WO2006061914A1 - Inducer and pump - Google Patents

Inducer and pump Download PDF

Info

Publication number
WO2006061914A1
WO2006061914A1 PCT/JP2004/018676 JP2004018676W WO2006061914A1 WO 2006061914 A1 WO2006061914 A1 WO 2006061914A1 JP 2004018676 W JP2004018676 W JP 2004018676W WO 2006061914 A1 WO2006061914 A1 WO 2006061914A1
Authority
WO
WIPO (PCT)
Prior art keywords
inducer
wing
blades
blade
pump
Prior art date
Application number
PCT/JP2004/018676
Other languages
French (fr)
Japanese (ja)
Inventor
Kosuke Ashihara
Original Assignee
Ebara Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corporation filed Critical Ebara Corporation
Priority to PCT/JP2004/018676 priority Critical patent/WO2006061914A1/en
Publication of WO2006061914A1 publication Critical patent/WO2006061914A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps
    • F04D29/2261Rotors specially for centrifugal pumps with special measures
    • F04D29/2277Rotors specially for centrifugal pumps with special measures for increasing NPSH or dealing with liquids near boiling-point

Definitions

  • the present invention relates to an inducer and a pump.
  • the inductor disposed on the upstream side of the main impeller so that the rotation axis coincides with the rotation axis of the main impeller.
  • the present invention relates to a reducer and a pump equipped with the inducer.
  • the pump impeller (hereinafter referred to as the main impeller) Cavitation may occur in the flow path. If cavity is generated in the main impeller flow path, the flow path may be blocked by the cavity bubbles and the pump may not be able to pressurize.
  • the difference between the total pressure at the inlet of the pump and the saturated vapor pressure represents a margin for pump cavity generation, and this pressure difference is called NPSH (Net Positive Suction Head).
  • NPSH Network Positive Suction Head
  • the pump suction performance is evaluated by this N P S H, and a pump that has a boosting performance even with a low N P S H is said to have high suction performance. If the pump suction performance is high, the pump can be operated at high speed and the pump can be downsized.
  • an inducer has been attached to the tip of the main shaft to improve pump suction performance.
  • This inducer is arranged on the upstream side of the main impeller such that the main impeller and the rotation axis are the same, and is rotated at the same rotational speed as the main impeller via the main shaft.
  • the inducer is a mixed flow type or axial flow type impeller having a plurality of blades, and has a shape characteristic that the number of blades is smaller and the blade length is longer than the main impeller.
  • wing 1 1 three wings of helical shape (spiral shape) 1 1-1, 1 1-2, 1 1-3 (hereinafter collectively referred to as wing 1 1) Is fixed to the outer peripheral surface of the cylindrical or columnar shaft portion 5.
  • the lengths of these wings 11 along the wings are all equally configured.
  • inducers are designed to achieve high suction performance, so it is preferable to reduce the number of inducer blades as much as possible. Since an inducer with only one blade has a problem of rotational balance, the number of blades of a normal inducer is 2 to 5 blades. Also, inductors with an even number of blades may cause alternate blade cavityation, so a three-blade inducer is generally preferred.
  • the boosting performance of an inducer increases as the number of blades of the inducer increases.
  • the suction performance of the inducer increases as the number of blades decreases, the boosting performance and suction performance of the inducer are in a trade-off relationship. If the inducer requires high suction performance and high boosting performance at the same time due to the pump specifications, an inducer with an intermediate blade may be used.
  • An inducer with an intermediate wing has an intermediate wing that is shorter than the entire wing in a flow path formed between the wings of the normal length (full wing).
  • the rear wing of the intermediate wing is in the same position as all wings on the meridian plane, but the leading edge of the intermediate wing is located downstream of the leading edge of all wings. Therefore, an inducer with an intermediate blade has a feature that the number of blades is small at the inlet and the number of blades is large at the outlet. With this, with the middle wing
  • the inducer has a high suction performance because it has a wider inlet channel and is less likely to be blocked by cavity bubbles, compared to an inducer with all blades.
  • the inducer with intermediate blades has high boosting performance due to the large number of blades at the outlet.
  • Document 2 shows that pump impellers with intermediate blades have higher suction performance than pump impellers without intermediate blades.
  • Document 3 discloses an impeller for a sewage pump with one full blade and one intermediate blade.
  • the trailing edge of the intermediate blade (sub blade) is more rotational than the symmetrical position around the rotation axis of the trailing edge of all blades (main blade). It is in the position shifted.
  • This impeller for sewage pumps has one inlet blade to prevent clogging of the inlet due to dirt, and two outlet blades to make the pump efficiency practically sufficient. is there. Since the center of gravity of these intermediate wings and all wings are all separated from the rotation axis, the rotation balance cannot be obtained with only the middle wing and all wings.
  • a two-blade type inducer can be considered as an inducer that can achieve high suction performance.
  • this type of inducer can be expected to have a high suction performance due to the small number of blades at the inlet, but the boosting performance is low due to the small number of blades at the outlet.
  • an inducer with an intermediate blade that can be expected to have a high suction performance and a high pressure boosting performance always has an even number of blades due to its shape characteristics, and the minimum number of blades in an inducer used in an actual pump.
  • Fig. 2A and Fig. 2B show an inducer with a conventional intermediate wing that has two full wings and two intermediate wings.
  • the intermediate blades 1 2-1, 1 2-2 (hereinafter collectively referred to as the intermediate blade 1 2) are all blades 1 1-1, 1 1-2 (Hereinafter collectively referred to as all blades 1 1) are located at the center in the circumferential direction of the rotation axis, and the length of the intermediate blade 1 2 is the length of all blades 1 1 Half a minute.
  • the trailing edge 1 2— 1 a, 1 2— lb on the meridian plane 1 2 is the same as the trailing edge 1 1 1 lb, 1 1— 2 b of the entire wing 1 1, but the intermediate wing 1 2
  • the leading edge 1 2-1 a, 1 2— 2 a is located downstream of the leading edge 1 1— la, ll _ 2 a of the entire wing 1 1.
  • This inducer with intermediate blades has two inlet blades and four outlet blades, so the inlet is wide, so high suction performance can be achieved, and high boosting performance can be achieved.
  • the present invention has been made in view of such problems of the prior art.
  • the number of blades at the inlet is one, the number of blades at the outlet is three, and the center of gravity of the entire blade is on the rotating shaft. It is an object of the present invention to provide an inducer excellent in both suction performance and boosting performance that does not cause a balance, and a pump equipped with such an inducer.
  • the present invention is an inducer disposed on the upstream side of a main impeller, and includes three blades having different lengths along the blades. The positions of the leading edges of the wings on the meridian plane are different from each other.
  • the trailing edge positions of the three blades are aligned with each other on the meridian plane. In a preferred aspect of the present invention, the trailing edges of the three blades are uniformly arranged around the rotation axis in a plane perpendicular to the rotation axis.
  • the three wings are composed of a first wing, a second wing, and a third wing, and a winding angle from a trailing edge of the first wing is 2 3 0 + A to 2 5 0 + A.
  • the winding angle from the trailing edge of the second wing is 1 1 0 + A to 1 3 0 + A °, and the winding angle from the trailing edge of the third wing is A ° (However, A represents a constant satisfying the condition 0 ⁇ A).
  • the winding angle is the center angle of the wing centered on the rotation axis from the trailing edge to the leading edge.
  • the firing angle from the trailing edge of the first wing is 2 4 0 + A °
  • the firing angle from the trailing edge of the second wing is 1 2 0 + A °
  • the winding angle from the trailing edge of the third wing can be A °.
  • A is a constant common to the three blades, and any value can be selected within the range of 0 ⁇ A.
  • the lengths of the three wings along the wings are different, so there are one wing at the entrance, two wings at the center, and three wings at the exit. . Furthermore, when the wing angle of each blade relative to the position of the trailing edge satisfies the above relationship, the center of gravity of the three blades is positioned on the rotation axis.
  • the inducer of the present invention since the number of blades at the inlet is one, even if a cavity bubble is generated on the suction surface near the inlet of the first blade, the flow path on the suction surface side at the inlet of the inducer Has a wide opening angle of 3600 °, and the inlet of the inducer is not easily blocked.
  • the opening angle is the channel breakage around the rotation axis.
  • the center angle of a surface which represents the size of the space between adjacent wings. Due to the pressure increase of the first blade, the cavitation bubbles generated on the suction surface of the second blade are smaller than those of the first blade, and the flow angle on the suction surface side also has an opening angle of 2400 °.
  • the opening angle of the flow path on the suction side is 120 °, but the cavity bubbles generated in the third wing by the pressurizing action of the first wing and the second wing are even smaller. Therefore, the possibility of blockage is low.
  • the inducer of the present invention having the above-described configuration has a high suction performance, and the number of blades at the inducer outlet is three, so that it has a sufficiently high boosting performance in practice.
  • the inducer having the above configuration has the characteristics of high suction performance, high boosting performance, and no rotation imbalance.
  • Another aspect of the present invention is a pump comprising a main impeller housed in a casing, a main shaft to which the main impeller is fixed, and the inducer.
  • the inducer described above has a high suction performance and a high pressure increase performance, the suction performance of a pump including this inducer can be improved. Therefore, it is possible to increase the speed and size of the pump.
  • the present invention can be said to have solved the contradictory proposition regarding the number of blades of the inducer.
  • the number of inducer blades should be reduced from the viewpoint of achieving high suction performance by avoiding blockage of the flow path due to cavity bubbles, but the number of blades will be increased from the point of achieving high boosting performance. Should.
  • such a contradictory proposition can be satisfactorily solved with extremely high effects by using three wings having different lengths from each other rather than simply compromising both performances.
  • the positions of the trailing edges of the blades on the meridional surface are aligned with each other.
  • the displacement of the positions of the trailing edges of the blades is an excellent object of the present invention. It does not immediately affect the suction performance and boost performance.
  • the inducer of the present invention has high suction performance and high boosting performance, and does not cause rotation imbalance. Therefore, the inducer of the present invention
  • the pump arranged on the upstream side of the main impeller can exhibit higher suction performance than conventional pumps, and can contribute to speeding up and downsizing of the pump.
  • FIG. 1A is a perspective view showing a conventional inducer having three blades
