WO2006067940A1 - Lactic acid bacteria binding to human abo blood types - Google Patents

Lactic acid bacteria binding to human abo blood types Download PDF

Info

Publication number
WO2006067940A1
WO2006067940A1 PCT/JP2005/022096 JP2005022096W WO2006067940A1 WO 2006067940 A1 WO2006067940 A1 WO 2006067940A1 JP 2005022096 W JP2005022096 W JP 2005022096W WO 2006067940 A1 WO2006067940 A1 WO 2006067940A1
Authority
WO
WIPO (PCT)
Prior art keywords
lactic acid
type
human
acid bacteria
blood group
Prior art date
Application number
PCT/JP2005/022096
Other languages
French (fr)
Japanese (ja)
Inventor
Tadao Saito
Yasushi Kawai
Hideaki Uchida
Katsunori Kimura
Kakuhei Isawa
Keisuke Furuichi
Original Assignee
Meiji Dairies Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2005/011043 external-priority patent/WO2006059408A1/en
Application filed by Meiji Dairies Corporation filed Critical Meiji Dairies Corporation
Priority to JP2006548758A priority Critical patent/JP4738348B2/en
Priority to CA2588940A priority patent/CA2588940C/en
Priority to US11/720,462 priority patent/US7897374B2/en
Publication of WO2006067940A1 publication Critical patent/WO2006067940A1/en
Priority to US12/987,518 priority patent/US8465933B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/12Fermented milk preparations; Treatment using microorganisms or enzymes
    • A23C9/127Fermented milk preparations; Treatment using microorganisms or enzymes using microorganisms of the genus lactobacteriaceae and other microorganisms or enzymes, e.g. kefir, koumiss
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/135Bacteria or derivatives thereof, e.g. probiotics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56911Bacteria
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/80Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood groups or blood types or red blood cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value

