JP2004101249A - Screening process of probiotics lactobacteriaceae - Google Patents

Screening process of probiotics lactobacteriaceae Download PDF

Info

Publication number
JP2004101249A
JP2004101249A JP2002260646A JP2002260646A JP2004101249A JP 2004101249 A JP2004101249 A JP 2004101249A JP 2002260646 A JP2002260646 A JP 2002260646A JP 2002260646 A JP2002260646 A JP 2002260646A JP 2004101249 A JP2004101249 A JP 2004101249A
Authority
JP
Japan
Prior art keywords
lactic acid
screening
mucin
human
sugar chain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002260646A
Other languages
Japanese (ja)
Other versions
JP3919635B2 (en
Inventor
Tadao Saito
齋藤 忠夫
Yasushi Kawai
川井 泰
Hideaki Uchida
内田 英明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RYOSHOKU KENKYUKAI
Meiji Dairies Corp
Original Assignee
RYOSHOKU KENKYUKAI
Meiji Milk Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RYOSHOKU KENKYUKAI, Meiji Milk Products Co Ltd filed Critical RYOSHOKU KENKYUKAI
Priority to JP2002260646A priority Critical patent/JP3919635B2/en
Publication of JP2004101249A publication Critical patent/JP2004101249A/en
Application granted granted Critical
Publication of JP3919635B2 publication Critical patent/JP3919635B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To construct a system for screening intestinal tract system lactobacteriaceae having high intestinal adhesiveness compatible with the human blood type, especially L. acidophilus group lactobacteriaceae. <P>SOLUTION: This screening method, using a biosensor (BIACORE 1000), is established for L. acidophilus group lactobacteriaceae adhering to the human intestinal mucin of a nonhandicapped person of A blood type, which is most general in the Japanese. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、新機能をもったプロバイオティクス乳酸菌の新規なスクリーニング方法に関する。
【0002】
【従来の技術】
近年、ヒト大腸ムチン(human colon mucin:HCM)を構成する糖鎖の化学構造が、ABO式血液型により異なることが報告(例えば、非特許文献1参照。)された。この科学的事実は、血液型が異なれば各人の消化管ムチンの糖鎖構造も異なり、そこに付着増殖するプロバイオティック乳酸菌の種類が異なることを強く示唆している。
【0003】
プロバイオティック乳酸菌として、ヒトを対象に用いられているLactobacillus属の代表的菌種は、L. acidophilus、L. casei、L. rhamnosus、およびL. bulgaricusである。ヒト・動物の糞便から分離されたL. acidophilusグループ乳酸菌は、Bifidobacteriumグループと同様に宿主の腸管内に生息して腸内フローラを改善し整腸作用などの働きをすると考えられている。
【0004】
L. acidophilusグループ乳酸菌は、DNA−DNAホモロジーおよび細胞壁組成分析の結果、L. acidophilus(A−1)、L. crispatus(A−2)、L. amylovorus(A−3)、L. gallinarum(A−4)、L. gasseri(B−1)、およびL. johnsonii(B−2)の6菌種に分類(例えば、非特許文献2参照。)されている。
