WO2006068193A1 - Thermoplastic resin composition and molded article - Google Patents

Thermoplastic resin composition and molded article Download PDF

Info

Publication number
WO2006068193A1
WO2006068193A1 PCT/JP2005/023519 JP2005023519W WO2006068193A1 WO 2006068193 A1 WO2006068193 A1 WO 2006068193A1 JP 2005023519 W JP2005023519 W JP 2005023519W WO 2006068193 A1 WO2006068193 A1 WO 2006068193A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
resin composition
polymer
parts
mass
Prior art date
Application number
PCT/JP2005/023519
Other languages
French (fr)
Japanese (ja)
Inventor
Madoka Furuta
Original Assignee
Toagosei Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co., Ltd. filed Critical Toagosei Co., Ltd.
Publication of WO2006068193A1 publication Critical patent/WO2006068193A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2400/00Characterised by the use of unspecified polymers
    • C08J2400/14Water soluble or water swellable polymers, e.g. aqueous gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Definitions

  • the present invention relates to a thermoplastic resin composition mainly composed of a condensation polymer such as a polyester resin and a molded product thereof, and more specifically, a thermoplastic resin that provides a molded product that exhibits excellent dimensional stability.
  • the present invention relates to a composition and a molded article thereof.
  • Condensation polymers such as polyester resins exhibit excellent mechanical strength and are used in various fields such as bottles, sheets, and films.
  • polyester resins are widely used as food packaging materials such as bottles and blister packs because they exhibit excellent transparency and hygiene.
  • the movement to collect and reuse waste resin has become active in consideration of the reduction of environmental impact, and in particular, the amount of collected and recycled polyethylene terephthalate (hereinafter referred to as PET) resin bottles.
  • PET polyethylene terephthalate
  • Usage is increasing year by year.
  • the main demand for recycled PET resin products is egg pack sheets, clothes and power. This is a fiber for tapping.
  • the amount of recycled PET resin recovered has increased, the demand for recycled products such as sheets and fibers has been stagnant.
  • PET resin is suitable for molded products having a small diameter such as fibers and molded products having a small cross-sectional area such as a film because of its low melt viscosity and low melt tension.
  • PET resin has a large diameter or large cross-sectional area because a draw-down phenomenon occurs during molding when its melt tension is excessively low and a molded product with a desired size cannot be obtained. In particular, it is not suitable for extruded products.
  • PET resin is prone to uneven thickness due to the drawdown phenomenon during vacuum forming. Therefore, the low viscosity and low melt tension inherent in PET resin are barriers to the development of new products.
  • Patent Literature 1 and Patent Literature 2 disclose a method of blending a polymer having an epoxy group with PET resin.
  • Patent Documents 3 and 4 disclose a method of blending a compound containing an epoxy group and an organic alkali metal salt into a PET resin.
  • Patent Document 1 Japanese Patent No. 2675718
  • Patent Document 2 Pamphlet of International Publication No. 03Z066704
  • Patent Document 3 Republished Patent WO01 / 094443
  • Patent Document 4 Japanese Unexamined Patent Application Publication No. 2004-155968
  • thermoplastic resin composition has reactivity with a thermoplastic resin (A) having a functional group having reactivity with an epoxy group, a polymer (B) having an epoxy group, and an epoxy group. And a catalyst (C) that promotes the reaction of the functional group and the epoxy group.
  • the content of the polymer (B) is set to 0.:! To 5 parts by mass per 100 parts by mass of the thermoplastic resin (A).
  • the content of catalyst (C), that is set to the thermoplastic resin (A) 100 parts by mass of per 1. 0 X 10 one 6 ⁇ 50 X 10- 6 parts by weight.
  • thermoplastic resin (A) is preferably at least one selected from the group consisting of a polyester resin, a polycarbonate resin, a polyamide resin, a polyphenylene ether resin, and a polylactic acid resin.
  • the polymer) is preferably a vinyl polymer having an epoxy group.
  • the average number of epoxy groups in the polymer) is preferably 1.2 or more per molecule of the polymer (B), and the number average molecular weight of the polymer (B) is preferably 300 to 30000.
  • the catalyst (C) is preferably a metal carboxylate compound, more preferably a metal benzoate salt or a metal stearate salt.
  • thermoplastic resin composition further comprises a compound (D) different from the thermoplastic resin (A), having one carboxynole group, and the content of the compound (D) (a) 100 parts by mass of per 0. 3 X 1CT 6 ⁇ : 10 X 10_ Shi preferred that it is set to 6 parts by Les.
  • the compound (D) is preferably benzoic acid or stearic acid.
  • the thermoplastic resin composition has a master batch, and the master batch includes a part of the thermoplastic resin (soot), a polymer (soot), a catalyst (C), and
  • the thermoplastic resin composition is preferably prepared by mixing the master batch containing the compound (D) and the remainder of the thermoplastic resin ( ⁇ ).
  • the content of the thermoplastic resin ( ⁇ ) is 30 to 30 parts per 100 parts by mass in total of the thermoplastic resin ()), polymer), catalyst (C), and compound (D) in the masterbatch. It is preferably set to 85 parts by mass and the total content of the polymer (IV), the catalyst (C), and the compound (D) is set to 15 to 70 parts by mass.
  • the thermoplastic resin composition is a thermoplastic resin different from the thermoplastic resin ( ⁇ ). It further contains a plastic resin (E), and among the thermoplastic resins (A) and (E), only the thermoplastic resin (A) has a functional group having reactivity with an epoxy group. It is preferable to have a masterbatch.
  • the master batch contains the polymer (B), the catalyst (C), the compound (D), and the thermoplastic resin (E), and is heated by mixing the master batch with the thermoplastic resin (A). It is preferable that a plastic resin composition is prepared.
  • the polymer (B), the catalyst (C) and the polymer (B), the catalyst (C), the compound (D), and the thermoplastic resin (E) in the master batch per 100 parts by mass in total.
  • the total content of the compound (D) is preferably set to 15 to 70 parts by mass, and the content of the thermoplastic resin (E) is preferably set to 30 to 85 parts by mass.
  • thermoplastic resin (E) is preferably at least one selected from the group consisting of a polyolefin resin and a polystyrene resin.
  • thermoplastic resin composition obtained by molding the thermoplastic resin composition.
  • thermoplastic resin composition a molded article obtained by extrusion molding of the thermoplastic resin composition.
  • FIG. 1 is a graph showing the relationship between the concentration of catalyst (C) (aluminum stearate) in the thermoplastic resin composition according to the embodiment and the moldability (die swell evaluation).
  • acrylic and methacryl are combined with (meth) acrylic resin.
  • thermoplastic resin composition includes a thermoplastic resin (A) having a functional group having reactivity with an epoxy group, a polymer (B) having an epoxy group, and an epoxy group. Containing a reactive functional group and a catalyst (C) that promotes the reaction of the epoxy group.
  • thermoplastic resin (A) is a main component of the thermoplastic resin composition and is responsible for the basic performance of a molded product obtained by molding the thermoplastic resin composition.
  • functional groups having reactivity with epoxy groups include carboxyl groups, hydroxyl groups, amide groups, and amino groups. Can be mentioned.
  • thermoplastic resin (A) examples include polyester resin, polyamide resin, polycarbonate resin, polylactic acid resin, poly-strength prolatatone resin, polybutylene succinate resin, poly (butylene succinate / adipate) resin, polyphenylene sulfide resin , Polyetherketone resin, polyetherimide resin, cellulose resin, carboxylic acid modified polyolefin resin, carboxylic acid modified styrene 'butadiene' styrene (SBS) resin, and carboxylic acid modified styrene.ethylene.butadiene.styrene (SEBS) resin.
  • SBS carboxylic acid modified styrene 'butadiene' styrene
  • SEBS carboxylic acid modified styrene.ethylene.butadiene.styrene
  • the thermoplastic resin (A) may be a recovered thermoplastic resin waste collected and reused, that is, a recycled thermoplastic resin.
  • the thermoplastic resin (A) is a polyester resin, a polycarbonate resin, or a polyamide resin that is preferred by at least one selected from the group consisting of a polyester resin, a polycarbonate resin, a polyamide resin, a polyphenylene ether resin, and a polylactic acid resin. Polylactic acid resins and polyester resins (including recycled polyester resins) in which these recycled resins are more preferred are even more preferable.
  • polyester resin examples include a condensation polymer or copolymer having a dicarboxylic acid unit and a diol unit as constituent units.
  • the raw material used for forming the dicarboxylic acid unit include an aromatic dicarboxylic acid and a diallyl ester or diallyl ester thereof.
  • aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, phthalenoic acid, naphthalene 1,4-dicarboxylic acid, naphthalene 2,6-dicarboxylic acid, bis (p-carboxyphenyl) methane, anthracene dicarboxylic acid, 4,4'-diphenyldicarboxylic acid and 4,4'-diphenyletherenocarboxylic acid.
  • aliphatic dicarboxylic acids or diallyl esters or diallyl esters thereof may be used as raw materials.
  • Specific examples of the aliphatic dicarboxylic acid include dartaric acid, adipic acid, sebacic acid, oxalic acid, and succinic acid.
  • raw materials used to form diol units include ethylene glycol, propylene glycol, 1,4-butanediol, neopentyl glycol, 1,5-pentanediol, 1,6- Hexanediol, decamethylene glycol, 1,4-cyclohexane dimethanol, 2,2_bis (4-hydroxyphenyl) propane, polyethylene glycol, poly 1,3-propylene glycol, and polytetramethylene glycol All I can get lost.
  • the polyester resin is preferably a crystalline homopolyethylene terephthalate resin or a crystalline copolyester resin.
  • the crystalline homopolyethylene terephthalate resin and the crystalline copolyester resin are terephthalic acid units and / or dicarboxylic acid units. It contains isophthalic acid units and contains ethylene glycol units as diol units.
  • the polyester resin is preferably an amorphous copolyester resin.
  • the amorphous copolyester resin contains terephthalic acid units as dicarboxylic acid units, ethylene glycol units and 1,4-cyclohexene as diol units. Includes sandimethanol units.
  • polyester resins include aromatic polyester resins such as polybutylene terephthalate and polyethylene 2,6 naphthalate, and aliphatic polyester resins such as polylactic acid resin.
  • a biodegradable polyester resin may constitute a polyester resin alone, or two or more may be combined to form a polyester resin.
  • the polymer) plays a role of increasing the melt viscosity and melt tension of the thermoplastic resin composition.
  • the polymer) is obtained by a polymerization reaction of two types of butyl monomers, and only one of the two types of vinyl monomers has an epoxy group.
  • Specific examples of the vinyl monomer having an epoxy group include glycidyl (meth) acrylate, (meth) acrylate ester having a cyclohexene oxide structure, and (meth) aryl glycidyl ether.
  • the butyl monomer having an epoxy group is preferably glycidyl (meth) acrylate.
  • bur monomer having no epoxy group examples include an alkyl group having 1 to 22 carbon atoms (the alkyl group may be a straight chain).
  • (meth) acrylic acid alkyl ester having an alkyl group having carbon atoms of :! to 22 include (meth) acrylic acid.
  • Methylol, (meth) acrylic acid ethyl, (meth) acrylic acid propyl, (meth) acrylic acid butyl, (meth) acrylic acid 2-ethylhexyl, (meth) acrylic acid cyclohexyl, and (meth) acrylic acid Stearyl is mentioned.
  • Bull monomers that do not have an epoxy group are (meth) acrylamide, (meth) acryl dial quinoleamide, bull esters, bull ethers, (meth) aryl ethers, or aromatic bull monomers. But you can use olefin monomer. Specific examples of the butyl esters include vinyl acetate, and specific examples of the aromatic vinyl monomer include styrene and ⁇ -methylstyrene. Specific examples of aolefin monomers include ethylene and propylene. These may be used alone or in combination of two or more.
  • the composition of the bull monomer in the polymer (B) is selected according to the object of the present invention and the function required for the molded article of the thermoplastic resin composition.
  • a vinyl monomer as the bull monomer in the polymer
  • a refractive index close to that of the thermoplastic resin (A).
  • the thermoplastic resin (A) is polyethylene terephthalate (refractive index: about 1.565)
  • an aromatic bull monomer having a high refractive index may be selected as a bull monomer having no epoxy group.
  • Specific examples of the aromatic vinyl monomer include styrene and ⁇ -methylstyrene.
  • a bull monomer having a low glass transition temperature As a bull monomer having no epoxy group.
  • the bull monomer having a low glass transition temperature include butyl (meth) acrylate and ethyl (meth) acrylate.
  • the polymer) functions as a compatibilizer, for example, when the polymer ( ⁇ ) is a polyethylene terephthalate ⁇ ⁇ ⁇ polyolefin blend composition or a polycarbonate / polyolefin blend composition, It is preferable to select an olefin fin monomer as a monomer.
  • the olefin fin monomer include ethylene, propylene, and butadiene.
  • the polymer ( ⁇ ) contains 1 to 70% by weight of a bully monomer unit having an epoxy group and 30 to 99% by weight of a bully monomer unit having no epoxy group. Contained at a ratio of It contains a butyl monomer unit having an epoxy group that is preferable to be contained in a proportion of 5 to 60% by mass, and a bulle monomer unit having no epoxy group in a proportion of 40 to 95% by mass. It contains 10 to 50% by mass of bulle monomer units having an epoxy group, which is more preferable, and a proportion of 50 to 90% by mass of bulle monomer units having no epoxy group. It is more preferable to contain.
  • the polymer cannot sufficiently increase the melt tension of the thermoplastic resin composition. May occur and the molded product may not be molded into the desired shape.
  • the thermoplastic resin composition is formed in the molding machine by an excessive crosslinking reaction between the thermoplastic resin (A) and the polymer (B). It may become a cross-linked product and the molded product may not be molded into the desired shape.
  • the average number of epoxy groups in the polymer (B) is preferably 1.2 or more per molecule of the polymer (B) 1.5 to: 100 is more preferable 2.0 ⁇ 50 are more preferred.
  • Polymer (B) The average number of epoxy groups per molecule is determined by the following formula (1).
  • a represents the proportion (% by mass) of butyl monomer units having an epoxy group contained in the polymer (B)
  • b represents the number average molecular weight of the polymer (B)
  • c represents It represents the molecular weight of a vinyl monomer having an epoxy group.
  • the polymer When the average number of epoxy groups in the polymer) is less than 1.2, the polymer) cannot sufficiently increase the melt viscosity and melt tension of the thermoplastic resin composition. In some cases, the occurrence of the drawdown phenomenon cannot be suppressed.
  • the number average molecular weight of the polymer (B) is preferably 300 to 30000 force, more preferably 350 to 25,000 force, and more preferably 400 to 20000 force.
  • the number average molecular weight of the polymer (B) is less than 300, the average of the number of epoxy groups that the polymer (B) has becomes low, so that the polymer (B) has a melt viscosity and a melt of the thermoplastic resin composition. The tension may not be increased sufficiently.
  • the number average molecular weight of the polymer (B) exceeds 30000, the average number of epoxy groups contained in the polymer (B) becomes high, so that the thermoplastic resin composition causes an excessive crosslinking reaction in the molding machine.
  • the polymer (B) is produced by any polymerization method such as a bulk polymerization method, a solution polymerization method, and an emulsion polymerization method.
  • the polymer (B) is preferably produced by a continuous bulk polymerization method, and more preferably produced by a high temperature continuous bulk polymerization method. Polymerization temperature of polymer (B) ⁇ 130 ⁇ 350.
  • C force is preferable, 150 to 330 o C force is preferable to S ⁇ , 170 to 270 o C force is more preferable.
  • a polymer (B) having a desired molecular weight can be obtained by using a radical polymerization initiator or a chain transfer agent without using a radical polymerization initiator or a chain transfer agent. ) Can be obtained efficiently.
  • the polymerization temperature is less than 130 ° C, a large amount of radical polymerization initiator or chain transfer agent is required to obtain the desired molecular weight, so the resulting polymer (B) contains a large amount of impurities. easy. Therefore, problems such as coloring and off-flavor may occur in the thermoplastic resin composition and the molded product.
  • the polymerization temperature exceeds 350 ° C, the polymer (B) may be thermally decomposed, and thus the polymer (B) may not be obtained efficiently.
  • the high-temperature continuous polymerization of the polymer (B) is performed according to a known method disclosed in, for example, JP-A-57-502171, JP-A-59-6207, or JP-A-60-215007. Done.
  • a reactor capable of being pressurized is set to a predetermined temperature under pressure, and then a mixture of bully monomers comprising each bully monomer and, if necessary, a polymerization solvent is used. It is produced by supplying the reactor at a constant feed rate and recovering the polymerization reaction solution in an amount equivalent to the feed amount of the vinyl monomer mixture.
  • a polymerization initiator may be blended in the vinyl monomer mixture as necessary.
  • the amount of the polymerization initiator is preferably from 0.00: to 2 parts by mass per 100 parts by mass (% by mass) of the vinyl monomer mixture.
  • the pressure during the production of the polymer (B) depends on the reaction temperature, the mixture of vinyl monomers used, and the boiling point of the solvent, and the pressure does not affect the reaction. Any pressure can be used as long as the temperature can be maintained.
  • the residence time of the mixture of vinyl monomers in the reactor is preferably:! -60 minutes, more preferably 2-40 minutes. If the residence time is less than 1 minute, the vinyl monomer may not react sufficiently. When the residence time exceeds 60 minutes, the productivity of the polymer (B) may deteriorate.
  • the content of the polymer (B) in the thermoplastic resin composition is 0.:! To 5 parts by mass, preferably 0.3 to 3 parts by mass per 100 parts by mass of the thermoplastic resin (A). Masugu 0.5-2 parts by mass are more preferred That's right.
  • the content of the polymer (B) is less than 0.1 part by mass, the polymer (B) cannot sufficiently increase the melt tension of the thermoplastic resin composition, and thus the dimensional stability of the molded product is low.
