明 細 書 Specification
照明光学装置、その製造方法、露光装置、および露光方法 Illumination optical apparatus, manufacturing method thereof, exposure apparatus, and exposure method
技術分野 Technical field
[0001] 本発明は、照明光学装置、その製造方法、露光装置、および露光方法に関し、特 に半導体素子、撮像素子、液晶表示素子、薄膜磁気ヘッド等のマイクロデバイスをリ ソグラフィー工程で製造するための露光装置に関するものである。 TECHNICAL FIELD [0001] The present invention relates to an illumination optical apparatus, a manufacturing method thereof, an exposure apparatus, and an exposure method, and in particular, a microdevice such as a semiconductor element, an imaging element, a liquid crystal display element, and a thin film magnetic head is manufactured by a lithography process. The present invention relates to an exposure apparatus.
背景技術 Background art
[0002] この種の典型的な露光装置においては、光源力 射出された光束力 オプティカル インテグレータとしてのフライアイレンズを介して、多数の光源カゝらなる実質的な面光 源としての二次光源を形成する。二次光源 (一般には、照明光学装置の照明瞳また はその近傍に形成される照明瞳分布)からの光束は、フライアイレンズの後側焦点面 の近傍に配置された開口絞りを介して制限された後、コンデンサーレンズに入射する In a typical exposure apparatus of this type, a secondary light source as a substantial surface light source consisting of a large number of light sources through a fly-eye lens as a light source force, an emitted light beam force, and an optical integrator. Form. The light flux from the secondary light source (generally, the illumination pupil distribution formed in or near the illumination pupil of the illumination optical device) is restricted through an aperture stop arranged in the vicinity of the rear focal plane of the fly-eye lens. Is incident on the condenser lens
[0003] コンデンサーレンズにより集光された光束は、所定のパターンが形成されたマスクを 重畳的に照明する。マスクのパターンを透過した光は、投影光学系を介してウェハ上 に結像する。こうして、ウェハ上には、マスクパターンが投影露光 (転写)される。なお 、マスクに形成されたパターンは高集積ィ匕されており、この微細パターンをウェハ上 に正確に転写するにはウェハ上において均一な照度分布を得ることが不可欠である [0003] The light beam collected by the condenser lens illuminates a mask on which a predetermined pattern is formed in a superimposed manner. The light transmitted through the mask pattern forms an image on the wafer through the projection optical system. Thus, the mask pattern is projected and exposed (transferred) onto the wafer. Note that the pattern formed on the mask is highly integrated, and in order to accurately transfer this fine pattern onto the wafer, it is essential to obtain a uniform illuminance distribution on the wafer.
[0004] たとえば本出願人の出願に力かる特許第 3246615号公報には、任意方向の微細 ノターンを忠実に転写するのに適した照明条件を実現するために、フライアイレンズ の後側焦点面に輪帯状の二次光源を形成し、この輪帯状の二次光源を通過する光 束がその周方向を偏光方向とする直線偏光状態 (以下、略して「周方向偏光状態」と V、う)になるように設定する技術が開示されて!、る。 [0004] For example, Japanese Patent No. 3246615, which is an application filed by the present applicant, describes a rear focal plane of a fly-eye lens in order to realize an illumination condition suitable for faithfully transferring a fine pattern in any direction. An annular secondary light source is formed in the linearly polarized state where the light flux passing through the annular secondary light source has a polarization direction in the circumferential direction (hereinafter referred to as “circumferential polarization state” for short) ) Disclosed is a technology for setting to be!
[0005] 特許文献 1 :特許第 3246615号公報 [0005] Patent Document 1: Japanese Patent No. 3246615
発明の開示 Disclosure of the invention
発明が解決しょうとする課題
[0006] 上述の周方向偏光状態に限定されることなぐ特定の直線偏光状態の光を用いて 特定のパターンの投影露光を行うことは、投影光学系の解像度向上に有効である。 さらに一般的には、マスクパターンに応じて特定の偏光状態 (以下、非偏光状態を含 む広い概念)の光を用いて投影露光を行うことは、投影光学系の解像度向上に有効 である。 Problems to be solved by the invention [0006] Performing projection exposure of a specific pattern using light in a specific linear polarization state without being limited to the above-described circumferential polarization state is effective in improving the resolution of the projection optical system. More generally, performing projection exposure using light in a specific polarization state (hereinafter, a broad concept including a non-polarization state) according to the mask pattern is effective in improving the resolution of the projection optical system.
[0007] し力しながら、所望の偏光状態の光でマスク(ひいてはウェハ)を照明しょうとしても 、照明光路中に光の偏光状態を変化させる光学素子が介在すると、所望の偏光状 態で結像しなくなり、ひいては結像性能が悪ィ匕する可能性がある。特に、照明光路中 に配置されたレンズや平行平面板のような光透過部材では、内部歪みにより発生す る複屈折性に起因して通過する光の偏光状態が変化する。 However, even if an attempt is made to illuminate the mask (and thus the wafer) with light of a desired polarization state, if an optical element that changes the polarization state of the light is interposed in the illumination optical path, the light is bonded in the desired polarization state. There is a possibility that the image is lost, and the imaging performance is deteriorated. In particular, in a light transmissive member such as a lens or a plane-parallel plate disposed in the illumination optical path, the polarization state of light passing therethrough changes due to birefringence caused by internal distortion.
[0008] 本発明は、照明光路中における光の偏光状態の変化を良好に抑えて、所望の偏 光状態の光で被照射面を照明することのできる照明光学装置を提供することを目的 とする。また、所望の偏光状態の光で被照射面を照明する照明光学装置を用いて、 微細パターンを感光性基板上に所望の偏光状態で結像させて忠実で且つ良好な露 光を行うことのできる露光装置および露光方法を提供することを目的とする。 [0008] It is an object of the present invention to provide an illumination optical device that can illuminate an irradiated surface with light in a desired polarization state while suppressing a change in the polarization state of light in an illumination optical path. To do. In addition, using an illumination optical device that illuminates the irradiated surface with light of a desired polarization state, a fine pattern is imaged on the photosensitive substrate in a desired polarization state to perform faithful and good exposure. An object of the present invention is to provide an exposure apparatus and an exposure method that can be used.
課題を解決するための手段 Means for solving the problem
[0009] 前記目的を達成するために、本発明の第 1形態では、光源から供給される光に基 づいて被照射面を照明する照明光学装置において、 In order to achieve the above object, according to a first aspect of the present invention, in an illumination optical apparatus that illuminates an irradiated surface based on light supplied from a light source,
前記光源と前記被照射面との間の光路中に配置されて前記被照射面に達する光 の偏光状態を所定の偏光状態に設定するための偏光設定部を備え、 A polarization setting unit for setting a polarization state of light, which is arranged in an optical path between the light source and the irradiated surface, and reaches the irradiated surface to a predetermined polarization state;
前記偏光設定部と前記被照射面との間の光路中に配置された複数の光透過部材 の各々は、内部歪みに起因して発生する複屈折量が 5nmZcm以下に抑えられた 光学材料により形成されていることを特徴とする照明光学装置を提供する。 Each of the plurality of light transmitting members disposed in the optical path between the polarization setting unit and the irradiated surface is formed of an optical material in which the amount of birefringence generated due to internal distortion is suppressed to 5 nmZcm or less. An illumination optical device is provided.
[0010] 本発明の第 2形態では、光源力も供給される光に基づいて被照射面を照明する照 明光学装置において、 [0010] In the second embodiment of the present invention, in the illumination optical device that illuminates the irradiated surface based on the light supplied with the light source power,
前記光源と前記被照射面との間の光路中に配置されて前記被照射面に達する光 の偏光状態を所定の偏光状態に設定するための偏光設定部を備え、 A polarization setting unit for setting a polarization state of light, which is arranged in an optical path between the light source and the irradiated surface, and reaches the irradiated surface to a predetermined polarization state;
前記偏光設定部と前記被照射面との間の光路中に配置された複数の光透過部材
は、各光透過部材において内部歪みに起因して発生する複屈折の影響を相殺によ り低減するために、光軸を中心とした所要の回転角度位置にそれぞ; 立置決めされ ていることを特徴とする照明光学装置を提供する。 A plurality of light transmitting members disposed in an optical path between the polarization setting unit and the irradiated surface Are positioned at the required rotational angle positions around the optical axis in order to reduce the effects of birefringence caused by internal distortion in each light transmitting member by canceling each other. An illumination optical device is provided.
[0011] 本発明の第 3形態では、光源力も供給される光に基づいて被照射面を照明する照 明光学装置において、 [0011] In the third aspect of the present invention, in the illumination optical device that illuminates the irradiated surface based on the light supplied with the light source power,
前記光源と前記被照射面との間の光路中に配置されて前記被照射面に達する光 の偏光状態を所定の偏光状態に設定するための偏光設定部と、 A polarization setting unit for setting a polarization state of light that is arranged in an optical path between the light source and the irradiated surface and reaches the irradiated surface to a predetermined polarization state;
前記偏光設定部と前記被照射面との間の光路中に配置されて光路を折り曲げるた めの折り曲げミラーとを備え、 A folding mirror disposed in the optical path between the polarization setting unit and the irradiated surface for folding the optical path;
前記折り曲げミラーの反射膜は、該反射膜に対して P偏光で入射する光と前記反 射膜に対して S偏光で入射する光と間に反射により発生する位相差が、前記反射膜 に入射するすべての光線にっ ヽて 15度以内〖こなるように形成されて!ヽることを特徴 とする照明光学装置を提供する。 The reflection film of the folding mirror has a phase difference generated by reflection between light incident on the reflection film with P-polarized light and light incident on the reflection film with S-polarized light. Provided is an illumination optical device characterized in that it is formed so as to be within 15 degrees of all light rays to be transmitted!
[0012] 本発明の第 4形態では、光源力も供給される光に基づいて被照射面を照明する照 明光学装置において、 [0012] In the fourth embodiment of the present invention, in the illumination optical apparatus that illuminates the illuminated surface based on the light supplied with the light source power,
前記光源と前記被照射面との間の光路中に配置されて前記被照射面での光の偏 光状態を所定の偏光状態に設定する偏光設定部と、 A polarization setting unit that is arranged in an optical path between the light source and the irradiated surface and sets a polarization state of light on the irradiated surface to a predetermined polarization state;
前記偏光設定部と前記被照射面との間の光路中に配置されて複屈折量が管理さ れた光学系とを有することを特徴とする照明光学装置を提供する。 There is provided an illumination optical apparatus comprising: an optical system arranged in an optical path between the polarization setting unit and the irradiated surface and having a controlled birefringence amount.
[0013] 本発明の第 5形態では、光源力も供給される光に基づいて被照射面を照明する照 明光学装置において、 [0013] In the fifth aspect of the present invention, in the illumination optical apparatus that illuminates the illuminated surface based on the light supplied with the light source power,
前記光源と前記被照射面との間の光路中に配置されて前記被照射面での光の偏 光状態を所定の偏光状態に設定する偏光設定部と、 A polarization setting unit that is arranged in an optical path between the light source and the irradiated surface and sets a polarization state of light on the irradiated surface to a predetermined polarization state;
前記偏光設定部と前記被照射面との間の光路中に配置されて、前記被照射面で の光の偏光状態が前記所定の偏光状態となるように、前記被照射面に達する光の偏 光状態を維持する光学系とを有することを特徴とする照明光学装置を提供する。 The polarization of the light reaching the irradiated surface is arranged in an optical path between the polarization setting unit and the irradiated surface so that the polarization state of the light on the irradiated surface becomes the predetermined polarization state. An illumination optical device comprising: an optical system that maintains a light state.
[0014] 本発明の第 6形態では、複数の光透過部材を有する照明光学装置の製造方法に おいて、
前記複数の光透過部材の各々を形成するためのバルク材を準備するバルク材準 備工程と、 [0014] In a sixth aspect of the present invention, in a method for manufacturing an illumination optical device having a plurality of light transmission members, A bulk material preparing step of preparing a bulk material for forming each of the plurality of light transmitting members;
前記準備された各バルタ材の複屈折量を測定する測定工程と、 A measuring step of measuring the birefringence amount of each prepared Balta material;
前記照明光学装置の少なくとも一部を構成する複数の光透過部材に関する前記測 定工程力 の各バルク材の測定情報を収集して、複屈折の影響を許容することので きる前記照明光学装置の少なくとも一部を構成する複数の光透過部材の適切な組 み合わせを選定し、該複数の光透過部材の適切な組み合わせによる各光透過部材 の設定位置を求める算出工程と、 At least the illumination optical device capable of allowing the influence of birefringence by collecting measurement information of each bulk material of the measurement process force relating to a plurality of light transmitting members constituting at least a part of the illumination optical device. A calculation step of selecting an appropriate combination of a plurality of light transmitting members constituting a part and obtaining a set position of each light transmitting member by an appropriate combination of the plurality of light transmitting members;
前記複数のバルク材を加工して各光透過部材を形成する加工工程と、 前記算出工程の結果に基づき、前記加工工程にて加工された複数の光透過部材 をそれぞれ所定の設定位置に組み込む組込工程とを含むことを特徴とする照明光 学装置の製造方法を提供する。 A processing step of processing each of the plurality of bulk materials to form each light transmission member, and a set in which each of the plurality of light transmission members processed in the processing step is incorporated at a predetermined set position based on the result of the calculation step. A method for manufacturing an illumination optical apparatus, comprising:
[0015] 本発明の第 7形態では、第 1形態〜第 5形態の照明光学装置または第 6形態の製 造方法によって製造された照明光学装置を備え、前記照明光学装置により照明され たマスクのパターンを感光性基板に露光することを特徴とすることを特徴とする露光 装置を提供する。 In the seventh embodiment of the present invention, there is provided an illumination optical device manufactured by the illumination optical device of the first to fifth embodiments or the manufacturing method of the sixth embodiment, and a mask illuminated by the illumination optical device. An exposure apparatus is characterized in that a pattern is exposed on a photosensitive substrate.
[0016] 本発明の第 8形態では、第 1形態〜第 5形態の照明光学装置または第 6形態の製 造方法によって製造された照明光学装置を用いて、マスクのパターンを感光性基板 に露光することを特徴とする露光方法を提供する。 In the eighth embodiment of the present invention, a mask pattern is exposed on a photosensitive substrate using the illumination optical device of the first to fifth embodiments or the illumination optical device manufactured by the manufacturing method of the sixth embodiment. An exposure method is provided.
[0017] 本発明の第 9形態では、第 1形態〜第 5形態の照明光学装置または第 6形態の製 造方法によって製造された照明光学装置を用いて、マスクのパターンを感光性基板 に露光する露光工程と、前記露光工程により露光された前記感光性基板を現像する 現像工程とを含むことを特徴とするマイクロデバイスの製造方法を提供する。 In the ninth embodiment of the present invention, a mask pattern is exposed to a photosensitive substrate using the illumination optical apparatus of the first to fifth embodiments or the illumination optical apparatus manufactured by the manufacturing method of the sixth embodiment. And a developing step of developing the photosensitive substrate exposed by the exposing step. A method of manufacturing a microdevice is provided.
[0018] 本発明の第 10形態では、被照射面での光の偏光状態を所定の偏光状態に設定 する偏光設定部を有する照明光学装置の調整方法において、 [0018] In the tenth aspect of the present invention, in the adjustment method of the illumination optical apparatus having the polarization setting unit that sets the polarization state of the light on the irradiated surface to a predetermined polarization state,
前記偏光設定部と前記被照射面との間の光路中に配置されるべき光学系の少なく とも一部に関する情報を得る工程と、 Obtaining information on at least a part of an optical system to be arranged in an optical path between the polarization setting unit and the irradiated surface;
前記偏光設定部と前記被照射面との間の光路中に配置される光学系の複屈折量
を管理する管理工程とを含むことを特徴とする照明光学装置の調整方法を提供する Birefringence amount of an optical system disposed in an optical path between the polarization setting unit and the irradiated surface And a method for adjusting the illumination optical device, comprising:
[0019] 本発明の第 11形態では、被照射面での光の偏光状態を所定の偏光状態に設定 する偏光設定部を有する照明光学装置の調整方法において、 [0019] In an eleventh aspect of the present invention, in the adjustment method of the illumination optical device having the polarization setting unit that sets the polarization state of the light on the irradiated surface to a predetermined polarization state,
前記偏光設定部と前記被照射面との間の光路中に配置されるべき光学系の少なく とも一部に関する情報を得る工程と、 Obtaining information on at least a part of an optical system to be arranged in an optical path between the polarization setting unit and the irradiated surface;
前記光学系を介して前記被照射面に至る光の偏光状態が前記所定の偏光状態と なるように、前記偏光設定部力 前記被照射面までの間の光路における偏光特性を 維持する維持工程とを含むことを特徴とする照明光学装置の調整方法を提供する。 Maintaining the polarization setting force in the optical path to the irradiated surface so that the polarization state of the light reaching the irradiated surface via the optical system becomes the predetermined polarization state; A method for adjusting an illumination optical device is provided.
[0020] 本発明の第 12形態では、第 10形態または第 11形態の調整方法によって調整され た照明光学装置を備え、前記照明光学装置により照明されたマスクのパターンを感 光性基板に露光することを特徴とすることを特徴とする露光装置を提供する。 [0020] In a twelfth aspect of the present invention, the illumination optical apparatus adjusted by the adjustment method according to the tenth or eleventh aspect is provided, and a mask pattern illuminated by the illumination optical apparatus is exposed to a photosensitive substrate. An exposure apparatus characterized by the above is provided.
[0021] 本発明の第 13形態では、第 10形態または第 11形態の調整方法によって調整され た照明光学装置を用いて、マスクのパターンを感光性基板に露光することを特徴とす る露光方法を提供する。 In a thirteenth aspect of the present invention, an exposure method is characterized in that a pattern of a mask is exposed on a photosensitive substrate using the illumination optical device adjusted by the adjustment method of the tenth or eleventh aspect. I will provide a.
[0022] 本発明の第 14形態では、第 10形態または第 11形態の調整方法によって調整され た照明光学装置を用いて、マスクのパターンを感光性基板に露光する露光工程と、 前記露光工程により露光された前記感光性基板を現像する現像工程とを含むことを 特徴とするマイクロデバイスの製造方法を提供する。 [0022] In a fourteenth aspect of the present invention, an exposure step of exposing a pattern of a mask onto a photosensitive substrate using the illumination optical device adjusted by the adjustment method of the tenth or eleventh embodiment, and the exposure step And a developing step of developing the exposed photosensitive substrate. A method of manufacturing a microdevice is provided.
発明の効果 The invention's effect
[0023] 本発明の典型的な形態にした力 ^照明光学装置では、被照射面に達する光の偏 光状態を所定の偏光状態に設定するための偏光設定部が、光源と被照射面との間 の光路中に配置されている。そして、偏光設定部と被照射面との間の光路中に配置 された各光透過部材 (レンズ、平行平面板など)が、内部歪みに起因して発生する複 屈折量が 5nmZcm以下に抑えられた光学材料により形成されている。その結果、こ れらの光透過部材では、内部歪みによる複屈折性が抑えられ、ひいては複屈折性に 起因して通過する光の偏光状態に悪影響が及ぶことがない。 [0023] In the illumination optical device according to a typical embodiment of the present invention, the polarization setting unit for setting the polarization state of the light reaching the irradiated surface to a predetermined polarization state includes a light source, an irradiated surface, and the like. It is placed in the optical path between. In addition, each light transmitting member (lens, parallel flat plate, etc.) arranged in the optical path between the polarization setting unit and the irradiated surface can suppress the amount of birefringence generated due to internal distortion to 5 nmZcm or less. It is made of an optical material. As a result, in these light transmitting members, birefringence due to internal distortion is suppressed, and as a result, the polarization state of light passing through the birefringence is not adversely affected.
[0024] こうして、本発明の照明光学装置では、照明光路中における光の偏光状態の変化
を良好に抑えて、所望の偏光状態の光で被照射面を照明することができる。したがつ て、本発明の露光装置および露光方法では、所望の偏光状態の光で被照射面を照 明する照明光学装置を用いて、微細パターンを感光性基板上に所望の偏光状態で 結像させて忠実で且つ良好な露光を行うことができ、ひ 、ては良好なマイクロデバイ スを製造することができる。 Thus, in the illumination optical device of the present invention, the change in the polarization state of light in the illumination optical path The surface to be irradiated can be illuminated with light having a desired polarization state. Therefore, in the exposure apparatus and exposure method of the present invention, a fine pattern is formed on the photosensitive substrate in the desired polarization state using an illumination optical device that illuminates the irradiated surface with light in the desired polarization state. The image can be imaged with high fidelity and good exposure can be performed, and thus a good microdevice can be manufactured.
図面の簡単な説明 Brief Description of Drawings
[図 1]本発明の実施形態に力かる露光装置の構成を概略的に示す図である。 FIG. 1 is a drawing schematically showing a configuration of an exposure apparatus that works on an embodiment of the present invention.
[図 2]図 1の偏光変換素子の構成を概略的に示す図である。 2 is a diagram schematically showing the configuration of the polarization conversion element in FIG. 1. FIG.
[図 3]水晶の旋光性について説明する図である。 FIG. 3 is a diagram for explaining the optical rotation of quartz.
圆 4]偏光変換素子の作用により周方向偏光状態に設定された輪帯状の二次光源を 概略的に示す図である。 [4] It is a diagram schematically showing an annular secondary light source set in a circumferential polarization state by the action of the polarization conversion element.
[図 5]図 1の偏光測定部の内部構成を概略的に示す図である。 FIG. 5 is a diagram schematically showing an internal configuration of a polarization measuring unit in FIG. 1.
[図 6]光軸に関して回転対称な二次分布にしたがう複屈折の影響について検証する 第 1の検証例を説明する図である。 FIG. 6 is a diagram for explaining a first verification example for verifying the effect of birefringence according to a rotationally symmetric secondary distribution with respect to the optical axis.
[図 7]—方向に線形的に変化する傾斜一次分布にしたがう複屈折の影響について検 証する第 2の検証例を説明する図である。 FIG. 7 is a diagram for explaining a second verification example for verifying the influence of birefringence according to a tilted linear distribution that linearly changes in the direction.
[図 8]従来技術において光透過部材に外部から作用する力および光透過部材に発 生する応力分布を模式的に示す図である。 FIG. 8 is a diagram schematically showing a force acting on the light transmitting member from the outside and a stress distribution generated in the light transmitting member in the prior art.
