WO2006059386A1 - Method of isolating double-stranded dna containing simple sequence repeats - Google Patents

Method of isolating double-stranded dna containing simple sequence repeats Download PDF

Info

Publication number
WO2006059386A1
WO2006059386A1 PCT/JP2004/017938 JP2004017938W WO2006059386A1 WO 2006059386 A1 WO2006059386 A1 WO 2006059386A1 JP 2004017938 W JP2004017938 W JP 2004017938W WO 2006059386 A1 WO2006059386 A1 WO 2006059386A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
region
plasmid
sequence
dna
Prior art date
Application number
PCT/JP2004/017938
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Matsumoto
Yuichi Katayose
Jianzhong Wu
Hiroko Yamane
Nobukazu Namiki
Hiroyuki Kanamori
Original Assignee
National Institute Of Agrobiological Sciences
Society For Technoinnovation Of Agriculture, Forestry And Fisheries
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Agrobiological Sciences, Society For Technoinnovation Of Agriculture, Forestry And Fisheries filed Critical National Institute Of Agrobiological Sciences
Priority to JP2006546553A priority Critical patent/JPWO2006059386A1/en
Priority to PCT/JP2004/017938 priority patent/WO2006059386A1/en
Publication of WO2006059386A1 publication Critical patent/WO2006059386A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Definitions

  • the present invention relates to a method for isolating double-stranded DNA containing a repetitive sequence.
  • SSRs Simple Sequence Repeats
  • the base sequence constituting the simple repeat sequence is composed of a relatively short base sequence repeat such as gagagaga ....
  • a repeat sequence of 2 base units as in this example is called a tandem repeat. Having a repeat sequence in the genome is a common feature of eukaryotes. It has been clarified that DNA containing simple repetitive sequences includes a family called satellite DNA, minisatellite DNA, and microsatellite DNA.
  • genomic DNA When genomic DNA is centrifuged in a salt gradient of cesium chloride, satellite DNA is separated into bands (satellite) that correspond to the average G + C content of the genomic DNA. It is a repetitive sequence identified as DNA. On the chromosome, it has been revealed that it exists mainly in the centrum or telomere region. The base sequence composing satellite DNA is tandem repeat. The base sequence of satellite DNA has been confirmed to be highly diverse not only among species, but also within the same species. Satellite DNA is useful as a marker for confirming genetic differences between cultivars.
  • Tandem repeat sequences are scattered throughout the entire genome only in specific regions such as centromeres and telomeres.
  • Power mini-satellite DNA identified as one of the SSRs scattered throughout the genome.
  • Minisatellite DNA is used for DNA fingerprinting because it shows polymorphism within species. For example, minisatellite DNA is used in the forensic field as an indicator for identifying individuals and identifying parent-child relationships. In animals and plants, minisatellite DNA can also be used to identify varieties.
  • microsatellite DNA is DNA composed of SSRs found in the entire genome. In mammals, (dA.dT) n repeat sequences are common. Hi (DCA.dTG) n or (dCT.dAG) n repeats are present at 0.5% and 0.2% of the genome, respectively. There are microsatellite DNAs with repeating unit strengths of 3 bases or more, but the frequency is usually not high. In fact, the existence of microsatellite sequences composed of repetitive sequences of about 2-5 bases has been clarified.
  • microsatellite DNA is widely distributed throughout the genome, it is particularly useful as a genetic marker. For example, if a microsatellite DNA having a genetic association with a specific trait can be identified, a gene associated with the specific trait (or a transcriptional regulatory region) exists near the microsatellite DNA. Likely to be. In order to proceed with such genetic analysis, it is necessary to collect information on a large number of microsatellite DNA and cover the entire genome as densely as possible.
  • Various repetitive sequences can be basically isolated by the following procedure.
  • a genomic library is prepared by randomly cutting the genome. Hybridize a probe containing a repetitive sequence to the fragment sequence constituting the library, and isolate a positive clone.
  • the base sequence of the repetitive sequence can be determined (Karagyozov et al, Nucleic Acid Research, 1993, Vol. 21, No. 16 3911-3912; Zane et al, Mol Ecol. 2002 Jan; ll (l): l-16). In practice, however, various constraints have prevented efficient acquisition of repetitive sequences.
  • One of the limitations is the use of the PCR method. For example, when a fragmented genomic library is screened with a probe containing a repetitive sequence, the hybridized genomic fragment is amplified and cloned by the PCR method ( Figure 2). At this time, it is difficult to amplify all the genomic fragments evenly with the current technology. For example, as a result of a relatively short base sequence being preferentially amplified, it is likely that the repetitive sequences to be cloned are biased toward short ones. That is, information on longer repetitive sequences may be lost.
  • Non-Patent Document 1 Karagyozov et al, Nucleic Acid Research, 1993, Vol.21, No.16 3911— 3912, Construction of random small-insert genomic libraries highly enriched for simple sesquence repeats
  • Non-Patent Document 2 Zane et al, Mol Ecol. 2002 Jan; ll (l): l— 16., Strategies for microsatellite isolation: a review. Disclosure of the invention
  • An object of the present invention is to provide a technique for isolating DNA containing SSRs.
  • DNA containing SSRs is isolated mainly by hybridization with a probe and cloning of the hybridized genomic fragment. In these steps, if repetitive sequences can be isolated without bias, efficient repetitive sequence isolation can be realized as a result. Specifically, DNA containing SSRs needs to be comprehensively screened at the stage of hybridization with the probe. In other words, it is necessary to provide conditions that can sufficiently hybridize to the target genome fragment under the stringency given the probe power used for screening. In addition, as described above, for example, when PCR was applied, it was predicted that there might be a bias in the repetitive sequences isolated in the course of the reaction. Therefore, for example, it would be useful if a method capable of isolating the target DNA without depending on the PCR method could be provided.
  • the present inventors have found that positive clones can be efficiently isolated by directly screening plasmid vectors carrying genomic fragments, and completed the present invention. did. Furthermore, the present inventors have repeatedly studied the design of probes for screening. As a result, the present invention was completed by clarifying that a probe having a specific structure is useful in isolation of DNA containing SSRs. That is, the present invention relates to a method for isolating DNA containing the following SSRs, a kit therefor, a probe for isolating DNA containing SSRs, and a method for producing the same.
  • a method for isolating double-stranded DNA containing a simple repetitive sequence comprising the following steps.
  • a kit for the isolation of simple repetitive sequences comprising the following elements:
  • region (b) a region that is located on the 3 ′ side and / or the 5 ′ side of region (a) and is composed of a base sequence other than a simple repetitive sequence
  • a method for producing a probe that hybridizes to a repetitive sequence including the following steps.
  • A) Any base other than the repeat sequence placed on the 3 'side and the repeat sequence placed on the 5' side A step of synthesizing a complementary strand using an oligonucleotide consisting of a sequence as a cage and using as a primer an oligonucleotide containing a base sequence complementary to the cage repeat at least at the 3 ′ end; and
  • region (b) a region that is located on both the 3 ′ side and / or 5 ′ side of region (a) and is composed of a base sequence other than a simple repeat sequence
  • the present invention relates to a probe that can be obtained by the production method described in [13] above.
  • the present invention also relates to the use of the element (a) and (b) potent probe described in [14] in the isolation of double-stranded DNA containing a simple repetitive sequence.