  • the content of the polymer (B) exceeds 5 parts by mass, a crosslinked product is formed during molding of the thermoplastic resin composition, so that the gloss of the molded product is lowered and the molded product becomes opaque.
  • the catalyst (C) plays a role of promoting a reaction between a functional group having reactivity with an epoxy group and an epoxy group.
  • a specific example of the catalyst (C) is not particularly limited as long as it is a compound that plays the above role, and is preferably a metal salt compound.
  • Specific examples of the metal salt compound include organic fatty acid metal salts, aromatic carboxylic acid metal salts, acidic pyrophosphates, phosphoric acid metal salts, metal salts of acidic phosphates, and metal chlorides.
  • organic fatty acid metal salt examples include sodium stearate, calcium stearate, aluminum stearate, magnesium stearate, zinc stearate, lead stearate, cadmium stearate, lithium stearate, barium stearate.
  • Specific examples of the aromatic carboxylic acid metal salt include sodium benzoate, calcium benzoate, magnesium benzoate, and aluminum benzoate.
  • acidic pyrophosphates include sodium pyrophosphate, potassium pyrophosphate, aluminum pyrophosphate, and sodium dihydrogen pyrophosphate.
  • metal phosphate include sodium phosphate, aluminum phosphate, and calcium phosphate.
  • acid phosphate metal salt include sodium stearyl phosphite, calcium stearyl phosphite, aluminum stearyl phosphite, and zinc stearyl phosphite.
  • metal chlorides include chlorides such as sodium chloride, calcium chloride, magnesium chloride, and zinc chloride.
  • the catalyst (C) is preferably an organic fatty acid metal salt, an aromatic carboxylic acid metal salt, or a metal salt of an acidic phosphate because it has good compatibility with the thermoplastic resin (A). Particularly preferred are zinc stearate, aluminum stearate, barium stearate, or sodium benzoate. [0041]
  • the content of the catalyst (C) of the thermoplastic resin composition, the thermoplastic resin (A) 100 parts by mass of those or 1.0 X 10 50 X 10- 6 parts by weight (1.0 50 mass ppm) and a, 2.0 X 10 35 X 10- 6 parts by weight (2.0 35 mass ppm), more preferably les.
  • the content of the catalyst (C) is less than 1.0 X 10 — 6 parts by mass, the melt tension of the thermoplastic resin composition cannot be sufficiently increased, and thus the dimensional stability of the molded product is low.
  • the content of the catalyst (C) is more than 50 X 10- 6 parts by weight, rather because the melt tension and melt viscosity of the thermoplastic resin composition is lowered, low dimensional stability of the molded article. Therefore, the content of the catalyst (C) is a very important condition for the present invention.
  • thermoplastic resin composition has a compound (D) (hereinafter referred to as carboxy) having one carboxyl group and different from the thermoplastic resin (A).
  • carboxy a compound having one carboxyl group and different from the thermoplastic resin (A).
  • the compound (D) and les.) are preferably further contained.
  • the carboxyl compound (D) adjusts the melt viscosity and melt tension of the thermoplastic resin composition, and is caused by gelation of the thermoplastic resin composition before or during the molding of the thermoplastic resin composition. It plays a role in preventing the occurrence of molding defects.
  • the carboxyl compound (D) does not include a thermoplastic resin (A) having one carboxynole group, for example, a polyester resin having a carboxyl group and a hydroxyl group as terminal groups.
  • the carboxyl group of the carboxyl compound (D) can sufficiently prevent the occurrence of defects during molding. Therefore, it is preferable that all or part of the carboxyl group does not form a salt with a metal. That is, it is preferable that at least a part of the carboxyleno group is in an acid state.
  • metals include sodium, potassium, magnesium, and calcium.
  • carboxyl compound (D) examples include a lower aliphatic carboxylic acid compound, a higher aliphatic carboxylic acid compound, and an aromatic carboxylic acid compound.
  • Specific examples of the lower aliphatic carboxylic acid compound include acetic acid, butyric acid, isobutyric acid, pentanoic acid, and isopentanoic acid.
  • Specific examples of the higher aliphatic carboxylic acid compound include decanoic acid, undecanoic acid, lauric acid, palmitic acid, oleic acid, and stearic acid.
  • aromatic carboxylic acid compound examples include benzoic acid, methylbenzoic acid, 4-ethylbenzoic acid, 2,4-dimethylbenzoic acid, o-tolylacetic acid, m-tolylacetic acid, p-trilelic acid.
  • examples include lucacetic acid, 2_phenylbutyric acid, 4_phenylbutyric acid, 1_naphthoic acid, and 2_naphthoic acid.
  • the carboxyl compound (D) is preferably benzoic acid or stearic acid.
  • Monofunctional carboxylic acid anhydrides such as benzoic anhydride, butyric anhydride, hexanoic anhydride, and propionic anhydride are converted to compounds having one carboxynole group by hydrolysis, so that carboxyl compounds (D) include.
  • Dihydric carboxylic acid anhydrides such as phthalic anhydride and maleic anhydride, are not included in the carboxyl compound (D) because they are converted into compounds having two carboxyl groups by hydrolysis.
  • the carboxyl compound (D) is preferably a carboxylic acid compound having 5 or more carbon atoms, and more preferably an aromatic carboxylic acid compound.
  • the carboxyl compound (D) is an aromatic carboxylic acid compound
  • the carboxyl compound (D) has good compatibility between the thermoplastic resin (A) and the polymer (B), which are components of the thermoplastic resin composition. It is easy to make the molded product homogeneous.
  • the boiling point of the carboxynole compound (D) is preferably 100 ° C or higher, more preferably 150 ° C or higher, and further preferably 200 ° C or higher.
  • the boiling point of the carboxyl compound (D) is less than 100 ° C., the carboxyl compound (D) is easily diffused during the heating and melting process in the production of the thermoplastic resin composition. Therefore, it becomes difficult to control the content of the carboxyl compound (D) in the thermoplastic resin composition, and the working environment may be inappropriate.
  • thermoplastic resin (A) 100 parts by mass of per 0.3 X 10 10 X 10- 6 parts by weight (0.3 10 mass ppm) preferably 0. 5 X 10 5 X 10- 6 weight ⁇ B (0. 5 5 mass ppm) Ca than preferred les.
  • the content of the force Norebokishinore compound (D) is less than 0. 3 X 10- 6 parts by weight, since the cross-linked product when forming the shape of the thermoplastic resin composition is produced, the gloss of the molded article is lowered molding The product may become opaque.
  • Karubokishinore compound (D) if the content exceeds 10 X 10_ 6 parts by weight of, since the melt tension and melt viscosity of the thermoplastic resin composition is lowered, there is a possibility that the dimensional stability of the molded article is lowered .
  • the thermoplastic resin composition includes an extender pigment, a color pigment, a plasticizer, a thermoplastic resin (A), a polymer (B), a catalyst (C), and, if necessary, a carboxyl compound (D).
  • the thermoplastic resin composition is obtained by mixing the thermoplastic resin (A), the polymer (B), the catalyst (C) and, if necessary, the carboxyl compound (D) by any method. It is done.
  • the thermoplastic resin composition can be obtained by mixing the raw materials with an extruder or a kneader.
  • the extrusion molding machine include a single screw extruder, a mating type parallel parallel twin screw extruder, a mating type different direction parallel shaft twin screw extruder, a mating type different direction oblique axis twin screw extruder, Non-matching twin screw extruders, incomplete mating twin screw extruders, conida single screw extruders, planetary gear extruders, transfer mix extruders, ram extruders, and roller extruders.
  • the raw materials Prior to the mixing, the raw materials may be premixed by using, for example, a hen shell mixer or a tumbler.
  • the shape of each raw material of the thermoplastic resin composition may be a pellet shape, a powder shape, or a liquid shape.
  • a polymer (B), a catalyst (C), and, if necessary, a carboxyl compound (D) are prepared in advance as a master batch mixed with a certain amount of a thermoplastic resin, and the master batch and the thermoplastic resin (
  • a thermoplastic resin composition may be produced by mixing with A).
  • this production method is referred to as a master batch method.
  • the masterbatch method is preferable because the catalyst (C) and the carboxyl compound (D), which are relatively small components, are easily mixed uniformly in the thermoplastic resin composition.
  • the thermoplastic resin used in the preparation of the masterbatch may be part of the thermoplastic resin (A), or may be a thermoplastic resin (E) different from the thermoplastic resin composition (A).
  • thermoplastic resin (E) Both a part of the resin (A) and the thermoplastic resin (E) may be used.
  • the thermoplastic resin composition further contains the thermoplastic resin (E).
  • the thermoplastic resins (A) and (E) only the thermoplastic resin (A) has a functional group having reactivity with an epoxy group.
  • thermoplastic resin composition by mixing the masterbatch and the remainder of the thermoplastic resin (A) may be performed using the extruder or kneader exemplified above. .
  • thermoplastic resin used in the preparation of the masterbatch is part of the thermoplastic resin (A)
  • thermoplastic resin (A) in the preparation process of the masterbatch, the thermoplastic finally blended into the thermoplastic resin composition A part of the total amount of resin (A) is used.
  • Thermoplasticity in masterbatch Resin (A) content is based on 100 parts by mass of the total content of thermoplastic resin (A), polymer (B), catalyst (C), and, if necessary, carboxyl compound (D) in the masterbatch. 30 to 85 parts by weight is preferred 40 to 80 parts by weight is more preferred 45 to 75 parts by weight is even more preferred.
  • the total content of the polymer (B), the catalyst (C) and, if necessary, the carboxyl compound (D) in the masterbatch is the thermoplastic resin (A), polymer (
  • the catalyst (C) and, if necessary, the total content of the carboxylenole compound (D) is preferably 15-70 parts by mass per 100 parts by mass, more preferably 20-60 parts by mass, 25-55 parts by mass Is more preferable.
  • melt viscosity and melt tension of the thermoplastic resin composition are particularly high, and as a result, a molded product exhibiting excellent dimensional stability can be obtained.
  • thermoplastic resin composition When a thermoplastic resin composition is produced by using a masterbatch containing a portion of the thermoplastic resin (A), the balance of the thermoplastic resin (A) mixed with the masterbatch is the final amount In particular, it is obtained by subtracting the amount of the thermoplastic resin (A) used for preparing the masterbatch from the total amount of the thermoplastic resin (A) contained in the thermoplastic resin composition.
  • thermoplastic resin used in the preparation of the masterbatch is a thermoplastic resin (E)
  • the content of the thermoplastic resin (E) in the masterbatch is the thermoplastic resin (E) in the masterbatch.
  • Polymer (B), catalyst (C), and, if necessary, the total content of carboxyl compound (D) is preferably 30 to 85 parts by mass, preferably 40 to 80 parts by mass per 100 parts by mass. More preferred is 45 to 75 parts by mass.
  • the total content of carboxyl compounds is determined by calculating the thermoplastic resin (E), polymer (B), catalyst (C), and optionally carboxylic acid compound (
  • the total content of D) is preferably 15 to 70 parts by mass per 100 parts by mass, more preferably 20 to 60 parts by mass, and even more preferably 25 to 55 parts by mass.
  • thermoplastic resin composition By using such a master batch, the melt viscosity and melt tension of the thermoplastic resin composition are particularly high, and as a result, a molded product exhibiting excellent dimensional stability can be obtained.
  • thermoplastic resin composition is produced by using a masterbatch containing the thermoplastic resin (E) instead of the thermoplastic resin (A)
  • thermoplastic resin (A) mixed with the masterbatch The amount of is equal to the total amount of the thermoplastic resin (A) contained in the thermoplastic resin composition.
  • thermoplastic resin used in the preparation of the masterbatch is both a part of the thermoplastic resin (A) and the thermoplastic resin (E)
  • the thermoplastic resin (A) in the masterbatch and The total content of (E) is equal to the content of thermoplastic resin (A) or (E) in each masterbatch.
  • the thermoplastic resin used for the preparation of the masterbatch can particularly enhance the above-mentioned properties of the thermoplastic resin composition. Therefore, it is preferable that a part or all of the thermoplastic resin is the thermoplastic resin (A). .
  • thermoplastic resin (E) used for preparing the masterbatch include polyolefin resin, styrene resin, and acrylic resin.
  • polyolefin resins include low density polyethylene resin, high density polyethylene resin, polypropylene resin, ethylene / propylene copolymer, ethylene acetate butyl copolymer, and polyethylene / ethyl acrylate copolymer.
  • the styrene resin include polystyrene resin, acrylonitrile 'styrene copolymer, methyl methacrylate' styrene copolymer, and acrylonitrile 'butadiene' styrene copolymer.
  • the acrylic resin include polymethyl methacrylate resin.
  • the thermoplastic resin (E) is preferably a polyolefin resin or a polystyrene resin.
  • thermoplastic resin composition is used for production of various molded articles by an extrusion molding machine or an injection molding machine.
  • Molded products obtained from the thermoplastic resin composition include, for example, extruded products such as sheets and films, calendered products, deformed extruded products such as pipes and baseboards, injection molded products, and blow molded products such as bottles. , Foam molded products, and drawn molded products.
  • thermoplastic resin composition exhibits excellent drawdown resistance
  • the method of producing a molded product from the thermoplastic resin composition by extrusion molding effectively utilizes the characteristics of the thermoplastic resin composition. It is preferable to use.
  • Specific examples of the molded product obtained by extrusion molding include a transparent sheet, a transparent film, and a deformed product.
  • the temperature of an oil jacket in a pressurized stirred tank reactor (capacity: 1 liter) equipped with an oil jacket was raised to 200 ° C.
  • St 69 parts by mass of styrene
  • GMA 30 parts by mass of glycidyl metatalylate
  • MMA 1 part by mass of methyl metatalylate
  • DTBP ditertiary butyl peroxide
  • the monomer mixed solution was continuously supplied from the raw material tank to the reactor, and the reaction solution was continuously collected from the outlet of the reactor so that the mass of the content solution in the reactor was constant at about 580 g.
  • the supply rate of the monomer mixture during continuous supply was set to 48 g / min, and the residence time of the monomer mixture was set to 12 minutes. Furthermore, the temperature in the reactor during continuous feeding was maintained at about 210 ° C.
  • the number average molecular weight of polymer 1 (hereinafter referred to as Mn and R) obtained by polystyrene conversion determined from a gel permeation chromatograph (hereinafter referred to as GPC) is 2900.
  • the weight average molecular weight of 1 (hereinafter referred to as Mw) was 9900.
  • the average number of epoxy groups contained in one molecule of the polymer (hereinafter referred to as “Fn”) was 6.1.
  • a polymer 2 was produced in the same manner as the polymer 1 except that the monomer mixture was used.
  • the Mn of the polymer 2 in terms of polystyrene determined by GPC was 2900, and Mw was 10800.
  • the Fn of polymer 2 was 5.1. (Production of polymers 3 and 4)
  • Polymers 3 and 4 were produced in the same manner as for Polymer 1 except that the monomer composition was changed as shown in Table 1 below.
  • Table 1 shows the Mn, Mw, and Fn of the polymers 3 and 4.
  • thermoplastic resin (hereinafter also referred to as vehicle), Easter 6763 (hereinafter referred to as PET-G) manufactured by Eastman Chemical Co., which is an amorphous copolyester resin, was used. 69. 927 parts by weight of PET—30 parts by weight of polymer 1 and 0.075 parts by weight of zinc stearate were prepared and then uniformly premixed using a Henschel mixer. Next, each component was melt-kneaded using the same-direction parallel-shaft twin-screw extruder (ST-40, manufactured by Plastics Engineering Laboratory) to prepare Masterbatch 1. Also, master batches 2 to 17 were prepared by the same method as master batch 1 except that the types and amounts of raw materials were changed as shown in Table 2 below.
  • ST-40 parallel-shaft twin-screw extruder
  • Thermoplastic resin (A) Polymerization * (B) Catalyst (C- 1) Catalyst (C-2 Carle's xyl f compound (D) Master
  • PET-G 65 polymer 2 35 ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ t5 PET-G 65 polymer 3 35 ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇
  • PET-G Eastman Chemical Company Amorphous Copolyester Resin Easter 6763
  • St-AI Aluminum oxalate «SA made by Chemical Industry Co., Ltd.
  • St-acid powdered stearic acid
  • thermoplastic resin composition 1 (Production of thermoplastic resin composition 1)
  • R-PET PET recycled from recycled PET (W »YPR clear pellets
  • St-acid powder Aric acid
  • thermoplastic resin compositions of Examples 1 to 14 and Comparative Example 17 were measured using a capillary rheometer (Capillograph Model 1C, manufactured by Toyo Seiki Co., Ltd.). In this measurement, together with the pore size used die thickness of 10mm with a lmm, sets the measured temperature to 280 ° C, it was and set the shear rate 182sec _ 1.
  • the die swell indicates the thickness of the thermoplastic resin composition extruded from the hole of the die, and the larger this value, the easier it is to produce a molded product with better dimensional stability. Examples:! To 14 and Comparative Example 17 The melt viscosity and die swell measurement results of each thermoplastic resin composition are shown in Table 5 below.
  • thermoplastic resin composition 2 (Manufacture of thermoplastic resin composition 2)
  • thermoplastic resins of Example 15 and Comparative Examples 8 and 9 blended as shown in Table 6 below were prepared at 200 ° C.
  • the melt viscosity and die swell of each of the thermoplastic resin compositions of Example 15 and Comparative Examples 8 and 9 were measured using a capillary rheometer (Capillograph 1C type manufactured by Toyo Seiki Co., Ltd.). In this measurement, a die having a hole diameter of 1 mm and a thickness of 10 mm was used, the measurement temperature was set to 200 ° C, and the shear rate was set to 182 sec- 1 . Table 6 below shows the measurement results of melt viscosity and diewell of the thermoplastic resin compositions of Example 15 and Comparative Examples 8 and 9.
  • PLA Polylactic acid resin Toyoda Motor Corp. PLA # 5403
  • St-Zn Zinc stearate Sakai Chemical Industry Co., Ltd. SZ
  • Example 15 containing polymer 1 and zinc stearate as catalyst (C) was as follows: Comparative Example 8 containing no polymer 1 and catalyst (C); It was confirmed that it was higher than that of Comparative Example 9 containing polymer 1 but not containing catalyst (C).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Epoxy Resins (AREA)