Definitions

  • the present invention relates to lactic acid bacteria and screening of lactic acid bacteria.
  • the human intestinal tract is inhabited by approximately 200 types of intestinal bacteria (intestinal resident microorganisms).
  • Microorganisms called probiotics improve the balance between useful and harmful bacteria in the human intestine and contribute to the health of the host.
  • the binding mechanism of lactic acid bacteria in the human intestine has not yet been elucidated. From previous studies on intestinal lactic acid bacteria, it has been confirmed that L. casei has binding properties to glycolipid sugar chains, and L. reuteri and L. cri spatus have binding properties to collagen. Furthermore, a lectin-like protein that binds to the intestinal lactobacilli has been identified.
  • Intestinal mucin is a mucous high molecular weight glycoprotein having an infinite number of mucin-type sugar chains linked to a polypeptide (core protein, apomucin) through a 0-glycoside bond.
  • intestinal settled lactic acid bacteria acquire intestinal connectivity by binding to the sugar chains of intestinal mucin through lectin-like proteins on the surface of the bacteria, and are considered to achieve stable growth. available.
  • Human ABO blood groups are distinguished by the type of antigenic substance expressed on the surface of erythrocytes.
  • the antigenic site of this ABO blood group substance is a sugar chain having a specific chemical structure (ABO blood group antigen).
  • ABO blood group antigen Both type A and type B antigens are molecules composed of three sugars, and a -N-acetylethyl latatosamine is bound to a basic structure called a type H antigen composed of two sugars in a specific binding mode. Is type A antigen and ⁇ -galactose is bound to type B antigen.
  • Type IV blood Humans of type IV blood express the type A antigen
  • humans of type B blood express the type B antigen
  • humans of type AB blood express both the type A antigen and the type B antigen on the erythrocyte surface.
  • type 0 blood humans express H-type antigens of the basic structure.
  • This method is an epoch-making method in which the adsorptive power between lactic acid bacteria and ABO blood group antigens is detected using surface plasmon resonance spectrum (SPR), and lactic acid bacteria that are compatible with the blood type are selected. Specifically, when ABO blood group antigen or intestinal mucin is used as a ligand and lactic acid bacteria are brought into contact with the ligand immobilized on the sensor chip, the binding between the lactic acid bacteria and the ligand is accompanied by the binding. This is a method to detect the mass change that occurs on the sensor chip as a surface plasmon resonance (SPR) signal.
  • SPR surface plasmon resonance
  • the present inventors have carried out the above method and confirmed that the Lactobacillus crispatus JCM8778 strain and the Lact obacillus acidophilus OLL2769 strain are A-type antigen recognizable (Patent Document Non-Patent Document 5).
  • probiotic lactic acid bacteria including yogurt Because of the expected increase in demand for foods that use blood, we have been waiting for the acquisition of blood group-binding lactic acid bacteria with even better binding properties!
  • Patent Document 1 JP 2004-101249 A
  • Non-Patent Document 1 Junko Amano, Biochemistry, Japan Biochemical Society, 1999, No. 71, p.274 -277
  • Patent Document 3 Holgersson, J., Jovall, PA, and Breimer, ME, Glycosphingolipids of human large intenstine: detailed structural characterization with special reference to blood group compounds and bacterial receptor structures.J. Biochem, (Tokyo), 110, 120 -131 (1991).
  • Non-Patent Document 4 Vanak, J., Ehrmann, J., Drimalova, D., Nemec, M., monoclonal antibo dies in the detection of blood group antigens A and B in the mucosa of the large inte stine.Cas Lek Cesk , 18, 364-367 (1988).
  • Non-Patent Document 5 Uchida, H. et al, Biosci. Biotechnol. Biochem., 68 (5), 1004-1010 (20 04).
  • Patent Document 6 Holmes, S. D. et al, Studies on the interaction of Staphylococcus aure us and Staphylococcus epidermidis with fibronectin using surface plasmon resonance (BIACORE). J. Microbiological Methods, 28, 77-84 (1997).
  • Non-Patent Document 7 Fratamico, P. M. et al, Detection of Escherichia coli 0157: H7 using a surface plasmon resonance biosensor. Biotechnol. Techniques., 7, 571-576 (1998). Disclosure of the Invention
  • the present invention has been made in view of such circumstances, and the problem to be solved by the present invention is to find a novel intestinal-binding lactic acid bacterium suitable for human ABO blood group.
  • Means for solving the problem [0009]
  • the inventors of the present invention who have solved the above-mentioned problems have implemented the lactic acid bacteria screening method based on the surface plasmon resonance spectrum described above. Although the above method has already been established as a screening method for lactic acid bacteria, an attempt has been made by the present inventors to set a “selection reference value” in the screening method for lactic acid bacteria in order to make it suitable for large-scale screening.
  • Non-patent document 6 Examples of detection using protein A or protein G immobilized on a chip via an antibody (Non-Patent Document 7) are known.
  • the RU value indicating the binding of viable cells is about 100 It is 1000R U.
  • examples of lactic acid bacteria studied by surface plasmon resonance spectrum are not known except for reports by the present inventors (Patent Document 1, Non-Patent Document 5).
  • the present inventors established a screening method for lactic acid bacteria compatible with the ABO blood group by using 100 RU as a criterion for bacterial binding under certain conditions.
  • the present inventors conducted the screening method described above for 238 strains of lactic acid bacteria of human intestinal origin isolated from the human intestinal tract, and further conducted a test for judging suitability for yogurt production. Finally, We specifically found strains compatible with blood group A and type 0. That is, the present invention relates to a lactic acid bacterium suitable for blood group compatible yogurt and a method for screening the lactic acid bacterium, and specifically provides the following.
  • Lactobacillus gasseri lactic acid bacteria capable of binding to the human ABO blood group antigen represented by any one of the following formulas (a) to (c)
  • RU value that indicates the ability to bind human ABO blood group antigen of type A is 100RU or more
  • the RU value indicating the ability to bind to human ABO blood group antigens of type B and Z or H is 100RU or less
  • the RU value indicating the ability to bind to human type A intestinal mucin is 100 RU or more
  • the RU value that indicates the ability to bind B-type human ABO blood group antigen is 100RU or more
  • the RU value indicating the ability to bind to human ABO blood group antigens of type A and Z or H is 100RU or less
  • the RU value that indicates the ability to bind human B-type intestinal mucin is 100 RU or more
  • the RU value that indicates the ability to bind H-type human ABO blood group antigen is 100RU or more
  • the RU value indicating the ability to bind human type 0 intestinal mucin must be 100 RU or more.
  • the RU value that indicates the ability to bind B-type human ABO blood group antigen is 100RU or more
  • the RU value which indicates the ability to bind human ABO blood group antigens of type A and H, is 100RU or less
  • the RU value indicating the ability to bind to human type B intestinal mucin must be greater than the RU value indicating the ability to bind to human type A intestinal mucin and the RU value indicating the ability to bind to human type 0 intestinal mucin.
  • Fig. 1 is a diagram showing the chemical structure of a Pioti-Louis polymer (BP) probe having a sugar chain antigen site of human ABO blood group.
  • BP Pioti-Louis polymer
  • FIG. 2 Diagram showing the sugar chain part of the A-type antigen BP-probe (top), the B-type antigen BP-probe sugar chain part (middle), and the type 0 antigen BP-probe sugar chain part (bottom) is there.
  • the present invention comprises (a) [GalNAc a 1-3 (Fuc a 1-2) Gal-], (b) [Gal a 1-3 (Fuc a 1-2) Gal-], (c) An intestinal-binding Lactobacillus gasseri lactic acid bacterium having binding ability to a human ABO blood group antigen represented by any formula of [Fucal-2Ga a] is provided.
  • lactic acid bacteria are a general term for a group of bacteria that produce glucose strength lactic acid in a molar ratio of 50% or more.
  • O Lactobacillus genus, Lactococcus rot, Streptococcus moth, Leuconostoc moth are representative genus of lactic acid bacteria. is there.
  • the genus Bifidobacterium is also included in the lactic acid bacteria in this specification.
  • the genus Lactobacillus is further classified into species. As a typical example of the species of the genus Lactobacillus, Lactobacillus delbruekn suosp. Bulgancus (and bulgaricus), Lactobacillus de lbruekn subsp.
  • Delbruekii (L. Delbruekii), Lactobacillus acidophilus Group ⁇ ⁇ flop lactic acid bacteria (L. acidophilus Gunore 1 ⁇ ⁇ -flops), Lactobacillus casei (L. casei), Lactobacillus plantarum (L. plantarum.), Lactobacillus brevis (L. brevis), Lactobacillus buchneri (L. buchneri), Lactobacillus fermentum (L. fermentum), Lactobacillus helveticus (L. helveticus) Can be mentioned. L.
  • Lactobacillus acidophilus group lactic acid bacteria are classified into Lactobacillus acidophilus (A-1), Lactobacillus cnspatus (A-2), Lactobacillus amylovorus ( ⁇ -3), Lactobacillus gallinarum (A-4) according to the results of DNA-DNA homology and cell wall composition analysis. ), L actobacillus gasseri (B-1), and Lactobacillus johnsonii (B-2).
  • Lactobacillus gasseri (hereinafter abbreviated as "L. gasserij”) lactic acid bacteria of the present invention is an intestinal tract Lactobacillus gasseri characterized by having a binding ability to a human ABO blood group antigen.
  • ABO human blood group antigen is a sugar chain that determines blood group Specifically, type A sugar chain (type A antigen): [GalNAc a 1-3 (Fuc a 1-2) Gal-], type B sugar chain (type B antigen): [Gal a 1-3 ( Fuc a 1-2) Gal-], O-type sugar chain (hereinafter referred to as a sugar chain that determines blood group 0, also referred to as H-type antigen, 0-type antigen): [Fuc a to 2Ga].
  • type A sugar chain type A antigen
  • type B sugar chain type B antigen
  • O-type sugar chain hereinafter referred to as a sugar chain that determines blood group 0, also referred to as H-type antigen, 0-type antigen
  • intestinal mucins present on the surface of the intestinal tract have different sugar chains depending on the ABO blood group. The present inventors confirmed that there is L.
  • gasseri lactic acid bacteria that bind to type A sugar chains which are antigens that determine human blood group A, among lactic acid bacteria that bind to mucin prepared for human intestinal force of type A did. It was also confirmed that type A sugar chains were expressed in the mucin. Therefore, in the L. gasseri lactic acid bacterium of the present invention, the lactic acid bacterium that binds to the A-type sugar chain and does not adsorb to other types of sugar chains binds to the A-type sugar chain on the intestinal mucin, whereby the ABO blood group It has acquired intestinal connectivity for type A humans.
  • the L. gasseri lactic acid bacteria that binds to type A sugar chains which are antigens that determine human blood group A, among lactic acid bacteria that bind to mucin prepared for human intestinal force of type A did. It was also confirmed that type A sugar chains were expressed in the mucin. Therefore, in the L. gasseri lactic acid bacterium of the present invention, the lactic acid bacterium
  • gasseri lactic acid bacterium is considered to stably bind to and proliferate in the intestinal tract of blood group A humans and exert a probiotic function. That is, it can be said that the L. gasseri lactic acid bacteria can contribute to the health of blood group A humans and is suitable for blood group A humans.
  • the L. gasseri lactic acid bacterium of the present invention that binds to the B-type sugar chain and does not adsorb to other types of sugar chains is compatible with ABO blood group B humans.
  • the L. gasseri lactic acid bacterium of the present invention that binds to the type 0 sugar chain and does not adsorb to other types of sugar chains is suitable for ABO blood group 0 type humans.
  • the L. gasseri lactic acid bacteria of the present invention (hereinafter sometimes referred to as "blood group-specific L. gasseri lactic acid bacteria”) can be separated from human feces. If it is L. gasseri lactic acid bacteria (hereinafter abbreviated as "A-type compatible lactic acid bacteria”) compatible with blood group A humans, it is compatible with humans of blood group B from ABO blood group A human feces L. gasseri lactic acid bacteria (hereinafter abbreviated as “B-type compatible lactic acid bacteria”) from ABO blood type B human feces to L.
  • A-type compatible lactic acid bacteria L. gasseri lactic acid bacteria
  • gasseri lactobacilli compatible with blood type 0 humans (Hereinafter abbreviated as “type 0 compatible lactic acid bacteria”)
  • type 0 compatible lactic acid bacteria the properties of L. gasseri lactic acid bacteria well known to those skilled in the art can be used as a guide.
  • gonococcus, homo-fermentation, aerobic growth, no gas generation, etc. can be used as a guide.
  • any medium suitable for culturing Lactobacillus is generally used.
  • a medium containing a nitrogen source such as yeast extratate, casein, or whey protein, and inorganic nutrients such as magnesium sulfate, iron sulfate, or manganese sulfate can be used.
  • a medium containing a nitrogen source such as yeast extratate, casein, or whey protein, and inorganic nutrients such as magnesium sulfate, iron sulfate, or manganese sulfate can be used.
  • Lactobacilli MRS broth Disifco, Re
  • the culture conditions are not particularly limited as long as the intestinal lactic acid bacteria can grow.
  • Preferred conditions are, for example, pH 5.0-pH 8.0, temperature 20 ° C-45 ° C, and more preferred conditions are anaerobic, pH 5.0-pH 7.0, temperature 30 ° C-40. ° C.
  • L. gasseri separated and cultured as described above has intestinal tract-binding properties and blood group antigens by blood group is determined by binding to human intestinal mucin or blood group antigens. It can be known by judging the presence or absence of sex.
  • a cell surface protein SLP
  • SLP cell surface protein
  • detection may be performed by a hybridization method after electrophoresis of SLP of a test bacterium using labeled intestinal mucin or labeled blood group antigen.
  • a surface plasmon analyzer for example, BIACORE
  • the surface part of the human intestinal force of a specific blood type is also collected and subjected to gel filtration using a solubilizing agent such as guanidine hydrochloride to reduce protein absorption.
  • Purification can be carried out based on the high neutral sugar content. For example, the method described in Purushothaman, b. B. Et al, Adherence of Shigella dysentenae 1 to Human colonic Mucin. Curr. Ic robiol, 42 (6), 381-387 (2001). It is more preferable to confirm that the blood group antigen is expressed in the prepared human intestinal mucin using an anti-blood group antigen antibody. Specific examples include the methods described in the examples.
  • blood group antigens can be synthesized on the basis of the sugar chain sequence shown in the formula below or in FIG. 2 (eg, commercially available sugar chain probes (eg, manufactured by Seikagaku Corporation) or neoglycoprotein 'Blood Group A Trisaccaride- BSA (eg Calbiochem) or neoglycoprotein 'Blood Group B Trisaccaride- BSA (eg Calbiochem) may be used.
  • commercially available sugar chain probes eg, manufactured by Seikagaku Corporation
  • neoglycoprotein 'Blood Group A Trisaccaride- BSA eg Calbiochem
  • neoglycoprotein 'Blood Group B Trisaccaride- BSA eg Calbiochem
  • accession number: NITE BP- Lactic acid bacteria identified by 26 and accession number: NITE BP-27 are type A compatible lactic acid bacteria
  • lactic acid bacteria specified by accession number: NITE BP-25 and accession number: NITE BP-28 are type 0 compatible lactic acid bacteria.
  • These strains are lactic acid bacteria that have been confirmed by the present inventors to be compatible with the above-mentioned blood types.
  • L. gasseri lactic acid bacteria according to blood group of the present invention include Lactobacillus gasser i specified by accession number: NITE BP-145 and accession number: NITE BP-146.
  • the lactic acid bacteria specified by the accession number: NITE BP-145 and the accession number: NITE BP-146 are B-type compatible lactic acid bacteria. These strains were confirmed by the present inventors to be compatible with blood group B.
  • the present inventors deposited these strains with the Patent Microorganism Depositary Center, National Institute of Product Evaluation Technology, based on the Budapest Treaty concerning the international recognition of the deposit of microorganisms in the patent procedure. The contents specifying the deposit are described below.
  • Lactobacillus gasseri OLL2915 strain (Accession number NITE BP-25)
  • Lactobacillus gasseri OLL2804 strain (Accession number NITE BP-26)
  • Lactobacillus gasseri OLL2818 strain (Accession number NITE BP-27)
  • Lactobacillus gasseri OLL2827 strain (Accession number NITE BP-28)
  • Accession numbers NITE BP-145 and 146 are as follows.
  • Lactobacillus gasseri OLL2877 strain (Accession number MTE BP-145)
  • Lactobacillus gasseri OL 2901 strain (Accession number MTE BP-146)
  • the gasseri lactic acid bacterium according to the blood type of the present invention can be used for the production of foods and drinks suitable for each blood type.
  • the foods and beverages produced by using gasseri lactic acid bacteria according to the present invention may be functional foods, specific health foods, health foods, and nursing foods that are not restricted in categories or types. It may be a dairy product such as cheese or yogurt, a seasoning or the like. There are no restrictions on the shape of the food or drink, and any form of food or drink that can normally be distributed can be used, such as solid, liquid, liquid food, jelly, tablet, granule, and capsule. Manufacture of the said food-drinks can be performed by those skilled in the art.
  • the gasseri lactic acid bacterium according to the blood type of the present invention can be mixed with general foods and drinks, and can be used as a starter for producing dairy products and fermented milk such as yogurt and cheese. .
  • a starter as long as there is no hindrance to growth and dairy product production, the presence of L. gasseri? Good.
  • it may be mixed with Lacto bacillus delbruek subsp.bulgancus, Streptococcus thermophilus, Lactobacillus aci dophilus, etc. It can be mixed to make a starter.
  • Yogurt production using the above starter can be carried out according to a conventional method.
  • plain milk dart can be produced by mixing the above starter with milk or dairy products cooled after warming 'mixing' and 'homogenizing' and sterilizing, followed by fermentation and cooling.
  • the food and drink produced by using the gasseri lactic acid bacterium according to the present invention according to blood type contains the same bacterium in the food and drink.
  • this food or drink is ingested by a human who is compatible with the AB0 blood group, the gasseri lactic acid bacteria bind and grow in the intestinal tract according to the blood type of the present invention, and the intestinal balance is adjusted and maintained. Early take-out function is expected. Therefore, the
  • the foods and drinks are useful not only as general foods and drinks but also as functional foods for the purpose of promoting health, such as “health and nutrition foods”, “care foods” and “health foods”.
  • the present invention also provides a method for screening lactic acid bacteria by surface plasmon resonance spectrum.
  • the screening method of the present invention is a method for selecting lactic acid bacteria suitable for each blood group.
  • the screening method of the present invention comprises screening by measuring the binding of lactic acid bacteria to blood type human intestinal mucin and ABO blood group antigens by surface plasmon resonance spectrum, and (i) specific blood (Ii) ABO blood group antigens other than the specific blood group in (i) above and a certain amount or more of adsorbing ability. (Iii) Selection is made using as an index the ability to bind to a specific blood group of human intestinal mucin in (i) above.
  • human type A intestinal mucin refers to type A human intestinal mucin of the ABO blood group.
  • human type B intestinal mucin is a blood group B human-derived intestinal mucin
  • human type 0 intestinal mucin is a blood group 0 human intestinal mucin.
  • surface plasmon resonance spectrum analysis is performed using ABO blood group antigen and human intestinal mucin as a probe.
  • ABO blood group antigen and human intestinal mucin can be used as a probe.
  • BIACORE Biacore Co., Ltd.
  • the preparation method of ABO blood group antigen and human intestinal mucin is as described above.
  • immobilizing the probe it can be performed by a known immobilization method.
  • the immobilization method may be a physical adsorption method or a covalent bond adsorption.
  • the chip is coated with streptavidin and the probe is piotinated, it can be easily fixed by a piotine-avidin bond. You can also use a commercially available streptavidinized chip (BIACORE)! /.
  • the “binding ability” is represented by a resonance unit (RU). 1RU is, to 1mm 2 of lpg substance binding child Represents.
  • the “binding ability of a certain amount or more” is determined based on “100RU”. That is, it is determined that a certain amount or more of lactic acid bacteria binds to the probe based on a measured value of “100RU” or more. For example, if the measurement result using a blood group A human-derived intestinal mucin as a probe is 100 RU or more, the lactic acid bacterium is a lactobacillus that binds to the intestinal mucin.
  • the RU value can vary depending on the measurement conditions.
  • the temperature condition in this method is, for example, 20-40 ° C, preferably 20-30 ° C, more preferably 23-28 ° C.
  • the preferred sample concentration in this method is 0.1-0.5 mg / mL, and the preferred flow rate in this method is 3-1 ⁇ / zl / min. If it is within the above range, the RU value will not change even if the above conditions are changed. Furthermore, even when various conditions such as sample concentration are changed outside the above range, they are included in “100RU” in this method if they are substantially equivalent to 100RU under the above conditions.
  • selection may be made by a value other than “100RU” for the purpose of making the selection criteria stricter.
  • a bacterium having a higher RU value means a bacterium having a stronger ability to bind to a probe (ligand). Therefore, for the purpose of finding bacteria with stronger binding power, it is possible to screen for bacteria that bind to ABO blood group antigen probes with RU values higher than 100! For example, screening may be performed based on 2000 RU as in the examples described later, which may be 150, 200, 300, 400, 500, 600, 700, 800, 900, or 1000 RU. Conversely, for recognition of blood types that are not intended, screening may be based on numerical values that are stricter than "100RU or less". For example, 90,80,70,60,50RU may be used as a standard.
  • the blood group-binding lactic acid bacteria were measured when the ABO blood group probe was used as the measured value (RU) when using the blood type human intestinal mucin as a probe according to the screening method of the present invention. Expected to be lower than the value (RU). This is because blood group antigens (sugar chains) bound to human intestinal mucins when human intestinal mucins are immobilized on a chip are compared only with blood group antigens (sugar chains) on a chip unit area. This is considered to be the force that is reduced when fixed.
  • the measured value when using a specific ABO blood group probe is sufficiently high compared to the measured value when using another ABO blood group probe, for lactic acid bacteria!
  • the blood group-specific binding lactic acid bacteria of the present invention can be obtained.
  • the RU value indicating the ability to bind to human ABO blood type antigen of type A is 100RU or more
  • human ABO blood of type B and H RU value indicating ability to bind to type A antigen is 100 RU or less
  • RU value indicating ability to bind to human type A intestinal mucin RU value and human ability to bind to human type B intestinal mucin It can be screened using as an indicator that it is larger than the RU value indicating the ability to bind to type 0 intestinal mucin.
  • the RU value indicating the binding ability with human ABO blood group antigen of type B is 100RU or more
  • RU value indicating the ability to bind to human type B intestinal mucin is the RU value indicating the ability to bind to human type A intestinal mucin and human type 0 It is possible to screen for an index that is greater than the RU value indicating the ability to bind to intestinal mucin.
  • the RU value that indicates the ability to bind to H-type human ABO blood group antigens is 100 RU or more, and (ii) the human ABO blood group antigens of type A and B RU value showing binding ability is 100RU or less, (iii) RU value showing binding ability with human type 0 intestinal mucin Force RU value showing binding ability with human type A intestinal mucin and human type B intestinal mucin It is possible to screen using an index that is larger than the RU value indicating the binding ability of.
  • the test bacterium may cause bacterial aggregation due to non-specific adsorption, and the RU value may become abnormally high. Therefore, adsorption with human-derived intestinal mucin and ABO blood group antigen is not correctly reflected in the measurement results. Therefore, if the RU value is abnormally high, it is suspected that nonspecific adsorption (bacterial aggregation) has occurred, and the lactic acid bacteria can be excluded from the screening.
  • the subject of the screening method of the present invention is not particularly limited as long as it is a lactic acid bacterium. Despite being listed as an object, Lactobacillus acidopnilus, Lactobacillus crispatus, Lactooaci llus amylovorus, Lactobacillus gallinarum, Lactobacillus gasseri, Lactobacillus johns onii, Lactobacillus caselus, Lactobacillus caselus Lactobacillus delbruekn subsp.
  • Suitable for use with actis Lactobacillus fermentum, Lactobacillus murinus, Bifidobacterium animalis, Bifi dobacterium bifidum, Bifidobacterium breve, Bifidobacterium infantis, Bifidobacteriu m longum, Bifidobacterium pseudolongum, Enterococcus faecium, Enterococcus feca lis, Streptococcus thermophilus.
  • a more suitable subject example is the genus Lactobacillus, and the most preferred subject example is: Lactobacillus acidophilus group lactic acid bacteria containing L. gasseri.
  • the lactic acid bacteria screened by the method of the present invention is a lactic acid bacterium that easily binds to the human intestinal tract of a specific ABO blood group.
  • the human of the specific blood group can improve health due to the effect of improving the intestinal balance in a short period of time. Therefore, the lactic acid bacteria screened by the method of the present invention can be applied to foods and drinks for specific blood groups, functional foods, foods for specific health use, dairy products, lactic acid bacteria drinks, and the like.
  • lactic acid bacteria used for yogurt production do not produce gas. This is because Japanese laws require that the product be marketed in a sealed container, and also to prevent product defects and rupture due to container expansion associated with gas production. Therefore, a gas production test was conducted for 238 strains.
  • Lactic acid bacteria were activated and cultured twice (37 ° C, 18h) with MRS Broth (DIFCO).
  • a Durham tube and MRS Broth (5 ml) were put together in a test tube with an aluminum cap and sterilized (121 ° C, 15 minutes).
  • the Durham tube has an opening facing down, and bubbles are removed from the Durham tube during sterilization.
  • the sterilized test tube with an aluminum cap was inoculated with 10 ⁇ L of about 10 9 cfo / mL lactic acid bacteria solution, and anaerobically cultured at 37 ° C. for 24 hours. After completion of the culture, the presence or absence of gas accumulated in the Durham tube was visually observed. Gas production occurs when clear bubbles are observed (+ (Table 1).
  • lactic acid bacteria that recognize and bind to blood group antigens were selected by surface plasmon resonance spectrum measurement.
  • Prepare 238 strains belonging to Lactobacillus acidophilus group (L. gasseri, L. plant arum, L. crispatus, L. amylovorus, L. casei, L. salivarius, L. brevis, L. fermentum, etc.) as test bacteria did.
  • BIACORE1000 was used as the surface plasmon resonance spectrum analyzer.
  • the antigen structure of human ABO blood group substance was used as a probe for selection of bacteria. Specifically, the following trisaccharide sugar chain polymer probe (manufactured by Seikagaku Corporation) (hereinafter also referred to as “BP-probe”) was used.
  • a antigen probe [GalNAc a 1-3 (Fuc a 1-2) Gal-]
  • H antigen probe [Fuc a l-2Gal-]
  • FIG. 1 The chemical structure of the BP-probe is shown in FIG. 1 and the sugar chain structure is shown in FIG.
  • the blood antigen BP-probe was prepared to O.lmg / lOml with HBS-EP buffer (pH 7.4).
  • Sensor chip SA is a BIACORE dedicated chip on which streptavidin is immobilized.
  • the immobilized amount of the A antigen probe was 750 RU, and the immobilized amount of the B antigen probe was 850 RU.
  • the 0 antigen probe was immobilized as follows.
  • a antigen sugar chain probe (Seikagaku Corporation) ⁇ - ⁇ -Acetylgalactosaminidase (EC3.2.1) .97 Streptococcus pneumoniae derived, SIGMA, JAPAN) 0.5U was used to react in acetate buffer pH 4.5 at 55 ° C for 20 hours to remove terminal GalNAc. (It was confirmed that 80% or more of GalNAc was removed by measuring the removal rate with the A antigen antibody!)
  • This biotinylated H-type antigen sugar chain probe was treated in the same manner as the A-type antigen sugar chain probe. Then, it was immobilized on a sensor chip to which avidin was bound. The amount of binding at this time was about 1000 RU.
  • Human large intestine mucin was prepared as another ligand used for selection of bacteria.
  • Human type A intestinal tract large intestine
  • Human type B intestinal tract large intestine
  • human type 0 intestinal tract large intestine
  • the mucous mucin layer was collected from the normal colon by the surface layer removal method.
  • the mucin layer was degreased with Folch's solvent and jetyl ether, dried, and extracted with 4M guanidine hydrochloride solution at 37 ° C for 2 hours.
  • Purified human A type, human B type, or human type 0 intestinal mucin (human colon mucin HCM, sometimes referred to as A-HCM type B intestinal mucin, type B-HCM type 0) Intestinal mucin was abbreviated as 0-HCM) and used for the test.
  • Gel filtration purification is a purification method for human colon mucin described in Purushothaman, SS et al, Adherence of Shigella dysentenae 1 to Human colonic Mucin. Curr.icrobio 1., 42 (6), 381-387 (2001). Based on.
  • the moving bed was 4M guanidine hydrochloride solution, and the column was Toyopearl HW-65F (90 cm X 2.6 cm, To soh. Tokyo. Japan).
  • neutral sugars were measured by the phenol sulfate method (490 nm) and proteins were measured at 280.
  • the peak with the highest protein absorption and neutral sugar content was selected, and a fraction with a molecular weight of about 2 million or more was collected as a standard to obtain human large intestine mucin (HCM).
  • HCM human large intestine mucin
  • Immobilization of the HCM to the BIACORE chip was performed by the amine coupling method.
  • a mixed reagent in which 50 ⁇ l of (NHS) was mixed was flowed to activate the carboxyl group introduced at the dextran end.
  • Running buffer HBS-EP buffer (pH7.4)
  • Regeneration solution 1M guazine hydrochloride solution 5 ⁇ 1
  • Lactic acid bacteria were selected from the results so far. First, selection was performed from the BIACORE measurement result and the gas production test result of Example 1.
  • Blood type A yogurt lactic acid bacteria were selected from the viewpoints of (i) A antigen recognition and (ii) gas production. The selection criteria are
  • a antigen recognizability As measured by BIACORE, the result of A antigen probe was 2000 RU or more (upper 35%)
  • Lactobacillus 238 was selected to 43 strains.
  • yogurt lactic acid bacteria for blood group 0 were selected by (i) H antigen recognition and (ii) gas production. The selection criteria are
  • H antigen recognizability As measured by BIACORE, the result of H antigen probe is 700RU or higher (upper 13%)
  • Lactobacillus 238 strain was narrowed down to 14 strains.
  • yogurt lactic acid bacteria for blood group B were selected by (i) B antigen recognition and (ii) gas production. The selection criteria are
  • Lactobacillus 238 strain was narrowed down to 25 strains.
  • B antigen recognition When measured with BIACORE, the result of B antigen probe is 100RU or more. under,
  • H antigen recognition 100 RU or less with H antigen probe as measured by BIACORE (ii) Specific recognition of A antigen
  • a antigen recognition / B antigen recognition ratio is 70 or more, A antigen recognition / H antigen recognition ratio is 100 or more
  • yogurt lactic acid bacteria candidates for blood group 0 were also selected. The selection criteria are
  • a antigen recognition In BIACORE measurement, the result of A antigen probe is 100RU or less.
  • B antigen recognition In BIACORE measurement, B antigen probe results are less than 100RU,
  • H antigen recognition / A antigen recognition ratio is 800 or more
  • H antigen recognition / B antigen recognition ratio is 20 or more
  • yogurt candidate strain for blood group B was also selected.
  • the selection criteria are
  • a antigen recognition In BIACORE measurement, the result of A antigen probe is 100RU or less.
  • H antigen recognition In BIACORE measurement, the result with H antigen probe is 100RU or less.
  • the ratio of B antigen recognition / A antigen recognition was 50 or more, and the ratio of B antigen recognition / H antigen recognition was 50 or more. Based on these, 6 strains were selected from 25 strains.
  • the strains selected above were further selected based on blood type human colon mucin (HCM) recognition.
  • HCM blood type human colon mucin
  • the selection criteria were (i) A-HCM recognizability of 100RU or higher and (ii) O-HCM recognizability of 100RU or lower in BIACORE measurement results by human HCM.
  • MEP165511 strain and MEP165530 strain were excluded because A-HCM recognizability was 1000 RU or more and bacterial aggregation was suspected. From the above selection, 2 strains (L. gasseri OLL 2804, L. gasseri OLL 2818) were selected from 13 strains.
  • yogurt lactic acid bacteria candidates for blood group 0 are selected from (i) those that recognize 0-HCM, and (ii) those with relatively high recognition of A-HCM. Was excluded.
  • the selection criteria were (i) O-HCM recognizability of 100RU or higher and (ii) A-HCM recognizability of 1000RU or lower in the BIACORE measurement results by human HCM. From the above selection, 2 strains (L. gasseri OLL 2827, L. gasseri OLL 2915) were selected from 5 strains.
  • the selection criteria for blood type B yogurt candidate strains were that B-HCM recognition was higher than A-HCM and H-HCM recognition. From the above selection, 2 strains (L. gasseri OLL2877, L. gasseri OLL2901) were selected from 6 strains.
  • Selection criteria vary depending on the type of bacteria Since all of the bacterial species selected this time are Lactobacillus gas seri, they were set to 0.50 or more. Blood group type A yogurt lactic acid bacteria (L.gasseri OLL 280 4, L.gasseri OLL 2818), blood group type yoghurt (L.gasseri OLL 2827, L.gasseri O LL 2915) and blood group B yogurt lactic acid bacteria (L.gasseri OLL2877, L.gasseri OLL2901) both met the above criteria (Table 1).
  • Lactobacilli MRS broth (DIFCO) 2 times of activation culture (37 ° C, 18 hours) Lactobacilli MRS broth (DIFCO) containing 5% of Lactobacilli MRS broth (DIFCO) Cultured at 37 ° C. After 18 hours of culture, the turbidity (OD) of the medium was measured.
  • the selection criteria were 0.08 or more for blood type A yogurt lactic acid bacteria and blood group 0 yogurt lactic acid bacteria, which differ depending on the type of bacteria. Both blood type A yogurt lactic acid bacteria (L.gasseri OLL 2804, L.gasseri OLL 2818) and blood type O yogurt lactic acid bacteria (Lg asseri OLL 2827, L.gasseri OLL 2915) met the above criteria. (table 1). Among blood type B yogurt lactic acid bacteria, L. gasseri OLL2901 had a bile acid tolerance of 0.031, but it is considered that there is no particular problem with intestinal retention. Table 2 shows the scientific characteristics of the above six strains.
  • Plain yogurt was prepared using L. gasseri OLL 2804 strain.
  • Yogurt mix (SNF: 9.5%, FAT: 3.0%) heated at 95 ° C for 5 minutes, 1% each of starter of L. bulgar icus JCM 1002 ⁇ and S. thermophilus ATCC 19258, L. gasseri OLL 2804 strain starter was inoculated 5% and fermented at 43 ° C for 4 hours.
  • thermophilus ATCC 19258 was 9.60 X 10 7 CFU / mL, 7.50 X 10 7 CFU / mL, 11.0 X 10 7 CFU / mL, and the survival rate of the L. gasseri OLL 2804 strain was 77% on the first day of storage, with a slight decrease in the number of viable bacteria.
  • the preserved product has good flavor and physical properties.
  • Plain yogurt was prepared using L. gasseri OLL 2818 strain. First, 1% each of L. gasseri OLL2818 strain, L. bulgaricus JCM 1002 T and S. thermophilus ATCC19258 was inoculated into 10% nonfat dry milk medium, and cultured at 37 ° C for 15 hours to prepare a Balta starter .
  • Yogurt mix (SNF: 9.5%, FAT: 3.0%) heated at 95 ° C for 5 minutes, 1% each of L. bulga ricus JCM 1002T and S. thermophilus ATCC 19258 starter, L. gasser i OLL 2818 starters were inoculated with 5% and fermented at 43 ° C for 4 hours.
  • the viable cell counts of L. gasseri OLL 2818, L. bulgaricus JCM 1002 T and S. thermophilus ATCC 19258 were 14.0 X 10 7 CFU / mL, 20.0 X 10 7 CFU / mL, 11.4 X 10 8 CFU / mL. The flavor and physical properties were both good.
  • the viable count of gasseri OLL 2818, L. bulgaricus JCM1002T and S. thermophilus ATCC 19258 was 11.4 X 10 7 CFU / mL, 7.00 X
  • the survival rate of L. gasseri OLL 2818 was 82% on the first day of storage, and the viable cell count decreased only slightly, 10 7 CFU / mL, 10.0 X 10 7 CFU / mL.
  • the preserved product has good flavor and physical properties.
  • a lactic acid bacterium suitable for human ABO blood group and a screening method thereof are provided.
  • the lactic acid bacterium of the present invention or the lactate strain obtained by the screening method of the present invention is a lactic acid bacterium having a high intestinal binding property for each ABO blood type, and functional yogurt classified by blood type is obtained by applying the lactic acid bacterium to food and beverage production. New probiotic foods and drinks can be provided.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Urology & Nephrology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Food Science & Technology (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Pathology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Polymers & Plastics (AREA)
  • Virology (AREA)
  • Mycology (AREA)
  • Nutrition Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Lactic acid bacteria are screened by the surface plasmon resonance spectroscopy with the use of human intestinal mucin and blood type antigens as probes. To adapt to the mass-scaled screening, it is attempted to set selection standards for the screening of lactic acid bacteria as described above. As a result, it is found out that lactic acid bacteria respectively matching ABO blood types can be screened by using 100RU under definite conditions as the standard of binding of bacteria. 238 strains of lactic acid bacteria are subjected to this screening. Further, a test for examining the suitability for yogurt production is performed. Finally, strains matching individual blood types of A, B and O are clarified in practice.