  • FIG. 1 is a diagram showing a preferred embodiment of the method for isolating simple repetitive sequences according to the present invention.
  • A A simple repetitive sequence obtained by complementary strand synthesis and a probe having other sequence power. Piotin
  • B is introduced into the extended part by complementary strand synthesis.
  • B The l-stranded probe and the circled plasmid form triple strands by hybridization.
  • C The probe is captured by the magnetic particles having streptavidin, and the hybridized plasmid is recovered.
  • FIG. 2 A diagram showing a method for isolating SSRs in the genome based on the prior art.
  • the fragmented genomic DNA is first blunted by adding an adapter. It is then hybridized with a biotinized probe.
  • the hybridized genomic fragment is recovered by magnetic particles having streptavidin.
  • E The recovered genomic fragment is amplified with PCR. (The D amplification product is incorporated into a plasmid and cloned.
  • FIG. 3 shows a method for synthesizing the probe of the present invention by complementary strand synthesis.
  • FIG. 4 shows the number and type of DNA containing simple repeats isolated from the rice genome according to the present invention.
  • the left vertical axis indicates the number of isolated DNA clones or the number of their clusters.
  • the left column indicates the number of isolated DNA clones, and the right column indicates the number of clusters.
  • the horizontal axis shows the number of plates used for isolation.
  • the present invention relates to a method for isolating double-stranded DNA containing simple repetitive sequences (SSRs), comprising the following steps.
  • a plasmid library is an assembly of a plurality of types of plasmids holding the DNA to be screened.
  • the plasmid in the present invention consists of double-stranded DNA carrying DNA that may contain SSRs.
  • the plasmid constituting the library is preferably DNA that can be amplified by transformation into an appropriate host cell.
  • the shape of the plasmid is not limited. Usually, the plasmid is a circular double-stranded DNA. Alternatively, a plasmid that can be amplified even by linear double-stranded DNA by transformation into a host cell is preferred as the plasmid in the present invention.
  • the amplification of the plasmid in the host cell includes, for example, an increase in the copy number in the cell.
  • a plasmid is also amplified when the plasmid is transferred to a cell that has divided as the cell divides, regardless of the number of copies per cell. For example, even if you have only one plasmid per cell, the number of plasmids will increase if the number of cells increases due to division. Cell division includes budding in yeast.
  • DNA to be screened is DNA that may contain SSRs.
  • the origin of DNA is not limited. Usually, DNA derived from the cell genome is used. By targeting DNA derived from the genome of a cell, DNA containing SSRs can be isolated from the entire genome. Alternatively, DNA derived from a BAC clone, a YAC clone, or the like can be used. From specific BAC clone or YAC clone DNA containing SSRs can be isolated from a specific region of the genome.
  • genomic DNA includes cell-derived DNA and DNA derived from isolated genomic fragments, such as BAC, YAC, or cosmid vectors.
  • Genomic DNA can be fragmented and inserted into a plasmid as necessary.
  • the size of the fragment can be selected as appropriate according to the expected length of the SSRs to be screened. That is, a fragment having a size longer than the base sequence to be isolated can be selected.
  • a plasmid having an insert size of about 100-7000 can be isolated. Therefore, for example, for the purpose of isolating microsatellite DNA, a plasmid carrying a fragment usually in the range of 100 to 5000 bp, for example, 100 to 2000 bp, preferably 800 to 1500 bp can be used.
  • the method of the present invention can be applied by selecting a plasmid retaining a fragment of about lOOOObp.
  • any method for fragmenting genomic DNA may be used.
  • a method of fragmenting a genome by a physical method or a biochemical method is used.
  • DNA can be cleaved by ultrasound.
  • Biochemical methods include digestion with restriction enzymes.
  • a plasmid library can be obtained by ligating the fragmented genomic DNA to a plasmid vector.
  • the fragmented DNA can be selected in advance of the desired size before ligation.
  • a plasmid in which DNA having a desired size is inserted may be selected after ligation.
  • a commercially available genomic library can be used if an appropriate genomic library is commercially available.
  • the plasmid vector for inserting the genomic fragment is not limited. In general,
  • pBluescript vector or pUC vector are used. These vectors can be amplified by cloning into E. coli.
  • one plasmid library is incubated with a probe containing a simple repeat sequence to be isolated in the presence of a homologous recombinant protein.
  • Probes containing simple repetitive sequences to be isolated can be prepared by any method. Methods for synthesizing DNA consisting of the target nucleotide sequence are known. For example, DNA having an arbitrary base sequence can be synthesized by chemically linking bases.
  • DNA consisting of complementary sequences can be synthesized by annealing a primer to the DNA that is in the shape of a cage and performing a complementary strand synthesis reaction. Furthermore, a region having the desired base sequence can be excised from the DNA retained in the vector with a restriction enzyme.
  • chromophore chromophore, fluorophore, or luminescent molecule
  • Nucleotide derivatives labeled with (luminophore) or the like are known. By utilizing nucleotide derivatives modified with these signal generating molecules, the probe can be labeled. Alternatively, a base modified with a binding ligand can be used. For example, nucleotide derivatives modified with binding ligands such as piotin and digoxin are known. Probes modified with binding ligands are useful for physical separation of plasmids that are not hybridized to hybridized plasmids.
  • the simple repetitive sequence constituting the probe is often high in frequency for each species, and the sequence may be clarified.
  • DNA containing a simple repetitive sequence having a high frequency of appearance can be isolated.
  • a novel simple repetitive sequence can be identified by using an unknown simple repetitive sequence as the probe base sequence.
  • the probe base sequence For example, the presence of simple repeat sequences of 3 or more bases in humans is rare. Therefore, if a simple repeat sequence containing a repeat unit of 3 bases or more is used as a probe, an unknown simple repeat sequence may be isolated.
  • One type of probe may be used, or a plurality of types of probes may be mixed and used.
  • the following are examples of typical probe base sequences that can be used for SSRS in higher plants such as rice. In the base sequences exemplified below, the number of n is 1 to 100, for example, 10 to 50, usually 20 to 40.
  • the base sequence of the probe used in the present invention includes a base sequence constituting a simple repetitive sequence or a complementary sequence thereof.
  • a double-stranded DNA plasmid is targeted for hybridization.
  • double-stranded DNA has a complementary sequence. Therefore, the base sequence of the probe may be the simple repetitive sequence itself to be isolated.
  • the homologous recombination protein can be used in the present invention regardless of its origin as long as it has homologous recombination activity.
  • the homologous recombination activity refers to the activity of recombining a portion consisting of a base sequence homologous to a single-stranded DNA contained in a double-stranded DNA with the single-stranded DNA. This activity can also be said to be an activity of hybridizing a single-stranded DNA to a complementary base sequence present in a double-stranded DNA.
  • RecA is a homologous recombinant protein derived from E. coli.
  • RecA A refined product of RecA produced by genetic recombination is commercially available ( ⁇ RecA ⁇ ; trade name of New England Biolabs / NEB, Product Code M0249S-200 g included).
  • amino acid sequence of RecA such as E. coli has also been determined as follows.
  • Salmonella NP.457222
  • Rad51 and Rad52 have been identified in human yeast (GenBank Accession Number: X64270, S38937) (; G Basils, M Aker, and RK Mortimer, Mol Cell Biol 1992 July; 12 (7): 3235-3246. "Nucleotide sequence and transcriptional regulation of the yeast recombinational repair gene RAD51.”.