Abstract

Disclosed is a thermoplastic resin composition containing a thermoplastic resin (A) having a functional group reactive with epoxy groups, a polymer (B) having an epoxy group and a catalyst (C) for accelerating reactions of the functional group reactive with epoxy groups and the epoxy group. The content of the polymer (B) is set at 0.1-5 parts by mass per 100 parts by mass of the thermoplastic resin (A), while the content of the catalyst (C) is set at from 1.0 × 10-6 to 50 × 10-6 parts by mass per 100 parts by mass of the thermoplastic resin (A). Also disclosed is a molded article obtained by molding, for example extrusion molding the thermoplastic resin composition.

Description

明 細 書  Specification
熱可塑性樹脂組成物および成形品  Thermoplastic resin composition and molded article
技術分野  Technical field
[0001] 本発明は、ポリエステル樹脂等の縮合重合体を主成分とする熱可塑性樹脂組成物 およびその成形品に関し、より詳しくは、優れた寸法安定性を発揮する成形品を与え る熱可塑性樹脂組成物、及びその成形品に関する。  TECHNICAL FIELD [0001] The present invention relates to a thermoplastic resin composition mainly composed of a condensation polymer such as a polyester resin and a molded product thereof, and more specifically, a thermoplastic resin that provides a molded product that exhibits excellent dimensional stability. The present invention relates to a composition and a molded article thereof.
背景技術  Background art
[0002] ポリエステル樹脂を代表とする縮合重合体は、優れた機械的強度を発揮することか ら、ボトル、シート、フィルム等の多様な分野で用いられている。特にポリエステル樹 脂は、優れた透明性および衛生性を発揮することから、ボトル、ブリスターパック等の 食品包装材料として広く用いられている。近年、環境負荷の低減への配慮から、廃 棄される樹脂を回収、及び再利用する動きが活発になっており、特にポリエチレンテ レフタレート(以下、 PETという。)樹脂ボトルの回収量、及び再利用量が年々増加し ている。再生 PET樹脂製品の主な需要は、卵パック用のシート、衣服および力一^。、ッ ト用の繊維である。し力しながら、再生 PET樹脂の回収量が増加する一方で、シート 、繊維等の再利用製品の需要の増加は停滞しつつある。  [0002] Condensation polymers such as polyester resins exhibit excellent mechanical strength and are used in various fields such as bottles, sheets, and films. In particular, polyester resins are widely used as food packaging materials such as bottles and blister packs because they exhibit excellent transparency and hygiene. In recent years, the movement to collect and reuse waste resin has become active in consideration of the reduction of environmental impact, and in particular, the amount of collected and recycled polyethylene terephthalate (hereinafter referred to as PET) resin bottles. Usage is increasing year by year. The main demand for recycled PET resin products is egg pack sheets, clothes and power. This is a fiber for tapping. However, while the amount of recycled PET resin recovered has increased, the demand for recycled products such as sheets and fibers has been stagnant.
[0003] そこで現在、再生 PET樹脂製品の需要を拡大すベぐ新たな製品の開発が求めら れている。本来、 PET樹脂は、その溶融粘度および溶融張力が低いことから、繊維 等の小径を有する成形品、及びフィルム等の小断面積を有する成形品に適している 。し力 ながら、 PET樹脂は、その溶融張力が過剰に低ぐ成形の際にドローダウン 現象が発生して所望の寸法の成形品が得られないことから、大径または大断面積を 有する成形品、特に押出成形品に適していない。更に、 PET樹脂は、真空成形の際 に、ドローダウン現象に起因する偏肉が発生し易い。そのため、 PET樹脂が本来有 している低粘度および低溶融張力が、新たな製品の開発の障壁となっている。更に、 再生 PET樹脂は多くの熱履歴を有しており、再生 PET樹脂の加水分解が進行して レ、ることから、再生 PET樹脂の溶融粘度および溶融張力はヴァージン PET樹脂に比 ベて低い。そのため、再生 PET樹脂を用いた新規の製品の開発は極めて難しい。 [0004] PET樹脂と再生 PET樹脂との溶融粘度および溶融張力を高める方法として、特許 文献 1及び特許文献 2には、エポキシ基を有する重合体を PET樹脂に配合する方法 が開示されている。また、特許文献 3及び特許文献 4には、エポキシ基を含有する化 合物と、有機アルカリ金属塩とを PET樹脂に配合する方法が開示されている。 [0003] Therefore, there is a demand for the development of new products that should increase the demand for recycled PET resin products. Originally, PET resin is suitable for molded products having a small diameter such as fibers and molded products having a small cross-sectional area such as a film because of its low melt viscosity and low melt tension. However, PET resin has a large diameter or large cross-sectional area because a draw-down phenomenon occurs during molding when its melt tension is excessively low and a molded product with a desired size cannot be obtained. In particular, it is not suitable for extruded products. Furthermore, PET resin is prone to uneven thickness due to the drawdown phenomenon during vacuum forming. Therefore, the low viscosity and low melt tension inherent in PET resin are barriers to the development of new products. Furthermore, since recycled PET resin has a lot of heat history, and the hydrolysis of recycled PET resin proceeds, the melt viscosity and melt tension of recycled PET resin are lower than virgin PET resin. . Therefore, it is extremely difficult to develop new products using recycled PET resin. [0004] As methods for increasing the melt viscosity and melt tension of PET resin and recycled PET resin, Patent Literature 1 and Patent Literature 2 disclose a method of blending a polymer having an epoxy group with PET resin. Patent Documents 3 and 4 disclose a method of blending a compound containing an epoxy group and an organic alkali metal salt into a PET resin.
[0005] 特許文献 1及び特許文献 2に記載された方法によれば、ポリエステル樹脂の溶融 粘度および溶融張力を高めることができ、成形時のポリエステル樹脂のドローダウン を改良することができる。し力 ながら、これらの方法においては、エポキシ基を含有 する重合体とポリエステル樹脂との反応条件によっては、それらの反応が不十分とな る場合がある。そのため、エポキシ基を含有する重合体を熱可塑性樹脂組成物中に 大量に添加する必要がある。この場合、例えば押出成形機における溶融混練の際に 、ポリエステル樹脂とエポキシ基を含有する重合体との架橋物が生成されることから、 得られる成形品にフィッシュアイ等の外観不良が発生し易いという問題があった。  [0005] According to the methods described in Patent Document 1 and Patent Document 2, the melt viscosity and melt tension of the polyester resin can be increased, and the drawdown of the polyester resin during molding can be improved. However, in these methods, depending on the reaction conditions between the polymer containing an epoxy group and the polyester resin, the reaction may be insufficient. For this reason, it is necessary to add a large amount of a polymer containing an epoxy group to the thermoplastic resin composition. In this case, for example, a cross-linked product of a polyester resin and an epoxy group-containing polymer is generated during melt-kneading in an extrusion molding machine, so that appearance defects such as fish eyes are likely to occur in the obtained molded product. There was a problem.
[0006] 特許文献 3及び特許文献 4に記載された方法によれば、エポキシ基を含有する化 合物と有機アルカリ金属塩とを併用することにより、それらとポリエステル樹脂との反 応性を高めることができる。し力しながら、エポキシ基を含有する化合物および有機ァ ルカリ金属塩とポリエステル樹脂との反応条件によっては、熱可塑性樹脂組成物の 粘度が低下するという問題があった。  [0006] According to the methods described in Patent Document 3 and Patent Document 4, by using a compound containing an epoxy group and an organic alkali metal salt in combination, the reactivity between them and the polyester resin is increased. Can do. However, depending on the reaction conditions between the epoxy group-containing compound and the organic alkali metal salt and the polyester resin, there is a problem that the viscosity of the thermoplastic resin composition decreases.
特許文献 1 :特許第 2675718号公報  Patent Document 1: Japanese Patent No. 2675718
特許文献 2:国際公開第 03Z066704号パンフレット  Patent Document 2: Pamphlet of International Publication No. 03Z066704
特許文献 3:再公表特許 WO01/094443号公報  Patent Document 3: Republished Patent WO01 / 094443
特許文献 4 :特開 2004— 155968号公報  Patent Document 4: Japanese Unexamined Patent Application Publication No. 2004-155968
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 本発明は、高い溶融粘度および溶融張力を有する熱可塑性樹脂組成物であって、 優れた寸法安定性を発揮する成形品を与える熱可塑性樹脂組成物を提供すること を目的とする。また、本発明は、優れた寸法安定性を発揮する成形品を提供すること を目的とする。 [0007] An object of the present invention is to provide a thermoplastic resin composition having a high melt viscosity and melt tension, which gives a molded product exhibiting excellent dimensional stability. Another object of the present invention is to provide a molded product that exhibits excellent dimensional stability.
課題を解決するための手段 [0008] 本発明の一態様では、熱可塑性樹脂組成物が提供される。その熱可塑性樹脂組 成物は、エポキシ基との反応性を備える官能基を有する熱可塑性樹脂 (A)と、ェポ キシ基を有する重合体 (B)と、エポキシ基との反応性を備える官能基およびエポキシ 基の反応を促進する触媒 (C)とを含有する。重合体 (B)の含有量は、熱可塑性樹脂 (A) 100質量部当たり 0. :!〜 5質量部に設定されている。触媒 (C)の含有量は、熱 可塑性樹脂 (A) 100質量部当たり 1. 0 X 10一6〜 50 X 10—6質量部に設定されてい る。 Means for solving the problem [0008] In one embodiment of the present invention, a thermoplastic resin composition is provided. The thermoplastic resin composition has reactivity with a thermoplastic resin (A) having a functional group having reactivity with an epoxy group, a polymer (B) having an epoxy group, and an epoxy group. And a catalyst (C) that promotes the reaction of the functional group and the epoxy group. The content of the polymer (B) is set to 0.:! To 5 parts by mass per 100 parts by mass of the thermoplastic resin (A). The content of catalyst (C), that is set to the thermoplastic resin (A) 100 parts by mass of per 1. 0 X 10 one 6 ~ 50 X 10- 6 parts by weight.
[0009] 熱可塑性樹脂 (A)は、好ましくはポリエステル樹脂、ポリカーボネート樹脂、ポリアミ ド樹脂、ポリフエ二レンエーテル樹脂、及びポリ乳酸樹脂からなる群から選ばれる少 なくとも一種である。  [0009] The thermoplastic resin (A) is preferably at least one selected from the group consisting of a polyester resin, a polycarbonate resin, a polyamide resin, a polyphenylene ether resin, and a polylactic acid resin.
[0010] 重合体 )は、好ましくはエポキシ基を有するビニル重合体である。重合体 )が 有するエポキシ基の個数の平均は、好ましくは重合体 (B) 1分子当たり 1. 2個以上で あり、重合体(B)の数平均分子量は、好ましくは 300〜30000である。  [0010] The polymer) is preferably a vinyl polymer having an epoxy group. The average number of epoxy groups in the polymer) is preferably 1.2 or more per molecule of the polymer (B), and the number average molecular weight of the polymer (B) is preferably 300 to 30000.
[0011] 触媒(C)は、好ましくはカルボン酸金属塩化合物であり、より好ましくは安息香酸金 属塩ィヒ合物またはステアリン酸金属塩ィヒ合物である。  [0011] The catalyst (C) is preferably a metal carboxylate compound, more preferably a metal benzoate salt or a metal stearate salt.
[0012] 熱可塑性樹脂組成物は、 1個のカルボキシノレ基を有するとともに、熱可塑性樹脂( A)とは異なる化合物 (D)を更に含有し、化合物 (D)の含有量は、熱可塑性樹脂 (A) 100質量部当たり 0. 3 X 1CT6〜: 10 X 10_6質量部に設定されていることが好ましレ、。 [0012] The thermoplastic resin composition further comprises a compound (D) different from the thermoplastic resin (A), having one carboxynole group, and the content of the compound (D) (a) 100 parts by mass of per 0. 3 X 1CT 6 ~: 10 X 10_ Shi preferred that it is set to 6 parts by Les.
[0013] 化合物(D)は、好ましくは安息香酸またはステアリン酸である。  [0013] The compound (D) is preferably benzoic acid or stearic acid.
[0014] 本発明の一態様では、熱可塑性樹脂組成物がマスターバッチを有し、そのマスタ 一バッチは、熱可塑性樹脂 (Α)の一部、重合体 (Β)、触媒 (C)、及び化合物 (D)を 含有し、そのマスターバッチと熱可塑性樹脂 (Α)の残部との混合により熱可塑性樹 脂組成物が調製されることが好ましい。この場合、マスターバッチ中の熱可塑性樹脂 (Α)、重合体 )、触媒 (C)、及び化合物(D)の含有量の合計 100質量部当たり、 熱可塑性樹脂 (Α)の含有量が 30〜85質量部に設定され、且つ重合体 (Β)、触媒( C)、及び化合物(D)の含有量の合計が 15〜70質量部に設定されていることが好ま しい。  [0014] In one embodiment of the present invention, the thermoplastic resin composition has a master batch, and the master batch includes a part of the thermoplastic resin (soot), a polymer (soot), a catalyst (C), and The thermoplastic resin composition is preferably prepared by mixing the master batch containing the compound (D) and the remainder of the thermoplastic resin (熱). In this case, the content of the thermoplastic resin (Α) is 30 to 30 parts per 100 parts by mass in total of the thermoplastic resin ()), polymer), catalyst (C), and compound (D) in the masterbatch. It is preferably set to 85 parts by mass and the total content of the polymer (IV), the catalyst (C), and the compound (D) is set to 15 to 70 parts by mass.
[0015] 本発明の一態様では、熱可塑性樹脂組成物が熱可塑性樹脂 (Α)とは異なる熱可 塑性樹脂 (E)を更に含有し、熱可塑性樹脂 (A)及び (E)の内、熱可塑性樹脂 (A)の みがエポキシ基との反応性を備える官能基を有し、熱可塑性樹脂はマスターバッチ を有することが好ましい。この場合、マスターバッチは、重合体 (B)、触媒 (C)、化合 物 (D)、及び熱可塑性樹脂 (E)を含有し、そのマスターバッチと熱可塑性樹脂 (A)と の混合により熱可塑性樹脂組成物が調製されることが好ましい。更に、マスターバッ チ中の重合体 (B)、触媒 (C)、化合物 (D)、及び熱可塑性樹脂 (E)の含有量の合計 100質量部当たり、重合体 (B)、触媒 (C)、及び化合物(D)の含有量の合計が 15〜 70質量部に設定され、且つ熱可塑性樹脂 (E)の含有量が 30〜85質量部に設定さ れていることが好ましい。 [0015] In one embodiment of the present invention, the thermoplastic resin composition is a thermoplastic resin different from the thermoplastic resin (樹脂). It further contains a plastic resin (E), and among the thermoplastic resins (A) and (E), only the thermoplastic resin (A) has a functional group having reactivity with an epoxy group. It is preferable to have a masterbatch. In this case, the master batch contains the polymer (B), the catalyst (C), the compound (D), and the thermoplastic resin (E), and is heated by mixing the master batch with the thermoplastic resin (A). It is preferable that a plastic resin composition is prepared. Further, the polymer (B), the catalyst (C) and the polymer (B), the catalyst (C), the compound (D), and the thermoplastic resin (E) in the master batch per 100 parts by mass in total. And the total content of the compound (D) is preferably set to 15 to 70 parts by mass, and the content of the thermoplastic resin (E) is preferably set to 30 to 85 parts by mass.
[0016] 熱可塑性樹脂 (E)は、好ましくはポリオレフイン樹脂およびポリスチレン樹脂からな る群から選ばれる少なくとも一種である。  [0016] The thermoplastic resin (E) is preferably at least one selected from the group consisting of a polyolefin resin and a polystyrene resin.
[0017] 本発明の別の態様では、上記熱可塑性樹脂組成物の成形により得られる成形品が 提供される。  [0017] In another aspect of the present invention, there is provided a molded product obtained by molding the thermoplastic resin composition.
[0018] 本発明の更に別の態様では、上記熱可塑性樹脂組成物の押出成形により得られる 成形品が提供される。  [0018] In still another aspect of the present invention, a molded article obtained by extrusion molding of the thermoplastic resin composition is provided.
図面の簡単な説明  Brief Description of Drawings
[0019] [図 1]実施形態に係る熱可塑性樹脂組成物中の触媒 (C) (ステアリン酸アルミニウム) の濃度と成形性 (ダイスゥエル評価)との関係を示すグラフ。  FIG. 1 is a graph showing the relationship between the concentration of catalyst (C) (aluminum stearate) in the thermoplastic resin composition according to the embodiment and the moldability (die swell evaluation).
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0020] 以下、本発明の実施形態について詳細に説明する。本発明において、アクリルお よびメタクリルを併せて (メタ)アクリルとレ、う。 Hereinafter, embodiments of the present invention will be described in detail. In the present invention, acrylic and methacryl are combined with (meth) acrylic resin.
[0021] 本実施形態に係る熱可塑性樹脂組成物は、エポキシ基との反応性を備える官能基 を有する熱可塑性樹脂 (A)と、エポキシ基を有する重合体 (B)と、エポキシ基との反 応性を備える官能基およびエポキシ基の反応を促進する触媒 (C)とを含有してレ、る [0021] The thermoplastic resin composition according to the present embodiment includes a thermoplastic resin (A) having a functional group having reactivity with an epoxy group, a polymer (B) having an epoxy group, and an epoxy group. Containing a reactive functional group and a catalyst (C) that promotes the reaction of the epoxy group.
