WO2006067255A1 - Intraocular lens for achromatising the eye and reducing the aberrations thereof - Google Patents

Intraocular lens for achromatising the eye and reducing the aberrations thereof Download PDF

Info

Publication number
WO2006067255A1
WO2006067255A1 PCT/ES2005/070163 ES2005070163W WO2006067255A1 WO 2006067255 A1 WO2006067255 A1 WO 2006067255A1 ES 2005070163 W ES2005070163 W ES 2005070163W WO 2006067255 A1 WO2006067255 A1 WO 2006067255A1
Authority
WO
WIPO (PCT)
Prior art keywords
iol
refractive
diffractive
spherical
aspherical
Prior art date
Application number
PCT/ES2005/070163
Other languages
Spanish (es)
French (fr)
Inventor
Jorge Luciano ALIÓ SANZ
Norberto Lopez Gil
Robert Montes Mico
Original Assignee
Instituto Oftalmológico De Alicante, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Instituto Oftalmológico De Alicante, S.L. filed Critical Instituto Oftalmológico De Alicante, S.L.
Publication of WO2006067255A1 publication Critical patent/WO2006067255A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2/1613Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
    • A61F2/1648Multipart lenses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses

Definitions

  • the invention is encompassed within ophthalmology, optometry and optics. Specifically, the invention relates to an intraocular lens to acromatize the eye and reduce its aberrations.
  • the eye like other refractive systems, has aberrations that affect the resolution and quality of the image that forms in the retina.
  • the eye suffers from monochromatic aberrations (blur, astigmatism, spherical aberration, and others) and chromatic (longitudinal and transverse).
  • monochromatic aberrations blue, astigmatism, spherical aberration, and others
  • chromatic longitudinal and transverse
  • Monochromatic aberrations such as blurring and astigmatism can be corrected by ophthalmic lenses, contact lenses, refractive surgery or by implantation of intraocular lenses (IOLs) into the eye.
  • IOLs intraocular lenses
  • Monochromatic aberrations such as spherical aberration can also be corrected by ophthalmic and contact lenses and IOL systems are currently beginning to be developed for correction.
  • U.S. Patent 6,609,793 states a methodology for obtaining aphakic IOLs providing the eye with a reduction in monochromatic aberrations: spherical aberration of high order, blurring and astigmatism.
  • These researchers and others who develop a similar methodology base their calculations on measurements or simulations performed in monochromatic or quasi-monochromatic light, and suggest eliminating aberration from calculations performed in which intraocular refractive indices remain constant. Said calculation therefore does not take into account the variation of the refractive indices of the media for different wavelengths, that is, the chromatic dispersion of the ocular media.
  • Chromatic aberration presents an important complication in its correction due to the scattering of light by its very nature and to acromatize the eye, it is usually necessary to couple two or more optical systems (doublets or triplets) for correction.
  • IOLs have been devised to achromaticize the eye for the purpose to improve its optical quality.
  • US Patent 5,895,422 and international application WO 94/13225 state an aphakic IOL for the correction of chromatic aberration.
  • cataracts In the eye, other problems also occur, such as cataracts. Cataract is the loss of transparency of the lens.
  • the lens is a transparent lens that we have behind the pupil and that helps us sharply focus on the objects. Over the years, due to trauma, disease, the lens may lose its natural transparency.
  • the treatment of cataracts is fundamentally surgical.
  • the cataract operation consists of the extraction of the lens that is opacified and its replacement by an artificial lens: IOL, which is placed in the same place as the original lens, restoring the vision that had been lost as a result of the cataracts (Agarwal S et al. in Phacoemulsification, Third Edition. SLACK Inc. 2004).
  • the lens can also be removed even if it is not opacified and replaced by an IOL.
  • the extraction seeks a refractive end: the elimination of a refractive error (myopia, farsightedness and / or astigmatism).
  • a refractive error myopia, farsightedness and / or astigmatism
  • the lens can also be maintained, an IOL inserted into the anterior / posterior chamber of the eye and thus eliminate the refractive error (phakic IOL, Alió JL and Pérez-Santonja JJ in Refractive Surgery with Phakic IOLs, SLACK Inc. 2004) .
  • the objective of the invention is to develop a new IOL to be implanted in the human eye.
  • the presence in the eye of monochromatic spherical aberration and chromatic aberration has been considered.
  • the implementation of the proposed IOL is intended to reduce these aberrations and provide better optical quality and consequently greater visual performance of the human eye.
  • the design of the new IOL is based on a hybrid lens with two surfaces, being a refractive surface and the other diffractive, that is, with different optical properties.
  • the combination of both surfaces in the same lens compensates for the chromatic dispersion of the human eye.
  • at least one of the surfaces is aspheric, which makes it possible to reduce the spherical aberration of the entire eye once the IOL is inserted.
  • the compensation of both aberrations also decreases the spherochromatic aberration and can increase the depth of focus of the eye allowing better vision at different distances.
  • a first aspect of the invention relates to an IOL (intraocular lens) configured to be implanted in a human eye comprising a first surface and a second surface with different optical properties, where
  • one of said surfaces is diffractive
  • one of said surfaces is refractive
  • At least one of said surfaces is aspheric
  • said first surface and said second surface defining a structure that has a plurality of optical properties that take into account: [19] chromatic dispersions of the ocular media,
  • spherochromatic aberrations due to the change of spherical monochromatic aberrations with light scattering [22] to reduce spherical monochromatic aberrations, chromatic aberrations and spherochromatic aberrations.
  • different variants of the invention are defined: [24] - IOL where the first surface is spherical refractive and the second surface is aspherical diffractive. [25] - IOL where the first surface is aspherical diffractive and the second surface is spherical refractive. [26] - IOL where the first surface is aspherical refractive and the second surface is spherical diffractive.
  • the IOL of the invention is configured to be placed in a position in the human eye selected from: a posterior chamber, an anterior chamber, a capsule, a cornea and a vitreous. [35] Also, the IOL is configured to be placed in a human eye with or without a lens. [36] On the other hand, the IOL is composed of a soft or hard material that presents biocompatibility with the human eye.
  • the IOL material may be selected from: acrylic, silicone, hydrogel, methyl methacrylate and combinations thereof.
  • the IOL also includes haptics to be implanted in the human eye, said haptics being configured to place the IOL in a position in the human eye selected from: a posterior chamber, an anterior chamber, a capsule, a coma and a vitreous.
  • the IOL may also comprise a material with selective transmittance at certain wavelengths.
  • the IOL is configured to allow movement and pseudo-accommodation of said lens.
  • the first and / or second surfaces of the IOL have radial variations in curvature so that the lens has different foci to obtain a
  • FIG. 1 shows the polychromatic Modulation transfer (MTF) function for the example eye model, with the IOL proposed in the example
  • Figure 3 shows the focus offset (D, diopters) for different wavelengths for the example eye model, with the IOL proposed in the example (solid line), and the reference IOL (dotted line ) proposal in example.
  • Figure 4 shows the optical path difference (Optical Path Difference, OPD) in axis at the entrance pupil for the five wavelengths used (see figure) in the example eye model, with the proposed IOL ( a), and the reference IOL (b).
  • OPD optical Path Difference
  • the proposed lens is a combination of a refractive and a diffractive surface presented below:
  • the new IOL can be designed with a material that includes a chromophore capable of selectively reducing the transmittance of certain wavelengths.
  • the main application of the proposed IOL is the improvement of optical and visual quality [Visual Acuity, Monochromatic and Polychromatic Modulation Transfer Function (MTF, hereinafter), Contrast Sensitivity Function, ...] person who has been implanted.
  • MTF Monochromatic and Polychromatic Modulation Transfer Function
  • the proposed eye model is composed of four surfaces (two for the cornea and two for the IOL), a flat iris and a spherical retina.
  • the specific data are indicated in table 1.
  • Table 1 [72] The ⁇ , and ⁇ parameters have been optimized to minimize the mean square value (Root Mean Square or RMS) measured in the pupil plane, but can also be optimized to minimize another type of quality parameter of image both in the pupil plane and in the retina plane.
  • RMS Root Mean Square
  • n n + A / ⁇ + B / ⁇ 3.5 [79] where the specific values of n, A and B used in the model come from table 2.
  • the material of the IOL is PMMA (PolyMetilMetAcrylate), but it could be another for example: a soft or hard material that has biocompatibility with the human eye selected from: acrylic, silicone, hydrogel, methyl methacrylate.
  • Figure 2 shows the values of polychromatic MTF on the horizontal axis of the eye model with the proposed IOL (solid line); the reference IOL (dotted line) and the one corresponding to the diffraction limited system (gray line).
  • Figure 3 shows the focus offset (D) for different wavelengths (longitudinal chromatic aberration) with the proposed IOL (solid line), and the reference IOL (dotted line).
  • OPD optical path difference
  • Figures 2, 3 and 4 show the significant reduction of both monochromatic and chromatic aberrations of the proposed eye model when the proposed IOL is implanted in comparison to a conventional spherical surface IOL.
  • the eye model values presented are approximate values that may change depending on the specific eye model used. The change of these values would vary the values of ⁇ and ⁇ (and that of ⁇ in case a diffractive and aspherical surface type S4 is used) obtained and presented in table 1. More wavelengths and other wavelengths can also be taken pupillary radius that also They would dictate these values.