  • These homologous recombination proteins can be used in the present invention.
  • the replacement protein may be not only a naturally-derived protein, but also a protein obtained as a gene recombinant, and as long as it has the homologous recombination activity necessary for the present invention, an amino acid may be used.
  • Mutants containing acid sequence mutations can also be used.
  • a Rad51 fragment containing a region necessary for maintaining homologous recombination activity, or a mutant protein containing the fragment as a partial structure is useful as a homologous recombination protein in the present invention.
  • Domains required for the homologous recombination activity of Rad51 have already been identified (Miller KA, Sawicka D, Barsky D, Albala JS., Nucleic Acids Res. 2004 Jan 02; 32 (1): 169—78. Domain mapping of the Rad51 paralog protein complexes.).
  • a double-stranded DNA plasmid library is incubated with a probe containing a simple repetitive sequence to be isolated in the presence of a homologous recombinant protein. These elements are incubated under conditions that allow the sequence-specific expression and hybridization of the probe to double-stranded DNA by the homologous recombinant protein to be used.
  • a double-stranded plasmid is mixed after a complex of a probe and a homologous recombination protein is formed in advance.
  • the step (1) of incubating a double-stranded DNA plasmid library with a probe containing a simple repeat sequence to be isolated in the presence of a homologous recombinant protein is, for example, Can be implemented in this way.
  • step (lb) Step (2) After step (la), a double-stranded DNA plasmid library is added and incubated further
  • reaction conditions when RecA is used as a homologous recombinant protein.
  • a probe (single-stranded DNA) and RecA protein are incubated with ATP.
  • the conditions for incubation are, for example, 20-40 ° C for 5 minutes to 30 minutes. These elements are usually incubated at near neutral pH. Specifically, pH 7-8 is suitable.
  • RecA protein forms a complex with ATP and a probe (single-stranded DNA).
  • a buffer solution having the following composition can be used. 25 mM Tris acetate buffer (pH 7.5)
  • ATP is added at 0.1-10mM.
  • a derivative of ATP can also be used.
  • dexiadenine triphosphate (dATP) or adenosine 5 and [y-thio] triphosphate ( ⁇ -S-ATP) can be used instead of ATP.
  • ATP and ⁇ -S-ATP can be mixed and used.
  • y-S-ATP or a mixture with ATP the triple-stranded structure formed by the action of RecA is more stably maintained. Therefore, the use of ⁇ -S-ATP is a preferred condition in the present invention.
  • the total concentration of both can be adjusted to be within the above-mentioned concentration range.
  • the mixing ratio of ATP and ⁇ -S-ATP can be, for example, 1: 10—10: 1, usually 1: 2—2: 1, preferably 1: 1. More specifically, ImM ATP and ImM ⁇ -S-ATP can be included.
  • RecA is added, for example, 0.1—10 g / mL, usually 0.2—lg / mL, more specifically 8 g / 30 L (about 0.27 g / mL). (Zhumabayava et al, BioTechniques 27: 834-845 (October 1999), RecA-Mediated Affinity Capture: A Method for FuU-Length cDNA Cloning).
  • the plasmid is added and incubated under conditions that allow hybridization of the probe to the double-stranded DNA by the homologous recombination protein.
  • a plasmid double-stranded DNA
  • RecA protein ATP probe single-stranded DNA
  • the probe can hybridize to complementary sequences in double-stranded DNA.
  • the probe has a three-stranded structure with the probe inserted between the two strands.
  • Rad51 which is a human-derived homologous recombination protein
  • a probe single-stranded DNA
  • ATP is added at 0.1-10mM.
  • Rad51 its derivatives can be used in place of ATP. Incubation conditions are, for example, 15-30 ° C, 1-20 minutes.
  • the following buffer is used for the reaction. Synthetic buffers can be used.
  • a complex consisting of a probe (single-stranded DNA) and a recombinant protein is formed by further adding Rad54 and incubating. If a single plasmid library (double-stranded DNA) is then added, the probe can be hybridized to the plasmid by homologous recombination.
  • the conditions for incubating the complex with the plasmid can be, for example, 5–60 minutes at 20–40 ° C. In this way, a triple-stranded structure consisting of a probe (single-stranded DNA) and a plasmid (double-stranded DNA) is formed.
  • Double-stranded DNA plasmid library in step (1) including a simple repeat sequence to be isolated, and a simple repeat sequence to be isolated when incubated in the presence of a homologous recombinant protein
  • the plasmid hybridizes with the probe.
  • a clone containing the desired simple repetitive sequence can be obtained. For example, if a probe that has been modified with a binding ligand in advance is used, clones that have been or hybridized can be easily recovered using the affinity for the binding ligand.
  • a clone hybridized with the probe can be captured on the solid phase by contact with the solid phase to which avidin is bound.
  • the captured clone is separated from a hybridized clone.
  • clones that did not hybridize are removed.
  • the hybridized clone can be recovered by placing the solid phase under conditions for eliminating the hybridization. A series of steps is shown in Fig. 1.
  • the recovered clones can be further amplified. It is desirable to use a method that can amplify SSRs evenly.
  • the PCR method has a possibility of imparting bias. If the degree of amplification varies depending on the structure or length of the SSRs base sequence, the final DNA isolated may be biased. Therefore, in order to amplify the clone recovered by the present invention, it is preferable to use, for example, a biological method.
  • a biological method Specifically Can be amplified by introducing the plasmid into a suitable host cell. That is, the present invention provides a method for isolating DNA containing SSRs, comprising the steps of isolating a plasmid by the following steps (2a)-(2c).
  • a plasmid is used as an isolation target.
  • the plasmid can usually be amplified by transformation into a suitable host cell.
  • the copy of the plasmid in the cell is independent of the type of insert carried by the plasmid. In other words, regardless of the base sequence of the insert DNA, a copy of the transformed plasmid is transmitted to the dividing cell. And preferably a copy is also produced in the cell.
  • the collected plasmid is amplified.
  • a plasmid having DNA containing SSRs to be isolated is captured on a solid phase. Separate the solid phase by centrifugation or filtration. Alternatively, if magnetic particles are used for the solid phase, the solid phase can be recovered magnetically. The solid phase is then washed to remove any vigorous plasmids. The captured plasmid is recovered from the hybridization with the probe by placing it in denaturing conditions. The thus recovered plasmid is transformed into a host cell. For example, a plasmid that can be amplified in E. coli is transformed into E. coli. If E.
  • the plasmid carrying the DNA containing the target SSRs is cloned.
  • double-stranded DNA containing SSRs is isolated according to the present invention.
  • the cloned plasmid can be purified as necessary, and the nucleotide sequence of the insert can be determined.
  • the amplification efficiency of each clone can be regarded as equal.
  • plasmid transformation efficiency is not affected by the base sequence composition of the insert.
  • the transformed plasmid is copied inside the cell or transmitted as the cell divides. Even in the process, it is considered unlikely that bias will occur due to the base sequence of the insert.
  • the insert size is limited at the stage of synthesizing the library, the length of the insert will remain within a certain range. Therefore, the bias of amplification efficiency due to the length of the insert is suppressed, and the amplification efficiency of the plasmid is kept highly uniform.