【0005】
これらの乳酸菌がヒトに初期感染し腸管へ定着(colonization)するためには、腸上皮細胞表面に接着することが不可欠である。高橋らは、腸管に強く接着するL. acidophilusグループ乳酸菌株をスクーリニングするために大腸ムチン(RCM)をコートしたポリスチレンビーズを開発し、L. acidophilusグループ乳酸菌株をスクーリニングした結果、RCMに強く結合した株由来の表層タンパク(SLP)は、ヒト大腸粘液層にも結合したことを報告している(例えば、非特許文献3参照。)。
【0006】
一方、表面プラズモン共鳴(SPR)現象を利用したバイオセンサー(BIACORE)が開発され、生化学、分子生物学の分野に急速に普及してきた。
【0007】
【発明が解決しようとする課題】
本発明は、ヒトの血液型に適合した腸管付着性の極めて高い腸管系乳酸菌、とくにL. acidophilusグループ乳酸菌をスクリーニングするシステムを構築することを課題とする。
【0008】
【課題を解決するための手段】
本発明者らは、このバイオセンサー(BIACORE 1000)を用いて、わが国に最も多いA型血液型健常人のヒト腸管ムチンへ付着するL. acidophilusグループ乳酸菌のスクリーニング方法を確立した。
【0009】
すなわち、本発明は、
(1) 表面プラズモン共鳴スペクトルによるプロバイオティクス乳酸菌のスクリーニング方法であって、リガンドにABO式血液型エピトープ部分を用いることを特徴とするプロバイオティクス乳酸菌のスクリーニング方法、
(2) 表面プラズモン共鳴スペクトルによるプロバイオティクス乳酸菌のスクリーニング方法であって、リガンドに大腸由来のムチンを用いることを特徴とするプロバイオティクス乳酸菌のスクリーニング方法、
(3) 大腸由来のムチンが粗精製ムチンである(2)のスクリーニング方法、(4) プロバイオティクス乳酸菌がLactobacillus属またはBifidobacterium属である(1)〜(3)のスクリーニング方法、
(5) Lactobacillus属がL. acidophilus、L. casei、L. rhamnosus、およびL. bulgaricusからなる群より選ばれる(4)のスクリーニング方法、
からなる。
【0010】
【発明の実施の形態】
BIOCOREは、ファルマシアバイオテク社により開発・実用化された表面プラズモン共鳴センサーである。その原理と概要は以下の通りである。
その基本構造は、光源とプリズム、検出系とマイクロ流路系からなっている(図3)。カセット式のセンサーチップ表面にリガンドを固定化し、そこにアナライト(測定対象)をインジェクトする。両者に親和性があれば、その結合量が光学的に検出される(図4)。その検出原理の概要をのべると、センサーチップのガラス面側プリズムを介して偏光を入射させると、反射光の一部に反射光強度が低下した部分が観察される。この反射光内にある暗線角度は、金薄膜の極近傍の質量変化(屈折率変化)に依存する。すなわち、チップ上に固相化しているリガンドにアナライトが結合した場合に生じる質量変化が暗線の角度変化として検出される。この暗線の角度量をRU(レゾナンスユニット)と定義し、時間(秒)に対するRU値としてグラフ化(センサーグラム)し、リアルタイムでモニターしている。センサーチップはガラス板に金を蒸着し、さらにカルボキシルメチルデキストラン(CM−デキストラン)を結合させてある(CMチップ)。
【0011】
〈材料および方法〉
1 供試乳酸菌
ヒト乳児、幼児、成人および老人糞便より単離したL. acidophilus(A−1)6菌株、L. crispatus(A−2)3菌株、L. amylovorus(A−3)3菌株、L. gasseri(B−1)7菌株、およびjohnsonii(B−2)2菌株の計21菌株を用いた。各菌種の同定は、DNA−DNAハイブリダイゼーション法により実施した。
【0012】
2 血液型糖鎖(3糖)ビオチニル化ポリマー(BP−)プローブ
実験には、2種類のヒトABO式血液型基質のエピトープ部分構造である3糖糖鎖(A型[GalNAcα1−3(Fucα1−2)Gal−]およびB型[Galα1−3(Fucα1−2)Gal−])BP−Probe(生化学工業製)を用いた。また、非特異的吸着をみるためのコントロールとして、BP化糖鎖プローブのスペーサー部位が共通である、α−L−Rhamnose BP−プローブを使用した。このBP−プローブの構造を図1に、糖鎖の化学構造を図2に示した。
【0013】
3 ヒト大腸ムチンの調製
ヒトA型腸管(直腸)は東北大学大学院医学研究科より、標本採取試料として分譲された。粘液ムチン層は、直腸正常部位から表層掻き取り法で採取した。ムチン層は、Folchの溶媒およびジエチルエーテルにより脱脂後、4 M 塩酸グアニジンに溶解させた。ゲルろ過精製を行い、粗精製のヒトA型腸管ムチン(human colon mucin:HCM)として、試験に供した。これらの試料採取に関しては、医学研究科の倫理委員会を経て実施し、また患者の同意を得ている。
【0014】