[図 9]本実施形態において光透過部材に外部から作用する力および光透過部材に 発生する応力分布を模式的に示す図である。 FIG. 9 is a diagram schematically showing a force acting from the outside on the light transmission member and a stress distribution generated in the light transmission member in the present embodiment.
[図 10]本実施形態において光透過部材を両側力 三点支持する保持部材の構成を 概略的に示す図である。 FIG. 10 is a diagram schematically showing a configuration of a holding member that supports a light transmitting member at three points on both sides with force in this embodiment.
[図 11]光透過部材の有効領域外の全周囲部に光軸と直交する面 62aを有する切欠 き部 (加工部)を形成した様子を示す断面図である。 FIG. 11 is a cross-sectional view showing a state in which a notch (processed portion) having a surface 62a orthogonal to the optical axis is formed on the entire peripheral portion outside the effective region of the light transmitting member.
[図 12]光透過部材の有効領域外の全周囲部に光軸と直交する面 62aを有する切欠 き部 (加工部)を形成した様子を示す斜示図である。 FIG. 12 is a perspective view showing a state in which a notch (processed part) having a surface 62a orthogonal to the optical axis is formed on the entire peripheral part outside the effective region of the light transmitting member.
[図 13]本実施形態に力かる照明光学装置の製造方法の各工程を示すフローチヤ一 トである。
[図 14]本実施形態の製造方法における評価工程を説明するための第 1の図である。 FIG. 13 is a flowchart showing each step of the method of manufacturing the illumination optical apparatus according to the present embodiment. FIG. 14 is a first diagram for illustrating an evaluation process in the manufacturing method of the present embodiment.
[図 15]本実施形態の製造方法における評価工程を説明するための第 2の図である。 FIG. 15 is a second diagram for illustrating an evaluation process in the manufacturing method of the present embodiment.
[図 16]本実施形態にかかる照明光学装置の別の製造方法 (調整方法)の各工程を 示すフローチャートである。 FIG. 16 is a flowchart showing each step of another manufacturing method (adjustment method) of the illumination optical apparatus according to the present embodiment.
[図 17]マイクロデバイスとしての半導体デバイスを得る際の手法のフローチャートであ る。 FIG. 17 is a flowchart of a method for obtaining a semiconductor device as a micro device.
[図 18]マイクロデバイスとしての液晶表示素子を得る際の手法のフローチャートである FIG. 18 is a flowchart of a method for obtaining a liquid crystal display element as a micro device.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0026] 本発明の実施形態を、添付図面に基づいて説明する。図 1は、本発明の実施形態 にかかる露光装置の構成を概略的に示す図である。図 1において、感光性基板であ るウェハ Wの法線方向に沿つて Z軸を、ウェハ Wの面内において図 1の紙面に平行な 方向に Y軸を、ウェハ Wの面内において図 1の紙面に垂直な方向に X軸をそれぞれ 設定している。 [0026] An embodiment of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a drawing schematically showing a configuration of an exposure apparatus according to an embodiment of the present invention. In Fig. 1, the Z-axis along the normal direction of wafer W, which is the photosensitive substrate, the Y-axis in the direction parallel to the plane of Fig. 1 in the plane of wafer W, and Fig. 1 in the plane of wafer W. The X axis is set in the direction perpendicular to the page.
[0027] 図 1を参照すると、本実施形態の露光装置は、露光光 (照明光)を供給するための 光源 1を備えている。光源 1として、たとえば 193nmの波長の光を供給する ArFェキ シマレーザ光源や 248nmの波長の光を供給する KrFエキシマレーザ光源などを用 いることができる。光源 1から射出されたほぼ平行な光束は、リレーレンズ系 2、偏光 状態切換部 3 (3a, 3b)、および輪帯照明用の回折光学素子 4を介して、ァフォー力 ルレンズ 5に入射する。なお、偏光状態切換部 3の構成および作用については後述 する。 Referring to FIG. 1, the exposure apparatus of the present embodiment includes a light source 1 for supplying exposure light (illumination light). As the light source 1, for example, an ArF excimer laser light source that supplies light with a wavelength of 193 nm or a KrF excimer laser light source that supplies light with a wavelength of 248 nm can be used. A substantially parallel light beam emitted from the light source 1 is incident on the before power lens 5 through the relay lens system 2, the polarization state switching unit 3 (3a, 3b), and the diffractive optical element 4 for annular illumination. The configuration and operation of the polarization state switching unit 3 will be described later.
[0028] リレーレンズ系 2は、光源 1からのほぼ平行な光束を所定の矩形状の断面を有する ほぼ平行な光束に変換して偏光状態切換部 3へ導く機能を有する。ァフォーカルレ ンズ 5は、その前側焦点位置と回折光学素子 4の位置とがほぼ一致し且つその後側 焦点位置と図中破線で示す所定面 6の位置とがほぼ一致するように設定されたァフ オーカル系(無焦点光学系)である。 The relay lens system 2 has a function of converting a substantially parallel light beam from the light source 1 into a substantially parallel light beam having a predetermined rectangular cross section and guiding it to the polarization state switching unit 3. The focal lens 5 is an afocal lens that is set so that the front focal position thereof substantially coincides with the position of the diffractive optical element 4 and the rear focal position substantially coincides with the position of the predetermined plane 6 indicated by a broken line in the figure. System (non-focal optical system).
[0029] 一方、回折光学素子 4は、基板に露光光 (照明光)の波長程度のピッチを有する段 差を形成することによって構成され、入射ビームを所望の角度に回折する作用を有
する。具体的には、輪帯照明用の回折光学素子 4は、矩形状の断面を有する平行光 束が入射した場合に、そのファーフィールド (またはフラウンホーファー回折領域)に 輪帯状の光強度分布を形成する機能を有する。 On the other hand, the diffractive optical element 4 is formed by forming a step having a pitch of about the wavelength of exposure light (illumination light) on the substrate, and has an action of diffracting the incident beam to a desired angle. To do. Specifically, the diffractive optical element 4 for annular illumination forms an annular light intensity distribution in the far field (or Fraunhofer diffraction region) when a parallel light flux having a rectangular cross section is incident. It has the function to do.
[0030] したがって、光束変換素子としての回折光学素子 4に入射したほぼ平行光束は、ァ フォーカルレンズ 5の瞳面に輪帯状の光強度分布を形成した後、輪帯状の角度分布 でァフォーカルレンズ 5から射出される。なお、ァフォーカルレンズ 5の前側レンズ群 5 aと後側レンズ群 5bとの間の光路中においてその瞳位置またはその近傍には、偏光 変換素子 7および円錐アキシコン系 8が配置されている。偏光変換素子 7および円錐 アキシコン系 8の構成および作用については後述する。 Accordingly, the substantially parallel light beam incident on the diffractive optical element 4 as the light beam conversion element forms a ring-shaped light intensity distribution on the pupil plane of the focal lens 5, and then has a ring-shaped angular distribution with a focal lens. Ejected from 5. In the optical path between the front lens group 5a and the rear lens group 5b of the afocal lens 5, a polarization conversion element 7 and a conical axicon system 8 are disposed at or near the pupil position. The configuration and operation of the polarization conversion element 7 and the conical axicon system 8 will be described later.
[0031] ァフォーカルレンズ 5を介した光束は、 σ値可変用のズームレンズ 9を介して、ォプ ティカルインテグレータとしてのマイクロフライアイレンズ (またはフライアイレンズ) 10 に入射する。マイクロフライアイレンズ 10は、縦横に且つ稠密に配列された多数の正 屈折力を有する微小レンズからなる光学素子である。一般に、マイクロフライアイレン ズは、たとえば平行平面板にエッチング処理を施して微小レンズ群を形成することに よって構成される。 The light beam that has passed through the afocal lens 5 enters a micro fly's eye lens (or fly eye lens) 10 as an optical integrator through a zoom lens 9 for variable σ value. The micro fly's eye lens 10 is an optical element composed of a large number of microlenses having positive refracting power that are arranged vertically and horizontally and densely. In general, a micro fly's eye lens is configured by, for example, performing etching on a plane parallel plate to form a micro lens group.
[0032] ここで、マイクロフライアイレンズを構成する各微小レンズは、フライアイレンズを構 成する各レンズエレメントよりも微小である。また、マイクロフライアイレンズは、互いに 隔絶されたレンズエレメントからなるフライアイレンズとは異なり、多数の微小レンズ( 微小屈折面)が互いに隔絶されることなく一体的に形成されている。し力しながら、正 屈折力を有するレンズ要素が縦横に配置されている点でマイクロフライアイレンズは フライアイレンズと同じ波面分割型のオプティカルインテグレータである。 Here, each micro lens constituting the micro fly's eye lens is smaller than each lens element constituting the fly eye lens. Further, unlike a fly-eye lens composed of lens elements isolated from each other, a micro fly-eye lens is integrally formed without being isolated from each other. However, the micro fly's eye lens is the same wavefront division type optical integrator as the fly's eye lens in that lens elements having positive refractive power are arranged vertically and horizontally.
[0033] 所定面 6の位置はズームレンズ 9の前側焦点位置の近傍に配置され、マイクロフラ ィアイレンズ 10の入射面はズームレンズ 9の後側焦点位置の近傍に配置されている 。換言すると、ズームレンズ 9は、所定面 6とマイクロフライアイレンズ 10の入射面とを 実質的にフーリエ変換の関係に配置し、ひいてはァフォーカルレンズ 5の瞳面とマイ クロフライアイレンズ 10の入射面とを光学的にほぼ共役に配置している。 The position of the predetermined surface 6 is disposed in the vicinity of the front focal position of the zoom lens 9, and the incident surface of the microfly lens 10 is disposed in the vicinity of the rear focal position of the zoom lens 9. In other words, the zoom lens 9 arranges the predetermined surface 6 and the entrance surface of the micro fly's eye lens 10 substantially in a Fourier transform relationship, and as a result, the pupil surface of the focal lens 5 and the entrance of the micro fly's eye lens 10. The surface is optically substantially conjugate.
[0034] したがって、マイクロフライアイレンズ 10の入射面上には、ァフォーカルレンズ 5の瞳 面と同様に、たとえば光軸 ΑΧを中心とした輪帯状の照野が形成される。この輪帯状
の照野の全体形状は、後述するようにズームレンズ 9の焦点距離に依存して相似的 に変化する。マイクロフライアイレンズ 10を構成する各微小レンズは、マスク M上にお V、て形成すべき照野の形状 (ひ 、てはウェハ W上にぉ 、て形成すべき露光領域の 形状)と相似な矩形状の断面を有する。 Therefore, on the entrance surface of the micro fly's eye lens 10, for example, an annular illumination field centered on the optical axis ΑΧ is formed in the same manner as the pupil plane of the focal lens 5. This ring The overall illumination field shape changes in a similar manner depending on the focal length of the zoom lens 9, as will be described later. Each microlens constituting the micro fly's eye lens 10 is similar to the shape of the illumination field to be formed on the mask M (the shape of the exposure area to be formed on the wafer W). It has a rectangular cross section.
[0035] マイクロフライアイレンズ 10に入射した光束は多数の微小レンズにより二次元的に 分割され、その後側焦点面またはその近傍 (ひいては照明瞳面)には、入射光束に よって形成される照野とほぼ同じ光強度分布を有する二次光源、すなわち光軸 AXを 中心とした輪帯状の実質的な面光源カゝらなる二次光源が形成される。マイクロフライ アイレンズ 10の後側焦点面またはその近傍に形成された二次光源からの光束は、コ ンデンサ一光学系 11を介した後、マスクブラインド 12を重畳的に照明する。 [0035] The light beam incident on the micro fly's eye lens 10 is two-dimensionally divided by a large number of microlenses, and an illumination field formed by the incident light beam is formed on the rear focal plane or in the vicinity thereof (and the illumination pupil plane). A secondary light source having substantially the same light intensity distribution, that is, a secondary light source such as a ring-shaped substantial surface light source centering on the optical axis AX is formed. The light beam from the secondary light source formed on the rear focal plane of the micro fly's eye lens 10 or in the vicinity thereof illuminates the mask blind 12 in a superimposed manner after passing through the condenser optical system 11.
[0036] こうして、照明視野絞りとしてのマスクブラインド 12には、マイクロフライアイレンズ 10 を構成する各微小レンズの形状と焦点距離とに応じた矩形状の照野が形成される。 マスクブラインド 12の矩形状の開口部(光透過部)を介した光束は、結像光学系 13 の集光作用を受けた後、所定のパターンが形成されたマスク Mを重畳的に照明する 。すなわち、結像光学系 13は、マスクブラインド 12の矩形状開口部の像をマスク M 上に形成することになる。なお、結像光学系 13の光路中には、一対の折り曲げミラー Mlおよび M2が配置されている。 Thus, a rectangular illumination field corresponding to the shape and focal length of each microlens constituting the micro fly's eye lens 10 is formed on the mask blind 12 as an illumination field stop. The light beam that has passed through the rectangular opening (light transmitting portion) of the mask blind 12 receives the light condensing action of the imaging optical system 13 and then illuminates the mask M on which a predetermined pattern is formed in a superimposed manner. That is, the imaging optical system 13 forms an image of the rectangular opening of the mask blind 12 on the mask M. A pair of bending mirrors Ml and M2 are disposed in the optical path of the imaging optical system 13.
[0037] マスクステージ MS上に保持されたマスク Mのパターンを透過した光束は、投影光 学系 PLを介して、ウェハステージ WS上に保持されたウェハ (感光性基板) W上にマ スクパターンの像を形成する。こうして、投影光学系 PLの光軸 AXと直交する平面 (X Y平面)内においてウェハステージ WSを二次元的に駆動制御しながら、ひいてはゥ ェハ Wを二次元的に駆動制御しながら一括露光またはスキャン露光を行うことにより 、ウェハ Wの各露光領域にはマスク Mのパターンが順次露光される。 [0037] The light beam that has passed through the pattern of the mask M held on the mask stage MS passes through the projection optical system PL, and the mask pattern on the wafer (photosensitive substrate) W held on the wafer stage WS. Form an image of In this way, the wafer stage WS is two-dimensionally driven and controlled in the plane (XY plane) orthogonal to the optical axis AX of the projection optical system PL, and consequently the wafer W is two-dimensionally driven and controlled for batch exposure or By performing the scanning exposure, the pattern of the mask M is sequentially exposed in each exposure region of the wafer W.
[0038] 偏光状態切換部 3は、光源側から順に、 1Z4波長板 3aと、 1/2波長板 3bとを備え ている。 1Z4波長板 3aは、光軸 AXを中心として結晶光学軸が回転自在に構成され て、入射する楕円偏光の光を直線偏光の光に変換する。また、 1Z2波長板 3bは、 光軸 AXを中心として結晶光学軸が回転自在に構成されて、入射する直線偏光の偏 光面 (偏光方向)を変化させる。なお、 1Z4波長板 3aおよび 1Z2波長板 3bの回転
は、制御部 20からの指令に基づいて動作する駆動部 21により行われる。 The polarization state switching unit 3 includes, in order from the light source side, a 1Z4 wavelength plate 3a and a half-wave plate 3b. The 1Z4 wavelength plate 3a is configured so that the crystal optical axis is rotatable about the optical axis AX, and converts incident elliptically polarized light into linearly polarized light. Further, the 1Z2 wave plate 3b is configured such that the crystal optical axis is rotatable about the optical axis AX, and changes the polarization plane (polarization direction) of incident linearly polarized light. The rotation of 1Z4 wave plate 3a and 1Z2 wave plate 3b Is performed by the drive unit 21 that operates based on a command from the control unit 20.
[0039] 光源 1として KrFエキシマレーザ光源や ArFエキシマレーザ光源を用いる場合、こ れらの光源力も射出される光は典型的には 95%以上の偏光度を有し、 1Z4波長板 3aにはほぼ直線偏光の光が入射する。しカゝしながら、光源 1と偏光状態切換部 3との 間の光路中に裏面反射鏡としての直角プリズムが介在する場合、入射する直線偏光 の偏光面が反射面に対する P偏光面または S偏光面に一致していないと、直角プリ ズムでの全反射により直線偏光が楕円偏光に変わる。 [0039] When a KrF excimer laser light source or an ArF excimer laser light source is used as the light source 1, the light emitted from these light source powers typically has a degree of polarization of 95% or more, and the 1Z4 wavelength plate 3a Nearly linearly polarized light is incident. However, when a right-angle prism as a back reflector is interposed in the optical path between the light source 1 and the polarization state switching unit 3, the polarization plane of the incident linearly polarized light is P-polarized or S-polarized with respect to the reflective surface. If they do not coincide with the plane, linearly polarized light changes to elliptically polarized light due to total reflection at a right angle prism.
[0040] 偏光状態切換部 3では、たとえば直角プリズムでの全反射に起因して楕円偏光の 光が入射しても、 1Z4波長板 3aの作用により変換された直線偏光の光が 1Z2波長 板 3bに入射する。以下、説明を簡単にするために、図 1において Y方向に偏光方向 (電場の方向)を有する直線偏光 (以下、「Y方向偏光」と称する)の光が 1Z2波長板 3bに入射するものとする。 [0040] In the polarization state switching unit 3, for example, even if elliptically polarized light is incident due to total reflection from a right-angle prism, the linearly polarized light converted by the action of the 1Z4 wavelength plate 3a is converted to the 1Z2 wavelength plate 3b. Is incident on. In the following, for simplicity of explanation, it is assumed that linearly polarized light (hereinafter referred to as “Y-direction polarized light”) having a polarization direction (electric field direction) in the Y direction in FIG. 1 is incident on the 1Z2 wavelength plate 3b. To do.
[0041] この場合、 1Z2波長板 3bの結晶光学軸を入射する Z方向偏光の偏光面に対して 0 度または 90度の角度をなすように設定すると、 1Z2波長板 3bに入射した Z方向偏光 の光は偏光面が変化することなく Z方向偏光のまま通過し、 Z方向偏光状態で回折光 学素子 4に入射する。一方、 1Z2波長板 3bの結晶光学軸を入射する Z方向偏光の 偏光面に対して 45度の角度をなすように設定すると、 1Z2波長板 3bに入射した Z方 向偏光の光は偏光面が 90度だけ変化し、図 1において X方向に偏光方向(電場の 方向)を有する直線偏光 (以下、「X方向偏光」と称する)の光になり、 X方向偏光状態 で回折光学素子 4に入射する。 [0041] In this case, if the crystal optic axis of the 1Z2 wave plate 3b is set to make an angle of 0 degree or 90 degrees with respect to the polarization plane of the Z direction polarized light that is incident, the Z direction polarized light that is incident on the 1Z2 wave plate 3b The light passes through the polarization plane without changing the polarization plane, and enters the diffractive optical element 4 in the Z-direction polarization state. On the other hand, when the crystal optical axis of the 1Z2 wave plate 3b is set to form an angle of 45 degrees with respect to the polarization plane of the Z direction polarization incident on the 1Z2 wave plate 3b, the polarization plane of the Z direction polarization light incident on the 1Z2 wave plate 3b It changes by 90 degrees and becomes linearly polarized light (hereinafter referred to as “X direction polarized light”) having a polarization direction (electric field direction) in the X direction in FIG. 1 and enters the diffractive optical element 4 in the X direction polarization state. To do.
[0042] 一般的には、 1Z2波長板 3bの結晶光学軸を入射する Z方向偏光の偏光面に対し て所要の角度をなすように設定することにより、回折光学素子 4への入射光の偏光状 態を、任意方向に偏光方向を有する直線偏光状態に設定することができる。さらに、 偏光状態切換部 3では、 1Z2波長板 3bを照明光路から退避させ、且つ 1Z4波長板 3aの結晶光学軸を入射する楕円偏光に対して所要の角度をなすように設定すること により、円偏光状態または所望の楕円偏光状態の光を回折光学素子 4に入射させる こともできる。すなわち、後述の偏光変換素子 7を光路から退避させた状態では、偏 光状態切換部 3の作用により、マスク Mおよびウェハ Wを照明する光の偏光状態を、
任意方向に偏光方向を有する直線偏光状態、円偏光状態または所望の楕円偏光状 態に設定することができる。 [0042] Generally, the polarization of incident light to the diffractive optical element 4 is set by setting the crystal optic axis of the 1Z2 wave plate 3b so as to make a required angle with respect to the polarization plane of the Z-direction polarization. The state can be set to a linear polarization state having a polarization direction in an arbitrary direction. Furthermore, in the polarization state switching unit 3, the 1Z2 wave plate 3b is retracted from the illumination optical path, and the crystal optical axis of the 1Z4 wave plate 3a is set to make a required angle with respect to the incident elliptically polarized light, thereby making a circle. Light in a polarization state or a desired elliptical polarization state can also be incident on the diffractive optical element 4. That is, in the state where the polarization conversion element 7 described later is retracted from the optical path, the polarization state of the light that illuminates the mask M and the wafer W is changed by the action of the polarization state switching unit 3. A linear polarization state having a polarization direction in an arbitrary direction, a circular polarization state, or a desired elliptical polarization state can be set.
[0043] 次に、円錐アキシコン系 8は、光源側力も順に、光源側に平面を向け且つマスク側 に凹円錐状の屈折面を向けた第 1プリズム部材 8aと、マスク側に平面を向け且つ光 源側に凸円錐状の屈折面を向けた第 2プリズム部材 8bとから構成されている。そして 、第 1プリズム部材 8aの凹円錐状の屈折面と第 2プリズム部材 8bの凸円錐状の屈折 面とは、互いに当接可能なように相補的に形成されている。また、第 1プリズム部材 8 aおよび第 2プリズム部材 8bのうち少なくとも一方の部材が光軸 AXに沿って移動可 能に構成され、第 1プリズム部材 8aの凹円錐状の屈折面と第 2プリズム部材 8bの凸 円錐状の屈折面との間隔が可変に構成されている。 [0043] Next, the conical axicon system 8 includes, in order, the light source side force with the first prism member 8a having a flat surface facing the light source and a concave conical refracting surface facing the mask, and a plane facing the mask side. And a second prism member 8b having a convex conical refracting surface facing the light source. The concave conical refracting surface of the first prism member 8a and the convex conical refracting surface of the second prism member 8b are complementarily formed so as to be in contact with each other. Further, at least one of the first prism member 8a and the second prism member 8b is configured to be movable along the optical axis AX, and the concave conical refracting surface of the first prism member 8a and the second prism are configured. The distance between the convex conical refracting surface of the member 8b is variable.