  • FIG. 1B is a side view of the inducer shown in FIG. 1A.
  • FIG. 2A is a perspective view showing a conventional inducer with intermediate blades having two full blades and two intermediate blades
  • FIG. 2B is a side view of the inducer shown in FIG. 2A.
  • FIG. 3 is a cross-sectional view schematically showing a pump provided with an inducer according to an embodiment of the present invention.
  • FIG. 4A is a side view showing an inducer according to an embodiment of the present invention
  • FIG. 4B is a perspective view of the inducer according to an embodiment of the present invention
  • FIG. 4C is an embodiment of the present invention. It is another perspective view of the inducer which concerns on a form.
  • FIG. 5 is a schematic diagram showing the first wing, the second wing, and the third wing on the meridian plane of the inducer according to the embodiment of the present invention.
  • FIG. 6A is a perspective view showing a first wing according to an embodiment of the present invention
  • FIG. 6B is a plan view showing the first wing.
  • FIG. 7A is a perspective view showing a second wing according to an embodiment of the present invention
  • FIG. 7Bj is a plan view showing the second wing.
  • FIG. 8A is a perspective view showing a third wing according to an embodiment of the present invention
  • FIG. 8B is a plan view showing the third wing.
  • Fig. 9 is a schematic diagram showing the occurrence of cavitation in a conventional inducer with three blades.
  • FIG. 10 is a schematic diagram showing a state of occurrence of cavitation in a conventional inducer having two full blades and two intermediate blades.
  • FIG. 11 is a schematic diagram showing a cavitation occurrence state of an inducer according to an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view schematically showing a pump provided with the inducer of the present invention.
  • the pump has a main impeller (pump impeller) 7 accommodated in a casing 6, an inducer 8 according to the present invention, a main impeller 7 and an inducer 8 fixed thereto.
  • Main shaft 9 is provided.
  • Seal members 10 A and 10 B for preventing the pressurized fluid from leaking from the high pressure side to the low pressure side are respectively provided on the upstream side and the downstream side of the main impeller 7.
  • the inducer 8 is arranged upstream of the main impeller 7 so that the rotation axis (the central axis of the main shaft 9) is the same as that of the main impeller 7, and the main impeller is driven via the main shaft 9 by a drive source (not shown). It rotates at the same rotational speed as car 7.
  • the fluid (liquid) flows in from the suction port 6a, is pressurized by the inducer 8 while generating a cavity, and further boosted by the main impeller 7 to the extent that the required pump head is obtained.
  • the inducer 8 is boosting the fluid up to a pressure at which no cavity is generated in the main impeller 7, the suction performance of the pump is improved as compared with the case of the main impeller 7 alone.
  • FIG. 4A to 4C show in detail an inducer according to an embodiment of the present invention.
  • 4A is a side view of an inducer according to an embodiment of the present invention
  • FIG. 4B is a perspective view of an inducer according to an embodiment of the present invention
  • FIG. 4C is an embodiment of the present invention. It is another perspective view of the inducer which concerns on.
  • FIG. 5 is a schematic diagram showing the first wing, the second wing, and the third wing on the meridian plane of the inducer according to the embodiment of the present invention.
  • the inducer in this embodiment includes a cylindrical or cylindrical shaft portion 5 and three blades 1 fixed to the outer peripheral surface of the shaft portion 5.
  • the first wing 1 is composed of the first wing 1-1, the second wing 1 1-2, and the third wing 1-3 (hereinafter collectively referred to as wing 1).
  • the lengths of the first wing 1 1, the second wing 1-2, and the third wing 1 1 3 are different from each other.
  • the positions on the meridian plane are different from each other.
  • the trailing edge of wing 1 on the meridian plane 1 — lb, 1-2 b, 1-3 b is in the same position.
  • the trailing edges of the three blades 1 at the inducer exit 1 1 1 b to l— 3 b are evenly spaced at 120 ° intervals around the center.
  • the rolling angles from the trailing edges of the three wings 1 are set as follows.
  • A is a constant common to the three blades 1 and represents a value larger than 0.
  • the roll angle is the center angle of the wing centered on the axis of rotation from the trailing edge to the leading edge.
  • the winding angle of the first blade 1-1 may be 230 + A to 250 + A °
  • the winding angle of the second blade 1-2 is 1 10 + ⁇ to 130 + A °. If there is.
  • FIG. 6A is a perspective view showing a first wing according to an embodiment of the present invention
  • FIG. 6B is a plan view showing the first wing
  • FIG. 7A is a perspective view showing a second wing according to an embodiment of the present invention
  • FIG. 7B is a plan view showing the second wing
  • FIG. 8A is a perspective view showing a third wing according to an embodiment of the present invention
  • FIG. 8B is a plan view showing the third wing.
  • the constant A is set to 120, and the blades from the trailing edges 1—1 b to l_3 b of the three blades 1 are scattered.
  • the angles are set as follows.
  • Second wing 1—2 240 °
  • the inducer of the present embodiment is configured with one wing at the inlet, two wings at the center, and three wings at the outlet.
  • the constant A mentioned above is preferably 60 ⁇ A ⁇ 180. If A is 60, the length of the third wing 1-3 is too short to expect pressure boosting performance. Meanwhile, 180 ⁇ A If this is the case, the flow paths formed between the three blades 1 will be too long, and the resistance of the fluid will increase and the pressurizing performance will decrease.
  • the winding angle of the second blade 1 1 2 is 2400 °
  • the winding angle of the third blade 1 1 3 is 1 20 °
  • the second blade The positions of the trailing edges 1 1 2 b and 1 _ 3 b of 1 1 2 and the third wing 1 1 3 are shifted from each other by 120 °.
  • the total winding angle of the second wing 1 _ 2 and the third wing 1-3 is the same as the winding angle of the first wing 1 1 1 3 60 °
  • the second The center of gravity when the wings 1 and 2 and the third wings 1 and 3 are combined is located on the axis of rotation. 1st wing 1 1 1
  • the winding angle is 3 6 0.
  • the center of gravity of the first wing 1-1 1 is on the axis of rotation
  • the overall center of gravity of the first wing 1-11, the second wing 1-2, and the third wing 1-3 also rotates. Will be on the axis. Accordingly, the rotation balance of the inducer according to the present embodiment is balanced. In this way, the leading edges of each blade 1 — 1 a to 1 1 3 a are shifted from each other by 120 °, so that the entire blade 1 can be increased or decreased by the same firing angle in each blade 1.
  • the center of gravity is on the axis of rotation. Therefore, even if the above-described constant A is an arbitrary value, the center of gravity of the entire blade 1 is located on the rotation axis, and a rotation balance can be obtained.
  • FIG. 9 to FIG. 11 show the state of occurrence of the oscillation of the inducer according to one embodiment of the present invention and the conventional inducer.
  • Figures 9 to 11 show the wings of the inducer.
  • the first wing is shown overlapping on both the left and right sides to make the flow path easy to understand, but in reality there is only one first wing.
  • Fig. 9 is a schematic diagram showing the state of occurrence of cavitation in the conventional inducer shown in Fig. 1 having three all blades.
  • this type of inducer an interval of a size corresponding to an opening angle of 120 ° is formed between the blade 1 1 ⁇ 2 and the adjacent blade 1 1 ⁇ 3.
  • the opening angle refers to the central angle of the cross section of the flow channel centered on the rotation axis, and represents the size of the interval between adjacent blades.
  • FIG. 10 is a schematic view showing the state of occurrence of cavitation in the conventional inducer shown in FIG. 2 having two full blades and two intermediate blades. Since the number of blades at the inlet of this type of inducer is two, there is a gap between each blade 1 1 1 1 and the next blade 1 1—2 that corresponds to an opening angle of 1800 °. Is formed. Therefore, even if cavitation bubbles 20 are generated on the suction surface of all blades 11 near the inlet, the flow path is wider than that of the inducer (three blades type) shown in FIG. Cavitation bubbles generated on the suction surface of the intermediate blade 1 2 near the inlet
  • the size of 30 is smaller than the size of the cavity bubble 20 generated on the suction surface of all blades 11 because of the pressure increasing action by all blades 11.
  • the opening angle between the adjacent intermediate blades 12 and all blades 11 is 90 °, and the flow path on the suction surface side of the intermediate blades 12 is relatively narrow. For this reason, if the cavity bubble 30 generated on the suction surface of the intermediate blade 12 is large to some extent, the flow path on the suction surface side of the intermediate blade 12 is likely to be blocked.
  • the number of blades at the outlet is four, so the inducer shown in Fig. 10 has higher boosting performance than the inducer shown in Fig. 9 (all third blade type).
  • FIG. 11 is a schematic diagram showing a cavitation occurrence state of an inducer according to an embodiment of the present invention.
  • the opening angle at the inlet is 3.60 °. Therefore, even if a cavity bubble 20 occurs on the negative BE surface of the first wing (all wings) 11 near the entrance, it is difficult to block because the flow path is very wide.
  • the size of the cavity bubble 30 generated on the suction surface near the inlet of the second blade 1-2 is generated on the suction surface of the first blade 1-1 due to the pressurizing action of the first blade 1-1. Cavitation bubbles to be smaller.
  • the flow path on the suction surface side of the second blades 1 and 2 has a relatively large opening angle of 2400 degrees with the adjacent first blade 1 and 1, so this flow path is also very blocked. Hateful.
  • the size of 40 is smaller than the cavitation bubble 30 generated on the suction surface of the second blade 1-2 because of the pressurizing action of the first blade 1-11 and the second blade 1-2.
  • the flow path on the suction surface side of the third blades 1 to 3 has a large opening angle with the adjacent first blade 11 to 1120 °, so this flow path is also difficult to block.
  • the inducer according to the present embodiment since the number of blades at the outlet is three, the inducer according to the present embodiment has a high boosting performance equivalent to the inducer (all blades three-blade type) shown in FIG. According to the above configuration, the inducer of the present invention has a high suction performance and a high boosting performance, and does not cause rotation imbalance.
  • the attachment positions of the three blades 1 with respect to the rotation shaft (shaft portion 5) are uniform in the circumferential direction of the rotation shaft. That is, the trailing edges 1 lb to 1 3 b of the three blades 1 are separated from each other by 120 ° as center angles around the rotation axis in a plane perpendicular to the rotation axis. They are arranged at equal intervals and are mounted so that the positions of the trailing edges 1 1 1 b to 1 3 b of the three blades 1 are the same on the meridian plane.
  • the present invention includes three wings 1 having different lengths, and the leading edges of these wings 1 are different from each other on the meridian plane of 1a-1_3_a.
  • the trailing edges 1— lb to 1-3 b of each blade 1 do not necessarily have to be evenly installed around the axis of rotation at intervals of 120 °, The positions of the trailing edges 1 1 1 b to 1 3 b on the meridian do not have to be aligned.
  • the present invention includes an inducer disposed on the upstream side of the main impeller so that the rotation axis coincides with the rotation axis of the main impeller, and the inducer. Available for pumps.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