Description

ヒト ABO式血液型結合性乳酸菌 技術分野  Human ABO blood group-binding lactic acid bacteria
[0001] 本発明は、乳酸菌および乳酸菌のスクリーニングに関する。  [0001] The present invention relates to lactic acid bacteria and screening of lactic acid bacteria.
背景技術  Background art
[0002] ヒト腸管には約 200種類 · 100兆個以上の腸内細菌 (腸管定住性微生物)が生息して いる。プロバイオテイクスと呼ばれる微生物は、ヒト腸管内で有用菌と有害菌のバラン スを改善し、宿主の健康に貢献する。最近では、このプロバイオテイクス微生物を食 品に応用する動きが潮流となっている。例えば、プロバイオテイクス機能を有する乳 酸菌を用いて生産された機能性ヨーグルトが、幾つか商品化されている。そのため、 よりすぐれたプロバイオテイクスを選抜するマススクリーニング技術が求められている。  [0002] The human intestinal tract is inhabited by approximately 200 types of intestinal bacteria (intestinal resident microorganisms). Microorganisms called probiotics improve the balance between useful and harmful bacteria in the human intestine and contribute to the health of the host. Recently, there has been a trend toward applying this probiotic microorganism to food. For example, several functional yogurts produced using lactobacilli having a probiotic function have been commercialized. Therefore, there is a need for mass screening technology that selects better probiotics.
[0003] 腸管定住性乳酸菌はヒト腸管に接着し増殖する。そのため、プロバイオテイクス機 能が発揮されるためには、乳酸菌の腸管結合性が非常に重要である。ヒト腸管内で の乳酸菌の結合機構は、いまだ解明されたとはいえない。腸管系乳酸菌に関するこ れまでの研究から、 L. caseiが糖脂質糖鎖との結合性を有すること、 L. reuteriや L. cri spatusがコラーゲンとの結合性を有することが確認されており、さらに上記腸管系乳 酸菌と結合するレクチン様タンパク質が同定されている。しかし、多くの健常者の腸 管上皮では、細胞骨格タンパク質 (コラーゲン)の露出箇所は極めて少なぐ腸管上 皮のレクチン様タンパク質による乳酸菌定着は考えにくい。そこで、腸管定住性乳酸 菌の腸管結合性には腸管ムチンに結合する糖鎖が重要な役割を果たしていると考え られる。多くの腸管定住性乳酸菌の表層タンパク質(surface layer protein , SLP)に は、糖質を認識するタンパク質であるレクチン様タンパク質が存在する。腸管の表面 には腸管ムチンが存在する。  [0003] Intestinal colonized lactic acid bacteria adhere to and proliferate in the human intestinal tract. For this reason, intestinal binding of lactic acid bacteria is very important for the probiotic function to be demonstrated. The binding mechanism of lactic acid bacteria in the human intestine has not yet been elucidated. From previous studies on intestinal lactic acid bacteria, it has been confirmed that L. casei has binding properties to glycolipid sugar chains, and L. reuteri and L. cri spatus have binding properties to collagen. Furthermore, a lectin-like protein that binds to the intestinal lactobacilli has been identified. However, in the intestinal epithelium of many healthy subjects, there are very few exposed sites of cytoskeletal protein (collagen), and colonization of lactic acid bacteria by lectin-like protein in the intestinal epidermis is unlikely. Therefore, it is thought that sugar chains that bind to intestinal mucin play an important role in the intestinal binding of intestinal settled lactic acid bacteria. A lectin-like protein, a protein that recognizes carbohydrates, exists in the surface layer protein (SLP) of many intestinal settled lactic acid bacteria. Intestinal mucin exists on the surface of the intestinal tract.
また、腸管ムチンは、 0-グリコシド結合を介してポリペプチド (コアタンパク質、アポ ムチン)に結合した無数のムチン型糖鎖を持つ、粘液性の高分子量糖タンパクである 。すなわち腸管定住性乳酸菌は、菌表層のレクチン様タンパク質を通じて腸管ムチ ンの糖鎖に結合することにより腸管結合性を獲得し、安定的な増殖を図っていると考 えられる。 Intestinal mucin is a mucous high molecular weight glycoprotein having an infinite number of mucin-type sugar chains linked to a polypeptide (core protein, apomucin) through a 0-glycoside bond. In other words, intestinal settled lactic acid bacteria acquire intestinal connectivity by binding to the sugar chains of intestinal mucin through lectin-like proteins on the surface of the bacteria, and are considered to achieve stable growth. available.
[0004] 一方、近年になって、ヒト大腸ムチン(human colonic mucin: HCM)を構成する糖鎖 の化学構造は、 AB0式血液型により異なるという興味深い事実が報告された (非特 許文献 1-4)。  [0004] On the other hand, recently, an interesting fact has been reported that the chemical structure of the sugar chain constituting human colonic mucin (HCM) varies depending on the AB0 blood type (Non-Patent Document 1-4). ).
[0005] ヒト ABO式血液型は、赤血球表面に発現している抗原物質の種類によって区別さ れる。この ABO式血液型物質の抗原部位は、特定化学構造の糖鎖 (ABO式血液型 抗原)である。 A型抗原と B型抗原はともに 3個の糖からなる分子で、 2個の糖からなる H型抗原と呼ばれる基本構造に特定の結合様式で a -N-ァセチルガラタトサミンが結 合したのが A型抗原であり、 α -ガラクトースが結合したのが B型抗原である。 Α型の血 液のヒトは A型抗原、 B型の血液のヒトは B型抗原、 AB型の血液のヒトは A型抗原およ び B型抗原の両方を赤血球表面に発現している。それに対し、 0型の血液のヒトは基 本構造の H型抗原を発現する。  [0005] Human ABO blood groups are distinguished by the type of antigenic substance expressed on the surface of erythrocytes. The antigenic site of this ABO blood group substance is a sugar chain having a specific chemical structure (ABO blood group antigen). Both type A and type B antigens are molecules composed of three sugars, and a -N-acetylethyl latatosamine is bound to a basic structure called a type H antigen composed of two sugars in a specific binding mode. Is type A antigen and α-galactose is bound to type B antigen. Humans of type IV blood express the type A antigen, humans of type B blood express the type B antigen, and humans of type AB blood express both the type A antigen and the type B antigen on the erythrocyte surface. In contrast, type 0 blood humans express H-type antigens of the basic structure.
[0006] 上述の、消化管ムチンの糖鎖構造が血液型により異なるという科学的事実は、消化 管に結合増殖するプロバイオテイクス乳酸菌の種類が血液型により異なることを示唆 している。それぞれの血液型に適合した乳酸菌が見つかれば、個人レベルに対応し た機能性ヨーグルトの開発が実現可能になる。これまでに本発明者らは、この点に着 目し、ヒト腸管結合性乳酸菌を ABO式血液型抗原との吸着力によりスクリーニングす る方法を開発した (特許文献 1)。この方法は、乳酸菌と ABO式血液型抗原との吸着 力を、表面プラズモン共鳴スペクトル (SPR)を利用して検出し、血液型によって適合 する乳酸菌を選択する画期的方法である。具体的には、リガンドとして ABO式血液型 抗原または腸管由来のムチンを用い、センサーチップ上に固定ィ匕したリガンドに乳酸 菌を接触させたときの乳酸菌とリガンドとの結合を、該結合に伴ってセンサーチップ 上に生じる質量変化を表面プラズモン共鳴(Surface Plasmon Resonance = SPR)シグ ナルとして検出する方法である。上記質量変化は、 Resonance Unit (=RUレゾナンス ユニット)で表され、 lRU= lpg/mm2であり、 1RUは lmm2に物質 lpgが結合したことを 表す。本発明者らは、上記方法を実施し、 Lactobacillus crispatus JCM8778株、 Lact obacillus acidophilus OLL2769株が A型抗原認識性であることを確認している(特許 文献 非特許文献 5)。しかし、ヨーグルトをはじめとする、プロバイオテイクス乳酸菌 を用いた食品の需要増が期待されることから、さらに結合性にすぐれた血液型結合 性乳酸菌の獲得が待たれて!/、た。 [0006] The above-mentioned scientific fact that the sugar chain structure of gastrointestinal mucin varies depending on the blood type suggests that the type of probiotic lactic acid bacteria that bind and proliferate in the gastrointestinal tract varies depending on the blood type. If a lactic acid bacterium suitable for each blood type is found, it will be possible to develop functional yogurt corresponding to the individual level. So far, the present inventors have focused on this point and developed a method for screening human intestinal-binding lactic acid bacteria by the adsorptive power with ABO blood group antigen (Patent Document 1). This method is an epoch-making method in which the adsorptive power between lactic acid bacteria and ABO blood group antigens is detected using surface plasmon resonance spectrum (SPR), and lactic acid bacteria that are compatible with the blood type are selected. Specifically, when ABO blood group antigen or intestinal mucin is used as a ligand and lactic acid bacteria are brought into contact with the ligand immobilized on the sensor chip, the binding between the lactic acid bacteria and the ligand is accompanied by the binding. This is a method to detect the mass change that occurs on the sensor chip as a surface plasmon resonance (SPR) signal. The mass change is expressed in Resonance Unit (= RU resonance unit), where lRU = lpg / mm 2 , and 1RU indicates that the substance lpg is bound to lmm 2 . The present inventors have carried out the above method and confirmed that the Lactobacillus crispatus JCM8778 strain and the Lact obacillus acidophilus OLL2769 strain are A-type antigen recognizable (Patent Document Non-Patent Document 5). However, probiotic lactic acid bacteria including yogurt Because of the expected increase in demand for foods that use blood, we have been waiting for the acquisition of blood group-binding lactic acid bacteria with even better binding properties!
[0007] 特許文献 1:特開 2004-101249  [0007] Patent Document 1: JP 2004-101249 A
非特許文献 1 :天野純子、生化学,社団法人日本生化学会, 1999年,第 71卷, p.274 -277  Non-Patent Document 1: Junko Amano, Biochemistry, Japan Biochemical Society, 1999, No. 71, p.274 -277
特干文献 2: Holgersson, J., Stromberg, N., and Breimer, M. E., ulyconpids of hu man large intenstine: glycolopid expression related to anatomical localization, epithe lial I non-epithelial tissue and the ABO, Le and Se phenotypes of the donors. Bioch imie, 70, 1565—1574(1988).  Special Reference 2: Holgersson, J., Stromberg, N., and Breimer, ME, ulyconpids of hu man large intenstine: glycolopid expression related to anatomical localization, epithe lial I non-epithelial tissue and the ABO, Le and Se phenotypes of the donors. Bioch imie, 70, 1565—1574 (1988).
特許文献 3 : Holgersson, J., Jovall, P. A., and Breimer, M. E., Glycosphingolipids of human large intenstine: detailed structural characterization with special reference to blood group compounds and bacterial receptor structures. J. Biochem, (Tokyo), 110, 120-131(1991).  Patent Document 3: Holgersson, J., Jovall, PA, and Breimer, ME, Glycosphingolipids of human large intenstine: detailed structural characterization with special reference to blood group compounds and bacterial receptor structures.J. Biochem, (Tokyo), 110, 120 -131 (1991).
非特許文献 4 :Vanak, J., Ehrmann, J., Drimalova, D., Nemec, M., monoclonal antibo dies in the detection of blood group antigens A and B in the mucosa of the large inte stine. Cas Lek Cesk, 18, 364—367(1988).  Non-Patent Document 4: Vanak, J., Ehrmann, J., Drimalova, D., Nemec, M., monoclonal antibo dies in the detection of blood group antigens A and B in the mucosa of the large inte stine.Cas Lek Cesk , 18, 364-367 (1988).
非特許文献 5 : Uchida, H. et al, Biosci. Biotechnol. Biochem., 68(5), 1004-1010 (20 04).  Non-Patent Document 5: Uchida, H. et al, Biosci. Biotechnol. Biochem., 68 (5), 1004-1010 (20 04).
特許文献 6 : Holmes, S. D.et al, Studies on the interaction of Staphylococcus aure us and Staphylococcus epidermidis with fibronectin using surface plasmon resonance (BIACORE). J. Microbiological Methods, 28, 77-84 (1997).  Patent Document 6: Holmes, S. D. et al, Studies on the interaction of Staphylococcus aure us and Staphylococcus epidermidis with fibronectin using surface plasmon resonance (BIACORE). J. Microbiological Methods, 28, 77-84 (1997).
非特許文献 7 : Fratamico, P. M.et al, Detection of Escherichia coli 0157:H7 using a surface plasmon resonance biosensor. Biotechnol. Techniques., 7, 571-576 (1998). 発明の開示  Non-Patent Document 7: Fratamico, P. M. et al, Detection of Escherichia coli 0157: H7 using a surface plasmon resonance biosensor. Biotechnol. Techniques., 7, 571-576 (1998). Disclosure of the Invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] 本発明はこのような状況に鑑みてなされたものであり、本発明が解決しょうとする課 題は、ヒト ABO式血液型に適合した新規な腸管結合性乳酸菌を見出すことである。 課題を解決するための手段 [0009] 上記課題を解決すベぐ本発明者らは、上述の表面プラズモン共鳴スペクトルによ る乳酸菌スクリーニング方法を実施した。上記方法は既に乳酸菌スクリーニング方法 として確立されているが、大規模スクリーニングにより適合させるため、本発明者らに より上記乳酸菌スクリーニング方法における「選択基準値」を設定する試みが行われ た。これまでに、細菌について表面プラズモン共鳴スペクトルで検討した例として、黄 色ブドウ球菌とフイブロネクチンの結合を表面プラズモン共鳴スペクトルにより測定し た例(非特許文献 6)、 Eschelichia coli 0157を、抗 Eschelichia coli 0157抗体を介して チップ上に固定ィ匕したプロテイン Aまたはプロテイン Gにより検出する例(非特許文献 7)が知られており、これらの論文では、生菌体の結合を示す RU値は約 100から 1000R Uとなっている。しかし、乳酸菌について表面プラズモン共鳴スペクトルで検討した例 は、本発明者らによる報告以外に知られていない (特許文献 1、非特許文献 5)。また 、検体が同じであっても測定諸条件により RU値は変化しうる。そこで本発明者らは、 鋭意努力の結果、一定条件の下において 100RUを菌結合の判断基準とすることによ り、 ABO式血液型に適合する乳酸菌のスクリ一二ング方法を確立した。 [0008] The present invention has been made in view of such circumstances, and the problem to be solved by the present invention is to find a novel intestinal-binding lactic acid bacterium suitable for human ABO blood group. Means for solving the problem [0009] The inventors of the present invention who have solved the above-mentioned problems have implemented the lactic acid bacteria screening method based on the surface plasmon resonance spectrum described above. Although the above method has already been established as a screening method for lactic acid bacteria, an attempt has been made by the present inventors to set a “selection reference value” in the screening method for lactic acid bacteria in order to make it suitable for large-scale screening. As an example of the investigation of bacteria by surface plasmon resonance spectrum, Escherichia coli 0157, an example in which the binding of Staphylococcus aureus to fibronectin was measured by surface plasmon resonance spectrum, Non-patent document 6 Examples of detection using protein A or protein G immobilized on a chip via an antibody (Non-Patent Document 7) are known. In these papers, the RU value indicating the binding of viable cells is about 100 It is 1000R U. However, examples of lactic acid bacteria studied by surface plasmon resonance spectrum are not known except for reports by the present inventors (Patent Document 1, Non-Patent Document 5). In addition, even if the specimen is the same, the RU value can change depending on various measurement conditions. Therefore, as a result of diligent efforts, the present inventors established a screening method for lactic acid bacteria compatible with the ABO blood group by using 100 RU as a criterion for bacterial binding under certain conditions.
[0010] さらに本発明者らは、ヒト腸管より単離したヒト腸起源の乳酸菌 238菌株について上 記スクリーニング方法を実施し、さらにヨーグルト産生用途の適合性を判断するため の試験を実施し、ついに血液型 A型と 0型に適合する菌株を具体的に見出した。す なわち、本発明は血液型適合性ヨーグルトに適した乳酸菌および該乳酸菌のスクリ 一二ング方法に関し、具体的には下記を提供するものである。  [0010] Furthermore, the present inventors conducted the screening method described above for 238 strains of lactic acid bacteria of human intestinal origin isolated from the human intestinal tract, and further conducted a test for judging suitability for yogurt production. Finally, We specifically found strains compatible with blood group A and type 0. That is, the present invention relates to a lactic acid bacterium suitable for blood group compatible yogurt and a method for screening the lactic acid bacterium, and specifically provides the following.
(1)下記 (a)から(c)の ヽずれかの式で表されるヒト ABO式血液型抗原に結合能を有 する腸管結合性 Lactobacillus gasseri乳酸菌  (1) Lactobacillus gasseri lactic acid bacteria capable of binding to the human ABO blood group antigen represented by any one of the following formulas (a) to (c)
(a) [GalNAc a 1-3 (Fuc a 1-2) Gal-]  (a) [GalNAc a 1-3 (Fuc a 1-2) Gal-]
(b) [Gal a 1-3 (Fuc a 1-2) Gal-]  (b) [Gal a 1-3 (Fuc a 1-2) Gal-]
(c) [Fuc a l- 2Ga卜]、  (c) [Fuc a l-2Ga 卜],
(2)受託番号: NITE BP-25、受託番号: NITE BP-26、受託番号: NITE BP-27、受託 番号: NITE BP-28、受託番号: NITE BP-145、受託番号: NITE BP-146のいずれか で特定される、上記(1)に記載の Lactobacillus gasseri乳酸菌、  (2) Accession number: NITE BP-25, Accession number: NITE BP-26, Accession number: NITE BP-27, Accession number: NITE BP-28, Accession number: NITE BP-145, Accession number: NITE BP-146 Lactobacillus gasseri lactic acid bacteria described in (1) above,
(3)上記(1)または上記(2)に記載の Lactobacillus gasseri乳酸菌を含む、ヒト ABO式 血液型適合性発酵乳および乳製品製造用スターター、 (3) Human ABO formula containing the Lactobacillus gasseri lactic acid bacterium according to (1) or (2) above Blood type compatible fermented milk and starter for dairy production,
(4)上記(1)または上記(2)に記載の Lactobacillus gasseri乳酸菌を含有する、飲食 (4) A food or drink containing the Lactobacillus gasseri lactic acid bacterium according to (1) or (2) above
PP
TO、 TO,
(5)上記(1)または上記(2)に記載の Lactobacillus gasseri乳酸菌を含有する、発酵 乳および乳酸菌飲料、  (5) Fermented milk and lactic acid bacteria beverages containing the Lactobacillus gasseri lactic acid bacteria described in (1) or (2) above,
(6)下記条件 (i)カゝら (iii)を満たすことを指標とする、表面プラズモン共鳴スペクトル による乳酸菌のスクリーニング方法。  (6) A method for screening lactic acid bacteria using a surface plasmon resonance spectrum, using as an index the following condition (i) Kaza et al. (Iii):
(i) A型のヒト ABO式血液型抗原との結合能を示す RU値が 100RU以上であること (i) RU value that indicates the ability to bind human ABO blood group antigen of type A is 100RU or more
(ii) B型および Zまたは H型のヒト ABO式血液型抗原との結合能を示す RU値が 100R U以下であること (ii) The RU value indicating the ability to bind to human ABO blood group antigens of type B and Z or H is 100RU or less
(iii)ヒト A型腸管ムチンとの結合能を示す RU値が 100RU以上であること、  (iii) The RU value indicating the ability to bind to human type A intestinal mucin is 100 RU or more,
(7)下記条件 (i)カゝら (iii)を満たすことを指標とする、表面プラズモン共鳴スペクトル による乳酸菌のスクリーニング方法。  (7) A method for screening lactic acid bacteria using a surface plasmon resonance spectrum, using as an index the following condition (i) Kazu et al. (Iii):
(i) B型のヒト ABO式血液型抗原との結合能を示す RU値が 100RU以上であること (i) The RU value that indicates the ability to bind B-type human ABO blood group antigen is 100RU or more