4 L. acidophilusグループ乳酸菌と、血液型糖鎖およびヒト腸管粗精製ムチンの相互作用解析
L. acidophilusグループ乳酸菌と、血液型糖鎖およびヒト腸管粗精製ムチンの相互作用解析は表面プラズモン共鳴解析装置(BIACORE 1000;Pharmacia Biotech)により実施した。センサーグラム(結合性・解離性曲線)における相互作用強度はレゾナンスユニット(RU)値で表した。再生溶液は、0.75〜3Mグアニジン塩酸塩を用いた。本装置の原理およびセンサーグラムの解釈方法は、図3および図4に示した。
【0015】
4−1 アナライト菌体の培養と調製
各菌株は、MRS培地(Difco Laboratories)に継代培養後、37℃で12時間培養した。培養液(500μl)より集菌した菌体は、ランニングバッファーHBS−EP buffer(0.01M HEPES pH 7.4, 0.15M NaCl, 3mM EDTA, 0.005% Surfactant P20を含む)で洗浄した後、同バッファー(500μl)に懸濁してアナライト菌体とした。
【0016】
4−2 血液型糖鎖に対する相互作用解析
ストレプトアビジン(SA)を予め固定化したタイプのセンサーチップSA上の各フローセルに、ビオチン化した3種類のリガンド、すなわち、A型血液型糖鎖BPプローブ、B型血液型糖鎖BPプローブ、およびα−L−Rhamnose BP−プローブを、それぞれビオチンを介してアビジンに結合させ固定化した。ついで、4−1で調製した各アナライト菌体をBIACORE 1000にインジェクトし、継時的に結合糖鎖と菌体との相互作用を解析した。
【0017】
4−3 A型ヒト腸管ムチンに対する相互作用解析
カルボキシルメチルデキストランが導入してあるタイプのセンサーチップCM5を用いた。3で調製した粗精製のヒトHCM(リガンドのこと)を、アミンカップリング法により、センサーチップ上の各フローセルに固定化した。リガンド未結合の残存活性基のブロッキングには、エタノールアミンを用いた。ついで、4−1で調製した各アナライト菌体をBIACORE 1000 にインジェクトし、継時的にヒト大腸ムチンと菌体との相互作用を解析した。
【0018】
〈結果および考察〉
1 血液型糖鎖プローブに対するBIACORE 1000による相互作用解析
BIACORE 1000による、21菌株とリガンドとの結合(アフィニティー)をセンサーグラム(反応曲線)で調べた。その結果、3菌株は、BP糖鎖プローブへの結合が認められた。残りの18菌株は、明瞭な結合は認められないか、認められても極めて弱いものであった。
BP糖鎖プローブへの結合が認められた L. crispatus JCM8778株のセンサーグラムを図5Aおよび図5Bに示した。このJCM8778株は、B型糖鎖であるB−trisaccharide BP−Probe(200RU値)に対する結合(図5B)と比較して、A型糖鎖であるA−trisaccharide BP−Probe(350RU値)に対して、より強い結合性を示した(図5A)。一方、BP−Probeとは糖鎖エピトープ部位のみで異なる比較対照のα−L−Rhamnnose BP−Probe に対しては全く結合しなかった(図5C)。この結果、JCM8778株の両糖鎖 BP−Probe への結合は、糖鎖 BP−Probe のスペーサー部位、あるいはセンサーチップSA表面への非特異的な結合ではなく、糖鎖エピトープへの特異的結合であることが明らかとなった。すなわち、JCM8778株は、血液型糖鎖を特異的に認識して結合する乳酸菌の一つであるとことが示された。
【0019】
2 A型ヒト腸管ムチンに対する相互作用解析
以上の結果は、L. acidophilus乳酸菌の、人工的な糖鎖プローブに対する、BIACORE 1000による結合性試験であった。そこで、より実際の腸管環境を反映すると考えられる、ヒト腸管より調製したA型ヒト腸管粗精製ムチンに対しての、JCM8778株の結合性を調べた。その結果、A型糖鎖 BP−プローブの場合に比べて結合は弱かったが、明らかにヒトA型大腸ムチンに対する結合が認められた。この実験結果より、JCM8778株はヒト腸管に強く付着している可能性の高いことが示唆された。A型糖鎖 BP−プローブの場合に比べて結合は弱かったことは、A型ヒト大腸ムチン中には種々のタンパク質および糖鎖部位が多量に含まれており、結合に関与するA型糖鎖の量が希釈されていたことも原因の一つとして考えられた。
【0020】
〈結論〉
表面プラズモン共鳴スペクトルを利用したバイオセンサーBIACOREは生体分子の相互作用をリアルタイムに測定することにより、それぞれの相互作用を単なる強さ(アフィニティー)の解析から、速さ(カイネティックス)まで解析できる特徴をもっている。また、B/F分離の必要な他の分析では困難な、非常に弱い結合(低アフィニティー、K値10−3 M程度)の解析を行うことができる(例えば、非特許文献4参照。)。
A型糖鎖 BP−Probeを結合させたセンサーチップを用いて、マススクリーニングを行い、さらにヒトA型大腸ムチンを結合させたセンサーチップを用いてスクリーニングすることにより、ヒト腸管付着性の高い有用プロバイオティック乳酸菌を提供することができた。本スクリーニングの対象となる乳酸菌を表1に示した。
【0021】
【表1】