An inducer in which the number of vanes at an inlet is one and the number of vanes at an outlet is three, the gravity center of an entire blade is positioned on the rotating axis thereof to prevent a rotational unbalance from occurring, and both suction performance and boosting performance are excellent and a pump having the inducer. The inducer (8) comprises three vanes (1-1), (1-2), and (1-3) disposed on the upstream side of a main impeller (7) and having lengths along the vanes different from each other. The three vanes (1-1), (1-2), and (1-3) are disposed so that the positions of the leading edges (1-1a), (1-2a), and (1-3a) of the three vanes (1-1), (1-2), and (1-3) in meridian planes are different from each other.

Description

明 細 書 インデューサ及びポンプ 技術分野  Description Inducer and Pump Technical Field
本発明は、 インデューサ及びポンプに係り、 特にポンプの吸込性能を向上さ せるために、 回転軸心が主羽根車の回転軸心と一致するように主羽根車の上流 側に配置されるインデューサ及び該ィンデューサを備えたポンプに関するもの である。 背景技術  The present invention relates to an inducer and a pump. In particular, in order to improve the suction performance of the pump, the inductor disposed on the upstream side of the main impeller so that the rotation axis coincides with the rotation axis of the main impeller. The present invention relates to a reducer and a pump equipped with the inducer. Background art
ポンプを低い吸込圧で運転したり、 定格よりも大きな流量で運転すると、 ポ ンプ流路内において液体の圧力が局所的に飽和蒸気圧以下になり、 ポンプ羽根 車 (以下、 主羽根車という) の流路内にキヤビテーシヨンが発生する場合があ る。 主羽根車の流路内にキヤビテーシヨンが発生すると、 流路がキヤビテーシ ョン気泡によって閉塞され、 ポンプが昇圧不能に陥ることがある。  When the pump is operated at a low suction pressure or at a flow rate greater than the rated pressure, the liquid pressure locally falls below the saturated vapor pressure in the pump flow path, and the pump impeller (hereinafter referred to as the main impeller) Cavitation may occur in the flow path. If cavity is generated in the main impeller flow path, the flow path may be blocked by the cavity bubbles and the pump may not be able to pressurize.
ポンプの入口における全圧と飽和蒸気圧との差はポンプのキヤビテーシヨン 発生に対する余裕を表し、 この圧力差を N P S H (Net Positive Suction Head :有効吸込へッド) という。 この N P S Hによつてポンプ 吸込性能が評価さ れ、 低い N P S Hでも昇圧性能があるポンプは吸込性能が高いとされる。 ポン プの吸込性能が高いとポンプの高速運転が可能になり、 ポンプの小型化が可能 になる。  The difference between the total pressure at the inlet of the pump and the saturated vapor pressure represents a margin for pump cavity generation, and this pressure difference is called NPSH (Net Positive Suction Head). The pump suction performance is evaluated by this N P S H, and a pump that has a boosting performance even with a low N P S H is said to have high suction performance. If the pump suction performance is high, the pump can be operated at high speed and the pump can be downsized.
従来から、 ポンプの吸込性能を向上させるため、 主軸の先端部にインデュー サを取り付けることが行なわれている。 このインデューサは主羽根車の上流側 に主羽根車と回転軸心が同じになるように配置され、 主軸を介して主羽根車と 同じ回転速度で回転される。 インデューサは、 複数の翼を有する斜流型または 軸流型の羽根車であり、 主羽根車に比べて翼の枚数が少なく、 翼長さが長いと いう形状的特徴を有している。  Conventionally, an inducer has been attached to the tip of the main shaft to improve pump suction performance. This inducer is arranged on the upstream side of the main impeller such that the main impeller and the rotation axis are the same, and is rotated at the same rotational speed as the main impeller via the main shaft. The inducer is a mixed flow type or axial flow type impeller having a plurality of blades, and has a shape characteristic that the number of blades is smaller and the blade length is longer than the main impeller.
このような形状的特徴のため、 翼の入口上流で液体の圧力が低下してキヤビ テーシヨンが発生した場合でも、 インデューサの流路は閉塞されにくく液体を 昇圧することができる。 このため、 インデューサを主羽根車の上流側に配置す ることにより、 主羽根車単独の場合に比べてポンプの吸込性能を向上させるこ とができ、 ポンプの高速化及び小型化が可能になる。 インデューサ付きポンプ の吸込性能は、 ィンデューサの吸込性能及び昇圧性能が高いほど大きくなる。 図 1 A及び図 1 Bに 3枚の翼を有する従来のインデューサを示す。 図 1 A及 び図 1 Bに示すように、 ヘリカル形状 (らせん形状) の 3枚の翼 1 1— 1 , 1 1 - 2 , 1 1 - 3 (以下、 総称するときは翼 1 1という) は、 円筒状もしくは 円柱状の軸部 5の外周面に固定されている。 これらの翼 1 1の翼に沿った長さ はすべて等しく構成されている。 一般に、 インデューサは高い吸込性能を達成 するように設計されるため、 ィンデューサの翼枚数はできるだけ少なくするこ とが好ましい。 1枚翼のみを有するインデューサは回転バランスの問題がある ため、 通常のインデューサの翼枚数は 2枚から 5枚である。 また、 偶数の翼枚 数のインデューサでは、 交互翼キヤビテーシヨンが発生する可能性があるため、 一般的には 3枚翼のインデューサが好ましいとされている。 このような従来ィ ンデューサの翼枚数に関する一般的な設計指針は次の文献 1に記載されている。 文献 1 : NASA SP— 8052、 Liquid Rocket Engine Turbopump Inducers, NASA SPACE VEHICLE DESIGN CRITERIA N 米国、 NASA (National Aeronautics and Space Administration) . x —1 9 9 7年 5月 .. . Because of these geometric features, liquid pressure drops upstream of the blade inlet and Even in the case of occurrence of a phenomenon, the flow path of the inducer is not easily blocked, and the pressure of the liquid can be increased. For this reason, by arranging the inducer upstream of the main impeller, the pump suction performance can be improved compared to the case of the main impeller alone, and the pump can be increased in speed and size. Become. The suction performance of a pump with an inducer increases as the suction performance and pressure increase performance of the inducer increase. Figures 1A and 1B show a conventional inducer with three blades. As shown in Fig. 1A and Fig. 1B, three wings of helical shape (spiral shape) 1 1-1, 1 1-2, 1 1-3 (hereinafter collectively referred to as wing 1 1) Is fixed to the outer peripheral surface of the cylindrical or columnar shaft portion 5. The lengths of these wings 11 along the wings are all equally configured. In general, inducers are designed to achieve high suction performance, so it is preferable to reduce the number of inducer blades as much as possible. Since an inducer with only one blade has a problem of rotational balance, the number of blades of a normal inducer is 2 to 5 blades. Also, inductors with an even number of blades may cause alternate blade cavityation, so a three-blade inducer is generally preferred. A general design guideline regarding the number of blades of such a conventional inducer is described in the following document 1. Document 1:. NASA SP- 8052, Liquid Rocket Engine Turbopump Inducers, NASA SPACE VEHICLE DESIGN CRITERIA N the United States, NASA (National Aeronautics and Space Administration ) x -1 9 9 7 March 2009 ...
一般的にインデューサの昇圧性能は、 インデューサの翼枚数が多いほど高く なる。 一方、 インデューサの吸込性能は翼枚数が少ないほど高くなるので、 ィ ンデューサの昇圧性能と吸込性能とは二律背反の関係にある。 ポンプの仕様に より、 インデューサに高い吸込性能と高い昇圧性能が同時に要求される場合は、 中間翼付きのインデューサが用いられることがある。  Generally, the boosting performance of an inducer increases as the number of blades of the inducer increases. On the other hand, since the suction performance of the inducer increases as the number of blades decreases, the boosting performance and suction performance of the inducer are in a trade-off relationship. If the inducer requires high suction performance and high boosting performance at the same time due to the pump specifications, an inducer with an intermediate blade may be used.
中間翼付きのインデューサは、 通常長さの翼 (全翼) の間に形成される流路 に全翼よりも長さの短い中間翼を配置したものである。 中間翼の後緣は、 子午 面において全翼と同じ位置にあるが、 中間翼の前縁は全翼の前縁よりも下流側 に位置している。 従って、 中間翼付きのインデューサは、 入口で翼枚数が少な く出口で翼枚数が多くなるという特徴を有している。 これにより中間翼付きの インデューサは、 全翼だけのインデューサに比べて入口の流路が広くキヤビテ ーシヨン気泡によって閉塞されにくいことから高い吸込性能を有している。 さ らに、 中間翼付きのインデューサは出口の翼枚数が多いことから高い昇圧性能 を有している。 文献 2には、 中間翼付きのポンプ羽根車は中間翼を用いないポ ンプ羽根車よりも高い吸込性能を有することが示されている。 An inducer with an intermediate wing has an intermediate wing that is shorter than the entire wing in a flow path formed between the wings of the normal length (full wing). The rear wing of the intermediate wing is in the same position as all wings on the meridian plane, but the leading edge of the intermediate wing is located downstream of the leading edge of all wings. Therefore, an inducer with an intermediate blade has a feature that the number of blades is small at the inlet and the number of blades is large at the outlet. With this, with the middle wing The inducer has a high suction performance because it has a wider inlet channel and is less likely to be blocked by cavity bubbles, compared to an inducer with all blades. In addition, the inducer with intermediate blades has high boosting performance due to the large number of blades at the outlet. Document 2 shows that pump impellers with intermediate blades have higher suction performance than pump impellers without intermediate blades.
文献 2 : Kosuke ASHIHARA and Akira GOTO, STUDY ON PUMP IMPELLER WITH SPLITTER BLADES DESIGNED BY 3-D INVERSE DESIGN METHOD、 FEDSM2000- 11073. 米国、 ASME、 2 0 0 0年 6月  Reference 2: Kosuke ASHIHARA and Akira GOTO, STUDY ON PUMP IMPELLER WITH SPLITTER BLADES DESIGNED BY 3-D INVERSE DESIGN METHOD, FEDSM2000-11073. USA, ASME, June 2000