(ii) A型および Zまたは H型のヒト ABO式血液型抗原との結合能を示す RU値が 100R U以下であること (ii) The RU value indicating the ability to bind to human ABO blood group antigens of type A and Z or H is 100RU or less
(iii)ヒト B型腸管ムチンとの結合能を示す RU値が 100RU以上であること  (iii) The RU value that indicates the ability to bind human B-type intestinal mucin is 100 RU or more
(8)下記条件 (i)カゝら (iii)を満たすことを指標とする、表面プラズモン共鳴スペクトル による乳酸菌のスクリーニング方法。  (8) A method for screening lactic acid bacteria using a surface plasmon resonance spectrum, using as an index the following condition (i) Kazu et al. (Iii):
(i) H型のヒト ABO式血液型抗原との結合能を示す RU値が 100RU以上であること (i) The RU value that indicates the ability to bind H-type human ABO blood group antigen is 100RU or more
(ii) A型および Zまたは B型のヒト ABO式血液型抗原との結合能を示す RU値が 100R U以下であること (ii) The RU value that indicates the ability to bind human ABO blood group antigens of type A and Z or B is 100RU or less
(iii)ヒト 0型腸管ムチンとの結合能を示す RU値が 100RU以上であること。  (iii) The RU value indicating the ability to bind human type 0 intestinal mucin must be 100 RU or more.
(9)下記条件 (i)カゝら (iii)を満たすことを指標とする、表面プラズモン共鳴スペクトル による乳酸菌のスクリーニング方法。  (9) A screening method for lactic acid bacteria using a surface plasmon resonance spectrum, using as an index the following condition (i) Kazu et al. (Iii):
(i) B型のヒト ABO式血液型抗原との結合能を示す RU値が 100RU以上であること (i) The RU value that indicates the ability to bind B-type human ABO blood group antigen is 100RU or more
(ii) A型および H型のヒト ABO式血液型抗原との結合能を示す RU値が 100RU以下で あること (iii)ヒト B型腸管ムチンとの結合能を示す RU値が、ヒト A型腸管ムチンとの結合能を示 す RU値およびヒト 0型腸管ムチンとの結合能を示す RU値よりも大きいこと (ii) The RU value, which indicates the ability to bind human ABO blood group antigens of type A and H, is 100RU or less (iii) The RU value indicating the ability to bind to human type B intestinal mucin must be greater than the RU value indicating the ability to bind to human type A intestinal mucin and the RU value indicating the ability to bind to human type 0 intestinal mucin.
図面の簡単な説明  Brief Description of Drawings
[0011] [図 1]ヒト ABO式血液型の糖鎖抗原部位を有するピオチ-ルイ匕ポリマー(BP)プロ一 ブの化学構造を示す図である。  [0011] Fig. 1 is a diagram showing the chemical structure of a Pioti-Louis polymer (BP) probe having a sugar chain antigen site of human ABO blood group.
[図 2]A型抗原 BP-プローブの糖鎖部分 (上)、 B型抗原 BP—プローブの糖鎖部分(中 )、および 0型抗原 BP-プローブの糖鎖部分(下)を示す図である。  [Fig. 2] Diagram showing the sugar chain part of the A-type antigen BP-probe (top), the B-type antigen BP-probe sugar chain part (middle), and the type 0 antigen BP-probe sugar chain part (bottom) is there.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0012] 本発明は、 (a) [GalNAc a 1-3 (Fuc a 1-2) Gal-]、 (b) [Gal a 1-3 (Fuc a 1-2) Gal-] 、 (c) [Fuc a l-2Ga卜]のいずれかの式で表されるヒト ABO式血液型抗原に結合能を 有する腸管結合性 Lactobacillus gasseri乳酸菌を提供する。  [0012] The present invention comprises (a) [GalNAc a 1-3 (Fuc a 1-2) Gal-], (b) [Gal a 1-3 (Fuc a 1-2) Gal-], (c) An intestinal-binding Lactobacillus gasseri lactic acid bacterium having binding ability to a human ABO blood group antigen represented by any formula of [Fucal-2Ga a] is provided.
[0013] 一般的に、乳酸菌とは、グルコース力 乳酸をモル比換算で 50%以上つくる細菌群 の総称であ o Lactobacillus属、 Lactococcus腐、 Streptococcus厲、 Leuconostoc厲は 、乳酸菌の代表的な属である。また Bifidobacterium属は本明細書における乳酸菌に 含まれる。 Lactobacillus属は、さらに種に分類される。 Lactobacillus属の菌種の代表 例として、 Lactobacillus delbruekn suosp. bulgancus (し bulgaricus)、 Lactobacillus de lbruekn subsp. delbruekii(L. delbruekii)、 Lactobacillus acidophilusグル ~~プ乳酸菌 ( L. acidophilusグノレ1 ~~プ)、 Lactobacillus casei (L. casei)、 Lactobacillus plantarum (L . plantarum.)、 Lactobacillus brevis (L. brevis)、 Lactobacillus buchneri (L. buchneri) 、 Lactobacillus fermentum (L. fermentum)、 Lactobacillus helveticus (L. helveticus) などを挙げることができる。 L. acidophilusグループ乳酸菌は、 DNA-DNAホモロジ一 および細胞壁組成分析の結果により、 Lactobacillus acidophilus (A- 1)、 Lactobacillus cnspatus (A- 2)、 Lactobacillus amylovorus (Λ- 3)、 Lactobacillus gallinarum (A- 4)、 L actobacillus gasseri (B— 1)、および Lactobacillus johnsonii (B— 2)の 6菌種に分類 れ る。 [0013] In general, lactic acid bacteria are a general term for a group of bacteria that produce glucose strength lactic acid in a molar ratio of 50% or more. O Lactobacillus genus, Lactococcus rot, Streptococcus moth, Leuconostoc moth are representative genus of lactic acid bacteria. is there. The genus Bifidobacterium is also included in the lactic acid bacteria in this specification. The genus Lactobacillus is further classified into species. As a typical example of the species of the genus Lactobacillus, Lactobacillus delbruekn suosp. Bulgancus (and bulgaricus), Lactobacillus de lbruekn subsp. Delbruekii (L. Delbruekii), Lactobacillus acidophilus Group ~ ~ flop lactic acid bacteria (L. acidophilus Gunore 1 ~ ~-flops), Lactobacillus casei (L. casei), Lactobacillus plantarum (L. plantarum.), Lactobacillus brevis (L. brevis), Lactobacillus buchneri (L. buchneri), Lactobacillus fermentum (L. fermentum), Lactobacillus helveticus (L. helveticus) Can be mentioned. L. acidophilus group lactic acid bacteria are classified into Lactobacillus acidophilus (A-1), Lactobacillus cnspatus (A-2), Lactobacillus amylovorus (Λ-3), Lactobacillus gallinarum (A-4) according to the results of DNA-DNA homology and cell wall composition analysis. ), L actobacillus gasseri (B-1), and Lactobacillus johnsonii (B-2).
[0014] 本発明の Lactobacillus gasseri (以下、場合により「L. gasserijと略す)乳酸菌は、ヒト ABO式血液型抗原に結合能を有することを特徴とする腸管結合性 Lactobacillus gass eriである。本発明において ABO式ヒト血液型抗原とは、血液型を決定する糖鎖であり 、具体的には、 A型糖鎖 (A型抗原): [GalNAc a 1-3 (Fuc a 1-2) Gal-]、 B型糖鎖 (B 型抗原): [Gal a 1-3 (Fuc a 1-2) Gal-]、 O型糖鎖 (本明細書にぉ 、て、血液型 0型を 決定する糖鎖を意味し、 H型抗原、 0型抗原ともいう。 ): [Fuc aト 2Gaト]である。上 述の通り、腸管表層に存在する腸管ムチンは ABO式血液型により異なる糖鎖を有す る。本発明者らは、 A型のヒト腸管力も調製されたムチンに結合する乳酸菌のうち、ヒト 血液型 A型を決定する抗原である A型糖鎖に結合する L. gasseri乳酸菌があることを 確認した。また、上記ムチンに A型糖鎖が発現していることも確認した。したがって本 発明の L. gasseri乳酸菌において、上記 A型糖鎖に結合し、他の型の糖鎖に吸着し ない乳酸菌は、腸管ムチン上の A型糖鎖に結合することにより、 ABO式血液型 A型の ヒトについて腸管結合性を獲得している。該 L. gasseri乳酸菌は、血液型 A型のヒトの 腸管に安定的に結合'増殖し、プロバイオテイクス機能を発揮すると考えられる。すな わち、該 L. gasseri乳酸菌は、特に血液型 A型のヒトの健康に貢献することができ、血 液型 A型のヒトに適合しているということができる。同様に、上記 B型糖鎖に結合し、他 の型の糖鎖に吸着しない本発明 L. gasseri乳酸菌は、 ABO式血液型 B型のヒトに適合 する。上記 0型糖鎖に結合し、他の型の糖鎖に吸着しない本発明 L. gasseri乳酸菌 は、 ABO式血液型 0型のヒトに適合する。 [0014] The Lactobacillus gasseri (hereinafter abbreviated as "L. gasserij") lactic acid bacteria of the present invention is an intestinal tract Lactobacillus gasseri characterized by having a binding ability to a human ABO blood group antigen. ABO human blood group antigen is a sugar chain that determines blood group Specifically, type A sugar chain (type A antigen): [GalNAc a 1-3 (Fuc a 1-2) Gal-], type B sugar chain (type B antigen): [Gal a 1-3 ( Fuc a 1-2) Gal-], O-type sugar chain (hereinafter referred to as a sugar chain that determines blood group 0, also referred to as H-type antigen, 0-type antigen): [Fuc a to 2Ga]. As described above, intestinal mucins present on the surface of the intestinal tract have different sugar chains depending on the ABO blood group. The present inventors confirmed that there is L. gasseri lactic acid bacteria that bind to type A sugar chains, which are antigens that determine human blood group A, among lactic acid bacteria that bind to mucin prepared for human intestinal force of type A did. It was also confirmed that type A sugar chains were expressed in the mucin. Therefore, in the L. gasseri lactic acid bacterium of the present invention, the lactic acid bacterium that binds to the A-type sugar chain and does not adsorb to other types of sugar chains binds to the A-type sugar chain on the intestinal mucin, whereby the ABO blood group It has acquired intestinal connectivity for type A humans. The L. gasseri lactic acid bacterium is considered to stably bind to and proliferate in the intestinal tract of blood group A humans and exert a probiotic function. That is, it can be said that the L. gasseri lactic acid bacteria can contribute to the health of blood group A humans and is suitable for blood group A humans. Similarly, the L. gasseri lactic acid bacterium of the present invention that binds to the B-type sugar chain and does not adsorb to other types of sugar chains is compatible with ABO blood group B humans. The L. gasseri lactic acid bacterium of the present invention that binds to the type 0 sugar chain and does not adsorb to other types of sugar chains is suitable for ABO blood group 0 type humans.
[0015] 本発明の L. gasseri乳酸菌(以下、時に「血液型別結合性 L. gasseri乳酸菌」と称す )は、ヒト糞便力 分離することができる。血液型 A型のヒトに適合する L. gasseri乳酸 菌(以下、「A型適合乳酸菌」と略す)であれば、 ABO式血液型 A型のヒトの糞便から、 血液型 B型のヒトに適合する L. gasseri乳酸菌(以下、「B型適合乳酸菌」と略す)であ れば、 ABO式血液型 B型のヒトの糞便から、血液型 0型のヒトに適合する L. gasseri乳 酸菌(以下、「0型適合乳酸菌」と略す)であれば、 ABO式血液型 0型のヒトの糞便か ら、より効率よく分離できる可能性が高い。分離に際しては、当業者に周知の L. gasse ri乳酸菌の性質を目安とすることができる。例えば、桿菌、ホモ発酵、好気性発育あり 、ガス生成無し、等を目安とすることができる。  [0015] The L. gasseri lactic acid bacteria of the present invention (hereinafter sometimes referred to as "blood group-specific L. gasseri lactic acid bacteria") can be separated from human feces. If it is L. gasseri lactic acid bacteria (hereinafter abbreviated as "A-type compatible lactic acid bacteria") compatible with blood group A humans, it is compatible with humans of blood group B from ABO blood group A human feces L. gasseri lactic acid bacteria (hereinafter abbreviated as “B-type compatible lactic acid bacteria”) from ABO blood type B human feces to L. gasseri lactobacilli compatible with blood type 0 humans ( (Hereinafter abbreviated as “type 0 compatible lactic acid bacteria”), there is a high possibility of more efficient separation from human feces of ABO blood type 0. For the separation, the properties of L. gasseri lactic acid bacteria well known to those skilled in the art can be used as a guide. For example, gonococcus, homo-fermentation, aerobic growth, no gas generation, etc. can be used as a guide.
[0016] 本発明の血液型別結合性 L. gasseri乳酸菌を培養するには、一般的に乳酸桿菌の 培養に適した培地であればよぐグルコース、ラタトース、ガラクトース、フルクトース、 トレノヽロース、スクロース、マンノース、セロビオース等の炭素源、肉エキス、ペプトン、 イーストエキストラタト、カゼイン、ホエータンパク質等の窒素源、硫酸マグネシウム、 硫酸鉄、硫酸マンガン等の無機栄養素を含む培地を用いることができる。好適な例 の一つとして、 Lactobacilli MRS broth (Difco, Ref. No.288130)を挙げることができる。 培養条件は、腸内乳酸菌が生育しうる条件であれば、特に制限はない。好ましい条 件としては、例えば、 pH5.0— pH8.0、温度 20°C— 45°Cであり、より好ましい条件として は、嫌気性、 pH5.0—pH7.0、温度 30°C—40°Cである。 [0016] In order to culture L. gasseri lactic acid bacteria according to the present invention, any medium suitable for culturing Lactobacillus is generally used. Glucose, latatoses, galactose, fructose, trenorose, sucrose , Carbon sources such as mannose and cellobiose, meat extract, peptone, A medium containing a nitrogen source such as yeast extratate, casein, or whey protein, and inorganic nutrients such as magnesium sulfate, iron sulfate, or manganese sulfate can be used. One suitable example is Lactobacilli MRS broth (Difco, Ref. No. 288130). The culture conditions are not particularly limited as long as the intestinal lactic acid bacteria can grow. Preferred conditions are, for example, pH 5.0-pH 8.0, temperature 20 ° C-45 ° C, and more preferred conditions are anaerobic, pH 5.0-pH 7.0, temperature 30 ° C-40. ° C.
[0017] 上記のようにして分離'培養した L. gasseriが血液型別の腸管結合性および血液型 抗原との結合性を有するかにつ 、ては、ヒト腸管ムチンまたは血液型抗原との結合 性の有無を判断することにより知ることができる。例えば、被験菌の表層より菌体表層 タンパク質 (SLP)を調製し、ピオチン等で標識した SLPと腸管ムチンあるいは血液型 抗原との結合性を検出してもよい。または、標識腸管ムチンあるいは標識血液型抗 原を用いて、被験菌の SLPの電気泳動後にハイブリダィゼーシヨンの手法により検出 してもよい。また後述する実施例のように、表面プラズモン解析装置 (例えば、 BIACO RE)を用いれば、生菌のまま検出することが可能である。  [0017] Whether or not L. gasseri separated and cultured as described above has intestinal tract-binding properties and blood group antigens by blood group is determined by binding to human intestinal mucin or blood group antigens. It can be known by judging the presence or absence of sex. For example, a cell surface protein (SLP) may be prepared from the surface layer of the test bacterium, and the binding between SLP labeled with piotin or the like and intestinal mucin or blood group antigen may be detected. Alternatively, detection may be performed by a hybridization method after electrophoresis of SLP of a test bacterium using labeled intestinal mucin or labeled blood group antigen. Further, as in the examples described later, if a surface plasmon analyzer (for example, BIACORE) is used, it is possible to detect viable bacteria as they are.
[0018] 血液型別のヒト腸管ムチンを調製するには、特定の血液型のヒト腸管力も表層部分 を採取し、塩酸グァ-ジン等の可溶化剤を用いてゲルろ過を行い、タンパク質吸収と 中性糖含量が高いことを目安にして精製することができる。例えば、 Purushothaman, b. b. et al, Adherence of Shigella dysentenae 1 to Human colonic Mucin. Curr. ic robiol, 42(6), 381-387 (2001).記載の方法を参考に実施することができる。抗血液 型抗原抗体を用いて、調製したヒト腸管ムチンに血液型抗原が発現していることを確 認すると、より好ましい。具体例として、実施例に記載の方法を挙げることができる。 一方、血液型抗原は、後述する式または図 2に記載した糖鎖配列をもとに合成しても よぐ市販の糖鎖プローブ (例:生化学工業製)あるいはネオグリコプロテイン ' Blood Group A Trisaccaride- BSA (例: Calbiochem社)やネオグリコプロテイン ' Blood Group B Trisaccaride- BSA (例: Calbiochem社)などを用いてもょ ヽ。  [0018] In order to prepare human intestinal mucin by blood type, the surface part of the human intestinal force of a specific blood type is also collected and subjected to gel filtration using a solubilizing agent such as guanidine hydrochloride to reduce protein absorption. Purification can be carried out based on the high neutral sugar content. For example, the method described in Purushothaman, b. B. Et al, Adherence of Shigella dysentenae 1 to Human colonic Mucin. Curr. Ic robiol, 42 (6), 381-387 (2001). It is more preferable to confirm that the blood group antigen is expressed in the prepared human intestinal mucin using an anti-blood group antigen antibody. Specific examples include the methods described in the examples. On the other hand, blood group antigens can be synthesized on the basis of the sugar chain sequence shown in the formula below or in FIG. 2 (eg, commercially available sugar chain probes (eg, manufactured by Seikagaku Corporation) or neoglycoprotein 'Blood Group A Trisaccaride- BSA (eg Calbiochem) or neoglycoprotein 'Blood Group B Trisaccaride- BSA (eg Calbiochem) may be used.
[0019] 本発明の血液型別結合性 L. gasseri乳酸菌の代表例として、受託番号: NITE BP-2 5、受託番号: NITE BP-26、受託番号: NITE BP-27、受託番号: NITE BP-28で特定 される Lactobacillus gasseriを挙げることができる。これらのうち、受託番号: NITE BP- 26と受託番号: NITE BP-27で特定される乳酸菌は A型適合乳酸菌であり、受託番号 : NITE BP-25と受託番号: NITE BP-28で特定される乳酸菌は 0型適合乳酸菌である 。これらの菌株は、本発明者らによって、上述した各血液型への適合性が確認された 乳酸菌である。さらなる本発明の血液型別結合性 L. gasseri乳酸菌の代表例として、 受託番号: NITE BP- 145、受託番号: NITE BP- 146で特定される Lactobacillus gasser iを挙げることができる。これら受託番号: NITE BP-145、受託番号: NITE BP-146で特 定される乳酸菌は B型適合乳酸菌である。これら菌株は、本発明者らによって、血液 型 B型への適合性が確認された。 [0019] As representative examples of L. gasseri lactic acid bacteria according to blood type of the present invention, accession number: NITE BP-25, accession number: NITE BP-26, accession number: NITE BP-27, accession number: NITE BP -Lactobacillus gasseri specified by -28. Of these, accession number: NITE BP- Lactic acid bacteria identified by 26 and accession number: NITE BP-27 are type A compatible lactic acid bacteria, and lactic acid bacteria specified by accession number: NITE BP-25 and accession number: NITE BP-28 are type 0 compatible lactic acid bacteria. These strains are lactic acid bacteria that have been confirmed by the present inventors to be compatible with the above-mentioned blood types. Further, representative examples of L. gasseri lactic acid bacteria according to blood group of the present invention include Lactobacillus gasser i specified by accession number: NITE BP-145 and accession number: NITE BP-146. The lactic acid bacteria specified by the accession number: NITE BP-145 and the accession number: NITE BP-146 are B-type compatible lactic acid bacteria. These strains were confirmed by the present inventors to be compatible with blood group B.
本発明者らは、これら菌株を、特許手続き上の微生物の寄託の国際的承認に関す るブダペスト条約に基づき、独立行政法人製品評価技術基盤機構特許微生物寄託 センターに寄託した。以下に、寄託を特定する内容を記載する。  The present inventors deposited these strains with the Patent Microorganism Depositary Center, National Institute of Product Evaluation Technology, based on the Budapest Treaty concerning the international recognition of the deposit of microorganisms in the patent procedure. The contents specifying the deposit are described below.
受託番号 NITE BP-25,26,27,28につ!/、ては以下のとおりである。 Accession numbers NITE BP-25, 26, 27, 28!