  • DNA containing SSRs hybridized with the probe can be isolated without bias. That is, the present invention can be expected to improve the isolation efficiency of DNA containing SSRs.
  • the base sequences of SSRs can be verified between the cloned plasmids.
  • SSRs consisting of the same base sequence can be determined as the same type and grouped into clusters.
  • the number of clusters means the type of SSRs identified.
  • Unknown SSRs can be identified by comparing the clustered nucleotide sequences with previously reported SSRs.
  • the structure of the probe used in the present invention is not limited as long as it includes a simple repetitive sequence (or its complementary sequence) to be isolated!
  • the probe can include a common base sequence.
  • a base sequence having a function other than hybridization with a plasmid can be added to the base sequence to be a probe.
  • an additional base sequence for example, an additional base sequence for introducing a binding ligand can be shown.
  • RecA a typical homologous recombination protein, can search double-stranded DNA in a very short time to find a homologous sequence (Honigberg et al., Proc. Natl. Acad. Sci. USA. 9586-9590, 1986). Attempts to apply this action to homologous sequence searches are known. In other words, a method in which a probe is hybridized to double-stranded DNA by the action of a homologous recombination protein has been applied to cDNA isolation and the like (Teintze et al., Biochem. Biophys. Res. Commun "Vol. 201, No. 3, 804-811, 1995).
  • double-stranded DNA hybridized with the probe can be recovered using the binding partner of the binding ligand.
  • a method for isolating clones containing the desired nucleotide sequence from cDNA has been put into practical use (CloneCapture TM cDNA Selection Kit; Clonetech).
  • a binding ligand was introduced into the region that hybridizes to the double-stranded DNA.
  • the molecular weight of a typical binding ligand, piotin, is about 244.
  • the average size of a single molecule is about 330.
  • the portion modified with the binding ligand has a greatly swollen structure compared to the normal single-stranded oligonucleotide portion.
  • a hybrid between double strands and single strands a structure in which single strand DNA is interrupted between the two strands is formed.
  • it compared to hybrids between single strands, it is considered to be more sensitive to structural changes. Therefore, the hybridization between two strands and one strand is susceptible to steric hindrance by the modifying molecule.
  • the binding ligand may cause steric hindrance when hybridizing single-stranded DNA with double-stranded DNA using homologous recombination proteins.
  • an additional sequence can be used in the probe of the present invention.
  • a probe having a binding ligand in an additional sequence portion that is not a base sequence for hybridizing to double-stranded DNA can be used. That is, the present invention provides a probe containing the following regions (a) and (b), and a method for isolating double-stranded DNA containing SSRs using this probe.
  • the region (a) of the probe having the above structure is a region that hybridizes to one of the strands of the DNA constituting the double-stranded DNA.
  • Region (b) is added to region (a).
  • Region (b) may be modified with a signal generating molecule or a binding ligand.
  • Region (b) is a region that does not participate in hybridization. Therefore, modification of region (b) does not cause steric hindrance in the hybrid.
  • the region (b) of the probe in the present invention does not participate in hybridization, and therefore, any salt. It can consist of a base sequence.
  • a base sequence composed of a series of a small number of bases is easy to synthesize.
  • the region (a) is composed of a simple repetitive sequence, a complementary base sequence or the same base sequence does not exist between the region (a) and the region (b).
  • a base sequence having a continuous force of a, t, c, g, or u is suitable as a base sequence constituting the region (b).
  • a base sequence in which a, t, or u is continuous is preferable. These bases have a lower affinity for base pair binding than binding between c / g. For this reason, it is expected that the influence of hybridization within the same strand can be further reduced.
  • the probe having the structure as described above can be prepared by any method.
  • a probe can be obtained by synthesizing region (a) and region (b) and linking them together.
  • a base can be added to the end of the previously synthesized region (a) by an enzyme such as terminal transferase. It is difficult to artificially control the number of bases added by terminal transferase. Therefore, the region (b) constituting the probe obtained by this method may have a non-uniform length. In order to control the length of the region (b), it is preferable to synthesize it completely chemically or to use a complementary strand synthesis reaction which is dependent on the cage type.
  • the length of the region (a) can be designed to an arbitrary length depending on the length of the SSRs to be isolated.
  • the length of region (a) is usually about 25-100 bases.
  • the length of region (b) is not limited. When chemically synthesizing, 30-60 bases is advantageous because it can be easily synthesized.
  • the probe having the above-described structure can be synthesized by utilizing a cage-type-dependent complementary strand synthesis reaction.
  • the present invention provides a method for producing a probe that can be repeated and repeated in a repetitive sequence including the following steps.
  • An oligonucleotide consisting of a repetitive sequence arranged on the 3 ′ side and an arbitrary nucleotide sequence other than the repetitive sequence arranged on the 5 ′ side is used as a cage, and at least the 3 ′ end has the above-mentioned cage-type repeat.
  • a complementary strand is synthesized using an oligonucleotide containing a complementary base sequence as a primer.
  • the product generated by the complementary strand synthesis reaction is composed of a complementary sequence of the oligonucleotide used as a cage.
  • the nucleotide derivative can also be introduced into the complementary strand synthesis product.
  • a nucleotide derivative modified with a binding ligand gives a complementary strand synthesis product modified with the binding ligand. Since the portion corresponding to the simple repeat sequence of the complementary strand synthesis product is supplied as a primer, it is not modified. As a result, a simple repetitive sequence portion that hybridizes to a double-stranded DNA is not modified, and a probe in which a region that is not involved in hybridization is modified with a binding ligand can be obtained.
  • Region (b) is composed of a complementary sequence of [any base sequence other than repetitive sequence].
  • a structure having an arbitrary base sequence other than a repetitive sequence on the 5 'side can also be used as the primer. That is, the present invention provides a method for producing a probe that hybridizes to a repetitive sequence including the following steps.
  • a combination of oligonucleotides each having a simple repeat sequence A and B complementary to each other and having a structure in which any base sequence other than the repeat sequence is linked to its 5 'side is used.
  • Complementary strand synthesis reactions proceed with simple repeat sequences A and B complementary to each other, with each other in the shape of an arrow and “arbitrary base sequences other than repeat sequences” in the direction of the arrows.
  • DNA having a simple repetitive sequence at the center and a base sequence other than the simple repetitive sequence (or its complementary sequence) on the 5 ′ side and 3 ′ side is synthesized.
  • the new primer or cage is annealed again to the cage or primer, and the same reaction is repeated.
  • DNA with the same structure is exponentially amplified by the principle of PCR.
  • the reaction in which DNAs having a base sequence complementary to each other on the 3 ′ side as described above are annealed to synthesize a complementary strand with both 3 ′ terminal forces is a known reaction also called the Overgo method.
  • the Overgo method its application to the synthesis of probes containing repetitive sequences modified with binding ligands is novel.
  • the region corresponding to [simple repetitive sequence A] and [simple repetitive sequence B] constituting the DNA synthesized in this embodiment is the region (a) in the probe, and the portion extended by the complementary strand synthesis reaction It corresponds to each area (b).
  • Region (b) is composed of a complementary sequence of [any base sequence other than repetitive sequence].
  • a modified nucleotide can be introduced into a complementary sequence (that is, region (b)) of the base sequence other than the simple repetitive sequence of the DNA thus synthesized.
  • DNA modified with a binding ligand is useful as a probe in the present invention.