Figure 2004101249
【0022】
この表面プラズモン共鳴スペクトルを利用したBIACOREによる、乳酸菌の、両センサーチップに対する付着性を検証することにより、血液型糖鎖認識性L. acidophilusグループ乳酸菌のスクリーニングに極めて有効ではないかと考えられる。付着性を示すものはRU値が上昇し、付着性を示さないものはRU値の上昇が全く見られないといったBIACOREによる結合性の評価法は、明確そのものであり、さらにセンサーグラムの形状より供試菌株がどの様な結合性を有するかについても有用な知見が得られる。
また、他の O(H)型糖鎖 BP−ProbeおよびB、O型ヒト大腸ムチンを用いたBIACORE解析を拡大することで、ヒトの全血液型に対応したヒト腸管付着性乳酸菌の新規スクリーニング法を確立することができる。当該方法によってABO血液型別に腸管付着性の高い乳酸菌をスクリーニングすることができ、当該乳酸菌を用いて個人レベルに対応したオーダーメードの血液型別機能性ヨーグルトを作製することができる。
【0023】
【発明の効果】
本発明により、表面プラズモン共鳴スペクトルを利用したBIACOREによる、新機能をもったプロバイオティクス乳酸菌株の、新規なスクリーニング方法が提供された。本発明により得られた乳酸菌株は、ABO血液型別に腸管付着性の高い乳酸菌であり、当該乳酸菌を用いて個人レベルに対応したオーダーメードの血液型別機能性ヨーグルトをはじめ、新しいプロバイオティクス食品、あるいは消化器プロバイオティクス、例えば感染症(歯周病、虫歯、慢性胃炎、胃十二指腸潰瘍、胃癌、腸管出血性大腸炎、溶血性尿毒症症候群、脳症、食中毒、偽膜性大腸炎)、アレルギー疾患(食物アレルギー、アトピー性皮膚炎、気管支喘息)、炎症性腸疾患(Crohn 病、潰瘍性大腸炎)などの疾患の予防又は治療用食品の提供を可能とする。
【0024】
【非特許文献1】
天野純子、生化学, 社団法人日本生化学会, 1999年, 第71巻, p.274−277
【非特許文献2】
Fujisawa, T. 外, Int. J. Syst. Bacteriol., 1992年, 第42巻, p.487−491
【非特許文献3】
Takahashi, N. 外, Biosci. Biotech. Biochem., 1996年, 第60巻, 第9号, p.1434−1438
【非特許文献4】
稲川淳一:実験医学別冊 クローズアップ実験法 総集編, 2002年3月1日発行, p.143−150
【図面の簡単な説明】
【図1】ヒトABO式血液型のA型とB型のエピトープ部位を有するBPプローブ糖鎖プローブの化学構造を示す。
【図2】図2−AはA型糖鎖BPプローブの糖鎖部位、図2−BはB型糖鎖BPプローブの糖鎖部位を示す。
【図3】表面プラズモン共鳴(SPR)を利用したBIACORE 1000測定法の原理とレゾナンスユニットの定義する。
【図4】BIACORE 1000解析で得られるセンサーグラムにおける結合・解離・再生のサイクルを示す。
【図5】図5−AはA型糖鎖BPプローブへの結合を示したL. crispatusJCM8778株のBIACOREセンサーグラムを示し、図5−BはA型糖鎖BPプローブへの結合を示した同株のBIACOREセンサーグラム示し、そして図5−Cは対照を示す。
【図6】図6−AはセンサーチップCMへの、A型血液型ヒト大腸粗精製ムチンの固定化センサーグラムを示し、図6−Bは同ムチンへの結合性を示したL. crispatus JCM8778株のBIACOREセンサーグラムを示す。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a novel screening method for probiotic lactic acid bacteria having a new function.
[0002]
[Prior art]
In recent years, it has been reported that the chemical structure of the sugar chain constituting human colon mucin (HCM) differs depending on the ABO blood group (for example, see Non-Patent Document 1). This scientific fact strongly suggests that different blood types have different sugar chain structures in the digestive tract mucins of different individuals, and that the types of probiotic lactic acid bacteria that adhere and grow there are different.
[0003]
As a probiotic lactic acid bacterium, a representative strain of the genus Lactobacillus used in humans is L. lactis. acidophilus, L .; casei, L .; rhamnosus, and L. bulgaricus. L. isolated from human and animal feces Acidophilus group lactic acid bacteria are thought to live in the intestinal tract of the host, improve the intestinal flora, and perform functions such as intestinal regulation, similar to the Bifidobacterium group.
[0004]
L. acidophilus group lactic acid bacteria, as a result of DNA-DNA homology and cell wall composition analysis, L. acidophilus (A-1); crispatus (A-2); amylovorus (A-3); gallinarum (A-4); gasseri (B-1); Johnsonii (B-2) is classified into six bacterial species (for example, see Non-Patent Document 2).
[0005]
In order for these lactic acid bacteria to initially infect humans and colonize the intestinal tract, it is essential that they adhere to the surface of intestinal epithelial cells. Takahashi et al. Reported that L. s. To develop a colonic mucin (RCM) -coated polystyrene bead for screening lactic acid bacteria strains of the L. acidophilus group, L. lactis was developed. As a result of screening a lactic acid bacterium strain of L. acidophilus group, it has been reported that a surface protein (SLP) derived from a strain that strongly binds to RCM also binds to a mucous layer of human colon (see, for example, Non-Patent Document 3).
[0006]
On the other hand, a biosensor (BIACORE) using the surface plasmon resonance (SPR) phenomenon has been developed and has rapidly spread in the fields of biochemistry and molecular biology.
[0007]
[Problems to be solved by the invention]
The present invention relates to an intestinal lactic acid bacterium having extremely high intestinal adherence adapted to human blood groups, An object of the present invention is to construct a system for screening lactic acid bacteria of the acidophilus group.
[0008]
[Means for Solving the Problems]
Using this biosensor (BIACORE 1000), the present inventors have found that L. adenosine adhering to human intestinal mucin of the most common healthy group A blood group in Japan is used. A screening method for acidophilus group lactic acid bacteria was established.
[0009]
That is, the present invention
(1) A method for screening probiotic lactic acid bacteria by surface plasmon resonance spectrum, which comprises using an ABO blood group epitope portion as a ligand,
(2) a method for screening probiotic lactic acid bacteria by surface plasmon resonance spectrum, which comprises using mucin derived from the large intestine as a ligand;
(3) the screening method according to (2), wherein the mucin derived from the large intestine is a crudely purified mucin;
(5) Lactobacillus spp. acidophilus, L .; casei, L .; rhamnosus, and L. (4) a screening method selected from the group consisting of B. bulgaricus;
Consists of
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
BIOCORE is a surface plasmon resonance sensor developed and put into practical use by Pharmacia Biotech. The principle and outline are as follows.
