WO2006063631A1 - Vorrichtung zum bestimmen des füllgrades eines fluides - Google Patents

Vorrichtung zum bestimmen des füllgrades eines fluides Download PDF

Info

Publication number
WO2006063631A1
WO2006063631A1 PCT/EP2005/010895 EP2005010895W WO2006063631A1 WO 2006063631 A1 WO2006063631 A1 WO 2006063631A1 EP 2005010895 W EP2005010895 W EP 2005010895W WO 2006063631 A1 WO2006063631 A1 WO 2006063631A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring chamber
electrodes
fluid
chamber wall
measuring
Prior art date
Application number
PCT/EP2005/010895
Other languages
English (en)
French (fr)
Inventor
Alfred Böhm
Dieter Lerach
Original Assignee
Bartec Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bartec Gmbh filed Critical Bartec Gmbh
Priority to DK05802236.9T priority Critical patent/DK1825232T3/da
Priority to CA002586881A priority patent/CA2586881A1/en
Priority to EP05802236.9A priority patent/EP1825232B1/de
Priority to US11/793,033 priority patent/US20080148810A1/en
Priority to ES05802236.9T priority patent/ES2565458T3/es
Publication of WO2006063631A1 publication Critical patent/WO2006063631A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/002Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow wherein the flow is in an open channel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/56Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects
    • G01F1/58Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/24Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of resistance of resistors due to contact with conductor fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/26Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields
    • G01F23/263Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors
    • G01F23/268Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors mounting arrangements of probes

