WO2006063929A2 - VORRICHTUNG ZUR BESTIMMUNG UND/ODER ÜBERWACHUNG DER PROZESSGRÖßE FÜLLSTAND EINES FÜLLGUTS IN EINEM BEHÄLTER - Google Patents

VORRICHTUNG ZUR BESTIMMUNG UND/ODER ÜBERWACHUNG DER PROZESSGRÖßE FÜLLSTAND EINES FÜLLGUTS IN EINEM BEHÄLTER Download PDF

Info

Publication number
WO2006063929A2
WO2006063929A2 PCT/EP2005/056325 EP2005056325W WO2006063929A2 WO 2006063929 A2 WO2006063929 A2 WO 2006063929A2 EP 2005056325 W EP2005056325 W EP 2005056325W WO 2006063929 A2 WO2006063929 A2 WO 2006063929A2
Authority
WO
WIPO (PCT)
Prior art keywords
container
housing part
level
conductive element
connection
Prior art date
Application number
PCT/EP2005/056325
Other languages
English (en)
French (fr)
Other versions
WO2006063929A3 (de
Inventor
Herbert Schroth
Original Assignee
Endress+Hauser Gmbh+Co.Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endress+Hauser Gmbh+Co.Kg filed Critical Endress+Hauser Gmbh+Co.Kg
Priority to US11/792,617 priority Critical patent/US7814789B2/en
Priority to EP05850422.6A priority patent/EP1825231B1/de
Publication of WO2006063929A2 publication Critical patent/WO2006063929A2/de
Publication of WO2006063929A3 publication Critical patent/WO2006063929A3/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves

Definitions

  • the invention relates to a device for determining and / or monitoring the process size level of a product in a container.
  • TDR measuring instruments For the detection of the level of liquids or bulk solids in containers TDR measuring instruments are increasingly used.
  • radio frequency electromagnetic pulses or continuous microwaves are introduced into and out of the container along a conductive element.
  • the conductive element is e.g. around a rod or rope probe.
  • the effect is exploited that at the interface of two different media, for.
  • a part of the guided electromagnetic radio-frequency pulses or microwaves is reflected and passed through the conductive element back into a receiving device.
  • the reflected portion of the electromagnetic radio-frequency pulses or microwaves is the greater, the more different the dielectric constants of the two media.
  • the distance to the interface can be determined. With knowledge of the empty distance of the container, the fill level of the contents in the container can subsequently be calculated.
  • TDR measuring devices with guided high-frequency measuring signals are distinguished from measuring devices in which the measuring signals are radiated freely, by a low signal attenuation. The reason for this is that the power flow takes place quite deliberately along the rod or rope probe or the conductive element. Furthermore, the TDR measuring devices have a high measuring quality even with small measuring ranges, since they have a larger signal bandwidth compared to free-radiating microwave measuring devices and thus achieve a better selectivity between useful and interference signals. Another advantage of TDR meters is the high level of safety and reliability of level measurement. This is because the measurement with guided measurement signals is relatively independent of the product properties of the product, the container design (e.g., materials, geometry) or other operating conditions (e.g., dust, batch).
  • the container design e.g., materials, geometry
  • other operating conditions e.g., dust, batch
  • capacitive probe and container wall form the electrodes of a capacitor. If the container wall is not conductive, a separate second electrode must be provided inside or outside the container. Depending on the level of the medium in the container, either the gaseous container atmosphere or the contents are located between the two electrodes, which is reflected in a change in the measuring capacity due to the different dielectric constants of the two substances. The measuring capacity thus shows a dependence on the respective filling level of the filling material in the container. Capacitive probes can be used both for limit level detection and for continuous level determination. In addition, conductive fill level measuring devices are state of the art.
  • Devices of the aforementioned type are widely used in the field of pharmaceutical and food industry, in the chemical industry, electroplating and similar industries and must meet there simultaneously a variety of requirements.
  • the product-contacting parts of these devices are usually subject to considerable wear, for example by corrosion, abrasion, embrittlement, hardness increase, surface cracking or other aging. It is therefore of great advantage if the individual wear parts are exchangeable, without having to replace each of the complete probe.
  • Potential reservoirs for harmful germs are preferably found in areas where two sub-components of a measuring device are releasably connected together.
  • Particularly critical are relatively narrow and small-sized spaces.
  • a critical contact area is where the conductive element is attached to the meter. If there is a gap in the contact area between the conductive element and the measuring device, the contents can penetrate into this gap and settle there. Narrow gaps can not be known or insufficiently thoroughly cleaned known manner.
  • Another problem with columns is the tendency to crevice corrosion, so that regardless of the hygienic requirements with the contents in contact coming column must be avoided as possible.
  • cone seals have become known in which an insulating material is disposed in the passage between the conductive element and the housing.
  • cone seals are not permanently tight and gap-free.
  • the same applies to cone seals between the insulator and a metallic adapter, which serves as a process connection.
  • constructions can be disassembled only with great effort to replace individual parts, as complicated spring mechanisms must be used to tension the cones.
  • the invention is therefore the object vorzu-beat a meter, on the one hand has no column and thus meets high hygienic requirements and is less prone to crevice corrosion, but at the same time can be disassembled to replace individual parts.
  • a housing part is provided, which is fastened to the container, that a conductive element is provided which extends into the container in the mounted state and which is coupled to the housing part via a detachable connection, and that the detachable connection is arranged in the interior of the housing part.