[0044] ここで、第 1プリズム部材 8aの凹円錐状屈折面と第 2プリズム部材 8bの凸円錐状屈 折面とが互いに当接している状態では、円錐アキシコン系 8は平行平面板として機能 し、形成される輪帯状の二次光源に及ぼす影響はない。しかしながら、第 1プリズム 部材 8aの凹円錐状屈折面と第 2プリズム部材 8bの凸円錐状屈折面とを離間させると 、輪帯状の二次光源の幅 (輪帯状の二次光源の外径と内径との差の 1Z2)を一定に 保ちつつ、輪帯状の二次光源の外径(内径)が変化する。すなわち、輪帯状の二次 光源の輪帯比(内径 Z外径)および大きさ (外径)が変化する。 Here, when the concave conical refracting surface of the first prism member 8a and the convex conical bending surface of the second prism member 8b are in contact with each other, the conical axicon system 8 functions as a parallel flat plate However, there is no influence on the annular secondary light source formed. However, if the concave conical refracting surface of the first prism member 8a is separated from the convex conical refracting surface of the second prism member 8b, the width of the annular secondary light source (the outer diameter of the annular secondary light source and The outer diameter (inner diameter) of the annular secondary light source changes while keeping the difference 1Z2) from the inner diameter constant. That is, the annular ratio (inner diameter Z outer diameter) and size (outer diameter) of the annular secondary light source change.
[0045] ズームレンズ 9は、輪帯状の二次光源の全体形状を相似的に拡大または縮小する 機能を有する。たとえば、ズームレンズ 9の焦点距離を最小値力 所定の値へ拡大さ せることにより、輪帯状の二次光源の全体形状が相似的に拡大される。換言すると、 ズームレンズ 9の作用により、輪帯状の二次光源の輪帯比が変化することなぐその 幅および大きさ(外径)がともに変化する。このように、円錐アキシコン系 8およびズー ムレンズ 9の作用により、輪帯状の二次光源の輪帯比と大きさ (外径)とを制御するこ とがでさる。 [0045] The zoom lens 9 has a function of enlarging or reducing the entire shape of the annular secondary light source in a similar manner. For example, by expanding the focal length of the zoom lens 9 to a predetermined value with the minimum value force, the entire shape of the annular secondary light source is similarly enlarged. In other words, due to the action of the zoom lens 9, both the width and size (outer diameter) of the annular zone of the annular secondary light source change without change. In this way, the annular ratio and size (outer diameter) of the annular secondary light source can be controlled by the action of the conical axicon system 8 and the zoom lens 9.
[0046] なお、輪帯照明用の回折光学素子 4に代えて、 4極照明用の回折光学素子 (不図 示)を照明光路中に設定することによって、 4極照明を行うことができる。 4極照明用 の回折光学素子は、矩形状の断面を有する平行光束が入射した場合に、そのファー フィールドに 4極状の光強度分布を形成する機能を有する。したがって、 4極照明用
の回折光学素子を介した光束は、マイクロフライアイレンズ 10の入射面に、たとえば 光軸 AXを中心とした 4つの円形状の照野力もなる 4極状の照野を形成する。その結 果、マイクロフライアイレンズ 10の後側焦点面またはその近傍にも、その入射面に形 成された照野と同じ 4極状の二次光源が形成される。 It should be noted that quadrupole illumination can be performed by setting a diffractive optical element for quadrupole illumination (not shown) in the illumination optical path instead of the diffractive optical element 4 for annular illumination. The diffractive optical element for quadrupole illumination has a function of forming a quadrupole light intensity distribution in the far field when a parallel light beam having a rectangular cross section is incident. Therefore, for 4-pole lighting The light beam that passes through the diffractive optical element forms a quadrupole illumination field on the incident surface of the micro fly's eye lens 10 that also has, for example, four circular illumination fields around the optical axis AX. As a result, the same quadrupole secondary light source as the illumination field formed on the incident surface is formed at or near the rear focal plane of the micro fly's eye lens 10.
[0047] また、輪帯照明用の回折光学素子 4に代えて、円形照明用の回折光学素子 (不図 示)を照明光路中に設定することによって、通常の円形照明を行うことができる。円形 照明用の回折光学素子は、矩形状の断面を有する平行光束が入射した場合に、フ ァーフィールドに円形状の光強度分布を形成する機能を有する。したがって、円形照 明用の回折光学素子を介した光束は、マイクロフライアイレンズ 10の入射面に、たと えば光軸 AXを中心とした円形状の照野を形成する。その結果、マイクロフライアイレ ンズ 10の後側焦点面またはその近傍にも、その入射面に形成された照野と同じ円形 状の二次光源が形成される。 [0047] Also, instead of the diffractive optical element 4 for annular illumination, a diffractive optical element for circular illumination (not shown) is set in the illumination optical path, whereby normal circular illumination can be performed. The diffractive optical element for circular illumination has a function of forming a circular light intensity distribution in the far field when a parallel light beam having a rectangular cross section is incident. Therefore, the light beam that has passed through the diffractive optical element for circular illumination forms, for example, a circular illumination field around the optical axis AX on the incident surface of the micro fly's eye lens 10. As a result, a secondary light source having the same circular shape as the illumination field formed on the incident surface is also formed at or near the rear focal plane of the micro fly's eye lens 10.
[0048] さらに、輪帯照明用の回折光学素子 4に代えて、他の複数極照明用の回折光学素 子 (不図示)を照明光路中に設定することによって、様々な複数極照明(2極照明、 8 極照明など)を行うことができる。同様に、輪帯照明用の回折光学素子 4に代えて、適 当な特性を有する回折光学素子 (不図示)を照明光路中に設定することによって、様 々な形態の変形照明を行うことができる。 [0048] Furthermore, instead of the diffractive optical element 4 for annular illumination, other diffractive optical elements (not shown) for multi-pole illumination are set in the illumination optical path, so that various multi-pole illuminations (2 Polar lighting, 8-pole lighting, etc.). Similarly, various forms of modified illumination can be performed by setting a diffractive optical element (not shown) having appropriate characteristics in the illumination optical path instead of the diffractive optical element 4 for annular illumination. it can.
[0049] 図 2は、図 1の偏光変換素子の構成を概略的に示す図である。また、図 3は、水晶 の旋光性について説明する図である。また、図 4は、偏光変換素子の作用により周方 向偏光状態に設定された輪帯状の二次光源を概略的に示す図である。本実施形態 にかかる偏光変換素子 7は、ァフォーカルレンズ 5の瞳位置またはその近傍に、すな わち照明光学装置(1〜13)の瞳面またはその近傍に配置されている。したがって、 輪帯照明の場合、偏光変換素子 7には光軸 AXを中心としたほぼ輪帯状の断面を有 する光束が入射することになる。 FIG. 2 is a diagram schematically showing a configuration of the polarization conversion element of FIG. FIG. 3 is a diagram for explaining the optical rotation of quartz. FIG. 4 is a diagram schematically showing an annular secondary light source that is set in a circumferential polarization state by the action of the polarization conversion element. The polarization conversion element 7 according to the present embodiment is arranged at or near the pupil position of the focal lens 5, that is, at or near the pupil plane of the illumination optical device (1 to 13). Therefore, in the case of annular illumination, a light beam having a substantially annular cross section around the optical axis AX is incident on the polarization conversion element 7.
[0050] 図 2を参照すると、偏光変換素子 7は、全体として光軸 AXを中心とした輪帯状の有 効領域を有し、この輪帯状の有効領域は光軸 AXを中心とした円周方向に等分割さ れた 8つの扇形形状の基本素子により構成されている。これらの 8つの基本素子にお いて、光軸 AXを挟んで対向する一対の基本素子は互いに同じ特性を有する。すな
わち、 8つの基本素子は、光の透過方向(Y方向)に沿った厚さ(光軸方向の長さ)が 互いに異なる 4種類の基本素子 7A〜7Dを 2個づっ含んで!/、る。 Referring to FIG. 2, the polarization conversion element 7 as a whole has a ring-shaped effective region centered on the optical axis AX, and this ring-shaped effective region is a circumference centered on the optical axis AX. It consists of eight fan-shaped basic elements equally divided in the direction. Among these eight basic elements, a pair of basic elements facing each other across the optical axis AX have the same characteristics. sand In other words, the eight basic elements include two types of four basic elements 7A to 7D that differ in thickness (length in the optical axis direction) along the light transmission direction (Y direction)! /, The
[0051] 具体的には、第 1基本素子 7Aの厚さが最も大きぐ第 4基本素子 7Dの厚さが最も 小さぐ第 2基本素子 7Bの厚さは第 3基本素子 7Cの厚さよりも大きく設定されている 。その結果、偏光変換素子 7の一方の面 (たとえば入射面)は平面状であるが、他方 の面 (たとえば射出面)は各基本素子 7A〜7Dの厚さの違いにより凹凸状になってい る。なお、偏光変換素子 7の双方の面 (入射面および射出面)をともに凹凸状に形成 することちでさる。 [0051] Specifically, the thickness of the fourth basic element 7D, where the thickness of the first basic element 7A is the largest, and the thickness of the second basic element 7B, where the thickness of the first basic element 7A is the smallest, is greater than the thickness of the third basic element 7C. It is set large. As a result, one surface (for example, the entrance surface) of the polarization conversion element 7 is planar, but the other surface (for example, the exit surface) is uneven due to the difference in thickness of the basic elements 7A to 7D. . In addition, both surfaces (incident surface and exit surface) of the polarization conversion element 7 are both formed in an uneven shape.
[0052] また、本実施形態では、各基本素子 7A〜7Dが旋光性を有する光学材料である水 晶により構成され、各基本素子 7A〜7Dの結晶光学軸が光軸 AXとほぼ一致するよう に設定されている。以下、図 3を参照して、水晶の旋光性について簡単に説明する。 図 3を参照すると、厚さ dの水晶からなる平行平面板状の光学部材 100が、その結晶 光学軸と光軸 AXとが一致するように配置されている。この場合、光学部材 100の旋 光性により、入射した直線偏光の偏光方向が光軸 AX廻りに Θだけ回転した状態で 射出される。 [0052] In the present embodiment, each of the basic elements 7A to 7D is composed of a water crystal that is an optical material having optical activity, and the crystal optical axis of each of the basic elements 7A to 7D is substantially coincident with the optical axis AX. Is set to Hereinafter, with reference to FIG. 3, the optical rotation of the crystal will be briefly described. Referring to FIG. 3, a plane-parallel plate-like optical member 100 made of quartz having a thickness d is arranged such that its crystal optical axis coincides with the optical axis AX. In this case, due to the optical rotation of the optical member 100, the incident linearly polarized light is emitted with the polarization direction rotated by Θ around the optical axis AX.
[0053] このとき、光学部材 100の旋光性による偏光方向の回転角(旋光角度) Θは、光学 部材 100の厚さ dと水晶の旋光能 pとにより、次の式(1)で表わされる。 [0053] At this time, the rotation angle (rotation angle) Θ in the polarization direction due to the optical rotation of the optical member 100 is expressed by the following equation (1) according to the thickness d of the optical member 100 and the optical rotation power p of the crystal. .
Θ =d- p (1) Θ = d- p (1)
[0054] 一般に、水晶の旋光能 pは、波長依存性 (使用光の波長に依存して旋光能の値が 異なる性質:旋光分散)があり、具体的には使用光の波長が短くなると大きくなる傾向 がある。「応用光学 II」の第 167頁の記述によれば、 250. 3nmの波長を有する光に 対する水晶の旋光能 /0は、 153. 9度 Zmmである。 [0054] In general, the optical rotatory power p of crystal has a wavelength dependency (a property in which the value of the optical rotatory power varies depending on the wavelength of the used light: optical rotatory dispersion), and specifically increases as the wavelength of the used light becomes shorter. There is a tendency to become. According to the description on page 167 of “Applied Optics II”, the optical rotation power / 0 of quartz for light having a wavelength of 250.3 nm is 153.9 ° Zmm.
[0055] 本実施形態において、第 1基本素子 7Aは、 Y方向に偏光方向を有する直線偏光 の光が入射した場合、 Y方向を Z軸廻りに + 180度回転させた方向すなわち Y方向 に偏光方向を有する直線偏光の光を射出するように厚さ dAが設定されて 、る。した がって、この場合、図 4に示す輪帯状の二次光源 31のうち、一対の第 1基本素子 7A の旋光作用を受けた光束が形成する一対の円弧状領域 31Aを通過する光束の偏光 方向は Y方向になる。
[0056] 第 2基本素子 7Bは、 Y方向に偏光方向を有する直線偏光の光が入射した場合、 Y 方向を Z軸廻りに + 135度回転させた方向すなわち Y方向を Z軸廻りに— 45度回転 させた方向に偏光方向を有する直線偏光の光を射出するように厚さ dBが設定されて いる。したがって、この場合、図 4に示す輪帯状の二次光源 31のうち、一対の第 2基 本素子 7Bの旋光作用を受けた光束が形成する一対の円弧状領域 31Bを通過する 光束の偏光方向は Y方向を Z軸廻りに— 45度回転させた方向になる。 In this embodiment, the first basic element 7A, when linearly polarized light having a polarization direction in the Y direction is incident, is polarized in the direction obtained by rotating the Y direction by +180 degrees around the Z axis, that is, in the Y direction. The thickness dA is set to emit linearly polarized light having a direction. Therefore, in this case, of the annular secondary light source 31 shown in FIG. 4, the light beam passing through the pair of arcuate regions 31A formed by the light beam subjected to the optical rotation of the pair of first basic elements 7A. The polarization direction is the Y direction. [0056] When linearly polarized light having a polarization direction in the Y direction is incident on the second basic element 7B, the Y direction is rotated by +135 degrees around the Z axis, that is, the Y direction is around the Z axis. The thickness dB is set so as to emit linearly polarized light having a polarization direction in a direction rotated in degrees. Therefore, in this case, in the annular secondary light source 31 shown in FIG. 4, the polarization direction of the light beam passing through the pair of arc-shaped regions 31B formed by the light beam subjected to the optical rotation of the pair of second basic elements 7B Is the Y direction rotated around the Z axis by 45 degrees.
[0057] 第 3基本素子 7Cは、 Y方向に偏光方向を有する直線偏光の光が入射した場合、 Y 方向を Z軸廻りに + 90度回転させた方向すなわち X方向に偏光方向を有する直線 偏光の光を射出するように厚さ dCが設定されている。したがって、この場合、図 4〖こ 示す輪帯状の二次光源 31のうち、一対の第 3基本素子 7Cの旋光作用を受けた光束 が形成する一対の円弧状領域 31Cを通過する光束の偏光方向は X方向になる。 [0057] When linearly polarized light having a polarization direction in the Y direction is incident, the third basic element 7C is a linearly polarized light having a polarization direction in the X direction, that is, the Y direction rotated by +90 degrees around the Z axis. The thickness dC is set so as to emit light. Therefore, in this case, in the annular secondary light source 31 shown in FIG. 4, the polarization direction of the light beam passing through the pair of arcuate regions 31C formed by the light beam subjected to the optical rotation of the pair of third basic elements 7C. Is in the X direction.
[0058] 第 4基本素子 7Dは、 Y方向に偏光方向を有する直線偏光の光が入射した場合、 Y 方向を Z軸廻りに +45度回転させた方向に偏光方向を有する直線偏光の光を射出 するように厚さ dDが設定されている。したがって、この場合、図 4に示す輪帯状の二 次光源 31のうち、一対の第 4基本素子 7Dの旋光作用を受けた光束が形成する一対 の円弧状領域 31 Dを通過する光束の偏光方向は Y方向を Z軸廻りに +45度回転さ せた方向になる。 [0058] When linearly polarized light having a polarization direction in the Y direction is incident, the fourth basic element 7D emits linearly polarized light having a polarization direction in a direction obtained by rotating the Y direction by +45 degrees around the Z axis. Thickness dD is set to inject. Therefore, in this case, of the annular secondary light source 31 shown in FIG. 4, the polarization direction of the light beam passing through the pair of arcuate regions 31D formed by the light beam subjected to the optical rotation of the pair of fourth basic elements 7D The direction is the Y direction rotated +45 degrees around the Z axis.
[0059] なお、別々に形成された 8つの基本素子を組み合わせて偏光変換素子 7を得ること もできるし、あるいは平行平面板状の水晶基板に所要の凹凸形状 (段差)を形成する ことにより偏光変換素子 7を得ることもできる。また、偏光変換素子 7を光路から退避さ せることなく通常の円形照明を行うことができるように、偏光変換素子 7の有効領域の 径方向の大きさの 1Z3以上の大きさを有し且つ旋光性を有しない円形状の中央領 域 7Eが設けられている。ここで、中央領域 7Eは、たとえば石英のように旋光性を有し ない光学材料により形成されていてもよいし、単純に円形状の開口であってもよい。 ただし、中央領域 7Eは偏光変換素子 7に必須の要素ではない。 It is to be noted that the polarization conversion element 7 can be obtained by combining eight separately formed basic elements, or polarization can be achieved by forming a required concavo-convex shape (step) on a plane-parallel crystal substrate. The conversion element 7 can also be obtained. Further, in order to perform normal circular illumination without retracting the polarization conversion element 7 from the optical path, the effective area of the polarization conversion element 7 has a size of 1Z3 or more in the radial direction and an optical rotation. A circular central area 7E that does not have the property is provided. Here, the central region 7E may be formed of an optical material that does not have optical activity, such as quartz, or may be a simple circular opening. However, the central region 7E is not an essential element for the polarization conversion element 7.
[0060] 図 5は、図 1の偏光測定部の内部構成を概略的に示す図である。本実施形態では 、図 5に示すように、ウェハ Wを保持するためのウェハステージ WSに、ウェハ Wに対 する照明光 (露光光)の偏光状態を測定するための偏光測定部 (偏光状態測定部) 1
4が設けられている。偏光測定部 14は、ウェハ Wの露光面の高さ位置において二次 元的に位置決め可能なピンホール部材 40を備えている。なお、偏光測定部 14の使 用時には、ウェハ Wは光路力も退避する。 FIG. 5 is a diagram schematically showing an internal configuration of the polarization measuring unit in FIG. 1. In the present embodiment, as shown in FIG. 5, a polarization measuring unit (polarization state measurement) for measuring the polarization state of illumination light (exposure light) with respect to the wafer W is provided on the wafer stage WS for holding the wafer W. Part) 1 4 is provided. The polarization measuring unit 14 includes a pinhole member 40 that can be two-dimensionally positioned at the height position of the exposure surface of the wafer W. When the polarization measuring unit 14 is used, the wafer W also retracts the optical path force.
[0061] ピンホール部材 40のピンホール 40aを通過した光は、コリメートレンズ 41を介してほ ぼ平行な光束になり、反射鏡 42で反射された後、リレーレンズ系 43に入射する。リレ 一レンズ系 43を介したほぼ平行な光束は、移相子としての λ Ζ4板 44および偏光子 としての偏光ビームスプリツター 45を介した後、二次元 CCD46の検出面 46aに達す る。二次元 CCD46の出力は、制御部 20に供給される。ここで、 λ Ζ4板 44は、光軸 を中心として回転可能に構成されており、この λ Ζ4板 44には、その光軸を中心とし た回転角を設定するための設定部 47が接続されている。 The light that has passed through the pinhole 40a of the pinhole member 40 becomes a substantially parallel light beam through the collimator lens 41, is reflected by the reflecting mirror 42, and then enters the relay lens system 43. The almost parallel light beam through the relay lens system 43 reaches the detection surface 46a of the two-dimensional CCD 46 after passing through the λΖ4 plate 44 as a phase shifter and the polarization beam splitter 45 as a polarizer. The output of the two-dimensional CCD 46 is supplied to the control unit 20. Here, the λ Ζ4 plate 44 is configured to be rotatable around the optical axis, and a setting unit 47 for setting a rotation angle around the optical axis is connected to the λ Ζ4 plate 44. ing.
[0062] こうして、ウエノ、 Wに対する照明光の偏光度が 0でない場合には、設定部 47を介し て λ /4板 44を光軸廻りに回転させることにより二次元 CCD46の検出面 46aにおけ る光強度分布が変化する。したがって、偏光測定部 14では、設定部 47を用いて λ Ζ4板 44を光軸廻りに回転させながら検出面 46aにおける光強度分布の変化を検出 し、この検出結果から回転移相子法により照明光の偏光状態 (偏光度;光に関するス トークスパラメータ S , S , S )を柳』定することができる。 [0062] Thus, when the polarization degree of the illumination light with respect to Ueno and W is not 0, the λ / 4 plate 44 is rotated around the optical axis via the setting unit 47 so as to be detected on the detection surface 46a of the two-dimensional CCD 46. The light intensity distribution changes. Therefore, the polarization measuring unit 14 detects a change in the light intensity distribution on the detection surface 46a while rotating the λΖ4 plate 44 around the optical axis by using the setting unit 47, and from this detection result, the rotation phase shifter method is used for illumination. The polarization state of light (degree of polarization; Stokes parameters S 1, S 2, S 3 for light) can be determined.
1 2 3 one two Three
[0063] なお、回転移相子法については、例えば鶴田著, 「光の鉛筆一光技術者のための 応用光学」,株式会社新技術コミュニケーションズなどに詳しく記載されている。実際 には、ピンホール部材 40 (ひいてはピンホール 40a)をウェハ面に沿って二次元的に 移動させつつ、ウェハ面内の複数の位置における照明光の偏光状態を測定する。こ のとき、偏光測定部 14では、二次元的な検出面 46aにおける光強度分布の変化を 検出するので、この検出分布情報に基づいて照明光の瞳内における偏光状態の分 布を測定することができる。 [0063] Note that the rotational phase shifter method is described in detail in, for example, Tsuruta, "Applied Optics for Optical Pencil Ikko Engineers", New Technology Communications Co., Ltd., and the like. In practice, the polarization state of the illumination light at a plurality of positions in the wafer surface is measured while the pinhole member 40 (and thus the pinhole 40a) is moved two-dimensionally along the wafer surface. At this time, since the polarization measurement unit 14 detects a change in the light intensity distribution on the two-dimensional detection surface 46a, the polarization state distribution in the pupil of the illumination light is measured based on the detection distribution information. Can do.