  • the purpose of the present invention is to isolate double-stranded DNA containing a simple repetitive sequence. Therefore, the DNA synthesized as described above can be used as a probe for any of the DNAs containing simple repeats A and B.
  • the complementary strand synthesis reaction in step A) can be performed by a DNA polymerase that catalyzes the saddle type-dependent complementary strand synthesis reaction.
  • a DNA polymerase that catalyzes the saddle type-dependent complementary strand synthesis reaction.
  • Klenow fragment which is an active fragment of DNA polymerase derived from Escherichia coli, is useful in a method for synthesizing a probe based on the above reaction.
  • Taq polymerase used in PCR, etc.
  • any base sequence other than the repetitive sequence is not limited.
  • the same base sequence can be used as an arbitrary base sequence other than a repetitive sequence.
  • a sequence such as a stretch can be any base sequence other than a repetitive sequence.
  • Modified oligonucleotides can be used as substrates for complementary strand synthesis reactions.
  • biotinylated uracil can be used as a binding ligand-modified nucleotide.
  • a probe used in the present invention is synthesized by a complementary strand synthesis reaction
  • a highly uniform probe can be synthesized by keeping the stringency of the complementary strand synthesis reaction high.
  • a simple repetitive sequence such as cacacaca .... anneals to the base sequence of tgtgtgtg .
  • the possibility of deviation at the annealing position cannot be denied.
  • the misalignment position causes the generation of multiple types of probes with different simple repeat sequences.
  • a probe including a simple repetitive sequence composed of ca and gt is synthesized.
  • (Ca) is 25'-ca-3 'repeat sequence 25 times
  • (gt) 25 is 5'-tg-3' 2
  • a complementary strand is also synthesized with a 3 ′ end force. Theoretically, complementary-strand synthesis produces DNA with the following structure.
  • the resulting DNA will have a 4 unit long repeat sequence as follows.
  • the DNA probe thus generated with several units of annealing position deviation is rather useful in the isolation of DNA containing a simple repetitive sequence.
  • simple repeat sequences whose length cannot be specified can also be isolated.
  • Increasing the length variation of the probe can be an effective means for that. Therefore, the above-described method, which can obtain a mixture of probes containing simple repetitive sequences of different lengths from a single length of starting material, is preferred as a method for synthesizing probes for isolating simple repetitive sequences. That is, the present invention provides a mixture of a plurality of types of probes comprising the following regions (a) and (b) and having different numbers of repeats of the simple repetitive sequence constituting the region (a).
  • kits for the isolation of simple repetitive sequences comprising the following elements.
  • A is a 30-mer chain of A
  • CA CA 25 and (TG) 25 are 25 repetitions of ca and tg, respectively.
  • CA-oligo 5'-
  • A 30
  • CA 25-3 '(SEQ ID NO: 1, 80mer)
  • TG-oligo 5'- (A) 30 (TG) 25-3 '(SEQ ID NO: 2, 80mer)
  • Amersham's Megaprime DNA labeling system was used for biotinylation. The specific operation is as follows. First, 200 pmol of CA-oligo and 200 pmol of TG-oligo were annealed. Next, 20 pmol of dATP, dGTP, dCTP, and dTTP, respectively, and finally lOOOpmol of piotin 21-dUTP were obtained. Further, 2 units of DNA polymerase (Klenow fragment) was added and reacted at room temperature for 2 hours.
  • the complementary strand consisting of U with respect to A of the oligonucleotide oligonucleotide that is a saddle type is shown.
  • dTTP is introduced with the same potential as dUTP for complementary strand synthesis.
  • the synthesized complementary strand can be T or U.
  • the ratio of both depends on the concentrations of the substrates dTTP and dUTP.
  • the annealing conditions are usually about 10 minutes at room temperature. Common buffers can be used for annealing. Specifically, a buffer solution having the following composition can be shown.
  • a buffer composition suitable for complementary strand synthesis is also known. For example, when using a Klenow fragment for DNA polymerase. It is possible to use a buffer solution having the following composition.
  • the synthesized probe was recovered by QIAGEN QIAquick nucleotide removal kit. Operation was in accordance with product instructions. The purified pyotinylated probe was separated by agarose electrophoresis, and a double-stranded band having the desired size (100-200 bp) was cut out. DNA was purified from the excised agarose gel with a filter (ultrafree-DA, manufactured by Amicon). The recovered DNA was further purified by ethanol precipitation.
  • Rice genomic DNA was extracted and mechanically fragmented by sonication. A genomic DNA fragment of l-13 kb in size was selected and ligated into a plasmid vector that had been digested with Smal and dephosphorylated. PUC 18 was used as the plasmid vector. The vector inserted with genomic DNA was transformed into E. coli DH10B strain and plated to obtain a plasmid library of about 1.000.000 clones. DNA was collectively purified from the transformed E. coli by the alkaline method and used for subsequent screening by hybridization. [0067] 4. Triple chain formation
  • the biotin probe prepared in 2 was boiled for 5 minutes and then rapidly cooled on ice to form a single strand. Buffer solution is added to single-stranded piotinated probe, and 2.5 mM CoCl, ATP (ATP and
  • ATP-gumma-S mixture ATP-gumma-S mixture
  • RecA protein 8 microgram were collected and incubated at 37 ° C for 20 minutes.
  • the composition of the buffer is as follows.
  • step 3 the plasmid library lOmicrogram purified in step 3 was collected and incubated at 37 ° C for 1 hour to form triple chains. Thereafter, RecA was decomposed by proteinase K treatment in the presence of 0.1% SDS, and proteinase K was inactivated by adding Phenylmethylsulfonyl Fluoride (PMSF).
  • PMSF Phenylmethylsulfonyl Fluoride
  • the composition of the cleaning solution is as follows.
  • the eluted plasmid vector was purified by ethanol precipitation.
  • Escherichia coli was transformed with the plasmid vector recovered in 5 to construct a library.
  • the library was further diluted and plated on 96-well microplates.
  • DNA was purified and the nucleotide sequence of the insert was determined.
  • Simple repeat sequences contained in the base sequences were detected by commercially available software such as Repeat masker. The number of simple repetitive sequences detected was counted as the number of isolated SSR clones. Furthermore, a plurality of clones having the same base sequence were counted as one cluster. That is, the number of clusters means the kind of isolated simple repeat sequence.
  • Library Z motif Indicates the motif that constitutes the base sequence of the probe and the name of the library concentrated by the probe.
  • Number of clones hit Shows the number of positive clones, that is, the number of wells in which 96 positive clones were detected and the percentage (%).
  • SSRs indicates the number of plasmids containing cloned simple repeats.
  • Type of SSRs Number of simple repeats with different base sequences among the identified simple repeats
  • Average length (bp) Shows the average length (bp) of identified simple repeats.
  • Maximum length (bp) Indicates the length (bp) of the longest simple repeat sequence identified.
  • the base sequences of the probes used for isolation of these SSRS are shown below.
  • the portion of the nucleotide sequence indicated as T / U indicates that it may become T or U in probe synthesis.
  • the T in the motif part may also be U.
  • (CA) n, (TAA) n, and (GGA) n which are abundantly contained in the rice genome, were enriched to 20-40% from the obtained genomic library.
  • the present invention has shown that plasmids containing simple repeat sequences can be efficiently enriched.
  • SSR The number of CA or AC or GT or TG repeats 9bp or more mapped to each chromosome.