  • the releasable connection is preferably a screw connection or a plug connection. Since the connection between the conductive element and the housing part is located in the interior of the housing part, the connection area, which is particularly suitable for corrosion is no longer in direct contact with the contents, which considerably limits the susceptibility to corrosion.
  • At least one process seal is provided, which is designed and arranged such that it seals the interior of the housing part against the process.
  • an insulating element is arranged in a defined region between the conductive element and the housing part.
  • the insulating element is made of, for example, an insulating plastic material (e.g., PEEK characterized by high mechanical and chemical stability) or ceramic.
  • PEEK insulating plastic material
  • ceramic is only of limited use for use with a TDR measuring device because of its high dielectric constant.
  • a first process seal and a second process seal are provided, wherein the first process seal is configured and arranged so that it seals the housing part substantially front flush against the insulation element gap-free, and wherein the second process seal is designed and arranged so that it seals the insulation element substantially front flush against the conductive element gap-free.
  • the dielectric insulating member may also have an outer sealing contour with which it can be sealingly attached to a counterpart connected to the container. As an example may be mentioned at this point the distributed by the applicant process valves according to ISO 2852 or DIN 11864-1. If such a configuration of the process connection is used, then the outer process seal can be saved.
  • the at least one process seal or the first process seal and the second process seal are preferably each an O-ring or a molded seal. It should be regarded as particularly advantageous here that the process seals can be exchanged by releasing the conductive element or the process connection.
  • the individual components are interconnected in such a way that the process seals are pressed with a defined preload. These are mechanical stops on the parts to be joined provided, which limit the bias on the seals.
  • the device according to the invention is a fill level measuring device which determines the filling level of the filling material in the container over the running time of high-frequency measuring signals guided along the conductive element, or the device is concerned to a level gauge, which determines the filling level of the medium via a capacitive measuring method or via a conductive measuring method.
  • a releasable fastening part for attaching the level gauge to the container is provided on the housing part.
  • the attachment part can be any process connection.
  • a preferred embodiment of the device according to the invention proposes a detachable plug and / or screw, via which an electronic part is coupled to the level gauge.
  • the plug-in or screw connection in the released state can be closed in a watertight manner, e.g. by an O-ring sealed screw cap. This makes it possible to decouple the electronic part via the plug or screw in a simple way of the level gauge and if necessary to clean the level gauge in an autoclave.
  • Fig. 1 a cross section through a first embodiment of the device according to the invention
  • FIG. 2 shows a cross section through a second embodiment of the device according to the invention.
  • Fig. 1 shows a cross section through a first embodiment of the device according to the invention.
  • the device according to the invention is a fill level measuring device 1, which determines the fill level of a filling material in a container via a TDR measuring method or via a capacitive or conductive measuring method.
  • the level gauge 1, viewed from the mechanical side, consists of a housing part 2 and a conductive element 3.
  • the conductive element 3 is connected via a detachable connection 4, which is located in the interior 17 of the housing part 2, with the housing part. 2 connected.
  • the interior 17 of the housing part 2 is closed by means of an insulating disk 5.
  • the insulating disk 5 is secured towards the process by means of a stop 16 provided on the conductive element 3.
  • the insulating disk 5 is sealed against the conductive element 3 via the O-ring 7; via the O-ring 6, the insulating disk 5 is sealed against the housing part 2.
  • the conductive element 3 can be dismantled and thus, if necessary, the individual parts of the level gauge are replaced.
  • the detachable connection 4 is protected from corrosion by the arrangement in the interior 17 of the housing part 2. Any methods for securing the detachable connection 4 against inadvertent loosening can be used, in particular also those which, on direct contact of the detachable connection with the filling material, would precipitate due to insufficient chemical resistance, such as clamping threaded coatings or lock washers.
  • This first embodiment of the device according to the invention is particularly suitable for applications in the chemical industry.
  • Fig. 2 is a cross section through a second embodiment of the device 1 according to the invention can be seen.
  • an insulating element 11 is arranged in the interior 17 between the conductive element 3 and the housing part 2.
  • the interior 17 via process seals 8, 9; 12 sealed to the process gap-free.
  • a first process seal 9 is provided between the housing part 2 and the insulation element 11 and a second process seal 8 is provided flush with the front between the insulation element 11 and the conductive element 3 (see FIG. 2 on the left side).
  • a front-flush mold seal 12 may be provided between the conductive member 3 and the housing part 2, as shown in Fig. 2 on the right side.
  • the releasable fastening part or the detachable flange 10 which allows a modular adaptation of the level gauge to different process connections.
  • it is a clamp connection in accordance with ISO 2852.
  • process connections according to other industry standards are also possible here.
  • the releasable attachment part or detachable flange 10 can be made of metal and is therefore much more durable and tight even at changing temperatures.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