中間翼付きのポンプ羽根車の他の例として、 文献 3には、 全翼 1枚 +中間翼 1枚の汚水ポンプ用の羽根車が開示されている。 回転軸に垂直な平面に羽根車 を投影してみたとき、 中間翼 (副羽根) の後縁は、 全翼 (主羽根) の後縁の回 転軸を中心とした対称位置よりも回転方向にずれた位置にある。 この汚水ボン プ用の羽根車は、 汚物による入口の閉塞を防ぐため入口の翼枚数を 1枚に、 ポ ンプ効率を実用上十分な値にするため出口の翼枚数を 2枚にしたものである。 これらの中間翼及び全翼の重心はいずれも回転軸心から離れているために、 中 間翼及ぴ全翼だけでは回転パランスをとることができない。  As another example of a pump impeller with an intermediate blade, Document 3 discloses an impeller for a sewage pump with one full blade and one intermediate blade. When the impeller is projected onto a plane perpendicular to the rotation axis, the trailing edge of the intermediate blade (sub blade) is more rotational than the symmetrical position around the rotation axis of the trailing edge of all blades (main blade). It is in the position shifted. This impeller for sewage pumps has one inlet blade to prevent clogging of the inlet due to dirt, and two outlet blades to make the pump efficiency practically sufficient. is there. Since the center of gravity of these intermediate wings and all wings are all separated from the rotation axis, the rotation balance cannot be obtained with only the middle wing and all wings.
文献 3 : 日本国特開 2 0 0 1 - 2 8 9 1 9 3号公報 発明の開示  Reference 3: Japanese Patent Laid-Open No. 2 0 0 1-2 8 9 1 9 3 Disclosure of Invention
高い吸込性能を達成できるインデューサとして全翼 2枚タイプのインデュー サが考えられる。 しかしながら、 このタイプのインデューサは入口の翼枚数が 少ないことから高い吸込性能が期待できるが、 出口の翼枚数も少ないことから 昇圧性能は低くなる。 一方、 高い吸込性能と高い昇圧性能が期待できる中間翼 付きのインデューサは、 その形状的特徴から翼枚数が必ず偶数になり、 その最 小翼枚数は実際のポンプに使用されるインデューサにおいては全翼 2枚 +中間 翼 2枚の合計 4枚である。  A two-blade type inducer can be considered as an inducer that can achieve high suction performance. However, this type of inducer can be expected to have a high suction performance due to the small number of blades at the inlet, but the boosting performance is low due to the small number of blades at the outlet. On the other hand, an inducer with an intermediate blade that can be expected to have a high suction performance and a high pressure boosting performance always has an even number of blades due to its shape characteristics, and the minimum number of blades in an inducer used in an actual pump. A total of 4 blades, 2 for each wing and 2 for the middle wing.
図 2 A及び図 2 Bに、 全翼 2枚及び中間翼 2枚を有する従来の中間翼付きの インデューサを示す。 図 2 A及び図 2 Bに示すように、 中間翼 1 2— 1, 1 2 - 2 (以下、 総称するときは中間翼 1 2という) は、 全翼 1 1— 1 , 1 1— 2 (以下、 総称するときは全翼 1 1という) との間に形成された流路の回転軸周 方向における中央にそれぞれ位置し、 中間翼 1 2の長さは全翼 1 1の長さの半 分である。 子午面における中間翼 1 2の後縁 1 2— 1 a , 1 2— l bの位置は 全翼 1 1の後縁 1 1一 l b, 1 1— 2 bと同じであるが、 中間翼 1 2の前縁 1 2 - 1 a , 1 2— 2 aの位置は全翼 1 1の前縁 1 1— l a , l l _ 2 aよりも 下流側にある。 この中間翼付きインデューサは、 入口の翼枚数が 2枚で出口の 翼枚数が 4枚なので入口が広く、 従って高い吸込性能が達成でき、 かつ高い昇 圧性能を達成することができる。 Fig. 2A and Fig. 2B show an inducer with a conventional intermediate wing that has two full wings and two intermediate wings. As shown in Fig. 2A and Fig. 2B, the intermediate blades 1 2-1, 1 2-2 (hereinafter collectively referred to as the intermediate blade 1 2) are all blades 1 1-1, 1 1-2 (Hereinafter collectively referred to as all blades 1 1) are located at the center in the circumferential direction of the rotation axis, and the length of the intermediate blade 1 2 is the length of all blades 1 1 Half a minute. The trailing edge 1 2— 1 a, 1 2— lb on the meridian plane 1 2 is the same as the trailing edge 1 1 1 lb, 1 1— 2 b of the entire wing 1 1, but the intermediate wing 1 2 The leading edge 1 2-1 a, 1 2— 2 a is located downstream of the leading edge 1 1— la, ll _ 2 a of the entire wing 1 1. This inducer with intermediate blades has two inlet blades and four outlet blades, so the inlet is wide, so high suction performance can be achieved, and high boosting performance can be achieved.
この全翼 2枚 +中間翼 2枚のインデューサょりもさらに吸込性能を向上させ るためは、 入口の翼枚数を減らして流路の入口を拡大することが必要となる。 このような広い流路入口を有するインデューサとして、 全翼 1枚 +中間翼 1枚 のタイプのインデューサが考えられる。 しかしながら、 このタイプのインデュ ーサの場合、 翼全体の重心が回転軸心上にないため回転のアンパランスが生じ、 ポンプの運転が困難になる。  In order to further improve the suction performance of these two blades + two intermediate blades, it is necessary to reduce the number of blades at the inlet and expand the inlet of the flow path. As an inducer with such a wide channel inlet, one type of inducer with one full blade and one intermediate blade can be considered. However, in the case of this type of inducer, the center of gravity of the entire blade is not on the axis of rotation, causing rotation imbalance and making the pump difficult to operate.
このような観点力 ら、 高い吸込性能と高い昇圧性能を達成するために、  From these viewpoints, in order to achieve high suction performance and high boosting performance,
( 1 ) 入口の翼枚数は出来るだけ少なく、  (1) The number of blades at the entrance is as small as possible,
( 2 ) 出口の翼枚数は出来るだけ多く、  (2) The number of exit wings is as large as possible,
( 3 ) 翼の重心が回転軸上にあり回転ァンバランスを生じない、  (3) The center of gravity of the wing is on the axis of rotation and no rotation fan balance occurs.
ような新しい構成を持つインデューサが望まれている^ An inducer with such a new structure is desired ^
本発明は、 このような従来技術の問題点に鑑みてなされたもので、 入口の翼 枚数が 1枚、 出口の翼枚数が 3枚で、 かつ翼全体の重心が回転軸上にあり回転 アンバランスを生じない、 吸込性能及ぴ昇圧性能ともに優れたィンデューサ及 びこのようなインデューサを備えたポンプを提供することを目的とする。  The present invention has been made in view of such problems of the prior art. The number of blades at the inlet is one, the number of blades at the outlet is three, and the center of gravity of the entire blade is on the rotating shaft. It is an object of the present invention to provide an inducer excellent in both suction performance and boosting performance that does not cause a balance, and a pump equipped with such an inducer.
上記の従来技術における問題点を解決するために、 本発明は、 主羽根車の上 流側に配置されるインデューサにおいて、 翼に沿った長さが互いに異なる 3枚 の翼を備え、 前記 3枚の翼の前縁の子午面における位置が相互に異なることを 特徴とする。  In order to solve the above problems in the prior art, the present invention is an inducer disposed on the upstream side of a main impeller, and includes three blades having different lengths along the blades. The positions of the leading edges of the wings on the meridian plane are different from each other.
本発明の好ましい態様は、 前記 3枚の翼の後縁位置は、 子午面において互い に同一位置に揃っていることを特徴とする。 本発明の好ましい態様は、 前記 3枚の翼の後縁は、 回転軸心に垂直な平面に おいて、 回転軸心を中心として均等に配置されていることを特徴とする。 In a preferred aspect of the present invention, the trailing edge positions of the three blades are aligned with each other on the meridian plane. In a preferred aspect of the present invention, the trailing edges of the three blades are uniformly arranged around the rotation axis in a plane perpendicular to the rotation axis.
本発明の好ましい態様は、 前記 3枚の翼は、 第 1の翼、 第 2の翼、 及び第 3 の翼から構成され、 前記第 1の翼の後縁からの巻き角度は、 2 3 0 + A〜2 5 0 + A。 であり、 前記第 2の翼の後縁からの巻き角度は、 1 1 0 + A〜1 3 0 + A° であり、 前記第 3の翼の後縁からの巻き角度は、 A° である (ただし、 Aは、 0 < Aの条件を満たす定数を表す) ことを特徴とする。  In a preferred aspect of the present invention, the three wings are composed of a first wing, a second wing, and a third wing, and a winding angle from a trailing edge of the first wing is 2 3 0 + A to 2 5 0 + A. The winding angle from the trailing edge of the second wing is 1 1 0 + A to 1 3 0 + A °, and the winding angle from the trailing edge of the third wing is A ° (However, A represents a constant satisfying the condition 0 <A).
3枚の翼の同じ子午面位置における翼角度や、 子午面位置に対する翼角度の 分布が互いに異なる場合、 3枚の翼の巻き角度を上記の範囲内で調節すること により、 3枚の翼全体の重心を回転軸に一致させることができ、 回転バランス をとることができる。 なお、 巻き角度とは、 後縁から前縁までの回転軸を中心 とする翼の中心角をいう。  When the wing angle at the same meridional position of the three wings and the distribution of the wing angle with respect to the meridional position are different from each other, by adjusting the winding angle of the three wings within the above range, The center of gravity can be made to coincide with the rotation axis, and the rotation balance can be achieved. The winding angle is the center angle of the wing centered on the rotation axis from the trailing edge to the leading edge.
上述した本発明に含まれる一つの例を以下に示す。 3枚の翼に関して、 翼角 度が子午面位置にかかわらず一定で、 すべての翼の翼角度が同じ場合において は、  One example included in the present invention described above is shown below. For three wings, if the wing angle is constant regardless of meridional position and all wing angles are the same,
第 1の翼の後縁からの卷き角度は、 2 4 0 + A° であり、 The firing angle from the trailing edge of the first wing is 2 4 0 + A °,
第 2の翼の後縁からの卷き角度は、 1 2 0 + A° であり、 The firing angle from the trailing edge of the second wing is 1 2 0 + A °,
第 3の翼の後縁からの巻き角度は、 A° とすることができる。 The winding angle from the trailing edge of the third wing can be A °.
この関係であれば 3枚の翼全体の重心が回転軸心と一致し、 回転バラ.ンスを とることができる。 ここで、 Aは 3枚の翼に共通な定数であり、 0 < Aの範囲 で任意の値を選択することができる。  In this relationship, the center of gravity of all three blades coincides with the rotational axis, and the rotational balance can be achieved. Here, A is a constant common to the three blades, and any value can be selected within the range of 0 <A.