Abstract

The invention relates to the use of an intraocular lens (IOL) which is designed to be implanted in a human eye. The inventive lens comprises a first surface (1) and a second surface (2) having different optical properties, one of said surfaces being diffractive and the other refractive. The first (1) and second (2) surfaces define a structure comprising a plurality of optical properties in order to reduce monochromatic spherical aberrations, chromatic aberrations and spherical/chromatic aberrations. According to the invention, the following surfaces can be combined: aspherical diffractive, spherical diffractive, spherical refractive, aspherical refractive. The spherical surfaces can be replaced by flat surfaces.

Description

La Descripción LENTE INTRAOCULAR PARA ACROMATIZAR EL OJO Y The Description INTRAOCULAR LENS TO ACROMATIZE THE EYE AND
REDUCIR SUS ABERRACIONESREDUCE YOUR ABERRATIONS
Campo de la InvenciónField of the Invention
[1] La invención se engloba dentro de la oftalmología, optometría y óptica. En concreto, la invención se refiere a una lente intraocular para acromatizar el ojo y reducir sus aberraciones.[1] The invention is encompassed within ophthalmology, optometry and optics. Specifically, the invention relates to an intraocular lens to acromatize the eye and reduce its aberrations.
[2][2]
Antecedentes de la InvenciónBackground of the Invention
[3] El ojo, al igual que otros sistemas refractivos, presenta aberraciones que afectan la resolución y la calidad de la imagen que se forma en la retina. El ojo sufre de aberraciones monocromáticas (desenfoque, astigmatismo, aberración esférica, y otras) y cromáticas (longitudinal y transversal). Existe una corrección parcial de la aberración esférica por el aplanamiento periférico de la córnea y por el cristalino, especialmente en su estado acomodado. Por otra parte, el sistema óptico del ojo no posee capacidad para corregir la aberración cromática.[3] The eye, like other refractive systems, has aberrations that affect the resolution and quality of the image that forms in the retina. The eye suffers from monochromatic aberrations (blur, astigmatism, spherical aberration, and others) and chromatic (longitudinal and transverse). There is a partial correction of spherical aberration by peripheral flattening of the cornea and by the lens, especially in its accommodated state. On the other hand, the eye's optical system does not have the ability to correct chromatic aberration.
[4] Las aberraciones monocromáticas como el desenfoque y el astigmatismo pueden corregirse mediante lentes oftálmicas, lentes de contacto, cirugía refractiva o mediante la implantación de lentes intraoculares (LIO en adelante) dentro del ojo.[4] Monochromatic aberrations such as blurring and astigmatism can be corrected by ophthalmic lenses, contact lenses, refractive surgery or by implantation of intraocular lenses (IOLs) into the eye.
[5] Las aberraciones monocromáticas como la aberración esférica también puede corregirse mediante lentes oftálmicas y de contacto y actualmente están empezando a desarrollarse sistemas de LIOs para su corrección. Existen métodos para obtener lentes intraoculares que proporcionen una reducción de las aberraciones monocromáticas en el ojo. La patente U.S. 6,609,793 enuncia una metodología para obtener LIOs afáquicas proporcionando al ojo una reducción de las aberraciones monocromáticas: aberración esférica de alto orden, desenfoque y astigmatismo. Estos investigadores y otros que desarrollan una metodología similar, basan sus cálculos en medidas o simulaciones realizadas en luz monocromática o cuasi-monocromática, y sugieren eliminar la aberración a partir cálculos realizados en los que los índices de refracción intraoculares permanecen constantes. Dicho cálculo no tiene por tanto en consideración la variación de los índices de refracción de los medios para diferentes longitudes de onda, es decir, la dispersión cromática de los medios oculares.[5] Monochromatic aberrations such as spherical aberration can also be corrected by ophthalmic and contact lenses and IOL systems are currently beginning to be developed for correction. There are methods to obtain intraocular lenses that provide a reduction in monochromatic aberrations in the eye. U.S. Patent 6,609,793 states a methodology for obtaining aphakic IOLs providing the eye with a reduction in monochromatic aberrations: spherical aberration of high order, blurring and astigmatism. These researchers and others who develop a similar methodology, base their calculations on measurements or simulations performed in monochromatic or quasi-monochromatic light, and suggest eliminating aberration from calculations performed in which intraocular refractive indices remain constant. Said calculation therefore does not take into account the variation of the refractive indices of the media for different wavelengths, that is, the chromatic dispersion of the ocular media.
[6] La aberración cromática presenta una importante complicación en su corrección debido a la dispersión de la luz por su propia naturaleza y para acromatizar el ojo suelen necesitarse del acople de dos o más sistemas ópticos (dobletes o tripletes) para su corrección. No obstante, se han ideado LIOs que acromaticen el ojo con la finalidad de mejorar su calidad óptica. La patente U.S. 5,895,422 y solicitud internacional WO 94/13225 enuncian una LIO afáquica para la corrección de la aberración cromática. Estas dos patentes no consideran que el ojo humano sufre de manera adicional a la aberración cromática las aberraciones monocromáticas que se han comentado anteriormente (ejemplo: aberración esférica), y el cambio de esta aberración esférica con la dispersión de la luz (aberración esferocromática), las cuales reducen en gran medida la calidad de la imagen que se forma en la retina.[6] Chromatic aberration presents an important complication in its correction due to the scattering of light by its very nature and to acromatize the eye, it is usually necessary to couple two or more optical systems (doublets or triplets) for correction. However, IOLs have been devised to achromaticize the eye for the purpose to improve its optical quality. US Patent 5,895,422 and international application WO 94/13225 state an aphakic IOL for the correction of chromatic aberration. These two patents do not consider that the human eye suffers in addition to the chromatic aberration the monochromatic aberrations that have been mentioned previously (example: spherical aberration), and the change of this spherical aberration with the light scattering (spherochromatic aberration), which greatly reduce the quality of the image that forms on the retina.
[7] En el ojo, también se presentan otro tipo de problemas como son las cataratas. La catarata es la pérdida de transparencia del cristalino. El cristalino es una lente transparente que tenemos detrás de la pupila y que nos sirve para enfocar nítidamente los objetos. Con el paso de los años, por traumatismos, enfermedades, el cristalino puede ir perdiendo su natural transparencia.. El tratamiento de las cataratas es fundamentalmente quirúrgico. La operación de cataratas consiste en la extracción del cristalino que está opacificado y su sustitución por una lente artificial: LIO, que se coloca en el mismo sitio que el cristalino original, restaurando la visión que se había perdido a consecuencia de las cataratas (Agarwal S et al. en Phacoemulsification, Third Edition. SLACK Inc. 2004). No obstante, también puede extraerse el cristalino aunque no esté opacificado y sustituirlo por una LIO. En este caso la extracción busca un fin refractivo: la eliminación de un error refractivo (miopía, hipermetropía y/o astigmatismo). Con este fin también puede, manteniéndose el cristalino, insertarse una LIO en la cámara anterior/posterior del ojo y así eliminar el error refractivo (LIO fáquica, Alió JL y Pérez-Santonja JJ en Refractive Surgery with Phakic IOLs, SLACK Inc. 2004).[7] In the eye, other problems also occur, such as cataracts. Cataract is the loss of transparency of the lens. The lens is a transparent lens that we have behind the pupil and that helps us sharply focus on the objects. Over the years, due to trauma, disease, the lens may lose its natural transparency. The treatment of cataracts is fundamentally surgical. The cataract operation consists of the extraction of the lens that is opacified and its replacement by an artificial lens: IOL, which is placed in the same place as the original lens, restoring the vision that had been lost as a result of the cataracts (Agarwal S et al. in Phacoemulsification, Third Edition. SLACK Inc. 2004). However, the lens can also be removed even if it is not opacified and replaced by an IOL. In this case the extraction seeks a refractive end: the elimination of a refractive error (myopia, farsightedness and / or astigmatism). To this end, the lens can also be maintained, an IOL inserted into the anterior / posterior chamber of the eye and thus eliminate the refractive error (phakic IOL, Alió JL and Pérez-Santonja JJ in Refractive Surgery with Phakic IOLs, SLACK Inc. 2004) .