[0064] ところで、偏光測定部 14では、移相子として λ Ζ4板 44に代えて λ Ζ2板を用いる ことも可能である。どのような移相子を用いたとしても、偏光状態、すなわち 4つのスト 一タスパラメータを測定するためには、移相子と偏光子 (偏光ビームスプリツター 45) との光軸廻りの相対角度を変えたり、移相子または偏光子を光路力 退避させたりし て、少なくとも 4つの異なる状態で検出面 46aにおける光強度分布の変化を検出する
必要がある。 By the way, in the polarization measuring unit 14, it is possible to use a λλ2 plate instead of the λΖ4 plate 44 as a phase shifter. Whatever phase shifter is used, the relative angle around the optical axis between the phase shifter and the polarizer (polarized beam splitter 45) can be used to measure the polarization state, ie, the four status parameters. Change the light intensity distribution on the detection surface 46a in at least four different states by changing the phase difference or retracting the optical path force of the phase shifter or polarizer. There is a need.
[0065] なお、本実施形態では移相子としての λ Ζ4板 44を光軸廻りに回転させたが、偏 光子としての偏光ビームスプリツター 45を光軸廻りに回転させても良ぐ移相子およ び偏光子の双方を光軸廻りに回転させても良い。また、この動作に代えて、あるいは この動作にカ卩えて、移相子としての λ Ζ4板 44および偏光子としての偏光ビームスプ リツター 45のうちの一方または双方を光路カも揷脱させても良い。 In this embodiment, the λ Ζ4 plate 44 as the phase shifter is rotated around the optical axis, but the phase shift that allows the polarization beam splitter 45 as the polarizer to be rotated around the optical axis is also acceptable. Both the polarizer and the polarizer may be rotated around the optical axis. Further, in place of or in place of this operation, one or both of the λ 4 plate 44 serving as a phase shifter and the polarization beam splitter 45 serving as a polarizer may be removed from the optical path. .
[0066] また、偏光測定部 14では、反射鏡 42の偏光特性により光の偏光状態が変化してし まう場合がある。この場合、反射鏡 42の偏光特性は予めゎカゝつているので、所要の 計算によって反射鏡 42の偏光特性の偏光状態への影響に基づいて偏光測定部 14 の測定結果を補正し、照明光の偏光状態を正確に測定することができる。また、反射 鏡に限らず、レンズなどの他の光学部品に起因して偏光状態が変化してしまう場合 でも同様に測定結果を補正し、照明光の偏光状態を正確に測定することができる。 [0066] In the polarization measuring unit 14, the polarization state of the light may change depending on the polarization characteristics of the reflecting mirror 42. In this case, since the polarization characteristics of the reflecting mirror 42 are previously determined, the measurement result of the polarization measuring unit 14 is corrected based on the influence of the polarization characteristics of the reflecting mirror 42 on the polarization state by the required calculation, and the illumination light It is possible to accurately measure the polarization state. Further, even when the polarization state changes due to other optical components such as a lens as well as the reflecting mirror, the measurement result can be similarly corrected to accurately measure the polarization state of the illumination light.
[0067] こうして、偏光測定部 14を用いてウェハ Wに対する照明光の瞳内における偏光状 態 (偏光度)を測定し、照明光が瞳内において適切な偏光状態 (たとえば上述した周 方向偏光状態など)になっている力否かが判定される。そして、制御部 20は、偏光測 定部 14の測定結果に基づいて、必要に応じて偏光状態切換部 3 (1Z4波長板 3aお よび 1Z2波長板 3b)を駆動し、マスク M (ひいてはウェハ W)への照明光の偏光状態 を所望の偏光状態に調整する。 [0067] In this way, the polarization state (polarization degree) of the illumination light with respect to the wafer W in the pupil is measured using the polarization measuring unit 14, and the illumination light is in an appropriate polarization state (for example, the above-described circumferential polarization state). Etc.) is determined. Then, the control unit 20 drives the polarization state switching unit 3 (1Z4 wavelength plate 3a and 1Z2 wavelength plate 3b) as necessary based on the measurement result of the polarization measuring unit 14, and mask M (and thus the wafer W). ) Is adjusted to a desired polarization state.
[0068] 本実施形態では、周方向偏光輪帯照明 (輪帯状の二次光源を通過する光束が周 方向偏光状態に設定された変形照明)に際して、偏光状態切換部 3中の 1Z2波長 板 3bの結晶光学軸の光軸廻りの角度位置を調整して輪帯照明用の回折光学素子 4 に Y方向偏光を入射させることによって、 Y方向に偏光方向を有する直線偏光の光を 偏光変換素子 7に入射させる。その結果、マイクロフライアイレンズ 10の後側焦点面 またはその近傍には、図 4に示すように、輪帯状の二次光源 (輪帯状の照明瞳分布) 31が形成され、この輪帯状の二次光源 31を通過する光束が周方向偏光状態に設 定される。 [0068] In the present embodiment, the 1Z2 wavelength plate 3b in the polarization state switching unit 3 in the circumferential polarization annular illumination (modified illumination in which the light beam passing through the annular secondary light source is set in the circumferential polarization state). By adjusting the angular position of the crystal optical axis around the optical axis and making Y direction polarized light incident on the diffractive optical element 4 for annular illumination, linearly polarized light having a polarization direction in the Y direction is converted into a polarization converting element 7 To enter. As a result, an annular secondary light source (annular illumination pupil distribution) 31 is formed at or near the rear focal plane of the micro fly's eye lens 10, as shown in FIG. The light beam passing through the next light source 31 is set to the circumferential polarization state.
[0069] 周方向偏光状態では、輪帯状の二次光源 31を構成する円弧状領域 31A〜31D をそれぞれ通過する光束は、各円弧状領域 31A〜31Dの円周方向に沿った中心位
置における光軸 AXを中心とする円の接線方向とほぼ一致する偏光方向を有する直 線偏光状態になる。こうして、本実施形態では、偏光変換素子 7の旋光作用により、 光量損失を実質的に発生させることなぐ周方向偏光状態の輪帯状の二次光源 31 が形成される。なお、周方向偏光状態の輪帯状の照明瞳分布に基づく周方向偏光 輪帯照明では、最終的な被照射面としてのウェハ Wに照射される光が S偏光を主成 分とする偏光状態になる。 [0069] In the circumferential polarization state, the luminous fluxes respectively passing through the arc-shaped regions 31A to 31D constituting the annular secondary light source 31 are centered along the circumferential direction of each of the arc-shaped regions 31A to 31D. A linear polarization state having a polarization direction almost coincident with the tangential direction of the circle centered on the optical axis AX in the installation is obtained. Thus, in the present embodiment, the annular secondary light source 31 in the circumferentially polarized state is formed by the optical rotation action of the polarization conversion element 7 without substantially generating a light amount loss. In addition, in circumferentially polarized annular illumination based on the annular illumination pupil distribution in the circumferentially polarized state, the light irradiated on the wafer W as the final irradiated surface changes to a polarized state mainly composed of S-polarized light. Become.
[0070] ここで、 S偏光とは、入射面に対して垂直な方向に偏光方向を有する直線偏光 (入 射面に垂直な方向に電気ベクトルが振動している偏光)のことである。ただし、入射 面とは、光が媒質の境界面 (被照射面:ウェハ Wの表面)に達したときに、その点での 境界面の法線と光の入射方向とを含む面として定義される。その結果、周方向偏光 輪帯照明では、投影光学系の光学性能 (焦点深度など)が向上し、ゥ ハ (感光性基 板)上において高コントラストの良好なマスクパターン像が得られる。 Here, the S-polarized light is linearly polarized light having a polarization direction in a direction perpendicular to the incident surface (polarized light whose electric vector is oscillating in a direction perpendicular to the incident surface). However, the incident surface is defined as a surface that includes the normal of the boundary surface at that point and the incident direction of light when the light reaches the boundary surface of the medium (irradiated surface: the surface of the wafer W). The As a result, optical performance (depth of focus, etc.) of the projection optical system is improved with circumferentially polarized annular illumination, and a high-contrast mask pattern image can be obtained on the wafer (photosensitive substrate).
[0071] 一般に、輪帯照明に限定されることなぐたとえば周方向偏光状態の複数極状の照 明瞳分布に基づく照明においても、ウェハ Wに入射する光が S偏光を主成分とする 偏光状態になり、ウエノ、 W上において高コントラストの良好なマスクパターン像が得ら れる。このときには、輪帯照明用の回折光学素子 4に代えて、複数極照明(2極照明 、 4極照明、 8極照明など)用の回折光学素子を照明光路に設定し、偏光状態切換 部 3中の 1Z2波長板 3bの結晶光学軸の光軸廻りの角度位置を調整して複数極照 明用の回折光学素子に Y方向偏光を入射させることによって、 Y方向に偏光方向を 有する直線偏光の光を偏光変換素子 7に入射させる。 [0071] Generally, even in illumination based on, for example, a multipolar illumination pupil distribution in a circumferentially polarized state, which is not limited to annular illumination, the light incident on the wafer W has a polarization state mainly composed of S-polarized light. Thus, a good mask pattern image with high contrast can be obtained on Ueno and W. At this time, instead of the diffractive optical element 4 for annular illumination, a diffractive optical element for multipole illumination (two-pole illumination, four-pole illumination, eight-pole illumination, etc.) is set as the illumination optical path, and the polarization state switching unit 3 By adjusting the angular position of the 1Z2 wave plate 3b around the optical axis of the 1Z2 wave plate 3b and making the Y-direction polarized light incident on the diffractive optical element for multipole illumination, linearly polarized light having the polarization direction in the Y-direction can be obtained. Light is incident on the polarization conversion element 7.
[0072] 以上のように、光源 1から供給される光に基づ!/、て被照射面としてのマスク Mを照 明する本実施形態の照明光学装置(1〜13)は、光源 1とマスク Mとの間の光路中に 配置されてマスク Mに達する光の偏光状態を所定の偏光状態に設定するための偏 光設定部として、偏光状態切換部 3 (3a, 3b)および偏光変換素子 7を備えている。し 力しながら、たとえば偏光状態切換部 3および偏光変換素子 7の作用により所望の偏 光状態の光でマスク M (ひ 、てはウェハ W)を照明しょうとしても、照明光路中に光の 偏光状態を変化させる光学素子が介在すると、所望の偏光状態で結像しなくなり、ひ いては結像性能が悪ィ匕する可能性がある。特に、照明光路中に配置された光透過
部材 (レンズや平行平面板など)では、内部歪みにより発生する複屈折性に起因して 通過する光の偏光状態が変化する。 As described above, based on the light supplied from the light source 1! /, The illumination optical device (1 to 13) of the present embodiment that illuminates the mask M as the irradiated surface includes the light source 1 and Polarization state switching unit 3 (3a, 3b) and polarization conversion element as a polarization setting unit for setting the polarization state of the light that reaches the mask M and is arranged in the optical path between the mask M and the predetermined polarization state 7 is provided. However, even if the mask M (and thus the wafer W) is to be illuminated with light of a desired polarization state by the action of the polarization state switching unit 3 and the polarization conversion element 7, for example, the polarization of the light in the illumination light path If an optical element that changes the state is interposed, an image is not formed in a desired polarization state, and there is a possibility that the imaging performance is deteriorated. In particular, light transmission placed in the illumination light path In a member (such as a lens or a plane-parallel plate), the polarization state of light passing through it changes due to birefringence caused by internal distortion.
[0073] 以下、典型的な設計例に基づいて、たとえば内部歪みにより発生する複屈折の影 響について検証する。まず、第 1の検証例では、偏光状態切換部 3とマスク Mとの間 の光路中に配置されたすベての光透過部材 (レンズ、平行平面板など)のうちの 1つ の任意の光透過部材力 光軸 AXに関して回転対称な二次分布にしたがう複屈折を 有する場合を想定している。さらに詳細には、複屈折分布として、図 6 (a)に示すよう に、有効領域の中心 (光軸 AX)において複屈折量力OnmZcmであり、有効領域の 周辺において複屈折量が lOnmZcmであり、有効領域の中心から周辺に向かって 二次関数にしたがって単調に増加する分布を想定している。ここで、複屈折量とは、 光透過部材内を lcmだけ透過したときに P偏光と S偏光との間に発生する位相差で ある。また、ここでは、進相軸と遅相軸が光透過部材の中心に対し放射方向か同心 円の接線方向であり、且つ複屈折量が中心から周辺に向力つて 2次関数的に単調増 加する分布を想定している。 Hereinafter, based on a typical design example, for example, the influence of birefringence caused by internal distortion will be verified. First, in the first verification example, any one of all the light transmitting members (lenses, parallel plane plates, etc.) arranged in the optical path between the polarization state switching unit 3 and the mask M is selected. Light-transmitting member force The case of birefringence following a rotationally symmetric secondary distribution with respect to the optical axis AX is assumed. More specifically, as shown in Fig. 6 (a), the birefringence distribution has a birefringence amount OnmZcm at the center of the effective region (optical axis AX), and a birefringence amount around the effective region is lOnmZcm. The distribution is assumed to increase monotonically according to a quadratic function from the center to the periphery of the effective region. Here, the amount of birefringence is a phase difference generated between P-polarized light and S-polarized light when only lcm is transmitted through the light transmitting member. Also, here, the fast axis and slow axis are radial or concentric tangential to the center of the light transmissive member, and the birefringence increases monotonically as a quadratic function as it moves from the center to the periphery. The distribution to be added is assumed.
[0074] この場合、上述の回転対称な二次分布にしたがう複屈折がどの光透過部材に存在 しても、ウェハ W上の露光領域 ERの中心 CR (すなわち光軸 AX:図 6 (c)を参照)に 達する光は複屈折の影響を全く受けない。し力しながら、露光領域 ERの中心 CR以 外の位置、一例として露光領域 ERの中心 CRカゝら X方向に最も離れた周辺位置 P1 に達する光は、上述の回転対称な二次分布にしたがう複屈折がどの光透過部材に 存在するかに依存して複屈折の影響の度合!/、が異なる。 [0074] In this case, the center CR of the exposure region ER on the wafer W (that is, the optical axis AX: Fig. 6 (c)), regardless of which light transmissive member has birefringence according to the rotationally symmetric secondary distribution described above. The light reaching (see below) is not affected by birefringence at all. However, the light reaching the peripheral position P1 farthest in the X direction from the center CR of the exposure area ER, for example, a position other than the center CR of the exposure area ER, has the above-mentioned rotationally symmetric secondary distribution. Therefore, the degree of birefringence influence is different depending on which light transmitting member has birefringence.
[0075] 具体的に、露光領域 ERの周辺位置 P1に達する光のうち、偏光変換素子 7の配置 位置またはその近傍の瞳位置において X方向に偏光方向を有する光(図 6 (b)にお いて円 Aおよび Bで示す)、すなわち瞳位置においてスト一タスパラメータ S力^であ [0075] Specifically, of the light reaching the peripheral position P1 of the exposure region ER, the light having a polarization direction in the X direction at the position where the polarization conversion element 7 is disposed or in the vicinity of the pupil position (see FIG. 6B). And circles A and B), that is, the stochastic parameter S-force ^ at the pupil position.
1 る光に着目すると、露光領域 ERの周辺位置 P1に達するときのスト一タスパラメータ S 1 Focusing on the light, the stochastic parameter S when reaching the peripheral position P1 of the exposure area ER
1 の値は、上述の回転対称な二次分布にしたがう複屈折がどの光透過部材に存在す るかに依存して約 0. 91-1. 0の間でばらつくことがわかった。 The value of 1 was found to vary between approximately 0.991 and 1.0 depending on which light transmissive member has birefringence according to the rotationally symmetric quadratic distribution described above.
[0076] 一方、露光領域 ERの周辺位置 P1に達する光のうち、偏光変換素子 7の配置位置 またはその近傍の瞳位置において X方向を Z軸廻りに—45度回転した方向に偏光
方向を有する光(図 6 (b)において円 Cおよび Dで示す)、すなわち瞳位置において スト一タスパラメータ Sが 1である光に着目すると、露光領域 ERの周辺位置 P1に達 [0076] On the other hand, of the light reaching the peripheral position P1 of the exposure region ER, it is polarized in a direction rotated by -45 degrees around the Z axis in the X direction at the position where the polarization conversion element 7 is disposed or in the vicinity of the pupil position. Focusing on light having a direction (indicated by circles C and D in FIG. 6 (b)), that is, light having a stochastic parameter S of 1 at the pupil position, it reaches the peripheral position P1 of the exposure region ER.
2 2
するときのスト一タスパラメータ Sの値は、上述の回転対称な二次分布にしたがう複 The value of the stochastic parameter S when
2 2
屈折がどの光透過部材に存在するかに依存して約 0. 92〜: L 0の間でばらつくこと がわかった。 It has been found that depending on which light transmissive member the refraction is present, it varies between about 0.92 and L0.
[0077] 次に、第 2の検証例では、偏光状態切換部 3とマスク Mとの間の光路中に配置され たすベての光透過部材のうちの 1つの任意の光透過部材が、一方向に沿つて線形 的に変化する傾斜分布にしたがう複屈折を有する場合を想定している。さらに詳細に は、複屈折分布として、図 7 (a)に示すように、有効領域の一方の周辺において複屈 折量力 SOnmZcmであり、有効領域の他方の周辺において複屈折量が lOnmZcm であり、 X方向に沿って一方の周辺から他方の周辺^ ^一次関数にしたがって単調に 増加する分布を想定している。また、ここでは、進相軸と遅相軸が複屈折量の傾斜方 向に平行か垂直方向であることを想定して 、る。 [0077] Next, in the second verification example, one arbitrary light transmission member among all the light transmission members arranged in the optical path between the polarization state switching unit 3 and the mask M is: It is assumed that there is a birefringence following a gradient distribution that varies linearly along one direction. More specifically, as shown in FIG. 7 (a), the birefringence distribution has a birefringence force SOnmZcm at one periphery of the effective region and a birefringence amount lOnmZcm at the other periphery of the effective region. A distribution is assumed that increases monotonically along the X direction from one periphery to the other. Here, it is assumed that the fast axis and the slow axis are parallel or perpendicular to the inclination direction of the birefringence.
[0078] この場合、偏光変換素子 7の配置位置またはその近傍の瞳位置にぉ ヽて X方向に 偏光方向を有する光(図 7 (b)において円 A, Bで示す)および Y方向に偏光方向を 有する光(図 7 (b)において円 E, Fで示す)、すなわち瞳位置においてスト一タスパラ メータ Sが 1である光は、上述の傾斜した一次分布にしたがう複屈折がどの光透過部 In this case, light having a polarization direction in the X direction (indicated by circles A and B in FIG. 7B) and polarized in the Y direction over the position where the polarization conversion element 7 is disposed or in the vicinity of the pupil position. Light having a direction (indicated by circles E and F in FIG. 7 (b)), that is, light having a stochastic parameter S of 1 at the pupil position, has a birefringence according to the above-described inclined first-order distribution.
1 1
材に存在しても、ウェハ W上の露光領域 ERの X軸上の領域および Y軸上の領域に 達する限り複屈折の影響を全く受けない。 Even if it exists in the material, it is not affected by birefringence at all as long as it reaches the area on the X axis and the area on the Y axis of the exposure area ER on the wafer W.
[0079] し力しながら、たとえば偏光変換素子 7の配置位置またはその近傍の瞳位置におい て X方向を Z軸廻りに— 45度回転した方向に偏光方向を有する光(図 7 (b)にお 、て 円 Cおよび Dで示す)、すなわち瞳位置においてスト一タスパラメータ S力^である光 [0079] However, for example, at the position where the polarization conversion element 7 is arranged or in the vicinity of the pupil position, the light having the polarization direction in the direction rotated about 45 degrees around the Z axis by 45 degrees (see Fig. 7 (b)). (Indicated by circles C and D), that is, the light with the stochastic parameter S force ^ at the pupil position
2 2
が、ウェハ W上の露光領域 ERの中心 CR (すなわち光軸 AX:図 7 (c)を参照)や中心 CRから X方向に最も離れた周辺位置 P1に達する場合、上述の傾斜一次分布にした カ 複屈折がどの光透過部材に存在するかに依存して複屈折の影響の度合いが異 なる。 Is the above-mentioned gradient primary distribution when it reaches the center CR of the exposure area ER on the wafer W (that is, the optical axis AX: see Fig. 7 (c)) or the peripheral position P1 farthest from the center CR in the X direction The degree of influence of birefringence varies depending on which light transmitting member has birefringence.
[0080] 具体的に、瞳位置においてスト一タスパラメータ S力^である光 Cが露光領域 ERの [0080] Specifically, the light C having the stochastic parameter S-force ^ at the pupil position is in the exposure area ER.
2 2
中心 CRに達する場合、スト一タスパラメータ Sの値は上述の傾斜一次分布にしたが
ぅ複屈折がどの光透過部材に存在するかに依存して約 0. 77〜: L 0の間でばらつく ことがわかった。また、瞳位置においてスト一タスパラメータ Sが 1である光 Dが露光 When the center CR is reached, the value of the stochastic parameter S follows the sloped linear distribution described above. It was found that depending on which light-transmitting member birefringence is present, it varies between about 0.77 and L0. In addition, light D with a stochastic parameter S of 1 at the pupil position is exposed.
2 2
領域 ERの中心 CRに達する場合、スト一タスパラメータ Sの値は上述の傾斜した When reaching the center CR of the region ER, the value of the stochastic parameter S is inclined as described above.
2 一 次分布にしたがう複屈折がどの光透過部材に存在するかに依存して約 0. 65〜: L 0 の間でばらつくことがわかった。 2 It was found that the birefringence according to the first-order distribution varies between about 0.65 and L 0 depending on which light transmitting member exists.
[0081] 一方、瞳位置においてスト一タスパラメータ S力^である光 Cが露光領域 ERの周辺 [0081] On the other hand, light C with the stochastic parameter S-force ^ at the pupil position is around the exposure area ER.
2 2
位置 P1に達する場合、スト一タスパラメータ Sの値は上述の傾斜一次分布にしたがう When the position P1 is reached, the value of the stochastic parameter S follows the sloped linear distribution described above.
2 2
複屈折がどの光透過部材に存在するかに依存して約 0. 83〜: L 0の間でばらつくこ とがわかった。また、瞳位置においてスト一タスパラメータ S力^である光 Dが露光領 It was found that the birefringence varies between about 0.83 and L0 depending on which light transmitting member exists. In addition, light D, which is the stochastic parameter S force ^ at the pupil position, is
2 2
域 ERの周辺位置 P1に達する場合、スト一タスパラメータ Sの値は上述の傾斜一次 When the peripheral position P1 of the area ER is reached, the value of the status parameter S is
2 2
分布にしたがう複屈折がどの光透過部材に存在するかに依存して約 0. 88〜: L 0の 間でばらつくことがわ力つた。 Depending on which light transmissive member has birefringence according to the distribution, it was found that it varied between about 0.88 and L0.