[0022] 熱可塑性樹脂 (A)は熱可塑性樹脂組成物の主要成分であり、該熱可塑性樹脂組 成物の成形により得られる成形品の基本的な性能を担う。エポキシ基との反応性を 備える官能基の具体例としては、カルボキシル基、水酸基、アミド基、及びアミノ基が 挙げられる。熱可塑性樹脂 (A)の例としては、ポリエステル樹脂、ポリアミド樹脂、ポリ カーボネート樹脂、ポリ乳酸樹脂、ポリ力プロラタトン樹脂、ポリブチレンサクシネート 樹脂、ポリ(ブチレンサクシネート/アジペート)樹脂、ポリフエ二レンスルフイド樹脂、 ポリエーテルケトン樹脂、ポリエーテルイミド樹脂、セルロース樹脂、カルボン酸変性 ポリオレフイン樹脂、カルボン酸変性スチレン 'ブタジエン 'スチレン(SBS)樹脂、及 びカルボン酸変性スチレン.エチレン.ブタジエン.スチレン(SEBS)樹脂が挙げられ る。熱可塑性樹脂 (A)は、熱可塑性樹脂の廃棄物が回収、及び再利用されたもの、 即ち再生熱可塑性樹脂でもよい。熱可塑性樹脂 (A)は、ポリエステル樹脂、ポリカー ボネート樹脂、ポリアミド樹脂、ポリフエ二レンエーテル樹脂、及びポリ乳酸樹脂からな る群から選ばれるすくなくとも一種が好ましぐポリエステル樹脂、ポリカーボネート樹 脂、ポリアミド樹脂、ポリ乳酸樹脂、及びこれらの再生樹脂がより好ましぐポリエステ ル樹脂(再生ポリエステル樹脂を含む)が更に好ましい。 [0022] The thermoplastic resin (A) is a main component of the thermoplastic resin composition and is responsible for the basic performance of a molded product obtained by molding the thermoplastic resin composition. Specific examples of functional groups having reactivity with epoxy groups include carboxyl groups, hydroxyl groups, amide groups, and amino groups. Can be mentioned. Examples of thermoplastic resin (A) include polyester resin, polyamide resin, polycarbonate resin, polylactic acid resin, poly-strength prolatatone resin, polybutylene succinate resin, poly (butylene succinate / adipate) resin, polyphenylene sulfide resin , Polyetherketone resin, polyetherimide resin, cellulose resin, carboxylic acid modified polyolefin resin, carboxylic acid modified styrene 'butadiene' styrene (SBS) resin, and carboxylic acid modified styrene.ethylene.butadiene.styrene (SEBS) resin. Can be mentioned. The thermoplastic resin (A) may be a recovered thermoplastic resin waste collected and reused, that is, a recycled thermoplastic resin. The thermoplastic resin (A) is a polyester resin, a polycarbonate resin, or a polyamide resin that is preferred by at least one selected from the group consisting of a polyester resin, a polycarbonate resin, a polyamide resin, a polyphenylene ether resin, and a polylactic acid resin. Polylactic acid resins and polyester resins (including recycled polyester resins) in which these recycled resins are more preferred are even more preferable.
[0023] ポリエステル樹脂の具体例としては、ジカルボン酸単位およびジオール単位を構成 単位とする縮合型の重合体または共重合体が挙げられる。ジカルボン酸単位を形成 するために使用される原料の具体例としては、芳香族ジカルボン酸、及びそのジアル キルエステル化物またはジァリルエステル化物が挙げられる。芳香族ジカルボン酸の 具体例としては、テレフタル酸、イソフタル酸、フタノレ酸、ナフタレン 1 , 4—ジカルボン 酸、ナフタレン 2, 6—ジカルボン酸、ビス(p—カルボキシフエニル)メタン、アントラセ ンジカルボン酸、 4, 4'—ジフエニルジカルボン酸、及び 4, 4'—ジフエニルエーテノレ ジカルボン酸が挙げられる。これらとともに、脂肪族ジカルボン酸、又はそのジアルキ ルエステルイ匕物もしくはジァリルエステル化物が原料として使用されてもよい。脂肪族 ジカルボン酸の具体例としては、ダルタル酸、アジピン酸、セバシン酸、シユウ酸、及 びコハク酸が挙げられる。 [0023] Specific examples of the polyester resin include a condensation polymer or copolymer having a dicarboxylic acid unit and a diol unit as constituent units. Specific examples of the raw material used for forming the dicarboxylic acid unit include an aromatic dicarboxylic acid and a diallyl ester or diallyl ester thereof. Specific examples of aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, phthalenoic acid, naphthalene 1,4-dicarboxylic acid, naphthalene 2,6-dicarboxylic acid, bis (p-carboxyphenyl) methane, anthracene dicarboxylic acid, 4,4'-diphenyldicarboxylic acid and 4,4'-diphenyletherenocarboxylic acid. Along with these, aliphatic dicarboxylic acids or diallyl esters or diallyl esters thereof may be used as raw materials. Specific examples of the aliphatic dicarboxylic acid include dartaric acid, adipic acid, sebacic acid, oxalic acid, and succinic acid.
[0024] ジオール単位を形成するために使用される原料の具体例としては、エチレングリコ ール、プロピレングリコール、 1, 4_ブタンジオール、ネオペンチルグリコール、 1, 5 —ペンタンジオール、 1, 6—へキサンジオール、デカメチレングリコール、 1 , 4—シク 口へキサンジメタノール、 2, 2 _ビス(4—ヒドロキシフエニル)プロパン、ポリエチレン グリコール、ポリ 1 , 3—プロピレングリコール、及びポリテトラメチレングリコールが挙 げられる。 [0024] Specific examples of raw materials used to form diol units include ethylene glycol, propylene glycol, 1,4-butanediol, neopentyl glycol, 1,5-pentanediol, 1,6- Hexanediol, decamethylene glycol, 1,4-cyclohexane dimethanol, 2,2_bis (4-hydroxyphenyl) propane, polyethylene glycol, poly 1,3-propylene glycol, and polytetramethylene glycol All I can get lost.
[0025] ポリエステル樹脂は、好ましくは結晶性ホモポリエチレンテレフタレート樹脂または 結晶性コポリエステル樹脂であり、結晶性ホモポリエチレンテレフタレート樹脂および 結晶性コポリエステル樹脂は、ジカルボン酸単位としてテレフタル酸単位および/ま たはイソフタル酸単位を含み、ジオール単位としてエチレングリコール単位を含む。ま た、ポリエステル樹脂は、好ましくは非結晶性コポリエステル樹脂であり、非結晶性コ ポリエステル樹脂は、ジカルボン酸単位としてテレフタル酸単位を含み、ジオール単 位としてエチレングリコール単位および 1 , 4ーシクロへキサンジメタノール単位を含 む。更に、ポリエステル樹脂は、ポリブチレンテレフタレート、ポリエチレン 2, 6 ナ フタレート等の芳香族ポリエステル樹脂、ポリ乳酸樹脂等の脂肪族ポリエステル樹脂 [0025] The polyester resin is preferably a crystalline homopolyethylene terephthalate resin or a crystalline copolyester resin. The crystalline homopolyethylene terephthalate resin and the crystalline copolyester resin are terephthalic acid units and / or dicarboxylic acid units. It contains isophthalic acid units and contains ethylene glycol units as diol units. The polyester resin is preferably an amorphous copolyester resin. The amorphous copolyester resin contains terephthalic acid units as dicarboxylic acid units, ethylene glycol units and 1,4-cyclohexene as diol units. Includes sandimethanol units. Furthermore, polyester resins include aromatic polyester resins such as polybutylene terephthalate and polyethylene 2,6 naphthalate, and aliphatic polyester resins such as polylactic acid resin.
、又は生分解性ポリエステル樹脂でもよい。これらは単独でポリエステル樹脂を構成 してもょレ、し、二種以上が組み合わされてポリエステル樹脂を構成してもよレ、。 Or a biodegradable polyester resin. These may constitute a polyester resin alone, or two or more may be combined to form a polyester resin.
[0026] 重合体 )は、熱可塑性樹脂組成物の溶融粘度および溶融張力を高める役割を 担う。重合体 )は二種類のビュル単量体の重合反応により得られ、二種類のビニ ル単量体の内、一方のビニル単量体のみがエポキシ基を有する。エポキシ基を有す るビエル単量体の具体例としては、(メタ)アクリル酸グリシジル、シクロへキセンォキシ ド構造を有する (メタ)アクリル酸エステル、及び (メタ)ァリルグリシジルエーテルが挙 げられる。エポキシ基を有するビュル単量体は、好ましくは(メタ)アクリル酸グリシジ ルである。 [0026] The polymer) plays a role of increasing the melt viscosity and melt tension of the thermoplastic resin composition. The polymer) is obtained by a polymerization reaction of two types of butyl monomers, and only one of the two types of vinyl monomers has an epoxy group. Specific examples of the vinyl monomer having an epoxy group include glycidyl (meth) acrylate, (meth) acrylate ester having a cyclohexene oxide structure, and (meth) aryl glycidyl ether. The butyl monomer having an epoxy group is preferably glycidyl (meth) acrylate.
[0027] 前記二種類のビュル単量体の内、エポキシ基を有さないビュル単量体の具体例と しては、炭素数が 1〜22であるアルキル基(アルキル基は直鎖でもよいし、分岐鎖で もよレ、)を有する(メタ)アクリル酸アルキルエステル、 (メタ)アクリル酸メトキシェチル、 (メタ)アクリル酸ポリアルキレングリコールエステル、 (メタ)アクリル酸アルコキシアル キルエステル、 (メタ)アクリル酸ヒドロキシアルキルエステル、 (メタ)アクリル酸ジアル キルアミノアルキルエステル、 (メタ)アクリル酸ベンジルエステル、 (メタ)アクリル酸フ エノキシアルキルエステル、(メタ)アクリル酸イソボルニルエステル、及び(メタ)アタリ ル酸アルコキシシリルアルキルエステルが挙げられる。炭素数が:!〜 22であるアルキ ル基を有する(メタ)アクリル酸アルキルエステルの具体例としては、(メタ)アクリル酸 メチノレ、 (メタ)アクリル酸ェチル、 (メタ)アクリル酸プロピル、 (メタ)アクリル酸ブチル、 (メタ)アクリル酸 2—ェチルへキシル、 (メタ)アクリル酸シクロへキシル、及び(メタ)ァ クリル酸ステアリルが挙げられる。 [0027] Of the two types of bulle monomers, specific examples of the bur monomer having no epoxy group include an alkyl group having 1 to 22 carbon atoms (the alkyl group may be a straight chain). (Meth) acrylic acid alkyl ester, (meth) acrylic acid methoxyethyl, (meth) acrylic acid polyalkylene glycol ester, (meth) acrylic acid alkoxyalkyl ester, (meth) Acrylic acid hydroxyalkyl ester, (meth) acrylic acid dialkylaminoalkyl ester, (meth) acrylic acid benzyl ester, (meth) acrylic acid phenoxyalkyl ester, (meth) acrylic acid isobornyl ester, and (meth) Examples include silyl alkaryl silylalkyl ester. Specific examples of the (meth) acrylic acid alkyl ester having an alkyl group having carbon atoms of :! to 22 include (meth) acrylic acid. Methylol, (meth) acrylic acid ethyl, (meth) acrylic acid propyl, (meth) acrylic acid butyl, (meth) acrylic acid 2-ethylhexyl, (meth) acrylic acid cyclohexyl, and (meth) acrylic acid Stearyl is mentioned.
[0028] エポキシ基を有さないビュル単量体は、 (メタ)アクリルアミド、(メタ)アクリルジアル キノレアミド、ビュルエステル類、ビュルエーテル類、 (メタ)ァリルエーテル類、又は芳 香族系ビュル単量体でもよいし、 ひォレフインモノマーでもよレ、。ビュルエステル類の 具体例としては酢酸ビニルが挙げられ、芳香族系ビニル単量体の具体例としては、ス チレン及び α—メチルスチレンが挙げられる。 aォレフィンモノマーの具体例としては 、エチレン及びプロピレンが挙げられる。これらは単独で使用されてもよいし、二種以 上が組み合わされて使用されてもよい。  [0028] Bull monomers that do not have an epoxy group are (meth) acrylamide, (meth) acryl dial quinoleamide, bull esters, bull ethers, (meth) aryl ethers, or aromatic bull monomers. But you can use olefin monomer. Specific examples of the butyl esters include vinyl acetate, and specific examples of the aromatic vinyl monomer include styrene and α-methylstyrene. Specific examples of aolefin monomers include ethylene and propylene. These may be used alone or in combination of two or more.
[0029] 重合体 (B)中のビュル単量体の組成は、本発明の目的、及び熱可塑性樹脂組成 物の成形品に要求される機能に応じて選択される。例えば、成形品に透明性が特に 要求される場合、重合体 )中のビュル単量体として、屈折率が熱可塑性樹脂 (A) に近レ、ビニル単量体が選択されることが好ましレ、。熱可塑性樹脂 (A)がポリエチレン テレフタレート(屈折率 約 1. 565)である場合、エポキシ基を有さないビュル単量体 として、屈折率が高い芳香族系ビュル単量体が選択されることが好ましい。この芳香 族系ビニル単量体の具体例としては、スチレン及び α—メチルスチレンが挙げられる 。成形品に柔軟性が特に要求される場合、エポキシ基を有さないビュル単量体として 、低いガラス転移温度を有するビュル単量体が選択されることが好ましい。低いガラ ス転移温度を有するビュル単量体の具体例としては、 (メタ)アクリル酸ブチル及び (メ タ)アクリル酸ェチルが挙げられる。重合体 )が相容化剤としての機能を発揮する 場合、例えば重合体(Β)がポリエチレンテレフタレート Ζポリオレフインブレンド組成 物、又はポリカーボネート/ポリオレフインブレンド組成物である場合、エポキシ基を 有さないビュル単量体として、ォレフィン系ビュル単量体が選択されることが好ましい 。ォレフィン系ビュル単量体の具体例としては、エチレン、プロピレン、及びブタジェ ンが挙げられる。  [0029] The composition of the bull monomer in the polymer (B) is selected according to the object of the present invention and the function required for the molded article of the thermoplastic resin composition. For example, when transparency is particularly required for a molded product, it is preferable to select a vinyl monomer as the bull monomer in the polymer) with a refractive index close to that of the thermoplastic resin (A). Les. When the thermoplastic resin (A) is polyethylene terephthalate (refractive index: about 1.565), an aromatic bull monomer having a high refractive index may be selected as a bull monomer having no epoxy group. preferable. Specific examples of the aromatic vinyl monomer include styrene and α-methylstyrene. When flexibility is particularly required for a molded article, it is preferable to select a bull monomer having a low glass transition temperature as a bull monomer having no epoxy group. Specific examples of the bull monomer having a low glass transition temperature include butyl (meth) acrylate and ethyl (meth) acrylate. When the polymer) functions as a compatibilizer, for example, when the polymer (Β) is a polyethylene terephthalate レ ー ト polyolefin blend composition or a polycarbonate / polyolefin blend composition, It is preferable to select an olefin fin monomer as a monomer. Specific examples of the olefin fin monomer include ethylene, propylene, and butadiene.
[0030] 重合体(Β)は、エポキシ基を有するビュル単量体単位を 1〜70質量%の割合で含 有し、且つエポキシ基を有さないビュル単量体単位を 30〜99質量%の割合で含有 することが好ましぐエポキシ基を有するビュル単量体単位を 5〜60質量%の割合で 含有し、且つエポキシ基を有さないビュル単量体単位を 40〜95質量%の割合で含 有することがより好ましぐエポキシ基を有するビュル単量体単位を 10〜50質量%の 割合で含有し、且つエポキシ基を有さなレ、ビュル単量体単位を 50〜90質量%の割 合で含有することが更に好ましい。エポキシ基を有するビュル単量体単位の含有量 カ^質量%未満である場合、重合体 )は熱可塑性樹脂組成物の溶融張力を十分 に高めることができないことから、成形の際にドローダウン現象が発生して成形品を 目的の形状に成形することができない場合がある。エポキシ基を有するビュル単量 体単位の含有量が 70質量%を超える場合、熱可塑性樹脂 (A)と重合体 (B)との過 剰な架橋反応により、熱可塑性樹脂組成物が成形機内で架橋物となり、成形品を目 的の形状に成形することができない場合がある。 [0030] The polymer (Β) contains 1 to 70% by weight of a bully monomer unit having an epoxy group and 30 to 99% by weight of a bully monomer unit having no epoxy group. Contained at a ratio of It contains a butyl monomer unit having an epoxy group that is preferable to be contained in a proportion of 5 to 60% by mass, and a bulle monomer unit having no epoxy group in a proportion of 40 to 95% by mass. It contains 10 to 50% by mass of bulle monomer units having an epoxy group, which is more preferable, and a proportion of 50 to 90% by mass of bulle monomer units having no epoxy group. It is more preferable to contain. When the content of the butyl monomer unit having an epoxy group is less than 5% by mass, the polymer) cannot sufficiently increase the melt tension of the thermoplastic resin composition. May occur and the molded product may not be molded into the desired shape. When the content of the butyl monomer unit having an epoxy group exceeds 70% by mass, the thermoplastic resin composition is formed in the molding machine by an excessive crosslinking reaction between the thermoplastic resin (A) and the polymer (B). It may become a cross-linked product and the molded product may not be molded into the desired shape.
[0031] 重合体 (B)が有するエポキシ基の個数の平均は、重合体 (B) l分子当たり 1. 2個 以上が好ましぐ 1. 5〜: 100個がより好ましぐ 2. 0〜50個が更に好ましい。重合体( B) l分子当たりのエポキシ基の個数の平均は、下記式(1)により求められる。  [0031] The average number of epoxy groups in the polymer (B) is preferably 1.2 or more per molecule of the polymer (B) 1.5 to: 100 is more preferable 2.0 ~ 50 are more preferred. Polymer (B) The average number of epoxy groups per molecule is determined by the following formula (1).
[0032] エポキシ基の個数の平均 = a X b/100c (1)  [0032] Average number of epoxy groups = a X b / 100c (1)
式(1)において、 aは重合体(B)に含まれるエポキシ基を有するビュル単量体単位 の割合 (質量%)を表し、 bは重合体 (B)の数平均分子量を表し、 cはエポキシ基を有 するビニル単量体の分子量を表す。  In the formula (1), a represents the proportion (% by mass) of butyl monomer units having an epoxy group contained in the polymer (B), b represents the number average molecular weight of the polymer (B), and c represents It represents the molecular weight of a vinyl monomer having an epoxy group.
[0033] 重合体 )が有するエポキシ基の個数の平均が 1. 2個未満の場合、重合体 )は 熱可塑性樹脂組成物の溶融粘度および溶融張力を十分に高めることができないこと から、成形の際に、ドローダウン現象の発生を抑制することができない場合がある。  [0033] When the average number of epoxy groups in the polymer) is less than 1.2, the polymer) cannot sufficiently increase the melt viscosity and melt tension of the thermoplastic resin composition. In some cases, the occurrence of the drawdown phenomenon cannot be suppressed.