  • Number of clusters The number of SSRs that do not have overlapping nucleotide sequences among the SSRs mapped to each chromosome. Duplication was clustered by chromosomal location. In other words, even if the number of repeats in the actually isolated DNA was different, the number of clusters was set to 1 when mapped at the same position.
  • An SSR with an unknown position is considered to be a base sequence that cannot be found on the genomic base sequence determined at this stage.
  • Such a strong base sequence that could not be mapped determined the number of clusters based on the assembly results between the base sequences.
  • the present invention is useful for isolation of DNA containing simple repetitive sequences (SSRs).
  • SSRs simple repetitive sequences
  • various DNAs containing SSRs as structural units such as satellite DNA, minisatellite DNA, or microsatellite DNA, can be isolated.
  • a base sequence useful as a genetic marker can be identified.
  • the minisatellite array is useful for personal identification, parent-child discrimination, and the like.
  • the base sequence of microsatellite DNA can be used as a marker for knowing the physical position on the genome by mapping on the genome sequence.
  • the base sequence information of microsatellite DNA it is assumed that the marker is mapped to the entire genome at a high density.
  • the following advantages can be expected by using one-on-one mapping with high density.
  • genomic fragments cloned into an artificial chromosome such as BAC or YAC can be quickly and easily aligned using a marker.
  • markers that are densely mapped are particularly important. For example, in linkage analysis with phenotypes, the mapping density of markers greatly affects the accuracy of map based cloning such as positional cloning. The presence of high-density markers is also an important clue in selective marker breeding.
  • mapping of loci that contribute to quantitative traits also contributes to the improvement of the accuracy of high-density markers.
  • multiple loci are involved in quantitatively changing traits such as rice seed weight.
  • the association between loci and traits is often discontinuous. Increase the density of markers on the genetic linkage map using a large number of DNA markers and contribute to traits It is possible to identify the locus to be used.
  • Genome sizes range from 430 million base pairs in rice and 6 billion base pairs in humans. It can be said that the analysis of the genomes of these species has already been completed with considerable accuracy. However, identifying many genetic markers according to the size of the genome is a major challenge in the future. Word V, in other words, the importance of isolating microsatellite DNA markers that can cover the entire large genome has increased rapidly.
  • the method of the present invention that enables efficient isolation of SSRs will greatly contribute to the progress of gene analysis in the future through the isolation of SSRs markers.

Abstract

It is intended to provide a method for isolating a DNA containing simple sequence repeats (SSRs). Namely, a method of isolating a double-stranded DNA containing SSRs which comprises (1) the step of incubating a double-stranded DNA plasmid library together with a probe containing the simple sequence repeats to be isolated in the presence of a homologous recombinant protein and (2) the step of isolating a plasmid hybridized with the probe. A kit and a probe which are useful in this method and a method of producing the probe are also provided. This probe is composed of a region comprising the simple sequence repeats and base sequence(s)other than the simple sequence repeats which are attached to one of the 5’-side and the 3’-side thereof or both of these sides. This probe may be modified in the region attached to the 3’-side with a bonding ligand such as biotin.

Description

明 細 書  Specification
単純反復配列を含む 2本鎖 DNAの単離方法  Method for isolating double-stranded DNA containing simple repetitive sequences
技術分野  Technical field
[0001] 本発明は、反復配列を含む 2本鎖 DNAの単離方法に関する。  [0001] The present invention relates to a method for isolating double-stranded DNA containing a repetitive sequence.
背景技術  Background art
[0002] 単純反復配列 (Simple Sequence Repeats;SSRs)は、短!、単純配列が 2回以上繰り返 し連続した塩基配列である。単純反復配列を構成する塩基配列は、たとえば gagagaga....のような、比較的短い塩基配列の繰り返しで構成されている。 この例のよ うに 2塩基単位の繰り返し配列は、特にタンデムリピート (tandem repeat)と呼ばれる。 反復配列をゲノム中に有することは、真核生物の一般的な特徴である。単純反復配 列を含む DNAには、サテライト DNA、ミニサテライト DNA、およびマイクロサテライト DNA等と呼ばれるいっくかのファミリーの存在が明らかにされている。  [0002] Simple Sequence Repeats (SSRs) are short! Base sequences that are simple sequences repeated twice or more. The base sequence constituting the simple repeat sequence is composed of a relatively short base sequence repeat such as gagagaga .... A repeat sequence of 2 base units as in this example is called a tandem repeat. Having a repeat sequence in the genome is a common feature of eukaryotes. It has been clarified that DNA containing simple repetitive sequences includes a family called satellite DNA, minisatellite DNA, and microsatellite DNA.
[0003] サテライト DNAは、塩ィ匕セシウムの密度勾配中でゲノム DNAを遠心分離したとき に、ゲノム DNAの平均的な G + C含量に相当するバンド力 離れた位置(サテライト) に分離される DNAとして同定された反復配列である。染色体の上では、主にセント口 メァあるいはテロメァ領域に存在することが明らかにされている。サテライト DNAを構 成する塩基配列はタンデムリピートである。サテライト DNAの塩基配列は、生物種間 のみならず、同じ種内でも高度な多様性が確認されている。サテライト DNAは、品種 間の遺伝学的な相違を確認するためのマーカーなどとして有用である。  [0003] When genomic DNA is centrifuged in a salt gradient of cesium chloride, satellite DNA is separated into bands (satellite) that correspond to the average G + C content of the genomic DNA. It is a repetitive sequence identified as DNA. On the chromosome, it has been revealed that it exists mainly in the centrum or telomere region. The base sequence composing satellite DNA is tandem repeat. The base sequence of satellite DNA has been confirmed to be highly diverse not only among species, but also within the same species. Satellite DNA is useful as a marker for confirming genetic differences between cultivars.
[0004] タンデムリピート配列は、セントロメァゃテロメァなどの特定の領域だけでなぐゲノ ム全体に散在している。ゲノム中に散在する SSRsの一つとして同定されたの力 ミニ サテライト DNAである。ミニサテライト DNAは、種内で多型を示すため、 DNAフィン ガープリント法に利用されている。たとえば、法医学分野で、個人識別や親子関係の 同定のための指標として用いられているのもミニサテライト DNAである。動植物にお いては、ミニサテライト DNAを品種の同定に利用することもできる。  [0004] Tandem repeat sequences are scattered throughout the entire genome only in specific regions such as centromeres and telomeres. Power mini-satellite DNA identified as one of the SSRs scattered throughout the genome. Minisatellite DNA is used for DNA fingerprinting because it shows polymorphism within species. For example, minisatellite DNA is used in the forensic field as an indicator for identifying individuals and identifying parent-child relationships. In animals and plants, minisatellite DNA can also be used to identify varieties.
[0005] マイクロサテライト DNAもミニサテライト DNAと同様に、ゲノム全体に見られる SSRs で構成される DNAである。哺乳類では、(dA.dT)nの繰り返し配列が一般的である。ヒ トでは、(dCA.dTG)n、あるいは (dCT.dAG)nの繰り返しが、それぞれゲノムの 0. 5%お よび 0. 2%の割合で存在する。 3塩基以上の繰り返し単位力 なるマイクロサテライト DNAも存在するが、通常、その頻度は高くない。実際には 2— 5塩基程度の繰り返し 配列で構成されるマイクロサテライト配列の存在が明らかにされている。 [0005] Similar to minisatellite DNA, microsatellite DNA is DNA composed of SSRs found in the entire genome. In mammals, (dA.dT) n repeat sequences are common. Hi (DCA.dTG) n or (dCT.dAG) n repeats are present at 0.5% and 0.2% of the genome, respectively. There are microsatellite DNAs with repeating unit strengths of 3 bases or more, but the frequency is usually not high. In fact, the existence of microsatellite sequences composed of repetitive sequences of about 2-5 bases has been clarified.