[8] La mayoría de las LIOs desarrolladas hasta ahora no aportan un diseño óptico tal que proporcione la mejor calidad óptica del conjunto lente más ojo y consecuentemente la mejor calidad de la imagen formada en la retina. Los pacientes a los que se aplican dichas LIOs refieren disminución en la calidad de visión (Montés-Micó et al. en J Cataract Refract Surg 2003,-29:703-11 y Ophthalmology 2004;lll;85-96) debido principalmente a la presencia de cierta cantidad de aberraciones ópticas.[8] Most of the IOLs developed so far do not provide an optical design that provides the best optical quality of the lens plus eye set and consequently the best image quality formed on the retina. The patients to whom these IOLs apply refer to decreased vision quality (Montés-Micó et al. In J Cataract Refract Surg 2003, -29: 703-11 and Ophthalmology 2004; lll; 85-96) mainly due to presence of a certain amount of optical aberrations.
[9] Según la naturaleza policromática o no de la luz, existen dos tipos de aberraciones: cromáticas y monocromáticas. La dispersión cromática en el ojo origina la presencia de aberraciones cromáticas (longitudinal y transversal) que merman considerablemente la visión de los detalles (Thibos et al, en Optom Vis Sci 1991 ;68: 599-607). Pero incluso, en el caso de que el ojo no dispersara la luz, existen otro tipo de aberraciones (aberraciones monocromáticas) que también afectan a la visión de los detalles. Por su presencia en el ojo humano, son de especial relevancia las aberraciones de bajo orden (desenfoque y astigmatismo) y la aberración esférica (Castejón-Mochón et al en Vis Res 2002 ;42: 1611-7). En luz policromática ambos tipos de aberraciones (cromáticas y monocromáticas) están presentes en el ojo dependiendo unas de otras. En concreto, la variación de la aberración esférica con la longitud de onda origina la denominada aberración esferocromática, la cual puede afectar considerablemente a la calidad óptica de la imagen formada en la retina e inexorablemente a la calidad de visión. Por ello, para que una LIO proporcione una buena calidad óptica en el ojo, ésta debe corregir tanto las aberraciones cromáticas como las aberraciones monocromáticas del mismo.[9] Depending on the polychromatic nature or not of light, there are two types of aberrations: chromatic and monochromatic. The chromatic dispersion in the eye causes the presence of chromatic aberrations (longitudinal and transverse) that considerably diminish the vision of the details (Thibos et al, in Optom Vis Sci 1991; 68: 599-607). But even, in the event that the eye did not scatter the light, there are other types of aberrations (monochromatic aberrations) that also affect the vision of the details. Due to their presence in the human eye, low-order aberrations (blur and astigmatism) and spherical aberration (Castejón-Mochón et al in Vis Res 2002; 42: 1611-7) are of particular relevance. In polychromatic light both types of aberrations (chromatic and monochromatic) are present in the eye depending on each other. Specifically, the variation of the spherical aberration with the wavelength causes the so-called spherochromatic aberration, which can considerably affect the optical quality of the image formed in the retina and inexorably the quality of vision. Therefore, for an IOL to provide good optical quality in the eye, it must correct both chromatic aberrations and monochromatic aberrations.
[10][10]
Descripción de la InvenciónDescription of the Invention
[11] El objetivo de la invención es desarrollar una nueva LIO para ser implantada en el ojo humano. En el diseño de la nueva LIO se ha considerado la presencia en el ojo de aberración esférica monocromática y aberración cromática. La implantación de la LIO propuesta pretende reducir dichas aberraciones y proporcionar una mejor calidad óptica y en consecuencia un mayor rendimiento visual del ojo humano.[11] The objective of the invention is to develop a new IOL to be implanted in the human eye. In the design of the new IOL, the presence in the eye of monochromatic spherical aberration and chromatic aberration has been considered. The implementation of the proposed IOL is intended to reduce these aberrations and provide better optical quality and consequently greater visual performance of the human eye.
[12] A la vista de lo anterior existe la necesidad de desarrollar una LIO que se adapte mejor a las aberraciones, tanto monocromáticas como cromáticas, presentes en el ojo humano y que proporcione la mejor calidad óptica. La LIO desarrollada en esta invención soluciona unos problemas no considerados en las patentes anteriores que no tienen en cuenta ambas aberraciones ni tampoco, por tanto, la aberración esferocromática. Un diseño de este tipo mejora la calidad óptica de anteriores LIOs, siendo capaz de reducir la aberración esférica monocromática, la aberración cromática y la aberración esferocromática para que en conjunto proporcione una mejor calidad óptica, una mejor calidad en la imagen retiniana y por tanto de la calidad visual.[12] In view of the above, there is a need to develop an IOL that is better suited to aberrations, both monochromatic and chromatic, present in the human eye and that provides the best optical quality. The IOL developed in this invention solves problems not considered in previous patents that do not take into account both aberrations nor, therefore, spherochromatic aberration. Such a design improves the optical quality of previous IOLs, being able to reduce monochromatic spherical aberration, chromatic aberration and spherochromatic aberration so that together it provides better optical quality, better quality in the retinal image and therefore of visual quality
[13] El diseño de la nueva LIO está basado en una lente híbrida de dos superficies, siendo una superficie refractiva y la otra difractiva es decir con propiedades ópticas distintas. La combinación de ambas superficies en una misma lente compensa la dispersión cromática del ojo humano. Por otro lado, al menos una de las superficies es asf erica, lo que posibilita la reducción de la aberración esférica del ojo completo una vez insertada la LIO. La compensación de ambas aberraciones disminuye también la aberración esferocromática y puede aumentar la profundidad de foco del ojo posibilitando una mejor visión a diferentes distancias.[13] The design of the new IOL is based on a hybrid lens with two surfaces, being a refractive surface and the other diffractive, that is, with different optical properties. The combination of both surfaces in the same lens compensates for the chromatic dispersion of the human eye. On the other hand, at least one of the surfaces is aspheric, which makes it possible to reduce the spherical aberration of the entire eye once the IOL is inserted. The compensation of both aberrations also decreases the spherochromatic aberration and can increase the depth of focus of the eye allowing better vision at different distances.
[14] Un primer aspecto de la invención se refiere a una LIO (lente intraocular) configurada para ser implantada en un ojo humano que comprende una primera superficie y una segunda superficie con propiedades ópticas distintas, donde[14] A first aspect of the invention relates to an IOL (intraocular lens) configured to be implanted in a human eye comprising a first surface and a second surface with different optical properties, where
[15] una de dichas superficies es difractiva;[15] one of said surfaces is diffractive;
[16] una de dichas superficies es refractiva;[16] one of said surfaces is refractive;
[17] al menos una de dichas superficies es asf erica;[17] at least one of said surfaces is aspheric;
[18] definiendo dicha primera superficie y dicha segunda superficie una estructura que tiene una pluralidad de propiedades ópticas que tienen en cuenta: [19] dispersiones cromáticas de los medios oculares,[18] said first surface and said second surface defining a structure that has a plurality of optical properties that take into account: [19] chromatic dispersions of the ocular media,
[20] aberraciones monocromáticas esféricas de la comea y el cristalino y[20] spherical monochromatic aberrations of the comea and lens and