[0034] 重合体(B)の数平均分子量は、 300〜30000力好ましく、 350〜25000力 Sより好ま しぐ 400〜20000力更に好ましレ、。重合体(B)の数平均分子量が 300未満の場合 、重合体 (B)が有するエポキシ基の個数の平均が低くなることから、重合体 (B)は熱 可塑性樹脂組成物の溶融粘度および溶融張力を十分に高めることができない場合 がある。重合体 (B)の数平均分子量が 30000を超える場合、重合体 (B)が有するェ ポキシ基の個数の平均が高くなることから、熱可塑性樹脂組成物が成形機内で過剰 な架橋反応を起こして熱可塑性樹脂組成物の成形性が悪化する場合がある。 [0035] 重合体 (B)は、塊状重合法、溶液重合法、及び乳化重合法等の任意の重合方法 によって製造される。重合体 (B)は、連続塊状重合法により製造されることが好ましく 、高温連続塊状重合法により製造されることがより好ましい。重合体 (B)の重合温度 ίま 130〜350。C力好ましく、 150〜330oC力 Sより好まし <、 170〜270oC力更に好まし レ、。上記重合温度の範囲内では、ラジカル重合開始剤もしくは連鎖移動剤を使用す ることなぐ又はラジカル重合開始剤もしくは連鎖移動剤をごく少量使用することによ り、 目的とする分子量の重合体 (B)を効率的に得ることができる。重合温度が 130°C 未満の場合、 目的の分子量を得るためにはラジカル重合開始剤または連鎖移動剤 を多量に必要とすることから、得られた重合体 (B)中に不純物が多く含まれ易い。そ のため、熱可塑性樹脂組成物および成形品に、着色、異臭等の問題が発生する場 合がある。重合温度が 350°Cを超える場合、重合体 (B)の熱分解が起こることから、 重合体 (B)を効率よく得ることができない場合がある。 [0034] The number average molecular weight of the polymer (B) is preferably 300 to 30000 force, more preferably 350 to 25,000 force, and more preferably 400 to 20000 force. When the number average molecular weight of the polymer (B) is less than 300, the average of the number of epoxy groups that the polymer (B) has becomes low, so that the polymer (B) has a melt viscosity and a melt of the thermoplastic resin composition. The tension may not be increased sufficiently. When the number average molecular weight of the polymer (B) exceeds 30000, the average number of epoxy groups contained in the polymer (B) becomes high, so that the thermoplastic resin composition causes an excessive crosslinking reaction in the molding machine. As a result, the moldability of the thermoplastic resin composition may deteriorate. [0035] The polymer (B) is produced by any polymerization method such as a bulk polymerization method, a solution polymerization method, and an emulsion polymerization method. The polymer (B) is preferably produced by a continuous bulk polymerization method, and more preferably produced by a high temperature continuous bulk polymerization method. Polymerization temperature of polymer (B) ί 130 ~ 350. C force is preferable, 150 to 330 o C force is preferable to S <, 170 to 270 o C force is more preferable. Within the above polymerization temperature range, a polymer (B) having a desired molecular weight can be obtained by using a radical polymerization initiator or a chain transfer agent without using a radical polymerization initiator or a chain transfer agent. ) Can be obtained efficiently. When the polymerization temperature is less than 130 ° C, a large amount of radical polymerization initiator or chain transfer agent is required to obtain the desired molecular weight, so the resulting polymer (B) contains a large amount of impurities. easy. Therefore, problems such as coloring and off-flavor may occur in the thermoplastic resin composition and the molded product. When the polymerization temperature exceeds 350 ° C, the polymer (B) may be thermally decomposed, and thus the polymer (B) may not be obtained efficiently.
[0036] 重合体 (B)の高温連続重合は、例えば特表昭 57— 502171号公報、特開昭 59— 6207号公報、又は特開昭 60— 215007号公報に開示された公知の方法に従って 行われる。例えば、重合体 (B)は、加圧可能な反応器を加圧下で所定温度に設定し た後、各ビュル単量体と、必要に応じて重合溶媒とからなるビュル単量体の混合物を 一定の供給速度で反応器に供給し、ビニル単量体の混合物の供給量に等しレ、量の 重合反応液を回収することにより製造される。ビニル単量体の混合物には、必要に応 じて重合開始剤を配合してもよい。重合開始剤の配合量は、ビニル単量体の混合物 100質量部(質量%)当たり 0. 00:!〜 2質量部が好ましレ、。重合体(B)の製造の際の 圧力は、反応温度と、使用するビニル単量体の混合物、及び溶媒の沸点とに依存し ており、圧力は反応に影響を及ぼさないことから、前記反応温度を維持することがで きる圧力であればよい。ビニル単量体の混合物の反応器内での滞留時間は、:!〜 60 分が好ましぐ 2〜40分がより好ましい。滞留時間が 1分未満の場合、ビニル単量体 が十分に反応しないおそれがある。滞留時間が 60分を越える場合、重合体 (B)の生 産性が悪化する場合がある。  [0036] The high-temperature continuous polymerization of the polymer (B) is performed according to a known method disclosed in, for example, JP-A-57-502171, JP-A-59-6207, or JP-A-60-215007. Done. For example, in the case of polymer (B), a reactor capable of being pressurized is set to a predetermined temperature under pressure, and then a mixture of bully monomers comprising each bully monomer and, if necessary, a polymerization solvent is used. It is produced by supplying the reactor at a constant feed rate and recovering the polymerization reaction solution in an amount equivalent to the feed amount of the vinyl monomer mixture. A polymerization initiator may be blended in the vinyl monomer mixture as necessary. The amount of the polymerization initiator is preferably from 0.00: to 2 parts by mass per 100 parts by mass (% by mass) of the vinyl monomer mixture. The pressure during the production of the polymer (B) depends on the reaction temperature, the mixture of vinyl monomers used, and the boiling point of the solvent, and the pressure does not affect the reaction. Any pressure can be used as long as the temperature can be maintained. The residence time of the mixture of vinyl monomers in the reactor is preferably:! -60 minutes, more preferably 2-40 minutes. If the residence time is less than 1 minute, the vinyl monomer may not react sufficiently. When the residence time exceeds 60 minutes, the productivity of the polymer (B) may deteriorate.
[0037] 熱可塑性樹脂組成物中の重合体 (B)の含有量は、熱可塑性樹脂 (A) 100質量部 当たり 0.:!〜 5質量部であり、 0. 3〜3質量部が好ましぐ 0. 5〜2質量部がより好ま しい。重合体 (B)の含有量が 0. 1質量部未満の場合、重合体 (B)は熱可塑性樹脂 組成物の溶融張力を十分に高めることができないことから、成形品の寸法安定性が 低い。重合体 (B)の含有量が 5質量部を超える場合、熱可塑性樹脂組成物の成形 時に架橋物が生成されることから、成形品の光沢が低下して成形品が不透明になる [0037] The content of the polymer (B) in the thermoplastic resin composition is 0.:! To 5 parts by mass, preferably 0.3 to 3 parts by mass per 100 parts by mass of the thermoplastic resin (A). Masugu 0.5-2 parts by mass are more preferred That's right. When the content of the polymer (B) is less than 0.1 part by mass, the polymer (B) cannot sufficiently increase the melt tension of the thermoplastic resin composition, and thus the dimensional stability of the molded product is low. . When the content of the polymer (B) exceeds 5 parts by mass, a crosslinked product is formed during molding of the thermoplastic resin composition, so that the gloss of the molded product is lowered and the molded product becomes opaque.
[0038] 触媒(C)は、エポキシ基との反応性を備える官能基およびエポキシ基の反応を促 進する役割を担う。触媒 (C)の具体例としては、上記役割を担う化合物であれば特に 限定されず、好ましくは金属塩化合物である。金属塩化合物の具体例としては、有機 脂肪酸金属塩、芳香族カルボン酸金属塩、酸性ピロリン酸塩、リン酸金属塩、酸性リ ン酸エステルの金属塩、及び金属の塩化物が挙げられる。 [0038] The catalyst (C) plays a role of promoting a reaction between a functional group having reactivity with an epoxy group and an epoxy group. A specific example of the catalyst (C) is not particularly limited as long as it is a compound that plays the above role, and is preferably a metal salt compound. Specific examples of the metal salt compound include organic fatty acid metal salts, aromatic carboxylic acid metal salts, acidic pyrophosphates, phosphoric acid metal salts, metal salts of acidic phosphates, and metal chlorides.
[0039] 有機脂肪酸金属塩の具体例としては、ステアリン酸ナトリウム、ステアリン酸カルシゥ ム、ステアリン酸アルミニウム、ステアリン酸マグネシウム、ステアリン酸亜鉛、ステアリ ン酸鉛、ステアリン酸カドミウム、ステアリン酸リチウム、ステアリン酸バリウム、ラウリン 酸亜鉛、リシノール酸亜鉛、 2—ェチルへキソイン酸亜鉛、 12—ヒドロキシステアリン 酸アルミニウム、及び 12—ヒドロキシステアリン酸亜鉛が挙げられる。芳香族カルボン 酸金属塩の具体例としては、安息香酸ナトリウム、安息香酸カルシウム、安息香酸マ グネシゥム、及び安息香酸アルミニウムが挙げられる。酸性ピロリン酸塩の具体例とし ては、ピロリン酸ナトリウム、ピロリン酸カリウム、ピロリン酸アルミニウム、及びピロリン 酸 2水素ナトリウムが挙げられる。リン酸金属塩の具体例としては、リン酸ナトリウム、リ ン酸アルミニウム、及びリン酸カルシウムが挙げられる。酸性リン酸エステルの金属塩 の具体例としては、ナトリウムステアリルフォスファイト、カルシウムステアリルフォスファ イト、アルミニウムステアリルフォスファイト、及び亜鉛ステアリルフォスファイトが挙げら れる。金属の塩化物の具体例としては、塩化ナトリウム、塩化カルシウム、塩化マグネ シゥム、塩化亜鉛等の塩化物が挙げられる。  [0039] Specific examples of the organic fatty acid metal salt include sodium stearate, calcium stearate, aluminum stearate, magnesium stearate, zinc stearate, lead stearate, cadmium stearate, lithium stearate, barium stearate. , Zinc laurate, zinc ricinoleate, zinc 2-ethylhexohexanoate, aluminum 12-hydroxystearate, and zinc 12-hydroxystearate. Specific examples of the aromatic carboxylic acid metal salt include sodium benzoate, calcium benzoate, magnesium benzoate, and aluminum benzoate. Specific examples of acidic pyrophosphates include sodium pyrophosphate, potassium pyrophosphate, aluminum pyrophosphate, and sodium dihydrogen pyrophosphate. Specific examples of the metal phosphate include sodium phosphate, aluminum phosphate, and calcium phosphate. Specific examples of the acid phosphate metal salt include sodium stearyl phosphite, calcium stearyl phosphite, aluminum stearyl phosphite, and zinc stearyl phosphite. Specific examples of metal chlorides include chlorides such as sodium chloride, calcium chloride, magnesium chloride, and zinc chloride.
[0040] 触媒(C)は、熱可塑性樹脂 (A)への相溶性が良好であることから、好ましくは有機 脂肪酸金属塩、芳香族カルボン酸金属塩、又は酸性リン酸エステルの金属塩であり 、特に好ましくはステアリン酸亜鉛、ステアリン酸アルミニウム、ステアリン酸バリウム、 又は安息香酸ナトリウムである。 [0041] 熱可塑性樹脂組成物中の触媒 (C)の含有量は、熱可塑性樹脂 (A) 100質量部当 たり 1. 0 X 10 50 X 10— 6質量部(1. 0 50質量 ppm)であり、 2. 0 X 10 35 X 10— 6質量部(2. 0 35質量 ppm)がより好ましレ、。触媒(C)の含有量が 1. 0 X 10 _6質量部未満の場合、熱可塑性樹脂組成物の溶融張力が十分に高められないこと から、成形品の寸法安定性が低い。触媒 (C)の含有量が 50 X 10—6質量部を超える 場合、かえって熱可塑性樹脂組成物の溶融張力および溶融粘度が低下することから 、成形品の寸法安定性が低い。したがって、触媒 (C)の含有量は本発明にとって極 めて重要な条件である。 [0040] The catalyst (C) is preferably an organic fatty acid metal salt, an aromatic carboxylic acid metal salt, or a metal salt of an acidic phosphate because it has good compatibility with the thermoplastic resin (A). Particularly preferred are zinc stearate, aluminum stearate, barium stearate, or sodium benzoate. [0041] The content of the catalyst (C) of the thermoplastic resin composition, the thermoplastic resin (A) 100 parts by mass of those or 1.0 X 10 50 X 10- 6 parts by weight (1.0 50 mass ppm) and a, 2.0 X 10 35 X 10- 6 parts by weight (2.0 35 mass ppm), more preferably les. When the content of the catalyst (C) is less than 1.0 X 10 — 6 parts by mass, the melt tension of the thermoplastic resin composition cannot be sufficiently increased, and thus the dimensional stability of the molded product is low. When the content of the catalyst (C) is more than 50 X 10- 6 parts by weight, rather because the melt tension and melt viscosity of the thermoplastic resin composition is lowered, low dimensional stability of the molded article. Therefore, the content of the catalyst (C) is a very important condition for the present invention.
[0042] 熱可塑性樹脂組成物は、前記 (A) (C)の各成分以外に、 1個のカルボキシル基 を有するとともに、前記熱可塑性樹脂 (A)とは異なる化合物(D) (以下、カルボキシ ル化合物(D)とレ、う。)を好ましくは更に含有してレ、る。  [0042] In addition to the components (A) and (C), the thermoplastic resin composition has a compound (D) (hereinafter referred to as carboxy) having one carboxyl group and different from the thermoplastic resin (A). The compound (D) and les.) Are preferably further contained.
[0043] カルボキシル化合物(D)は、熱可塑性樹脂組成物の溶融粘度および溶融張力を 調節し、熱可塑性樹脂組成物の成形前または成形中に熱可塑性樹脂組成物がゲル 化することによって引き起こされる成形の不具合の発生を防止する役割を担う。ここで 、カルボキシル化合物(D)は、 1個のカルボキシノレ基を有する熱可塑性樹脂 (A)、例 えばカルボキシル基および水酸基を末端基とするポリエステル樹脂を含まない。  [0043] The carboxyl compound (D) adjusts the melt viscosity and melt tension of the thermoplastic resin composition, and is caused by gelation of the thermoplastic resin composition before or during the molding of the thermoplastic resin composition. It plays a role in preventing the occurrence of molding defects. Here, the carboxyl compound (D) does not include a thermoplastic resin (A) having one carboxynole group, for example, a polyester resin having a carboxyl group and a hydroxyl group as terminal groups.
[0044] カルボキシル化合物(D)が有するカルボキシノレ基は、成形の際の不具合の発生を 十分に防止することができることから、その全部または一部が金属と塩を形成してい ないことが好ましい。即ち、カルボキシノレ基の少なくとも一部は酸の状態であることが 好ましい。金属の具体例としては、ナトリウム、カリウム、マグネシウム、及びカルシウム が挙げられる。  [0044] The carboxyl group of the carboxyl compound (D) can sufficiently prevent the occurrence of defects during molding. Therefore, it is preferable that all or part of the carboxyl group does not form a salt with a metal. That is, it is preferable that at least a part of the carboxyleno group is in an acid state. Specific examples of metals include sodium, potassium, magnesium, and calcium.
[0045] カルボキシル化合物(D)の具体例としては、低級脂肪族カルボン酸化合物、高級 脂肪族カルボン酸化合物、及び芳香族カルボン酸化合物が挙げられる。低級脂肪 族カルボン酸化合物の具体例としては、酢酸、酪酸、イソ酪酸、ペンタン酸、及びイソ ペンタン酸が挙げられる。高級脂肪族カルボン酸化合物の具体例としては、デカン 酸、ゥンデカン酸、ラウリン酸、パルミチン酸、ォレイン酸、及びステアリン酸が挙げら れる。芳香族カルボン酸化合物の具体例としては、安息香酸、メチル安息香酸、 4- ェチル安息香酸、 2, 4—ジメチル安息香酸、 o—トリル酢酸、 m—トリル酢酸、 p—トリ ル酢酸、 2_フエニル酪酸、 4_フエニル酪酸、 1 _ナフトェ酸、及び 2_ナフトェ酸が 挙げられる。カルボキシル化合物(D)は、好ましくは安息香酸またはステアリン酸で ある。単官能カルボン酸の無水物、例えば無水安息香酸、無水酪酸、無水へキサン 酸、及び無水プロピオン酸は、加水分解によりカルボキシノレ基を 1個有する化合物に 転化されることから、カルボキシル化合物(D)に含まれる。 2価カルボン酸の無水物、 例えば無水フタル酸、及び無水マレイン酸は、加水分解によりカルボキシル基を 2個 有する化合物に転化されることから、カルボキシル化合物(D)に含まれない。 [0045] Specific examples of the carboxyl compound (D) include a lower aliphatic carboxylic acid compound, a higher aliphatic carboxylic acid compound, and an aromatic carboxylic acid compound. Specific examples of the lower aliphatic carboxylic acid compound include acetic acid, butyric acid, isobutyric acid, pentanoic acid, and isopentanoic acid. Specific examples of the higher aliphatic carboxylic acid compound include decanoic acid, undecanoic acid, lauric acid, palmitic acid, oleic acid, and stearic acid. Specific examples of the aromatic carboxylic acid compound include benzoic acid, methylbenzoic acid, 4-ethylbenzoic acid, 2,4-dimethylbenzoic acid, o-tolylacetic acid, m-tolylacetic acid, p-trilelic acid. Examples include lucacetic acid, 2_phenylbutyric acid, 4_phenylbutyric acid, 1_naphthoic acid, and 2_naphthoic acid. The carboxyl compound (D) is preferably benzoic acid or stearic acid. Monofunctional carboxylic acid anhydrides such as benzoic anhydride, butyric anhydride, hexanoic anhydride, and propionic anhydride are converted to compounds having one carboxynole group by hydrolysis, so that carboxyl compounds (D) include. Dihydric carboxylic acid anhydrides, such as phthalic anhydride and maleic anhydride, are not included in the carboxyl compound (D) because they are converted into compounds having two carboxyl groups by hydrolysis.
[0046] カルボキシル化合物(D)は、好ましくは炭素数が 5以上であるカルボン酸化合物で あり、より好ましくは芳香族カルボン酸化合物である。カルボキシル化合物(D)が芳 香族カルボン酸化合物である場合、カルボキシル化合物(D)は、熱可塑性樹脂組成 物の成分である熱可塑性樹脂 (A)および重合体 (B)の相溶性を良好にさせて成形 品を均質にし易い。 [0046] The carboxyl compound (D) is preferably a carboxylic acid compound having 5 or more carbon atoms, and more preferably an aromatic carboxylic acid compound. When the carboxyl compound (D) is an aromatic carboxylic acid compound, the carboxyl compound (D) has good compatibility between the thermoplastic resin (A) and the polymer (B), which are components of the thermoplastic resin composition. It is easy to make the molded product homogeneous.
[0047] カルボキシノレ化合物(D)の沸点は、 100°C以上が好ましぐ 150°C以上がより好ま しぐ 200°C以上が更に好ましい。カルボキシル化合物(D)の沸点が 100°C未満で ある場合、熱可塑性樹脂組成物の製造における加熱溶融過程中にカルボキシルイ匕 合物(D)が気散し易い。そのため、熱可塑性樹脂組成物中のカルボキシルイ匕合物( D)の含有量の制御が困難になるとともに、作業環境が不適正になる場合がある。  [0047] The boiling point of the carboxynole compound (D) is preferably 100 ° C or higher, more preferably 150 ° C or higher, and further preferably 200 ° C or higher. When the boiling point of the carboxyl compound (D) is less than 100 ° C., the carboxyl compound (D) is easily diffused during the heating and melting process in the production of the thermoplastic resin composition. Therefore, it becomes difficult to control the content of the carboxyl compound (D) in the thermoplastic resin composition, and the working environment may be inappropriate.