[0006] マイクロサテライト DNAは、ゲノム全体に広く分布することから、特に遺伝マーカー としての有用性が高い。たとえば、特定の形質と遺伝学的な関連性を有するマイクロ サテライト DNAを明らかにすることができれば、そのマイクロサテライト DNAの近くに 、特定の形質と関連する遺伝子 (ある 、は転写調節領域)が存在する可能性が高 、 。このような遺伝解析を進めるためには、数多くのマイクロサテライト DNAの情報を集 積して、ゲノムの全体をできるだけ高密度にカバーすることが必要である。  [0006] Since microsatellite DNA is widely distributed throughout the genome, it is particularly useful as a genetic marker. For example, if a microsatellite DNA having a genetic association with a specific trait can be identified, a gene associated with the specific trait (or a transcriptional regulatory region) exists near the microsatellite DNA. Likely to be. In order to proceed with such genetic analysis, it is necessary to collect information on a large number of microsatellite DNA and cover the entire genome as densely as possible.
[0007] 各種の反復配列は、基本的には次のような操作によって単離することができる。ま ず、ゲノムをランダムに切断したゲノムライブラリーを調製する。ライブラリーを構成す る断片配列に、反復配列を含むプローブをハイブリダィズさせ、ポジティブクローンを 単離する。単離されたポジティブクローンの塩基配列を決定すれば、反復配列の塩 基配列を明らかにすることができる (Karagyozov et al, Nucleic Acid Research, 1993, Vol.21, No.16 3911-3912; Zane et al, Mol Ecol. 2002 Jan;l l(l):l- 16.)。しかし実際 には、種々の制約のために、反復配列の効率的な取得が妨げられていた。  [0007] Various repetitive sequences can be basically isolated by the following procedure. First, a genomic library is prepared by randomly cutting the genome. Hybridize a probe containing a repetitive sequence to the fragment sequence constituting the library, and isolate a positive clone. By determining the base sequence of the isolated positive clone, the base sequence of the repetitive sequence can be determined (Karagyozov et al, Nucleic Acid Research, 1993, Vol. 21, No. 16 3911-3912; Zane et al, Mol Ecol. 2002 Jan; ll (l): l-16). In practice, however, various constraints have prevented efficient acquisition of repetitive sequences.
[0008] 制約の一つに、 PCR法の利用がある。たとえば、断片化したゲノムライブラリーを反 復配列を含むプローブでスクリーニングした場合、ハイブリダィズしたゲノム断片は P CR法で増幅してクローユングされる(図 2)。このとき、ゲノム断片の全てを均等に増 幅することは、現在の技術では困難である。たとえば、比較的短い塩基配列が優先 的に増幅される結果、クローユングされる反復配列も短いものに偏る可能性が高い。 つまり、より長い反復配列の情報が失われる恐れがある。  [0008] One of the limitations is the use of the PCR method. For example, when a fragmented genomic library is screened with a probe containing a repetitive sequence, the hybridized genomic fragment is amplified and cloned by the PCR method (Figure 2). At this time, it is difficult to amplify all the genomic fragments evenly with the current technology. For example, as a result of a relatively short base sequence being preferentially amplified, it is likely that the repetitive sequences to be cloned are biased toward short ones. That is, information on longer repetitive sequences may be lost.
非特許文献 1 : Karagyozov et al, Nucleic Acid Research, 1993, Vol.21, No.16 3911— 3912, Construction of random small-insert genomic libraries highly enriched for simple sesquence repeats  Non-Patent Document 1: Karagyozov et al, Nucleic Acid Research, 1993, Vol.21, No.16 3911— 3912, Construction of random small-insert genomic libraries highly enriched for simple sesquence repeats
非特許文献 2 : Zane et al, Mol Ecol. 2002 Jan;l l(l):l— 16., Strategies for microsatellite isolation: a review. 発明の開示 Non-Patent Document 2: Zane et al, Mol Ecol. 2002 Jan; ll (l): l— 16., Strategies for microsatellite isolation: a review. Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] 本発明は、 SSRsを含む DNAを単離するための技術の提供を課題とする。  [0009] An object of the present invention is to provide a technique for isolating DNA containing SSRs.
課題を解決するための手段  Means for solving the problem
[0010] SSRsを含む DNAは、主に、プローブとのハイブリダィズと、ハイブリダィズしたゲノム 断片のクロー-ングによって単離される。これらの工程において、反復配列を偏り無く 単離することができれば、結果的に、効率的な反復配列の単離を実現できる。具体 的には、まずプローブとのハイブリダィズの段階で、 SSRsを含む DNAが網羅的にス クリーニングされる必要がある。すなわち、スクリーニングに用いるプローブ力 与えら れたストリンジエンシーの元で、 目的とするゲノム断片に十分にハイブリダィズしうる条 件が与えられる必要がある。また先に述べたように、たとえば PCR法を応用すると、 反応の過程で単離される反復配列に偏りが生じる可能性が予測された。したがって、 たとえば、 PCR法に依存しないで目的とする DNAを単離することができる方法を提 供することができれば有用である。 [0010] DNA containing SSRs is isolated mainly by hybridization with a probe and cloning of the hybridized genomic fragment. In these steps, if repetitive sequences can be isolated without bias, efficient repetitive sequence isolation can be realized as a result. Specifically, DNA containing SSRs needs to be comprehensively screened at the stage of hybridization with the probe. In other words, it is necessary to provide conditions that can sufficiently hybridize to the target genome fragment under the stringency given the probe power used for screening. In addition, as described above, for example, when PCR was applied, it was predicted that there might be a bias in the repetitive sequences isolated in the course of the reaction. Therefore, for example, it would be useful if a method capable of isolating the target DNA without depending on the PCR method could be provided.
[0011] このような条件を満たすために、本発明者らは、ゲノム断片を保持したプラスミドべク ターを直接スクリーニングすることで、ポジティブクローンを効率的に単離しうることを 見出し本発明を完成した。更に本発明者らは、スクリーニング用のプローブのデザィ ンについて検討を重ねた。その結果、特定の構造を有するプローブが、 SSRsを含む DNAの単離において有用であることを明らかにして本発明を完成した。すなわち本 発明は、以下の SSRsを含む DNAの単離方法、そのためのキット、並びに SSRsを含む DN Aの単離用のプローブとその製造方法に関する。 [0011] In order to satisfy these conditions, the present inventors have found that positive clones can be efficiently isolated by directly screening plasmid vectors carrying genomic fragments, and completed the present invention. did. Furthermore, the present inventors have repeatedly studied the design of probes for screening. As a result, the present invention was completed by clarifying that a probe having a specific structure is useful in isolation of DNA containing SSRs. That is, the present invention relates to a method for isolating DNA containing the following SSRs, a kit therefor, a probe for isolating DNA containing SSRs, and a method for producing the same.