[21] aberraciones esferocromáticas por el cambio de aberraciones monocromáticas esféricas con la dispersión de la luz; [22] para reducir aberraciones esféricas monocromáticas, aberraciones cromáticas y aberraciones esferocromáticas. [23] De acuerdo con este primer aspecto, se definen diferentes variantes de la invención: [24] - LIO donde la primera superficie es refractiva esférica y la segunda superficie es difractiva asférica. [25] - LIO donde la primera superficie es difractiva asférica y la segunda superficie es refractiva esférica. [26] - LIO donde la primera superficie es refractiva asférica y la segunda superficie es difractiva esférica. [27] - LIO donde la primera superficie es difractiva esférica y la segunda superficie es refractiva asférica. [28] - LIO donde la primera superficie es refractiva asférica y la segunda superficie es difractiva asférica. [29] - LIO donde la primera superficie es difractiva asférica y la segunda superficie es refractiva asférica. [30] - LIO donde la primera superficie es refractiva esférica y la segunda superficie difractiva plana. [31] - LIO donde la primera superficie es difractiva plana y la segunda superficie es refractiva esférica. [32] - LIO donde la primera superficie es difractiva plana y la segunda superficie es refractiva asférica. [33] - LIO donde la primera superficie es refractiva asférica y la segunda superficie es difractiva plana. [34] La LIO de la invención está configurada para ser colocada en una posición en el ojo humano seleccionada entre: una cámara posterior, una cámara anterior, una cápsula, una córnea y un vitreo. [35] Asimismo, la LIO está configurada para ser colocada en un ojo humano con o sin cristalino. [36] Por otro lado, la LIO está compuesta de un material blando o duro que presente biocompatibilidad con el ojo humano. El material de la LIO puede estar seleccionado entre: acrílico, silicona, hidrogel, metil-metacrilato y combianciones de los mismos. [37] Adicionalmente, la LIO además comprende hápticos para poder ser implantada en el ojo humano, estando configurados dichos hápticos para colocar la LIO en una posición en el ojo humano seleccionada entre: una cámara posterior, una cámara anterior, una cápsula, una comea y un vitreo. [38] La LIO también puede comprender un material con una transmitancia selectiva a determinadas longitudes de onda. [39] Igualmente, la LIO está configurada para permitir movimiento y pseudo- acomodación de dicha lente. [40] Opcionalmente, la primera y/o segunda superficies de la LIO presentan variaciones radiales de curvatura de forma que la lente presente diferentes focos para obtener una[21] spherochromatic aberrations due to the change of spherical monochromatic aberrations with light scattering; [22] to reduce spherical monochromatic aberrations, chromatic aberrations and spherochromatic aberrations. [23] According to this first aspect, different variants of the invention are defined: [24] - IOL where the first surface is spherical refractive and the second surface is aspherical diffractive. [25] - IOL where the first surface is aspherical diffractive and the second surface is spherical refractive. [26] - IOL where the first surface is aspherical refractive and the second surface is spherical diffractive. [27] - IOL where the first surface is spherical diffractive and the second surface is aspherical refractive. [28] - IOL where the first surface is aspherical refractive and the second surface is aspherical diffractive. [29] - IOL where the first surface is aspherical diffractive and the second surface is aspherical refractive. [30] - IOL where the first surface is spherical refractive and the second flat diffractive surface. [31] - IOL where the first surface is flat diffractive and the second surface is spherical refractive. [32] - IOL where the first surface is flat diffractive and the second surface is aspherical refractive. [33] - IOL where the first surface is aspherical refractive and the second surface is flat diffractive. [34] The IOL of the invention is configured to be placed in a position in the human eye selected from: a posterior chamber, an anterior chamber, a capsule, a cornea and a vitreous. [35] Also, the IOL is configured to be placed in a human eye with or without a lens. [36] On the other hand, the IOL is composed of a soft or hard material that presents biocompatibility with the human eye. The IOL material may be selected from: acrylic, silicone, hydrogel, methyl methacrylate and combinations thereof. [37] Additionally, the IOL also includes haptics to be implanted in the human eye, said haptics being configured to place the IOL in a position in the human eye selected from: a posterior chamber, an anterior chamber, a capsule, a coma and a vitreous. [38] The IOL may also comprise a material with selective transmittance at certain wavelengths. [39] Similarly, the IOL is configured to allow movement and pseudo-accommodation of said lens. [40] Optionally, the first and / or second surfaces of the IOL have radial variations in curvature so that the lens has different foci to obtain a
LIO multifocal. [41]Multifocal IOL [41]
Breve descripción de los dibujos [42] A continuación se pasa a describir de manera muy breve una serie de dibujos que ayudan a comprender mejor la invención y que se relacionan expresamente con una realización de dicha invención que se presenta como un ejemplo no limitativo de ésta. [43] La Figura 1 muestra algunos de los diferentes diseños de la LIO en sus posibles combinaciones con curvaturas convexas.BRIEF DESCRIPTION OF THE DRAWINGS [42] A series of drawings that help to better understand the invention and that expressly relate to an embodiment of said invention that is presented as a non-limiting example thereof is described very briefly below. . [43] Figure 1 shows some of the different IOL designs in their possible combinations with convex curvatures.
[44] La Figura 2 muestra la función de transferencia de Modulación (MTF) policromática para el modelo de ojo del ejemplo , con la LIO propuesta en el ejemplo[44] Figure 2 shows the polychromatic Modulation transfer (MTF) function for the example eye model, with the IOL proposed in the example
(línea continua), la LIO de referencia del ejemplo (línea de puntos); y sistema limitado por difracción (línea gris). [45] La Figura 3 muestra el desplazamiento del foco (D, dioptrías) para diferentes longitudes de onda para el modelo de ojo del ejemplo , con la LIO propuesta en el ejemplo (línea continua), y la LIO de referencia (línea de puntos) propuesta en ejemplo. [46] La Figura 4 muestra la diferencia de camino óptico (Optical Path Difference, OPD) en eje en la pupila de entrada para las cinco longitudes de onda usadas (ver figura) en el modelo de ojo del ejemplo , con la LIO propuesta (a), y la LIO de referencia (b). [47](solid line), the reference IOL of the example (dotted line); and limited diffraction system (gray line). [45] Figure 3 shows the focus offset (D, diopters) for different wavelengths for the example eye model, with the IOL proposed in the example (solid line), and the reference IOL (dotted line ) proposal in example. [46] Figure 4 shows the optical path difference (Optical Path Difference, OPD) in axis at the entrance pupil for the five wavelengths used (see figure) in the example eye model, with the proposed IOL ( a), and the reference IOL (b). [47]
Descripción de una realización preferida de la invención [48] La lente propuesta es combinación de una superficie refractiva y otra difractiva que se presentan a continuación:Description of a preferred embodiment of the invention [48] The proposed lens is a combination of a refractive and a diffractive surface presented below:
[49] S 1 : Superficie refractiva esférica estándar determinada por su ságita (z):[49] S 1: Standard spherical refractive surface determined by its sudden (z):
[50] z = cr2 / [1 + (1-(1 + k)cV)1/2][50] z = cr 2 / [1 + (1- (1 + k) cV) 1/2 ]
[51] donde: c es la curvatura pudiendo ser su valor positivo, negativo o nulo (superficie plana), r es la coordenada radial en unidades de lente y k es la constante cónica. [52] S2: Superficie refractiva asférica uniforme-lisa, determinada por su ságita (z):[51] where: c is the curvature and can be its positive, negative or null value (flat surface), r is the radial coordinate in lens units and k is the conical constant. [52] S2: Uniform-smooth aspherical refractive surface, determined by its sudden (z):
[53] z = cr2 / [1 + (1-(1 + k)cV)1/2] +α i r2 [54] donde: c es la curvatura pudiendo ser su valor positivo, negativo o nulo (superficie plana), r es la coordenada radial en unidades de lente, k es la constante cónica y α es una constante. [55] S3: Superficie difractiva esférica similar a la superficie Sl con una variación de fase (Φ) del tipo: [56] O = P1 V + P2 V[53] z = cr 2 / [1 + (1- (1 + k) cV) 1/2 ] + α i r 2 [54] where: c is the curvature and can be its positive, negative or null value (flat surface), r is the radial coordinate in lens units, k is the conical constant and α is a constant. [55] S3: Spherical diffractive surface similar to the surface Sl with a phase variation (Φ) of the type: [56] O = P 1 V + P 2 V
[57] donde: P y P son constantes y r es la coordenada correspondiente la apertura radial normalizada. [58] S4: Superficie difractiva asf erica similar a la superficie S2 con una variación de fase (Φ) del tipo: [59] O = P1V+ P2V[57] where: P and P are constants and r is the corresponding normalized radial opening coordinate. [58] S4: Aspheric diffractive surface similar to surface S2 with a phase variation (Φ) of the type: [59] O = P 1 V + P 2 V
[60] donde: P y P son constantes y p es la coordenada correspondiente la apertura radial normalizada. [61] S5: Superficie difractiva plana con una variación de fase (Φ) del tipo:[60] where: P and P are constants and p is the corresponding normalized radial opening coordinate. [61] S5: Flat diffractive surface with a phase variation (Φ) of the type:
[62] O = P1V+ P2V[62] O = P 1 V + P 2 V