[0048] 熱可塑性樹脂組成物中のカルボキシル化合物(D)の含有量は、熱可塑性樹脂 (A ) 100質量部当たり 0. 3 X 10 10 X 10— 6質量部(0. 3 10質量 ppm)が好ましく 0. 5 X 10 5 X 10— 6質量咅 B (0. 5 5質量 ppm)カより好ましレ、。力ノレボキシノレ 化合物 (D)の含有量が 0. 3 X 10— 6質量部未満の場合、熱可塑性樹脂組成物の成 形時に架橋物が生成されることから、成形品の光沢が低下して成形品が不透明にな るおそれがある。カルボキシノレ化合物(D)の含有量が 10 X 10_6質量部を超える場 合、熱可塑性樹脂組成物の溶融張力および溶融粘度が低下することから、成形品の 寸法安定性が低下するおそれがある。 [0048] carboxyl compound in the thermoplastic resin composition content of (D), the thermoplastic resin (A) 100 parts by mass of per 0.3 X 10 10 X 10- 6 parts by weight (0.3 10 mass ppm) preferably 0. 5 X 10 5 X 10- 6 weight咅B (0. 5 5 mass ppm) Ca than preferred les. When the content of the force Norebokishinore compound (D) is less than 0. 3 X 10- 6 parts by weight, since the cross-linked product when forming the shape of the thermoplastic resin composition is produced, the gloss of the molded article is lowered molding The product may become opaque. Karubokishinore compound (D) if the content exceeds 10 X 10_ 6 parts by weight of, since the melt tension and melt viscosity of the thermoplastic resin composition is lowered, there is a possibility that the dimensional stability of the molded article is lowered .
[0049] 熱可塑性樹脂組成物は、熱可塑性樹脂 (A)、重合体 (B)、触媒 (C)、及び必要に 応じてカルボキシル化合物 (D)以外に、体質顔料、着色顔料、可塑剤、流動性調整 剤、結晶核剤、その他熱可塑性樹脂に配合可能な公知の成分を含有してもよい。 [0050] 熱可塑性樹脂組成物は、熱可塑性樹脂 (A)、重合体 (B)、触媒 (C)および必要に 応じてカルボキシルイ匕合物(D)を任意の方法によって混合させることにより得られる。 例えば、熱可塑性樹脂組成物は、押出成形機またはニーダ一によつて各原料が混 合されることにより得られる。押出成形機の具体例としては、単軸押出機、嚙合い形 同方向平行軸二軸押出機、嚙合い形異方向平行軸二軸押出機、嚙合い形異方向 斜軸ニ軸押出機、非嚙合い形二軸押出機、不完全嚙合い形二軸押出機、コニーダ 一形押出機、プラネタリギヤ形押出機、トランスファミックス押出機、ラム押出機、及び ローラ押出機が挙げられる。また、上記混合に先立って、各原料は、例えばへンシェ ルミキサーまたはタンブラ一によつて予備混合されてもよい。熱可塑性樹脂組成物の 各原料の形状は、ペレット形状でもよいし、パウダー形状でもよいし、液状でもよい。 [0049] The thermoplastic resin composition includes an extender pigment, a color pigment, a plasticizer, a thermoplastic resin (A), a polymer (B), a catalyst (C), and, if necessary, a carboxyl compound (D). You may contain the well-known component which can be mix | blended with a fluidity modifier, a crystal nucleating agent, and other thermoplastic resins. [0050] The thermoplastic resin composition is obtained by mixing the thermoplastic resin (A), the polymer (B), the catalyst (C) and, if necessary, the carboxyl compound (D) by any method. It is done. For example, the thermoplastic resin composition can be obtained by mixing the raw materials with an extruder or a kneader. Specific examples of the extrusion molding machine include a single screw extruder, a mating type parallel parallel twin screw extruder, a mating type different direction parallel shaft twin screw extruder, a mating type different direction oblique axis twin screw extruder, Non-matching twin screw extruders, incomplete mating twin screw extruders, conida single screw extruders, planetary gear extruders, transfer mix extruders, ram extruders, and roller extruders. Prior to the mixing, the raw materials may be premixed by using, for example, a hen shell mixer or a tumbler. The shape of each raw material of the thermoplastic resin composition may be a pellet shape, a powder shape, or a liquid shape.
[0051] 重合体 (B)、触媒(C)、及び必要に応じてカルボキシル化合物(D)が予め一定量 の熱可塑性樹脂と混合されたマスターバッチとして調製され、該マスターバッチと熱 可塑性樹脂 (A)との混合によって熱可塑性樹脂組成物が製造されてもよい。以下、 この製造方法をマスターバッチ法という。マスターバッチ法は、比較的少量の成分で ある触媒 (C)およびカルボキシルイ匕合物(D)が熱可塑性樹脂組成物中に均一に混 合され易いことから好ましい。マスターバッチの調製に使用される熱可塑性樹脂は、 熱可塑性樹脂 (A)の一部でもよいし、熱可塑性樹脂組成物 (A)とは異なる熱可塑性 樹脂 (E)でもよレヽし、熱可塑性樹脂 (A)の一部および熱可塑性樹脂 (E)の両方でも よい。マスターバッチの調製に使用される熱可塑性樹脂が熱可塑性樹脂 (E)を含有 する場合、熱可塑性樹脂組成物は、熱可塑性樹脂 (E)を更に含有する。そして、熱 可塑性樹脂 (A)及び (E)の内、熱可塑性樹脂 (A)のみがエポキシ基との反応性を 備える官能基を有する。  [0051] A polymer (B), a catalyst (C), and, if necessary, a carboxyl compound (D) are prepared in advance as a master batch mixed with a certain amount of a thermoplastic resin, and the master batch and the thermoplastic resin ( A thermoplastic resin composition may be produced by mixing with A). Hereinafter, this production method is referred to as a master batch method. The masterbatch method is preferable because the catalyst (C) and the carboxyl compound (D), which are relatively small components, are easily mixed uniformly in the thermoplastic resin composition. The thermoplastic resin used in the preparation of the masterbatch may be part of the thermoplastic resin (A), or may be a thermoplastic resin (E) different from the thermoplastic resin composition (A). Both a part of the resin (A) and the thermoplastic resin (E) may be used. When the thermoplastic resin used for the preparation of the masterbatch contains the thermoplastic resin (E), the thermoplastic resin composition further contains the thermoplastic resin (E). Of the thermoplastic resins (A) and (E), only the thermoplastic resin (A) has a functional group having reactivity with an epoxy group.
[0052] マスターバッチの調製およびマスターバッチと熱可塑性樹脂 (A)の残部との混合に よる熱可塑性樹脂組成物の製造は、上記に例示した押出機またはニーダーを使用し て行われてもよい。  [0052] The preparation of the masterbatch and the production of the thermoplastic resin composition by mixing the masterbatch and the remainder of the thermoplastic resin (A) may be performed using the extruder or kneader exemplified above. .
[0053] マスターバッチの調製に使用される熱可塑性樹脂が熱可塑性樹脂 (A)の一部であ る場合、マスターバッチの調製工程では、最終的に熱可塑性樹脂組成物に配合され る熱可塑性樹脂 (A)の全量の内の一部が使用される。マスターバッチ中の熱可塑性 樹脂 (A)の含有量は、マスターバッチ中の熱可塑性樹脂 (A)、重合体 (B)、触媒 (C )、及び必要に応じてカルボキシル化合物(D)の含有量の合計 100質量部当たり 30 〜85質量部が好ましぐ 40〜80質量部がより好ましぐ 45〜75質量部が更に好まし レ、。一方、マスターバッチ中の重合体(B)、触媒(C)、及び必要に応じてカルボキシ ル化合物(D)の含有量の合計は、マスターバッチ中の熱可塑性樹脂 (A)、重合体([0053] When the thermoplastic resin used in the preparation of the masterbatch is part of the thermoplastic resin (A), in the preparation process of the masterbatch, the thermoplastic finally blended into the thermoplastic resin composition A part of the total amount of resin (A) is used. Thermoplasticity in masterbatch Resin (A) content is based on 100 parts by mass of the total content of thermoplastic resin (A), polymer (B), catalyst (C), and, if necessary, carboxyl compound (D) in the masterbatch. 30 to 85 parts by weight is preferred 40 to 80 parts by weight is more preferred 45 to 75 parts by weight is even more preferred. On the other hand, the total content of the polymer (B), the catalyst (C) and, if necessary, the carboxyl compound (D) in the masterbatch is the thermoplastic resin (A), polymer (
B)、触媒(C)及び必要に応じてカルボキシノレ化合物(D)の含有量の合計 100質量 部当たり 15〜70質量部が好ましぐ 20〜60質量部がより好まし 25〜55質量部 が更に好ましい。 B), the catalyst (C) and, if necessary, the total content of the carboxylenole compound (D) is preferably 15-70 parts by mass per 100 parts by mass, more preferably 20-60 parts by mass, 25-55 parts by mass Is more preferable.
[0054] このようなマスターバッチを使用することにより、熱可塑性樹脂組成物の溶融粘度 および溶融張力が特に高くなり、その結果、優れた寸法安定性を発揮する成形品が 得られる。  [0054] By using such a masterbatch, the melt viscosity and melt tension of the thermoplastic resin composition are particularly high, and as a result, a molded product exhibiting excellent dimensional stability can be obtained.
[0055] 熱可塑性樹脂 (A)の一部を含有するマスターバッチの使用によって熱可塑性樹脂 組成物が製造される場合、マスターバッチと混合される熱可塑性樹脂 (A)の残部の 量は、最終的に熱可塑性樹脂組成物に含有される熱可塑性樹脂 (A)の全量から、 マスターバッチの調製に供された熱可塑性樹脂 (A)の量を減ずることにより求められ る。  [0055] When a thermoplastic resin composition is produced by using a masterbatch containing a portion of the thermoplastic resin (A), the balance of the thermoplastic resin (A) mixed with the masterbatch is the final amount In particular, it is obtained by subtracting the amount of the thermoplastic resin (A) used for preparing the masterbatch from the total amount of the thermoplastic resin (A) contained in the thermoplastic resin composition.
[0056] マスターバッチの調製に使用される熱可塑性樹脂が熱可塑性樹脂 (E)である場合 、マスターバッチ中の熱可塑性樹脂(E)の含有量は、マスターバッチ中の熱可塑性 樹脂 (E)、重合体 (B)、触媒 (C)、及び必要に応じてカルボキシルイ匕合物 (D)の含 有量の合計 100質量部当たり 30〜85質量部が好ましぐ 40〜80質量部がより好ま しぐ 45〜75質量部が更に好ましい。一方、マスターバッチ中の重合体(B)、触媒( [0056] When the thermoplastic resin used in the preparation of the masterbatch is a thermoplastic resin (E), the content of the thermoplastic resin (E) in the masterbatch is the thermoplastic resin (E) in the masterbatch. , Polymer (B), catalyst (C), and, if necessary, the total content of carboxyl compound (D) is preferably 30 to 85 parts by mass, preferably 40 to 80 parts by mass per 100 parts by mass. More preferred is 45 to 75 parts by mass. On the other hand, polymer (B), catalyst (
C)、及び必要に応じてカルボキシル化合物の含有量の合計は、マスターバッチ中の 熱可塑性樹脂 (E)、重合体 (B)、触媒 (C)、及び必要に応じてカルボキシルイヒ合物(C) and, if necessary, the total content of carboxyl compounds is determined by calculating the thermoplastic resin (E), polymer (B), catalyst (C), and optionally carboxylic acid compound (
D)の含有量の合計 100質量部当たり 15〜70質量部が好ましぐ 20〜60質量部が より好まし 25〜55質量部が更に好ましい。 The total content of D) is preferably 15 to 70 parts by mass per 100 parts by mass, more preferably 20 to 60 parts by mass, and even more preferably 25 to 55 parts by mass.
[0057] このようなマスターバッチを使用することにより、熱可塑性樹脂組成物の溶融粘度 および溶融張力が特に高くなり、その結果、優れた寸法安定性を発揮する成形品が 得られる。 [0058] 熱可塑性樹脂 (A)の代わりに熱可塑性樹脂 (E)を含有するマスターバッチの使用 によって熱可塑性樹脂組成物が製造される場合、マスターバッチと混合される熱可 塑性樹脂 (A)の量は、熱可塑性樹脂組成物中に含有される熱可塑性樹脂 (A)の全 量と等しい。 [0057] By using such a master batch, the melt viscosity and melt tension of the thermoplastic resin composition are particularly high, and as a result, a molded product exhibiting excellent dimensional stability can be obtained. [0058] When the thermoplastic resin composition is produced by using a masterbatch containing the thermoplastic resin (E) instead of the thermoplastic resin (A), the thermoplastic resin (A) mixed with the masterbatch The amount of is equal to the total amount of the thermoplastic resin (A) contained in the thermoplastic resin composition.
[0059] マスターバッチの調製に使用される熱可塑性樹脂が熱可塑性樹脂 (A)の一部およ び熱可塑性樹脂 (E)の両方である場合、マスターバッチ中の熱可塑性樹脂 (A)及び (E)の含有量の合計は、前記各マスターバッチ中の熱可塑性樹脂 (A)又は (E)の含 有量と等しい。マスターバッチの調製に使用される熱可塑性樹脂は、熱可塑性樹脂 組成物の前記特性を特に高めることができることから、その一部または全部が熱可塑 性樹脂 (A)であることが好ましレ、。  [0059] When the thermoplastic resin used in the preparation of the masterbatch is both a part of the thermoplastic resin (A) and the thermoplastic resin (E), the thermoplastic resin (A) in the masterbatch and The total content of (E) is equal to the content of thermoplastic resin (A) or (E) in each masterbatch. The thermoplastic resin used for the preparation of the masterbatch can particularly enhance the above-mentioned properties of the thermoplastic resin composition. Therefore, it is preferable that a part or all of the thermoplastic resin is the thermoplastic resin (A). .
[0060] マスターバッチの調製に使用される熱可塑性樹脂 (E)の具体例としては、ポリオレ フィン樹脂、スチレン樹脂、及びアクリル樹脂が挙げられる。ポリオレフイン樹脂の具 体例としては、低密度ポリエチレン樹脂、高密度ポリエチレン樹脂、ポリプロピレン樹 脂、エチレン.プロピレン共重合体、エチレン酢酸ビュル共重合体、及びポリエチレン •アクリル酸ェチル共重合体が挙げられる。スチレン樹脂の具体例としては、ポリスチ レン樹脂、アクリロニトリル 'スチレン共重合体、メタクリル酸メチル 'スチレン共重合体 、及びアクリロニトリル 'ブタジエン 'スチレン共重合体が挙げられる。アクリル樹脂の 具体例としてはポリメタクリル酸メチル樹脂が挙げられる。熱可塑性樹脂(E)は、好ま しくはポリオレフイン樹脂またはポリスチレン樹脂である。  [0060] Specific examples of the thermoplastic resin (E) used for preparing the masterbatch include polyolefin resin, styrene resin, and acrylic resin. Specific examples of polyolefin resins include low density polyethylene resin, high density polyethylene resin, polypropylene resin, ethylene / propylene copolymer, ethylene acetate butyl copolymer, and polyethylene / ethyl acrylate copolymer. Specific examples of the styrene resin include polystyrene resin, acrylonitrile 'styrene copolymer, methyl methacrylate' styrene copolymer, and acrylonitrile 'butadiene' styrene copolymer. Specific examples of the acrylic resin include polymethyl methacrylate resin. The thermoplastic resin (E) is preferably a polyolefin resin or a polystyrene resin.
[0061] 熱可塑性樹脂組成物は、押出成形機または射出成形機によって各種成形品の製 造に供される。熱可塑性樹脂組成物から得られる成形品としては、例えばシート、フ イルム等の押出成形品、カレンダー成形品、パイプ、巾木等の異形押出成形品、射 出成形品、ボトル等のブロー成形品、発泡成形品、及び絞り成形品が挙げられる。  [0061] The thermoplastic resin composition is used for production of various molded articles by an extrusion molding machine or an injection molding machine. Molded products obtained from the thermoplastic resin composition include, for example, extruded products such as sheets and films, calendered products, deformed extruded products such as pipes and baseboards, injection molded products, and blow molded products such as bottles. , Foam molded products, and drawn molded products.
[0062] 熱可塑性樹脂組成物は優れた耐ドローダウン性を発揮することから、押出成形によ り熱可塑性樹脂組成物から成形品を製造する方法は、熱可塑性樹脂組成物の特徴 を有効に利用することから好ましい。押出成形により得られる成形品の具体例として は、透明シート、透明フィルム、及び異形成形品が挙げられる。  [0062] Since the thermoplastic resin composition exhibits excellent drawdown resistance, the method of producing a molded product from the thermoplastic resin composition by extrusion molding effectively utilizes the characteristics of the thermoplastic resin composition. It is preferable to use. Specific examples of the molded product obtained by extrusion molding include a transparent sheet, a transparent film, and a deformed product.
[0063] 以下に本発明の実施例および比較例を説明するが、本発明は以下の実施例に限 定されない。 [0063] Examples and comparative examples of the present invention will be described below, but the present invention is limited to the following examples. Not determined.
実施例  Example
[0064] (重合体 1の製造)  [0064] (Production of polymer 1)
オイルジャケットを備えた加圧式の攪拌槽型反応器 (容量: 1リットル)のオイルジャ ケットを、 200°Cまで昇温した。一方、 69質量部のスチレン(以下、 Stとレヽう。)、 30質 量部のグリシジルメタタリレート(以下、 GMAという。)、 1質量部のメチルメタタリレート (以下、 MMAという。)、 15質量部のキシレン 15質量部、及び重合開始剤としての 0 . 5質量部のジターシャリーブチルパーオキサイド(以下、 DTBPという。)からなる単 量体混合液を調製した後、原料タンク内に加えた。次いで、単量体混合液を原料タ ンクから反応器に連続供給し、反応器の内容液の質量が約 580gで一定となるように 、反応液を反応器の出口から連続的に回収した。連続供給時の単量体混合液の供 給速度を 48g/分に設定するとともに、単量体混合液の滞留時間を 12分に設定した 。更に、連続供給時の反応器内の温度を約 210°Cで保持した。  The temperature of an oil jacket in a pressurized stirred tank reactor (capacity: 1 liter) equipped with an oil jacket was raised to 200 ° C. On the other hand, 69 parts by mass of styrene (hereinafter referred to as St), 30 parts by mass of glycidyl metatalylate (hereinafter referred to as GMA), 1 part by mass of methyl metatalylate (hereinafter referred to as MMA), A monomer mixture consisting of 15 parts by mass of xylene 15 parts by mass and 0.5 parts by mass of ditertiary butyl peroxide (hereinafter referred to as DTBP) as a polymerization initiator was prepared and added to the raw material tank. It was. Next, the monomer mixed solution was continuously supplied from the raw material tank to the reactor, and the reaction solution was continuously collected from the outlet of the reactor so that the mass of the content solution in the reactor was constant at about 580 g. The supply rate of the monomer mixture during continuous supply was set to 48 g / min, and the residence time of the monomer mixture was set to 12 minutes. Furthermore, the temperature in the reactor during continuous feeding was maintained at about 210 ° C.