Definitions

  • the invention relates to a device according to the preamble of claim 1 for determining the degree of filling of a particular flowing fluid in a measuring chamber, with a Messkarmmerwandung surrounding the measuring chamber in which at least one opening for introducing and / or discharging the fluid is provided, and at least two flat Electrodes which are arranged opposite one another in the region of the measuring chamber wall in the measuring chamber.
  • a device for determining the degree of filling of a fluid is known, for example, from EP 0 617 789 B1.
  • the device known from this publication has a measuring tube through which fluid flows, in which there is a pair of electrodes whose individual electrodes are arranged on opposite measuring tube walls. This electrode pair is used to detect the conductivity of the fluid flowing through the measuring tube, wherein the conductivity is a measure of the degree of filling.
  • a further electrode pair is provided, which forms part of a magneto-inductive flow meter, which serves to detect the conveying speed of the fluid in the measuring tube.
  • EP 0 626 567 B1 teaches a device for the simultaneous determination of the flow rate and the degree of filling in a measuring line.
  • the device has a common electrode pair, which is used both for determining the flow velocity of the fluid and a magnetically inert fluid. serving ductile flow meter as well as for determining the degree of filling with a conductivity measuring device.
  • the measuring line of the known device consists of a metallic tube, in which a section with a rectangular flow cross-section is formed. The rectangular section has on its two longitudinal sides in each case a flat individual electrode of the electrode pair. The individual electrodes are formed electrically insulated with respect to the metallic tube.
  • the device according to the invention is characterized in that the measuring chamber wall is designed to be electrically insulating in isolation regions which adjoin the two electrodes and surround them in a planar manner.
  • a basic idea of the invention can be seen in the fact that the walls of the measuring chamber, which are in fluid contact, form insulating at least in sections in the vicinity of the two electrodes. As a result, an extended region of the insulation is provided at the measuring chamber wall.
  • the invention is based on the finding that in the presence of electrically conductive Meßkarmmerwandungen there is a risk that electrical currents between the electrodes are not carried exclusively by the fluid in the measuring chamber, but that such currents also form in the measuring chamber. For example, electrical charge can flow from one electrode into the fluid, from there into the conductive measuring chamber wall, from there back into the fluid and finally to the second electrode.
  • such shunts reduce precision in filling degree determination because the measured conductance not only the conductivity of the fluid but also the conductivity of the electrically conductive measuring chamber wall. This requires complex compensation methods in the evaluation of the electrode currents.
  • the device according to the invention can also be referred to as a bubble or air bubble sensor, since it can serve to determine a gas bubble and / or gas fraction in a liquid. These proportions can be referred to as degree of filling.
  • the gas may in particular be air
  • the fluid is a liquid.
  • the fluid is suitably electrically conductive.
  • the fluid may, for example, comprise water.
  • the fluid may be dairy products, for example milk.
  • the isolation region is provided on each of the two electrodes.
  • the individual isolation areas can also merge into each other.
  • the isolation regions can merge into one another such that one or more common isolation regions are formed which connect to both opposing electrodes.
  • the insulation areas surround the planar electrodes in a planar manner.
  • the isolation regions can also extend into those measuring chamber wall regions which are arranged under the electrodes, that is to those regions which are covered by the planar electrodes with respect to the fluid located in the measuring chamber.
  • only a single opening can be provided on the measuring chamber wall according to the invention, which can then serve both for introducing the fluid into the measuring chamber and for discharging the fluid out of the measuring chamber.
  • Such an arrangement may be particularly advantageous if the device is used to determine the degree of filling of a stationary, ie at least during the measurement period, non-flowing fluid.
  • two openings for the passage of the fluid through the measuring chamber are formed in the measuring chamber wall.
  • Such an arrangement is particularly well suited for filling degree determination of a flowing fluid.
  • the two openings are arranged opposite one another in the measuring chamber wall. In principle, it is also possible to provide further openings.
  • the measuring chamber wall is tube-shaped in the flow direction of the fluid, at least in the area of the electrodes.
  • the measuring chamber wall can also be called a measuring tube.
  • the measuring chamber wall can be designed, for example, as a linearly extending tube, but also as a bent tube, for example as a U-tube. It is particularly advantageous that the measuring chamber wall is formed at least in the region of the electrodes as a linear tube. In this way, a particularly turbulence-free flow and thus a high measuring accuracy can be achieved in the region of the electrodes.
  • the inner cross section of the tubular measuring chamber wall is, for example, angular, in particular rectangular or square, and / or round, for example circular or elliptical.
  • the direction of flow of the flowing fluid in the measuring chamber can be understood as flow direction, assuming an ideally laminar flow.
  • the flow direction coincides in particular with the axial direction of the tube.
  • the isolation regions are arranged in the direction of flow of the fluid on both sides of the electrodes.
  • the measuring chamber wall is preferably both upstream and downstream of the planar electrodes electrically insulating, wherein both the upstream isolation areas and the downstream connect isolation areas to the respective electrode.
  • the upstream isolation regions and the downstream isolation regions thereof and / or the respective other electrode can also merge into one another.
  • the isolation regions in the flow direction of the fluid are at least twice as wide as the respective electrodes surrounded by them.
  • the width can be understood as meaning a total width of the insulation regions surrounding the respective electrodes, for example a total width of the respective upstream and downstream insulation region.
  • the isolated width should be at least twice the width of the respective electrode.
  • the width of the isolation regions may include the width of the electrodes therein.
  • the isolation regions are arranged at least in sections in the cross section of the measuring chamber between the electrodes.
  • the isolation regions of the individual electrodes can thereby, but not necessarily, merge into each other to form a common isolation region.
  • the arrangement of the isolation regions between the opposing electrodes can be understood to mean that the isolation regions extend transversely to the flow direction, starting from the electrodes. It is preferably provided that a bottom area and / or ceiling area of the measuring chamber wall is electrically insulated, that is to say in particular formed with at least one insulation area.
  • the spatial arrangement of floor and ceiling area is to be seen in particular with regard to laterally arranged electrodes.
  • the bottom and ceiling regions can be understood as meaning those measuring chamber wall elements that run at an angle to the measuring chamber wall elements provided with electrodes.
  • the electrodes are flush with the surrounding MessharimmerwanPg or set back from the surrounding Messkarmmerwandung. Since, according to the invention, the measuring chamber wall surrounding the electrodes is at least partially insulated, such an electrode arrangement can take place without the formation of significant electrical shunts between the electrodes and the surrounding measuring chamber wall. As a result of the electrode arrangement which is flush with the surface or set back from the measuring chamber wall, a particularly laminar flow and thus a particularly good measuring accuracy can be achieved in the region of the electrodes.
  • the electrodes can also protrude at the surrounding Messcrowandung.
  • Particularly easy to interpret measured values can be obtained in a particularly simple device structure, characterized in that the measuring chamber, in particular in the region of the electrodes, has a rectangular, in particular square inner cross-section.
  • the electrodes have at least approximately the same height as the measuring chamber.
  • the height can preferably be measured perpendicular to the flow direction of the fluid.
  • the height relates in particular to the measuring chamber wall elements on which the electrodes are arranged.
  • a structurally particularly simple device is provided in that two, in particular identical, electrodes are provided at opposite locations of the measuring chamber. Particularly in the case of a rectangular or square measuring chamber inner cross-section, the electrodes are suitably diametrically opposite.
  • contact surfaces of the opposing electrodes to the interior of the Measuring chamber are at least approximately equal.
  • the contact surfaces are to be understood as the surfaces of the electrodes intended for fluid contact in the measuring chamber.
  • the contact surfaces of the opposite electrodes and / or the Meßkarmmerwandung are formed in the region of the electrodes at least approximately mirror-symmetrical.
  • a mirror plane preferably runs in the flow direction.
  • further electrodes for example auxiliary electrodes
  • the shape, configuration and arrangement of these further electrodes can basically be chosen arbitrarily with respect to the two opposing electrodes.
  • the electrodes When measured on a flowing fluid, the electrodes are suitably designed so that a representative cross-section of a fluid conduit is detected at each instant.
  • rectangular electrodes are particularly suitable.
  • the opposing electrodes have at least approximately rectangular base surfaces.
  • the base surfaces of the electrodes can be understood to be, in particular, sectional surfaces of the electrodes running parallel to the respective surrounding measuring chamber wall.
  • the opposite electrodes are oblique to the flow direction and are formed in particular with at least approximately parallel-shaped base surfaces.
  • the electrodes are formed so that their width over their total th height is at least approximately constant.
  • the flow velocity in the center of the measuring chamber is often greater than at the measuring chamber walls, it may also be advantageous to vary the electrode width over the height of the electrode.
  • the second, opposite electrode has the same oblique position as the first electrode.
  • a body with a constant side length can result in a spatial representation between the electrodes, for example a cube or a prism.
  • the set of Cavalieri can be used.