[63] donde: P y P son constantes y p es la coordenada correspondiente la apertura radial normalizada. [64] Las combinaciones de superficies para formar la LIO (en cada caso incluyendo dos superficies con propiedades ópticas distintas son las siguientes: [65][63] where: P and P are constants and p is the corresponding normalized radial opening coordinate. [64] The combinations of surfaces to form the IOL (in each case including two surfaces with different optical properties are the following: [65]
1. Superficie refractiva Sl + Superficie difractiva S41. Refractive surface Sl + Diffractive surface S4
2. Superficie difractiva S4 + Superficie refractiva S 12. S4 diffractive surface + S 1 refractive surface
3. Superficie refractiva S2 + Superficie difractiva S33. S2 refractive surface + S3 diffractive surface
4. Superficie difractiva S3 + Superficie refractiva S24. S3 diffractive surface + S2 refractive surface
5. Superficie refractiva S2 + Superficie difractiva S45. Refractive surface S2 + Diffractive surface S4
6. Superficie difractiva S4 + Superficie refractiva S26. S4 diffractive surface + S2 refractive surface
7. Superficie refractiva Sl + Superficie difractiva S57. Refractive surface Sl + D5 diffractive surface
8. Superficie difractiva S5 + Superficie refractiva Sl8. S5 diffractive surface + Sl refractive surface
9. Superficie difractiva S5 + Superficie refractiva S29. S5 diffractive surface + S2 refractive surface
10. Superficie refractiva S2 + Superficie difractiva S510. S2 refractive surface + S5 diffractive surface
[66] De manera adicional a la estructura óptica descrita, la nueva LIO puede diseñarse con un material que incluya un cromóforo capaz de reducir selectivamente la transmitancia de determinadas longitudes de onda.[66] In addition to the described optical structure, the new IOL can be designed with a material that includes a chromophore capable of selectively reducing the transmittance of certain wavelengths.
[67] La principal aplicación de la LIO propuesta es la mejora de la calidad óptica y visual [Agudeza Visual, Función de Transferencia de Modulación (MTF, en adelante) monocromática y policromática, Función de Sensibilidad al Contraste,...] de la persona a la que le haya sido implantada.[67] The main application of the proposed IOL is the improvement of optical and visual quality [Visual Acuity, Monochromatic and Polychromatic Modulation Transfer Function (MTF, hereinafter), Contrast Sensitivity Function, ...] person who has been implanted.
[68] A continuación se describe un ejemplo de LIO que compensa la aberración esférica y cromática de un modelo de ojo.[68] An example of IOL that compensates for spherical aberration is described below. and chromatic of an eye model.
[69] El modelo de ojo propuesto está compuesto por cuatro superficies (dos para la córnea y dos para la LIO), un iris plano y una retina esférica. Los datos concretos vienen indicados en la tabla 1.[69] The proposed eye model is composed of four surfaces (two for the cornea and two for the IOL), a flat iris and a spherical retina. The specific data are indicated in table 1.
[70][70]
Figure imgf000009_0001
Figure imgf000009_0001
[71] Tabla 1 [72] Los parámetros α , y β se han optimizado para minimizar el valor cuadrático medio (Root Mean Square o RMS) medido en el plano de pupila, pero pueden ser igualmente optimizados para minimizar otro tipo de parámetro de calidad de imagen tanto en el plano de pupila como en el plano de la retina.[71] Table 1 [72] The α, and β parameters have been optimized to minimize the mean square value (Root Mean Square or RMS) measured in the pupil plane, but can also be optimized to minimize another type of quality parameter of image both in the pupil plane and in the retina plane.
[73] Además de los valores de la Tabla 1, se han utilizado los siguientes valores generales del sistema óptico:[73] In addition to the values in Table 1, the following general values of the optical system have been used:
[74] - Pupila de entrada = 5 mm de diámetro [75] - Longitudes de onda: 470, 510, 555, 610 y 650 nm. [76] - Para simular la diferente sensibilidad espectral del ojo se han dado los siguientes pesos a las correspondientes longitudes de onda: 0.091 (470 nm); 0.503 (510 nm); 1 (555 nm); 0.503 (610 nm) y 0.107 (650 nm).[74] - Entrance pupil = 5 mm in diameter [75] - Wavelengths: 470, 510, 555, 610 and 650 nm. [76] - To simulate the different spectral sensitivity of the eye, the following weights have been given to the corresponding wavelengths: 0.091 (470 nm); 0.503 (510 nm); 1 (555 nm); 0.503 (610 nm) and 0.107 (650 nm).
[77] - La variación de los índices de refracción con la longitud de onda viene dada por la siguiente expresión:[77] - The variation of refractive indices with wavelength is given by the following expression:
[78] n = n + A/λ + B/λ 3.5 [79] donde los valores concretos de n , A y B usados en el modelo vienen de la tabla 2.
Figure imgf000010_0001
[78] n = n + A / λ + B / λ 3.5 [79] where the specific values of n, A and B used in the model come from table 2.
Figure imgf000010_0001
[81] Tabla 2 [82] Estos datos también son aproximados y pueden variar según las medidas realizadas.[81] Table 2 [82] These data are also approximate and may vary depending on the measurements taken.
[83] El material de la LIO es el PMMA (PoliMetilMetAcrilato), pero podría ser otro por Ej.: un material blando o duro que presente biocompatibilidad con el ojo humano seleccionado entre: acrílico, silicona, hidrogel, metil-metacrilato.[83] The material of the IOL is PMMA (PolyMetilMetAcrylate), but it could be another for example: a soft or hard material that has biocompatibility with the human eye selected from: acrylic, silicone, hydrogel, methyl methacrylate.
[84] Para poder comparar los resultados con una LIO convencional fabricada con PMMA, se han utilizado los valores de una LIO (LIO de referencia) con las superficies esféricas óptimas que minimizan la varianza de la aberración de onda (RMS). En nuestro ejemplo dichas superficies han tomado los radios de curvatura de 10.489273 mm y -44.134751 mm para la primera y segunda superficie respectivamente.[84] In order to compare the results with a conventional IOL manufactured with PMMA, the values of an IOL (reference IOL) have been used with the optimal spherical surfaces that minimize the variance of the wave aberration (RMS). In our example, these surfaces have taken the radii of curvature of 10.489273 mm and -44.134751 mm for the first and second surfaces respectively.
[85] La figura 2 muestra los valores de la MTF policromática en el eje horizontal del modelo de ojo con la LIO propuesta (línea continua); la LIO de referencia (línea de puntos) y la correspondiente al sistema limitado por difracción (línea gris).[85] Figure 2 shows the values of polychromatic MTF on the horizontal axis of the eye model with the proposed IOL (solid line); the reference IOL (dotted line) and the one corresponding to the diffraction limited system (gray line).
[86] La figura 3 muestra el desplazamiento del foco (D) para diferentes longitudes de onda (aberración cromática longitudinal) con la LIO propuesta (línea continua), y la LIO de referencia (línea de puntos).[86] Figure 3 shows the focus offset (D) for different wavelengths (longitudinal chromatic aberration) with the proposed IOL (solid line), and the reference IOL (dotted line).
[87] La figura 4 muestra la diferencia de camino óptico (OPD) en longitudes de onda (1 longitud de onda = 0.555 mieras), en eje en la pupila de entrada para las cinco longitudes de onda usadas (indicadas dentro de la propia figura) para la LIO propuesta (a), y la LIO de referencia (b).[87] Figure 4 shows the optical path difference (OPD) in wavelengths (1 wavelength = 0.555 microns), in axis at the entrance pupil for the five wavelengths used (indicated within the figure itself ) for the proposed IOL (a), and the reference IOL (b).
[88] Las figuras 2, 3 y 4 muestran la significativa reducción de aberraciones tanto monocromáticas como cromáticas del modelo de ojo propuesto cuando se le implanta la LIO propuesta en comparación con una LIO convencional de superficies esféricas.[88] Figures 2, 3 and 4 show the significant reduction of both monochromatic and chromatic aberrations of the proposed eye model when the proposed IOL is implanted in comparison to a conventional spherical surface IOL.
[89] Los valores del modelo de ojo presentados (tabla 1 y 2), son valores aproximados que pueden cambiar dependiendo del modelo concreto de ojo que se utilice. El cambio de dichos valores variaría los valores de α y β (y el de β en caso de que se utilice una superficie difractiva y asférica tipo S4) obtenidos y presentados en la tabla 1. Se pueden tomar así mismo más longitudes de onda y otro radio pupilar que también mo- dificarían dichos valores. [89] The eye model values presented (Table 1 and 2), are approximate values that may change depending on the specific eye model used. The change of these values would vary the values of α and β (and that of β in case a diffractive and aspherical surface type S4 is used) obtained and presented in table 1. More wavelengths and other wavelengths can also be taken pupillary radius that also They would dictate these values.