Its basic structure consists of a light source and a prism, a detection system and a microchannel system (FIG. 3). A ligand is immobilized on the surface of a cassette-type sensor chip, and an analyte (measurement target) is injected there. If both have an affinity, the amount of binding is optically detected (FIG. 4). In summary, the detection principle is such that when polarized light is incident through the glass surface side prism of the sensor chip, a part of the reflected light where the reflected light intensity is reduced is observed. The angle of the dark line in the reflected light depends on the mass change (refractive index change) in the very vicinity of the gold thin film. That is, a change in mass caused when the analyte binds to the ligand immobilized on the chip is detected as a change in the angle of the dark line. The angle amount of the dark line is defined as RU (resonance unit), and is graphed (sensorgram) as an RU value with respect to time (second), and monitored in real time. The sensor chip is formed by depositing gold on a glass plate and further bonding carboxymethyl dextran (CM-dextran) (CM chip).
[0011]
<Materials and methods>
Test Lactic Acid Bacteria L. isolated from human infants, infants, adults and elderly stool. acidophilus (A-1) 6 strains, Crispatus (A-2) 3 strain, L. amylovorus (A-3) 3 strain, L. Gasseri (B-1) 7 strains and Johnsonii (B-2) 2 strains, a total of 21 strains, were used. Identification of each bacterial species was performed by a DNA-DNA hybridization method.
[0012]
2 Blood group sugar chain (trisaccharide) biotinylated polymer (BP-) probe experiments were performed using trisaccharide sugar chains (A type [GalNAcα1-3 (Fucα1-)), which are epitope partial structures of two types of human ABO blood group substrates. 2) Gal-] and B-type [Galα1-3 (Fucα1-2) Gal-]) BP-Probe (manufactured by Seikagaku Corporation) were used. As a control for checking non-specific adsorption, an α-L-Rhamnose BP-probe having a common spacer site for BP-linked sugar chain probes was used. The structure of this BP-probe is shown in FIG. 1, and the chemical structure of the sugar chain is shown in FIG.
[0013]
3. Preparation of Human Colon Mucin The human intestinal type A intestine (rectum) was distributed by Tohoku University Graduate School of Medicine as a sample. The mucus mucin layer was collected from a normal rectal site by a surface scraping method. The mucin layer was degreased with a Folch solvent and diethyl ether and then dissolved in 4 M guanidine hydrochloride. The solution was purified by gel filtration, and subjected to a test as crude human A-type intestinal mucin (HCM). The collection of these samples has been carried out by the ethics committee of the Graduate School of Medicine, with the patient's consent.
[0014]
4 L. Interaction Analysis of Lactobacillus acidophilus Group Lactic Acid Bacteria with Blood Group Sugar Chains and Human Intestinal Crude Mucin Interaction analysis between the acidophilus group lactic acid bacteria, blood group sugar chains and human intestinal crudely purified mucin was performed using a surface plasmon resonance analyzer (BIACORE 1000; Pharmacia Biotech). The interaction intensity in the sensorgram (binding / dissociation curve) was represented by a resonance unit (RU) value. The regeneration solution used was 0.75 to 3 M guanidine hydrochloride. The principle of the present device and the method of interpreting the sensorgram are shown in FIGS.
[0015]
4-1 Culture and Preparation of Analyte Cells Each strain was subcultured on MRS medium (Difco Laboratories) and then cultured at 37 ° C. for 12 hours. The cells collected from the culture solution (500 μl) were washed with running buffer HBS-EP buffer (containing 0.01 M HEPES pH 7.4, 0.15 M NaCl, 3 mM EDTA, 0.005% Surfactant P20). The cells were suspended in the same buffer (500 μl) to obtain analyte cells.
[0016]
4-2 Analysis of Interaction with Blood Group Sugar Chain Three types of biotinylated ligands, that is, a type A blood group glycan BP probe are provided in each flow cell on a sensor chip SA of a type in which streptavidin (SA) is immobilized in advance. , The B-type blood group sugar chain BP probe and the α-L-Rhamnose BP-probe were respectively immobilized by binding to avidin via biotin. Next, each analyte cell prepared in 4-1 was injected into BIACORE 1000, and the interaction between the bound sugar chain and the cell was analyzed over time.
[0017]
4-3 Analysis of Interaction with Human Type A Intestinal Mucin A sensor chip CM5 into which carboxymethyl dextran was introduced was used. The partially purified human HCM (ligand) prepared in 3 was immobilized on each flow cell on the sensor chip by the amine coupling method. Ethanolamine was used for blocking the remaining active group not bound to the ligand. Subsequently, each analyte cell prepared in 4-1 was injected into BIACORE 1000, and the interaction between the human colon mucin and the cell was analyzed over time.
[0018]
<Results and Discussion>
1 Interaction analysis with BIACORE 1000 for blood group sugar chain probe The binding (affinity) between 21 strains and a ligand by BIACORE 1000 was examined by a sensorgram (reaction curve). As a result, the three strains were found to bind to the BP sugar chain probe. The remaining 18 strains showed no or very weak binding.
Binding to BP sugar chain probe was observed. 5A and 5B show sensorgrams of crispatus strain JCM8778. This JCM8778 strain was compared with the binding to B-trisaccharide BP-Probe (200 RU value), which is a B-type sugar chain (FIG. 5B), with respect to the A-trisaccharide BP-Probe (350 RU value), which is an A-type sugar chain. Showed stronger binding (FIG. 5A). On the other hand, it did not bind to α-L-Rhamnose BP-Probe as a control, which differs from BP-Probe only at the sugar chain epitope site (FIG. 5C). As a result, the binding of the JCM8778 strain to both sugar chain BP-Probes is not caused by non-specific binding to the spacer site of the sugar chain BP-Probe or the surface of the sensor chip SA, but by specific binding to the sugar chain epitope. It became clear that there was. That is, it was shown that the JCM8778 strain was one of the lactic acid bacteria that specifically recognizes and binds to blood group sugar chains.