[0082] 上述した 2つの検証例の結果から、偏光状態切換部 3とマスク Mとの間の光路中の 光透過部材に、たとえば内部歪みに起因して回転対称な二次分布にしたがう複屈折 が発生すると、この回転対称な二次分布の複屈折がマスク M (ひいてはウェハ W)に 達する光の偏光状態に及ぼす影響はかなり大きいことがわかる。また、偏光状態切 換部 3とマスク Mとの間の光路中の光透過部材に、たとえば内部歪みに起因して傾 斜一次分布にしたがう複屈折が発生すると、この傾斜一次分布の複屈折がマスク M ( ひ!、てはウェハ W)に達する光の偏光状態に及ぼす影響は非常に大き 、ことがわか る。 [0082] From the results of the two verification examples described above, the birefringence of the light transmission member in the optical path between the polarization state switching unit 3 and the mask M follows, for example, a rotationally symmetric secondary distribution due to internal distortion. It can be seen that the effect of this rotationally symmetric second-order birefringence on the polarization state of the light reaching the mask M (and hence the wafer W) is considerable. In addition, when birefringence occurs in the light transmission member in the optical path between the polarization state switching unit 3 and the mask M, for example, due to internal distortion, according to the tilted linear distribution, the birefringence of the tilted primary distribution is reduced. It can be seen that the effect on the polarization state of the light reaching the mask M (H !, wafer W) is very large.
[0083] そこで、本実施形態では、第 1の手法として、偏光設定部(3, 7)中の偏光状態切 換部 3とマスク Mとの間の光路中に配置された各光透過部材を、内部歪みに起因し て発生する複屈折量が 5nmZcm以下に抑えられた光学材料で形成する。この構成 により、照明光路中における光の偏光状態の変化を良好に抑えて、所望の偏光状態 の光でマスク Mを照明することができ、ひ!、ては微細パターンをウェハ W上に所望の 偏光状態で結像させて忠実で且つ良好な露光を行うことができる。 Therefore, in the present embodiment, as a first method, each light transmitting member arranged in the optical path between the polarization state switching unit 3 and the mask M in the polarization setting unit (3, 7) is used. The birefringence generated due to internal strain is made of an optical material that is suppressed to 5 nmZcm or less. With this configuration, the change in the polarization state of light in the illumination optical path can be suppressed satisfactorily, and the mask M can be illuminated with light having a desired polarization state. It is possible to form an image in a polarized state and perform a faithful and good exposure.
[0084] 同様に、露光装置において光源 1から投影光学系 PLまでを照明光学装置と考え、 偏光設定部(3, 7)中の偏光状態切換部 3とウェハ Wとの間の光路中に配置された各
光透過部材を、内部歪みに起因して発生する複屈折量が 5nmZcm以下に抑えら れた光学材料で形成する。この構成により、照明光路中における光の偏光状態の変 化を良好に抑えて、所望の偏光状態の光でウェハ Wを照明することができ、ひいては 微細パターンをウェハ W上に所望の偏光状態で結像させて忠実で且つ良好な露光 を行うことができる。 Similarly, in the exposure apparatus, the light source 1 to the projection optical system PL are considered as an illumination optical apparatus, and are arranged in the optical path between the polarization state switching unit 3 in the polarization setting unit (3, 7) and the wafer W. Each The light transmitting member is made of an optical material in which the amount of birefringence generated due to internal strain is suppressed to 5 nmZcm or less. With this configuration, the change in the polarization state of the light in the illumination optical path can be suppressed satisfactorily, and the wafer W can be illuminated with light in the desired polarization state. As a result, a fine pattern can be illuminated on the wafer W in the desired polarization state. The image can be imaged and faithful and good exposure can be performed.
[0085] ところで、上述の説明では、内部歪みにより発生する複屈折の影響に着目している 力 光透過部材の保持に際して比較的大きな応力が外部から作用し、この外部応力 に応じて発生する複屈折性に起因して光透過部材を通過する光の偏光状態が変化 する。そこで、本実施形態では、第 2の手法として、偏光設定部(3, 7)中の偏光状態 切換部 3とマスク M (またはウェハ W)との間の光路中に配置された各光透過部材を、 外部応力に起因して発生する複屈折量が 5nmZcm以下に抑えられるように保持す る。この構成により、照明光路中における光の偏光状態の変化を良好に抑えて、所 望の偏光状態の光でマスク M (またはウェハ W)を照明することができ、ひいては微細 パターンをウェハ W上に所望の偏光状態で結像させて忠実で且つ良好な露光を行う ことができる。 By the way, in the above description, attention is paid to the influence of birefringence caused by internal strain. A relatively large stress is applied from the outside when holding the light transmitting member, and a complex stress generated according to the external stress is applied. The polarization state of the light passing through the light transmitting member changes due to refraction. Therefore, in the present embodiment, as a second method, each light transmitting member disposed in the optical path between the polarization state switching unit 3 in the polarization setting unit (3, 7) and the mask M (or wafer W). Is maintained so that the amount of birefringence generated due to external stress is suppressed to 5 nmZcm or less. With this configuration, it is possible to illuminate the mask M (or wafer W) with light of a desired polarization state while suppressing a change in the polarization state of the light in the illumination optical path, and thus a fine pattern on the wafer W. It is possible to form an image in a desired polarization state and perform a faithful and good exposure.
[0086] 具体的に、従来技術では、照明光路中に配置される光透過部材は、鏡筒内におい て円筒形状の間隔環により両側から挟まれる形態で保持されるのが一般的である。こ の場合、原理的には、光透過部材は光軸を中心とする円環状の領域に沿って連続 支持される。しかしながら、実際には、間隔環の端面 (光透過部材と当接する面)の製 造誤差などの影響により、光透過部材は円環状領域に沿って連続支持されることなく 、円環状領域に沿った複数の点領域 (特に意図して 、な 、領域)で支持されることに なる。 Specifically, in the prior art, the light transmitting member disposed in the illumination light path is generally held in a form that is sandwiched from both sides by a cylindrical spacing ring in the lens barrel. In this case, in principle, the light transmission member is continuously supported along an annular region centered on the optical axis. However, in reality, the light transmitting member is not continuously supported along the annular region due to the manufacturing error of the end face of the spacing ring (surface that contacts the light transmitting member). In addition, it is supported by a plurality of point regions (especially intended regions).
[0087] すなわち、従来技術では、図 8 (a)に示すように、光透過部材 50の一方の光学面側 に外部力 作用する主要な力 F1の位置と、光透過部材 50の他方の光学面側に外 部から作用する主要な力 F2の位置とがー致しない。その結果、図 8 (b)において等 高線で示すように、外部からの力 F1および F2に応答して光透過部材 50の有効領域 50aのほぼ全体に亘つて比較的大きな応力分布が生じ、この応力分布に応じて発生 する複屈折性に起因して光透過部材 50を通過する光の偏光状態が変化する。
[0088] これに対し、本実施形態では、図 9 (a)に示すように、光透過部材 50の一方の光学 面側を 3つの領域 51a〜51cで三点支持するとともに、光透過部材 50の他方の光学 面側を 3つの領域 51a〜51cにほぼ対向する 3つの領域 52a〜52cで三点支持する 。この場合、光透過部材 50の一方の光学面側に外部から作用する 3つの力 F3の位 置と、光透過部材 50の他方の光学面側に外部から作用する 3つの力 F4の位置とが ほぼ一致する。 That is, in the prior art, as shown in FIG. 8 (a), the position of the main force F1 acting on one optical surface side of the light transmitting member 50 and the other optical of the light transmitting member 50 The position of the main force F2 acting on the surface side from the outside does not match. As a result, as indicated by contour lines in FIG. 8 (b), a relatively large stress distribution is generated over almost the entire effective region 50a of the light transmitting member 50 in response to external forces F1 and F2. The polarization state of the light passing through the light transmitting member 50 changes due to the birefringence generated according to this stress distribution. On the other hand, in the present embodiment, as shown in FIG. 9 (a), the one optical surface side of the light transmitting member 50 is supported at three points by the three regions 51a to 51c, and the light transmitting member 50 is used. The other optical surface side is supported at three points by three regions 52a to 52c substantially opposite to the three regions 51a to 51c. In this case, the position of the three forces F3 acting on the one optical surface side of the light transmitting member 50 from the outside and the position of the three forces F4 acting on the other optical surface side of the light transmitting member 50 from the outside are provided. Almost matches.
[0089] したがって、図 9 (b)において等高線で示すように、外部からの力 F3および F4に応 答して光透過部材50の支持領域51&〜51じ(52&〜52(:)に集中した応力分布が生 じるだけで、有効領域 50aには実質的な応力分布が生じない。その結果、本実施形 態にしたがってほぼ対向する領域において三点支持された光透過部材では、応力 分布による複屈折性がほとんど発生することなぐひいては複屈折性に起因して通過 する光の偏光状態がほとんど変化することがな 、。 Accordingly, as shown by contour lines in FIG. 9 (b), the light transmitting member 50 is concentrated on the support regions 51 & ˜51 ( 52 & ˜52 ( :)) in response to the external forces F3 and F4. As a result of the stress distribution, there is no substantial stress distribution in the effective region 50a, and as a result, the light transmission member supported at three points in the substantially opposite regions according to the present embodiment is affected by the stress distribution. Almost no birefringence occurs, and hence the polarization state of light passing through the birefringence hardly changes.
[0090] 図 10は、本実施形態において光透過部材を両側から三点支持する保持部材の構 成を概略的に示す図である。本実施形態の保持部材は、保持すべき光透過部材 60 の一方の光学面側(図 10中上側)を 3つの領域(図 9の 51a〜51cに対応)で三点支 持するための 3つの支持部 71a〜71cを有する第 1間隔環 71と、光透過部材 60の他 方の光学面側(図 10中下側)を 3つの領域(図 9の 52a〜52cに対応)で三点支持す るための 3つの支持部 72a〜72cを有する第 2間隔環 72とを備えている。 FIG. 10 is a diagram schematically showing a configuration of a holding member that supports the light transmitting member from three sides in this embodiment. The holding member according to the present embodiment is for supporting three points on one optical surface side (the upper side in FIG. 10) of the light transmitting member 60 to be held in three regions (corresponding to 51a to 51c in FIG. 9). The first spacing ring 71 having two support portions 71a to 71c and the other optical surface side (the lower side in FIG. 10) of the light transmitting member 60 are divided into three areas (corresponding to 52a to 52c in FIG. 9). And a second spacing ring 72 having three support portions 72a to 72c for supporting.
[0091] ここで、第 1間隔環 71の 3つの支持部 71a〜71cはほぼ等角度間隔に設けられ、第 2間隔環 72の 3つの支持部 72a〜72cもほぼ等角度間隔に設けられている。さらに、 第 1間隔環 71と第 2間隔環 72とは、支持部 71aと支持部 72aとがほぼ対向するように 、ひいては支持部 71bおよび 71cと支持部 72bおよび 72cとがそれぞれほぼ対向す るように位置決めされている。こうして、保持部材(71, 72)により、ほぼ対向する 3つ の領域において光透過部材 60が両側力 三点支持される。 Here, the three support portions 71a to 71c of the first interval ring 71 are provided at substantially equal angular intervals, and the three support portions 72a to 72c of the second interval ring 72 are also provided at approximately equal angular intervals. Yes. Further, the first spacing ring 71 and the second spacing ring 72 are such that the support portion 71a and the support portion 72a are substantially opposed to each other, and consequently the support portions 71b and 71c and the support portions 72b and 72c are substantially opposite to each other. So that it is positioned. In this way, the light transmitting member 60 is supported by the holding force (71, 72) at three points on both sides in almost three regions facing each other.
[0092] 以上のように、本実施形態の照明光学装置(1〜13)では、光路中に配置された光 透過部材のうちの所要の光透過部材 (一般的には少なくとも 1つの光透過部材)を、 ほぼ対向する 3つの領域で両側から三点支持している。この場合、光透過部材の支 持領域に集中した応力分布が生じるだけで、光透過部材の有効領域には実質的な
応力分布が生じない。その結果、応力分布による複屈折性がほとんど発生することな ぐひいては複屈折性に起因して通過する光の偏光状態がほとんど変化することが ない。 As described above, in the illumination optical device (1-13) of the present embodiment, a required light transmitting member (generally at least one light transmitting member) among the light transmitting members arranged in the optical path. ) Is supported at three points from both sides in almost opposite areas. In this case, only a stress distribution concentrated on the support area of the light transmission member is generated, and the effective area of the light transmission member is substantially not increased. Stress distribution does not occur. As a result, almost no birefringence due to the stress distribution occurs, and as a result, the polarization state of the light passing therethrough hardly changes due to the birefringence.
[0093] こうして、本実施形態の照明光学装置(1〜13)では、光路中における光の偏光状 態の変化を良好に抑えて、所望の偏光状態または非偏光状態の光で被照射面とし てのマスク M (ひいてはウェハ W)を照明することができる。したがって、本実施形態 の露光装置では、所望の偏光状態または非偏光状態の光で被照射面としてのマスク Mを照明する照明光学装置(1〜13)を用いて、マスクパターンに応じた所望の照明 条件に基づいて微細パターンをウェハ (感光性基板) W上に忠実に転写することがで きる。 Thus, in the illumination optical device (1 to 13) of this embodiment, the change of the polarization state of the light in the optical path is satisfactorily suppressed, and the surface to be irradiated is irradiated with light in a desired polarization state or non-polarization state. All masks M (and thus wafer W) can be illuminated. Therefore, in the exposure apparatus according to the present embodiment, the illumination optical apparatus (1 to 13) that illuminates the mask M as the irradiated surface with light in a desired polarization state or non-polarization state, and a desired pattern according to the mask pattern. A fine pattern can be faithfully transferred onto a wafer (photosensitive substrate) W based on illumination conditions.
[0094] ところで、上述の実施形態では、オプティカルインテグレータとしてのマイクロフライ アイレンズ 10と被照射面としてのマスク Mとの間の光路中に配置される光透過部材 が径方向に大型化し易ぐ外部力 の力を受けたときに複屈折性に起因して通過す る光の偏光状態が変化し易い。したがって、光路中における光の偏光状態の変化を 良好に抑えるには、オプティカルインテグレータとしてのマイクロフライアイレンズ 10と 被照射面としてのマスク Mとの間の光路中に配置される光透過部材のうち、径方向 に比較的大型な光透過部材を保持部材により三点支持することが好ましい。 By the way, in the above-described embodiment, the light transmitting member arranged in the optical path between the micro fly's eye lens 10 as the optical integrator and the mask M as the irradiated surface is easily increased in size in the radial direction. When the force is applied, the polarization state of the light passing therethrough is likely to change due to the birefringence. Therefore, in order to satisfactorily suppress the change in the polarization state of the light in the optical path, among the light transmitting members disposed in the optical path between the micro fly's eye lens 10 as the optical integrator and the mask M as the irradiated surface, It is preferable that a relatively large light transmitting member in the radial direction is supported at three points by the holding member.
[0095] また、上述の実施形態において、図 10に示すように、光透過部材 60と隣り合う光透 過部材 61を保持部材(72, 73)によりほぼ対向する 3つの領域で両側から三点支持 する場合、保持部材 (71, 72)による光透過部材 60の三点支持位置と保持部材 (72 , 73)による光透過部材 61の三点支持位置とを光軸廻りに位置ずれさせることが好 ましい。この構成により、複数の光透過部材の三点支持の影響を光軸廻りの角度方 向に分散させることができ、ひ 、ては光路中における光の偏光状態の変化を良好に 抑えることができる。この点は、隣り合う光透過部材の間に限定されることなぐ一般に 複数の光透過部材について同様である。 Further, in the above-described embodiment, as shown in FIG. 10, the light transmitting member 61 adjacent to the light transmitting member 60 is arranged at three points from both sides in three regions that are substantially opposed by the holding members (72, 73). When supporting, the three-point support position of the light transmitting member 60 by the holding member (71, 72) and the three-point support position of the light transmitting member 61 by the holding member (72, 73) may be displaced around the optical axis. It is preferable. With this configuration, it is possible to disperse the influence of the three-point support of a plurality of light transmitting members in the angular direction around the optical axis, and thus it is possible to satisfactorily suppress changes in the polarization state of light in the optical path. . This point is generally the same for a plurality of light transmitting members without being limited between adjacent light transmitting members.
[0096] 以上のように、上述の実施形態において、光路中における光の偏光状態の変化を 良好に抑えるには、保持部材により三点支持された状態において、光透過部材の有 効領域における複屈折量は 5nmZcm以下であることが良い。さらに、図 11及び図 1
2に示すように、光透過部材 (60、 61)の代わりに、有効領域外の全周囲部に光軸 A Xと直交する面 62aを有する切欠き部 (加工部)が形成された光透過部材 62を用いる ことが好ましい。これにより、図 10に示すように、光透過部材(60、 61)の代わりに、光 透過部材 62の如く切欠き部 (加工部)が形成された 2つの光透過部材を 3点支持す ることにより、保持に起因する外部応力をより一層抑えることができる。 As described above, in the above-described embodiment, in order to satisfactorily suppress the change in the polarization state of light in the optical path, in the state where the light is supported by the holding member at the three points, the light transmission member in the effective region is duplicated. The amount of refraction should be 5nmZcm or less. Furthermore, Fig. 11 and Fig. 1 As shown in FIG. 2, instead of the light transmissive member (60, 61), a light transmissive member in which a notch (processed portion) having a surface 62a orthogonal to the optical axis AX is formed on the entire periphery outside the effective region. It is preferable to use 62. Thus, as shown in FIG. 10, instead of the light transmissive members (60, 61), two light transmissive members having notches (processed portions) formed like the light transmissive member 62 are supported at three points. Thereby, the external stress resulting from holding | maintenance can be suppressed further.
[0097] なお、保持による応力を低減させるため、支持部材等の金物部材が接する光透過 部材等の光学部材の支持部は、光軸 AXと垂直な平面部を光学部材の周辺部に加 ェにより施したものに限らず、光学部材の少なくとも片面が平面部のものであっても 良い。また、光学部材は加工がなされた平面部で支持部材により応力を受ける際、 径方向や回転方向にズレのない支持形態として、以上にて 3点支持の例を示したが 、これに限ることなぐ径方向や回転方向にズレのない支持形態を用いることができ れば何でも良い。 [0097] In order to reduce stress due to holding, the support portion of the optical member such as a light transmitting member that comes into contact with the metal member such as the support member adds a flat portion perpendicular to the optical axis AX to the peripheral portion of the optical member. The optical member is not limited to that described above, and at least one surface of the optical member may be a flat surface. In addition, when the optical member is subjected to stress by the support member at the processed flat part, the example of the three-point support has been shown above as a support form that does not shift in the radial direction or the rotation direction. Any support configuration can be used as long as it can be used without any deviation in the radial direction and the rotational direction.
[0098] 更に、支持を行った際、歪み計測機等で支持部近傍の光学部材の歪みを計測し、 その計測された歪みに基づき、応力で発生する複屈折量が 5nmZcm以下 (より好ま しくは 2nmZcm以下)となるように、押圧金物のトルクやばね定数を調整する工程を 実施することが更に望ましい。さらには、図 11及び図 12に示すように、光透過部材 6 2の有効領域から 3mm以上離れた個所 (周縁部)に光軸 AXと直交する面 62aを有 する切欠き部を形成すれば、光透過部材 62を保持することによる外部応力をより一 層確実に低減できる。 [0098] Further, when the support is performed, the strain of the optical member in the vicinity of the support portion is measured with a strain measuring instrument or the like, and based on the measured strain, the amount of birefringence generated by the stress is 5 nmZcm or less (more preferably It is more desirable to carry out the process of adjusting the torque and spring constant of the pressed metal so that the pressure is 2 nmZcm or less. Furthermore, as shown in FIGS. 11 and 12, if a notch having a surface 62a orthogonal to the optical axis AX is formed at a location (peripheral edge) 3 mm or more away from the effective area of the light transmitting member 62, In addition, the external stress caused by holding the light transmitting member 62 can be further reliably reduced.
[0099] なお、第 1の手法では、内部歪みに起因して発生する複屈折量が 2nmZcm以下 に抑えられた光学材料を用いて各光透過部材を形成することが好ましい。また、第 2 の手法では、外部応力に起因して発生する複屈折量が 2nmZcm以下に抑えられる ように各光透過部材を保持することが好ましい。この場合、照明光路中における光の 偏光状態の変化をさらに良好に抑え、ひいては微細パターンをウェハ W上に所望の 偏光状態で結像させてさらに忠実で且つさらに良好な露光を行うことができる。さらに は、第 1手法と第 2手法とを組み合わせることにより、相乗的効果が期待できる。 [0099] In the first method, it is preferable to form each light transmitting member using an optical material in which the amount of birefringence generated due to internal strain is suppressed to 2 nmZcm or less. In the second method, it is preferable to hold each light transmitting member so that the amount of birefringence generated due to external stress is suppressed to 2 nmZcm or less. In this case, the change in the polarization state of the light in the illumination optical path can be further suppressed, and as a result, the fine pattern can be imaged on the wafer W in the desired polarization state, so that more faithful and better exposure can be performed. Furthermore, a synergistic effect can be expected by combining the first and second methods.
[0100] また、上述の説明では、内部歪みや外部応力により発生する複屈折の影響に着目 して 、るが、結像光学系 13の光路中に配置された一対の折り曲げミラー M 1および
M2では比較的広い入射角度範囲に亘つて光線が入射するため P偏光と S偏光との 間に反射により発生する位相差 (P— S位相差)が発生し、ひいては折り曲げミラー M 1および M2を通過する光の偏光状態が変化する。そこで、本実施形態では、第 3の 手法として、反射膜に対して P偏光で入射する光と S偏光で入射する光と間に反射に より発生する位相差が反射膜に入射するすべての光線について 15度以内になるよう に、折り曲げミラー Mlおよび M2をそれぞれ形成する。 [0100] In the above description, while focusing on the influence of birefringence generated by internal strain and external stress, the pair of folding mirrors M1 disposed in the optical path of the imaging optical system 13 and In M2, a light beam is incident over a relatively wide incident angle range, so that a phase difference (P—S phase difference) caused by reflection occurs between P-polarized light and S-polarized light. The polarization state of the passing light changes. Therefore, in the present embodiment, as a third method, a phase difference generated by reflection between the light incident on the reflective film with P-polarized light and the light incident with S-polarized light is all the rays incident on the reflective film. Folding mirrors Ml and M2 are formed to be within 15 degrees.