  • the opposite electrodes are arranged offset in the flow direction of the fluid against each other.
  • the isolation regions of the measuring chamber wall are surrounded by conduit regions in which the measuring chamber wall is electrically conductive, in particular metallic, whereby the at least one opening is preferably arranged in the conduit regions. Due to the metallic design of the measuring chamber wall in the region of the opening, a particularly robust device can be obtained. Due to the electrically conductive design of the measuring chamber wall in the line areas, a shielding of the electrodes against electromagnetic interference can be achieved in addition.
  • the measuring chamber wall in the insulating areas throughout insulating.
  • the measuring chamber wall has an insulation layer in the insulation regions.
  • the Messkarmmerwandung in the isolation regions below the insulating layer also be electrically conductive, in particular metallic.
  • a voltage source in particular an AC voltage source is provided which is in line connection with the electrodes via leads, and that a current detection device is provided for measuring a current in at least one of the supply lines.
  • a conductivity measurement can be carried out by means of the device according to the invention, it being possible to deduce the degree of filling in the measuring chamber from the conductivity of the fluid.
  • it may also be provided to detect the degree of filling by means of a capacitance measurement, wherein the electrodes may be formed as capacitor plates and the fluid, in particular the liquid and the gas contained therein, form the dielectric. If a capacitance measurement is carried out, the electrodes can also be designed to be electrically insulated with respect to the measuring chamber interior or the fluid.
  • a particularly compact and easily transportable device is given by the fact that a housing is provided, in which the measuring chamber wall is arranged.
  • the voltage source and / or the current detection device is preferably provided on, in particular in the housing.
  • the housing may for example be formed as a tube in which, in particular spaced, the Messkarmmerwandung is arranged.
  • the housing is preferably electrically conductive, in particular metallic.
  • FIG. 1 shows a longitudinal section from above of a device according to the invention according to a first embodiment
  • Fig. 2 is a longitudinal section from the side of the device of Fig. 1;
  • FIG. 3 shows a longitudinal section from above of a device according to the invention according to a second embodiment
  • Fig. 4 is a longitudinal section from the side of the device of Fig. 3;
  • FIG. 5 shows a longitudinal section from above of a device according to the invention according to a third embodiment
  • FIG. 6 shows a longitudinal section from the side of the device according to the invention from FIG. 5;
  • FIG. 7 is a perspective view of a device according to the invention according to a fourth embodiment.
  • FIG. 8 is a side view of an end face of the device of FIG. 7; FIG.
  • Fig. 9 is a plan view of the device of Figs. 7 and 8 with hidden edges and outlines;
  • Figure 10 is a cross-sectional view of the device of Figures 7 to 9 at the level of the line passage.
  • Fig. 11 shows a device according to the invention according to a fifth embodiment.
  • Like-acting elements are denoted by the same reference numerals in all figures.
  • the device has a measuring chamber wall 12, which delimits a measuring chamber 10 in the interior of the device.
  • the measuring chamber 10 is elongated.
  • an opening 41 for introducing the fluid into the measuring chamber 10 or an opening 40 for discharging the fluid from the measuring chamber 10 is provided.
  • a connection flange 20, 21 is provided on the measuring chamber wall 12 for flanging the device according to the invention into a line.
  • the device according to the invention can thus serve for filling degree determination in a line.
  • this measuring chamber 10 has regions of different cross-section.
  • the cross section is considered perpendicular to the ideal laminar flow direction v of the fluid in the measuring chamber 10, which coincides with the longitudinal axis of the measuring chamber 10.
  • a tapered measuring chamber region 62 adjoins the measuring chamber interior at a first, outside measuring chamber region 61 with a constant cross section, in which the measuring chamber cross section decreases towards the measuring chamber interior.
  • This in turn is followed by a third measuring chamber region 63 with a constant cross section.
  • the measuring chamber 10 is formed with a rectangular, in particular square cross-section.
  • the measuring chamber 10 is mirror-symmetrical, with a plane of symmetry perpendicular to the flow direction v of the fluid. Thus, areas corresponding to the measuring chamber areas 61 to 63 are also provided on the right side in the measuring chamber 10. To form the rectangular measuring chamber cross-section in the third measuring chamber region 63, the measuring chamber wall 12 in FIG this area 63 four perpendicular to each other wall elements.
  • two electrodes 31, 32 are arranged opposite one another perpendicular to the flow direction v.
  • a voltage preferably an alternating voltage, is applied between these two electrodes 31, 32, which generates a current corresponding to the conductance of the liquid standing in the measuring chamber 10 or passing through this chamber 10. This current is detected for conductance determination.
  • the electrode 31 is T-shaped in longitudinal section from the top of Fig. 1. At the head end, this electrode 31 has a contact surface 35 directed towards the measuring chamber interior, at which the electrode 31 is in contact with the fluid in the measuring chamber 10. In the exemplary embodiment illustrated in FIG. 1, the electrode 31 does not terminate flat with the surrounding measuring chamber wall 12, but is arranged in a stepped manner in the measuring chamber interior in a stepped manner relative to the latter.
  • the contact surface 35 is thus formed like a paragraph and has a longitudinal surface extending parallel to the flow direction and perpendicular to this end faces.
  • a connecting line 34 is provided on the electrode 31.
  • the electrode 32 is constructed and arranged correspondingly to the electrode 31.
  • the electrodes 31, 32 extend over the entire height of the measuring chamber 10, i. the height h of the electrodes 31, 32 corresponds to the height of the measuring chamber 10, at least in the third measuring chamber area 63.
  • the electrodes 31, 32 thus extend along the entire height of opposite, parallel inner surfaces of the measuring chamber wall 12.
  • the electrodes 31, 32 are galvanically insulated from the measuring chamber wall 12, which may be formed in particular as a tube.
  • an insulation layer 16 for example, provided a plastic layer.
  • this insulating layer 16 is arranged in the region of the connecting leads 34 of the electrodes 31, 32 and between their head-side ends and the measuring chamber wall 12, ie below the electrodes 31, 32.
  • the insulating layer 16 is also provided in the flow direction v of the fluid in front of and behind the electrodes 31, 32, whereby on the Meßlammerwandung 12 area insulation regions are formed, which surround the two electrodes 31, 32.
  • These isolation regions have a width b, which may preferably be at least twice, in particular up to fifteen times, an electrode width a.
  • the isolation regions 16 extend between the flanges 20, 21 along the entire measuring chamber wall 12.
  • the insulation layer 16 is also provided in the bottom area 18 and in the ceiling area 19 of the measuring chamber 10, ie on the inner surfaces of the measuring chamber wall 12, which are spaced from the electrodes 31, 32 and perpendicular to these electrodes 31, 32 run.
  • the measuring chamber wall 12 may otherwise consist of electrically conductive material, for example of metal. However, provision may also be made for the measuring chamber wall 12 to be designed to be electrically insulating throughout, as a result of which an insulation layer 16 can then be dispensed with in the insulation regions.
  • FIGS. 3 and 4 Another embodiment of a device according to the invention is shown in FIGS. 3 and 4.
  • the embodiment shown in these figures differs from the embodiment of FIGS. 1 and 2 only in that the electrodes 31, 32 here have contact surfaces 35 tapered with respect to the flow direction v.
  • the contact surfaces 35 corresponding to the longitudinal section of FIG. 3, the contact surfaces 35 have two end surfaces which run at an angle of approximately 45 ° to the direction of flow v, wherein between these end surfaces a further pa- is arranged parallel to the flow direction v extending longitudinal surface.
  • FIGS. 5 and 6 differs from the exemplary embodiment of FIG. 1 and in that the electrodes do not protrude from the measuring chamber wall 12, but are flush-mounted in the measuring chamber wall 12.
  • the contact surfaces 35 of the electrodes 31, 32 are formed flat.
  • a voltage source 71 is shown schematically in FIG. 5, which is connected via leads 76, 77 to the electrodes 31 and 32, respectively.
  • a current detection means 73 for measuring the current through the electrode 32 is provided.
  • Correspondingly interconnected voltage sources 71 and current detection devices 73 can also be used in the other exemplary embodiments shown.
  • FIGS. 7 to 10 A fourth embodiment of a device according to the invention is shown in FIGS. 7 to 10.
  • the embodiment shown in these figures has a tubular housing 50, in which the measuring chamber wall 12 is arranged with the measuring chamber 10.
  • the Meßkarmmerwandung 12 may be different material in particular with respect to the housing 50 and / or spaced therefrom.
  • the control and evaluation for the electrodes 31, 32 may be provided in the housing 50.
  • a line passage 52 is provided centrally on the housing 50.
  • the measuring chamber wall 12 of the fourth embodiment has two conical regions 43, 44, on which connecting flanges 46, 47 are provided at the end.
  • the openings 40, 41 of the Meßkarmmerwandung 12 are formed, wherein the two openings 40, 41 have approximately circular cross-section. From the openings 40, 41 starting tapers the cross-section of the measuring chamber 10 in the conical regions 43, 44 continuously and in a central region 48 of the measuring chamber 10 in a rectangular cross section over. In this central region 48, the two electrodes 31, 32 are arranged.
  • the insulation regions of the fourth embodiment have an overall width which, including the electrodes 31, 32 arranged therein, is approximately four times the width b of the electrode width a.
  • the insulation zones can, however, also be designed with a considerably larger width b '.
  • FIG. 11 Another embodiment of a device according to the invention is shown in FIG. 11.
  • parallelogram-like electrodes 31 'running obliquely to the direction of flow v are provided instead of rectangular electrodes. Due to the parallelogram-like design, it can be ensured that the electrodes 31 'have the same width over the entire cross-section of the measuring chamber 10. Air bubbles 80, which move with the fluid in the flow direction v through the measuring chamber 10, thus experience regardless of their position in the cross section of the measuring chamber 10 always the same measuring section.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measuring Volume Flow (AREA)