本発明のインデューサにおいては、 3枚の翼の翼に沿った長さがそれぞれ違 うために、 入口で翼が 1枚、 中央で翼が 2枚、 出口で翼が 3枚になっている。 さらに、 後縁の位置を基準としたそれぞれの翼の巻き角度が上記の関係を満た している場合、 3枚の翼の重心が回転軸上に位置するようになっている。  In the inducer of the present invention, the lengths of the three wings along the wings are different, so there are one wing at the entrance, two wings at the center, and three wings at the exit. . Furthermore, when the wing angle of each blade relative to the position of the trailing edge satisfies the above relationship, the center of gravity of the three blades is positioned on the rotation axis.
本発明のインデューサによれば、 入口の翼枚数が 1枚であるため、 第 1の翼 の入口付近の負圧面にキヤビテーシヨン気泡が発生した場合でも、 インデュー サの入口における負圧面側の流路は、 その開口角が 3 6 0 ° と広く、 インデュ ーサの入口が閉塞されにくい。 ここで、 開口角とは回転軸を中心とした流路断 面の中心角をいい、 隣接する翼同士の間隔の大きさを表す。 第 1の翼の昇圧作 用があるため、 第 2の翼の負圧面に生じるキヤビテーション気泡は第 1の翼よ り小さく、 かつ負圧面側の流路もその開口角が 2 4 0 ° と広いためキヤビテー シヨン気泡によって閉塞されにくレ、。 第 3の翼では、 負圧面側の流路の開口角 は 1 2 0 ° であるが、 第 1の翼と第 2の翼との昇圧作用により第 3の翼に発生 するキヤビテーシヨン気泡はさらに小さいため閉塞の可能性は低い。 According to the inducer of the present invention, since the number of blades at the inlet is one, even if a cavity bubble is generated on the suction surface near the inlet of the first blade, the flow path on the suction surface side at the inlet of the inducer Has a wide opening angle of 3600 °, and the inlet of the inducer is not easily blocked. Here, the opening angle is the channel breakage around the rotation axis. The center angle of a surface, which represents the size of the space between adjacent wings. Due to the pressure increase of the first blade, the cavitation bubbles generated on the suction surface of the second blade are smaller than those of the first blade, and the flow angle on the suction surface side also has an opening angle of 2400 °. And because it is wide, it is difficult to be blocked by bubbles. In the third wing, the opening angle of the flow path on the suction side is 120 °, but the cavity bubbles generated in the third wing by the pressurizing action of the first wing and the second wing are even smaller. Therefore, the possibility of blockage is low.
このように、 上記構成を持つ本発明のインデューサは高い吸込性能を持ち、 かつ、 インデューサ出口の翼枚数は 3枚なので実用上十分に高い昇圧性能を持 つている。 また、 3枚の翼全体の重心が回転軸上にあることから回転アンバラ ンスの問題は生じない。 従って、 上記構成を持つインデューサは、 高い吸込性 能、 高い昇圧性能、 回転アンバランスが無い、 という特徴を持つ。  Thus, the inducer of the present invention having the above-described configuration has a high suction performance, and the number of blades at the inducer outlet is three, so that it has a sufficiently high boosting performance in practice. In addition, since the center of gravity of all three blades is on the rotation axis, there is no problem of rotational unbalance. Therefore, the inducer having the above configuration has the characteristics of high suction performance, high boosting performance, and no rotation imbalance.
本発明の他の態様は、 ケーシングに収容される主羽根車と、 前記主羽根車が 固定される主軸と、 上記インデューサとを備えることを特徴とするポンプであ る。  Another aspect of the present invention is a pump comprising a main impeller housed in a casing, a main shaft to which the main impeller is fixed, and the inducer.
上述したインデューサは高い吸込性能及び高い昇圧性能を有しているため、 このィンデューサを備えるポンプの吸込性能を向上させることができる。 した がって、 ポンプの高速化及び小型化が可能になる。  Since the inducer described above has a high suction performance and a high pressure increase performance, the suction performance of a pump including this inducer can be improved. Therefore, it is possible to increase the speed and size of the pump.
また、 別の観点からみれば、 本発明は、 インデューサの翼枚数に関する背反 命題を解決したものと言うことができる。 つまり、 キヤビテーシヨン気泡によ る流路の閉塞を回避して高い吸込性能を達成するという点からは、 インデュー サ翼枚数は減少すべきだが、 高い昇圧性能を達成するという点からは翼枚数は 増加すべきである。 本発明は、 このような背反命題を、 単に両性能の妥協とい うことではなく、 相互に長さの異なる 3枚の翼を用いることにより、 極めて高 い効果をもって良好に解決することができる。  From another point of view, the present invention can be said to have solved the contradictory proposition regarding the number of blades of the inducer. In other words, the number of inducer blades should be reduced from the viewpoint of achieving high suction performance by avoiding blockage of the flow path due to cavity bubbles, but the number of blades will be increased from the point of achieving high boosting performance. Should. In the present invention, such a contradictory proposition can be satisfactorily solved with extremely high effects by using three wings having different lengths from each other rather than simply compromising both performances.
なお、 本発明において、 各翼の後縁の子午面における位置は互いに同一位置 に揃っていることが好ましいが、 各翼後縁の相互の位置のずれが、 本発明の目 的である優れた吸込性能及び昇圧性能に直ちに影響を与えるわけではない。 上述したように、 本発明のインデューサは高い吸込性能と高い昇圧性能を持 ち、 かつ回転のアンバランスを起こさない。 従って、 本発明のインデューサを 主羽根車の上流側に配置した構成のポンプでは、 従来のポンプにくらべ高い吸 込性能を発揮することができ、 ポンプの高速化及び小型化に貢献することがで きる。 図面の簡単な説明 In the present invention, it is preferable that the positions of the trailing edges of the blades on the meridional surface are aligned with each other. However, the displacement of the positions of the trailing edges of the blades is an excellent object of the present invention. It does not immediately affect the suction performance and boost performance. As described above, the inducer of the present invention has high suction performance and high boosting performance, and does not cause rotation imbalance. Therefore, the inducer of the present invention The pump arranged on the upstream side of the main impeller can exhibit higher suction performance than conventional pumps, and can contribute to speeding up and downsizing of the pump. Brief Description of Drawings
図 1 Aは 3枚の翼を有する従来のインデューサを示す斜視図であり、 図 1 B は図 1 Aに示すィンデューサの側面図である。  FIG. 1A is a perspective view showing a conventional inducer having three blades, and FIG. 1B is a side view of the inducer shown in FIG. 1A.
図 2 Aは全翼 2枚及び中間翼 2枚を有する従来の中間翼付きのィンデューサ を示す斜視図であり、 図 2 Bは図 2 Aに示すィンデューサの側面図である。  FIG. 2A is a perspective view showing a conventional inducer with intermediate blades having two full blades and two intermediate blades, and FIG. 2B is a side view of the inducer shown in FIG. 2A.
図 3は本発明の一実施形態に係るインデューサを備えたポンプを模式的に示 す断面図である。  FIG. 3 is a cross-sectional view schematically showing a pump provided with an inducer according to an embodiment of the present invention.
図 4 Aは本発明の一実施形態に係るインデューサを示す側面図であり、 図 4 Bは本発明の一実施形態に係るインデューサの斜視図であり、 図 4 Cは本発明 の一実施形態に係るィンデューサの別の斜視図である。  4A is a side view showing an inducer according to an embodiment of the present invention, FIG. 4B is a perspective view of the inducer according to an embodiment of the present invention, and FIG. 4C is an embodiment of the present invention. It is another perspective view of the inducer which concerns on a form.
図 5は本発明の一実施形態に係るインデューサの子午面における第 1の翼、 第 2の翼、 及ぴ第 3の翼を示す模式図である。  FIG. 5 is a schematic diagram showing the first wing, the second wing, and the third wing on the meridian plane of the inducer according to the embodiment of the present invention.
図 6 Aは本発明の一実施形態に係る第 1の翼を示す斜視図であり、 図 6 Bは 第 1の翼を示す平面図である。  FIG. 6A is a perspective view showing a first wing according to an embodiment of the present invention, and FIG. 6B is a plan view showing the first wing.
図 7 Aは本発明の一実施形態に係る第 2の翼を示す斜視図であり、 図 7 Bjま ― 第 2の翼を示す平面図である。  FIG. 7A is a perspective view showing a second wing according to an embodiment of the present invention, and FIG. 7Bj is a plan view showing the second wing.
図 8 Aは本発明の一実施形態に係る第 3の翼を示す斜視図であり、 図 8 Bは 第 3の翼を示す平面図である。  FIG. 8A is a perspective view showing a third wing according to an embodiment of the present invention, and FIG. 8B is a plan view showing the third wing.
図 9は 3枚の全翼を持つ従来のィンデューサのキヤビテーション発生状態を 示す模式図である。  Fig. 9 is a schematic diagram showing the occurrence of cavitation in a conventional inducer with three blades.
図 1 0は 2枚の全翼及び 2枚の中間翼を有する従来のィンデューサのキヤビ テーション発生状態を示す模式図である。  FIG. 10 is a schematic diagram showing a state of occurrence of cavitation in a conventional inducer having two full blades and two intermediate blades.
図 1 1は本発明の一実施形態に係るインデューサのキヤビテーション発生状 態を示す模式図である。 発明を実施するための最良の形態 FIG. 11 is a schematic diagram showing a cavitation occurrence state of an inducer according to an embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明に係るインデューサ及び該ィンデューサを備えたポンプについ て図面を参照して説明する。  Hereinafter, an inducer according to the present invention and a pump including the inducer will be described with reference to the drawings.