(ィ)寄託機関:独立行政法人製品評価技術基盤機構特許微生物寄託センター (所在地:日本国千葉県木更津巿かずさ鎌足 2— 5— 8 郵便番号 292-0818) (口)原寄託日:平成 16年 (2004年) 10月 8日 (I) Depositary Institution: National Institute of Technology and Evaluation Patent Microorganisms Deposit Center (Location: Kisarazu Kazusa Kamashita 2-5-8 Postcode 292-0818, Chiba Prefecture, Japan) (Kuchi) Original deposit date: Heisei 16 Year (2004) October 8
ブダペスト条約に基づく寄託への移管請求受領日(移管日):平成 17年 (2005年 ) 5月 6曰  Date of request for transfer to deposit under the Budapest Treaty (transfer date): May 6 2005
(ハ)受託番号: (C) Accession number:
Lactobacillus gasseri OLL2915株 (受託番号 NITE BP- 25)  Lactobacillus gasseri OLL2915 strain (Accession number NITE BP-25)
Lactobacillus gasseri OLL2804株 (受託番号 NITE BP- 26)  Lactobacillus gasseri OLL2804 strain (Accession number NITE BP-26)
Lactobacillus gasseri OLL2818株 (受託番号 NITE BP- 27)  Lactobacillus gasseri OLL2818 strain (Accession number NITE BP-27)
Lactobacillus gasseri OLL2827株 (受託番号 NITE BP- 28)  Lactobacillus gasseri OLL2827 strain (Accession number NITE BP-28)
受託番号 NITE BP-145,146については以下のとおりである。 Accession numbers NITE BP-145 and 146 are as follows.
(ィ)寄託機関:独立行政法人製品評価技術基盤機構特許微生物寄託センター (所在地:日本国千葉県木更津巿かずさ鎌足 2— 5— 8 郵便番号 292-0818) (口)原寄託日:平成 17年 (2005年) 10月 4日 (I) Depositary Institution: National Institute of Technology and Evaluation Patent Microorganism Depositary Center (Location: Kisarazu Kazusa Kamashika 2-5-8 Postal Code 292-0818, Chiba Prefecture, Japan) (Date) Hara Deposit Date: Heisei 17 Year (2005) October 4
ブダペスト条約に基づく寄託への移管請求受領日(移管日):平成 17年 (2005年 ) 11月 25日 (ハ)受託番号: Date of receipt of request for transfer to deposit under the Budapest Treaty (transfer date): November 25, 2005 (C) Contract number:
Lactobacillus gasseri OLL2877株 (受託番号 MTE BP- 145)  Lactobacillus gasseri OLL2877 strain (Accession number MTE BP-145)
Lactobacillus gasseri OLし 2901株 (受託番号 MTE BP- 146)  Lactobacillus gasseri OL 2901 strain (Accession number MTE BP-146)
[0021] 本発明の血液型別結合性し gasseri乳酸菌は、血液型別に適合する飲食品の製 造に用レ、ることができる。本発明の血液型別結合性し gasseri乳酸菌を用いて作る飲 食品は、カテゴリーや種類に制限はなぐ機能性食品、特定保健用食品、健康食品 、介護用食品でもよぐまた、菓子、乳酸菌飲料、チーズやヨーグルト等の乳製品、調 味料等であってもよい。飲食品の形状についても制限はなぐ固形、液状、流動食状 、ゼリー状、タブレット状、顆粒状、カプセル状など、通常流通しうるあらゆる飲食品形 状をとることができる。上記飲食品の製造は、当業者の常法によって行うことができる 。上記飲食品の製造においては、乳酸菌生育を妨げない限り、糖質、タンパク質、脂 質、食物繊維、ビタミン類、生体必須微量金属 (硫酸マンガン、硫酸亜鉛、塩化マグ ネシゥム、炭酸カリウム、等)、香料やその他の配合物を添加することもできる。  [0021] The gasseri lactic acid bacterium according to the blood type of the present invention can be used for the production of foods and drinks suitable for each blood type. The foods and beverages produced by using gasseri lactic acid bacteria according to the present invention may be functional foods, specific health foods, health foods, and nursing foods that are not restricted in categories or types. It may be a dairy product such as cheese or yogurt, a seasoning or the like. There are no restrictions on the shape of the food or drink, and any form of food or drink that can normally be distributed can be used, such as solid, liquid, liquid food, jelly, tablet, granule, and capsule. Manufacture of the said food-drinks can be performed by those skilled in the art. In the production of the above food and drink, as long as it does not interfere with the growth of lactic acid bacteria, carbohydrates, proteins, fats, dietary fibers, vitamins, biologically essential trace metals (manganese sulfate, zinc sulfate, magnesium chloride, potassium carbonate, etc.), Perfumes and other blends can also be added.
[0022] 本発明の血液型別結合性し gasseri乳酸菌は、一般飲食品に混合して用いること ができるほか、特に、ヨーグルトやチーズ等の乳製品 ·発酵乳の製造用スターターと することができる。スターターとする場合は、本発明の血液型別結合性 L. gasseri?L酸 菌の生息 '増殖に支障がない限り、また乳製品製造に支障がない限り、他の微生物 が混合されていてもよい。例えば、ヨーグルト用乳酸菌として主要な菌種である Lacto bacillus delbruek subsp. bulgancus, Streptococcus thermophilus, Lactobacillus aci dophilus等と混合してもよぐその他、一般にヨーグルト用やチーズ用として用レ、られ る菌種と混合してスターターとすることができる。上記スターターによるヨーグルト製造 は、常法にしたがって行うことができる。例えば、加温 '混合'均質化'殺菌処理後冷 却した乳または乳製品に、上記スターターを混合し、発酵'冷却すれば、プレーンョ 一ダルトを製造することができる。  [0022] The gasseri lactic acid bacterium according to the blood type of the present invention can be mixed with general foods and drinks, and can be used as a starter for producing dairy products and fermented milk such as yogurt and cheese. . In the case of a starter, as long as there is no hindrance to growth and dairy product production, the presence of L. gasseri? Good. For example, it may be mixed with Lacto bacillus delbruek subsp.bulgancus, Streptococcus thermophilus, Lactobacillus aci dophilus, etc. It can be mixed to make a starter. Yogurt production using the above starter can be carried out according to a conventional method. For example, plain milk dart can be produced by mixing the above starter with milk or dairy products cooled after warming 'mixing' and 'homogenizing' and sterilizing, followed by fermentation and cooling.
[0023] 本発明血液型別結合性し gasseri乳酸菌を用レ、て製造された飲食品は、飲食品中 に同菌を含有する。該飲食品を AB0式血液型の適合したヒトが摂取すると、該飲食 品中の本発明血液型別結合性し gasseri乳酸菌が腸管に結合 ·増殖し、腸内バラン スの調整'維持やプロバイオテイクス機能の早期発揮が見込まれる。したがって、該  [0023] The food and drink produced by using the gasseri lactic acid bacterium according to the present invention according to blood type contains the same bacterium in the food and drink. When this food or drink is ingested by a human who is compatible with the AB0 blood group, the gasseri lactic acid bacteria bind and grow in the intestinal tract according to the blood type of the present invention, and the intestinal balance is adjusted and maintained. Early take-out function is expected. Therefore, the
訂正された^紙 (規則 91) 飲食品は一般の飲食品としてのみならず、健康増進目的の機能性食品'保健栄養 食品'介護用食品'健康食品等として有用である。 Corrected ^ (Rule 91) The foods and drinks are useful not only as general foods and drinks but also as functional foods for the purpose of promoting health, such as “health and nutrition foods”, “care foods” and “health foods”.
[0024] また本発明は、表面プラズモン共鳴スペクトルによる乳酸菌のスクリーニング方法を 提供する。本発明のスクリーニング方法は、血液型別に適合する乳酸菌を選別する ための方法である。本発明のスクリーニング方法は、表面プラズモン共鳴スペクトル により乳酸菌と血液型別ヒト腸管ムチン及び ABO式血液型抗原との結合性を測定す ることによりスクリーニングを行うものであって、(i)特定の血液型の ABO式血液型抗 原と一定量以上の結合能を有すること、(ii)上記 (i)における特定の血液型以外の血 液型の ABO式血液型抗原と一定量以上の吸着能を有しな 、こと、 (iii)上記 (i)にお ける特定の血液型のヒト腸管ムチンと一定量以上の結合能を有すること、を指標とし て選別する。 ABO式血液型抗原との結合能を測定することで、主に血液型を決定す る抗原以外の部分 (例えば、糖鎖の非末端部分の部分構造、シアル酸や硫酸基の 発現部位、ムチンタンパク質部位)に結合する乳酸菌を排除することができ、血液型 特異性の高 、乳酸菌のスクリーニングを可能とする。本発明にお 、てヒト A型腸管ム チンとは、 ABO式血液型の A型のヒト由来の腸管ムチンを指す。同様に、ヒト B型腸管 ムチンとは、血液型 B型ヒト由来腸管ムチンであり、ヒト 0型腸管ムチンとは、血液型 0 型ヒト由来腸管ムチンである。  [0024] The present invention also provides a method for screening lactic acid bacteria by surface plasmon resonance spectrum. The screening method of the present invention is a method for selecting lactic acid bacteria suitable for each blood group. The screening method of the present invention comprises screening by measuring the binding of lactic acid bacteria to blood type human intestinal mucin and ABO blood group antigens by surface plasmon resonance spectrum, and (i) specific blood (Ii) ABO blood group antigens other than the specific blood group in (i) above and a certain amount or more of adsorbing ability. (Iii) Selection is made using as an index the ability to bind to a specific blood group of human intestinal mucin in (i) above. By measuring the ability to bind to ABO blood group antigens, parts other than antigens that mainly determine blood groups (for example, the partial structure of the non-terminal part of sugar chains, the expression sites of sialic acid and sulfate groups, mucins) Lactic acid bacteria that bind to the protein site) can be eliminated, and screening for lactic acid bacteria is possible with high blood group specificity. In the present invention, human type A intestinal mucin refers to type A human intestinal mucin of the ABO blood group. Similarly, human type B intestinal mucin is a blood group B human-derived intestinal mucin, and human type 0 intestinal mucin is a blood group 0 human intestinal mucin.
[0025] 本発明のスクリーニング方法では、 ABO式血液型抗原及びヒト腸管ムチンをプロ一 ブとして表面プラズモン共鳴スペクトル解析を行う。表面プラズモン共鳴スペクトルを 利用した生体分子間相互解析装置としては、例えば BIACORE (ビアコア株式会社) を用いることができる。 ABO式血液型抗原及びヒト腸管ムチンの調製方法については 、上述のとおりである。プローブを固定化する場合は、公知の固定ィ匕方法によって行 うことができる。固定化方法は、物理的吸着による方法または共有結合による吸着で もよい。一例を挙げれば、チップをストレプトアビジンでコートし、プローブをピオチン 化すれば、ピオチン-アビジン結合により、容易に固定ィ匕することができる。あらかじ めストレプトアビジン化した市販のチップ(BIACORE社)を使用してもよ!/、。  [0025] In the screening method of the present invention, surface plasmon resonance spectrum analysis is performed using ABO blood group antigen and human intestinal mucin as a probe. For example, BIACORE (Biacore Co., Ltd.) can be used as a biomolecular interanalyzer utilizing the surface plasmon resonance spectrum. The preparation method of ABO blood group antigen and human intestinal mucin is as described above. In the case of immobilizing the probe, it can be performed by a known immobilization method. The immobilization method may be a physical adsorption method or a covalent bond adsorption. For example, if the chip is coated with streptavidin and the probe is piotinated, it can be easily fixed by a piotine-avidin bond. You can also use a commercially available streptavidinized chip (BIACORE)! /.
[0026] 本発明の方法は表面プラズモン共鳴スペクトルによるものであるため、上記「結合 能」は、レゾナンスユニット(RU)で示される。 1RUは、 1mm2に lpgの物質が結合するこ とを表す。本発明の方法において、上記「一定量以上の結合能」は、「100RU」を基準 として判断する。すなわち、「100RU」以上の測定値によって、乳酸菌がプローブに一 定量以上結合すると判断する。例えば、血液型 A型ヒト由来腸管ムチンをプローブと したときの測定結果が 100RU以上あれば、その乳酸菌は該腸管ムチンに結合する乳 酸菌である。 RU値は、測定条件により変化しうる。本方法における温度条件は、例え ば、 20-40°C、好ましくは、 20-30°C、より好ましくは 23— 28°Cである。また、本方法に おける好ましいサンプル濃度は 0.1— 0.5mg/mL、本方法における好ましい流速は 3-1 Ο /z l/minである。上記範囲であれば、上記諸条件を変化させても RU値に変動はない ため、結合の有無を「100RU」で判断できる。さらに、サンプル濃度等の諸条件を上記 範囲外に変化させた場合でも、実質的に上記条件における 100RUと同等であれば、 本方法における「100RU」に含まれる。また ABO式血液型抗原プローブとの結合能に 関しては、より選抜基準を厳しくする目的であれば、「100RU」以外の数値によって選 別してもよい。本発明の方法においては、 RU値が高い菌ほどプローブ (リガンド)との 強い結合能を有する菌であることを意味する。そこで、より強い結合力を有する菌を 求める目的であれば、 100よりも高い RU値で ABO式血液型抗原プローブと結合する 菌をスクリーニングしてもよ!ヽ。例えば、 150,200,300,400,500,600,700,800,900,また は 1000RUでもよぐ後述の実施例のように 2000RUを基準としてスクリーニングしてもよ い。逆に、目的としない血液型に対する認識については、「100RU以下」より厳しい数 値を基準としてスクリーニングしてもよい。例えば、 90,80,70,60,50RUを基準としてもよ い。 Since the method of the present invention is based on a surface plasmon resonance spectrum, the “binding ability” is represented by a resonance unit (RU). 1RU is, to 1mm 2 of lpg substance binding child Represents. In the method of the present invention, the “binding ability of a certain amount or more” is determined based on “100RU”. That is, it is determined that a certain amount or more of lactic acid bacteria binds to the probe based on a measured value of “100RU” or more. For example, if the measurement result using a blood group A human-derived intestinal mucin as a probe is 100 RU or more, the lactic acid bacterium is a lactobacillus that binds to the intestinal mucin. The RU value can vary depending on the measurement conditions. The temperature condition in this method is, for example, 20-40 ° C, preferably 20-30 ° C, more preferably 23-28 ° C. The preferred sample concentration in this method is 0.1-0.5 mg / mL, and the preferred flow rate in this method is 3-1 で / zl / min. If it is within the above range, the RU value will not change even if the above conditions are changed. Furthermore, even when various conditions such as sample concentration are changed outside the above range, they are included in “100RU” in this method if they are substantially equivalent to 100RU under the above conditions. In addition, regarding the ability to bind to the ABO blood group antigen probe, selection may be made by a value other than “100RU” for the purpose of making the selection criteria stricter. In the method of the present invention, a bacterium having a higher RU value means a bacterium having a stronger ability to bind to a probe (ligand). Therefore, for the purpose of finding bacteria with stronger binding power, it is possible to screen for bacteria that bind to ABO blood group antigen probes with RU values higher than 100! For example, screening may be performed based on 2000 RU as in the examples described later, which may be 150, 200, 300, 400, 500, 600, 700, 800, 900, or 1000 RU. Conversely, for recognition of blood types that are not intended, screening may be based on numerical values that are stricter than "100RU or less". For example, 90,80,70,60,50RU may be used as a standard.
なお、血液型別結合性乳酸菌は、本発明のスクリーニング法にぉ 、て、血液型別ヒ ト腸管ムチンをプローブとしたときの測定値 (RU)が ABO式血液型プローブを用いた ときの測定値 (RU)より低くなると予想される。これは、ヒト腸管ムチンをチップに固定 化した場合のヒト腸管ムチンに結合している血液型抗原 (糖鎖)は、チップ単位面積 あたりで比較すると、血液型抗原 (糖鎖)のみをチップに固定ィ匕した場合に少なくなる 力らと考えられる。特定の ABO式血液型プローブを用いたときの測定値が他の ABO 式血液型プローブを用いたときの測定値に比較して充分に高!、乳酸菌につ!、ては、 該特定の血液型別ヒト腸管ムチンをプローブとしたときの測定値カ^ 00RU以下であつ ても、該特定の血液型別ヒト腸管ムチンをプローブとしたときの測定値がその他の血 液型別ヒト腸管ムチンプローブを用いたときの測定値よりも充分高いかどうか検討し、 本発明の目的における有用性があると判断できる場合は、本発明の血液型別結合 性乳酸菌とすることができる。例えば、 A型適合乳酸菌では、(i) A型のヒト ABO式血 液型抗原との結合能を示す RU値が 100RU以上であること、 (ii) B型および H型のヒト A BO式血液型抗原との結合能を示す RU値が 100RU以下であること、 (iii)ヒト A型腸管 ムチンとの結合能を示す RU値力 ヒト B型腸管ムチンとの結合能を示す RU値およびヒ ト 0型腸管ムチンとの結合能を示す RU値よりも大き 、こと、を指標としてスクリーニング することが可能である。 B型適合乳酸菌では、(i) B型のヒト ABO式血液型抗原との結 合能を示す RU値が 100RU以上であること、(ii) A型および H型のヒト ABO式血液型抗 原との結合能を示す RU値が 100RU以下であること、 (iii)ヒト B型腸管ムチンとの結合 能を示す RU値が、ヒト A型腸管ムチンとの結合能を示す RU値およびヒト 0型腸管ムチ ンとの結合能を示す RU値よりも大きいこと、を指標としてスクリーニングすることが可 能である。 0型適合乳酸菌では、(i) H型のヒト ABO式血液型抗原との結合能を示す R U値が 100RU以上であること、(ii) A型および B型のヒト ABO式血液型抗原との結合能 を示す RU値が 100RU以下であること、 (iii)ヒト 0型腸管ムチンとの結合能を示す RU値 力 ヒト A型腸管ムチンとの結合能を示す RU値およびヒト B型腸管ムチンとの結合能を 示す RU値よりも大き 、こと、を指標としてスクリーニングすることが可能である。 The blood group-binding lactic acid bacteria were measured when the ABO blood group probe was used as the measured value (RU) when using the blood type human intestinal mucin as a probe according to the screening method of the present invention. Expected to be lower than the value (RU). This is because blood group antigens (sugar chains) bound to human intestinal mucins when human intestinal mucins are immobilized on a chip are compared only with blood group antigens (sugar chains) on a chip unit area. This is considered to be the force that is reduced when fixed. The measured value when using a specific ABO blood group probe is sufficiently high compared to the measured value when using another ABO blood group probe, for lactic acid bacteria! Measured value when using human intestinal mucin by type as a probe However, whether or not the measured value when using the specific blood type human intestinal mucin as a probe is sufficiently higher than the measured value when using other blood type human intestinal mucin probes, When it can be judged that the usefulness for the purpose can be obtained, the blood group-specific binding lactic acid bacteria of the present invention can be obtained. For example, in type A compatible lactic acid bacteria, (i) the RU value indicating the ability to bind to human ABO blood type antigen of type A is 100RU or more, (ii) human ABO blood of type B and H RU value indicating ability to bind to type A antigen is 100 RU or less, (iii) RU value indicating ability to bind to human type A intestinal mucin RU value and human ability to bind to human type B intestinal mucin It can be screened using as an indicator that it is larger than the RU value indicating the ability to bind to type 0 intestinal mucin. In B-type compatible lactic acid bacteria, (i) the RU value indicating the binding ability with human ABO blood group antigen of type B is 100RU or more, (ii) human ABO blood group antigens of type A and H (Iii) RU value indicating the ability to bind to human type B intestinal mucin is the RU value indicating the ability to bind to human type A intestinal mucin and human type 0 It is possible to screen for an index that is greater than the RU value indicating the ability to bind to intestinal mucin. In type 0 compatible lactic acid bacteria, (i) the RU value that indicates the ability to bind to H-type human ABO blood group antigens is 100 RU or more, and (ii) the human ABO blood group antigens of type A and B RU value showing binding ability is 100RU or less, (iii) RU value showing binding ability with human type 0 intestinal mucin Force RU value showing binding ability with human type A intestinal mucin and human type B intestinal mucin It is possible to screen using an index that is larger than the RU value indicating the binding ability of.