Abstract

Die Erfindung betriff eine Vorrichtung zum Bestimmen des Füllgrades eines Fluides in einer Messkammer, mit einer die Messkammer umgebende Messkammerwandung und mindestens zwei flächigen Elektroden, die einander gegenüberliegend im Bereich der Messkammerwandung in der Messkammer angeordnet sind. Dabei ist vorgesehen, dass die Messkammerwandung in Isolationsbereichen, welche an die beiden Elektroden anschliessen und diese flächig umgeben, elektrisch isolierend ausgebildet ist.

Description

Vorrichtung zum Bestimmen des Füllgrades eines Fluides
Die Erfindung betrifft eine Vorrichtung gemäß dem Oberbegriff des Anspruchs 1 zum Bestimmen des Füllgrades eines insbesondere strömenden Fluides in einer Messkammer, mit einer die Messkammer umgebenden Messkämmerwandung, in der zumindest eine Öffnung zum Einleiten und/oder Ausleiten des Fluides vorgesehen ist, und mindestens zwei flächigen Elektroden, die einander gegenüberliegend im Bereich der Messkammerwandung in der Messkammer angeordnet sind.
Eine Vorrichtung zum Bestimmen des Füllgrades eines Fluides ist beispielsweise aus der EP 0 617 789 Bl bekannt. Die aus dieser Druckschrift bekannte Vorrichtung weist ein fluid- durchströmtes Messrohr auf, in dem sich ein Elektrodenpaar befindet, dessen Einzelelektroden an gegenüberliegenden Mess- rohrwänden angeordnet sind. Dieses Elektrodenpaar dient zur Erfassung der Leitfähigkeit des durch das Messrohr strömenden Fluides, wobei die Leitfähigkeit ein Maß für den Füllgrad darstellt. Daneben ist ein weiteres Elektrodenpaar vorgesehen, das einen Bestandteil eines magnetisch induktiven Durchfluss- messers bildet, der zur Erfassung der Fördergeschwindigkeit des Fluides im Messrohr dient .
Eine weitere gattungsgemäße Vorrichtung geht aus der EP 0 626 567 Bl hervor. Die EP 0 626 567 Bl lehrt eine Vorrichtung zur gleichzeitigen Bestimmung der Strömungsgeschwindigkeit und des Füllgrades in einer Messleitung. Die Vorrichtung weist ein gemeinsames Elektrodenpaar auf, das sowohl zur Bestimmung der Strömungsgeschwindigkeit des Fluides mit einem magnetisch in- duktiven Durchflusstnesser als auch zur Bestimmung des Füllgrades mit einer Leitfähigkeitsmesseinrichtung dient. Die Messleitung der bekannten Vorrichtung besteht aus einem metallischen Rohr, in welchem ein Abschnitt mit rechteckigem Strömungsquerschnitt ausgebildet ist. Der rechteckige Abschnitt weist an seinen beiden Längsseiten jeweils eine flächige Einzelelektrode des Elektrodenpaars auf. Die Einzelelektroden sind dabei bezüglich des metallischen Rohres elektrisch isoliert ausgebildet.
A u f g a b e der Erfindung ist es, eine Vorrichtung zum Bestimmen des Füllgrades in einer Messkammer anzugeben, die eine besonders hohe Messgenauigkeit erlaubt.
Diese Aufgabe wird erfindungsgemäß durch eine Vorrichtung mit den Merkmalen des Anspruchs 1 gelöst. Bevorzugte Ausführungsbeispiele sind in den abhängigen Ansprüchen angegeben.
Die erfindungsgemäße Vorrichtung ist dadurch gekennzeichnet, dass die Messkammerwandung in Isolationsbereichen, welche an die beiden Elektroden anschließen und diese flächig umgeben, elektrisch isolierend ausgebildet ist.
Ein Grundgedanke der Erfindung kann darin gesehen werden, die in Fluidkontakt stehenden Wände der Messkammer in der Umgebung der beiden Elektroden zumindest abschnittsweise isolierend auszubilden. Hierdurch wird ein erweiterter Bereich der Isolation an der Messkammerwandung geschaffen. Der Erfindung liegt die Erkenntnis zugrunde, dass beim Vorliegen von elektrisch leitfähigen Messkämmerwandungen die Gefahr besteht, dass elektrische Ströme zwischen den Elektroden nicht ausschließlich vom Fluid in der Messkammer getragen werden, sondern dass sich solche Ströme auch in der Messkammerwandung ausbilden. Beispielsweise kann elektrische Ladung von einer Elektrode in das Fluid, von dort in die leitfähige Messkammerwandung, von dort wieder in das Fluid und schließlich zur zweiten Elektroden fließen. Derartige Nebenschlüsse verringern jedoch die Präzision bei der Füllgradbestimmung, da der gemessene Leitwert nicht ausschließlich die Leitfähigkeit des Fluides sondern auch die Leitfähigkeit der elektrisch leitenden Messkämmerwan- dung wiedergibt . Dies macht aufwendige Kompensationsverfahren bei der Auswertung der Elektrodenströme erforderlich.
Die erfindungsgemäße Vorrichtung kann auch als Bubble- oder Luftblasensensor bezeichnet werden, da sie zur Bestimmung eines Gasblasen- und/oder Gasanteils in einer Flüssigkeit dienen kann. Diese Anteile können als Füllgrad bezeichnet werden. Bei dem Gas kann es sich dabei insbesondere um Luft handeln, bei dem Fluid um eine Flüssigkeit. Für eine Leitfähigkeitsmessung ist das Fluid geeigneterweise elektrisch leitfähig. Das Fluid kann beispielsweise Wasser aufweisen. Insbesondere kann es sich bei dem Fluid um Molkereiprodukte, beispielsweise um Milch handeln. Unter einer Isolierung wird erfindungsgemäß eine elektrische oder galvanische Isolierung verstanden.
Erfindungsgemäß ist an jeder der beiden Elektroden zumindest ein Isolationsbereich vorgesehen. Die einzelnen Isolationsbereiche können auch ineinander übergehen. Insbesondere können die Isolationsbereiche erfindungsgemäß so ineinander übergehen, dass ein oder mehrere gemeinsame Isolationsbereiche gebildet werden, welche an beide gegenüberliegende Elektroden anschließen. Erfindungsgemäß umgeben die Isolationsbereiche die flächigen Elektroden flächig. Die Isolationsbereiche können sich zudem auch in solche Messkammerwandungsbereiche erstrecken, die unter den Elektroden angeordnet sind, also in solche Bereiche, die von den flächigen Elektroden gegenüber dem in der Messkammer befindlichen Fluid abgedeckt werden.
Grundsätzlich kann an der erfindungsgemäßen Messkämmerwandung lediglich eine einzige Öffnung vorgesehen sein, die dann sowohl zum Einleiten des Fluides in die Messkammer als auch zum Ausleiten des Fluides aus der Messkammer dienen kann. Eine solche Anordnung kann insbesondere dann von Vorteil sein, wenn die Vorrichtung zum Bestimmen des Füllgrades eines stationären, d.h. zumindest während der Messdauer nicht strömenden Fluides, verwendet wird. Besonders vorteilhaft ist es jedoch, dass in der Messkammerwandung zwei Öffnungen zum Durchleiten des Fluides durch die Messkammer ausgebildet sind. Eine solche Anordnung ist zur Füllgradbestimmung eines strömenden Fluides besonders gut geeignet. Bevorzugt sind die beiden Öffnungen einander gegenüberliegend in der Messkammerwandung angeordnet. Es können grundsätzlich auch weitere Öffnungen vorgesehen sein.
Eine insbesondere für die Füllgradbestimmung strömender Fluide besonders geeignete Ausgestaltung der erfindungsgemäßen Vorrichtung besteht darin, dass die Messkammerwandung in Fließrichtung des Fluides zumindest im Bereich der Elektroden rohrartig ausgebildet ist. In diesem Fall kann die Messkammerwandung auch als Messrohr bezeichnet werden. Die Messkammerwandung kann beispielsweise als linear verlaufendes Rohr, aber auch als gebogenes Rohr, beispielsweise als U-Rohr, ausgebildet sein. Besonders vorteilhaft ist es, dass die Messkammerwandung zumindest im Bereich der Elektroden als lineares Rohr ausgebildet ist. Hierdurch kann im Bereich der Elektroden eine besonders verwirbelungsfreie Strömung und somit eine hohe Messgenauigkeit erzielt werden. Erfindungsgemäß ist der Innenquerschnitt der rohrartigen Messkammerwandung beispielsweise eckig, insbesondere rechteckig oder quadratisch, und/oder rund, beispielsweise kreisrund oder ellipsenartig.
Unter der Fließrichtung kann erfindungsgemäß die Bewegungs- richtung des strömenden Fluides in der Messkammer unter Annahme einer ideal laminaren Strömung verstanden werden. Bei rohrartigen Messkammerwandungen fällt die Fließrichtung insbesondere mit der Axialrichtung des Rohres zusammen.
Eine besonders hohe Messgenauigkeit kann erfindungsgemäß dadurch erzielt werden, dass die Isolationsbereiche in Fließrichtung des Fluides beiderseits der Elektroden angeordnet sind. Gemäß dieser Ausführungsform ist die Messkämmerwandung bevorzugt sowohl oberstromig als auch unterstromig der flächigen Elektroden elektrisch isolierend ausgebildet, wobei sowohl die oberstromigen Isolationsbereiche als auch die unterstromi- gen Isolationsbereiche an die jeweilige Elektrode anschließen. Die oberstromigen Isolationsbereiche und die unterstromigen Isolationsbereiche derselben und/oder der jeweils anderen Elektrode können auch ineinander übergehen.
Besonders bevorzugt ist es ferner, dass die Isolationsbereiche in Fließrichtung des Fluides zumindest doppelt so breit sind wie die jeweils hiervon umgebenen Elektroden. In diesem Zusammenhang kann unter der Breite eine Gesamtbreite der die jeweiligen Elektroden umgebenden Isolationsbereiche, beispielsweise eine Gesamtbreite des jeweils oberstromigen und unterstromigen Isolationsbereichs verstanden werden. Gemäß dieser Ausführungsform soll die isolierte Breite mindestens die doppelte Breite der jeweiligen Elektrode betragen. Die Breite der Isolationsbereiche kann die Breite der hierin befindlichen Elektroden einschließen.