図 3は本発明のィンデューサを備えたポンプを模式的に示す断面図である。 図 3に示すように、 ポンプは、 ケーシング 6内に収容された主羽根車 (ポン プ羽根車) 7と、 本発明に係るインデューサ 8と、 主羽根車 7及びインデュー サ 8が固定される主軸 9とを備えている。 主羽根車 7の上流側及び下流側には、 昇圧された流体が高圧側から低圧側に漏洩することを防止するためのシール部 材 1 0 A, 1 0 Bがそれぞれ設けられている。  FIG. 3 is a cross-sectional view schematically showing a pump provided with the inducer of the present invention. As shown in FIG. 3, the pump has a main impeller (pump impeller) 7 accommodated in a casing 6, an inducer 8 according to the present invention, a main impeller 7 and an inducer 8 fixed thereto. Main shaft 9 is provided. Seal members 10 A and 10 B for preventing the pressurized fluid from leaking from the high pressure side to the low pressure side are respectively provided on the upstream side and the downstream side of the main impeller 7.
インデューサ 8は、 その回転軸心 (主軸 9の中心軸) が主羽根車 7と同じに なるように主羽根車 7の上流に配置され、 図示しない駆動源により主軸 9を介 して主羽根車 7と同じ回転速度で回転する。 流体 (液体) は吸込口 6 aより流 入し、 キヤビテーシヨンを発生しながらインデューサ 8で昇圧され、 さらに主 羽根車 7でポンプの要求揚程が得られる程度にまで昇圧される。 このとき主羽 根車 7の中ではキヤビテーシヨンが発生しない圧力まで、 インデューサ 8が流 体を昇圧しているため、 ポンプの吸込性能は主羽根車 7単独の場合よりも向上 する。  The inducer 8 is arranged upstream of the main impeller 7 so that the rotation axis (the central axis of the main shaft 9) is the same as that of the main impeller 7, and the main impeller is driven via the main shaft 9 by a drive source (not shown). It rotates at the same rotational speed as car 7. The fluid (liquid) flows in from the suction port 6a, is pressurized by the inducer 8 while generating a cavity, and further boosted by the main impeller 7 to the extent that the required pump head is obtained. At this time, because the inducer 8 is boosting the fluid up to a pressure at which no cavity is generated in the main impeller 7, the suction performance of the pump is improved as compared with the case of the main impeller 7 alone.
図 4 A乃至図 4 Cに本発明の一実施形態に係るインデューサを詳細に示す。 図 4 Aは本発明の一実施形態に係るィンデユーサの側面図であり、 図 4 Bは本 発明の一実施形態に係るインデューサの斜視図であり、 図 4 Cは本発明の一実 施形態に係るインデューサの別の斜視図である。 図 5は本発明の一実施形態に 係るインデューサの子午面における第 1の翼、 第 2の翼、 及び第 3の翼を示す 模式図である。  4A to 4C show in detail an inducer according to an embodiment of the present invention. 4A is a side view of an inducer according to an embodiment of the present invention, FIG. 4B is a perspective view of an inducer according to an embodiment of the present invention, and FIG. 4C is an embodiment of the present invention. It is another perspective view of the inducer which concerns on. FIG. 5 is a schematic diagram showing the first wing, the second wing, and the third wing on the meridian plane of the inducer according to the embodiment of the present invention.
図 4 A乃至図 4 Cに示すように、 この実施形態におけるインデューサは、 円 筒状または円柱状の軸部 5と、 この軸部 5の外周面に固定された 3枚の翼 1と を備えている。 3申夂の翼 1は、 第 1の翼 1— 1と、 第 2の翼 1一 2と、 第 3の 翼 1—3 (以下、 総称するときは翼 1という) とから構成されている。 図 5に 示すように、 第 1の翼 1一 1、 第 2の翼 1— 2、 及ぴ第 3の翼 1一 3の長さは 互いに異なっており、 これらの翼 1の前縁 1一 1 a, 1—2 a , 1— 3 aの子 午面における位置は相互に異なっている。 また、 子午面における翼 1の後縁 1 — l b, 1— 2 b, 1— 3 bは、 同一の位置にある。 As shown in FIGS. 4A to 4C, the inducer in this embodiment includes a cylindrical or cylindrical shaft portion 5 and three blades 1 fixed to the outer peripheral surface of the shaft portion 5. I have. The first wing 1 is composed of the first wing 1-1, the second wing 1 1-2, and the third wing 1-3 (hereinafter collectively referred to as wing 1). . As shown in Fig. 5, the lengths of the first wing 1 1, the second wing 1-2, and the third wing 1 1 3 are different from each other. 1 a, 1—2 a, 1— 3 a child The positions on the meridian plane are different from each other. Also, the trailing edge of wing 1 on the meridian plane 1 — lb, 1-2 b, 1-3 b is in the same position.
図 4 Cに示すように、 回転軸 (軸部 5の中心軸) に垂直な平面においては、 インデューサ出口における 3枚の翼 1の後縁 1一 1 b〜l— 3 bは、 回転軸を 中心として 120° の間隔をもって均等な位置にある。 また、 3枚の翼 1の後 縁 1一 l b〜l— 3 bからの卷き角度は、 それぞれ次のように設定される。  As shown in Fig. 4C, in the plane perpendicular to the rotation axis (the central axis of the shaft part 5), the trailing edges of the three blades 1 at the inducer exit 1 1 1 b to l— 3 b They are evenly spaced at 120 ° intervals around the center. In addition, the rolling angles from the trailing edges of the three wings 1 are set as follows.
第 1の翼 1—1 : 240+A°  First wing 1-1: 240 + A °
第 2の翼 1一 2 : 120+A°  2nd wing 1 1 2: 120 + A °
第 3の翼 1一 3 : A°  Third wing 1 1 3: A °
ただし、 Aは 3枚の翼 1に共通な定数であり、 0よりも大きい数値を表す。 ここで、 卷き角度とは、 後縁から前縁までの回転軸を中心とする翼の中心角を いう。 なお、 第 1の翼 1— 1の巻き角度は 230+A〜250+A° であれば よく、 また、 第 2の翼 1— 2の巻き角度は 1 10+Α〜1 30+A° であれば よい。  However, A is a constant common to the three blades 1 and represents a value larger than 0. Here, the roll angle is the center angle of the wing centered on the axis of rotation from the trailing edge to the leading edge. The winding angle of the first blade 1-1 may be 230 + A to 250 + A °, and the winding angle of the second blade 1-2 is 1 10 + Α to 130 + A °. If there is.
図 6 Aは本発明の一実施形態に係る第 1の翼を示す斜視図であり、 図 6Bは 第 1の翼を示す平面図である。 図 7 Aは本発明の一実施形態に係る第 2の翼を 示す斜視図であり、 図 7 Bは第 2の翼を示す平面図である。 図 8 Aは本発明の 一実施形態に係る第 3の翼を示す斜視図であり、 図 8 Bは第 3の翼を示す平面 図である。  FIG. 6A is a perspective view showing a first wing according to an embodiment of the present invention, and FIG. 6B is a plan view showing the first wing. FIG. 7A is a perspective view showing a second wing according to an embodiment of the present invention, and FIG. 7B is a plan view showing the second wing. FIG. 8A is a perspective view showing a third wing according to an embodiment of the present invention, and FIG. 8B is a plan view showing the third wing.
図 6 B、 図 7 B、 及び図 8 Bに示すように、 本実施形態では、 上記定数 Aは 1 20としており、 3枚の翼 1の後縁 1—1 b〜l_3 bからの卷き角度は、 それぞれ次のように設定されている。  As shown in FIG. 6B, FIG. 7B, and FIG. 8B, in this embodiment, the constant A is set to 120, and the blades from the trailing edges 1—1 b to l_3 b of the three blades 1 are scattered. The angles are set as follows.
第 1の翼 1一 1 : 360°  1st wing 1 1 1: 360 °
第 2の翼 1— 2 : 240°  Second wing 1—2: 240 °
第 3の翼 1— 3 : 120°  Third wing 1-3: 120 °
このような配置により、 本実施形態のインデューサは、 入口において翼 1枚、 中央において翼 2枚、 出口において翼 3枚の構成になっている。 With such an arrangement, the inducer of the present embodiment is configured with one wing at the inlet, two wings at the center, and three wings at the outlet.
上述した定数 Aは、 好ましくは 60≤A≤ 1 80である。 Aく 60であると、 第 3の翼 1—3の長さが短すぎて昇圧性能が期待できない。 一方、 180<A であると、 3枚の翼 1の間にそれぞれ形成される流路が長くなりすぎ、 流体の 抵抗が増えて昇圧性能が低下する。 The constant A mentioned above is preferably 60≤A≤180. If A is 60, the length of the third wing 1-3 is too short to expect pressure boosting performance. Meanwhile, 180 <A If this is the case, the flow paths formed between the three blades 1 will be too long, and the resistance of the fluid will increase and the pressurizing performance will decrease.
図 7 B及び図 8 Bに示すように、 第 2の翼 1一 2の巻き角度は 2 4 0 ° 、 第 3の翼 1一 3の巻き角度は 1 2 0 ° であり、 第 2の翼 1一 2と第 3の翼 1一 3 のそれぞれの後縁 1一 2 b, 1 _ 3 bの位置は互いに 1 2 0 ° ずれている。 こ のことから、 第 2の翼 1 _ 2と第 3の翼 1—3との巻き角度の合計は、 第 1の 翼 1一 1の巻き角度 3 6 0 ° と同じになり、 第 2の翼 1一 2と第 3の翼 1— 3 とを組み合わせたときの重心は回転軸心上に位置する。 第 1の翼 1一 1の巻き 角度は 3 6 0。 なので第 1の翼 1一 1の重心は回転軸上にあることから、 第 1 の翼 1一 1、 第 2の翼 1— 2、 及び第 3の翼 1—3の全体としての重心も回転 軸上にあることになる。 従って、 本実施形態に係るインデューサの回転のバラ ンスはとれている。 このように、 それぞれの翼 1の前縁 1— 1 a〜 1一 3 aは 互いに 1 2 0 ° ずれていることから、 それぞれの翼 1において同じ卷き角度だ け増減しても翼 1全体の重心は回転軸上にある。 よって、 上述した定数 Aを任 意の値としても、 翼 1全体の重心は回転軸上に位置することになり回転バラン スをとることができる。  As shown in FIG. 7B and FIG. 8B, the winding angle of the second blade 1 1 2 is 2400 °, the winding angle of the third blade 1 1 3 is 1 20 °, and the second blade The positions of the trailing edges 1 1 2 b and 1 _ 3 b of 1 1 2 and the third wing 1 1 3 are shifted from each other by 120 °. From this, the total winding angle of the second wing 1 _ 2 and the third wing 1-3 is the same as the winding angle of the first wing 1 1 1 3 60 °, and the second The center of gravity when the wings 1 and 2 and the third wings 1 and 3 are combined is located on the axis of rotation. 1st wing 1 1 1 The winding angle is 3 6 0. Therefore, since the center of gravity of the first wing 1-1 1 is on the axis of rotation, the overall center of gravity of the first wing 1-11, the second wing 1-2, and the third wing 1-3 also rotates. Will be on the axis. Accordingly, the rotation balance of the inducer according to the present embodiment is balanced. In this way, the leading edges of each blade 1 — 1 a to 1 1 3 a are shifted from each other by 120 °, so that the entire blade 1 can be increased or decreased by the same firing angle in each blade 1. The center of gravity is on the axis of rotation. Therefore, even if the above-described constant A is an arbitrary value, the center of gravity of the entire blade 1 is located on the rotation axis, and a rotation balance can be obtained.