[0028] 表面プラズモン共鳴スペクトル測定の際、被験菌が非特異的吸着により菌凝集を 起こし、 RU値が異常に高くなる場合がある。そのため、ヒト由来腸管ムチンや ABO式 血液型抗原との吸着が測定結果に正しく反映されなくなる。そこで、 RU値が異常に 高い場合は、非特異的吸着 (菌凝集)を起こしていると疑われるとして、該乳酸菌をス クリーニングから除外することができる。 [0028] During surface plasmon resonance spectrum measurement, the test bacterium may cause bacterial aggregation due to non-specific adsorption, and the RU value may become abnormally high. Therefore, adsorption with human-derived intestinal mucin and ABO blood group antigen is not correctly reflected in the measurement results. Therefore, if the RU value is abnormally high, it is suspected that nonspecific adsorption (bacterial aggregation) has occurred, and the lactic acid bacteria can be excluded from the screening.
[0029] 本発明のスクリーニング方法の対象は、乳酸菌であれば特に限定はない。あえて対 象 ί列 挙けるとすれは、 Lactobacillus acidopnilus, Lactobacillus crispatus, Lactooaci llus amylovorus, Lactobacillus gallinarum, Lactobacillus gasseri, Lactobacillus johns onii, Lactobacillus casei, Lactobacillus rhamnosus, Lactobacillus zeae, Lactobacillus reuteri, Lactobacillus delbruekn subsp. bulgaricus, Lactobacillus delbruekn subsp. 1 actis, Lactobacillus fermentum, Lactobacillus murinus, Bifidobacterium animalis, Bifi dobacterium bifidum, Bifidobacterium breve, Bifidobacterium infantis, Bifidobacteriu m longum, Bifidobacterium pseudolongum, Enterococcus faecium, Enterococcus feca lis, Streptococcus thermophilusについて好適に用いることができる。より好適な対象 例としては、 Lactobacillus属であり、最も好適な対象例としては、。 L.gasseriを含む La ctobacillus acidophilusグループ乳酸菌である。 [0029] The subject of the screening method of the present invention is not particularly limited as long as it is a lactic acid bacterium. Despite being listed as an object, Lactobacillus acidopnilus, Lactobacillus crispatus, Lactooaci llus amylovorus, Lactobacillus gallinarum, Lactobacillus gasseri, Lactobacillus johns onii, Lactobacillus caselus, Lactobacillus caselus Lactobacillus delbruekn subsp. 1 Suitable for use with actis, Lactobacillus fermentum, Lactobacillus murinus, Bifidobacterium animalis, Bifi dobacterium bifidum, Bifidobacterium breve, Bifidobacterium infantis, Bifidobacteriu m longum, Bifidobacterium pseudolongum, Enterococcus faecium, Enterococcus feca lis, Streptococcus thermophilus. A more suitable subject example is the genus Lactobacillus, and the most preferred subject example is: Lactobacillus acidophilus group lactic acid bacteria containing L. gasseri.
[0030] 本発明の方法によりスクリーニングされた乳酸菌は、特定の ABO式血液型のヒトの 腸管に結合しやすい乳酸菌である。該特定血液型のヒトが、本発明の方法によりスク リー-ングされた乳酸菌を摂取することにより、短期間での腸内バランスの向上など の効果により、健康増進を図ることができる。そのため、本発明の方法によりスクリー ユングされた乳酸菌は、特定血液型ヒト用の飲食品、機能性食品、特定保健用食品 、乳製品、乳酸菌飲料などに適用できる。 [0030] The lactic acid bacteria screened by the method of the present invention is a lactic acid bacterium that easily binds to the human intestinal tract of a specific ABO blood group. By taking the lactic acid bacteria screened by the method of the present invention, the human of the specific blood group can improve health due to the effect of improving the intestinal balance in a short period of time. Therefore, the lactic acid bacteria screened by the method of the present invention can be applied to foods and drinks for specific blood groups, functional foods, foods for specific health use, dairy products, lactic acid bacteria drinks, and the like.
なお、本明細書において引用された全ての先行技術文献は、参照として本明細書 に組み入れられる。  It should be noted that all prior art documents cited in this specification are incorporated herein by reference.
実施例  Example
[0031] 以下、本発明を実施例に基づきより具体的に説明する。もっとも、本発明は下記実 施例に限定されるものではない。  [0031] Hereinafter, the present invention will be described more specifically based on examples. However, the present invention is not limited to the following examples.
[0032] [実施例 1] ガス産生試験  [0032] [Example 1] Gas production test
ヨーグルト生産に使用する乳酸菌は、ガスを産生しないことが望ましい。これは、我 が国の法令では密封容器で市販することが義務付けられているためであり、またガス 産生に伴う容器膨張による製品不良や破裂を防ぐためでもある。そこで 238株につい て、ガス産生試験を実施した。  It is desirable that the lactic acid bacteria used for yogurt production do not produce gas. This is because Japanese laws require that the product be marketed in a sealed container, and also to prevent product defects and rupture due to container expansion associated with gas production. Therefore, a gas production test was conducted for 238 strains.
[0033] 乳酸菌を、 MRS Broth (DIFCO)で 2回賦活培養(37°C,18h)した。アルミキャップ付 き試験管にあら力じめダーラム管及び MRS Broth (5ml)を共に入れて滅菌(121°C, 1 5分)した。ダーラム管は開口部を下に向けてあり、滅菌時にダーラム管中から気泡が 除かれる。上記の滅菌したアルミキャップ付き試験管に、約 109cfo/mLの乳酸菌液 10 μ Lを接種し、嫌気的に 37°Cで 24時間培養した。培養終了後、ダーラム管内に蓄積 したガスの有無を目視観察した。明らかな気泡が観察された場合に、ガス産生有り(+ )と判定した (表 1)。 [0033] Lactic acid bacteria were activated and cultured twice (37 ° C, 18h) with MRS Broth (DIFCO). A Durham tube and MRS Broth (5 ml) were put together in a test tube with an aluminum cap and sterilized (121 ° C, 15 minutes). The Durham tube has an opening facing down, and bubbles are removed from the Durham tube during sterilization. The sterilized test tube with an aluminum cap was inoculated with 10 μL of about 10 9 cfo / mL lactic acid bacteria solution, and anaerobically cultured at 37 ° C. for 24 hours. After completion of the culture, the presence or absence of gas accumulated in the Durham tube was visually observed. Gas production occurs when clear bubbles are observed (+ (Table 1).
[0034] [実施例 2] 血液型抗原認識性の解析  [0034] [Example 2] Analysis of blood group antigen recognition
血液型適合性ヨーグルト用の乳酸菌を取得するため、血液型抗原を認識して結合 する乳酸菌を、表面プラズモン共鳴スペクトル測定により選抜することにした。供試菌 として、乳酸菌 Lactobacillus acidophilusグループに属する 238株(L. gasseri, L. plant arum, L. crispatus, L. amylovorus, L. casei, L. salivarius, L. brevis, L. fermentum等 )を準備した。表面プラズモン共鳴スペクトル解析装置は、 BIACORE1000を用いた。  In order to obtain lactic acid bacteria for blood group compatible yogurt, lactic acid bacteria that recognize and bind to blood group antigens were selected by surface plasmon resonance spectrum measurement. Prepare 238 strains belonging to Lactobacillus acidophilus group (L. gasseri, L. plant arum, L. crispatus, L. amylovorus, L. casei, L. salivarius, L. brevis, L. fermentum, etc.) as test bacteria did. BIACORE1000 was used as the surface plasmon resonance spectrum analyzer.
[0035] 2- (1)アナライトの調製  [0035] 2- (1) Preparation of analyte
各菌株は起菌後 MRS培地にて 3回継代し、 12時間培養後 1.5ml容チューブに 500 μ 1分注した。本溶液を遠心分離(6,000rpm, 4°C, lOmin)して得た菌体を PBS (pH7.2)中 で 2回洗浄後、凍結乾燥した。本菌体を HBS- EP buffer (0.01M HEPES pH7.4, 0.15M NaCl, 3mM EDTA, 0.005% Surfactant P20)を用いて O.lmg/ml濃度に調製し、アナラ イト溶液とした。  Each strain was subcultured 3 times in MRS medium after inoculation, and after culturing for 12 hours, 500 μl was poured into a 1.5 ml tube. The cells obtained by centrifuging this solution (6,000 rpm, 4 ° C, lOmin) were washed twice in PBS (pH 7.2) and then lyophilized. This bacterial cell was prepared to an O.lmg / ml concentration using HBS-EP buffer (0.01M HEPES pH7.4, 0.15M NaCl, 3mM EDTA, 0.005% Surfactant P20) to prepare an analyte solution.
[0036] 2- (2)血液抗原プローブおよびチップへの固定ィ匕  [0036] 2- (2) Blood antigen probe and immobilization to chip
菌選抜に用いるプローブとして、ヒト ABO式血液型物質の抗原構造を使用した。具 体的には、下記の 3糖糖鎖ビォチ二ルイ匕ポリマープローブ (生化学工業製)(以下、「 BP-プローブ」とも記載する)を使用した。  The antigen structure of human ABO blood group substance was used as a probe for selection of bacteria. Specifically, the following trisaccharide sugar chain polymer probe (manufactured by Seikagaku Corporation) (hereinafter also referred to as “BP-probe”) was used.
A抗原プローブ: [GalNAc a 1-3 (Fuc a 1-2) Gal-]  A antigen probe: [GalNAc a 1-3 (Fuc a 1-2) Gal-]
B抗原プローブ: [Gal a 1-3 (Fuc a 1-2) Gal-]  B antigen probe: [Gal a 1-3 (Fuc a 1-2) Gal-]
H抗原プローブ: [Fuc a l-2Gal-]  H antigen probe: [Fuc a l-2Gal-]
上記 BP-プローブの化学構造につ 、て図 1に、糖鎖構造につ!、て図 2に示す。  The chemical structure of the BP-probe is shown in FIG. 1 and the sugar chain structure is shown in FIG.
[0037] 上記血液抗原 BP-プローブを、 HBS-EP buffer(pH7.4)で O.lmg/lOmlに調製した。 [0037] The blood antigen BP-probe was prepared to O.lmg / lOml with HBS-EP buffer (pH 7.4).
本溶液をセンサーチップ SAに添カ卩して、ピオチン'アビジン反応により、巿販のプロ ーブをセンサーチップ表面に固定した。センサーチップ SAとは、ストレプトアビジンが 固定化されている BIACORE専用チップである。 A抗原プローブの固定化量は 750RU を示す量、 B抗原プローブの固定化量は 850RUを示す量とした。 0抗原プローブの固 定化は、次のように行った。 lmgの A抗原糖鎖プローブ(生化学工業 (株))を α -結 合で存在する GalNAcをカ卩水分解する酵素 α - Ν- Acetylgalactosaminidase (E.C.3.2.1 .97 Streptococcus pneumoniae由来、 SIGMA, JAPAN)0.5Uを用いて、酢酸緩衝液 p H4.5中、 55°Cで 20時間反応させ、末端 GalNAcを除去した。(A抗原抗体での除去 率の測定では、 80%以上の GalNAcは除去されて!、ることを確認した)このピオチ- ル化 H型抗原糖鎖プローブを A型抗原糖鎖プローブと同様に、アビジンを結合したセ ンサーチップ上に固定化した。この際の結合量は、約 1000RUであった。 This solution was added to the sensor chip SA, and a commercially available probe was fixed to the surface of the sensor chip by the piotin-avidin reaction. Sensor chip SA is a BIACORE dedicated chip on which streptavidin is immobilized. The immobilized amount of the A antigen probe was 750 RU, and the immobilized amount of the B antigen probe was 850 RU. The 0 antigen probe was immobilized as follows. l-mg A antigen sugar chain probe (Seikagaku Corporation) α- 酵素 -Acetylgalactosaminidase (EC3.2.1) .97 Streptococcus pneumoniae derived, SIGMA, JAPAN) 0.5U was used to react in acetate buffer pH 4.5 at 55 ° C for 20 hours to remove terminal GalNAc. (It was confirmed that 80% or more of GalNAc was removed by measuring the removal rate with the A antigen antibody!) This biotinylated H-type antigen sugar chain probe was treated in the same manner as the A-type antigen sugar chain probe. Then, it was immobilized on a sensor chip to which avidin was bound. The amount of binding at this time was about 1000 RU.
[0038] 2- (3)ヒト腸管ムチンの調製およびチップへの固定ィ匕  [0038] 2- (3) Preparation of human intestinal mucin and fixation to chip
菌選抜に用いるもう 1つのリガンドとして、ヒト大腸ムチンを調製した。ヒト A型腸管(大 腸) ヒト B型腸管 (大腸)、およびヒト 0型腸管 (大腸)は東北大学大学院医学系研究 科より、標本採取試料として分譲された。粘液ムチン層は、大腸正常部位から表層搔 き取り法で採取した。ムチン層は、 Folchの溶媒およびジェチルエーテルにより脱脂 後乾燥させ、 4M塩酸グァ-ジン溶液により 37°Cで 2時間抽出した。ゲルろ過を行い、 精製したヒト A型、ヒト B型、またはヒト 0型腸管ムチン(human colon mucin HCM、以 下において、時に A型腸管ムチンを A-HCM B型腸管ムチンを B-HCM 0型腸管ム チンを 0- HCMと略す)として、試験に供した。ゲルろ過精製は、 Purushothaman, S. S. et al, Adherence of Shigella dysentenae 1 to Human colonic Mucin. Curr. icrobio 1., 42(6), 381-387 (2001).に記載されたヒト大腸ムチンの精製方法に基づき実施した 。移動層は 4M塩酸グァ-ジン溶液、カラムは Toyopearl HW-65F (90cm X 2.6cm, To soh. Tokyo. Japan)を用いた。検出に関しては、中性糖をフエノール硫酸法 (490nm)で 、タンパク質を 280 で測定をした。タンパク質吸収があり、かつ中性糖含量の最も高 いピークを選択し、さらに分子量約 200万以上を目安に分取し、ヒト大腸ムチン (HCM )とした。得られた HCMについて、各血液型のヒト血液型基質抗原性を抗体により確 認した。なお、上記試料採取に関しては、東北大学大学院医学系研究科の倫理委 員会を経て実施し、また患者の同意を得ている。  Human large intestine mucin was prepared as another ligand used for selection of bacteria. Human type A intestinal tract (large intestine) Human type B intestinal tract (large intestine) and human type 0 intestinal tract (large intestine) were distributed by the Graduate School of Medicine, Tohoku University as sampling samples. The mucous mucin layer was collected from the normal colon by the surface layer removal method. The mucin layer was degreased with Folch's solvent and jetyl ether, dried, and extracted with 4M guanidine hydrochloride solution at 37 ° C for 2 hours. Purified human A type, human B type, or human type 0 intestinal mucin (human colon mucin HCM, sometimes referred to as A-HCM type B intestinal mucin, type B-HCM type 0) Intestinal mucin was abbreviated as 0-HCM) and used for the test. Gel filtration purification is a purification method for human colon mucin described in Purushothaman, SS et al, Adherence of Shigella dysentenae 1 to Human colonic Mucin. Curr.icrobio 1., 42 (6), 381-387 (2001). Based on. The moving bed was 4M guanidine hydrochloride solution, and the column was Toyopearl HW-65F (90 cm X 2.6 cm, To soh. Tokyo. Japan). For detection, neutral sugars were measured by the phenol sulfate method (490 nm) and proteins were measured at 280. The peak with the highest protein absorption and neutral sugar content was selected, and a fraction with a molecular weight of about 2 million or more was collected as a standard to obtain human large intestine mucin (HCM). About the obtained HCM, the human blood group substrate antigenicity of each blood group was confirmed with an antibody. The above sample collection was conducted through the ethics committee of the Graduate School of Medicine, Tohoku University, and patient consent was obtained.
[0039] HCMの BIACORE用チップへの固定化は、ァミンカップリング法により行った。まず、 予めカルボキシメチルデキストラン基を導入したセンサーチップ CM5に対して、 75.0m g/mlの N- ethyト N - - dimethyl aminopropyト carbodiimide hydrochloride (EDC) 5 0 μ 1および 11.5mg/mlの Ν- hydroxysuccinimide (NHS)を 50 μ 1を混合した混合試薬を 流し、デキストラン末端に導入されているカルボキシル基を活性ィ匕させた。そこへ 120 μ 1固定化用酢酸 buffer (ρΗ4.0)に HCM-A 30 1をカ卩えた混合溶液を流し、ァミン' カップリング反応により共有結合させた。ついで、 1M ethanolamine hydorochloride-N aOH pH8.5を用いて、リガンドが結合していない場所の残存活性基のブロッキングを 行った。 Running Bufferには HBS- EP bufferを用いた。 HCMの固定化量は、本発明 のスクリーニング方法を再現よく実施できることを考慮して、 1000〜2000RUとした。 [0039] Immobilization of the HCM to the BIACORE chip was performed by the amine coupling method. First, 75.0 mg / ml N-ethyto-N-dimethyl aminopropyto carbodiimide hydrochloride (EDC) 50 μ 1 and 11.5 mg / ml Ν-hydroxysuccinimide were applied to sensor chip CM5 into which carboxymethyl dextran group had been previously introduced. A mixed reagent in which 50 μl of (NHS) was mixed was flowed to activate the carboxyl group introduced at the dextran end. There 120 A mixed solution containing HCM-A 30 1 was poured into an acetic acid buffer (ρΗ4.0) for immobilizing μ 1 and covalently bound by amin coupling reaction. Subsequently, 1M ethanolamine hydrochloride-NaOH pH 8.5 was used to block the remaining active groups in the places where the ligand was not bound. HBS-EP buffer was used as Running Buffer. The amount of HCM immobilized was set to 1000 to 2000 RU, considering that the screening method of the present invention can be performed with good reproducibility.
[0040] 2- (4) BIACORE1000による測定 [0040] 2- (4) Measurement with BIACORE1000
上記の血液型抗原プローブ固定化チップまたは HCM固定化チップを用い、上記ァ ナライトの血液型抗原に対する相互作用を BIACOREにより解析した。 BIACOREの測 定条件を下記に示す。  Using the aforementioned blood group antigen probe-immobilized chip or HCM-immobilized chip, the interaction of the above-mentioned analyte with the blood group antigen was analyzed by BIACORE. The measurement conditions for BIACORE are shown below.
ランニング緩衝液: HBS-EP buffer(pH7.4)  Running buffer: HBS-EP buffer (pH7.4)
サンプル添カ卩量:20 1  Sample amount: 20 1
流速: 3 μ 1/min  Flow rate: 3 μ 1 / min
温度: 25°C  Temperature: 25 ° C
再生溶液: 1Mグァ-ジン塩酸塩溶液 5 μ 1  Regeneration solution: 1M guazine hydrochloride solution 5 μ 1
[0041] BIACOREによる解析にぉ 、て、アナライトと血液型抗原との相互作用は、レゾナン スユニット(RU)によって表される。 1レゾナンスユニット(RU)とは、 1mm2に物質 lpgが 結合したことを表す。結果を表 1に示す。 [0041] In the analysis by BIACORE, the interaction between the analyte and the blood group antigen is expressed by a resonance unit (RU). 1 Resonance unit (RU) means that the substance lpg is bound to 1 mm 2 . The results are shown in Table 1.
[0042] [表 1] [0042] [Table 1]
A型適合性乳酸菌の選抜Selection of type A compatible lactic acid bacteria
Figure imgf000019_0001
Figure imgf000019_0001
0型適合性乳酸 の選抜 Selection of type 0 compatible lactic acid
Figure imgf000019_0002
Figure imgf000019_0002
B型適合性乳酸菌の選抜  Selection of B-type compatible lactic acid bacteria
B-HCM A-HC 0-HCM  B-HCM A-HC 0-HCM
菌株名 B抗原認識性 ガス産生 A抗原認識性 B抗原認識性 H抗原認識性 B抗原認識性 胆汁酸耐性 胃酸耐性 認識性 認識性 認識性  Strain name B antigen recognition Gas production A antigen recognition B antigen recognition H antigen recognition B antigen recognition Bile acid resistance Gastric acid resistance Recognizability Recognizability Recognizability
/ A抗原認識性 /H抗原認識性  / A antigen recognition / H antigen recognition
(RU) (RU) (RU) (RU) (RU) (RU) (0Ό65ΰ) (生残率%) EP 1 65507 0 - 224.8 0.0 0 0.0 0.0 0.0 2.4 0.339 0.01 1(RU) (RU) (RU) (RU) (RU) (RU) (0Ό 65ΰ ) (survival rate%) EP 1 65507 0-224.8 0.0 0 0.0 0.0 0.0 2.4 0.339 0.01 1
MEP 1 65508 0 + 0 0.0 96.1 0.0 18.7 0.0 531 .4 2.020 0.010MEP 1 65 508 0 + 0 0.0 96.1 0.0 18.7 0.0 531 .4 2.020 0.010
MEP 165509 0 - 0 0.0 0 0.0 0.0 0.0 154.0 0.000 1 .499MEP 165 509 0-0 0.0 0 0.0 0.0 0.0 154.0 0.000 1.499
L gasseri 0しし 2877 4220.9 - 66.4 63.6 0 ∞ 1 406.3 218.2 0.0 0.651 10.81 2L gasseri 0 2877 4220.9-66.4 63.6 0 ∞ 1 406.3 218.2 0.0 0.651 10.81 2
L gasseri OLL 2901 2000.9 - 0 0 1 7.1 0.0 7.6 0.031 8.923 L gasseri OLL 2901 2000.9-0 0 1 7.1 0.0 7.6 0.031 8.923
[0043] 2- (5)菌の選抜 (その 1) [0043] 2- (5) Selection of bacteria (part 1)
これまでの結果から、乳酸菌を選抜した。まず、上記 BIACORE測定結果および実 施例 1のガス産生試験結果から、選抜を行った。  Lactic acid bacteria were selected from the results so far. First, selection was performed from the BIACORE measurement result and the gas production test result of Example 1.
[0044] 血液型 A型用ヨーグルト乳酸菌として、(i) A抗原認識性及び (ii)ガス産生の観点か ら選抜した。選抜基準は、 [0044] Blood type A yogurt lactic acid bacteria were selected from the viewpoints of (i) A antigen recognition and (ii) gas production. The selection criteria are