[0065] 反応器内の温度が安定してから 36分経過した後、回収した反応液から揮発成分を 除去して、揮発成分をほとんど含まない重合体 1の回収を開始した。反応液からの揮 発成分の除去は薄膜蒸発機を用いて行い、薄膜蒸発機の減圧度を 30kPaで保持 するとともに、温度を 250°Cで保持した。反応液からの揮発成分の除去を 180分間行 レ、、約 7kgの重合体 1を回収した。  [0065] After 36 minutes had passed since the temperature in the reactor was stabilized, volatile components were removed from the recovered reaction solution, and recovery of polymer 1 containing almost no volatile components was started. The volatile components were removed from the reaction solution using a thin film evaporator. The pressure of the thin film evaporator was maintained at 30 kPa and the temperature was maintained at 250 ° C. Volatile components were removed from the reaction solution for 180 minutes, and about 7 kg of Polymer 1 was recovered.
[0066] ゲルパーミエーシヨンクロマトグラフ(以下、 GPCとレ、う。)より求めたポリスチレン換 算による重合体 1の数平均分子量(以下、 Mnとレ、う。)は 2900であり、重合体 1の重 量平均分子量 (以下、 Mwという。)は 9900であった。重合体 1分子当たりに含まれる エポキシ基の個数の平均(以下、 Fnとレ、う。)は、 6. 1であった。  [0066] The number average molecular weight of polymer 1 (hereinafter referred to as Mn and R) obtained by polystyrene conversion determined from a gel permeation chromatograph (hereinafter referred to as GPC) is 2900. The weight average molecular weight of 1 (hereinafter referred to as Mw) was 9900. The average number of epoxy groups contained in one molecule of the polymer (hereinafter referred to as “Fn”) was 6.1.
(重合体 2の製造)  (Production of polymer 2)
38質量部の St、 8質量部のアクリル酸ブチル(以下、 BAという。)、 25質量部の G MA、 29質量部の MMA、 15質量部のキシレン、及び 0. 3質量部の DTBPからなる 単量体混合液を用いた以外は、重合体 1と同様の方法によって重合体 2を製造した。 GPCより求めたポリスチレン換算による重合体 2の Mnは 2900であり、 Mwは 10800 であった。重合体 2の Fnは 5· 1であった。 (重合体 3および 4の製造) 38 parts by mass St, 8 parts by mass butyl acrylate (hereinafter referred to as BA), 25 parts by mass GMA, 29 parts by mass MMA, 15 parts by mass xylene, and 0.3 parts by mass DTBP A polymer 2 was produced in the same manner as the polymer 1 except that the monomer mixture was used. The Mn of the polymer 2 in terms of polystyrene determined by GPC was 2900, and Mw was 10800. The Fn of polymer 2 was 5.1. (Production of polymers 3 and 4)
単量体の組成を下記表 1に示すように変更した以外は、重合体 1と同様の方法によ つて重合体 3及び 4を製造した。重合体 3及び 4の Mn、 Mw、及び Fnを表 1に示す。  Polymers 3 and 4 were produced in the same manner as for Polymer 1 except that the monomer composition was changed as shown in Table 1 below. Table 1 shows the Mn, Mw, and Fn of the polymers 3 and 4.
[0067] [表 1] [0067] [Table 1]
Figure imgf000019_0001
Figure imgf000019_0001
[0068] (マスターバッチ:!〜 17の調製) [0068] (Preparation of master batch:! -17)
マスターバッチ用熱可塑性樹脂(以下、ビヒクルともいう。)として、非結晶性コポリエ ステル樹脂であるイーストマンケミカル社製イースター 6763 (以下、 PET— Gという。 )を用レヽた。 69. 927質量咅の PET— こ、 30質量咅の重合体 1、 0. 075質量咅の ステアリン酸亜鉛をカ卩えた後、ヘンシェルミキサーを用いて均一に予備混合した。次 いで、同方向平行軸 2軸押出機 (プラスチック工学研究所製 ST— 40)を用いて各 成分を溶融混練し、マスターバッチ 1を調製した。また、原料の種類および量を下記 表 2に示すように変更した以外は、マスターバッチ 1と同様の方法によってマスターバ ツチ 2〜: 17を調製した。  As a masterbatch thermoplastic resin (hereinafter also referred to as vehicle), Easter 6763 (hereinafter referred to as PET-G) manufactured by Eastman Chemical Co., which is an amorphous copolyester resin, was used. 69. 927 parts by weight of PET—30 parts by weight of polymer 1 and 0.075 parts by weight of zinc stearate were prepared and then uniformly premixed using a Henschel mixer. Next, each component was melt-kneaded using the same-direction parallel-shaft twin-screw extruder (ST-40, manufactured by Plastics Engineering Laboratory) to prepare Masterbatch 1. Also, master batches 2 to 17 were prepared by the same method as master batch 1 except that the types and amounts of raw materials were changed as shown in Table 2 below.
[0069] [表 2] [0069] [Table 2]
熱可塑性樹脂(A) 重合 * (B) 触媒 (C- 1 ) 触媒 (C-2 カル本'キシル f匕合物 (D) マスター Thermoplastic resin (A) Polymerization * (B) Catalyst (C- 1) Catalyst (C-2 Carle's xyl f compound (D) Master
使用量 使用夏 使用量 使用惫 使用量 バッチ 種類 種類 種類 種類 種類  Usage Amount Usage Summer Usage Amount Usage 惫 Usage Amount Batch Type Type Type Type Type
(霣量部) (質 S部) 置部) (質量部) (質量部) (Weighing part) (Material S part) Placement part) (Mass part) (Mass part)
1 PET-G 69.925 重合体 1 30 St-At 0.075 ― ― ― ―1 PET-G 69.925 Polymer 1 30 St-At 0.075 ― ― ― ―
2 PET-G 69.97 重合体 1 30 St-AI 0.03 ― ― 一2 PET-G 69.97 Polymer 1 30 St-AI 0.03 ― ― One
3 PET-G 69.99 重合体 1 30 St-AI 0.01 ― ― ― ― 3 PET-G 69.99 Polymer 1 30 St-AI 0.01 ― ― ― ―
4 PET-G 69.97 重合体 1 30 St-2n 0.03 ― ― ―  4 PET-G 69.97 Polymer 1 30 St-2n 0.03 ― ― ―
5 PET-G 69.95 重合体 1 30 安- Na 0.05 ― ― ― ―  5 PET-G 69.95 Polymer 1 30 An- Na 0.05 ― ― ― ―
6 PET-G 69.99 重合体 1 30 安- Na 0.01 ― ― ― ―  6 PET-G 69.99 Polymer 1 30 Low-Na 0.01 ― ― ― ―
7 PET-G 69.96 重合体 1 30 安- Na 0.03 St-Zn 0,003 安-酸 0.007 7 PET-G 69.96 Polymer 1 30 An- Na 0.03 St-Zn 0,003 An-acid 0.007
8 PET-G 64.96 重合体 2 35 安- 0.03 St-Zn 0.003 St-酸 0.0078 PET-G 64.96 Polymer 2 35 A-0.03 St-Zn 0.003 St-acid 0.007
9 PET-G 64,964 重合体 2 35 安- 0.03 St-Zn 0.003 St-酸 0.0039 PET-G 64,964 Polymer 2 35 A-0.03 St-Zn 0.003 St-acid 0.003
10 PET-G 64.967 重合体 3 35 安- Na 0.03 St-Zn 0.003 ― ― 10 PET-G 64.967 Polymer 3 35 An- Na 0.03 St-Zn 0.003 ― ―
11 PET-G 64.957 重合体 3 35 安- Na 0.03 St-Zn 0.003 st-酸 0.01 11 PET-G 64.957 Polymer 3 35 A-Na 0.03 St-Zn 0.003 st-acid 0.01
12 PET-G 69.977 重合体 1 30 安- Na 0.02 St-Zr 0.003 ― ― 12 PET-G 69.977 Polymer 1 30 An- Na 0.02 St-Zr 0.003 ― ―
13 PET-G 65 重合体 1 35 ― ― ― ― ― 13 PET-G 65 Polymer 1 35 ― ― ― ― ―
14 PET-G 65 重合体 2 35 ― ― ― ― ― ― t5 PET-G 65 重合体 3 35 ― ― ― ― ― ― 14 PET-G 65 polymer 2 35 ― ― ― ― ― ― t5 PET-G 65 polymer 3 35 ― ― ― ― ― ―
16 PET-G 69.997 重合体 1 30 St-Zn 0.003 ― ― ― ―  16 PET-G 69.997 Polymer 1 30 St-Zn 0.003 ― ― ― ―
17 PET-G 69.85 重合体 1 30 St-At 0.15 一 - ― 一 17 PET-G 69.85 Polymer 1 30 St-At 0.15 One--One
PET- G : ィ一ストマンケミカル社 非結晶性コポリエステル樹脂 イースター 6763PET-G: Eastman Chemical Company Amorphous Copolyester Resin Easter 6763
St-AI: ス亍アリン酸アルミニウム «化学工業㈱製 SA St-AI: Aluminum oxalate «SA made by Chemical Industry Co., Ltd.
St-Zn : ステアリン酸亜鉛 堺化学工業 W製 SZ  St-Zn: Zinc stearate Sakai Chemical Industry W SZ
安- Na : 安息香酸 a 伏見製薬所㈱製  An-Na: Benzoic acid a Fushimi Pharmaceutical Co., Ltd.
安-酸 : 安息香酸 伏見製薬所㈱製  An-acid: Benzoic acid Fushimi Pharmaceutical Co., Ltd.
St -酸 : 粉末ステアリン酸  St-acid: powdered stearic acid
[0070] (熱可塑性樹脂組成物の製造 1) [0070] (Production of thermoplastic resin composition 1)
同方向平行軸 2軸押出機を使用して、下記表 3に示すように配合された実施例:!〜 14の熱可塑性樹脂組成物、及び下記表 4に示されるように配合された比較例:!〜 7 の熱可塑性樹脂組成物を 280°Cで調製した。表 3及び表 4において、 "数量(X 10_f 質量部)"は、当該欄に該当する成分の数量が同欄中の各数値 X 10— 6質量部であ ることを示す。 Use the same direction parallel to axis biaxial extruder, carried formulated as shown in Table 3 below Example:! ~ 1 4 of the thermoplastic resin composition, and are formulated as shown in Table 4 Comparative Example: Thermoplastic compositions of! ~ 7 were prepared at 280 ° C. In Table 3 and Table 4, "Quantity (X 10 _f parts by weight)" is the quantity of component corresponding to the column indicates the numerical X 10- 6 parts by der Rukoto in this column.
[0071] [表 3]  [0071] [Table 3]
Figure imgf000020_0001
Figure imgf000020_0001
再生 pET よのペットリサイクル味 » YPRクリアペレット Play pET Yono pet recycling taste »YPR clear pellets
ス亍アリン »アルミニウム 堺化学工業㈱製 SA  SUALIN »Aluminum Sakai Chemical Industry SA
ステアリン »亜鉛 《化学工業脚 » SZ  Stearin »Zinc << Chemical Industry Legs >> SZ
: 安息香酸 Na 伏見 »藥^ ^製  : Na benzoate Fushimi »藥 ^^ Made
安息香酸 伏見製薬所  Benzoic acid Fushimi Pharmaceutical
粉 テアリン » [0072] [表 4] Powder Thealine » [0072] [Table 4]
Figure imgf000021_0001
Figure imgf000021_0001
R-PET : 再生 PET よのペットリサイクル (W» YPRクリアペレット  R-PET: PET recycled from recycled PET (W »YPR clear pellets
St-AJ ステアリン »アルミニウム 堺化学工業㈱ SI SA  St-AJ Stearin »Aluminum Sakai Chemical Industry Co., Ltd. SI SA
St-Zn: テアリン酸 Sft «化学工業 製 SZ  St-Zn: Tearic acid Sft «CZ by Chemical Industry
安 ~Na : 安 &番麵 Na 伏見襞薬,製  安 ~ Na : 安 & 番 麵 Na Fushimi glaze, made
安- : 安息番 St 伏見製薬所 製  A-: Sabanban St Fushimi Pharmaceutical
St-酸 : 粉末 アリン酸  St-acid: powder Aric acid
[0073] (熱可塑性樹脂組成物の成形性評価 1) [0073] (Evaluation of moldability of thermoplastic resin composition 1)
キヤビラリ レオメータ(東洋精機株式会社製 キヤピログラフ 1C型)を用いて、実 施例 1〜: 14及び比較例 1 7の各熱可塑性樹脂組成物の溶融粘度とダイスゥエルと を測定した。この測定では、孔径が lmmであるとともに厚さが 10mmであるダイスを 用いるとともに、測定温度を 280°Cに設定し、且つせん断速度を 182sec_ 1に設定し た。ダイスゥエルはダイスの孔から押出された熱可塑性樹脂組成物の太さを示し、こ の値が大きいほど寸法安定性がよい成形品が製造され易い。実施例:!〜 14及び比 較例 1 7の各熱可塑性樹脂組成物の溶融粘度およびダイスゥエルの測定結果を下 記表 5に示す。 The melt viscosity and die swell of each of the thermoplastic resin compositions of Examples 1 to 14 and Comparative Example 17 were measured using a capillary rheometer (Capillograph Model 1C, manufactured by Toyo Seiki Co., Ltd.). In this measurement, together with the pore size used die thickness of 10mm with a lmm, sets the measured temperature to 280 ° C, it was and set the shear rate 182sec _ 1. The die swell indicates the thickness of the thermoplastic resin composition extruded from the hole of the die, and the larger this value, the easier it is to produce a molded product with better dimensional stability. Examples:! To 14 and Comparative Example 17 The melt viscosity and die swell measurement results of each thermoplastic resin composition are shown in Table 5 below.
[0074] [表 5] [0074] [Table 5]
粘度 (Pa-s) ダイスゥ Iル (mm) Viscosity (Pa-s) Daisu I (mm)
実施例 Ί 617 1.41  Example Ί 617 1.41
実施伢2 1279 1.52  Implementation 伢 2 1279 1.52
実施伢 3 664 1.52  Implementation 伢 3 664 1.52
実施例 4 939 1.63  Example 4 939 1.63
実施例 5 1475 1.67  Example 5 1475 1.67
実施例 6 1003 1.71  Example 6 1003 1.71
実施例 7 1118 1.76  Example 7 1118 1.76
実施 1001 1.90  Implementation 1001 1.90
実施倒 9 1212 1.96  Implementation defeat 9 1212 1.96
実施例 10 380 1.09  Example 10 380 1.09
実施伢 Η 392 1.15  Implementation 伢 392 392 1.15
実施伢12 696 1.37  Implementation 伢 12 696 1.37
実施例 Ϊ3 393 1.02  Example Ϊ3 393 1.02
実施例 14 472 1.04  Example 14 472 1.04
比较伢 1 183 0.82  Comparison 1 183 0.82
比較例 2 338 1.34  Comparative Example 2 338 1.34
比較例 3 8Ϊ2 1.79  Comparative Example 3 8Ϊ2 1.79
比較例 4 316 1.04  Comparative Example 4 316 1.04
比較例 5 6t0 1.20  Comparative Example 5 6t0 1.20
比較例 6 653 1.31  Comparative Example 6 653 1.31
比较例 7 325 1.00  Comparative Example 7 325 1.00
[0075] 表 5に示すように、実施例:!〜 3は、それらのダイスゥエルが比較例 1に比べて大き レ、ことから、比較例 1に比べて溶融張力が増大したことが確認された。また、図 1に示 すように、重合体 )として重合体 1が使用された実施例:!〜 3並びに比較例 1及び 6 において、触媒(C)としてのステアリン酸アルミニウムの濃度が 5 X 10— 6質量部であ る実施例 1、同濃度が 25 X 10_6質量部である実施例 2、及び同濃度が 37. 5 X 10— 6質量部である実施例 3のダイスゥエルは、同濃度が 0 X 10— 6質量部である比較例 2 及び同濃度が 75 X 10_6質量部である比較例 6に比べて大きいことが確認された。図 1において、 "(X 10— 6質量部)"は、ステアリン酸アルミニウムの各濃度が図 1中の横 軸の各数値 X 10_6質量部であることを示す。 [0075] As shown in Table 5, in Examples:! To 3, those die swells were larger than those in Comparative Example 1, and thus it was confirmed that the melt tension was increased as compared with Comparative Example 1. . In addition, as shown in FIG. 1, in Examples in which the polymer 1 was used as the polymer):! To 3 and Comparative Examples 1 and 6, the concentration of aluminum stearate as the catalyst (C) was 5 × 10 - 6 parts by der Ru example 1, the concentration of 25 X 10_ 6 parts by mass in an exemplary 2, and example 3 the concentration is 5 X 10- 6 weight parts 37. Daisuueru the same concentration There 0 that X 10- 6 Comparative example 2 and the same concentration of parts by weight is larger than that of Comparative example 6 is a 75 X 10_ 6 parts by weight was confirmed. In Figure 1, "(X 10- 6 parts by mass)" indicates that the concentration of aluminum stearate are each numerical value X 10_ 6 parts by weight of the horizontal axis in FIG.
[0076] 実施例 5〜7及び 12において、触媒 (C)としてステアリン酸亜鉛、安息香酸ナトリウ ム、又は安息香酸ナトリウムとステアリン酸亜鉛とが用いられても、実施例 1と同様の 顕著な増粘効果が確認された。  [0076] In Examples 5 to 7 and 12, even when zinc stearate, sodium benzoate, or sodium benzoate and zinc stearate were used as the catalyst (C), the same significant increase as in Example 1 was observed. A viscous effect was confirmed.
[0077] 重合体 )として重合体 2が使用された実施例 8及び 9は、同様に重合体 2が使用 された比較例 3に比べて、触媒添カ卩による増粘効果が向上されていることが確認され た。 [0077] In Examples 8 and 9 in which the polymer 2 was used as the polymer), the thickening effect by the catalyst-added gel was improved as compared with Comparative Example 3 in which the polymer 2 was similarly used. Is confirmed It was.
[0078] 重合体 (B)として重合体 3が使用された実施例 10及び 11は、同様に重合体 3が使 用された比較例 4に比べて、触媒添カ卩による増粘効果が向上されていることが確認さ れた。  [0078] In Examples 10 and 11 in which the polymer 3 was used as the polymer (B), the thickening effect by the catalyst addition was improved as compared with Comparative Example 4 in which the polymer 3 was similarly used. Has been confirmed.
[0079] 重合体 (B)として重合体 4が使用された実施例 13及び 14は、同様に重合体 4が使 用された比較例 7に比べて、触媒添カ卩による増粘効果が向上されていることが確認さ れた。  [0079] In Examples 13 and 14 in which the polymer 4 was used as the polymer (B), the thickening effect by the catalyst addition was improved as compared with Comparative Example 7 in which the polymer 4 was similarly used. Has been confirmed.
(熱可塑性樹脂組成物の製造 2)  (Manufacture of thermoplastic resin composition 2)
同方向平行軸 2軸押出機を使用し、下記表 6に示すように配合された実施例 15並 びに比較例 8及び 9の熱可塑性樹脂を 200°Cで調製した。  Using the same direction parallel shaft twin screw extruder, the thermoplastic resins of Example 15 and Comparative Examples 8 and 9 blended as shown in Table 6 below were prepared at 200 ° C.
(熱可塑性樹脂組成物の成形性評価 2)  (Evaluation of moldability of thermoplastic resin composition 2)
キヤビラリ一レオメータ(東洋精機株式会社製 キヤピログラフ 1C型)を用いて、実 施例 15並びに比較例 8及び 9の各熱可塑性樹脂組成物の溶融粘度とダイスゥエルと を測定した。この測定では、孔径が lmmであるとともに厚さが 10mmであるダイスを 用いるとともに、測定温度を 200°Cに設定し、且つせん断速度を 182sec— 1に設定し た。実施例 15並びに比較例 8及び 9の各熱可塑性樹脂組成物の溶融粘度およびダ イスゥエルの測定結果を下記表 6に示す。 The melt viscosity and die swell of each of the thermoplastic resin compositions of Example 15 and Comparative Examples 8 and 9 were measured using a capillary rheometer (Capillograph 1C type manufactured by Toyo Seiki Co., Ltd.). In this measurement, a die having a hole diameter of 1 mm and a thickness of 10 mm was used, the measurement temperature was set to 200 ° C, and the shear rate was set to 182 sec- 1 . Table 6 below shows the measurement results of melt viscosity and diewell of the thermoplastic resin compositions of Example 15 and Comparative Examples 8 and 9.
[0080] [表 6] [0080] [Table 6]
Figure imgf000023_0001
Figure imgf000023_0001
PLA : ポリ乳酸樹脂 豊田自動車眯製 PLA#5403  PLA: Polylactic acid resin Toyoda Motor Corp. PLA # 5403
St-Zn : ステアリン酸亜鉛 堺化学工業㈱製 SZ  St-Zn: Zinc stearate Sakai Chemical Industry Co., Ltd. SZ
[0081] 表 6に示すように、重合体 1及び触媒 (C)としてのステアリン酸亜鉛を含有する実施 例 15の溶融粘度は、重合体 1及び触媒(C)を含有しない比較例 8と、重合体 1を含 有するものの触媒(C)を含有しない比較例 9とに比べて高いことが確認された。 [0081] As shown in Table 6, the melt viscosity of Example 15 containing polymer 1 and zinc stearate as catalyst (C) was as follows: Comparative Example 8 containing no polymer 1 and catalyst (C); It was confirmed that it was higher than that of Comparative Example 9 containing polymer 1 but not containing catalyst (C).