Um die Präzision der Füllgradbestimmung weiter zu erhöhen, kann erfindungsgemäß vorgesehen sein, dass die Isolationsbereiche zumindest abschnittsweise im Querschnitt der Messkammer zwischen den Elektroden angeordnet sind. Die Isolationsbereiche der einzelnen Elektroden können dabei, müssen aber nicht notwendigerweise, unter Bildung eines gemeinsamen Isolations- bereiches ineinander übergehen. Unter der Anordnung der Isolationsbereiche zwischen den gegenüberliegenden Elektroden kann verstanden werden, dass sich die Isolationsbereiche ausgehend von den Elektroden quer zur Fließrichtung erstrecken. Bevorzugt ist vorgesehen, dass ein Bodenbereich und/oder Deckenbereich der Messkammerwandung elektrisch isoliert ist, also insbesondere mit zumindest einem Isolationsbereich ausgebildet ist. Die räumliche Anordnung von Boden- und Deckenbereich ist dabei insbesondere im Hinblick auf seitlich angeordnete Elektroden zu sehen. So können unter dem Boden- und Deckenbereich bei viereckigem Innenquerschnitt der Messkammer solche Mess- kammerwandelemente verstanden werden, die winklig zu den mit Elektroden versehenen Messkammerwandelementen verlaufen. Eine weitere bevorzugte Ausführungsform besteht darin, dass die Elektroden mit der umgebenden Messkämmerwandüng flächig abschließen oder gegenüber der umgebenden Messkämmerwandung zurückversetzt sind. Da erfindungsgemäß die die Elektroden umgebende Messkämmerwandung zumindest bereichsweise isoliert ist, kann eine solche Elektrodenanordnung ohne Ausbildung signifikanter elektrischer Nebenschlüsse zwischen den Elektroden und der umgebenden Messkämmerwandung erfolgen. Durch die flächig abschließende oder gegenüber der Messkammerwandung zurückversetzte Elektrodenanordnung kann im Bereich der Elektroden eine besonders laminare Strömung und somit eine besonders gute Messgenauigkeit erreicht werden. Die Elektroden können aber auch an der umgebenden Messkammerwandung vorstehen.
Besonders einfach zu interpretierende Messwerte können bei einem besonders einfachen Vorrichtungsaufbau dadurch erhalten werden, dass die Messkammer, insbesondere im Bereich der Elektroden, einen rechteckigen, insbesondere quadratischen Innenquerschnitt aufweist.
Ferner ist es besonders vorteilhaft, dass die Elektroden zumindest annähernd dieselbe Höhe aufweisen wie die Messkammer. Die Höhe kann dabei bevorzugt senkrecht zur Fließrichtung des Fluides gemessen werden. Die Höhe bezieht sich insbesondere auf die Messkammerwandelemente, an denen die Elektroden angeordnet sind.
Eine konstruktiv besonders einfache Vorrichtung ist dadurch gegeben, dass zwei, insbesondere identische, Elektroden an gegenüberliegenden Stellen der Messkammer vorgesehen sind. Insbesondere bei einem rechteckigen oder quadratischen Messkam- merinnenquerschnitt stehen sich die Elektroden geeigneterweise diametral gegenüber.
Für eine besonders hohe Messgenauigkeit bei einfach zu interpretierenden Messwerten kann vorgesehen sein, dass Kontaktoberflächen der gegenüberliegenden Elektroden zum Inneren der Messkammer zumindest annähernd gleich groß sind. Unter den Kontaktoberflächen sind dabei insbesondere die für einen Fluidkontakt in der Messkammer vorgesehenen Oberflächen der Elektroden zu verstehen.
Für besonders einfach zu interpretierende Messwerte ist es darüber hinaus vorteilhaft, dass die Kontaktoberflächen der gegenüberliegenden Elektroden und/oder die Messkämmerwandung im Bereich der Elektroden zumindest annähernd spiegelsymmet- risch ausgebildet sind. Eine Spiegelebene verläuft dabei vorzugsweise in Fließrichtung.
Sofern erfindungsgemäß im Bereich der Messkammer neben den genannten Elektroden weitere Elektroden, beispielsweise Hilfs- elektroden, vorgesehen sind, kann die Form, Ausgestaltung und Anordnung dieser weiteren Elektroden bezüglich den beiden gegenüberliegenden Elektroden grundsätzlich beliebig gewählt werden.
Wird an einem strömenden Fluid gemessen, so sind die Elektroden geeigneterweise so gestaltet, dass zu jedem Zeitpunkt ein repräsentativer Querschnitt einer Fluidleitung erfasst wird. Dazu sind rechteckige Elektroden besonders geeignet. Besonders bevorzugt ist es ferner, dass die gegenüberliegenden Elektroden zumindest annähernd rechteckige Grundflächen aufweisen. Unter den Grundflächen der Elektroden können dabei insbesondere parallel zur jeweils umgebenden Messkammerwandung verlaufende Schnittflächen der Elektroden verstanden werden.
Wach der Erfindung kann weiterhin vorgesehen sein, dass die gegenüberliegenden Elektroden schräg zur Fließrichtung verlaufen und insbesondere mit zumindest annähernd parallelförmigen Grundflächen ausgebildet sind. Besonders dann, wenn schräg gestellte Elektroden verwendet werden, kann es vorteilhaft sein, dass sich alle Luftblasen die gleiche zeitliche Wegstrecke über den bzw. zwischen den Elektroden bewegen und sich im Bereich der laminaren Strömung befinden. Bevorzugt sind die Elektroden so ausgebildet, dass ihre Breite über ihrer gesam- ten Höhe zumindest annähernd konstant ist. Insbesondere da die Strömungsgeschwindigkeit in der Messkammermitte aber häufig größer als an den Messkammerwandungen ist, kann es auch vorteilhaft sein, die Elektrodenbreite über der Elektrodenhöhe zu variieren.
Sofern schräg gestellte Elektroden zum Einsatz kommen, ist es bevorzugt, dass die zweite, gegenüberliegende Elektrode die gleiche Schrägstellung aufweist wie die erste Elektrode. Hierbei kann sich in räumlicher Darstellung zwischen den Elektroden ein Körper mit konstanter Seitenlänge ergeben, beispielsweise ein Würfel oder ein Prisma. Zur Bemaßung der Elektroden kann insbesondere der Satz von Cavalieri Anwendung finden.
Gemäß einer weiteren bevorzugten Ausführungsform der Erfindung kann vorgesehen sein, dass die gegenüberliegenden Elektroden in Fließrichtung des Fluides gegeneinander versetzt angeordnet sind.
Besonders vorteilhaft ist es ferner, dass die Isolationsbereiche der Messkammerwandung von Leitungsbereichen umgeben sind, in denen die Messkämmerwandung elektrisch leitfähig, insbesondere metallisch, ausgeführt ist, wobei die zumindest eine Öffnung bevorzugt in den Leitungsbereichen angeordnet ist. Durch die metallische Ausführung der Messkammerwandung im Bereich der Öffnung kann eine besonders robuste Vorrichtung erhalten werden. Durch die elektrisch leitfähige Ausführung der Mess- kammerwandung in den Leitungsbereichen kann daneben eine Abschirmung der Elektroden gegenüber elektromagnetischen Störungen erzielt werden.
Grundsätzlich ist es möglich, die Messkammerwandung in den Isolationsbereichen durchgängig isolierend auszubilden. Besonders bevorzugt ist es jedoch, dass die Messkammerwandung in den Isolationsbereichen eine Isolationsschicht aufweist. In diesem Fall kann die Messkämmerwandung in den Isolationsbereichen unterhalb der Isolationsschicht auch elektrisch leitfähig, insbesondere metallisch ausgebildet sein. Bei der Anord- nung einer Isolationsschicht auf einer ansonsten leitfähigen Schicht kann einerseits eine hinreichende Isolation der Wandung gegenüber den Elektroden und/oder dem Fluid und andererseits eine besonders wirksame Abschirmung der Messkammer gegenüber elektromagnetischen Störungen erreicht werden.
Erfindungsgemäß ist es vorteilhaft, dass eine Spannungsquelle, insbesondere eine Wechselspannungsquelle vorgesehen ist, die mit den Elektroden über Zuleitungen in Leitungsverbindung steht, und dass eine Stromerfassungseinrichtung zum Messen eines Stromes in zumindest einer der Zuleitungen vorgesehen ist. In diesem Fall kann mittels der erfindungsgemäßen Vorrichtung eine Leitfähigkeitsmessung durchgeführt werden, wobei aus der Leitfähigkeit des Fluides auf den Füllgrad in der Messkammer rückgeschlossen werden kann. Gegebenenfalls kann auch vorgesehen sein, den Füllgrad mittels einer Kapazitätsmessung zu erfassen, wobei die Elektroden als Kondensatorplatten ausgebildet sein können und das Fluid, insbesondere die Flüssigkeit und das hierin enthaltene Gas, das Dielektrikum bilden. Sofern eine Kapazitätsmessung durchgeführt wird, können die Elektroden gegenüber dem Messkammerinneren bzw. dem Fluid auch elektrisch isoliert ausgebildet werden.
Eine besonders kompakte und leicht transportable Vorrichtung ist erfindungsgemäß dadurch gegeben, dass ein Gehäuse vorgesehen ist, in dem die Messkammerwandung angeordnet ist. Bevor- zugt ist dabei die Spannungsquelle und/oder die Stromerfassungseinrichtung am, insbesondere im Gehäuse vorgesehen. Das Gehäuse kann beispielsweise als Rohr ausgebildet sein, in dem, insbesondere beabstandet, die Messkämmerwandung angeordnet ist. Zur elektromagnetischen Abschirmung ist das Gehäuse bevorzugt elektrisch leitfähig, insbesondere metallisch ausgeführt.
Grundsätzlich ist es vorteilhaft, wenn eine Ansteuer- und/oder Auswerteelektronik im Gehäuse bzw. in dessen unmittelbarer Nähe angebracht ist. Die Erfindung wird nachfolgend anhand bevorzugter Ausführungs- beispiele näher erläutert, die schematisch in den Zeichnungen dargestellt sind. In den Zeichnungen zeigen:
Fig. 1 einen Längsschnitt- von oben einer erfindungsgemäßen Vorrichtung gemäß einem ersten Ausführungsbeispiel;
Fig. 2 einen Längsschnitt von der Seite der Vorrichtung aus Fig. 1;
Fig. 3 einen Längsschnitt von oben einer erfindungsgemäßen Vorrichtung gemäß einem zweiten Ausführungsbeispiel;
Fig. 4 einen Längsschnitt von der Seite der Vorrichtung aus Fig. 3;
Fig. 5 einen Längsschnitt von oben einer erfindungsgemäßen Vorrichtung gemäß einem dritten Ausführungsbeispiel;
Fig. 6 einen Längsschnitt von der Seite der erfindungsgemäßen Vorrichtung aus Fig. 5;
Fig. 7 eine perspektivische Ansicht einer erfindungsgemäßen Vorrichtung gemäß einem viertem Ausführungsbeispiel;
Fig. 8 eine Seitenansicht auf eine Stirnseite der Vorrichtung aus Fig. 7;
Fig. 9 eine Draufsicht der Vorrichtung der Figuren 7 und 8 mit verdeckten Kanten und Umrissen;