Claims

Los ReclamosThe Claims
[I] Una LIO (lente infraocular) configurada para ser implantada en un ojo humano que comprende una primera superficie (1) y una segunda superficie (2) con propiedades ópticas distintas, caracterizada porque:[I] An IOL (infraocular lens) configured to be implanted in a human eye comprising a first surface (1) and a second surface (2) with different optical properties, characterized in that:
- una de dichas superficies es difractiva;- one of said surfaces is diffractive;
- una de dichas superficies es refractiva;- one of said surfaces is refractive;
- al menos una de dichas superficies es asférica; definiendo dicha primera superficie (1) y dicha segunda superficie (2) una estructura que tiene una pluralidad de propiedades ópticas que tienen en cuenta:- at least one of said surfaces is aspherical; said first surface (1) and said second surface (2) defining a structure that has a plurality of optical properties that take into account:
- dispersiones cromáticas de los medios oculares,- chromatic dispersions of the ocular media,
- aberraciones monocromáticas esféricas de la córnea y el cristalino y- spherical monochromatic corneal and crystalline aberrations and
- aberraciones esferocromáticas por el cambio de aberraciones monocromáticas esféricas con la dispersión de la luz; para reducir aberraciones esféricas monocromáticas, aberraciones cromáticas y aberraciones esferocromáticas y aumentar la profundidad de foco del ojo. [2] La LIO de la reivindicación 1 caracterizada porque la primera superficie (1) es refractiva esférica (Sl) y la segunda superficie (2) es difractiva asférica (S4). [3] La LIO de la reivindicación 1 caracterizada porque la primera superficie (1) es difractiva asférica (S4) y la segunda superficie (2) es refractiva esférica (Sl). [4] La LIO de la reivindicación 1 caracterizada porque la primera superficie (1) es refractiva asférica (S2) y la segunda superficie (2) es difractiva esférica (S3). [5] La LIO de la reivindicación 1 caracterizada porque la primera superficie (1) es difractiva esférica (S3) y la segunda superficie (2) es refractiva asférica (S2). [6] La LIO de la reivindicación 1 caracterizada porque la primera superficie (1) es refractiva asférica (S2) y la segunda superficie (2) es difractiva asférica (S4). [7] La LIO de la reivindicación 1 caracterizada porque donde la primera superficie- spherochromatic aberrations due to the change of spherical monochromatic aberrations with the scattering of light; to reduce spherical monochromatic aberrations, chromatic aberrations and spherochromatic aberrations and increase the depth of focus of the eye. [2] The IOL of claim 1 characterized in that the first surface (1) is spherical refractive (Sl) and the second surface (2) is aspherical diffractive (S4). [3] The IOL of claim 1 characterized in that the first surface (1) is aspherical diffractive (S4) and the second surface (2) is spherical refractive (Sl). [4] The IOL of claim 1 characterized in that the first surface (1) is aspherical refractive (S2) and the second surface (2) is spherical diffractive (S3). [5] The IOL of claim 1 characterized in that the first surface (1) is spherical diffractive (S3) and the second surface (2) is aspherical refractive (S2). [6] The IOL of claim 1 characterized in that the first surface (1) is aspherical refractive (S2) and the second surface (2) is aspherical diffractive (S4). [7] The IOL of claim 1 characterized in that where the first surface
(1) es difractiva asférica (S4) y la segunda superficie (2) es refractiva asférica(1) is aspherical diffractive (S4) and the second surface (2) is aspherical refractive
(S2). [8] La LIO de la reivindicación 1 caracterizada porque la primera superficie (1) es refractiva esférica (Sl) y la segunda superficie (2) es difractiva plana (S5). [9] La LIO de la reivindicación 1 caracterizada porque la primera superficie (1) es difractiva plana (S5) y la segunda superficie (2) es refractiva esférica (Sl). [10] La LIO de la reivindicación 1 caracterizada porque la primera superficie (1) es difractiva plana (S5) y la segunda superficie (2) es refractiva asférica (S2).(S2). [8] The IOL of claim 1 characterized in that the first surface (1) is spherical refractive (Sl) and the second surface (2) is flat diffractive (S5). [9] The IOL of claim 1 characterized in that the first surface (1) is flat diffractive (S5) and the second surface (2) is spherical refractive (Sl). [10] The IOL of claim 1 characterized in that the first surface (1) is flat diffractive (S5) and the second surface (2) is aspherical refractive (S2).
[II] La LIO de la reivindicación 1 caracterizada porque la primera superficie (1) es refractiva asférica (S2) y la segunda superficie (2) es difractiva plana (S5).[II] The IOL of claim 1 characterized in that the first surface (1) is aspherical refractive (S2) and the second surface (2) is flat diffractive (S5).
[12] La LIO de las reivindicaciones 1-11 caracterizada porque está configurada para ser colocada en una posición en el ojo humano seleccionada entre: una cámara posterior, una cámara anterior, una cápsula, una córnea y un vitreo.[12] The IOL of claims 1-11 characterized in that it is configured to be placed in a position in the human eye selected from: a posterior chamber, an anterior chamber, a capsule, a cornea and a vitreous.
[13] La LIO de las reivindicaciones 1-12 caracterizada porque está configurada para ser colocada en un ojo humano con o sin cristalino.[13] The IOL of claims 1-12 characterized in that it is configured to be placed in a human eye with or without a lens.