(i) A抗原認識性: BIACOREによる測定にぉ 、て、 A抗原プローブによる結果が 2000 RU以上(上位約 35%)  (i) A antigen recognizability: As measured by BIACORE, the result of A antigen probe was 2000 RU or more (upper 35%)
(ii)ガス産生:ガス産生試験でガス産生が認められな ヽこと (-)  (ii) Gas production: Gas production is not recognized in the gas production test (-)
とした。これにより、 Lactobacillus238菌株を 43菌株までに絞った。  It was. As a result, Lactobacillus 238 was selected to 43 strains.
[0045] 同様に、血液型 0型用ヨーグルト乳酸菌として、 (i) H抗原認識性及び (ii)ガス産生 で選抜した。選抜基準は、  [0045] Similarly, yogurt lactic acid bacteria for blood group 0 were selected by (i) H antigen recognition and (ii) gas production. The selection criteria are
(i) H抗原認識性: BIACOREによる測定にぉ 、て、 H抗原プローブによる結果が 700R U以上(上位約 13%)  (i) H antigen recognizability: As measured by BIACORE, the result of H antigen probe is 700RU or higher (upper 13%)
(ii)ガス産生:ガス産生試験でガス産生が認められな ヽこと (-)  (ii) Gas production: Gas production is not recognized in the gas production test (-)
とした。これにより、 Lactobacillus238菌株を 14菌株までに絞った。  It was. As a result, Lactobacillus 238 strain was narrowed down to 14 strains.
[0046] 同様に、血液型 B型用ヨーグルト乳酸菌として、 (i) B抗原認識性及び (ii)ガス産生 で選抜した。選抜基準は、  [0046] Similarly, yogurt lactic acid bacteria for blood group B were selected by (i) B antigen recognition and (ii) gas production. The selection criteria are
(i) B抗原認識性: BIACOREによる測定において、 B抗原プローブによる結果が 2000 RU以上(上位約 14%)  (i) B antigen recognizability: BIACORE measurement results showed a B antigen probe of 2000 RU or more (upper 14%)
(ii)ガス産生:ガス産生試験でガス産生が認められな 、こと (-)  (ii) Gas production: Gas production is not recognized in the gas production test (-)
とした。これにより、 Lactobacillus238菌株を 25菌株までに絞った。  It was. As a result, Lactobacillus 238 strain was narrowed down to 25 strains.
[0047] 2- (6)菌の選抜 (その 2)  [0047] 2- (6) Selection of bacteria (part 2)
上記のとおり、血液型 A型用ヨーグルト乳酸菌候補として、 A抗原を認識し、かつガ ス産生が認められない菌株 43株を選抜した。さら〖ここれらの中力ら、(i)他血液型抗 原 (B抗原および H抗原)の認識性がな ヽこと (ii) A抗原を特異的に認識すること、の 観点から選抜した。選抜基準は、  As described above, 43 strains that recognized the A antigen and showed no gas production were selected as blood group A yogurt lactic acid bacteria candidates. Furthermore, they were selected from the viewpoint of (i) that other blood group antigens (B antigen and H antigen) were not recognizable (ii) that A antigen was specifically recognized. The selection criteria are
(i)他血液型抗原 (B抗原および H抗原)の認識性  (i) Recognition of other blood group antigens (B antigen and H antigen)
B抗原認識性: BIACOREによる測定において、 B抗原プローブによる結果が 100RU以 下、 B antigen recognition: When measured with BIACORE, the result of B antigen probe is 100RU or more. under,
H抗原認識性: BIACOREによる測定において、 H抗原プローブによる 100RU以下 (ii) A抗原の特異的認識性  H antigen recognition: 100 RU or less with H antigen probe as measured by BIACORE (ii) Specific recognition of A antigen
A抗原認識性/ B抗原認識性の比が 70以上で、 A抗原認識性/ H抗原認識性の比が 1 00以上  A antigen recognition / B antigen recognition ratio is 70 or more, A antigen recognition / H antigen recognition ratio is 100 or more
とした。これらにより、 43菌株から 13菌株を選抜した。  It was. From these, 13 strains were selected from 43 strains.
[0048] 同様に、血液型 0型用ヨーグルト乳酸菌候補についても、選抜した。選抜基準は、 [0048] Similarly, yogurt lactic acid bacteria candidates for blood group 0 were also selected. The selection criteria are
(i)他血液型抗原 (A抗原および B抗原)の認識性  (i) Recognition of other blood group antigens (A antigen and B antigen)
A抗原認識性: BIACOREによる測定において、 A抗原プローブによる結果が 100RU 以下、  A antigen recognition: In BIACORE measurement, the result of A antigen probe is 100RU or less.
B抗原認識性: BIACOREによる測定において、 B抗原プローブによる結果が 100RU以 下、  B antigen recognition: In BIACORE measurement, B antigen probe results are less than 100RU,
(ii) H抗原の特異的認識性  (ii) Specific recognition of H antigen
H抗原認識性/ A抗原認識性の比が 800以上で、 H抗原認識性/ B抗原認識性の比が 20以上  H antigen recognition / A antigen recognition ratio is 800 or more, H antigen recognition / B antigen recognition ratio is 20 or more
とした。これらにより、 14菌株から 5菌株を選抜した。  It was. From these, 5 strains were selected from 14 strains.
[0049] 同様に、血液型 B型用ヨーグルト候補株についても選抜した。選抜基準は、 [0049] Similarly, a yogurt candidate strain for blood group B was also selected. The selection criteria are
(i)他血液型抗原(A抗原および H抗原)の認識性  (i) Recognition of other blood group antigens (A antigen and H antigen)
A抗原認識性: BIACOREによる測定において、 A抗原プローブによる結果が 100RU 以下、  A antigen recognition: In BIACORE measurement, the result of A antigen probe is 100RU or less.
H抗原認識性: BIACOREによる測定において、 H抗原プローブによる結果が 100RU 以下、  H antigen recognition: In BIACORE measurement, the result with H antigen probe is 100RU or less.
(ii) B抗原の特異的認識性  (ii) Specific recognition of B antigen
B抗原認識性/ A抗原認識性の比が 50以上で、 B抗原認識性/ H抗原認識性の比が 5 0以上とした。これらにより、 25菌株から 6菌株を選抜した。  The ratio of B antigen recognition / A antigen recognition was 50 or more, and the ratio of B antigen recognition / H antigen recognition was 50 or more. Based on these, 6 strains were selected from 25 strains.
[0050] 2- (7)菌の選抜 (その 3) [0050] 2- (7) Selection of bacteria (part 3)
上記で選抜した菌株について、さらに、血液型別ヒト大腸ムチン (HCM)認識性によ り選抜した。 [0051] 血液型 A型用ヨーグルト乳酸菌候補については、(i)A-HCMを認識するものを選抜 し、(ii) O- HCMを認識するものを除いた。すなわち、ヒト HCMによる BIACORE測定結 果において(i)A-HCM認識性が 100RU以上、(ii) O- HCM認識性が 100RU以下であ ることを選抜基準とした。また、 MEP165511株、 MEP165530株は A-HCM認識性が 100 00RU以上であり、菌の凝集が疑われたため除外した。上記選抜により、 13菌株から 2 菌株(L.gasseri OLL 2804, L.gasseri OLL 2818)を選抜した。 The strains selected above were further selected based on blood type human colon mucin (HCM) recognition. [0051] Regarding blood group A-type yogurt lactic acid bacteria candidates, (i) those that recognize A-HCM were selected, and (ii) those that recognize O-HCM were excluded. In other words, the selection criteria were (i) A-HCM recognizability of 100RU or higher and (ii) O-HCM recognizability of 100RU or lower in BIACORE measurement results by human HCM. MEP165511 strain and MEP165530 strain were excluded because A-HCM recognizability was 1000 RU or more and bacterial aggregation was suspected. From the above selection, 2 strains (L. gasseri OLL 2804, L. gasseri OLL 2818) were selected from 13 strains.
[0052] 同様に、血液型 0型用ヨーグルト乳酸菌候補にっ 、ては、(i) 0- HCMを認識するも のを選抜し、(ii)A-HCMの認識性が比較的に高いものを除いた。すなわち、ヒト HCM による BIACORE測定結果において(i) O- HCM認識性が 100RU以上、(ii)A-HCM認 識性が 1000RU以下であることを選抜基準とした。上記選抜により、 5菌株から 2菌株( L.gasseri OLL 2827, L.gasseri OLL 2915)を選抜した。  [0052] Similarly, yogurt lactic acid bacteria candidates for blood group 0 are selected from (i) those that recognize 0-HCM, and (ii) those with relatively high recognition of A-HCM. Was excluded. In other words, the selection criteria were (i) O-HCM recognizability of 100RU or higher and (ii) A-HCM recognizability of 1000RU or lower in the BIACORE measurement results by human HCM. From the above selection, 2 strains (L. gasseri OLL 2827, L. gasseri OLL 2915) were selected from 5 strains.
[0053] 同様に、血液型 B型用ヨーグルト候補株については、 B-HCMの認識性が A-HCM および H-HCMの認識性よりも高いことを選抜基準とした。上記選抜により、 6菌株から 2菌株(L. gasseri OLL2877, L. gasseri OLL2901)を選抜した。  Similarly, the selection criteria for blood type B yogurt candidate strains were that B-HCM recognition was higher than A-HCM and H-HCM recognition. From the above selection, 2 strains (L. gasseri OLL2877, L. gasseri OLL2901) were selected from 6 strains.
[0054] [実施例 3] 胃酸耐性試験および胆汁酸耐性試験  [Example 3] Gastric acid tolerance test and bile acid tolerance test
ヨーグルトとして体内に取り込まれた乳酸菌が、その機能を十分に発揮するには、 生きたまま腸管に留まることが望ましい。そのため、胃酸耐性試験および胆汁酸耐性 試験を実施した。  In order for the lactic acid bacteria taken into the body as yogurt to fully perform its function, it is desirable to stay alive in the intestine. Therefore, a gastric acid tolerance test and a bile acid tolerance test were conducted.
[0055] 3—(1)胃酸耐性試験  [0055] 3- (1) Gastric acid tolerance test
ろ過滅菌した PH2の人工胃液 [NaCl(0.2%)、 Pepsin(l : 5000、東京化成工業) (0.35 %) : 1N塩酸で pH2に調整] 9mlに Lactobacilli MRS broth (DIFCO)で 2回賦活培養(37 。C、 18時間)し、生理食塩水で 2回洗浄した乳酸菌の菌体懸濁液を lml添加し、好気 的に 37°Cで 2時間接触後、 lmlを取り 67mMのリン酸緩衝液 (pH6.5) 9mlに添加し、反 応を停止させた。人工胃液に接触前および接触後の生菌数を Lactobacilli MRS Agar (DIFCO)を用いて計測し、生存率 (%)を算出した。  Artificial gastric fluid PH2 sterilized by filtration [NaCl (0.2%), Pepsin (l: 5000, Tokyo Chemical Industry) (0.35%): adjusted to pH 2 with 1N hydrochloric acid] 9 ml in Lactobacilli MRS broth (DIFCO) 37. C, 18 hours), add lml of lactic acid bacteria suspension washed twice with physiological saline, contact aerobically at 37 ° C for 2 hours, remove lml, 67mM phosphate buffer The reaction was stopped by adding 9 ml of the solution (pH 6.5). The number of viable bacteria before and after contact with the artificial gastric juice was measured using Lactobacilli MRS Agar (DIFCO), and the survival rate (%) was calculated.
[0056] 選択基準は菌の種類により異なる力 今回選抜された菌種は全て Lactobacillus gas seriであるため、 0.50以上とした。血液型 A型用ヨーグルト乳酸菌(L.gasseri OLL 280 4, L.gasseri OLL 2818)、血液型 O型用ヨーグルト(L.gasseri OLL 2827, L.gasseri O LL 2915)、血液型 B型用ヨーグルト乳酸菌(L.gasseri OLL2877, L.gasseri OLL2901) のいずれも、上記基準を満たした (表 1)。 [0056] Selection criteria vary depending on the type of bacteria Since all of the bacterial species selected this time are Lactobacillus gas seri, they were set to 0.50 or more. Blood group type A yogurt lactic acid bacteria (L.gasseri OLL 280 4, L.gasseri OLL 2818), blood group type yoghurt (L.gasseri OLL 2827, L.gasseri O LL 2915) and blood group B yogurt lactic acid bacteria (L.gasseri OLL2877, L.gasseri OLL2901) both met the above criteria (Table 1).
[0057] 3- (2)胆汁酸耐性試験 [0057] 3- (2) Bile acid tolerance test
Lactobacilli MRS broth (DIFCO)で 2回賦活培養(37°C、 18時間)した乳酸菌を 0.9 %の Bacto- Oxgall (DIFCO)を含む Lactobacilli MRS broth (DIFCO) 5mlに 10 μ 1接種 し、嫌気的に 37°Cで培養した。培養 18時間後に培地の濁度(OD )を測定した。  Lactobacilli MRS broth (DIFCO) 2 times of activation culture (37 ° C, 18 hours) Lactobacilli MRS broth (DIFCO) containing 5% of Lactobacilli MRS broth (DIFCO) Cultured at 37 ° C. After 18 hours of culture, the turbidity (OD) of the medium was measured.
650  650
[0058] 選択基準は菌の種類により異なる力 血液型 A型用ヨーグルト乳酸菌、および血液 型 0型用ヨーグルト乳酸菌については 0.08以上とした。血液型 A型用ヨーグルト乳酸 菌(L.gasseri OLL 2804, L.gasseri OLL 2818)、血液型 O型用ヨーグルト乳酸菌(L.g asseri OLL 2827, L.gasseri OLL 2915)のいずれも、上記基準を満たした(表 1)。血 液型 B型用ヨーグルト乳酸菌のうち、 L.gasseri OLL2901の胆汁酸耐性は 0.031であ つたが、腸管滞留には、特に支障の無い範囲と考えられる。上記 6菌株の科学的性 質を表 2に示す。  [0058] The selection criteria were 0.08 or more for blood type A yogurt lactic acid bacteria and blood group 0 yogurt lactic acid bacteria, which differ depending on the type of bacteria. Both blood type A yogurt lactic acid bacteria (L.gasseri OLL 2804, L.gasseri OLL 2818) and blood type O yogurt lactic acid bacteria (Lg asseri OLL 2827, L.gasseri OLL 2915) met the above criteria. (table 1). Among blood type B yogurt lactic acid bacteria, L. gasseri OLL2901 had a bile acid tolerance of 0.031, but it is considered that there is no particular problem with intestinal retention. Table 2 shows the scientific characteristics of the above six strains.
[0059] [表 2] [0059] [Table 2]
Figure imgf000024_0001
Figure imgf000024_0001
[0060] [実施例 4]血液型別結合性乳酸菌によるヨーグルトの製造  [0060] [Example 4] Production of yogurt by blood group-binding lactic acid bacteria
上述で選抜した乳酸菌(血液型 A型用ヨーグルト乳酸菌: L.gasseri OLL 2804, L.ga sseri OLL 2818、血液型 O型用ヨーグルト乳酸菌: L.gasseri OLL 2827, L.gasseri OL L 2915)を用いてヨーグルトを製造した。  Using the lactic acid bacteria selected above (yogurt lactic acid bacteria for blood group A: L.gasseri OLL 2804, L.ga sseri OLL 2818, yogurt lactic acid bacteria for blood group O: L.gasseri OLL 2827, L.gasseri OL L 2915) Yogurt was manufactured.
[0061] 4 (1) L. gasseri OLL 2804を用いたヨーグルトの製造例 [0061] 4 (1) Example of yogurt production using L. gasseri OLL 2804
L. gasseri OLL 2804株を用いてプレーンヨーグルトの調製を行った。まず、 10%脱 脂粉乳培地に、 L. gasseri OLL2804株、 L. bulgaricus JCM 1002T、 S. thermophilus ATCC19258を各 1%ずつ接種し、 37°Cで 15時間培養してバルタスターターを調製し [0062] 95°Cで 5分間加熱処理したヨーグルトミックス(SNF:9.5%、 FAT:3.0%)に、 L. bulgar icusJCM 1002τ及び S. thermophilus ATCC 19258のスターターを各 1%、 L. gasseri OLL 2804株のスターターを 5%接種して、 43°Cで 4時間発酵させた。 Plain yogurt was prepared using L. gasseri OLL 2804 strain. First, inoculate 1% each of L. gasseri OLL2804 strain, L. bulgaricus JCM 1002 T and S. thermophilus ATCC19258 in 10% skimmed milk powder culture medium, and incubate at 37 ° C for 15 hours to prepare a Balta starter. [0062] Yogurt mix (SNF: 9.5%, FAT: 3.0%) heated at 95 ° C for 5 minutes, 1% each of starter of L. bulgar icus JCM 1002 τ and S. thermophilus ATCC 19258, L. gasseri OLL 2804 strain starter was inoculated 5% and fermented at 43 ° C for 4 hours.
[0063] 発酵'冷却直後の L. gasseri OLL 2804、 L. bulgaricus JCM 1002T、 S. thermophilus ATCC 19258それぞれの生菌数は 12.5 X 10 7 CFU/mL、 14.0 X 10 7 CFU/mL、 11.8 X 10 8 CFU/mLであり、風味、物性はいずれも良好であった。また、上記ヨーグルトを 10°Cで保存したところ、保存 25日目のし gasseri OLL 2804、 L. bulgaricus JCM1002T 、 S. thermophilus ATCC 19258それぞれの生菌数は、 9.60 X 10 7 CFU/mL, 7.50 X 10 7 CFU/mL, 11.0 X 10 7 CFU/mLであり、 L. gasseri OLL 2804株の生残率は保存 1日目の 77%と、その生菌数の低下は僅かであった。保存品の風味、物性も良好で めつに。 [0063] The viable cell counts of L. gasseri OLL 2804, L. bulgaricus JCM 1002 T , and S. thermophilus ATCC 19258 were 12.5 X 10 7 CFU / mL, 14.0 X 10 7 CFU / mL, 11.8 X 10 8 CFU / mL. The flavor and physical properties were both good. In addition, when the above yogurt was stored at 10 ° C, the viable count of gasseri OLL 2804, L. bulgaricus JCM1002 T , S. thermophilus ATCC 19258 was 9.60 X 10 7 CFU / mL, 7.50 X 10 7 CFU / mL, 11.0 X 10 7 CFU / mL, and the survival rate of the L. gasseri OLL 2804 strain was 77% on the first day of storage, with a slight decrease in the number of viable bacteria. The preserved product has good flavor and physical properties.
[0064] 4- (2) L. gasseri OLL 2818を用いたヨーグルトの製造例  [0064] 4- (2) Example of yogurt production using L. gasseri OLL 2818
L. gasseri OLL 2818株を用いてプレーンヨーグルトの調製を行った。まず、 10%脱 脂粉乳培地に、 L. gasseri OLL2818株、 L. bulgaricus JCM 1002T、 S. thermophilus ATCC19258を各 1%ずつ接種し、 37°Cで 15時間培養してバルタスターターを調製し た。 Plain yogurt was prepared using L. gasseri OLL 2818 strain. First, 1% each of L. gasseri OLL2818 strain, L. bulgaricus JCM 1002 T and S. thermophilus ATCC19258 was inoculated into 10% nonfat dry milk medium, and cultured at 37 ° C for 15 hours to prepare a Balta starter .
[0065] 95°Cで 5分間加熱処理したヨーグルトミックス(SNF:9.5%、 FAT:3.0 %)に、 L. bulga ricusJCM 1002T及び S. thermophilus ATCC 19258のスターターを各 1%、 L. gasser i OLL 2818株のスターターを 5%接種して、 43°Cで 4時間発酵させた。  [0065] Yogurt mix (SNF: 9.5%, FAT: 3.0%) heated at 95 ° C for 5 minutes, 1% each of L. bulga ricus JCM 1002T and S. thermophilus ATCC 19258 starter, L. gasser i OLL 2818 starters were inoculated with 5% and fermented at 43 ° C for 4 hours.
[0066] 発酵'冷却直後の L. gasseri OLL 2818、 L. bulgaricus JCM 1002T、 S. thermophilus ATCC 19258それぞれの生菌数は 14.0 X 10 7 CFU/mL, 20.0 X 10 7 CFU/mL, 11.4 X 10 8 CFU/mLであり、風味、物性はいずれも良好であった。また、このヨーグルトを 10°Cで保存したところ、保存 25日目のし gasseri OLL 2818、 L. bulgaricus JCM1002T 、 S. thermophilus ATCC 19258それぞれの生菌数は、 11.4 X 10 7 CFU/mL, 7.00 X 10 7 CFU/mL, 10.0 X 10 7 CFU/mLであり、 L. gasseri OLL 2818株の生残率は保存 1日目の 82%と、その生菌数の低下は僅かであった。保存品の風味、物性も良好で めつに。 [0066] The viable cell counts of L. gasseri OLL 2818, L. bulgaricus JCM 1002 T and S. thermophilus ATCC 19258 were 14.0 X 10 7 CFU / mL, 20.0 X 10 7 CFU / mL, 11.4 X 10 8 CFU / mL. The flavor and physical properties were both good. In addition, when this yogurt was stored at 10 ° C, the viable count of gasseri OLL 2818, L. bulgaricus JCM1002T and S. thermophilus ATCC 19258 was 11.4 X 10 7 CFU / mL, 7.00 X The survival rate of L. gasseri OLL 2818 was 82% on the first day of storage, and the viable cell count decreased only slightly, 10 7 CFU / mL, 10.0 X 10 7 CFU / mL. The preserved product has good flavor and physical properties.
産業上の利用可能性 本発明により、ヒト ABO式血液型に適合する乳酸菌およびそのスクリーニング方法 が提供された。本発明の乳酸菌または本発明のスクリーニング方法により得られる乳 酸菌株は、 ABO式血液型別に腸管結合性の高い乳酸菌であり、該乳酸菌を飲食品 製造に応用することにより血液型別機能性ヨーグルトをはじめとする、新しいプロバイ ォテイクス飲食品の提供が可能になる。 Industrial applicability According to the present invention, a lactic acid bacterium suitable for human ABO blood group and a screening method thereof are provided. The lactic acid bacterium of the present invention or the lactate strain obtained by the screening method of the present invention is a lactic acid bacterium having a high intestinal binding property for each ABO blood type, and functional yogurt classified by blood type is obtained by applying the lactic acid bacterium to food and beverage production. New probiotic foods and drinks can be provided.