Fig. 10 eine Querschnittsansicht der Vorrichtung der Figuren 7 bis 9 auf Höhe des Leitungsdurchgangs; und
Fig. 11 eine erfindungsgemäße Vorrichtung gemäß einem fünften Ausführungsbeispiel. Gleichwirkende Elemente sind in allen Figuren durchgängig mit denselben Bezugszeichen bezeichnet .
Fig. 1 und 2 zeigen eine erfindungsgemäße Vorrichtung zum Bestimmen des Füllgrades eines strömenden Fluides gemäß einer ersten Ausführungsform. Die Vorrichtung weist eine Messkammerwandung 12 auf, die eine Messkammer 10 im Inneren der Vorrichtung umgrenzt. Die Messkammer 10 ist länglich gestreckt ausgebildet. An gegenüberliegenden Stirnseiten der Messkammer 10 ist eine Öffnung 41 zum Einleiten des Fluides in die Messkammer 10 bzw. eine Öffnung 40 zum Ausleiten des Fluides aus der Messkammer 10 vorgesehen. Endseitig, im Bereich der Öffnungen 40, 41, ist an der Messkammerwandung 12 jeweils ein Anschlussflansch 20, 21 zum Einflanschen der erfindungsgemäßen Vorrichtung in eine Leitung vorgesehen. Die erfindungsgemäße Vorrichtung kann somit zur Füllgradbestimmung in einer Leitung dienen.
Wie in Fig. 1 beispielhaft an der linken Seite der Messkammer 10 gezeigt ist, weist diese Messkammer 10 Bereiche unterschiedlichen Querschnitts auf. Der Querschnitt wird dabei senkrecht zur ideallaminaren Fließrichtung v des Fluides in der Messkammer 10 betrachtet, die mit der Längsachse der Messkammer 10 zusammenfällt. An einem ersten, außenseitigen Messkammerbereich 61 mit konstantem Querschnitt schließt sich zum Messkammerinneren ein sich verjüngender Messkammerbereich 62 an, in dem der Messkammerquerschnitt zum Messkammerinneren hin abnimmt. Hieran wiederum schließt sich ein dritter Messkammerbereich 63 mit konstantem Querschnitt an. In diesem dritten Messkammerbereich 63 ist die Messkammer 10 mit rechteckigem, insbesondere quadratischem Querschnitt ausgebildet. Die Mess- kammer 10 ist spiegelsymmetrisch ausgebildet, wobei eine Symmetrieebene senkrecht zur Fließrichtung v des Fluides verläuft. Somit sind den Messkammerbereichen 61 bis 63 entsprechende Bereiche auch rechtsseitig in der Messkammer 10 vorgesehen. Zur Bildung des rechteckigen Messkammerquerschnittes im dritten Messkammerbereich 63 weist die Messkammerwandung 12 in diesem Bereich 63 vier senkrecht zueinander verlaufende Wandelemente auf .
An der Messkammerwandung 12 sind im dritten Messkammerbereich 63 zwei Elektroden 31, 32 einander senkrecht zur Fließrichtung v gegenüberliegend angeordnet. Zur Füllgradbestimmung wird zwischen diesen beiden Elektroden 31, 32 eine Spannung, vorzugsweise eine WechselSpannung, angelegt, die einen dem Leitwert der in der Messkammer 10 stehenden oder diese Kammer 10 durchfließenden Flüssigkeit entsprechenden Strom erzeugt. Dieser Strom wird zur Leitwertbestimmung erfasst.
Die Elektrode 31 ist im Längsschnitt von oben der Fig. 1 T- artig ausgebildet. Kopfseitig weist diese Elektrode 31 eine zum Messkammerinneren gerichtete Kontaktoberfläche 35 auf, an der die Elektrode 31 mit dem Fluid in der Messkammer 10 in Kontakt steht. In dem in Fig. 1 dargestellten Ausführungsbeispiel schließt die Elektrode 31 nicht flächig mit der umgebenden Messkammerwandung 12 ab, sondern ist gegenüber dieser stufenartig ins Messkammerinnere vorversetzt angeordnet. Die Kontaktoberfläche 35 ist somit absatzartig ausgebildet und weist eine parallel zur Fließrichtung verlaufende Längsfläche und senkrecht hierzu verlaufende Stirnflächen auf. Fußseitig ist an der Elektrode 31 eine Anschlussleitung 34 vorgesehen. Die Elektrode 32 ist der Elektrode 31 entsprechend aufgebaut und angeordnet .
Wie in Fig. 2 am Beispiel der Elektrode 31 gezeigt ist, erstrecken sich die Elektroden 31, 32 über die gesamte Höhe der Messkammer 10, d.h. die Höhe h der Elektroden 31, 32 entspricht der Höhe der Messkammer 10, zumindest im dritten Mess- kammerbereich 63. Die Elektroden 31, 32 erstrecken sich somit entlang der gesamten Höhe gegenüberliegender, parallel verlaufender Innenoberflächen der Messkämmerwandung 12.
Die Elektroden 31, 32 sind gegenüber der Messkammerwandung 12, die insbesondere als Rohr ausgebildet sein kann, galvanisch isoliert. Hierzu ist auf der Innenoberfläche der Messkammer- wandung 12 eine Isolationsschicht 16, beispielsweise eine Kunststoffschicht vorgesehen. Diese Isolationsschicht 16 ist zum einen im Bereich der Anschlussleitungen 34 der Elektroden 31, 32 sowie zwischen deren kopfseitigen Enden und der Messkammerwandung 12, d.h. unter den Elektroden 31, 32 angeordnet. Daneben ist die Isolationsschicht 16 auch in Fließrichtung v des Fluides gesehen vor und hinter den Elektroden 31, 32 vorgesehen, wodurch an der Messkämmerwandung 12 flächige Isolationsbereiche gebildet werden, welche die beiden Elektroden 31, 32 umgeben. Diese Isolationsbereiche weisen eine Breite b auf, die bevorzugt mindestens das Doppelte, insbesondere bis zum fünfzehnfachen einer Elektrodenbreite a betragen kann. Vorteilhafterweise erstrecken sich die Isolationsbereiche 16 zwischen den Flanschen 20, 21 entlang der gesamten Messkammerwandung 12.
Wie Fig. 2 zu entnehmen ist, ist die Isolationsschicht 16 auch im Bodenbereich 18 und im Deckenbereich 19 der Messkammer 10 vorgesehen, also an den Innenoberflächen der Messkämmerwandung 12, die von den Elektroden 31, 32 beabstandet sind und senkrecht zu diesen Elektroden 31, 32 verlaufen.
Sofern eine Isolationsschicht 16 vorgesehen ist, kann die Messkämmerwandung 12 ansonsten aus elektrisch leitfähigem Material, beispielsweise aus Metall bestehen. Es kann aber auch vorgesehen sein, die Messkämmerwandung 12 durchgehend elektrisch isolierend auszubilden, wodurch dann in den Isolationsbereichen eine Isolationsschicht 16 entfallen kann.
Eine weitere Ausführungsform einer erfindungsgemäßen Vorrichtung ist in den Fig. 3 und 4 dargestellt. Die in diesen Figuren dargestellte Ausführungsform unterscheidet sich von der Ausführungsform der Fig. 1 und 2 lediglich dadurch, dass die Elektroden 31, 32 hier zur Fließrichtung v angeschrägte Kontaktoberflächen 35 aufweisen. Entsprechend dem Längsschnitt der Fig. 3 weisen die Kontaktoberflächen 35 zwei Stirnflächen auf, die in einem Winkel von etwa 45° zur Fließrichtung v verlaufen, wobei zwischen diesen Stirnflächen eine weiterhin pa- rallel zur Fließrichtung v verlaufende Längsfläche angeordnet ist.
Das in den Fig. 5 und 6 dargestellte Ausführungsbeispiel unterscheidet sich von dem Ausführungsbeispiel der Fig. 1 und dadurch, dass die Elektroden hier nicht aus der Messkammerwandung 12 vorstehen, sondern bündig in der Messkammerwandung 12 versenkt sind. Die Kontaktoberflächen 35 der Elektroden 31, 32 sind dabei eben ausgebildet.
Daneben ist in Fig. 5 auch noch schematisch eine Spannungs- quelle 71 gezeigt, die über Zuleitungen 76, 77 mit den Elektroden 31 bzw. 32 verbunden ist. In der Zuleitung 77 ist dabei eine Stromerfassungseinrichtung 73 zum Messen des Stromes durch die Elektrode 32 vorgesehen. Entsprechend verschaltete Spannungsquellen 71 und Stromerfassungseinrichtungen 73. können auch bei den anderen gezeigten Ausführungsbeispielen Verwendung finden.
Ein viertes Ausführungsbeispiel einer erfindungsgemäßen Vorrichtung ist in den Figuren 7 bis 10 dargestellt. Die in diesen Figuren dargestellte Ausführungsform weist ein rohrartiges Gehäuse 50 auf, in welchem die Messkammerwandung 12 mit der Messkammer 10 angeordnet ist. Die Messkämmerwandung 12 kann dabei insbesondere materialverschieden bezüglich dem Gehäuse 50 und/oder von diesem beabstandet sein. In dem Gehäuse 50 können die Ansteuer- und Auswerteelektronik für die Elektroden 31, 32 vorgesehen sein. Zum elektrischen Anschluss dieser Elektronik und/oder der beiden Elektroden 31, 32 ist mittig am Gehäuse 50 ein Leitungsdurchgang 52 vorgesehen.
Wie insbesondere in Fig. 9 erkennbar ist, weist die Messkammerwandung 12 der vierten Ausführungsform zwei konische Bereiche 43, 44 auf, an denen endseitig Anschlussflansche 46, 47 vorgesehen sind. In diesen Anschlussflanschen 46, 47 sind die Öffnungen 40, 41 der Messkämmerwandung 12 ausgebildet, wobei die beiden Öffnungen 40, 41 etwa kreisförmigen Querschnitt aufweisen. Von den Öffnungen 40, 41 ausgehend verjüngt sich der Querschnitt der Messkammer 10 in den konischen Bereichen 43, 44 kontinuierlich und geht in einem mittigen Bereich 48 der Messkammer 10 in einen rechteckigen Querschnitt über. In diesem mittigen Bereich 48 sind die beiden Elektroden 31, 32 angeordnet .
Wie Fig. 9 ferner zu entnehmen ist, weisen die Isolationsbereiche der vierten Ausführungsform eine Gesamtbreite auf, die, einschließlich der darin angeordneten Elektroden 31, 32, etwa die vierfache Breite b der Elektrodenbreite a beträgt. Die I- solationsbereiche können aber auch mit erheblich größerer Breite b' ausgeführt werden.
Ein weiteres Ausführungsbeispiel einer erfindungsgemäßen Vorrichtung ist in Fig. 11 gezeigt. Gemäß dem Ausführungsbeispiel der Fig. 11 sind anstelle rechteckig ausgeführter Elektroden parallelogrammartige, schräg zur Fließrichtung v verlaufende Elektroden 31' vorgesehen. Durch die parallelogrammartige Ausführung kann gewährleistet werden, dass die Elektroden 31' über dem gesamten Querschnitt der Messkammer 10 dieselbe Breite aufweisen. Luftblasen 80, die sich mit dem Fluid in Fließrichtung v durch die Messkammer 10 bewegen, erfahren somit unabhängig von ihrer Position im Querschnitt der Messkammer 10 stets dieselbe Messstrecke.