[14] La LIO de las reivindicaciones 1-13 caracterizada porque está compuesta de un material que presente biocompatibilidad con el ojo humano.[14] The IOL of claims 1-13 characterized in that it is composed of a material that exhibits biocompatibility with the human eye.
[15] La LIO de las reivindicaciones 1-14 caracterizada porque además comprende hápticos para poder ser implantada en el ojo humano, estando configurados dichos hápticos para colocar la LIO en una posición en el ojo humano seleccionada entre: una cámara posterior, una cámara anterior, una cápsula, una córnea y un vitreo.[15] The IOL of claims 1-14 characterized in that it further comprises haptics to be implanted in the human eye, said haptics being configured to place the IOL in a position in the human eye selected from: a posterior chamber, an anterior chamber , a capsule, a cornea and a vitreous.
[16] La LIO de las reivindicaciones 1-15 caracterizada porque además comprende un material con una transmitancia selectiva a determinadas longitudes de onda.[16] The IOL of claims 1-15 characterized in that it further comprises a material with selective transmittance at certain wavelengths.
[17] La LIO de las reivindicaciones 1-16 caracterizada porque está configurada para permitir movimiento y pseudo-acomodación de dicha lente.[17] The IOL of claims 1-16 characterized in that it is configured to allow movement and pseudo-accommodation of said lens.
[18] La LIO de las reivindicaciones 1-17 caracterizada porque la primera y/o segunda superficies presentan variaciones radiales de curvatura de forma que la lente presente diferentes focos para obtener una LIO multifocal. [18] The IOL of claims 1-17 characterized in that the first and / or second surfaces have radial variations in curvature so that the lens has different foci to obtain a multifocal IOL.
PCT/ES2005/070163 2004-12-22 2005-11-29 Intraocular lens for achromatising the eye and reducing the aberrations thereof WO2006067255A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200403061 2004-12-22
ES200403061A ES2272143B1 (en) 2004-12-22 2004-12-22 INTRAOCULAR LENS TO ACROMATIZE THE EYE AND REDUCE ITS ABERRATIONS.

Publications (1)

Publication Number Publication Date
WO2006067255A1 true WO2006067255A1 (en) 2006-06-29

Family

ID=36601416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2005/070163 WO2006067255A1 (en) 2004-12-22 2005-11-29 Intraocular lens for achromatising the eye and reducing the aberrations thereof

Country Status (2)

Country Link
ES (1) ES2272143B1 (en)
WO (1) WO2006067255A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110020627A1 (en) * 2007-11-02 2011-01-27 Benjamin Falk Textiles treated with copolymers of epoxy compounds and amino silanes having enhanced wet-strength
US9335563B2 (en) 2012-08-31 2016-05-10 Amo Groningen B.V. Multi-ring lens, systems and methods for extended depth of focus
US20170258578A1 (en) * 2016-03-11 2017-09-14 Amo Groningen B.V. Intraocular lenses that improve peripheral vision
US10327888B2 (en) 2014-03-10 2019-06-25 Amo Groningen B.V. Enhanced toric lens that improves overall vision where there is a local loss of retinal function
US10588739B2 (en) 2014-04-21 2020-03-17 Amo Groningen B.V. Ophthalmic devices, system and methods that improve peripheral vision
US10624735B2 (en) 2016-02-09 2020-04-21 Amo Groningen B.V. Progressive power intraocular lens, and methods of use and manufacture
US10758340B2 (en) 2013-03-11 2020-09-01 Johnson & Johnson Surgical Vision, Inc. Intraocular lens that matches an image surface to a retinal shape, and method of designing same
US11096778B2 (en) 2016-04-19 2021-08-24 Amo Groningen B.V. Ophthalmic devices, system and methods that improve peripheral vision
US11156853B2 (en) 2017-06-28 2021-10-26 Amo Groningen B.V. Extended range and related intraocular lenses for presbyopia treatment
US11262598B2 (en) 2017-06-28 2022-03-01 Amo Groningen, B.V. Diffractive lenses and related intraocular lenses for presbyopia treatment
US11327210B2 (en) 2017-06-30 2022-05-10 Amo Groningen B.V. Non-repeating echelettes and related intraocular lenses for presbyopia treatment
US11497599B2 (en) 2017-03-17 2022-11-15 Amo Groningen B.V. Diffractive intraocular lenses for extended range of vision
US11523897B2 (en) 2017-06-23 2022-12-13 Amo Groningen B.V. Intraocular lenses for presbyopia treatment
US11583392B2 (en) 2019-12-30 2023-02-21 Amo Groningen B.V. Achromatic lenses for vision treatment
US11844688B2 (en) 2019-12-30 2023-12-19 Amo Groningen B.V. Achromatic lenses with zone order mixing for vision treatment
US11844689B2 (en) 2019-12-30 2023-12-19 Amo Groningen B.V. Achromatic lenses and lenses having diffractive profiles with irregular width for vision treatment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5895422A (en) * 1993-06-17 1999-04-20 Hauber; Frederick A. Mixed optics intraocular achromatic lens
WO2001089424A1 (en) * 2000-05-23 2001-11-29 Pharmacia Groningen Bv Methods of obtaining ophthalmic lenses providing the eye with reduced aberrations
US6338559B1 (en) * 2000-04-28 2002-01-15 University Of Rochester Apparatus and method for improving vision and retinal imaging
WO2002084381A2 (en) * 2001-04-11 2002-10-24 Pharmacia Groningen Bv An ophthalmic lens
WO2005098518A1 (en) * 2004-04-05 2005-10-20 Advanced Medical Optics, Inc. Ophthalmic lenses capable of reducing chromatic aberration