Die Erfindung bezieht sich auf eine Vorrichtung zur Bestimmung und/oder Überwachung der Prozessgröße Füllstand eines Füllguts in einem Behälter. Die erfindungsgemäße Vorrichtung soll hohen Anforderungen bezüglich chemischer Beständigkeit und/oder Reinigbarkeit genügen und gleichzeitig den Austausch einzelner Teile ermöglichen. Erfindungsgemäß ist ein Gehäuseteil (2) vorgesehen, das an dem Behälter befestigbar ist. Weiterhin ist ein leitfähiges Element (3) vorgesehen, das sich im montierten Zustand in den Behälter hineinerstreckt und das mit dem Gehäuseteil (2) über eine lösbare Verbindung (4) gekoppelt ist. Die lösbare Verbindung (4) ist im Innenraum des Gehäuseteils (2) angeordnet.

Description

Beschreibung
Vorrichtung zur Bestimmung und/oder Überwachung der Prozessgröße Füllstand eines Füllguts in einem Behälter
[0001] Die Erfindung betrifft eine Vorrichtung zur Bestimmung und/oder Überwachung der Prozessgröße Füllstand eines Füllguts in einem Behälter.
[0002] Zur Detektion des Füllstands von Flüssigkeiten oder Schüttgütern in Behältern werden in zunehmendem Maße TDR-Messgeräte eingesetzt. Bei der TDR- Messmethode werden elektromagnetische Hochfrequenzpulse oder kontinuierliche Mikrowellen entlang eines leitfähigen Elements in den Behälter hinein- bzw. aus dem Behälter herausgeführt. Bei dem leitfähigen Element handelt es sich z.B. um eine Staboder eine Seilsonde.
[0003] Physikalisch gesehen wird bei der TDR-Messmethode der Effekt ausgenutzt, daß an der Grenzfläche von zwei unterschiedlichen Medien, z. B. Luft und Öl oder Luft und Wasser, infolge der sprunghaften Änderung (Diskontinuität) der Dielektrizitätszahlen beider Medien ein Teil der geführten elektromagnetischen Hochfrequenzpulse bzw. Mikrowellen reflektiert und über das leitfähige Element zurück in eine Empfangsvorrichtung geleitet wird. Der reflektierte Anteil der elektromagnetischen Hochfrequenzpulse bzw. Mikrowellen ist dabei um so größer, je unterschiedlicher die Dielektrizitätszahlen der beiden Medien sind. Anhand der Laufzeit der Pulse oder Wellen läßt sich die Entfernung zur Grenzfläche bestimmen. Bei Kenntnis der Leerdistanz des Behälters kann nachfolgend der Füllstand des Füllguts in dem Behälter berechnet werden.
[0004] TDR-Messgeräte mit geführten hochfrequenten Messsignalen (Pulse oder Wellen) zeichnen sich gegenüber Messgeräten, bei denen die Messsignale frei abgestrahlt werden, durch eine geringe Signal-Dämpfung aus. Grund hierfür ist, daß der Lei- stungsfluss ganz gezielt entlang der Stab- oder Seilsonde bzw. des leitfähigen Elements erfolgt. Weiterhin haben die TDR-Messgeräte auch bei kleinen Messbereichen eine hohe Messgüte, da sie im Vergleich zu freiabstrahlenden Mikrowellen-Messgeräten eine größere Signalbandbreite aufweisen und damit eine bessere Trennschärfe zwischen Nutz- und Störsignalen erreichen. Ein weiterer Vorteil von TDR- Messgeräten liegt in der hohen Sicherheit und Zuverlässigkeit der Füllstandsmessung. Dies rührt daher, daß die Messung mit geführten Messsignalen relativ unabhängig ist von den Produkteigenschaften des Füllguts, der Behälterkonstruktion (z.B. Werkstoffe, Geometrie) oder sonstigen Betriebsbedingungen (z.B. Staub, Ansatz).
[0005] Darüber hinaus ist es bekannt geworden, den Füllstand eines Füllguts in einem Behälter mittels eines kapazitiven Füllstandsmessgeräts zu bestimmen. Auch hier erstreckt sich ein leitfähiges Element in den Behälter hinein. Dieses leitfähige Element wird über eine Signalquelle mit einem Wechselspannungs-signal beaufschlagt. Über eine Mess-/Auswerteschaltung wird die aktuelle Messkapazität ermittelt und mit einem vorgegebenen Kapazitäts-Sollwert verglichen. Anhand dieser Daten wird der Füllstand des Füllguts bestimmt.
[0006] Bei kapazitiven Verfahren zur Bestimmung des Füllstandes eines Füllguts in einem Behälter bilden kapazitive Sonde und Behälterwand die Elektroden eines Kondensators. Falls die Behälterwand nicht leitfähig ist, muß eine separate zweite Elektrode innerhalb oder außerhalb des Behälters vorgesehen sein. Zwischen den beiden Elektroden befindet sich - je nach Füllstand des Mediums in dem Behälter - entweder die gasförmige Behälteratmosphäre oder das Füllgut, was sich aufgrund der unterschied-lichen Dielektrizitätszahlen beider Substanzen in einer Änderung der Messkapazität niederschlägt. Die Messkapazität zeigt somit eine Abhängigkeit von dem jeweiligen Füllstand des Füllguts in dem Behälter. Kapazitive Sonden lassen sich sowohl bei der Grenzstanddetektion als auch bei einer kontinuierliche Füllstandsbestimmung einsetzen. Darüber hinaus gehören auch konduktive Füllstands- Messgeräte zum Stand der Technik.
[0007] Vorrichtungen der zuvor genannten Art werden im Bereich der Pharma- und Lebensmittelindustrie, in der chemischen Industrie, der Galvanik und ähnlichen Industrien vielfältig eingesetzt und müssen dort gleichzeitig unterschiedlichsten Anforderungen genügen.
[0008] Die produktberührenden Teile dieser Vorrichtungen unterliegen in der Regel einem beträchtlichen Verschleiß, beispielsweise durch Korrosion, Abrasion, Versprödung, Härtezunahme, Oberflächenrissbildung oder sonstiger Alterung. Es ist daher von großem Vorteil, wenn die einzelnen verschleißenden Teile tauschbar sind, ohne jeweils die komplette Messsonde austauschen zu müssen.
[0009] Kommen diese Vorrichtungen in Kontakt mit den Nahrungsmitteln bzw. pharmazeutischen Produkten, so müssen Sie aus verständlichen Gründen darüber hinaus höchsten Hygiene- Anforderungen genügen. Die Hygiene- Anforderungen an die meßtechnischen Vorrichtungen werden von Normenausschüssen formuliert. Beispielhaft sei in diesem Zusammenhang die Europäische Norm EN 1672-2:1997 genannt, die den Status einer nationalen Deutschen Norm hat. Diese Norm ergänzt die allgemein gültigen wesentlichen Sicherheits- und Gesundheitsanforderungen der EG- Maschinenrichtlinie 89/392/EWG des Europäischen Rates durch detaillierte Anforderungen für Maschinen, die in der Nahrungs- und Lebensmittelindustrie eingesetzt werden. Diesen Normen gleichzusetzen ist der Stand der Technik, der in Form von Richtlinien von Expertengruppen wie der „European Hygienic Equipment Design Group" als „EHEDG guidelines" oder der „American Society of Mechanical Engineers" als „ASME-BPE" herausgegeben wird. In diesen Normen und Richtlinien spielt die Reinigbarkeit eine zentrale Rolle, da sie essentiell ist für die Vermeidung gesundheitsgefährdender Keime.