[0101] この構成により、これらの折り曲げミラー Mlおよび M2を含む照明光路中における 光の偏光状態の変化を良好に抑えて、所望の偏光状態の光でマスク M (またはゥ ハ W)を照明することができ、ひいては微細パターンをウェハ W上に所望の偏光状態 で結像させて忠実で且つ良好な露光を行うことができる。なお、第 3の手法では、 P偏 光と S偏光と間に反射により発生する位相差を 10度以内に抑えることが好ましい。こ の場合、折り曲げミラー Mlおよび M2における光の偏光状態の変化をさらに良好に 抑え、ひいては微細パターンをウェハ W上に所望の偏光状態で結像させてさらに忠 実で且つさらに良好な露光を行うことができる。 [0101] With this configuration, the change in the polarization state of the light in the illumination optical path including these bending mirrors Ml and M2 is satisfactorily suppressed, and the mask M (or woofer W) is illuminated with light in the desired polarization state. As a result, a fine pattern can be imaged on the wafer W in a desired polarization state, and faithful and satisfactory exposure can be performed. In the third method, it is preferable to suppress the phase difference generated by reflection between P-polarized light and S-polarized light within 10 degrees. In this case, the change in the polarization state of the light in the bending mirrors Ml and M2 is further suppressed, and as a result, a fine pattern is imaged on the wafer W in the desired polarization state, thereby performing more loyal and better exposure. be able to.
[0102] ところで、たとえば内部歪みに起因して回転非対称な分布 (典型的には傾斜分布) にしたがう複屈折が複数の光透過部材に発生すると、これらの光透過部材における 複屈折分布の組合せによっては、フィールド内の偏光状態(ウェハ W上の露光領域 E R内の各位置に関する瞳面内の偏光状態)が実質的に不均一になったり、瞳面内の 偏光状態が所望の偏光状態 (たとえば周方向偏光状態)から実質的に異なる状態に 変化したりすることがある。フィールド内の偏光状態が実質的に不均一になる (たとえ ば露光領域 ERの中心に達する光に関する瞳面内の偏光状態と露光領域 ERの周辺 に達する光に関する瞳面内の偏光状態とが実質的に異なる)と、ウェハ W上に形成さ れるパターンの線幅が露光領域 ER内の位置毎にばらついて、いわゆるフィールド内 線幅差が発生することになる。 [0102] By the way, when birefringence occurs in a plurality of light transmission members due to, for example, a rotationally asymmetric distribution (typically a gradient distribution) due to internal strain, the combination of the birefringence distributions in these light transmission members The polarization state in the field (the polarization state in the pupil plane for each position in the exposure area ER on the wafer W) becomes substantially non-uniform, or the polarization state in the pupil plane is a desired polarization state (for example, Or change from a circumferentially polarized state) to a substantially different state. The polarization state in the field becomes substantially non-uniform (for example, the polarization state in the pupil plane for light reaching the center of the exposure area ER and the polarization state in the pupil plane for light reaching the periphery of the exposure area ER are substantially different. The line width of the pattern formed on the wafer W varies from position to position in the exposure region ER, so that a so-called field width difference is generated.
[0103] また、瞳面内の偏光状態が所望の偏光状態から実質的に異なる状態に変化すると 、たとえばウェハ W上において縦方向に沿って細長く延びるパターンと横方向に沿つ て細長く延びるパターンとの間で線幅がばらついて、いわゆる VH線幅差が発生する ことになる。そこで、本実施形態では、第 4の手法として、偏光設定部(3, 7)中の偏
光状態切換部 3とマスク M (またはウェハ W)との間の光路中に配置された各光透過 部材において内部歪みに起因して発生する複屈折の影響を相殺により低減するた めに、光軸 AXを中心とした所要の回転角度位置に各光透過部材をそれぞれ位置決 めする。 [0103] Further, when the polarization state in the pupil plane changes from a desired polarization state to a substantially different state, for example, a pattern extending elongated along the vertical direction on the wafer W and a pattern extending elongated along the horizontal direction. The line width varies between the so-called VH line width differences. Therefore, in this embodiment, as a fourth method, the polarization in the polarization setting unit (3, 7) is set. In order to reduce the effect of birefringence caused by internal distortion in each light transmitting member arranged in the optical path between the optical state switching unit 3 and the mask M (or wafer W) by canceling, Each light transmitting member is positioned at a required rotational angle position about the axis AX.
[0104] この構成により、照明光路中における光の偏光状態の変化を良好に抑えて、所望 の偏光状態の光でマスク M (またはウェハ W)を照明することができ、ひいては微細パ ターンをウェハ W上に所望の偏光状態で結像させて忠実で且つ良好な露光を行うこ とができる。さらに具体的には、上述のクロッキング手法により、フィールド内の偏光状 態がほぼ均一になるように調整してフィールド内線幅差の発生を抑えるとともに、瞳 面内の偏光状態が所望の偏光状態に近づくように調整して VH線幅差の発生を抑え ることがでさる。 [0104] With this configuration, it is possible to illuminate the mask M (or wafer W) with light in a desired polarization state while suppressing a change in the polarization state of light in the illumination optical path, and in turn, to apply a fine pattern to the wafer. It is possible to form an image with a desired polarization state on W and to perform a faithful and good exposure. More specifically, the above-mentioned clocking method is used to adjust the polarization state in the field to be almost uniform, thereby suppressing the occurrence of the line width difference in the field, and the polarization state in the pupil plane to the desired polarization state. It is possible to suppress the occurrence of the VH line width difference by adjusting the distance closer to.
[0105] 上述の第 1〜第 4の手法はそれぞれ単独で適用しても良いし、 2つ以上の手法を適 宜組み合わせて適用することもできる。以下、本実施形態にかかる照明光学装置の 製造方法について説明する。図 13は、本実施形態にかかる照明光学装置の製造方 法の各工程を示すフローチャートである。図 13を参照すると、本実施形態の製造方 法では、たとえば石英のような光学材料力もなるインゴットを製造する(Sl)。具体的 に、石英力 なるインゴットは例えばスート法や直接法を用いて得られる力 その詳細 については国際公開 WO00Z41226号公報などを参照することができる。 [0105] The first to fourth methods described above may be applied independently, or two or more methods may be applied in an appropriate combination. Hereinafter, a method for manufacturing the illumination optical apparatus according to the present embodiment will be described. FIG. 13 is a flowchart showing each step of the method for manufacturing the illumination optical apparatus according to the present embodiment. Referring to FIG. 13, in the manufacturing method of the present embodiment, an ingot having an optical material force such as quartz is manufactured (Sl). Specifically, for the ingot of quartz force, for example, the force obtained by using the soot method or the direct method, the details can be referred to International Publication WO00Z41226.
[0106] 次いで、製造工程 S1で得られたインゴットを切断 (切り出し加工)して、照明光学装 置中の各光透過部材を形成するためのバルク材を準備する(S2)。ここで、 「バルタ 材」とは、インゴットから切り出したままのものや、対応する光透過部材の大きさおよび 形状に応じてある程度加工されたものを含む概念である。具体的に、形成すべき光 透過部材がレンズである場合には、バルク材の形伏を薄い円柱形状とすることが好ま しぐ円柱形伏のバルク材(すなわちディスク材)の口径および厚さは、レンズの有効 径 (外径)および光軸方向の厚さに合わせて定められることが望ま 、。準備工程 S 2 では、インゴットより切り出されたバルク材に対して、必要に応じてァニール処理を行 [0106] Next, the ingot obtained in the manufacturing step S1 is cut (cut out) to prepare a bulk material for forming each light transmitting member in the illumination optical device (S2). Here, the “balta material” is a concept including a material cut out from an ingot and a material processed to some extent according to the size and shape of the corresponding light transmitting member. Specifically, when the light transmitting member to be formed is a lens, it is preferable that the bulk material has a thin cylindrical shape. The diameter and thickness of the cylindrical material (ie, disk material) of the cylindrical shape is preferable. It is desirable that it is determined according to the effective diameter (outer diameter) of the lens and the thickness in the optical axis direction. In preparation step S 2, annealing is performed on the bulk material cut out from the ingot as necessary.
[0107] 次 、で、準備工程 S2で得られた各バルタ材の複屈折量を測定する(S3)。具体的
に、測定工程 S3では、各バルク材の進相軸方向および複屈折量 (単位距離だけ透 過したときに内部歪みに起因して P偏光と S偏光との間に発生する位相差量)の分布 を測定する。なお、バルク材の進相軸方向および複屈折量の測定については、たと えば国際公開 WO00Z41226号公報や WO03Z007045号公報を参照することが できる。 Next, the birefringence amount of each Baltha material obtained in the preparation step S2 is measured (S3). concrete In addition, in measurement step S3, the fast axis direction and birefringence amount of each bulk material (the amount of phase difference generated between P-polarized light and S-polarized light due to internal distortion when transmitted through a unit distance) are measured. Measure the distribution. For the measurement of the fast axis direction and birefringence amount of the bulk material, for example, International Publications WO00Z41226 and WO03Z007045 can be referred to.
[0108] 次いで、 1つの照明光学装置を構成するための光透過部材とバルク材との組合せ を想定する(S4)。具体的に、組合せ想定工程 S4では、照明光学装置を構成するの に用いるべきバルク材のセット (組合せ)を初期的に選定し、このセットにおける各バ ルク材の光軸廻りの回転角度位置を初期的に決定する。組合せ想定工程 S4では、 バルク材のセットが複数想定されることになる力 以下の説明ではバルク材の 1つの セットに着目する。 Next, a combination of a light transmissive member and a bulk material for constituting one illumination optical device is assumed (S4). Specifically, in the combination assumption process S4, a set (combination) of bulk materials to be used to configure the illumination optical device is initially selected, and the rotation angle position of each bulk material around the optical axis in this set is determined. Determine early. In the assumed combination process S4, the force that would result in multiple sets of bulk materials. In the following explanation, we focus on one set of bulk materials.
[0109] こうして、本実施形態の製造方法では、組合せ想定工程 S4で初期的に想定したバ ルク材のセットを用いた場合に照明光路中における光の偏光状態の変化を所望の範 囲内に抑えることができる力否かをシミュレーションにより評価する(S5)。具体的に、 評価工程 S5では、たとえば各レンズ (一般には光透過部材)のデータ(曲率半径,中 心厚,空気間隔,屈折率など)、折り曲げミラー (Ml, M2)の反射膜の入射角に対 する P— S位相差の設計値 (または計測値)、測定工程 S3で得られた各バルク材の 測定結果 (進相軸方位,複屈折量の分布)を参照し、照明光路中における光の偏光 状態の変化を算出する。 Thus, in the manufacturing method of the present embodiment, the change in the polarization state of light in the illumination optical path is suppressed within a desired range when the set of bulk materials initially assumed in the combination assumption step S4 is used. It is evaluated by simulation whether or not it is possible (S5). Specifically, in the evaluation step S5, for example, data (curvature radius, center thickness, air gap, refractive index, etc.) of each lens (generally a light transmitting member), incident angle of the reflecting film of the bending mirror (Ml, M2) Referring to the design value (or measurement value) of P—S phase difference and the measurement results of each bulk material obtained in measurement step S3 (phase axis orientation, birefringence distribution), The change in the polarization state of light is calculated.
[0110] ところで、偏光状態を記述する方法として、スト一タスパラメータ(S , S , S , S )を [0110] By the way, as a method of describing the polarization state, the stochastic parameters (S, S, S, S) are
0 1 2 3 用いることができる。ここで、 Sは光の全強度 (I +1 )、 Sは横偏光と縦偏光との 0 1 2 3 Can be used. Where S is the total light intensity (I +1) and S is the horizontal and vertical polarization
0 0° 90° 1 0 0 ° 90 ° 1
強度差 (I I )、 Sは 45° 偏光と 135° 偏光との強度差 (I I )、Sは右回 Intensity difference (I I), S is the intensity difference (I I) between 45 ° polarized light and 135 ° polarized light, S is clockwise
0° 90° 2 45° 135° 3 偏光と左回偏光との強度差 (I I )として定義される。また、 Sを 1に正規ィ匕した 右回 左回 0 0 ° 90 ° 2 45 ° 135 ° 3 Defined as the intensity difference (I I) between polarized and left-handed polarized light. In addition, S is normalized to 1 right turn left turn 0
基準化ストークスパラメータ(S を いることができ You can use the normalized Stokes parameter (S
1,, S 1,, S
2,, S,) 用 る。ここで、 s 2, S,). Where s
3 1,二 s 3 1, 2 s
1 Z sであり、 1 Z s
0 s 2, =s 2 Zsであり、 0 s 2, = s 2 Zs,
0 s 3, =s 3 Zsである。 0 s 3 = s 3 Zs.
0 0
[0111] 評価工程 S5では、図 14 (a)に示すように、光学系の入射瞳の矩形格子点に光線 を入射させる。このとき、図 14 (b)に示すように全ての入射光線が横偏光である場合 、その基準化スト一タスパラメータ(S ' , S ' , S ' ) = (1, 0, 0)である。評価工程 S5
では、偏光光線追跡を試みることにより、光透過部材の内部歪みに起因する複屈折 の影響や折り曲げミラー(Ml, M2)の反射膜の P— S位相差の影響により入射瞳へ の入射光線の偏光状態がどのように変化する力を算出する。 [0111] In the evaluation step S5, as shown in FIG. 14 (a), a light beam is incident on a rectangular lattice point of the entrance pupil of the optical system. At this time, as shown in Fig. 14 (b), when all incident rays are laterally polarized, the normalized stochastic parameters (S ', S', S ') = (1, 0, 0) . Evaluation process S5 Then, by trying to track the polarized light, the incident light to the entrance pupil is affected by the birefringence due to the internal distortion of the light transmitting member and the P—S phase difference of the reflecting film of the bending mirror (Ml, M2). The force that changes the polarization state is calculated.
[0112] こうして、入射瞳の矩形格子点に対応して、図 14 (c)に示すように射出瞳の偏光マ ップが求められる。具体的に、入射瞳の矩形格子点の各光線について、入射偏光状 態 (S,, S,, S ,) = (1, 0, 0)から射出偏光状態 (S ", S ", S ")が求まる。評価ェThus, a polarization map of the exit pupil is obtained corresponding to the rectangular lattice point of the entrance pupil, as shown in FIG. 14 (c). Specifically, for each ray at the rectangular grid point of the entrance pupil, the incident polarization state (S, S, S,) = (1, 0, 0) to the exit polarization state (S ", S", S " ) Is obtained.
1 2 3 1 2 3 1 2 3 1 2 3
程 S5では、入射横偏光成分 S ' =S(in)とし、射出横偏光成分 S " = S(out)とし、 S(ou In step S5, the incident lateral polarization component S ′ = S (in), the exit lateral polarization component S ″ = S (out), and S (ou
1 1 1 1
t)/S(in) =S VS '≥0. 8であれば、照明光路中における光の偏光状態の変化が t) / S (in) = S VS '≥0.8, the change in the polarization state of the light in the illumination path
1 1 1 1
所望の範囲内に抑えられているものと評価する。 Evaluated as being within the desired range.
[0113] また、図 14 (d)に示すように、光学系の入射瞳の矩形格子点に縦偏光の光線を入 射させる場合も同様に、 S(out)/S(in) =S VS '≥0. 8であれば、照明光路中に [0113] As shown in Fig. 14 (d), S (out) / S (in) = S VS is also applied when vertically polarized light is incident on the rectangular lattice point of the entrance pupil of the optical system. If ≥0.8, in the illumination light path
1 1 1 1
おける光の偏光状態の変化が所望の範囲内に抑えられているものと評価する。なお 、上述したように、高開口数の投影光学系の結像性能を向上させるには、周方向偏 光状態を用いることが有効である。そこで、評価工程 S5では、図 15 (a)に示すように 、入射瞳を 4分割し、全体として周方向偏光状態になるように、瞳分割領域毎に偏光 方向の異なる光線を入射させてもよい。ただし、図 15 (a)では、説明の簡単のために 矩形格子点の一部を省略して ヽる。 It is evaluated that the change in the polarization state of light is suppressed within a desired range. As described above, in order to improve the imaging performance of the projection optical system having a high numerical aperture, it is effective to use the circumferentially polarized state. Therefore, in the evaluation step S5, as shown in FIG. 15 (a), even if the entrance pupil is divided into four parts and light beams having different polarization directions are incident on each pupil division region so as to be in the circumferential polarization state as a whole. Good. However, in Fig. 15 (a), some of the rectangular grid points are omitted for simplicity of explanation.
[0114] この場合、瞳分割領域 Aおよび Bには横偏光の光線が入射し、瞳分割領域 Cおよ び Dには縦偏光の光線が入射する。したがって、入射光線の基準化スト一タスパラメ ータ(S,, S,, S,)は、領域 Aおよび Bでは(1, 0, 0)になり、領域 Cおよび Dでは([0114] In this case, laterally polarized light is incident on pupil division regions A and B, and longitudinally polarized light is incident on pupil division regions C and D. Therefore, the standardized stochastic parameters (S,, S,, S,) of the incident light are (1, 0, 0) in regions A and B, and in regions C and D (
1 2 3 one two Three
1, 0, 0)になる。そして、入射光線の偏光状態が完全に維持される理想状態では 、領域 Aおよび Bに対応する射出光線の基準化スト一タスパラメータ(S ", S ", S ") 1, 0, 0). Then, in the ideal state where the polarization state of the incident light is completely maintained, the standardized status parameters (S ", S", S ") of the outgoing light corresponding to the regions A and B
1 2 3 one two Three
= (1, 0, 0)となり、領域 Cおよび Dに対応する射出光線の基準化スト一タスパラメ一 タ(S ", S ", S ") = (- 1, 0, 0)となる。こうして、この場合においても、 S(out)ZS(in= (1, 0, 0), and the normalized stochastic parameters (S ", S", S ") = (-1, 0, 0) of the outgoing rays corresponding to regions C and D. In this case, S (out) ZS (in
1 2 3 one two Three
) =S VS '≥0. 8であれば、照明光路中における光の偏光状態の変化が所望の ) = S VS '≥0.8, the desired change in the polarization state of the light in the illumination path
1 1 1 1
範囲内に抑えられているものと評価する。 Evaluated as being within the range.
[0115] 同様に、図 15 (b)に示すように、入射瞳を 8分割し、全体として周方向偏光状態に なるように、瞳分割領域毎に偏光方向の異なる光線を入射させてもよい。ただし、図 1
5 (b)においても、説明の簡単のために矩形格子点の一部を省略している。この場合 、入射光線の基準化スト一タスパラメータ(S,, S,, S,)は、瞳分割領域 Aおよび B [0115] Similarly, as shown in FIG. 15 (b), the entrance pupil may be divided into eight, and light beams having different polarization directions may be incident on each pupil division region so as to be in a circumferential polarization state as a whole. . However, Figure 1 In FIG. 5 (b), part of the rectangular lattice points is omitted for the sake of simplicity. In this case, the incident light normalization status parameters (S, S, S, S)
1 2 3 one two Three
では(1, 0, 0)になり、瞳分割領域 Cおよび Dでは(一 1, 0, 0)になり、瞳分割領域 E および Fでは(0, 1, 0)になり、瞳分割領域 Gおよび Hでは(0, - 1, 0)になる。 Is (1, 0, 0), pupil division regions C and D are (one 1, 0, 0), pupil division regions E and F are (0, 1, 0), and pupil division region G And for H and (0,-1, 0).
[0116] そして、入射光線の偏光状態が完全に維持される理想状態では、領域 Aおよび B に対応する射出光線の基準化スト一タスパラメータ(S ", S ", S ") = (1, 0, 0)とな [0116] Then, in an ideal state where the polarization state of the incident light beam is completely maintained, the normalized light emission status parameters (S ", S", S ") = (1, 0, 0)
1 2 3 one two Three
り、領域 Cおよび Dに対応する射出光線の基準化スト一タスパラメータ(S ", S ", S " , The normalized ray-stamp parameters (S ", S", S "
1 2 3 one two Three
) = (ー1, 0, 0)となり、領域 Eおよび Fに対応する射出光線の基準化スト一タスパラメ ータ(S ", S ", S ") = (0, 1, 0)となり、領域 Gおよび Hに対応する射出光線の基準) = (−1, 0, 0), and the standardized stochastic parameters (S “, S“, S “) = (0, 1, 0) of the exit rays corresponding to regions E and F Emission ray criteria for G and H
1 2 3 one two Three
ィ匕ストークスパラメータ(S ", S ", S ") = (0, - 1, 0)となる。こうして、領域 A〜Dに 匕 Stokes parameters (S ", S", S ") = (0,-1, 0).
1 2 3 one two Three
対応して S(out)ZS(in)二 S "ZS,≥0. 8であり、領域 E〜Hに対応して S(out)ZS(in Corresponding to S (out) ZS (in) 2 S "ZS, ≥0.8, corresponding to region E ~ H, S (out) ZS (in
1 1 1 1
)=S 照明光路中における光の偏光状態の変化が所望の ) = S Change in the polarization state of light in the illumination light path is desired.
2 VS '≥0. 8であれば、 2 If VS '≥0.8, then
2 2
範囲内に抑えられているものと評価する。 Evaluated as being within the range.
[0117] なお、上述の説明では、入射瞳の光線マップ毎に偏光指標 (評価指標)を決めて 最適化の基準を示している。実際の照明光学装置では、二次光源が円形状、輪帯 形状、 4極形状などになり、入射瞳面内で面積を持っている。したがって、評価工程 S 5では、各二次光源において、その開口内に含まれる光線の偏光指標 S(out)ZSGn) の平均値が 0. 8以上であることを最適化の基準とする。また、上述の説明では、照明 領域内の 1点に関する瞳内光線マップの偏光状態について述べているが、照明領域 の全体に亘つて偏光指標 S(out)ZSGn)の平均値が 0. 8以上であることを最適化の 基準とする。 In the above description, a polarization index (evaluation index) is determined for each ray map of the entrance pupil, and an optimization criterion is shown. In an actual illumination optical device, the secondary light source has a circular shape, an annular shape, a quadrupole shape, etc., and has an area in the entrance pupil plane. Therefore, in the evaluation step S5, the optimization criterion is that the average value of the polarization index S (out) ZSGn) of the light rays contained in the aperture of each secondary light source is 0.8 or more. In the above description, the polarization state of the intra-pupil ray map for one point in the illumination area is described, but the average value of the polarization index S (out) ZSGn) is 0.8 or more over the entire illumination area. Is the standard for optimization.