Claims

ANSPRUCHE
1. Vorrichtung zum Bestimmen des Füllgrades eines insbesondere strömenden Fluides in einer Messkammer (10) , mit -einer die Messkammer (10) umgebenden Messkämmerwandung
(12) , in der zumindest eine Öffnung (40, 41) zum Einleiten und/oder Ausleiten des Fluides vorgesehen ist, und
-mindestens zwei flächigen Elektroden (31, 32) , die einander gegenüberliegend im Bereich der Messkammerwandung (12) in der Messkammer (10) angeordnet sind, dadurch g e k e n n z e i c h n e t ,
-dass die Messkämmerwandung (10) in Isolationsbereichen,, welche an die beiden Elektroden (31, 32) anschließen und diese flächig umgeben, elektrisch isolierend ausgebildet ist.
2. Vorrichtung nach Anspruch 1, dadurch g e k e n n z e i c h n e t ,
-dass in der Messkammerwandung (12) zwei Öffnungen (40,
41) zum Durchleiten des Fluides durch die Messkammer
(10) ausgebildet sind, und -dass die Messkammerwandung (12) in Fließrichtung (v) des
Fluids zumindest im Bereich der Elektroden (31, 32) rohrartig ausgebildet ist.
3. Vorrichtung nach einem der Ansprüche 1 oder 2, dadurch g e k e n n z e i c h n e t , dass die Isolationsbereiche in Fließrichtung (v) des Fluides beiderseits der Elektroden (31, 32) angeordnet sind.
4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch g e k e n n z e i c h n e t , dass die Isolationsbereiche in Fließrichtung (v) des Fluides zumindest doppelt so breit sind wie die jeweils hiervon umgebenen Elektroden (31, 32) .
5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch g e k e n n z e i c h n e t , dass die Isolationsbereiche zumindest abschnittsweise im Querschnitt der Messkammer (10) zwischen den Elektroden (31, 32) angeordnet sind.
6. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch g e k e n n z e i c h n e t , dass die Elektroden (31, 32) mit der umgebenden Messkammerwandung (12) flächig abschließen oder gegenüber der umgebenden Messkämmerwandung (12) zurückversetzt sind.
7. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch g e k e n n z e i c h n e t , dass die Messkammer (10) , insbesondere im Bereich der Elektroden (31, 32), einen rechteckigen, insbesondere quadratischen Innenquerschnitt aufweist.
8. Vorrichtung nach einem der Ansprüche 1 bis 7, dadurch g e k e n n z e i c h n e t , dass die Elektroden (31, 32) zumindest annähernd dieselbe Höhe (h) aufweisen wie die Messkammer (10) .
9. Vorrichtung nach einem der Ansprüche 1 bis 8, dadurch g e k e n n z e i c h n e t , dass zwei, insbesondere identische, Elektroden (31, 32) an gegenüberliegenden Stellen der Messkammer (10) vorgesehen sind.
10. Vorrichtung nach einem der Ansprüche 1 bis 9, dadurch g e k e n n z e i c h n e t , dass Kontaktoberflächen (35) der gegenüberliegenden Elektroden (31, 32) zum Inneren der Messkammer (10) zumindest annähernd gleich groß sind.
11. Vorrichtung nach einem der Ansprüche 1 bis 10, dadurch g e k e n n z e i c h n e t , dass die Kontaktoberflächen (35) der gegenüberliegenden Elektroden (31, 32) zumindest annähernd Spiegelsymmetrisch ausgebildet sind.
12. Vorrichtung nach einem der Ansprüche 1 bis 11, dadurch g e k e n n z e i c h n e t , dass die gegenüberliegenden Elektroden (31, 32) zumindest annähernd rechteckige Grundflächen aufweisen.
13. Vorrichtung nach einem der Ansprüche 1 bis 12, dadurch g e k e n n z e i c h n e t , dass die gegenüberliegenden Elektroden (31, 32) schräg zur Fließrichtung (v) verlaufen und insbesondere mit- zumindest annähernd parallelogrammförmigen Grundflächen ausgebildet sind.
14. Vorrichtung nach einem der Ansprüche 1 bis 13, dadurch g e k e n n z e i c h n e t , dass die Isolationsbereiche der Messkämmerwandung (12) von Leitungsbereichen umgeben sind, in denen die Messkammerwandung (12) elektrisch leitfähig, insbesondere metallisch, ausgeführt ist, wobei die zumindest eine Öffnung (40, 41) bevorzugt in den Leitungsbereichen angeordnet ist.
15. Vorrichtung nach einem der Ansprüche 1 bis 14, dadurch g e k e n n z e i c h n e t , dass die Messkämmerwandung (12) in den Isolationsbereichen eine Isolationsschicht (16) aufweist.
IG. Vorrichtung nach einem der Ansprüche 1 bis 15, dadurch g e k e n n z e i c h n e t , dass eine Spannungsquelle (71) , insbesondere eine Wechselspannungsquelle vorgesehen ist, die mit den Elektroden (31, 32) über Zuleitungen (76, 77) in Leitungsverbindung steht, und dass eine Stromerfassungseinrichtung (73) zum Messen eines Stromes in zumindest einer der Zuleitungen (76, 77) vorgesehen ist.
17. Vorrichtung nach Anspruch 16, dadurch g e k e n n z e i c h n e t ,
-dass ein Gehäuse (50) vorgesehen ist, in dem die
Messkammerwandung (12) angeordnet ist, und -dass die Spannungsquelle (71) und/oder die Stromerfassungseinrichtung (73) am, insbesondere im Gehäuse (50) vorgesehen ist.
PCT/EP2005/010895 2004-12-16 2005-10-10 Vorrichtung zum bestimmen des füllgrades eines fluides WO2006063631A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DK05802236.9T DK1825232T3 (da) 2004-12-16 2005-10-10 Apparat til bestemmelse af fyldningsgraden af et fluidum
CA002586881A CA2586881A1 (en) 2004-12-16 2005-10-10 Device for determining the level of a fluid
EP05802236.9A EP1825232B1 (de) 2004-12-16 2005-10-10 Vorrichtung zum bestimmen des füllgrades eines fluides
US11/793,033 US20080148810A1 (en) 2004-12-16 2005-10-10 Device For Determining the Level of a Fluid
ES05802236.9T ES2565458T3 (es) 2004-12-16 2005-10-10 Dispositivo para la determinación del grado de llenado con un fluido