Claims

請求の範囲 The scope of the claims
[1] エポキシ基との反応性を備える官能基を有する熱可塑性樹脂 (A)と、エポキシ基を 有する重合体 (B)と、エポキシ基との反応性を備える官能基およびエポキシ基の反 応を促進する触媒 (C)とを含有し、重合体 )の含有量は、熱可塑性樹脂 (A) 100 質量部当たり 0.:!〜 5質量部に設定され、触媒 (C)の含有量は、熱可塑性樹脂 (A) 100質量部当たり 1. 0 X 10一6〜 50 X 10—6質量部に設定されている熱可塑性樹脂 組成物。 [1] Reaction of a thermoplastic resin (A) having a functional group having reactivity with an epoxy group, a polymer (B) having an epoxy group, a functional group having reactivity with an epoxy group, and an epoxy group The content of the polymer () containing the catalyst (C) that promotes the polymerization is set to 0.:! To 5 parts by mass per 100 parts by mass of the thermoplastic resin (A), and the content of the catalyst (C) is , the thermoplastic resin (a) 100 parts by mass of per 1. 0 X 10 one 6 ~ 50 X 10- 6 thermoplastic resin composition which is set in parts by weight.
[2] 前記熱可塑性樹脂 (A)は、ポリエステル樹脂、ポリカーボネート樹脂、ポリアミド榭 脂、ポリフエ二レンエーテル樹脂、及びポリ乳酸樹脂からなる群から選ばれる少なくと も一種である請求項 1に記載の熱可塑性樹脂組成物。  [2] The thermoplastic resin (A) is at least one selected from the group consisting of a polyester resin, a polycarbonate resin, a polyamide resin, a polyphenylene ether resin, and a polylactic acid resin. Thermoplastic resin composition.
[3] 前記重合体 (B)は、エポキシ基を有するビニル重合体である請求項 1に記載の熱 可塑性樹脂組成物。  [3] The thermoplastic resin composition according to [1], wherein the polymer (B) is a vinyl polymer having an epoxy group.
[4] 前記重合体 (B)が有するエポキシ基の個数の平均は、重合体 (B) l分子当たり 1.  [4] The average number of epoxy groups in the polymer (B) is 1.
2個以上である請求項 1に記載の熱可塑性樹脂組成物。  2. The thermoplastic resin composition according to claim 1, wherein the number is two or more.
[5] 前記重合体 (B)の数平均分子量は 300〜30000である請求項 1に記載の熱可塑 性樹脂組成物。 [5] The thermoplastic resin composition according to claim 1, wherein the polymer (B) has a number average molecular weight of 300 to 30,000.
[6] 前記触媒 (C)は、カルボン酸金属塩ィ匕合物である請求項 1に記載の熱可塑性樹脂 組成物。  6. The thermoplastic resin composition according to claim 1, wherein the catalyst (C) is a carboxylic acid metal salt compound.
[7] 前記触媒(C)は、安息香酸金属塩化合物またはステアリン酸金属塩ィ匕合物である 請求項 6に記載の熱可塑性樹脂組成物。  7. The thermoplastic resin composition according to claim 6, wherein the catalyst (C) is a benzoic acid metal salt compound or a stearic acid metal salt compound.
[8] 前記熱可塑性樹脂組成物は、 1個のカルボキシノレ基を有するとともに、前記熱可塑 性樹脂 (A)とは異なる化合物 (D)を更に含有し、化合物 (D)の含有量は、熱可塑性 樹脂 (A) 100質量部当たり 0. 3 X 10一6〜 10 X 10—6質量部に設定されている請求 項 1に記載の熱可塑性樹脂組成物。 [8] The thermoplastic resin composition further comprises a compound (D) different from the thermoplastic resin (A), having one carboxylate group, and the content of the compound (D) is: thermoplastic resin (a) 100 parts by mass of per 0. 3 X 10 one 6 ~ 10 X thermoplastic resin composition according to claim 1 which is set to 10 6 parts by weight.
[9] 前記化合物(D)は、安息香酸またはステアリン酸である請求項 8に記載の熱可塑 性樹脂組成物。 [9] The thermoplastic resin composition according to claim 8, wherein the compound (D) is benzoic acid or stearic acid.
[10] 前記熱可塑性樹脂組成物はマスターバッチを有し、そのマスターバッチは、前記熱 可塑性樹脂 (A)の一部、重合体 (B)、触媒 (C)、及び化合物 (D)を含有し、そのマス ターバッチと前記熱可塑性樹脂 (A)の残部との混合により前記熱可塑性樹脂組成物 が調製され、 [10] The thermoplastic resin composition has a master batch, and the master batch contains a part of the thermoplastic resin (A), a polymer (B), a catalyst (C), and a compound (D). And that trout The thermoplastic resin composition is prepared by mixing the tarbatch and the remainder of the thermoplastic resin (A),
マスターバッチ中の熱可塑性樹脂 (A)、重合体 (B)、触媒 (C)、及び化合物(D)の 含有量の合計 100質量部当たり、熱可塑性樹脂 (A)の含有量が 30〜85質量部に 設定され、且つ重合体 (B)、触媒 (C)、及び化合物 (D)の含有量の合計が 15〜70 質量部に設定されている請求項 8に記載の熱可塑性樹脂組成物。  The total content of the thermoplastic resin (A), polymer (B), catalyst (C), and compound (D) in the masterbatch is 30-85 per 100 parts by mass. The thermoplastic resin composition according to claim 8, wherein the thermoplastic resin composition is set to 15 parts by mass and the total content of the polymer (B), the catalyst (C), and the compound (D) is set to 15 to 70 parts by mass. .
[11] 前記熱可塑性樹脂組成物は、前記熱可塑性樹脂 (A)とは異なる熱可塑性樹脂 (E )を更に含有し、前記熱可塑性樹脂 (A)及び (E)の内、熱可塑性樹脂 (A)のみがェ ポキシ基との反応性を備える官能基を有し、熱可塑性樹脂組成物はマスターバッチ を有し、そのマスターバッチは、前記重合体 (B)、触媒(C)、化合物(D)、及び熱可 塑性樹脂 (E)を含有し、そのマスターバッチと前記熱可塑性樹脂 (A)との混合により 熱可塑性樹脂組成物が調製され、  [11] The thermoplastic resin composition further contains a thermoplastic resin (E) different from the thermoplastic resin (A), and among the thermoplastic resins (A) and (E), a thermoplastic resin ( Only A) has a functional group having reactivity with an epoxy group, and the thermoplastic resin composition has a masterbatch. The masterbatch includes the polymer (B), the catalyst (C), the compound ( D), and a thermoplastic resin (E), a thermoplastic resin composition is prepared by mixing the masterbatch and the thermoplastic resin (A),
マスターバッチ中の重合体 (B)、触媒 (C)、化合物 (D)、及び熱可塑性樹脂 (E)の 含有量の合計 100質量部当たり、重合体 (B)、触媒 (C)、及び化合物 (D)の含有量 の合計が 15〜70質量部に設定され、且つ熱可塑性樹脂 (E)の含有量が 30〜85質 量部に設定されている請求項 8に記載の熱可塑性樹脂組成物。  Polymer (B), catalyst (C), and compound per 100 parts by mass of the total content of polymer (B), catalyst (C), compound (D), and thermoplastic resin (E) in the masterbatch The thermoplastic resin composition according to claim 8, wherein the total content of (D) is set to 15 to 70 parts by mass, and the content of the thermoplastic resin (E) is set to 30 to 85 parts by mass. object.
[12] 前記熱可塑性樹脂 (E)は、ポリオレフイン樹脂およびポリスチレン樹脂からなる群か ら選ばれる少なくとも一種である請求項 11に記載の熱可塑性樹脂組成物。  12. The thermoplastic resin composition according to claim 11, wherein the thermoplastic resin (E) is at least one selected from the group consisting of a polyolefin resin and a polystyrene resin.
[13] 請求項:!〜 12のいずれか一項に記載の熱可塑性樹脂組成物の成形により得られ る成形品。  [13] Claim: A molded product obtained by molding the thermoplastic resin composition according to any one of! To 12.
[14] 請求項 1〜: 12のいずれか一項に記載の熱可塑性樹脂組成物の押出成形により得 られる成形品。  [14] A molded article obtained by extrusion molding of the thermoplastic resin composition according to any one of claims 1 to 12.
PCT/JP2005/023519 2004-12-24 2005-12-21 Thermoplastic resin composition and molded article WO2006068193A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-373265 2004-12-24
JP2004373265A JP4645809B2 (en) 2004-12-24 2004-12-24 Thermoplastic resin composition

Publications (1)

Publication Number Publication Date
WO2006068193A1 true WO2006068193A1 (en) 2006-06-29

Family

ID=36601790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/023519 WO2006068193A1 (en) 2004-12-24 2005-12-21 Thermoplastic resin composition and molded article

Country Status (5)

Country Link
JP (1) JP4645809B2 (en)
KR (1) KR20070106493A (en)
CN (1) CN101061183A (en)
TW (1) TWI388605B (en)
WO (1) WO2006068193A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8258239B2 (en) 2007-07-01 2012-09-04 Ftex, Incorporated Production method of polyethylene terephthalate graft copolymerized resin and molded product thereof
JP2015034220A (en) * 2013-08-08 2015-02-19 住友ゴム工業株式会社 Tread rubber composition for high-performance tire and high-performance tire
JP2015034219A (en) * 2013-08-08 2015-02-19 住友ゴム工業株式会社 Tread rubber composition for high-performance wet tire and high-performance wet tire
WO2018038162A1 (en) * 2016-08-23 2018-03-01 住友化学株式会社 Resin modifier and method for producing same

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005007479A1 (en) * 2005-02-17 2006-08-31 Basf Ag Process for compounding polycondensates
JP2008106091A (en) * 2006-10-23 2008-05-08 Sumitomo Bakelite Co Ltd Resin composition containing polylactic acid
JP5483387B2 (en) * 2006-10-31 2014-05-07 東レ株式会社 Resin composition and molded article comprising the same
JP5157858B2 (en) 2007-12-07 2013-03-06 住友化学株式会社 Method for producing resin composition and molded body
JP5049365B2 (en) 2010-03-09 2012-10-17 中本パックス株式会社 Method for producing food container sheet
JP6028343B2 (en) * 2012-03-09 2016-11-16 三菱瓦斯化学株式会社 Polyester resin composition
CN103160038B (en) * 2013-02-04 2014-06-11 南华大学 Moire fringe antibiosis color master batch used for polystyrene category rigid plastic toy and preparation method
US10385205B2 (en) 2015-09-02 2019-08-20 Toyobo Co., Ltd. Polyester resin composition, light-reflector component containing same, and light reflector
CN108473753B (en) * 2015-12-25 2020-07-24 东洋纺株式会社 Polyester resin composition, light reflector element and light reflector containing same, and method for producing polyester resin composition
US11001706B2 (en) 2017-02-02 2021-05-11 Toyobo Co., Ltd. Polyester resin composition, and light reflector component and light reflector including polyester resin composition
CN110234706B (en) 2017-02-02 2022-01-11 东洋纺株式会社 Polyester resin composition, member for light reflector comprising the same, and light reflector
BR112020018811A2 (en) 2018-03-26 2020-12-29 Toyobo Co., Ltd. COMPOSITION OF POLYESTER RESIN, AND COMPONENT FOR OPTICALLY REFLECTIVE MEMBERS AND OPTICALLY REFLECTIVE MEMBERS CONTAINING THE SAME
WO2023153522A1 (en) * 2022-02-14 2023-08-17 東洋インキScホールディングス株式会社 Production method for polyester resin molded article, masterbatch, and production method therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63128059A (en) * 1986-11-19 1988-05-31 Mitsui Petrochem Ind Ltd Production of polyester resin composition
WO2001094443A1 (en) * 2000-06-05 2001-12-13 Ftex, Incorporated Processes for producing polyester resin and molded object thereof using masterbatch
JP2004155968A (en) * 2002-11-08 2004-06-03 Hitachi Zosen Corp Manufacturing process and apparatus for recovered polyester resin
JP2005105059A (en) * 2003-09-29 2005-04-21 Mikuni Plast Kk Molded product for underground or on ground installation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63128059A (en) * 1986-11-19 1988-05-31 Mitsui Petrochem Ind Ltd Production of polyester resin composition
WO2001094443A1 (en) * 2000-06-05 2001-12-13 Ftex, Incorporated Processes for producing polyester resin and molded object thereof using masterbatch
JP2004155968A (en) * 2002-11-08 2004-06-03 Hitachi Zosen Corp Manufacturing process and apparatus for recovered polyester resin
JP2005105059A (en) * 2003-09-29 2005-04-21 Mikuni Plast Kk Molded product for underground or on ground installation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8258239B2 (en) 2007-07-01 2012-09-04 Ftex, Incorporated Production method of polyethylene terephthalate graft copolymerized resin and molded product thereof
JP2015034220A (en) * 2013-08-08 2015-02-19 住友ゴム工業株式会社 Tread rubber composition for high-performance tire and high-performance tire
JP2015034219A (en) * 2013-08-08 2015-02-19 住友ゴム工業株式会社 Tread rubber composition for high-performance wet tire and high-performance wet tire
WO2018038162A1 (en) * 2016-08-23 2018-03-01 住友化学株式会社 Resin modifier and method for producing same
JPWO2018038162A1 (en) * 2016-08-23 2019-06-24 住友化学株式会社 Resin modifier and method for producing the same

Also Published As

Publication number Publication date
KR20070106493A (en) 2007-11-01
TWI388605B (en) 2013-03-11
JP4645809B2 (en) 2011-03-09
JP2006176711A (en) 2006-07-06
CN101061183A (en) 2007-10-24
TW200631987A (en) 2006-09-16

Similar Documents

Publication Publication Date Title
WO2006068193A1 (en) Thermoplastic resin composition and molded article
JP4725514B2 (en) Thermoplastic resin composition and molded article
JP6199392B2 (en) Continuous production method of biodegradable aliphatic / aromatic polyester copolymer
CN1422294A (en) Polyester compositions containing polar chain terminators
CN101479313A (en) Macrocyclic polyester oligomers as carriers and/or flow modifier additives for thermoplastics
JP2011510116A (en) Extruded blow molded article
JP2016210947A (en) Filament resin for material extrusion type three-dimensional printer
WO2005092982A1 (en) Modifier for polyester resin and process for producing molded article with the same
JP2009209226A (en) Polyester resin composition
JP3860189B2 (en) Method for producing amorphous polyester resin
JP4326832B2 (en) Method for producing biodegradable polyester resin composition
AU2010200315A1 (en) Biodegradable resin composition, method for production thereof and biodegradable film therefrom
JP2008031482A (en) Method for producing polyethylene terephthalate-based graft copolymer resin
JP2004331757A (en) Poly(3-hydroxyalkanoate) composition and method for producing the same
JP2005154690A (en) Aromatic polyester composition
CN111094451B (en) Inorganic reinforced thermoplastic polyester resin composition
CN113896955A (en) Starch-based sheet composition and preparation method thereof
JP2007308521A (en) Thermoplastic resin composition
JP2010100756A (en) Polyester composition and bottle
CN114514287B (en) Polyester resin blend and articles formed therefrom
JP2008013622A (en) Polyarylate resin composition and its preparation method
JP6931201B2 (en) Polyester resin composition
JPH10204162A (en) Polyester particle and production of container by using the same
JP2023537784A (en) Process and system utilizing waste polyester in continuous polyester polymerization process
JPH10147698A (en) Container made of polyester/polycarbonate resin composition and its production

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020077007629

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580039477.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05820338

Country of ref document: EP

Kind code of ref document: A1