[0118] さらに、評価工程 S5では、照明領域内の各点に関する偏光指標 S(0Ut)ZS(in)の 平均値のばらつき幅が 0. 05以下であることも最適化の基準とする。なお、上述の評 価工程 S5は、簡単のために、マスクブラインド 12とマスク Mとの間の部分光学系を対 象としている。これは、この部分光学系が、折り曲げミラー(Ml, M2)、および内部歪 みの影響を無視することのできない径の大きなレンズを有する力もである。 [0118] Further, in the evaluation step S5, the optimization criterion is that the variation width of the average value of the polarization index S ( 0Ut ) ZS (in) for each point in the illumination region is 0.05 or less. Note that the evaluation step S5 described above is for the partial optical system between the mask blind 12 and the mask M for simplicity. This is also the force that this partial optical system has a bending mirror (Ml, M2) and a lens with a large diameter that cannot ignore the influence of internal distortion.
[0119] 以上のように、評価工程 S5では、組合せ想定工程 S4において初期的に選定した バルク材のセットを各光透過部材にカ卩ェし且つ初期的に決定した回転角度位置に
各光透過部材をそれぞ; m立置決めした場合に、上述した最適化の基準を満たすこと ができるか否かを、ひいては照明光路中における光の偏光状態の変化が所望の範 囲内に抑えられるか否かを評価する。評価結果が肯定的である場合(図 13中 YES の場合)、各バルク材を加工して各光透過部材を形成する加工工程 S6へ進む。 [0119] As described above, in the evaluation step S5, the bulk material set initially selected in the combination assumption step S4 is cast on each light transmitting member and is initially set to the rotation angle position. When each of the light transmitting members is installed, whether or not the above-mentioned optimization criteria can be satisfied is suppressed, so that the change in the polarization state of the light in the illumination optical path is suppressed within a desired range. Evaluate whether or not If the evaluation result is affirmative (YES in FIG. 13), the process proceeds to processing step S6 in which each bulk material is processed to form each light transmitting member.
[0120] 一方、評価結果が否定的である場合(図 13中 NGの場合)、任意のバルク材 (光透 過部材)の回転角度位置を変更する(S 7)。すなわち、変更工程 S7では、フィールド 内の偏光状態がほぼ均一になるように調整するとともに瞳面内の偏光状態が所望の 偏光状態に近づくように調整するために、前述したクロッキング手法を適用する。そし て、上記任意の光透過部材を変更後の回転角度位置に位置決めし直した場合に、 照明光路中における光の偏光状態の変化が所望の範囲内に抑えられる力否かを評 価する。例えば、ここでは、クロッキング手法による各バルク材 (光透過部材)の基準 軸 (光軸)廻りの回転角度位置の最適化により、内部歪みによる複屈折量を適切に抑 えるべき光学系の光軸に非対称な複屈折分布を最適化させ得るか否かを評価する。 On the other hand, if the evaluation result is negative (NG in FIG. 13), the rotational angle position of an arbitrary bulk material (light transmitting member) is changed (S 7). That is, in the changing step S7, the above-described clocking method is applied in order to adjust the polarization state in the field to be substantially uniform and adjust the polarization state in the pupil plane to approach the desired polarization state. . Then, it is evaluated whether or not it is possible to suppress the change in the polarization state of the light in the illumination optical path within a desired range when the arbitrary light transmitting member is repositioned at the rotation angle position after the change. For example, here, by optimizing the rotational angle position around the reference axis (optical axis) of each bulk material (light transmissive member) by the clocking method, the light of the optical system that should appropriately suppress the amount of birefringence due to internal distortion It is evaluated whether or not a birefringence distribution that is asymmetric about the axis can be optimized.
[0121] 評価結果が肯定的である場合には加工工程 S6へ進む力 評価結果が否定的であ る場合には、肯定的な評価結果が得られるまで変更工程 S7と評価工程 S5とを繰り 返す。評価工程 S5において肯定的な評価結果が得られた場合、上述したようにカロ ェ工程 S6にお 、て各バルク材をカ卩ェして各光透過部材を形成し、加工工程 S6を経 て形成された各光透過部材を、評価工程 S5において最適化された回転角度位置に それぞれ設定して組み込む(S8)。 [0121] Force to proceed to machining step S6 when the evaluation result is affirmative If the evaluation result is negative, change step S7 and evaluation step S5 are repeated until a positive evaluation result is obtained. return. When a positive evaluation result is obtained in the evaluation step S5, as described above, each light transmitting member is formed by covering each bulk material in the calorie step S6, and after passing through the processing step S6. Each formed light transmitting member is set and incorporated at the rotation angle position optimized in the evaluation step S5 (S8).
[0122] なお、上述した本実施形態の製造方法では、評価工程 S5において肯定的な評価 結果を得ることが困難な場合、図 13に示すように、任意のバルク材を例えば他のセッ トのバルク材と変更し(S9)、ひいてはバルク材の組合せを変更してもよい。また、第 2 変更工程 S 9では、任意のバルク材を、最適化の基準を満たすための所望の複屈折 分布が付与されたバルク材に変更することもできる。以下、所望の複屈折分布を付与 する手法につ!、て簡単に説明する。 [0122] In the manufacturing method of the present embodiment described above, when it is difficult to obtain a positive evaluation result in the evaluation step S5, as shown in FIG. The bulk material may be changed (S9), and the combination of the bulk materials may be changed. In the second modification step S9, an arbitrary bulk material can be changed to a bulk material provided with a desired birefringence distribution for satisfying the optimization criteria. The technique for giving the desired birefringence distribution is briefly described below.
[0123] 例えば石英またはフッ素がドープされた石英(以下、「改質石英」と称する)のような 非結晶材料で形成された非結晶透過部材の場合、その理想的な状態では複屈折性 が発生しない。し力しながら、石英または改質石英では、不純物が混入した場合や、
高温で形成された石英を冷却する際に温度分布が生じた場合には、内部応力による 複屈折性が現れる。 [0123] In the case of an amorphous transparent member made of an amorphous material such as quartz or fluorine-doped quartz (hereinafter referred to as "modified quartz"), birefringence is ideal in its ideal state. Does not occur. However, in quartz or modified quartz, when impurities are mixed, When temperature distribution occurs when cooling quartz formed at high temperature, birefringence due to internal stress appears.
[0124] したがって、インゴットに混入させる不純物の量や種類、または熱履歴を調整するこ とにより、石英または改質石英に所望の複屈折分布を発生させることができる。換言 すれば、製造時における不純物、熱履歴による密度分布のうちの少なくとも一方を調 整することにより、光軸に関して回転対称 (または非回転対称)な所望の複屈折分布 を非結晶透過部材に付与することができる。 Therefore, by adjusting the amount and type of impurities mixed in the ingot or the thermal history, a desired birefringence distribution can be generated in quartz or modified quartz. In other words, a desired birefringence distribution that is rotationally symmetric (or non-rotational symmetric) with respect to the optical axis is imparted to the amorphous transmission member by adjusting at least one of the density distribution due to impurities and thermal history during manufacturing. can do.
[0125] なお、不純物としては、 OH、 Cl、金属不純物、溶存ガスが挙げられ、ダイレクト法 (D irect Method)の場合は、数百 ppm以上含有される OH、次いで数十 ppm含有される C1が混入量力も支配的であると考えられる。この不純物力インゴットに混入した場合 には材料の熱膨張率が変化するので、例えばァニール後に冷却する場合には、不 純物が混入した部分の縮み方が大きくなり、この縮み方の差による内部応力が発生 し、応力複屈折が生じる。また、熱履歴に関しては、上記ダイレクト法、 VAD(vapor a xial deposition)法、ゾルゲル (so卜 gel)法、プラズマパーナ (plasma burner)法などの製 造方法によらずに存在する。 [0125] Examples of impurities include OH, Cl, metal impurities, and dissolved gases. In the case of the direct method, OH is contained in several hundred ppm or more, and then contained in several tens of ppm. However, it is considered that the mixing power is also dominant. When the impurities are mixed into the ingot, the coefficient of thermal expansion of the material changes. For example, when cooling after annealing, the shrinkage of the portion where impurities are mixed increases, and the internal difference due to the difference in shrinkage Stress is generated and stress birefringence occurs. In addition, the thermal history exists regardless of the production method such as the direct method, the VAD (vapor axial deposition) method, the sol-gel method, or the plasma burner method.
[0126] また、上述した本実施形態の製造方法では、評価工程 S5を経てから、各バルク材 をカロェして各光透過部材を形成する加工工程 S6を行っている。し力しながら、これ に限定されることなぐたとえば測定工程 S3の後に評価工程 S5に先立って、あるい は評価工程 S5と並行的に加工工程 S6を行うこともできる。 [0126] Further, in the manufacturing method of the present embodiment described above, after the evaluation step S5, the processing step S6 in which each bulk material is formed by caloeing each bulk material is performed. However, without being limited thereto, for example, the measuring step S3 may be followed by the machining step S6 prior to the evaluation step S5 or in parallel with the evaluation step S5.
[0127] また、上述した本実施形態の製造方法では、測定工程 S3の後に複屈折量が 5nm Zcm以下に抑えられたバルク材を選別するノ レク材選別工程を付加することもでき る。この場合、評価工程 S5において肯定的な評価結果を得ることが容易になる。な お、評価工程 S5において肯定的な評価結果がさらに容易に得られるようにするには 、選別工程において複屈折量が 2nmZcm以下に抑えられたバルク材を選別するこ とが好ましい。 [0127] Further, in the manufacturing method of the present embodiment described above, a nore material sorting step for sorting a bulk material whose birefringence amount is suppressed to 5 nm Zcm or less can be added after the measurement step S3. In this case, it becomes easy to obtain a positive evaluation result in the evaluation step S5. In order to obtain a positive evaluation result more easily in the evaluation step S5, it is preferable to select a bulk material whose birefringence is suppressed to 2 nmZcm or less in the selection step.
[0128] 以上のように、第 1〜第 4の手法をまとめた第 5の手法による実施の形態を図 16に 示す。図 16に示す如ぐ適切な内部応力を持つ光学部材を選定する工程 S10では 、光学部材の計測等により、複屈折量が 5nmZcm以下に抑えられたバルク部材ま
たはレンズ等を選定し、光学部材の内部歪みに起因して発生する複屈折量の管理を 行う。ここで、図 13の第 4の手法の工程に対応させると、図 16の工程 S10は、工程 S 1、工程 S2、および工程 S3を含む。 [0128] As described above, Fig. 16 shows an embodiment according to the fifth technique in which the first to fourth techniques are summarized. In step S10 for selecting an optical member having an appropriate internal stress as shown in FIG. 16, a bulk member whose birefringence is suppressed to 5 nmZcm or less by measuring the optical member or the like is used. Or, select a lens, etc., and manage the amount of birefringence generated due to internal distortion of the optical member. Here, in correspondence with the process of the fourth technique in FIG. 13, the process S10 in FIG. 16 includes a process S1, a process S2, and a process S3.
[0129] なお、この工程 S10では、主に光透過性の光学部材について述べた力 偏光設定 部 (3, 7)と被照射面 (マスク等)との間の光路中に配置される光学系が反射部材を 含む場合には、その反射部材の反射膜に対して P偏光で入射する光と S偏光で入射 する光と間に反射により発生する位相差が反射膜に入射するすべての光線について 15度以内になるよう反射部材を選定することが望ましいことは言うまでもない。また、 装置のより高性能化のためには、内部歪みによる複屈折量が 2nmZcm以下に抑え られた光学部材を選定することがより望まし 、ことは言うまでもな 、。 [0129] In this step S10, the optical system mainly disposed in the optical path between the force polarization setting section (3, 7) and the irradiated surface (mask, etc.) described for the optically transparent optical member. In the case that includes a reflecting member, the phase difference generated by reflection between the light incident as P-polarized light and the light incident as S-polarized light on the reflecting film of the reflecting member Needless to say, it is desirable to select the reflecting member to be within 15 degrees. In order to improve the performance of the device, it is more desirable to select an optical member whose birefringence due to internal strain is suppressed to 2 nmZcm or less, needless to say.
[0130] 次に、回転角度の位置の設定の工程 S11は、図 13の第 4の手法の工程に対応さ せると、工程 S4、工程 S5、工程 S7および工程 S9を含むものである。例えば、このェ 程 S 11では、クロッキング手法による各光学部材 (バルク材、光透過部材)の基準軸( 光軸)廻りの回転角度位置の最適化により、内部歪みによる複屈折量を適切に抑え るべき光学系の光軸に非対称な複屈折分布を最適化させ得るか否かを評価する。な お、工程 S11では、偏光設定部(3, 7)と被照射面 (マスク等)との間の光路中に配置 される光学系が反射部材を含む場合には、工程 S 10にて選定された反射部材の反 射特性を含めて評価する。 Next, step S11 for setting the position of the rotation angle includes step S4, step S5, step S7, and step S9, corresponding to the step of the fourth method in FIG. For example, in step S11, the amount of birefringence due to internal distortion is appropriately adjusted by optimizing the rotation angle position around the reference axis (optical axis) of each optical member (bulk material, light transmitting member) by the clocking method. Evaluate whether or not an asymmetric birefringence distribution can be optimized in the optical axis of the optical system to be suppressed. In step S11, if the optical system placed in the optical path between the polarization setting section (3, 7) and the irradiated surface (mask, etc.) includes a reflective member, it is selected in step S10. Including the reflection characteristics of the reflected members.
[0131] ここで、工程 S 11にて、最適化できない場合(図 16中 NGで示す)には、工程 S10 へ戻り、再度、適切な内部歪み分布を持つ光学部材の選定を行い、工程 S11にて、 最適化できた場合(図 16中 YESで示す)には、次の工程 S12へ移行する。 [0131] If optimization is not possible in step S11 (indicated by NG in Fig. 16), the process returns to step S10, and an optical member having an appropriate internal strain distribution is selected again. If the process is optimized (indicated by YES in Fig. 16), the process proceeds to the next step S12.
[0132] 光学系(光学ユニット)の製造工程 S12は、図 13の第 4の手法の工程に対応させる と、各光学部材の加工形成の工程 S6および各光学部材の組み込み工程 S8を含む ものである。ここで、工程 S12は、各光学部材の加工形成の工程を経た光学部材の 組み込みに際して、図 9〜図 12に示したように、外部から付与される歪み (応力等) により発生する複屈折量が 5nmZcm以下に抑えられるように光学部材の保持また は支持する工程を含む。すなわち、工程 S12は、外部力も付与される歪みによる複 屈折量または複屈折分布を管理する工程を含み、この管理工程は、上記保持工程
を含む。 [0132] The manufacturing process S12 of the optical system (optical unit) includes a process S6 for forming each optical member and an assembling process S8 for each optical member, corresponding to the process of the fourth method in FIG. is there. Here, in step S12, the amount of birefringence generated due to externally applied strain (stress, etc.) as shown in FIGS. 9 to 12 when assembling the optical member that has undergone the process of forming each optical member. Includes a step of holding or supporting the optical member so that the thickness is suppressed to 5 nmZcm or less. That is, step S12 includes a step of managing the birefringence amount or birefringence distribution due to strain to which an external force is also applied. including.
[0133] なお、工程 S12において、装置のより高性能化のためには、外部からの歪みにより 発生する複屈折量が 2nmZcm以下に抑えられるように光学部材を保持することがよ り望まし!/、ことは言うまでもな!/、。 [0133] In step S12, in order to improve the performance of the apparatus, it is more desirable to hold the optical member so that the amount of birefringence generated by external strain is suppressed to 2 nmZcm or less! / Needless to say! /.
[0134] 以上のように、図 16に示す手法を、 1つの視点で述べれば、偏光設定部(3, 7)と 被照射面 (マスク等)との間の光路中に配置される光学系の複屈折量を管理するェ 程、または偏光設定部と被照射面との間の光路中に複屈折量が管理された光学系 を配置するという手段を講ずることにより、被照射面、ひいては瞳面にて良好なる偏 光状態の照明分布を得ることができる。 As described above, the technique shown in FIG. 16 can be described from one viewpoint. An optical system disposed in the optical path between the polarization setting unit (3, 7) and the irradiated surface (mask, etc.). The amount of birefringence of the light is controlled, or an optical system in which the amount of birefringence is controlled is arranged in the optical path between the polarization setting unit and the surface to be irradiated, so that the surface to be irradiated and thus the pupil It is possible to obtain a well-polarized illumination distribution on the surface.
[0135] また、図 16に示す手法を別の視点で述べれば、偏光設定部と被照射面との間の光 路中に配置される光学系を介して被照射面に至る光の偏光状態が、所定の偏光状 態となるように、偏光設定部力 被照射面までの間の光路における偏光特性を維持 する工程、または偏光設定部と被照射面との間の光路中に、被照射面での光の偏光 状態が所定の偏光状態となるように、被照射面に達する光の偏光状態を維持する光 学系を配置するという手段を講ずることにより、被照射面、ひいては瞳面にて良好な る偏光状態の照明分布を得ることができる。 [0135] If the method shown in Fig. 16 is described from another viewpoint, the polarization state of light reaching the irradiated surface via an optical system disposed in the optical path between the polarization setting unit and the irradiated surface. However, the polarization setting unit force maintains the polarization characteristics in the optical path between the irradiated surface or the optical path between the polarization setting unit and the irradiated surface so that the predetermined polarization state is obtained. By arranging the optical system to maintain the polarization state of the light reaching the irradiated surface so that the polarization state of the light on the surface becomes a predetermined polarization state, And an illumination distribution with a good polarization state can be obtained.
[0136] 以上の 2つの視点では、予め、偏光設定部と被照射面との間の光路中に配置され る光学系の一部または一部以上 (光学系全体も含む)に関する情報 (例えば、複屈 折等に関する光学系の許容できる光学性能情報、および図 13の工程 S3のように光 学系を構成する少なくとも 1つの光学部材の複屈折に関する測定等の情報の少なく とも 1つの情報等)を得ておくことが好ましい。 [0136] From the above two viewpoints, information relating to a part or a part of the optical system (including the entire optical system) arranged in advance in the optical path between the polarization setting unit and the irradiated surface (for example, Information on acceptable optical performance of the optical system related to birefringence, etc. and at least one piece of information such as measurement related to birefringence of at least one optical member constituting the optical system as shown in step S3 of FIG. 13) It is preferable to obtain
[0137] なお、図 16では、バルク材カもの複屈折量の計測値に基づいて光学部材の管理 を行った例を示した力 バルク材力 所定の加工を行ってレンズ等の光学部材を形 成し、加工された光学部材の複屈折量ゃ複屈折分布に基づき、工程 S10を実行して 良い。この場合、工程 S12内での光学部材の加工工程は不要となり、各光学部材の 組み込み工程等が実行される。 [0137] Fig. 16 shows an example in which the optical member is managed based on the measurement value of the birefringence amount of the bulk material. Bulk material force Performs predetermined processing to form an optical member such as a lens. The step S10 may be executed based on the birefringence distribution of the optical member formed and processed. In this case, the processing step of the optical member in step S12 is not necessary, and the step of assembling each optical member is performed.
[0138] また、図 16では照明光学装置や照明光学装置を備えた露光装置を製造する例を 主に説明したが、照明光学装置の定期的なメンテナンス (修理、保守、点検)の場合
について、図 16を流用しながら説明する。 FIG. 16 mainly describes an example of manufacturing an illumination optical apparatus and an exposure apparatus equipped with the illumination optical apparatus, but in the case of periodic maintenance (repair, maintenance, inspection) of the illumination optical apparatus. Will be described with reference to FIG.
[0139] まず、メンテナンス時においては、適切な交換用の光学部材ゃ適切な交換用の光 学ユニットを選定する工程 S20では、まず、照明光学系に関する偏光光学性能等の 情報 (偏光測定部 14の実計測値や照明光学系の製造時の計測値等の情報)、偏光 設定部と被照射面との間の光路中に配置される光学系に関する複屈折特性や偏光 特性等の光学情報 (偏光測定部 14の実測値や光学系の製造時の計測値等の情報 )、または偏光設定部と被照射面との間の光路中に配置される光学系の少なくとも 1 つの光学部材に関する偏光光学性能の情報 (偏光測定部 14の実測値や光学部材 の製造時の計測値等の情報)の少なくとも 1つを予め得る。その後、上記のように、得 られた光学系に関する情報に基づいて、交換すべき光学部材ゃ光学ユニットを特定 し、内部歪みによる複屈折量が 5nmZcm以下に抑えられた適切な交換用の光学部 材ゃ、適切な交換用の光学ユニットを選定する。 [0139] First, at the time of maintenance, in the step S20 of selecting an appropriate replacement optical member or an appropriate replacement optical unit, first, information on polarization optical performance and the like regarding the illumination optical system (polarization measuring unit 14). Optical information such as the actual measurement value of the optical system and the measurement value at the time of manufacture of the illumination optical system), and the optical information such as the birefringence and polarization characteristics of the optical system placed in the optical path between the polarization setting unit and the irradiated surface ( Polarized optics related to at least one optical member of the optical system arranged in the optical path between the polarization setting unit and the irradiated surface) At least one piece of performance information (information such as an actual measurement value of the polarization measuring unit 14 or a measurement value at the time of manufacturing the optical member) is obtained in advance. After that, as described above, based on the information about the obtained optical system, the optical member or optical unit to be replaced is specified, and the appropriate replacement optical unit whose birefringence due to internal distortion is suppressed to 5 nmZcm or less. Select a suitable replacement optical unit.
[0140] 次に、工程 S21では、選定された光学部材の適切な回転角度位置を設定して、図 13に示す各工程(S4、 S5、 S7、 S9)のように評価し、良好な結果が得られれば、次 の光学系の製造工程 (光学系の調整工程)へ移行する。もし、工程 S21にて、良好な 評価結果が得られな!/、場合には、前の選定工程 S20へ戻る。 [0140] Next, in step S21, an appropriate rotation angle position of the selected optical member is set and evaluated as in each step (S4, S5, S7, S9) shown in FIG. If obtained, the process proceeds to the next optical system manufacturing process (optical system adjustment process). If in step S21, good evaluation results are not obtained! / In case, return to the previous selection step S20.
[0141] 次に、各光学部材を加工した後、各光学部材を照明光学系内に組み込む。この組 み込み工程は、外部から付与される歪み (応力等)により発生する複屈折量が 5nm Zcm以下に抑えられるように光学部材の保持または支持する工程を含む。すなわち 、工程 S22は、外部力も付与される歪みによる複屈折量または複屈折分布を管理す る工程を含み、この管理工程は、上記保持工程を含む。 [0141] Next, after processing each optical member, each optical member is incorporated into the illumination optical system. This assembling step includes a step of holding or supporting the optical member so that the amount of birefringence generated by externally applied strain (stress etc.) is suppressed to 5 nm Zcm or less. That is, step S22 includes a step of managing the birefringence amount or birefringence distribution due to the strain to which an external force is also applied, and this management step includes the holding step.
[0142] なお、図 16の工程 S20では、バルク材からの複屈折量の計測値に基づいて光学 部材の管理を行った例を示した力 バルク材力 所定の加工を行ってレンズ等の光 学部材を形成し、加工された光学部材の複屈折量ゃ複屈折分布に基づき、工程 S2 0を実行して良い。この場合、光学系の製造工程 (調整工程) S22内での光学部材の 加工工程は不要となり、各光学部材の組み込み工程等が実行される。 [0142] Note that, in step S20 in Fig. 16, the force shown in the example in which the optical member is managed based on the measurement value of the birefringence amount from the bulk material. Bulk material force. The step S20 may be performed based on the birefringence distribution of the processed optical member after forming the optical member and the birefringence distribution. In this case, an optical member processing step in the optical system manufacturing step (adjustment step) S22 is not necessary, and an assembly step of each optical member is performed.
[0143] 以上のように、図 16に示すメンテナンス手法を、 1つの視点で述べれば、偏光設定 部 (3, 7)と被照射面 (マスク等)との間の光路中に配置される光学系の複屈折量を
管理する工程、または偏光設定部と被照射面との間の光路中に複屈折量が管理さ れた光学系を配置するという手段を講ずることにより、被照射面、ひいては瞳面にて 良好なる偏光状態の照明分布を得ることができる。 [0143] As described above, the maintenance method shown in Fig. 16 can be described from one point of view. An optical device arranged in the optical path between the polarization setting unit (3, 7) and the irradiated surface (mask, etc.). The birefringence of the system It can be improved on the irradiated surface, and hence on the pupil plane, by taking steps to manage, or by placing an optical system with controlled birefringence in the optical path between the polarization setting section and the irradiated surface. An illumination distribution in a polarization state can be obtained.
[0144] また、上記の図 16のメンテナンス手法を別の視点で述べれば、偏光設定部と被照 射面との間の光路中に配置される光学系を介して被照射面に至る光の偏光状態が、 所定の偏光状態となるように、偏光設定部力 被照射面までの間の光路における偏 光特性を維持する工程、または偏光設定部と被照射面との間の光路中に、被照射面 での光の偏光状態が所定の偏光状態となるように、被照射面に達する光の偏光状態 を維持する光学系を配置するという手段を講ずることにより、被照射面、ひいては瞳 面にて良好なる偏光状態の照明分布を得ることができる。 [0144] In addition, if the maintenance method shown in Fig. 16 is described from another viewpoint, the light reaching the irradiated surface via the optical system disposed in the optical path between the polarization setting unit and the irradiated surface will be described. In the step of maintaining the polarization characteristics in the optical path between the polarization setting unit force and the irradiated surface, or in the optical path between the polarization setting unit and the irradiated surface so that the polarization state becomes a predetermined polarization state, By adopting an optical system to maintain the polarization state of the light reaching the irradiated surface so that the polarization state of the light on the irradiated surface becomes a predetermined polarization state, the irradiated surface, and hence the pupil surface An illumination distribution with a good polarization state can be obtained.
[0145] 以上の 2つの視点では、予め、偏光設定部と被照射面との間の光路中に配置され る光学系の一部または一部以上 (光学系全体も含む)に関する情報 (例えば、図 16 の工程 S20のように複屈折等に関する光学系に関する光学性能の計測等の情報、 および光学系を構成する少なくとも 1つの光学部材の複屈折に関する測定等の情報 の少なくとも 1つの情報等)を得ておくことが好ましい。 [0145] From the above two viewpoints, information on a part or a part of the optical system (including the entire optical system) arranged in the optical path between the polarization setting unit and the irradiated surface in advance (for example, As shown in step S20 of FIG. 16, information such as measurement of optical performance related to the optical system related to birefringence, etc., and information such as measurement related to birefringence of at least one optical member constituting the optical system). It is preferable to obtain it.
[0146] なお、図 16のメンテナンス手法において、装置のより高性能化のためには、工程 S 20において、内部歪みにより発生する複屈折量が 2nmZcm以下に抑えられるよう に光学部材を用いることが望ましぐまた、工程 S22において、外部からの歪みにより 発生する複屈折量が 2nmZcm以下に抑えられるように光学部材を保持することがよ り望まし!/、ことは言うまでもな!/、。 In the maintenance method of FIG. 16, in order to improve the performance of the apparatus, an optical member is used in step S 20 so that the amount of birefringence generated by internal distortion is suppressed to 2 nmZcm or less. Desirably, it is more desirable to hold the optical member in step S22 so that the amount of birefringence generated by external strain is suppressed to 2 nmZcm or less! /.
[0147] また、図 16の工程 S10〜S12では主に照明光学系の製造方法の内容について説 明したが、別の視点に立てば、図 16の工程 S10〜S12は、露光装置の製造方法、 照明光学系の調整方法、あるいは露光装置の調整方法ということもできる。また、図 1 6の工程 S20〜S22では主に照明光学系の調整方法の内容について説明したが、 別の視点に立てば、図 16の工程 S20〜S22は、露光装置の調整方法、照明光学系 の製造方法、あるいは露光装置の製造方法と 、うこともできる。 [0147] In addition, in steps S10 to S12 in Fig. 16, the contents of the manufacturing method of the illumination optical system have been mainly described. From another viewpoint, steps S10 to S12 in Fig. 16 are performed in accordance with the manufacturing method of the exposure apparatus. It can also be referred to as an illumination optical system adjustment method or an exposure apparatus adjustment method. In addition, in steps S20 to S22 in FIG. 16, the contents of the adjustment method of the illumination optical system have been mainly described. From another point of view, steps S20 to S22 in FIG. It can also be referred to as a system manufacturing method or an exposure apparatus manufacturing method.
[0148] なお、上述の実施形態では、円錐アキシコン系 8の直前(ァフォーカルレンズ 5の瞳 またはその近傍)に偏光変換素子 7を配置している。し力しながら、これに限定される
ことなぐたとえば結像光学系 13の瞳またはその近傍や、マイクロフライアイレンズ 10 の直前や直後などに偏光変換素子 7を配置することもできる。ただし、結像光学系 13 の光路中またはマイクロフライアイレンズ 10の前後に偏光変換素子 7を配置すると、 偏光変換素子 7の所要有効径が大きくなり易いため、高品質で大きい水晶基板を得 ることが困難である現状を考えるとあまり好ましくない。 In the above-described embodiment, the polarization conversion element 7 is disposed immediately before the conical axicon system 8 (or the pupil of the focal lens 5 or the vicinity thereof). However, it is limited to this Of course, for example, the polarization conversion element 7 can be arranged at or near the pupil of the imaging optical system 13 or immediately before or after the micro fly's eye lens 10. However, if the polarization conversion element 7 is arranged in the optical path of the imaging optical system 13 or before and after the micro fly's eye lens 10, the required effective diameter of the polarization conversion element 7 tends to be large, so that a high quality and large quartz substrate can be obtained. Considering the current situation where this is difficult, it is not very desirable.
[0149] また、上述の実施形態では、偏光変換素子 7の少なくとも一方の面 (たとえば射出 面)が凹凸状に形成され、ひいては偏光変換素子 7が周方向に離散的 (不連続的) に変化する厚さ分布を有する。し力しながら、これに限定されることなぐ偏光変換素 子 7が周方向にほぼ不連続的に変化する厚さ分布を有するように、偏光変換素子 7 の少なくとも一方の面 (たとえば射出面)を曲面状に形成することもできる。 [0149] In the above-described embodiment, at least one surface (for example, the exit surface) of the polarization conversion element 7 is formed to be uneven, and as a result, the polarization conversion element 7 changes discretely (discontinuously) in the circumferential direction. Thickness distribution. However, without being limited thereto, at least one surface (for example, the exit surface) of the polarization conversion element 7 so that the polarization conversion element 7 has a thickness distribution that changes substantially discontinuously in the circumferential direction. Can be formed into a curved surface.
[0150] また、上述の実施形態では、輪帯状の有効領域の 8分割に対応する 8つの扇形形 状の基本素子により偏光変換素子 7を構成している。し力しながら、これに限定される ことなぐたとえば円形状の有効領域の 8分割に対応する 8つの扇形形状の基本素子 により、ある!、は円形状または輪帯状の有効領域の 4分割に対応する 4つの扇形形 状の基本素子により、あるいは円形状または輪帯状の有効領域の 16分割に対応す る 16つの扇形形状の基本素子により偏光変換素子 7を構成することもできる。すなわ ち、偏光変換素子 7の有効領域の形状、有効領域の分割数 (基本素子の数)などに つ!、て様々な変形例が可能である。 [0150] In the above-described embodiment, the polarization conversion element 7 is constituted by eight fan-shaped basic elements corresponding to eight divisions of the annular zone-shaped effective region. However, it is not limited to this, for example, there are 8 fan-shaped basic elements corresponding to 8 divisions of a circular effective area, and it corresponds to 4 divisions of a circular or annular effective area The polarization conversion element 7 can also be constituted by four fan-shaped basic elements or 16 fan-shaped basic elements corresponding to 16 divisions of a circular or ring-shaped effective area. In other words, the shape of the effective area of the polarization conversion element 7, the number of divisions of the effective area (number of basic elements), etc.! Various modifications are possible.
[0151] また、上述の実施形態では、水晶を用いて各基本素子 7A〜7Dを (ひいては偏光 変換素子 7を)形成している。し力しながら、これに限定されることなぐ旋光性を有す る他の適当な光学材料を用いて各基本素子を形成することもできる。この場合、使用 波長の光に対して 100度 Zmm以上の旋光能を有する光学材料を用いることが好ま しい。すなわち、旋光能の小さい光学材料を用いると、偏光方向の所要回転角を得 るために必要な厚さが大きくなり過ぎて、光量損失の原因になるので好ましくない。 [0151] In the above-described embodiment, the basic elements 7A to 7D (and hence the polarization conversion element 7) are formed using quartz. However, it is also possible to form each basic element using other suitable optical materials having optical rotation without being limited thereto. In this case, it is preferable to use an optical material having an optical rotation ability of 100 degrees Zmm or more with respect to light of the wavelength used. That is, it is not preferable to use an optical material having a small optical rotation power because the thickness required to obtain the required rotation angle in the polarization direction becomes too large, resulting in a loss of light quantity.
[0152] 上述の実施形態に力かる露光装置では、照明光学装置によってマスク(レチクル) を照明し (照明工程)、投影光学系を用いてマスクに形成された転写用のパターンを 感光性基板に露光する(露光工程)ことにより、マイクロデバイス(半導体素子、撮像 素子、液晶表示素子、薄膜磁気ヘッド等)を製造することができる。以下、上述の実
施形態の露光装置を用いて感光性基板としてのウェハ等に所定の回路パターンを形 成することによって、マイクロデバイスとしての半導体デバイスを得る際の手法の一例 にっき図 17のフローチャートを参照して説明する。 In the exposure apparatus according to the above-described embodiment, the illumination optical device illuminates the mask (reticle) (illumination process), and the transfer pattern formed on the mask using the projection optical system is applied to the photosensitive substrate. Microdevices (semiconductor elements, imaging elements, liquid crystal display elements, thin film magnetic heads, etc.) can be produced by exposure (exposure process). The above-mentioned actual An example of a technique for obtaining a semiconductor device as a micro device by forming a predetermined circuit pattern on a wafer or the like as a photosensitive substrate using the exposure apparatus of the embodiment will be described with reference to the flowchart of FIG. To do.
[0153] 先ず、図 17のステップ 301において、 1ロットのウェハ上に金属膜が蒸着される。次 のステップ 302において、その 1ロットのウェハ上の金属膜上にフォトレジストが塗布さ れる。その後、ステップ 303において、上述の実施形態の露光装置を用いて、マスク 上のパターンの像がその投影光学系を介して、その 1ロットのウェハ上の各ショット領 域に順次露光転写される。その後、ステップ 304において、その 1ロットのウェハ上の フォトレジストの現像が行われた後、ステップ 305において、その 1ロットのウェハ上で レジストパターンをマスクとしてエッチングを行うことによって、マスク上のパターンに 対応する回路パターン力 各ウェハ上の各ショット領域に形成される。その後、更に 上のレイヤの回路パターンの形成等を行うことによって、半導体素子等のデバイスが 製造される。上述の半導体デバイス製造方法によれば、極めて微細な回路パターン を有する半導体デバイスをスループット良く得ることができる。 First, in step 301 in FIG. 17, a metal film is deposited on one lot of wafers. In the next step 302, a photoresist is applied onto the metal film on the one lot of wafers. Thereafter, in step 303, using the exposure apparatus of the above-described embodiment, the pattern image on the mask is sequentially exposed and transferred to each shot area on the wafer of one lot via the projection optical system. After that, in step 304, the photoresist on the one lot of wafers is developed, and in step 305, the resist pattern is etched on the one lot of wafers to form a pattern on the mask. Corresponding circuit pattern force is formed in each shot area on each wafer. Then, devices such as semiconductor elements are manufactured by forming a circuit pattern of an upper layer. According to the semiconductor device manufacturing method described above, a semiconductor device having an extremely fine circuit pattern can be obtained with high throughput.
[0154] また、上述の実施形態の露光装置では、プレート (ガラス基板)上に所定のパターン [0154] In the exposure apparatus of the above-described embodiment, a predetermined pattern is formed on a plate (glass substrate).
(回路パターン、電極パターン等)を形成することによって、マイクロデバイスとしての 液晶表示素子を得ることもできる。以下、図 18のフローチャートを参照して、このとき の手法の一例につき説明する。図 18において、パターン形成工程 401では、上述の 実施形態の露光装置を用いてマスクのパターンを感光性基板 (レジストが塗布された ガラス基板等)に転写露光する、所謂光リソグラフィー工程が実行される。この光リソ グラフィー工程によって、感光性基板上には多数の電極等を含む所定パターンが形 成される。その後、露光された基板は、現像工程、エッチング工程、レジスト剥離工程 等の各工程を経ることによって、基板上に所定のパターンが形成され、次のカラーフ ィルター形成工程 402へ移行する。 By forming (circuit pattern, electrode pattern, etc.), a liquid crystal display element as a microdevice can also be obtained. Hereinafter, an example of the technique at this time will be described with reference to the flowchart of FIG. In FIG. 18, in the pattern formation process 401, a so-called photolithography process is performed in which the exposure pattern of the above-described embodiment is used to transfer and expose the mask pattern onto a photosensitive substrate (such as a glass substrate coated with a resist). . By this optical lithography process, a predetermined pattern including a large number of electrodes and the like is formed on the photosensitive substrate. Thereafter, the exposed substrate is subjected to a development process, an etching process, a resist stripping process, and the like, whereby a predetermined pattern is formed on the substrate, and the process proceeds to the next color filter forming process 402.
[0155] 次に、カラーフィルター形成工程 402では、 R (Red)、 G (Green)、 B (Blue)に対応し た 3つのドットの組がマトリックス状に多数配列されたり、または R、 G、 Bの 3本のストラ イブのフィルターの組を複数水平走査線方向に配列したカラーフィルターを形成する 。そして、カラーフィルター形成工程 402の後に、セル組み立て工程 403が実行され
る。セル組み立て工程 403では、パターン形成工程 401にて得られた所定パターン を有する基板、およびカラーフィルター形成工程 402にて得られたカラーフィルター 等を用いて液晶パネル (液晶セル)を組み立てる。 [0155] Next, in the color filter forming step 402, a large number of sets of three dots corresponding to R (Red), G (Green), and B (Blue) are arranged in a matrix, or R, G, A color filter is formed by arranging a set of filters of the three stripes B in the horizontal scanning line direction. After the color filter forming step 402, the cell assembly step 403 is executed. The In the cell assembly step 403, a liquid crystal panel (liquid crystal cell) is assembled using the substrate having the predetermined pattern obtained in the pattern formation step 401, the color filter obtained in the color filter formation step 402, and the like.
[0156] セル組み立て工程 403では、例えば、パターン形成工程 401にて得られた所定パ ターンを有する基板とカラーフィルター形成工程 402にて得られたカラーフィルターと の間に液晶を注入して、液晶パネル (液晶セル)を製造する。その後、モジュール組 み立て工程 404にて、組み立てられた液晶パネル (液晶セル)の表示動作を行わせ る電気回路、バックライト等の各部品を取り付けて液晶表示素子として完成させる。上 述の液晶表示素子の製造方法によれば、極めて微細な回路パターンを有する液晶 表示素子をスループット良く得ることができる。 [0156] In the cell assembly step 403, for example, liquid crystal is injected between the substrate having the predetermined pattern obtained in the pattern formation step 401 and the color filter obtained in the color filter formation step 402. Manufactures panels (liquid crystal cells). Thereafter, in the module assembling step 404, components such as an electric circuit and a backlight for performing display operation of the assembled liquid crystal panel (liquid crystal cell) are attached to complete the liquid crystal display element. According to the above liquid crystal display element manufacturing method, a liquid crystal display element having an extremely fine circuit pattern can be obtained with high throughput.
[0157] なお、上述の実施形態では、露光光として KrFエキシマレーザ光(波長: 248nm) や ArFエキシマレーザ光(波長: 193nm)を用いている力 これに限定されることなく 、他の適当なレーザ光源、たとえば波長 157nmのレーザ光を供給する Fレーザ光 In the above-described embodiment, the force using KrF excimer laser light (wavelength: 248 nm) or ArF excimer laser light (wavelength: 193 nm) as the exposure light is not limited to this, and other suitable Laser light source, for example, F laser light that supplies laser light with a wavelength of 157 nm
2 源などに対して本発明を適用することもできる。さらに、上述の実施形態では、照明 光学装置を備えた露光装置を例にとって本発明を説明したが、以外の被照射面を照 明するための一般的な照明光学装置に本発明を適用することができることは明らか である。 The present invention can be applied to two sources. Furthermore, in the above-described embodiment, the present invention has been described by taking an exposure apparatus including an illumination optical apparatus as an example. However, the present invention is applied to a general illumination optical apparatus for illuminating a surface other than an irradiation target. It is clear that you can.
[0158] また、上述の実施形態において、投影光学系と感光性基板との間の光路中を 1. 1 よりも大きな屈折率を有する媒体 (典型的には液体)で満たす手法、所謂液浸法を適 用しても良い。この場合、投影光学系と感光性基板との間の光路中に液体を満たす 手法としては、国際公開番号 WO99Z49504号公報に開示されているような局所的 に液体を満たす手法や、特開平 6— 124873号公報に開示されているような露光対 象の基板を保持したステージを液槽の中で移動させる手法や、特開平 10— 30311 4号公報に開示されて 、るようなステージ上に所定深さの液体槽を形成し、その中に 基板を保持する手法などを採用することができる。 [0158] In the above-described embodiment, a method of filling the optical path between the projection optical system and the photosensitive substrate with a medium (typically liquid) having a refractive index larger than 1.1, so-called immersion. Laws may apply. In this case, as a method for filling the liquid in the optical path between the projection optical system and the photosensitive substrate, a method for locally filling the liquid as disclosed in International Publication No. WO99Z49504, A method of moving a stage holding a substrate to be exposed as disclosed in Japanese Patent No. 124873 in a liquid tank, or a predetermined stage on such a stage as disclosed in Japanese Patent Laid-Open No. 10-303114. For example, a method can be employed in which a liquid tank having a depth is formed and the substrate is held in the tank.
[0159] なお、液体としては、露光光に対する透過性があってできるだけ屈折率が高ぐ投 影光学系や基板表面に塗布されているフォトレジストに対して安定なものを用いるこ とが好ましぐたとえば KrFエキシマレーザ光や ArFエキシマレーザ光を露光光とす
る場合には、液体として純水、脱イオン水を用いることができる。また、露光光として F レーザ光を用いる場合は、液体としては Fレーザ光を透過可能な例えばフッ素系ォ [0159] As the liquid, it is preferable to use a liquid that is stable with respect to a projection optical system having a transmittance to exposure light and having a refractive index as high as possible, and a photoresist applied to the substrate surface. For example, KrF excimer laser light or ArF excimer laser light is used as exposure light. In this case, pure water or deionized water can be used as the liquid. In addition, when F laser light is used as exposure light, the liquid is, for example, fluorine-based fluorine that can transmit F laser light.
2 2
ィルゃ過フッ化ポリエーテル(PFPE)等のフッ素系の液体を用いればよ!、。 Use a fluorine-based liquid such as perfluorinated polyether (PFPE)!
符号の説明 Explanation of symbols
1 光源 1 Light source
3 偏光状態切換部 3 Polarization state switching section
3a 1Z4波長板 3a 1Z4 wave plate
3b 1Z2波長板 3b 1Z2 wave plate
4 回折光学素子 (光束変換素子) 4 Diffractive optical element (light flux conversion element)
5 ァフォー力ノレレンズ 5 Before power lens
7 偏光変換素子 7 Polarization conversion element
8 円錐アキシコン系 8 Conical axicon system
9 ズームレンズ 9 Zoom lens
10 マイクロフライアイレンズ 10 Micro fly's eye lens
11 コンデンサー光学系 11 Condenser optics
12 マスクブラインド 12 Mask blind
13 結像光学系 13 Imaging optics
14 偏光測定部 14 Polarization measurement unit
20 制御部 20 Control unit
21 駆動部 21 Drive unit
M マスク M mask
PL 投影光学系 PL projection optics
W ウェハ W wafer
Ml, M2 折り曲げミラー
Ml, M2 folding mirror