以下、 図 9乃至図 1 1に、 本発明の一実施形態に係るインデューサ及ぴ従来 のインデューサのキヤビテーシヨン発生状態を示す。 なお、 図 9乃至図 1 1は、 インデューサの翼を展開したものである。 図 9乃至図 1 1においては、 流路を— 分かりやすく表現するために第 1の翼を左右両側に重複して描いてあるが、 実 際には第 1の翼は 1つである。  Hereinafter, FIG. 9 to FIG. 11 show the state of occurrence of the oscillation of the inducer according to one embodiment of the present invention and the conventional inducer. Figures 9 to 11 show the wings of the inducer. In Fig. 9 to Fig. 11, the first wing is shown overlapping on both the left and right sides to make the flow path easy to understand, but in reality there is only one first wing.
図 9は 3枚の全翼を有する図 1に示す従来のインデューサのキヤビテーショ ン発生状態を示す模式図である。 このタイプのインデューサでは、 翼 1 1— 2 と隣の翼 1 1— 3との間には開口角 1 2 0 ° に対応した大きさの間隔が形成さ れている。 ここでは、 開口角とは回転軸心を中心とした流路断面の中心角をい い、 隣接する翼同士の間隔の大きさを表す。 入口上流の圧力が下がると、 入口 付近の翼 1 1一 1〜 1 1一 3の負圧面にキヤビテーション気泡 2 0が生じる。 ある程度の大きさのキヤビテーシヨン気泡 2 0が生じると、 流路は閉塞される。 なお、 昇圧性能に関しては、 出口の翼枚数は 3枚なので、 このタイプのインデ ユーサは、 全翼 2枚タイプのインデューサより高い昇圧性能を持つ。 Fig. 9 is a schematic diagram showing the state of occurrence of cavitation in the conventional inducer shown in Fig. 1 having three all blades. In this type of inducer, an interval of a size corresponding to an opening angle of 120 ° is formed between the blade 1 1−2 and the adjacent blade 1 1−3. Here, the opening angle refers to the central angle of the cross section of the flow channel centered on the rotation axis, and represents the size of the interval between adjacent blades. When the pressure upstream of the inlet decreases, cavitation bubbles 20 are generated on the suction surface of the blades 1 1 1 1 to 1 1 1 3 near the inlet. When a cavity bubble 20 having a certain size is generated, the flow path is closed. In terms of boosting performance, the number of blades at the exit is three, so this type of index Yousa has higher boosting performance than the two-blade type inducer.
図 1 0は 2枚の全翼及ぴ 2枚の中間翼を有する図 2に示す従来のィンデュー サのキヤビテーション発生状態を示す模式図である。 このタイプのインデュー サの入口における翼枚数は 2枚なので、 全翼 1 1一 1と隣の全翼 1 1— 2との 間には、 開口角 1 8 0 ° に対応した大きさの間隔が形成されている。 従って、 入口付近において全翼 1 1の負圧面にキヤビテーション気泡 2 0が発生しても、 図 9に示すインデューサ (全翼 3枚タイプ) よりは流路が広いため閉塞されに くい。 入口付近において中間翼 1 2の負圧面に発生するキヤビテーシヨン気泡 FIG. 10 is a schematic view showing the state of occurrence of cavitation in the conventional inducer shown in FIG. 2 having two full blades and two intermediate blades. Since the number of blades at the inlet of this type of inducer is two, there is a gap between each blade 1 1 1 1 and the next blade 1 1—2 that corresponds to an opening angle of 1800 °. Is formed. Therefore, even if cavitation bubbles 20 are generated on the suction surface of all blades 11 near the inlet, the flow path is wider than that of the inducer (three blades type) shown in FIG. Cavitation bubbles generated on the suction surface of the intermediate blade 1 2 near the inlet
3 0の大きさは、 全翼 1 1による昇圧作用があるため、 全翼 1 1の負圧面に発 生するキヤビテーシヨン気泡 2 0の大きさよりは小さい。 しかし、 隣接する中 間翼 1 2と全翼 1 1との間の開口角は 9 0 ° であり、 中間翼 1 2の負圧面側の 流路は比較的狭い。 このため、 中間翼 1 2の負圧面に生じるキヤビテーシヨン 気泡 3 0がある程度大きいと、 中間翼 1 2の負圧面側の流路が閉塞されやすい。 なお、 昇圧性能に関しては、 出口における翼枚数は 4枚なので、 図 1 0に示す インデューサは図 9に示すインデューサ (全第 3の翼枚タイプ) より高い昇圧 性能を持つ。 The size of 30 is smaller than the size of the cavity bubble 20 generated on the suction surface of all blades 11 because of the pressure increasing action by all blades 11. However, the opening angle between the adjacent intermediate blades 12 and all blades 11 is 90 °, and the flow path on the suction surface side of the intermediate blades 12 is relatively narrow. For this reason, if the cavity bubble 30 generated on the suction surface of the intermediate blade 12 is large to some extent, the flow path on the suction surface side of the intermediate blade 12 is likely to be blocked. Regarding the boosting performance, the number of blades at the outlet is four, so the inducer shown in Fig. 10 has higher boosting performance than the inducer shown in Fig. 9 (all third blade type).
図 1 1は本発明の一実施形態に係るインデューサのキヤビテーション発生状 態を示す模式図である。 図 1 1に示すように、 本実施形態に係るインデューサ の入口の翼枚数は 1枚なので、 入口においては開口角が 3. 6 0 °.である。 従つ て、 入口付近における第 1の翼 (全翼) 1一 1の負 BE面にキヤビテーシヨン気 泡 2 0が発生しても、 流路が極めて広いため閉塞されにくい。 第 2の翼 1—2 の入口付近における負圧面に発生するキヤビテーシヨン気泡 3 0の大きさは、 第 1の翼 1— 1による昇圧作用のため、 第 1の翼 1— 1の負圧面に発生するキ ャビテーシヨン気泡 2 0よりは小さレ、。 しかも、 第 2の翼 1— 2の負圧面側の 流路は、 隣の第 1の翼 1一 1との開口角が 2 4 0 ° と比較的大きいため、 この 流路も非常に閉塞されにくい。  FIG. 11 is a schematic diagram showing a cavitation occurrence state of an inducer according to an embodiment of the present invention. As shown in FIG. 11, since the number of blades at the inlet of the inducer according to the present embodiment is one, the opening angle at the inlet is 3.60 °. Therefore, even if a cavity bubble 20 occurs on the negative BE surface of the first wing (all wings) 11 near the entrance, it is difficult to block because the flow path is very wide. The size of the cavity bubble 30 generated on the suction surface near the inlet of the second blade 1-2 is generated on the suction surface of the first blade 1-1 due to the pressurizing action of the first blade 1-1. Cavitation bubbles to be smaller. In addition, the flow path on the suction surface side of the second blades 1 and 2 has a relatively large opening angle of 2400 degrees with the adjacent first blade 1 and 1, so this flow path is also very blocked. Hateful.
第 3の翼 1— 3の入口付近における負圧面に発生するキヤビテーション気泡 Cavitation bubbles generated on the suction surface near the inlet of the third wing 1-3
4 0の大きさは、 第 1の翼 1一 1と第 2の翼 1 _ 2による昇圧作用があるため 第 2の翼 1— 2の負圧面に生じるキヤビテーション気泡 3 0より小さくなる。 しかも、 第 3の翼 1— 3の負圧面側の流路は、 隣の第 1の翼 1一 1との開口角 が 1 2 0 ° と大きいため、 この流路も閉塞されにくい。 なお、 昇圧性能に関し ても、 出口における翼枚数は 3枚なので、 本実施形態に係るインデューサは図 9に示すインデューサ (全翼 3枚タイプ) と同等の高い昇圧性能を持つ。 上記 構成によれば、 本発明のィンデューサは高い吸込性能と高い昇圧性能を持ち、 かつ回転のアンバランスを起こさない。 The size of 40 is smaller than the cavitation bubble 30 generated on the suction surface of the second blade 1-2 because of the pressurizing action of the first blade 1-11 and the second blade 1-2. In addition, the flow path on the suction surface side of the third blades 1 to 3 has a large opening angle with the adjacent first blade 11 to 1120 °, so this flow path is also difficult to block. Regarding the boosting performance, since the number of blades at the outlet is three, the inducer according to the present embodiment has a high boosting performance equivalent to the inducer (all blades three-blade type) shown in FIG. According to the above configuration, the inducer of the present invention has a high suction performance and a high boosting performance, and does not cause rotation imbalance.
なお、 上記の実施形態では、 3枚の翼 1の回転軸 (軸部 5 ) に対する取り付 け位置が、 回転軸の周方向において均等である。 即ち、 3枚の翼 1の後縁 1一 l b〜 l一 3 bは、 回転軸心に垂直な平面において、 回転軸心を中心とする中 心角として互いに 1 2 0 ° の角度を隔てて等間隔に配置されており、 かつ、 子 午面において 3枚の翼 1の後縁 1一 1 b〜 l一 3 bの位置が同じになるように 取り付けられる。 しかしながら、 上述したように、 本発明は互いに長さの異な る 3枚の翼 1を備え、 かつこれらの翼 1の前縁 1一 1 a〜 1 _ 3 aの子午面に おける位置を互いに相違させた とが本質であるから、 各翼 1の後縁 1— l b 〜 1— 3 bが回転軸心の周りに必ずしも 1 2 0 ° の間隔で均等に取り付けてい なくても良いし、 また、 子午面において後縁 1一 1 b〜 l一 3 bの位置が揃つ ていなくても良い。 ただ、 3枚の長さの異なる翼の回転のバランズが確実にと れ、 本発明の効果を最も良好に発揮できるのは、 上記実施形態に示したインデ ユーサなのである。 - . 産業上の利用の可能性  In the above embodiment, the attachment positions of the three blades 1 with respect to the rotation shaft (shaft portion 5) are uniform in the circumferential direction of the rotation shaft. That is, the trailing edges 1 lb to 1 3 b of the three blades 1 are separated from each other by 120 ° as center angles around the rotation axis in a plane perpendicular to the rotation axis. They are arranged at equal intervals and are mounted so that the positions of the trailing edges 1 1 1 b to 1 3 b of the three blades 1 are the same on the meridian plane. However, as described above, the present invention includes three wings 1 having different lengths, and the leading edges of these wings 1 are different from each other on the meridian plane of 1a-1_3_a. Therefore, the trailing edges 1— lb to 1-3 b of each blade 1 do not necessarily have to be evenly installed around the axis of rotation at intervals of 120 °, The positions of the trailing edges 1 1 1 b to 1 3 b on the meridian do not have to be aligned. However, it is the indexer shown in the above-described embodiment that can reliably rotate the three blades of different lengths and can best exhibit the effects of the present invention. -. Possibility of industrial use
本発明は、 ポンプの吸込性能を向上させるために、 回転軸心が主羽根車の回 転軸心と一致するように主羽根車の上流側に配置されるインデューサ及び該ィ ンデューサを備えたポンプに利用可能である。  In order to improve the suction performance of the pump, the present invention includes an inducer disposed on the upstream side of the main impeller so that the rotation axis coincides with the rotation axis of the main impeller, and the inducer. Available for pumps.