[0019]
2 Analysis of interaction with human intestinal mucin type A This was a binding test of B. acidophilus lactic acid bacteria with an artificial sugar chain probe using BIACORE 1000. Therefore, the binding property of the JCM8778 strain to a type A human intestinal partially purified mucin prepared from the human intestine, which is considered to reflect the actual intestinal environment, was examined. As a result, although the binding was weaker than in the case of the A-type sugar chain BP-probe, binding to human A-type large intestine mucin was clearly observed. These experimental results suggested that the JCM8778 strain was highly likely to be strongly attached to the human intestinal tract. A-type sugar chain The binding was weaker than in the case of the BP-probe, because various types of proteins and sugar chain sites were contained in human A colon mucin in large amounts, and the type A sugar chain involved in the binding Was also considered as one of the causes.
[0020]
<Conclusion>
The biosensor BIACORE using surface plasmon resonance spectrum measures the interaction of biomolecules in real time, and can analyze each interaction from mere strength (affinity) analysis to speed (kinetics). Have. Moreover, difficulties in other analysis required for B / F separation, a very weak binding (low affinity, K D value of 10 -3 M) can be analyzed (e.g., Non-Patent Document 4 reference.) .
A-type sugar chain Mass screening is performed using a sensor chip to which BP-Probe is bound, and further screening is performed using a sensor chip to which human A-type intestinal mucin is bound, thereby providing a useful protein with high human intestinal adhesion. Biotic lactic acid bacteria could be provided. Table 1 shows the lactic acid bacteria to be subjected to this screening.
[0021]
[Table 1]
Figure 2004101249
[0022]
By verifying the adhesion of lactic acid bacteria to both sensor chips by BIACORE using this surface plasmon resonance spectrum, the blood group sugar recognition L. It is considered that this is extremely effective for screening lactic acid bacteria of the acidophilus group. The BIACORE evaluation method of binding, in which the RU value increases for those showing adhesiveness, and the RU value does not increase for those showing no adhesiveness, is very clear and furthermore, it is based on the shape of the sensorgram. Useful knowledge can also be obtained as to what kind of binding property the test strain has.
In addition, by expanding BIACORE analysis using other O (H) -type sugar chains BP-Probe and B, O-type human colon mucin, a novel screening method for human intestinal adherent lactic acid bacteria corresponding to human whole blood types Can be established. By this method, a lactic acid bacterium having a high intestinal adhesion can be screened for each ABO blood type, and a bespoke functional blood type yogurt corresponding to an individual level can be produced using the lactic acid bacterium.
[0023]
【The invention's effect】
According to the present invention, a novel screening method for a probiotic lactic acid bacterium strain having a new function by BIACORE using a surface plasmon resonance spectrum is provided. The lactic acid bacterium strain obtained by the present invention is a lactic acid bacterium having a high intestinal adherence for each ABO blood type, and using the lactic acid bacterium, a bespoke blood-type functional yogurt corresponding to an individual level and a new probiotic foodstuff Or gastrointestinal probiotics such as infections (periodontal disease, caries, chronic gastritis, gastroduodenal ulcer, gastric cancer, enterohemorrhagic colitis, hemolytic uremic syndrome, encephalopathy, food poisoning, pseudomembranous colitis), allergies It is possible to provide foods for preventing or treating diseases such as diseases (food allergy, atopic dermatitis, bronchial asthma) and inflammatory bowel diseases (Crohn's disease, ulcerative colitis).
[0024]
[Non-patent document 1]
Junko Amano, Biochemistry, The Biochemical Society of Japan, 1999, Vol. 71, p. 274-277
[Non-patent document 2]
Fujisawa, T .; Outside, Int. J. Syst. Bacteriol. , 1992, Vol. 42, p. 487-492
[Non-Patent Document 3]
Takahashi, N.M. Outside, Biosci. Biotech. Biochem. , 1996, Vol. 60, No. 9, p. 1434-1438
[Non-patent document 4]
Junichi Inagawa: Experimental Medicine Separate Volume, Close-up Experimental Method Summary, Published March 1, 2002, p. 143-150
[Brief description of the drawings]
FIG. 1 shows the chemical structure of a BP probe sugar chain probe having A and B epitope regions of human ABO blood group.
FIG. 2-A shows a sugar chain site of an A-type sugar chain BP probe, and FIG. 2-B shows a sugar chain site of a B-type sugar chain BP probe.
FIG. 3 defines the principle of a BIACORE 1000 measurement method using surface plasmon resonance (SPR) and the definition of a resonance unit.
FIG. 4 shows a binding / dissociation / regeneration cycle in a sensorgram obtained by BIACORE 1000 analysis.
FIG. 5-A shows binding to L-type A sugar chain BP probe. FIG. 5-B shows a BIACORE sensorgram of crispatus JCM8778 strain, FIG. 5-B shows a BIACORE sensorgram of the same strain showing binding to an A-type sugar chain BP probe, and FIG. 5-C shows a control.
Fig. 6-A shows a sensorgram of immobilized crude mucosa of human type A large intestine immobilized on a sensor chip CM, and Fig. 6-B shows the binding ability of L. mucin to the mucin. 2 shows a BIACORE sensorgram of crispatus JCM8778 strain.