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE202004019442U DE202004019442U1 (de) 2004-12-16 2004-12-16 Vorrichtung zum Bestimmen des Füllgrades eines Fluides
DE202004019442.2 2004-12-16

Publications (1)

Publication Number Publication Date
WO2006063631A1 true WO2006063631A1 (de) 2006-06-22

Family

ID=34306626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/010895 WO2006063631A1 (de) 2004-12-16 2005-10-10 Vorrichtung zum bestimmen des füllgrades eines fluides

Country Status (8)

Country Link
US (1) US20080148810A1 (de)
EP (1) EP1825232B1 (de)
CA (1) CA2586881A1 (de)
DE (1) DE202004019442U1 (de)
DK (1) DK1825232T3 (de)
ES (1) ES2565458T3 (de)
PL (1) PL1825232T3 (de)
WO (1) WO2006063631A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009058838A1 (de) 2009-12-18 2011-06-22 BARTEC BENKE GmbH, 21465 Messanordnung für eine Flüssigkeit, insbesondere zur Verwendung in einer Milchannahmeanordnung, und Verfahren zum Betrieb einer Milchannahmeanordnung

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2148563B1 (de) * 2007-05-22 2011-07-20 BARTEC BENKE GmbH Verfahren und vorrichtung zur mengenbestimmung bei der übergabe einer flüssigkeit
DE102008059067A1 (de) 2008-11-26 2010-06-02 Krohne Ag Magnetisch-induktives Durchflußmeßgerät
DE102008063779A1 (de) * 2008-12-18 2010-10-14 Bartec Gmbh Verfahren und Vorrichtung zur Übergabe einer zumindest zeitweise einen Gaseinschluss aufweisenden Flüssigkeit und zur Bestimmung der übergebenen Flüssigkeitsmenge
BR112013029724B1 (pt) * 2011-05-23 2020-11-10 Micro Motion, Inc. sistema de fluxo de fluido, método de operar um medidor vibra tório, e, eletrônica de medidor
CN102832888B (zh) * 2012-08-31 2016-05-18 太原太航科技有限公司 科氏力质量流量计驱动放大器
DE102016201933B4 (de) * 2016-02-09 2019-05-16 Siemens Aktiengesellschaft Messanordnung zur Überwachung der Bebunkerung eines Großschiffs
DE102016123123A1 (de) * 2016-11-30 2018-05-30 Endress+Hauser Flowtec Ag Magnetisch-induktives Durchflussmessgerät

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3993945A (en) * 1974-08-02 1976-11-23 George Kent Limited Measuring cells for measuring electrical conductivity of liquids
GB2064130A (en) * 1979-11-08 1981-06-10 Hemp J Electromagnetic Channel Flowmeter
EP0626567A1 (de) * 1993-05-25 1994-11-30 ULTRAKUST electronic GmbH Verfahren und Vorrichtung zur Bestimmung eines Volumenstromes
US5448920A (en) * 1991-01-15 1995-09-12 Ketelsen; Broder Device for inductively measuring the state of a stream of electrically conductive liquid
US20020033054A1 (en) * 1999-03-26 2002-03-21 Daniel Frey Electromagnetic flow sensor and method of manufacturing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5524475A (en) * 1994-11-10 1996-06-11 Atlantic Richfield Company Measuring vibration of a fluid stream to determine gas fraction

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3993945A (en) * 1974-08-02 1976-11-23 George Kent Limited Measuring cells for measuring electrical conductivity of liquids
GB2064130A (en) * 1979-11-08 1981-06-10 Hemp J Electromagnetic Channel Flowmeter
US5448920A (en) * 1991-01-15 1995-09-12 Ketelsen; Broder Device for inductively measuring the state of a stream of electrically conductive liquid
EP0626567A1 (de) * 1993-05-25 1994-11-30 ULTRAKUST electronic GmbH Verfahren und Vorrichtung zur Bestimmung eines Volumenstromes
US20020033054A1 (en) * 1999-03-26 2002-03-21 Daniel Frey Electromagnetic flow sensor and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009058838A1 (de) 2009-12-18 2011-06-22 BARTEC BENKE GmbH, 21465 Messanordnung für eine Flüssigkeit, insbesondere zur Verwendung in einer Milchannahmeanordnung, und Verfahren zum Betrieb einer Milchannahmeanordnung
WO2011072874A2 (de) 2009-12-18 2011-06-23 Bartec Benke Gmbh Messanordnung für eine flüssigkeit, insbesondere zur verwendung in einer milchannahmeanordnung, und verfahren zum betrieb einer milchannahmeanordnung

Also Published As

Publication number Publication date
CA2586881A1 (en) 2006-06-22
DK1825232T3 (da) 2016-05-17
US20080148810A1 (en) 2008-06-26
EP1825232A1 (de) 2007-08-29
ES2565458T3 (es) 2016-04-04
PL1825232T3 (pl) 2016-11-30
EP1825232B1 (de) 2016-02-03
DE202004019442U1 (de) 2005-03-10

Similar Documents

Publication Publication Date Title
EP1825232B1 (de) Vorrichtung zum bestimmen des füllgrades eines fluides
DE3785185T2 (de) Geraet und verfahren zum messen der stroemungscharakteristika einer petroleumstroemung.
DE102006031332B4 (de) Messvorrichtung zum Nachweis von Fremdstoffen in einer Flüssigkeit
DE102012006891B4 (de) Magnetisch-induktives Durchflussmessgerät
WO2014019888A1 (de) Magnetisch-induktives durchflussmessgerät
DE102011119982A1 (de) Magnetisch-induktives Durchflussmessgerät
DE2938801A1 (de) Vorrichtung zum messen der geschwindigkeit einer stroemung
WO2012139648A1 (de) Verfahren zum berührungslosen bestimmen eines elektrischen potentials eines objekts durch zwei verschiedene werte für den elektrischen fluss sowie vorrichtung
EP3312600A1 (de) Leitfähigkeitssensor und verfahren zur bestimmung der elektrischen leitfähigkeit eines flüssigen mediums
DE1963901A1 (de) Elektromagnetischer Durchflussmengenmesser
WO2016041723A1 (de) Magnetisch-induktives durchflussmessgerät mit einem vierspulen-magnetsystem
EP0760467B1 (de) Verfahren zur Bestimmung des Phasenteils eines Mediums in offenen und geschlossenen Leitungen
EP3421950A1 (de) Durchflusssensor, verfahren und durchflussmessgerät zur bestimmung von geschwindigkeiten von phasen eines mehrphasigen mediums
DE2819731C2 (de) Anordnung zur kapazitiven Füllstandsmessung in einem Behälter
DE69516885T2 (de) Mischer und vorrichtung zur analyse des flusses von fluiden
WO2014016107A1 (de) Blasendetektor
EP3376176B1 (de) Verfahren zur bestimmung des strömungsprofils, messwertumformer, magnetisch-induktives durchflussmessgerät und verwendung eines magnetisch-induktiven durchflussmessgeräts
DE102019125243B4 (de) Mehrphasen-messsystem mit kalibrierwertnachführung und strömungstechnische anordnung
DE2950084A1 (de) Magnetisch-induktiver durchflussmesser
DE19615140C2 (de) Magnetisch - induktives Durchflußmeßgerät
EP3764054A1 (de) Sensoranordnung zum erfassen einer auslenkung einer drahtelektrode
WO2005090927A2 (de) Vorrichtung zum messen und/oder überwachen des durchflusses eines messmediums
DE102022203021A1 (de) Verfahren zur Füllstandsermittlung eines Rohrs, Auswertungseinheit, Durchflussmesssystem und Computerprogrammprodukt
DE102019123409A1 (de) Magnetisch-induktives Durchflussmessgerät
DE4217658B4 (de) Sensor zur Feststellung der Neigung und Verfahren zur Bestimmung einer Neigung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2005802236

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2586881

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 11793033

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005802236

Country of ref document: EP

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)