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5895422A (en) * 1993-06-17 1999-04-20 Hauber; Frederick A. Mixed optics intraocular achromatic lens
US6338559B1 (en) * 2000-04-28 2002-01-15 University Of Rochester Apparatus and method for improving vision and retinal imaging
WO2001089424A1 (en) * 2000-05-23 2001-11-29 Pharmacia Groningen Bv Methods of obtaining ophthalmic lenses providing the eye with reduced aberrations
WO2002084381A2 (en) * 2001-04-11 2002-10-24 Pharmacia Groningen Bv An ophthalmic lens
WO2005098518A1 (en) * 2004-04-05 2005-10-20 Advanced Medical Optics, Inc. Ophthalmic lenses capable of reducing chromatic aberration

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110020627A1 (en) * 2007-11-02 2011-01-27 Benjamin Falk Textiles treated with copolymers of epoxy compounds and amino silanes having enhanced wet-strength
US10197815B2 (en) 2008-05-13 2019-02-05 Amo Groningen B.V. Multi-ring lens, systems and methods for extended depth of focus
US9335563B2 (en) 2012-08-31 2016-05-10 Amo Groningen B.V. Multi-ring lens, systems and methods for extended depth of focus
US11022815B2 (en) 2012-08-31 2021-06-01 Amo Groningen B.V. Multi-ring lens, systems and methods for extended depth of focus
US10758340B2 (en) 2013-03-11 2020-09-01 Johnson & Johnson Surgical Vision, Inc. Intraocular lens that matches an image surface to a retinal shape, and method of designing same
US10456242B2 (en) 2014-03-10 2019-10-29 Amo Groningen B.V. Intraocular lens that improves overall vision where there is a local loss of retinal function
US10327888B2 (en) 2014-03-10 2019-06-25 Amo Groningen B.V. Enhanced toric lens that improves overall vision where there is a local loss of retinal function
US11331181B2 (en) 2014-03-10 2022-05-17 Amo Groningen B.V. Fresnel piggyback intraocular lens that improves overall vision where there is a local loss of retinal function
US11534291B2 (en) 2014-03-10 2022-12-27 Amo Groningen B.V. Intraocular lens that improves overall vision where there is a local loss of retinal function
US11517423B2 (en) 2014-03-10 2022-12-06 Amo Groningen B.V. Piggyback intraocular lens that improves overall vision where there is a local loss of retinal function
US10588739B2 (en) 2014-04-21 2020-03-17 Amo Groningen B.V. Ophthalmic devices, system and methods that improve peripheral vision
US11660183B2 (en) 2014-04-21 2023-05-30 Amo Groningen B.V. Ophthalmic devices, system and methods that improve peripheral vision
US10624735B2 (en) 2016-02-09 2020-04-21 Amo Groningen B.V. Progressive power intraocular lens, and methods of use and manufacture
US11116624B2 (en) 2016-02-09 2021-09-14 Amo Groningen B.V. Progressive power intraocular lens, and methods of use and manufacture
US10588738B2 (en) * 2016-03-11 2020-03-17 Amo Groningen B.V. Intraocular lenses that improve peripheral vision
US20170258578A1 (en) * 2016-03-11 2017-09-14 Amo Groningen B.V. Intraocular lenses that improve peripheral vision
US11793626B2 (en) 2016-03-11 2023-10-24 Amo Groningen B.V. Intraocular lenses that improve peripheral vision
US11160651B2 (en) 2016-03-11 2021-11-02 Amo Groningen B.V. Intraocular lenses that improve peripheral vision
US11096778B2 (en) 2016-04-19 2021-08-24 Amo Groningen B.V. Ophthalmic devices, system and methods that improve peripheral vision
US11877924B2 (en) 2016-04-19 2024-01-23 Amo Groningen B.V. Ophthalmic devices, system and methods that improve peripheral vision
US11497599B2 (en) 2017-03-17 2022-11-15 Amo Groningen B.V. Diffractive intraocular lenses for extended range of vision
US11523897B2 (en) 2017-06-23 2022-12-13 Amo Groningen B.V. Intraocular lenses for presbyopia treatment
US11156853B2 (en) 2017-06-28 2021-10-26 Amo Groningen B.V. Extended range and related intraocular lenses for presbyopia treatment
US11262598B2 (en) 2017-06-28 2022-03-01 Amo Groningen, B.V. Diffractive lenses and related intraocular lenses for presbyopia treatment
US11573433B2 (en) 2017-06-28 2023-02-07 Amo Groningen B.V. Extended range and related intraocular lenses for presbyopia treatment
US11914229B2 (en) 2017-06-28 2024-02-27 Amo Groningen B.V. Diffractive lenses and related intraocular lenses for presbyopia treatment
US11327210B2 (en) 2017-06-30 2022-05-10 Amo Groningen B.V. Non-repeating echelettes and related intraocular lenses for presbyopia treatment
US11583392B2 (en) 2019-12-30 2023-02-21 Amo Groningen B.V. Achromatic lenses for vision treatment
US11844688B2 (en) 2019-12-30 2023-12-19 Amo Groningen B.V. Achromatic lenses with zone order mixing for vision treatment
US11844689B2 (en) 2019-12-30 2023-12-19 Amo Groningen B.V. Achromatic lenses and lenses having diffractive profiles with irregular width for vision treatment

Also Published As

Publication number Publication date
ES2272143A1 (en) 2007-04-16
ES2272143B1 (en) 2008-03-01

Similar Documents

Publication Publication Date Title
WO2006067255A1 (en) Intraocular lens for achromatising the eye and reducing the aberrations thereof
JP7253303B2 (en) intraocular lens system
US20200214831A1 (en) Ophthalmic devices, system and methods that improve peripheral vision
ES2325988T3 (en) MULTIFOCAL OPHTHALMIC LENS.
ES2380383T3 (en) Aspherical intraocular lens and method for the design of such an IOL
AU2018267627B2 (en) Intraocular lens that matches an image surface to a retinal shape, and method of designing same
US9987127B2 (en) Toric lens with decreased sensitivity to cylinder power and rotation and method of using the same
ES2706313T3 (en) Aspheric lenses and lens family
RU2427865C2 (en) Intraocular lenses with improved off-axis viewing characteristics
US20050203619A1 (en) Aspheric lenses and lens family
AU2018226512B2 (en) Methods of providing extended depth of field and/or enhanced distance visual acuity
BR112017004765B1 (en) LENS CONFIGURED FOR IMPLANTATION IN A HUMAN EYE
MXPA03005650A (en) Methods of obtaining ophtalmic lenses providing the eye with reduced aberrations.
López-Gil et al. New intraocular lens for achromatizing the human eye
JP2015504752A (en) Improved intraocular lens and method of manufacturing the same
Megiddo-Barnir et al. Latest development in extended depth-of-focus intraocular lenses: an update
BR112018068184B1 (en) LENS CONFIGURED FOR IMPLANTATION INTO A HUMAN EYE
ES2368103T3 (en) METHOD FOR MODELING AN INTRAOCULAR LENS AND INTRAOCULAR LENS.
WO2008135624A1 (en) Analytical design of intraocular lenses
ES2374916B1 (en) PROCEDURE FOR PREPARING AN ISOPLANTIC ASPHERIC ASPHERIC MONOFOCAL INTRAOCULAR LENS AND LENS OBTAINED USING THIS PROCEDURE.
RU2785137C2 (en) Intraocular lenses having optical structure shifted forward
COCHENER Discussion of Clinical Outcomes with an ERV IOL
De Lange Comparing six multifocal IOLs over six years: CPD: multifocal IOLs
Bellucci et al. Are all spherical IOLs the same
Kahraman et al. Supplementary IOLs for Pseudophakic Refractive Error Correction

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05825342

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5825342

Country of ref document: EP