Claims (5)

表面プラズモン共鳴スペクトルによるプロバイオティクス乳酸菌のスクリーニング方法であって、リガンドにABO式血液型エピトープ部分を用いることを特徴とするプロバイオティクス乳酸菌のスクリーニング方法。A method for screening probiotic lactic acid bacteria by surface plasmon resonance spectrum, wherein the method uses an ABO blood group epitope portion as a ligand. 表面プラズモン共鳴スペクトルによるプロバイオティクス乳酸菌のスクリーニング方法であって、リガンドに大腸由来のムチンを用いることを特徴とするプロバイオティクス乳酸菌のスクリーニング方法。A method for screening a probiotic lactic acid bacterium by surface plasmon resonance spectrum, comprising using a large intestine-derived mucin as a ligand. 大腸由来のムチンが粗精製ムチンである請求項2記載のスクリーニング方法。3. The screening method according to claim 2, wherein the colon-derived mucin is a crudely purified mucin. プロバイオティクス乳酸菌がLactobacillus属またはBifidobacterium属である請求項1〜3記載のスクリーニング方法。The screening method according to any one of claims 1 to 3, wherein the probiotic lactic acid bacterium is of the genus Lactobacillus or the genus Bifidobacterium. Lactobacillus属がL. acidophilus、L. casei、L. rhamnosus、およびL. bulgaricusからなる群より選ばれる請求項4記載のスクリーニング方法。Lactobacillus sp. {Acidophilus, L .; {Casei, L .; Rhamnosus, and L. The screening method according to claim 4, wherein the screening method is selected from the group consisting of icbulgaricus.
JP2002260646A 2002-09-05 2002-09-05 Screening method for probiotic lactic acid bacteria Expired - Fee Related JP3919635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002260646A JP3919635B2 (en) 2002-09-05 2002-09-05 Screening method for probiotic lactic acid bacteria