Claims

請求の範囲 The scope of the claims
1. 主羽根車の上流側に配置されるインデューサにおいて、 1. In the inducer located upstream of the main impeller,
翼に沿った長さが互いに異なる 3枚の翼を備え、 前記 3枚の翼の前縁の子午 面における位置が相互に異なることを特徴とするインデューサ。  An inducer comprising three wings having different lengths along the wing, wherein the positions of the leading edges of the three wings are different from each other.
2. 前記 3枚の翼の後縁位置は、 子午面において互いに同一位置に揃ってい ることを特徴とする請求項 1に記載のィンデューサ。 2. The inducer according to claim 1, wherein the trailing edge positions of the three blades are aligned with each other on the meridian plane.
3. 前記 3枚の翼の後縁は、 回転軸心に垂直な平面において、 回転軸心を中 心として均等に配置されていることを特徴とする請求項 1又は 2に記載のィン テューサ。 , 3. The integrator according to claim 1 or 2, wherein the trailing edges of the three blades are evenly arranged with the rotation axis as a center in a plane perpendicular to the rotation axis. . ,
4. 前記 3枚の翼は、 第 1の翼、 第 2の翼、 及び第 3の翼から構成され、 前記第 1の翼の後縁からの巻き角度は、 230+A〜250+A。 であり、 前記第 2の翼の後縁からの巻き角度は、 1 10+A〜130+A° であり、 前記第 3の翼の後縁からの卷き角度は、 A° である 4. The three wings are composed of a first wing, a second wing, and a third wing, and a winding angle from a trailing edge of the first wing is 230 + A to 250 + A. The winding angle from the trailing edge of the second wing is 1 10 + A to 130 + A °, and the winding angle from the trailing edge of the third wing is A °
(ただし、 Aは、 0く Aの条件を満たす定数を表す)  (However, A represents a constant that satisfies 0 and A)
ことを特徴とする請求項 1乃至 3のいずれか一項に記載のィンデューサ。 The inducer according to any one of claims 1 to 3.
5. ケーシングに収容される主羽根車と、 5. a main impeller housed in a casing;
前記主羽根車が固定される主軸と、  A main shaft to which the main impeller is fixed;
請求項 1乃至 4のいずれか一項に記载のィンデューサとを備えることを特徴 とするポンプ。  A pump comprising the inducer according to any one of claims 1 to 4.
PCT/JP2004/018676 2004-12-08 2004-12-08 Inducer and pump WO2006061914A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/018676 WO2006061914A1 (en) 2004-12-08 2004-12-08 Inducer and pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/018676 WO2006061914A1 (en) 2004-12-08 2004-12-08 Inducer and pump

Publications (1)

Publication Number Publication Date
WO2006061914A1 true WO2006061914A1 (en) 2006-06-15

Family

ID=36577744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/018676 WO2006061914A1 (en) 2004-12-08 2004-12-08 Inducer and pump

Country Status (1)

Country Link
WO (1) WO2006061914A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10371151B2 (en) 2014-01-12 2019-08-06 Alfa Corporate Ab Self-priming centrifugal pump
US10422337B2 (en) 2014-01-12 2019-09-24 Alfa Laval Corporate Ab Self-priming centrifugal pump

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5038004Y1 (en) * 1970-02-03 1975-11-05
JPH02238197A (en) * 1988-09-16 1990-09-20 Nnc Ltd Impeller pump
JPH1018992A (en) * 1996-07-01 1998-01-20 Ishikawajima Harima Heavy Ind Co Ltd Liquid pump with inducer
JP2001289193A (en) * 2000-04-05 2001-10-19 Ebara Corp Sewage pump
JP2002516960A (en) * 1998-05-27 2002-06-11 株式会社荏原製作所 Turbomachinery impeller
US6435829B1 (en) * 2000-02-03 2002-08-20 The Boeing Company High suction performance and low cost inducer design blade geometry
WO2003038284A1 (en) * 2001-11-01 2003-05-08 Ishigaki Company Limited Turbo pump

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5038004Y1 (en) * 1970-02-03 1975-11-05
JPH02238197A (en) * 1988-09-16 1990-09-20 Nnc Ltd Impeller pump
JPH1018992A (en) * 1996-07-01 1998-01-20 Ishikawajima Harima Heavy Ind Co Ltd Liquid pump with inducer
JP2002516960A (en) * 1998-05-27 2002-06-11 株式会社荏原製作所 Turbomachinery impeller
US6435829B1 (en) * 2000-02-03 2002-08-20 The Boeing Company High suction performance and low cost inducer design blade geometry
JP2001289193A (en) * 2000-04-05 2001-10-19 Ebara Corp Sewage pump
WO2003038284A1 (en) * 2001-11-01 2003-05-08 Ishigaki Company Limited Turbo pump

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10371151B2 (en) 2014-01-12 2019-08-06 Alfa Corporate Ab Self-priming centrifugal pump
US10422337B2 (en) 2014-01-12 2019-09-24 Alfa Laval Corporate Ab Self-priming centrifugal pump

Similar Documents

Publication Publication Date Title
CN101688541B (en) Compressor
EP0677148B1 (en) Pump impeller and centrifugal slurry pump incorporating same
WO2011007467A1 (en) Impeller and rotary machine
CN103906895A (en) Diagonal flow turbine
JP2003013898A (en) Axial-flow type fluid machine
US20210190073A1 (en) High efficiency double suction impeller
US5549451A (en) Impelling apparatus
JP2016523341A (en) Propeller pump for pumping liquid
CN108361205A (en) A kind of centrifugal pump impeller and the LNG immersed pumps comprising the centrifugal pump impeller
JP2018091207A (en) Centrifugal compressor and turbocharger
JP2004044473A (en) Impeller and centrifugal compressor
JP4659389B2 (en) Centrifugal blower
WO2006061914A1 (en) Inducer and pump
JP4503264B2 (en) Inducers and pumps
JP6785623B2 (en) Fluid machine
JP6775379B2 (en) Impeller and rotating machine
JP2017020432A (en) Impeller for pump, and pump including the same
JP2000205101A (en) Reversible pump-turbine
WO1999036701A1 (en) Centrifugal turbomachinery
WO2019181317A1 (en) Propeller fan
JP3319815B2 (en) Swirl pump
JP7360357B2 (en) Runner cones and hydraulic machines
JP2010112277A (en) Centrifugal compressor
JPH10288199A (en) Pump for gas liquid multi-phase flow
JP2012036783A (en) Radial turbine impeller

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 04807035

Country of ref document: EP

Kind code of ref document: A1