[0010] Potentielle Sammelbecken für gesundheitsgefährdende Keime finden sich bevorzugt in Bereichen, in denen zwei Teilkomponenten einer Messvorrichtung lösbar miteinander verbunden sind. Besonders kritisch sind relativ schmale und klein dimensionierte Zwischenräume. Ein kritischer Kontaktbereich ist beispielsweise dort, wo das leitfähige Element an dem Messgerät befestigt ist. Befindet sich in dem Kontaktbereich von leitfähigem Element und Messgerät ein Spalt, so kann Füllgut in diesen Spalt eindringen und sich dort festsetzen. Schmale Spalte lassen sich bekannter Weise nicht oder nur unzureichend gründlich reinigen. Ein weiteres Problem bei Spalten ist die Neigung zu Spaltkorrosion, so dass unabhängig von den hygienischen Anforderungen mit dem Füllgut in Berührung kommende Spalte möglichst vermieden werden müssen.
[0011] Um dieses Problem zu vermeiden, ist es bekannt geworden, mit Kunststoff (z.B. PTFE) vollisolierte Sonden herzustellen. Diese vollisolierten Sonden sind für hygienische Anwendungen sehr gut geeignet, da hier auf Spalte, die mit dem Füllgut in Kontakt kommen, vollständig verzichtet wird. Jedoch sind diese vollisolierten Sonden teuer und empfindlich gegen mechanische Beschädigung.
[0012] Darüber hinaus sind auch Konusdichtungen bekannt geworden, bei denen ein isolierendes Material in der Durchführung zwischen dem leitfähigen Element und dem Gehäuse angeordnet ist. Allerdings sind derartige Konusdichtungen nicht dauerhaft dicht und spaltfrei. Gleiches gilt übrigens für Konusdichtungen zwischen dem Isolator und einem metallischen Adapter, der als Prozess-anschluss dient. Darüber hinaus sind solche Konstruktionen nur mit großem Aufwand zum Austausch einzelner Teile demontierbar, da komplizierte Federmechanismen zum Nachspannen der Konen verwendet werden müssen.
[0013] Der Erfindung liegt deshalb die Aufgabe zugrunde, ein Messgerät vorzu-schlagen, das einerseits keine Spalte aufweist und damit hohen hygienischen Anforderungen genügt bzw. wenig anfällig ist gegenüber Spaltkorrosion, gleichzeitig aber zum Austausch einzelner Teile demontiert werden kann.
[0014] Die Aufgabe wird dadurch gelöst, dass ein Gehäuseteil vorgesehen ist, das an dem Behälter befestigbar ist, dass ein leitfähiges Element vorgesehen ist, das sich im montierten Zustand in den Behälter hineinerstreckt und das mit dem Gehäuseteil über eine lösbare Verbindung gekoppelt ist, und dass die lösbare Verbindung im Innenraum des Gehäuseteils angeordnet ist. Bevorzugt handelt es sich bei der lösbaren Verbindung um eine Schraubverbindung oder um eine Steckverbindung. Da sich die Verbindung zwischen dem leitfähigen Element und dem Gehäuseteil im Innenraum des Gehäuseteils befindet, ist der Verbindungsbereich, der für Korrosion besonders anfällig ist, nicht mehr in direktem Kontakt mit dem Füllgut, wodurch die Korrosions- anfälligkeit erheblich eingeschränkt wird.
[0015] Gemäß einer vorteilhaften Ausgestaltung der erfindungsgemäßen Vorrichtung ist zumindest eine Prozessdichtung vorgesehen ist, die derart ausgestaltet und angeordnet ist, dass sie den Innenraum des Gehäuseteils gegen den Prozess hin abdichtet.
[0016] Im Zusammenhang mit der erfindungsgemäßen Vorrichtung wird es als besonders günstig angesehen, wenn in einem definierten Bereich zwischen dem leitfähigen Element und dem Gehäuseteil ein Isolationselement angeordnet ist. Das Isolationselement besteht beispielsweise aus einem isolierenden Kunststoffmaterial (z.B. PEEK, das sich durch eine hohe mechanische und chemische Stabilität auszeichnet) oder aus Keramik. In diesem Zusammenhang ist zu erwähnen, dass Keramik aufgrund ihrer hohen Dielektrizitätszahl für den Einsatz bei einem TDR-Messgerät nur bedingt einsetzbar ist.
[0017] Gemäß einer bevorzugten Ausgestaltung der erfindungsgemäßen Vorrichtung sind eine erste Prozessdichtung und eine zweite Prozessdichtung vorge-sehen, wobei die erste Prozessdichtung so ausgestaltet und angeordnet ist, dass sie das Gehäuseteil im wesentlichen frontbündig gegen das Isolations-element spaltfrei abdichtet, und wobei die zweite Prozessdichtung so ausge-staltet und angeordnet ist, dass sie das Isolationselement im wesentlichen frontbündig gegen das leitfähige Element spaltfrei abdichtet. Wahlweise kann das dielektrische Isolationselement auch eine äußere Dichtkontur aufweisen, mit der es dichtend an einem mit dem Behälter verbundenen Gegenstück befestigt werden kann. Als Beispiel sei an dieser Stelle die von der Anmelderin vertriebenen Prozessarmaturen nach ISO 2852 oder DIN 11864-1 genannt. Wird eine derartige Ausgestaltung des Prozessanschlusses verwendet, so lässt sich die äußere Prozessdichtung einsparen. Der Nachteil bei der Verwendung eines speziellen, für bestimmte Dichtkonturen ausgelegten Prozessanschlusses ist jedoch, dass nicht jeder anderweitige Prozessanschluss nachfolgend an das Gehäuseteil adaptierbar ist. Daher gehen mit einer derart speziellen Lösung die Vorzüge des beliebigen modularen Aufbaus des Messgeräts verloren, wonach das Messgerät mit den verschiedensten Prozessanschlüssen an dem Behälter befestigbar ist.
[0018] Bevorzugt handelt es sich bei der zumindest einen Prozessdichtung bzw. bei der ersten Prozessdichtung und der zweiten Prozessdichtung um jeweils einen O-Ring oder um eine Formdichtung. Als besonders vorteilhaft ist hierbei anzusehen, dass die Prozessdichtungen durch Lösen des leitfähigen Elements oder des Prozessanschlusses austauschbar sind. Um eine dauer-haft spaltfreie und dichte Verbindung zwischen den einzelnen Komponenten zu erreichen, werden die einzelnen Komponenten so miteinander verbunden, dass die Prozeßdichtungen mit einer definierten Vorspannung verpresst sind. Dazu werden an den zu verbindenden Teilen mechanische Anschläge vorgesehen, die die Vorspannung auf die Dichtungen begrenzen.
[0019] Wie bereits an vorhergehender Stelle erläutert, handelt es sich bei der erfindungsgemäßen Vorrichtung um ein Füllstandsmessgerät, das den Füllstand des Füllguts in dem Behälter über die Laufzeit von an dem leitfähigen Element entlang geführten hochfrequenten Messsignalen ermittelt, oder es handelt sich bei der Vorrichtung um ein Füllstandsmessgerät, das den Füllstand des Füllguts über ein kapazitives Messverfahren oder über ein konduktives Messverfahren ermittelt.
[0020] Gemäß einer vorteilhaften Weiterbildung der erfindungsgemäßen Vorrichtung ist an dem Gehäuseteil ein lösbares Befestigungsteil zur Befestigung des Füllstandsmessgeräts an dem Behälter vorgesehen. Bei dem Befestigungsteil kann es sich um einen beliebigen Prozessanschluss handeln.
[0021] Eine bevorzugte Ausgestaltung der erfindungsgemäßen Vorrichtung schlägt eine lösbare Steck- und/oder Schraubverbindung vor, über die ein Elektronikteil an das Füllstandsmessgerät angekoppelt ist. Bevorzugt ist die Steck- oder Schraubverbindung im gelösten Zustand wasserdicht verschließbar, z.B. durch eine O-Ring gedichtete Schraubkappe. Hierdurch ist es möglich, den Elektronikteil über die Steck- oder Schraubverbindung auf einfache Weise von dem Füllstandsmessgerät zu entkoppeln und bei Bedarf das Füllstandsmeßgerät im Autoklaven zu reinigen.
[0022] Die Erfindung wird anhand der nachfolgenden Figuren näher erläutert. Es zeigt:
[0023] Fig. 1 : einen Querschnitt durch eine erste Ausführungsform der erfindungsgemäßen Vorrichtung und
[0024] Fig. 2: einen Querschnitt durch eine zweite Ausführungsform der erfindungsgemäßen Vorrichtung.
[0025] Fig. 1 zeigt einen Querschnitt durch eine erste Ausführungsform der erfindungsgemäßen Vorrichtung. Bei der erfindungsgemäßen Vorrichtung handelt es sich um ein Füllstandsmessgerät 1, das den Füllstand eines Füllguts in einem Behälter über ein TDR- Messverfahren oder über ein kapazitives oder konduktives Messverfahren ermittelt.
[0026] Das Füllstandsmessgerät 1 besteht, von der mechanischen Seite her betrachtet, aus einem Gehäuseteil 2 und einem leitfähigen Element 3. Das leitfähige Element 3 ist über eine lösbare Verbindung 4, die sich im Innenraum 17 des Gehäuseteils 2 befindet, mit dem Gehäuseteil 2 verbunden. Zum Prozess hin ist der Innenraum 17 des Gehäuseteils 2 mittels einer Isolationsscheibe 5 verschlossen. Die Isolationsscheibe 5 wird zum Prozess hin mittels eines an dem leitfähigen Element 3 vorgesehenen Anschlags 16 gesichert. Die Isolationsscheibe 5 ist über den O-Ring 7 gegen das leitfähige Element 3 abgedichtet; über den O-Ring 6 ist die Isolationsscheibe 5 gegen das Gehäuseteil 2 abgedichtet.
[0027] In dem vom Prozess abgewandten Gehäuseteil 2 befindet sich ein elektrischer Anschluss 15 für einen in der Fig. 1 nicht gesondert dargestellten elektrischen Stecker.
[0028] Über die lösbare Verbindung 4 kann das leitfähige Element 3 demontiert und damit bei Bedarf die einzelnen Teile des Füllstandsmessgeräts ausgetauscht werden. Gleichzeitig ist die lösbare Verbindung 4 durch die Anordnung im Innenraum 17 des Gehäuseteils 2 vor Korrosion geschützt. Es können beliebige Methoden zur Sicherung der lösbaren Verbindung 4 gegen unbeab-sichtigtes Lösen angewendet werden, insbesondere auch solche, die bei direktem Kontakt der lösbaren Verbindung mit dem Füllgut wegen unzureichender chemischer Beständigkeit ausscheiden würden, wie klemmende Gewindebeschichtungen oder Sicherungsscheiben.
[0029] Diese erste Ausführungsform der erfindungsgemäßen Vorrichtung ist insbesondere für Anwendungen in der chemischen Industrie geeignet.
[0030]
[0031] In Fig. 2 ist ein Querschnitt durch eine zweite Ausführungsform der erfindungsgemäßen Vorrichtung 1 zu sehen. Bei dieser Ausgestaltung ist im Innenraum 17 zwischen dem leitfähigen Element 3 und dem Gehäuseteil 2 ein Isolationselement 11 angeordnet. Gegen den Prozess hin ist der Innenraum 17 über Prozessdichtungen 8, 9; 12 zum Prozess hin spaltfrei abgedichtet. Hierzu ist entweder zwischen dem Gehäuseteil 2 und dem Isolationselement 11 eine erste Prozessdichtung 9 und zwischen dem Isolationselement 11 und dem leitfähigen Element 3 eine zweite Prozessdichtung 8 frontbündig vorgesehen (siehe Fig. 2 auf der linken Seite). Alternativ kann auch eine frontbündige Formdichtung 12 zwischen dem leitfähigen Element 3 und dem Gehäuseteil 2 vorgesehen sein, wie dies in der Fig. 2 auf der rechten Seite gezeigt ist. Um eine dauerhafte spaltfreie Abdichtung des Innenraums 17 des Füllstandsmessgeräts 1 gegen den Prozess zu erreichen, werden die Prozessdichtungen 8, 9 bzw. die Prozessdichtung 12 mit einer definierten Vorspannung angepresst, die durch einen mechanischen Anschlag an der lösbaren Verbindung 4 erreicht wird. Besonders vorteilhaft ist bei der in Fig. 2
[0032] dargestellten Ausführungsform der erfindungsgemäßen Vorrichtung das lösbare Befestigungssteil bzw. der lösbare Flansch 10, der eine modulare Adaption des Füllstandsmessgeräts an verschiedene Prozessanschlüsse erlaubt. Im dargestellten Beispiel handelt es sich um eine Clamp- Verbindung nach ISO 2852, selbstverständlich sind hier auch Prozessanschlüsse nach anderen Industriestandards möglich. Im Gegensatz zu mit PTFE oder ähnlichen weichen Materialien plattierten Prozessanschlüssen nach dem Stand der Technik bei Verwendung vollisolierter Messsonden oder Messsonden mit Konusdichtung kann das lösbare Befestigungssteil bzw. der lösbare Flansch 10 aus Metall gefertigt werden und ist damit deutlich langlebiger und auch bei wechselnden Temperaturen dicht.
[0033] Bezugszeichenliste [0034] 1 Füllstandsmessgerät
[0035] 2 Gehäuseteil
[0036] 3 leitfähiges Element
[0037] 4 Steck-/Schraubverbindung
[0038] 5 Isolationsscheibe
[0039] 6 O-Ring
[0040] 7 O-Ring
[0041] 8 Prozessdichtung
[0042] 9 Prozessdichtung
[0043] 10 Befestigungsteil / Flansch
[0044] 11 Isolationselement
[0045] 12 Formdichtung
[0046] 13 Steck-/Schraubverbindung
[0047] 14 Elektronikteil
[0048] 15 elektrischer Anschluss
[0049] 16 Anschlag
[0050] 17 Innenraum

Claims

Ansprüche
[0001] 1. Vorrichtung zur Bestimmung und/oder Überwachung der Prozessgröße
Füllstand eines Füllguts in einem Behälter, wobei ein Gehäuseteil (2) vorgesehen ist, das an dem Behälter befestigbar ist, wobei ein leitfähiges Element (3) vorgesehen ist, das sich im montierten Zustand in den Behälter hineinerstreckt und das mit dem Gehäuseteil (2) über eine lösbare Verbindung (4) gekoppelt ist, und wobei die lösbare Verbindung (4) im Innenraum (17) des Gehäuseteils (2) angeordnet ist.
[0002] 2. Vorrichtung nach Anspruch 1, wobei zumindest eine Prozessdichtung (8, 9;
12) vorgesehen ist, die derart ausgestaltet und angeordnet ist, dass sie den Innenraum (17) des Gehäuseteils (2) gegen den Prozess hin abdichtet.
[0003] 3. Vorrichtung nach Anspruch 1 oder 2, wobei in einem definierten Bereich zwischen dem leitfähigen Element (3) und dem Gehäuseteil (2) ein Isolationselement (5; 11) angeordnet ist.
[0004] 4. Vorrichtung nach Anspruch 2 oder 3, wobei eine erste Prozessdichtung (9) vorgesehen ist, die so ausgestaltet und angeordnet ist, dass sie das Gehäuseteil (2) im wesentlichen frontbündig gegen das Isolationselement (11) spaltfrei abdichtet, und wobei eine zweite Prozessdichtung (8) vorgesehen ist, die so ausgestaltet und angeordnet ist, dass sie das Isolationselement (11) im wesentlichen frontbündig gegen das leitfähige Element (3) spaltfrei abdichtet.
[0005] 5. Vorrichtung nach Anspruch 2 oder 4, wobei es sich bei der zumindest einen
Prozessdichtung (12) bzw. bei der ersten Prozessdichtung (9) und der zweiten Prozessdichtung (8) um einen O-Ring oder eine Formdichtung handelt.
[0006] 6. Vorrichtung nach Anspruch 1, wobei es sich bei der lösbaren Verbindung (4) um eine Schraubverbindung oder um eine Steckverbindung handelt.
[0007] 7. Vorrichtung nach einem oder mehreren der Ansprüche 1-6, wobei es sich bei der Vorrichtung (1) um ein Füllstandsmessgerät handelt, das den Füllstand des Füllguts in dem Behälter über die Laufzeit von an dem leitfähigen Element (3) entlang geführten hochfrequenten Messsignalen ermittelt.
[0008] 8. Vorrichtung nach einem oder mehreren der Ansprüche 1-6, wobei es sich bei der Vorrichtung (1) um ein Füllstandsmessgerät handelt, das den Füllstand des Füllguts über ein kapazitives Messverfahren oder über ein konduktives Messverfahren ermittelt.
[0009] 9. Vorrichtung nach Anspruch 7 oder 8, wobei an dem Gehäuseteil (2) ein lösbares Befestigungsteil (10) zur Befestigung des Füllstandsmessgeräts (1) an dem Behälter vorgesehen ist.
[0010] 10. Vorrichtung nach Anspruch 7 oder 8, wobei eine lösbare Steck- und/oder Schraubverbindung (13) vorgesehen ist, über die ein Elektronikteil (14) an das Füllstandsmessgerät (1) angekoppelt ist.
PCT/EP2005/056325 2004-12-13 2005-11-29 VORRICHTUNG ZUR BESTIMMUNG UND/ODER ÜBERWACHUNG DER PROZESSGRÖßE FÜLLSTAND EINES FÜLLGUTS IN EINEM BEHÄLTER WO2006063929A2 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/792,617 US7814789B2 (en) 2004-12-13 2005-11-29 Device for determining and/or monitoring the fill-level process variable of a substance in a container
EP05850422.6A EP1825231B1 (de) 2004-12-13 2005-11-29 VORRICHTUNG ZUR BESTIMMUNG UND/ODER ÜBERWACHUNG DER PROZESSGRÖßE FÜLLSTAND EINES FÜLLGUTS IN EINEM BEHÄLTER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004060119.4 2004-12-13
DE102004060119A DE102004060119A1 (de) 2004-12-13 2004-12-13 Vorrichtung zur Bestimmung und/oder Überwachung der Prozessgröße Füllstand eines Füllguts in einem Behälter

Publications (2)

Publication Number Publication Date
WO2006063929A2 true WO2006063929A2 (de) 2006-06-22
WO2006063929A3 WO2006063929A3 (de) 2006-11-16

Family

ID=36500270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/056325 WO2006063929A2 (de) 2004-12-13 2005-11-29 VORRICHTUNG ZUR BESTIMMUNG UND/ODER ÜBERWACHUNG DER PROZESSGRÖßE FÜLLSTAND EINES FÜLLGUTS IN EINEM BEHÄLTER

Country Status (4)

Country Link
US (1) US7814789B2 (de)
EP (1) EP1825231B1 (de)
DE (1) DE102004060119A1 (de)
WO (1) WO2006063929A2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7938019B2 (en) 2006-09-05 2011-05-10 Roxar Flow Measurement As Sealed electrode assembly for fluid measurements
US9829366B2 (en) 2011-03-08 2017-11-28 Baxter International Inc. Non-invasive radio frequency liquid level and volume detection system and method using phase shift

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005042646A1 (de) * 2005-09-07 2007-03-08 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Ermittlung und Überwachung des Füllstandes eines Mediums in einem Behälter
US8495691B1 (en) 2006-04-12 2013-07-23 Marvell International Ltd. Content localization in a network device
DE102006053399A1 (de) * 2006-11-10 2008-05-15 Endress + Hauser Gmbh + Co. Kg Messsonde für ein Messgerät
DE102008043252A1 (de) * 2008-10-29 2010-05-06 Endress + Hauser Gmbh + Co. Kg Füllstandsmessgerät
DE102010038732B4 (de) 2010-07-30 2023-07-27 Endress+Hauser SE+Co. KG Vorrichtung und Verfahren zur Sicherung der Befestigung eines koaxial um eine Messsonde angeordneten Rohres einer Messsondeneinheit eines Füllstandsmessgerätes an einem Prozessanschlusselement
DE102012203400B4 (de) * 2012-03-05 2017-08-24 Ifm Electronic Gmbh Messgerät und Anordnung zur kapazitiven Messung des Füllstands eines Mediums
US9291492B2 (en) * 2013-03-12 2016-03-22 Rosemount Tank Radar Ab Tank feed through structure for a radar level gauge
DE102013113642A1 (de) * 2013-12-06 2015-06-11 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Bestimmung des Füllstandes eines Füllguts in einem Behälter
US9921096B2 (en) * 2014-09-10 2018-03-20 Honeywell International Inc. Mechanical system for centering and holding a coax conductor in the center of an outer conductor
DE102015122177A1 (de) * 2015-12-18 2017-06-22 Endress + Hauser Gmbh + Co. Kg Sensoradapter
EP3386724A1 (de) * 2016-05-12 2018-10-17 Hewlett-Packard Development Company, L.P. Dateneinheiten zur baustoffidentifikation in der generativen fertigung
DE102018132285A1 (de) * 2018-12-14 2020-06-18 Endress+Hauser SE+Co. KG Füllstandsmessgerät
DE102019102812A1 (de) 2019-02-05 2020-08-06 Sick Ag Sensor zum Bestimmen einer Prozessgröße
DE202019100659U1 (de) 2019-02-05 2020-05-07 Sick Ag Sensor zum Bestimmen einer Prozessgröße
EP4053517B1 (de) * 2021-03-01 2023-10-25 Rosemount Tank Radar AB Tankdurchführungsstruktur für ein radarfüllstandsmessgerät und verfahren zur herstellung einer kupplungsanordnung für eine tankdurchführungsstruktur
DE102022106671A1 (de) * 2022-03-22 2023-09-28 Endress+Hauser SE+Co. KG Füllstandmessgerät

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3477290A (en) * 1967-10-20 1969-11-11 Sun Oil Co Probe assembly for measuring liquid level
EP0780664A2 (de) * 1995-12-19 1997-06-25 Endress + Hauser GmbH + Co. Sensorapparatur zur Messung von Verfahrensparametern
US6178817B1 (en) * 1996-11-22 2001-01-30 Venture Measurement Company Llc Material level sensing
WO2004065799A2 (de) * 2003-01-20 2004-08-05 Endress + Hauser Gmbh + Co. Kg Befestigungssystem für ein messgerät zur überwachung und/oder bestimmung eines füllstands