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002260646A JP3919635B2 (en) 2002-09-05 2002-09-05 Screening method for probiotic lactic acid bacteria

Publications (2)

Publication Number Publication Date
JP2004101249A true JP2004101249A (en) 2004-04-02
JP3919635B2 JP3919635B2 (en) 2007-05-30

Family

ID=32261234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002260646A Expired - Fee Related JP3919635B2 (en) 2002-09-05 2002-09-05 Screening method for probiotic lactic acid bacteria

Country Status (1)

Country Link
JP (1) JP3919635B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006059408A1 (en) * 2004-12-01 2006-06-08 Meiji Dairies Corporation Lactic acid bacterium binding to human abo blood types
WO2006067940A1 (en) * 2004-12-01 2006-06-29 Meiji Dairies Corporation Lactic acid bacteria binding to human abo blood types
JP2008537885A (en) * 2005-04-15 2008-10-02 ノース・キャロライナ・ステイト・ユニヴァーシティ Methods and compositions for modifying bacterial adhesion and stress tolerance
CN105105115A (en) * 2015-08-21 2015-12-02 暨南大学 Probiotics compound for crowds with blood types of A, B and O and method and application of probiotics compound

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006059408A1 (en) * 2004-12-01 2006-06-08 Meiji Dairies Corporation Lactic acid bacterium binding to human abo blood types
WO2006067940A1 (en) * 2004-12-01 2006-06-29 Meiji Dairies Corporation Lactic acid bacteria binding to human abo blood types
JPWO2006067940A1 (en) * 2004-12-01 2009-07-23 明治乳業株式会社 Human ABO blood group-binding lactic acid bacteria
US7897374B2 (en) 2004-12-01 2011-03-01 Meiji Dairires Corporation Human ABO blood group-binding lactobacilli
JP4738348B2 (en) * 2004-12-01 2011-08-03 株式会社明治 Human ABO blood group-binding lactic acid bacteria
US8465933B2 (en) 2004-12-01 2013-06-18 Meiji Co., Ltd Method for screening human ABO blood group-binding lactobacilli
JP2008537885A (en) * 2005-04-15 2008-10-02 ノース・キャロライナ・ステイト・ユニヴァーシティ Methods and compositions for modifying bacterial adhesion and stress tolerance
CN105105115A (en) * 2015-08-21 2015-12-02 暨南大学 Probiotics compound for crowds with blood types of A, B and O and method and application of probiotics compound

Also Published As

Publication number Publication date
JP3919635B2 (en) 2007-05-30

Similar Documents

Publication Publication Date Title
Bouguelia et al. On-chip microbial culture for the specific detection of very low levels of bacteria
Fukui Increased intestinal permeability and decreased barrier function: does it really influence the risk of inflammation?
Huang et al. Composite surface for blocking bacterial adsorption on protein biochips
Uchida et al. Lactobacilli binding human A-antigen expressed in intestinal mucosa
Uchida et al. A new assay using surface plasmon resonance (SPR) to determine binding of the Lactobacillus acidophilus group to human colonic mucin
Starr et al. Proteomic and metaproteomic approaches to understand host–microbe interactions
US8465933B2 (en) Method for screening human ABO blood group-binding lactobacilli
WO2014159510A1 (en) Compositions and methods for identifying secretory antibody-bound microbes
KR102024125B1 (en) Screening methods and uses thereof
CA2588940C (en) Human abo blood group-binding lactobacilli
Bourgonje et al. Phage-display immunoprecipitation sequencing of the antibody epitope repertoire in inflammatory bowel disease reveals distinct antibody signatures
JP3919635B2 (en) Screening method for probiotic lactic acid bacteria
Uchida et al. Lactic acid bacteria (LAB) bind to human B-or H-antigens expressed on intestinal mucosa
Fernández-Tomé et al. Peptides encrypted in the human intestinal microbial-exoproteome as novel biomarkers and immunomodulatory compounds in the gastrointestinal tract
CN103760345A (en) Kit for detecting mycobacterium tuberculosis infection by using peripheral blood and application of kit
Kang et al. Surface plasmon resonance-based inhibition assay for real-time detection of Cryptosporidium parvum oocyst
Eser et al. Rapid detection of foodborne pathogens by surface plasmon resonance biosensors
CN109781702A (en) A kind of detection method of magnetic microsphere and preparation method thereof and microorganism
Fronczek et al. Detection of foodborne pathogens using biosensors
CN114295828A (en) Exosome chip liquid biopsy method
CN106916809A (en) The new method that gram negative pathogenic bacterium is separate in septicemia
Katouli et al. Virulence characteristics of Escherichia coli strains causing acute cystitis in young adults in Iran
JP2009077658A (en) Method for quickly detecting campylobacter in feces
He et al. Oral microbiota disorder in GC patients revealed by 2b-RAD-M
DK200301392A (en) General method for propagating and detecting pathogenic bacteria

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070213

R150 Certificate of patent or registration of utility model

Ref document number: 3919635

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140223

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees