (de) Pulsradarvorrichtung und Verfahren zum Erfassen, zum Detektieren und/oder zum Auswerten von mindestens einem Objekt
EP2414862B1 (de) Mehrstrahlradarsensorvorrichtung und verfahren zum bestimmen eines abstandes
EP0919834B1 (de) Verfahren zur Detektion eines Zieles mittels einer HPRF-Radaranlage
DE102006039517A1 (de) Verfahren zum Betreiben eines Radarsystems und Radarsystem
EP3009858B1 (de) Wolkenradar
DE19902076B4 (de) Sensor zum Messen eines Abstands zu einem Objekt
EP1516200B1 (de) Verfahren und vorrichtung zum erzeugen von hf-signalen zum bestimmen eines abstandes und/oder einer geschwindigkeit eines objektes
DE19604676A1 (de) Verfahren zur Unterdrückung von Störsignalen bei einem Pulsdopplerradar

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2005821748

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005321332

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2005321332

Country of ref document: AU

Date of ref document: 20051216

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005321332

Country of ref document: AU

ENP Entry into the national phase

Ref document number: PI0507128

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 200580044254.2

Country of ref document: CN

Ref document number: 1020077014168

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007547469

Country of ref document: JP

Ref document number: 2774/CHENP/2007

Country of ref document: IN

WWP Wipo information: published in national office

Ref document number: 2005821748

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11794282

Country of ref document: US