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4523465A (en) * 1984-01-09 1985-06-18 The United States Of America As Represented By The United States Department Of Energy Wireless remote liquid level detector and indicator for well testing
US6386055B1 (en) * 1998-01-06 2002-05-14 Endress +Hauser Gmbh +Co. Sensor apparatus for transmitting electrical pulses from a signal line into and out of a vessel to measure a process variable—in order to be more informative
EP1070941A1 (de) * 1999-07-23 2001-01-24 Endress + Hauser GmbH + Co. Vorrichtung zum Messen des Füllstandes in einem Behälter
US6477290B1 (en) * 2000-02-15 2002-11-05 Optic Net, Inc. Fiber optic switch using MEMS
DE10009067A1 (de) * 2000-02-25 2001-08-30 Endress Hauser Gmbh Co Meßgerät mit Seilsonde und Verfahren zum Kürzen der Seilsonde
DE10045235A1 (de) * 2000-09-13 2002-03-28 Endress Hauser Gmbh Co Füllstandsmeßgerät
DE10060419C2 (de) * 2000-12-05 2002-10-24 Beru Ag Verfahren zum Erfassen eines Fluides und Sensor zur Durchführung dieses Verfahrens
DE10331730A1 (de) * 2003-07-11 2005-01-27 Endress + Hauser Gmbh + Co. Kg Feldgerät zur Bestimmung und/oder Überwachung einer Prozessgröße
DE10352471A1 (de) * 2003-11-07 2005-06-23 Endress + Hauser Gmbh + Co. Kg Feldgerät zur Bestimmung und/oder Überwachung einer Prozessgröße
US6988404B2 (en) * 2003-12-11 2006-01-24 Ohmart/Vega Corporation Apparatus for use in measuring fluid levels
DE102005022493A1 (de) * 2005-05-11 2006-11-16 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Ermittlung und Überwachung des Füllstandes eines Mediums in einem Behälter
US7327272B2 (en) * 2005-05-31 2008-02-05 Endress + Hauser Gmbh + Co. Kg Apparatus for determining and/or monitoring a process variable
DE102006013255A1 (de) * 2006-03-21 2007-09-27 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Bestimmung und/oder Überwachung einer Prozessgröße

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3477290A (en) * 1967-10-20 1969-11-11 Sun Oil Co Probe assembly for measuring liquid level
EP0780664A2 (de) * 1995-12-19 1997-06-25 Endress + Hauser GmbH + Co. Sensorapparatur zur Messung von Verfahrensparametern
US6178817B1 (en) * 1996-11-22 2001-01-30 Venture Measurement Company Llc Material level sensing
WO2004065799A2 (de) * 2003-01-20 2004-08-05 Endress + Hauser Gmbh + Co. Kg Befestigungssystem für ein messgerät zur überwachung und/oder bestimmung eines füllstands

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7938019B2 (en) 2006-09-05 2011-05-10 Roxar Flow Measurement As Sealed electrode assembly for fluid measurements
US9829366B2 (en) 2011-03-08 2017-11-28 Baxter International Inc. Non-invasive radio frequency liquid level and volume detection system and method using phase shift
US9907908B2 (en) 2011-03-08 2018-03-06 Baxter International Inc. Non-invasive radio frequency medical fluid level and volume detection system and method

Also Published As

Publication number Publication date
EP1825231B1 (de) 2020-02-26
US20080307881A1 (en) 2008-12-18
EP1825231A2 (de) 2007-08-29
WO2006063929A3 (de) 2006-11-16
DE102004060119A1 (de) 2006-06-14
US7814789B2 (en) 2010-10-19

Similar Documents

Publication Publication Date Title
EP1825231B1 (de) VORRICHTUNG ZUR BESTIMMUNG UND/ODER ÜBERWACHUNG DER PROZESSGRÖßE FÜLLSTAND EINES FÜLLGUTS IN EINEM BEHÄLTER
DE102010038732B4 (de) Vorrichtung und Verfahren zur Sicherung der Befestigung eines koaxial um eine Messsonde angeordneten Rohres einer Messsondeneinheit eines Füllstandsmessgerätes an einem Prozessanschlusselement
EP1324036B1 (de) Messvorrichtung zum Messen des Zustandes von Ölen und Fetten
EP3390981B1 (de) Sensoradapter
WO2008055758A1 (de) Messsonde für ein messgerät
AT503137B1 (de) Prüfanordnung zur prüfung der elektrischen durchschlagsfestigkeit
EP0568973A2 (de) Niveauschalter
WO2002023139A1 (de) Füllstandsmessgerät
WO2019214924A1 (de) Tdr-messvorrichtung zur bestimmung der dielektrizitätskonstanten
DE102012014267B4 (de) Nach dem Radar-Prinzip arbeitendes Füllstandmessgerät
WO2014095419A1 (de) VORRICHTUNG ZUR BESTIMMUNG ODER ÜBERWACHUNG EINER PROZESSGRÖßE EINES MEDIUMS IN EINER ROHRLEITUNG
WO2017186406A1 (de) Koppelelement für ein kapazitives füllstansdmesgerät
EP2118625B1 (de) VORRICHTUNG ZUR BESTIMMUNG UND/ODER ÜBERWACHUNG EINER PROZESSGRÖßE
WO2021063710A1 (de) Messaufnehmer, messrohr, messgerät, magnetisch-induktive durchflussmessstelle
DE4111271A1 (de) Fuellstands-messvorrichtung
EP1128169A1 (de) Verfahren und Vorrichtung zur Bestimmung des Grenzfüllstandes eines Füllguts in einem Behälter
EP0760467B1 (de) Verfahren zur Bestimmung des Phasenteils eines Mediums in offenen und geschlossenen Leitungen
CH625880A5 (de)
EP1941247A1 (de) Vorrichtung zur kapazitiven bestimmung und/oder überwachung des füllstands eines mediums
DE102007003887A1 (de) Verfahren zur Bedienung einer Vorrichtung zur kapazitiven Bestimmung und/oder Überwachung einer Prozessgröße
DE102006060921A1 (de) Vorrichtung zur Bestimmung und/oder Überwachung einer Prozessgröße
EP1070941A1 (de) Vorrichtung zum Messen des Füllstandes in einem Behälter
DE102007049526A1 (de) Vorrichtung zur Bestimmung und/oder Überwachung einer Prozessgröße
WO2023099411A1 (de) Verfahren zum detektieren eines fremdkörpers in einem medium
EP3449244B1 (de) Anordnung und verfahren zur detektion eines schadens an einer innenbeschichtung eines behälters

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2005850422

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005850422

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11792617

Country of ref document: US