Claims

請求の範囲 The scope of the claims
[1] 下記 (a)から(c)の ヽずれかの式で表されるヒト ABO式血液型抗原に結合能を有する 腸管結合性 Lactobacillus gasseri乳酸菌。  [1] An intestinal-binding Lactobacillus gasseri lactic acid bacterium having a binding ability to a human ABO blood group antigen represented by any one of the following formulas (a) to (c):
(a) [GalNAc a 1-3 (Fuc a 1-2) Gal-]  (a) [GalNAc a 1-3 (Fuc a 1-2) Gal-]
(b) [Gal a 1-3 (Fuc a 1-2) Gal-]  (b) [Gal a 1-3 (Fuc a 1-2) Gal-]
(c) [Fuc a l-2Gal-]  (c) [Fuc a l-2Gal-]
[2] 受託番号: NITE BP-25、受託番号: NITE BP-26、受託番号: NITE BP-27、受託番 号: NITE BP-28、受託番号: NITE BP-145、受託番号: NITE BP-146のいずれかで 特定される、請求項 1に記載の Lactobacillus gasseri乳酸菌。  [2] Accession number: NITE BP-25, Accession number: NITE BP-26, Accession number: NITE BP-27, Accession number: NITE BP-28, Accession number: NITE BP-145, Accession number: NITE BP- The Lactobacillus gasseri lactic acid bacterium according to claim 1, which is specified by any one of 146.
[3] 請求項 1または 2に記載の Lactobacillus gasseri乳酸菌を含む、ヒト ABO式血液型適 合性発酵乳および乳製品製造用スターター。 [3] A human ABO blood group-compatible fermented milk and a starter for producing a dairy product, comprising the Lactobacillus gasseri lactic acid bacterium according to claim 1 or 2.
[4] 請求項 1または 2に記載の Lactobacillus gasseri乳酸菌を含有する、飲食品。 [4] A food or drink containing the Lactobacillus gasseri lactic acid bacterium according to claim 1 or 2.
[5] 請求項 1または請求項 2に記載の Lactobacillus gasseri乳酸菌を含有する、発酵乳お よび乳酸菌飲料。 [5] Fermented milk and lactic acid bacteria beverages containing the Lactobacillus gasseri lactic acid bacteria according to claim 1 or claim 2.
[6] 下記条件 (i)力 (iii)を満たすことを指標とする、表面プラズモン共鳴スペクトルによ る乳酸菌のスクリーニング方法。  [6] A screening method for lactic acid bacteria by surface plasmon resonance spectrum using the following condition (i) force (iii) as an index.
(i) A型のヒト ABO式血液型抗原との結合能を示す RU値が 100RU以上であること (i) RU value that indicates the ability to bind human ABO blood group antigen of type A is 100RU or more
(ii) B型および Zまたは H型のヒト ABO式血液型抗原との結合能を示す RU値が 100R U以下であること (ii) The RU value indicating the ability to bind to human ABO blood group antigens of type B and Z or H is 100RU or less
(iii)ヒト A型腸管ムチンとの結合能を示す RU値が 100RU以上であること  (iii) The RU value indicating the ability to bind to human type A intestinal mucin must be 100 RU or more
[7] 下記条件 ω力 (iii)を満たすことを指標とする、表面プラズモン共鳴スペクトルによ る乳酸菌のスクリーニング方法。  [7] A screening method for lactic acid bacteria by surface plasmon resonance spectrum using the following condition ω force (iii) as an index.
(i) B型のヒト ABO式血液型抗原との結合能を示す RU値が 100RU以上であること (i) The RU value that indicates the ability to bind B-type human ABO blood group antigen is 100RU or more
(ii) A型および Zまたは H型のヒト ABO式血液型抗原との結合能を示す RU値が 100R U以下であること (ii) The RU value indicating the ability to bind to human ABO blood group antigens of type A and Z or H is 100RU or less
(iii)ヒト B型腸管ムチンとの結合能を示す RU値が 100RU以上であること  (iii) The RU value that indicates the ability to bind human B-type intestinal mucin is 100 RU or more
[8] 下記条件 (i)力 (iii)を満たすことを指標とする、表面プラズモン共鳴スペクトルによ る乳酸菌のスクリーニング方法。 (i) H型のヒト ABO式血液型抗原との結合能を示す RU値が 100RU以上であること[8] A screening method for lactic acid bacteria by surface plasmon resonance spectrum, using the following condition (i) force (iii) as an index. (i) The RU value that indicates the ability to bind H-type human ABO blood group antigen is 100RU or more
(ii) A型および Zまたは B型のヒト ABO式血液型抗原との結合能を示す RU値が 100R U以下であること (ii) The RU value that indicates the ability to bind human ABO blood group antigens of type A and Z or B is 100RU or less
(iii)ヒト 0型腸管ムチンとの結合能を示す RU値が 100RU以上であること  (iii) The RU value that indicates the ability to bind human type 0 intestinal mucin is 100 RU or more
下記条件 (i)力 (iii)を満たすことを指標とする、表面プラズモン共鳴スペクトルによ る乳酸菌のスクリーニング方法。 A screening method for lactic acid bacteria by surface plasmon resonance spectrum, using the following condition (i) force (iii) as an index.
(i) B型のヒト ABO式血液型抗原との結合能を示す RU値が 100RU以上であること (i) The RU value that indicates the ability to bind B-type human ABO blood group antigen is 100RU or more
(ii) A型および H型のヒト ABO式血液型抗原との結合能を示す RU値が 100RU以下で あること (ii) The RU value, which indicates the ability to bind human ABO blood group antigens of type A and H, is 100RU or less
(iii)ヒト B型腸管ムチンとの結合能を示す RU値が、ヒト A型腸管ムチンとの結合能を示 す RU値およびヒト 0型腸管ムチンとの結合能を示す RU値よりも大きいこと  (iii) The RU value indicating the ability to bind to human type B intestinal mucin must be greater than the RU value indicating the ability to bind to human type A intestinal mucin and the RU value indicating the ability to bind to human type 0 intestinal mucin.
PCT/JP2005/022096 2004-12-01 2005-12-01 Lactic acid bacteria binding to human abo blood types WO2006067940A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006548758A JP4738348B2 (en) 2004-12-01 2005-12-01 Human ABO blood group-binding lactic acid bacteria
CA2588940A CA2588940C (en) 2004-12-01 2005-12-01 Human abo blood group-binding lactobacilli
US11/720,462 US7897374B2 (en) 2004-12-01 2005-12-01 Human ABO blood group-binding lactobacilli
US12/987,518 US8465933B2 (en) 2004-12-01 2011-01-10 Method for screening human ABO blood group-binding lactobacilli

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004349135 2004-12-01
JP2004-349135 2004-12-01
PCT/JP2005/011043 WO2006059408A1 (en) 2004-12-01 2005-06-16 Lactic acid bacterium binding to human abo blood types
JPPCT/JP2005/011043 2005-06-16

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/720,462 A-371-Of-International US7897374B2 (en) 2004-12-01 2005-12-01 Human ABO blood group-binding lactobacilli
US12/987,518 Division US8465933B2 (en) 2004-12-01 2011-01-10 Method for screening human ABO blood group-binding lactobacilli

Publications (1)

Publication Number Publication Date
WO2006067940A1 true WO2006067940A1 (en) 2006-06-29

Family

ID=36601545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/022096 WO2006067940A1 (en) 2004-12-01 2005-12-01 Lactic acid bacteria binding to human abo blood types

Country Status (2)

Country Link
CA (1) CA2588940C (en)
WO (1) WO2006067940A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008179630A (en) * 2006-12-28 2008-08-07 Glico Dairy Products Co Ltd Lactobacillus having immunostimulative action, product having immunostimulative action and method for producing the same
WO2009069704A1 (en) * 2007-11-30 2009-06-04 Meiji Dairies Corporation Lactic acid bacterium having effect of lowering blood uric acid level
US8460918B2 (en) 2007-11-29 2013-06-11 Meiji Co., Ltd. Lactic acid bacteria having action of lowering blood uric acid level
JP2015073483A (en) * 2013-10-09 2015-04-20 独立行政法人農業・食品産業技術総合研究機構 Lactic acid bacteria which has adhesiveness to alimentary canal mucosa
JP2019528738A (en) * 2016-09-16 2019-10-17 デュポン ニュートリション バイオサイエンシーズ エーピーエス Bacteria
WO2022102753A1 (en) * 2020-11-13 2022-05-19 味の素株式会社 Viable microbial agent containing lactococcus lactis, microorganism belonging to genus lactobacillus or mixture thereof, and method for producing same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004101249A (en) * 2002-09-05 2004-04-02 Meiji Milk Prod Co Ltd Screening process of probiotics lactobacteriaceae

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004101249A (en) * 2002-09-05 2004-04-02 Meiji Milk Prod Co Ltd Screening process of probiotics lactobacteriaceae

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
SAITO T. ET AL.: "A new screening method for probiotic lactic acib bacteria in the Lactobacillus acidophilus group by using carbohydrate probes", ANIM. SCI. J., vol. 71, no. 1, 2000, pages 103 - 108, XP002999587 *
SAITO T.: "Hito ABO Ketsuekigata ni Tekigo shita Probiotics Nyusankin no Sentaku to Shin Kinosei Yoghurt no Kaihatsu", THE FOOD SCIENCE INSTITUTE FOUNDATION, 16 June 2004 (2004-06-16), pages 1 - 7, XP002999586 *
UCHIDA H. ET AL.: "A new assay using surface plasmon resonance (SPR) to determine binding of the Lactobacillus acidophilus group to human colonic mucin", BIOSCI. BIOTECHNOL. BIOCHEM., vol. 68, 23 May 2004 (2004-05-23), pages 1004 - 1010, XP002999588 *
UCHIDA H. ET AL.: "Hito Ketsuekigata A-gata o Ninshiki suru Probiotic Nyusankin no Hakken to Chokan Fuchakusei Kiko no Kaimei", JPN. J. LACTIC ACID BACT., vol. 15, 1 June 2004 (2004-06-01), pages 35, XP003007126 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008179630A (en) * 2006-12-28 2008-08-07 Glico Dairy Products Co Ltd Lactobacillus having immunostimulative action, product having immunostimulative action and method for producing the same
US8460918B2 (en) 2007-11-29 2013-06-11 Meiji Co., Ltd. Lactic acid bacteria having action of lowering blood uric acid level
KR101450511B1 (en) 2007-11-29 2014-10-15 가부시키가이샤 메이지 Lactic acid bacteria having action of lowering blood uric acid level
KR101385864B1 (en) 2007-11-29 2014-04-17 가부시키가이샤 메이지 Lactic acid bacteria having action of lowering blood uric acid level
US8541223B2 (en) 2007-11-29 2013-09-24 Meiji Co., Ltd. Lactic acid bacteria having action of lowering blood uric acid level
CN102016004B (en) * 2007-11-30 2012-11-28 株式会社明治 Lactic acid bacterium having effect of lowering blood uric acid level
US8389266B2 (en) 2007-11-30 2013-03-05 Meiji Co., Ltd. Lactic acid bacterium having effect of lowering blood uric acid level
JP5149305B2 (en) * 2007-11-30 2013-02-20 株式会社明治 Lactic acid bacteria with action to reduce blood uric acid level
JPWO2009069704A1 (en) * 2007-11-30 2011-04-14 明治乳業株式会社 Lactic acid bacteria with action to reduce blood uric acid level
KR20100109911A (en) * 2007-11-30 2010-10-11 메이지 데어리즈 코포레이션 Lactic acid bacterium having effect of lowering blood uric acid level
WO2009069704A1 (en) * 2007-11-30 2009-06-04 Meiji Dairies Corporation Lactic acid bacterium having effect of lowering blood uric acid level
KR101584380B1 (en) 2007-11-30 2016-01-21 가부시키가이샤 메이지 Lactic acid bacterium having effect of lowering blood uric acid level
JP2015073483A (en) * 2013-10-09 2015-04-20 独立行政法人農業・食品産業技術総合研究機構 Lactic acid bacteria which has adhesiveness to alimentary canal mucosa
JP2019528738A (en) * 2016-09-16 2019-10-17 デュポン ニュートリション バイオサイエンシーズ エーピーエス Bacteria
JP7111700B2 (en) 2016-09-16 2022-08-02 デュポン ニュートリション バイオサイエンシーズ エーピーエス bacteria
WO2022102753A1 (en) * 2020-11-13 2022-05-19 味の素株式会社 Viable microbial agent containing lactococcus lactis, microorganism belonging to genus lactobacillus or mixture thereof, and method for producing same

Also Published As

Publication number Publication date
CA2588940A1 (en) 2006-06-29
CA2588940C (en) 2015-10-13

Similar Documents

Publication Publication Date Title
TWI383049B (en) Improved lactose intolerance of lactic acid
Yuki et al. Survival of a probiotic, Lactobacillus casei strain Shirota, in the gastrointestinal tract: selective isolation from faeces and identification using monoclonal antibodies
US8465933B2 (en) Method for screening human ABO blood group-binding lactobacilli
Mättö et al. Genetic heterogeneity and functional properties of intestinal bifidobacteria
Uchida et al. Lactobacilli binding human A-antigen expressed in intestinal mucosa
JPH1198978A (en) Tripeptide high productive lactobacillus helveticus lactic acid bacterium
CN109266584B (en) Ciliary lactobacillus rhamnosus with mast cell activity regulation effect and application thereof
Uchida et al. A new assay using surface plasmon resonance (SPR) to determine binding of the Lactobacillus acidophilus group to human colonic mucin
WO2006067940A1 (en) Lactic acid bacteria binding to human abo blood types
CN108004167B (en) Streptococcus thermophilus JMCC0019 capable of producing exopolysaccharides, and separation and purification method and application thereof
Bhardwaj et al. Interspecies diversity, safety and probiotic potential of bacteriocinogenic Enterococcus faecium isolated from dairy food and human faeces
JP2008179630A (en) Lactobacillus having immunostimulative action, product having immunostimulative action and method for producing the same
Kimoto‐Nira et al. New lactic acid bacterial strains from traditional M ongolian fermented milk products have altered adhesion to porcine gastric mucin depending on the carbon source
CN112708577B (en) Lactobacillus fermentum DALI02 with high intestinal adhesion and immunoregulation function and application thereof
AU2021254477A1 (en) Composition for improving gut microbiota
JP4662443B2 (en) Cholesterol-reducing lactic acid bacteria
CN110396487B (en) Lactobacillus acidophilus capable of improving intestinal flora and regulating immunity and application thereof
Abdel-Haleem et al. Potential anti-hypercholesterolemic activity and acidogenic ability of probiotic lactic acid bacteria isolated from camel milk
Amrouche et al. Production and characterization of anti-bifidobacteria monoclonal antibodies and their application in the development of an immuno-culture detection method
Kocabay Evaluation of probiotic properties of Levilactobacillus brevis isolated from hawthorn vinegar
CN115927075B (en) Streptococcus thermophilus with high ACE inhibition activity and application thereof
CN114381407B (en) Lactobacillus rhamnosus R7970 and product and application thereof
WO2022220154A1 (en) Detection method of exopolysaccharide
CN111771975B (en) Preparation method of low-cholesterol egg yoghourt
JPH11228424A (en) Activator for bifidobacterium, active breeder agent containing the same and food containing the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2588940

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2006548758

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11720462

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 05811371

Country of ref document: EP

Kind code of ref document: A1