〔1〕次の工程を含む、単純反復配列を含む 2本鎖 DNAの単離方法。  [1] A method for isolating double-stranded DNA containing a simple repetitive sequence, comprising the following steps.
(1) 2本鎖 DNAプラスミドライブラリーを、単離すべき単純反復配列を含むプローブ と、相同組換え蛋白質の存在下でインキュベートする工程、  (1) incubating a double-stranded DNA plasmid library with a probe containing a simple repetitive sequence to be isolated in the presence of a homologous recombinant protein;
(2)プローブとハイブリダィズしたプラスミドを単離する工程  (2) Isolating the plasmid hybridized with the probe
〔2〕プラスミドライブラリーがゲノムの断片を含むプラスミドライブラリーである〔1〕に記 載の方法。  [2] The method according to [1], wherein the plasmid library is a plasmid library containing genomic fragments.
〔3〕プラスミドを単離する工程が、次の工程 (2a)-(2c)を含む〔2〕に記載の方法。 (2a)プローブとハイブリダィズしたプラスミドを回収する工程、 [3] The method according to [2], wherein the step of isolating the plasmid includes the following steps (2a) to (2c). (2a) recovering the plasmid hybridized with the probe,
(2b)回収されたプラスミドを、当該プラスミドを導入することができる宿主細胞に形質 転換する工程、および  (2b) transforming the recovered plasmid into a host cell into which the plasmid can be introduced, and
(2c)増幅されたプラスミドを前記宿主細胞から回収する工程  (2c) recovering the amplified plasmid from the host cell
〔4〕プローブが、次の領域 (a)および (b)力 なる〔1〕に記載の方法。 [4] The method according to [1], wherein the probe comprises the following regions (a) and (b) force.
(a)単純反復配列からなる領域、および  (a) a region consisting of simple repeat sequences, and
(b)領域 (a)の 3 '側および 5 '側の両方、またはいずれかに位置し、単純反復配列以 外の塩基配列で構成された領域  (b) Region located on both the 3 'side and / or 5' side of region (a), and consisting of base sequences other than simple repeat sequences
〔5〕領域 (b)の塩基配列力 a、 t、 c、 g、および u力 なる群力 選択されるいずれかの 塩基が連続した配列である〔4〕に記載の方法。  [5] The method according to [4], wherein the base force of the region (b) a, t, c, g, and u force are selected.
〔6〕プローブが領域 (b)に結合性リガンドを有している〔4〕に記載の方法。  [6] The method according to [4], wherein the probe has a binding ligand in the region (b).
〔7〕プラスミドとプローブをインキュベートする前、または後に、結合性リガンドに結合 する固相にプラスミドを捕捉する工程を含む、〔6〕に記載の方法。  [7] The method according to [6], comprising a step of capturing the plasmid on a solid phase that binds to the binding ligand before or after incubating the plasmid and the probe.
〔8〕領域 (a)の長さが 25— 100塩基である〔4〕に記載の方法。  [8] The method according to [4], wherein the length of region (a) is 25-100 bases.
〔9〕領域 (b)の長さが 30— 60塩基である〔4〕に記載の方法。  [9] The method according to [4], wherein the length of region (b) is 30 to 60 bases.
〔10〕プローブが、領域 (a)を構成する単純反復配列の反復の数が異なる複数種のプ ローブを含む〔4〕に記載の方法。  [10] The method according to [4], wherein the probe includes a plurality of kinds of probes having different numbers of repeats of the simple repeat sequence constituting the region (a).
〔11〕相同組換え蛋白質力 RecA蛋白質、 Rad51蛋白質、および Rad52蛋白質力もな る群力 選択される〔1〕に記載の方法。  [11] Homologous recombination protein strength The method according to [1], wherein the group strength that also has RecA protein, Rad51 protein, and Rad52 protein strength is selected.
〔12〕次の要素を含む、単純反復配列の単離用のキット。 [12] A kit for the isolation of simple repetitive sequences, comprising the following elements:
0次の領域 (a)および (b)力 なり、かつ領域 (b)に結合性リガンドを有するプローブ、 A zero-order region (a) and (b) force, and a probe having a binding ligand in region (b),
(a)単純反復配列からなる領域、および (a) a region consisting of simple repeat sequences, and
(b)領域 (a)の 3 '側および 5 '側の両方、またはいずれかに位置し、単純反復配列以 外の塩基配列で構成された領域、  (b) a region that is located on the 3 ′ side and / or the 5 ′ side of region (a) and is composed of a base sequence other than a simple repetitive sequence,
ii)相同糸且換え蛋白質、および  ii) homologous thread and reversible protein, and
iii)前記結合性リガンドと結合する固相  iii) Solid phase that binds to the binding ligand
〔13〕次の工程を含む反復配列にハイブリダィズするプローブの製造方法。  [13] A method for producing a probe that hybridizes to a repetitive sequence including the following steps.
A) 3 '側に配置された反復配列と、 5 '側に配置された反復配列以外の任意の塩基 配列からなるオリゴヌクレオチドを铸型とし、少なくとも 3'末端に前記铸型の反復配列 に相補的な塩基配列を含むオリゴヌクレオチドをプライマーとして相補鎖を合成する 工程、および A) Any base other than the repeat sequence placed on the 3 'side and the repeat sequence placed on the 5' side A step of synthesizing a complementary strand using an oligonucleotide consisting of a sequence as a cage and using as a primer an oligonucleotide containing a base sequence complementary to the cage repeat at least at the 3 ′ end; and
B)工程 A)で合成された相補鎖を回収する工程  B) Step of recovering the complementary strand synthesized in step A)
〔14〕次の領域 (a)および (b)力 なるプローブ。 [14] Next region (a) and (b) Force probe.
(a)単純反復配列からなる領域、および  (a) a region consisting of simple repeat sequences, and
(b)領域 (a)の 3'側および 5'側の両方、またはいずれかに位置し、単純反復配列以 外の塩基配列で構成された領域、  (b) a region that is located on both the 3 ′ side and / or 5 ′ side of region (a) and is composed of a base sequence other than a simple repeat sequence,
〔15〕プローブが、領域 (a)を構成する単純反復配列の反復の数が異なる複数種のプ ローブを含む混合物である〔14〕に記載のプローブ。  [15] The probe according to [14], wherein the probe is a mixture comprising a plurality of types of probes having different numbers of repeats of the simple repetitive sequence constituting the region (a).
〔16〕プローブが、領域 (b)に結合性リガンドおよびシグナル生成分子のいずれ力、ま たは両方を有する〔14〕に記載のプローブ。  [16] The probe according to [14], wherein the probe has one or both of a binding ligand and a signal generating molecule in the region (b).
あるいは本発明は、上記〔13〕に記載の製造方法によって得ることができるプローブ に関する。また本発明は、〔14〕に記載した要素 (a)および (b)力 なるプローブの、単 純反復配列を含む 2本鎖 DNAの単離における使用に関する。  Alternatively, the present invention relates to a probe that can be obtained by the production method described in [13] above. The present invention also relates to the use of the element (a) and (b) potent probe described in [14] in the isolation of double-stranded DNA containing a simple repetitive sequence.
図面の簡単な説明 Brief Description of Drawings
[図 1]本発明に基づく単純反復配列の単離方法の、好ましい態様を示す図。(a)相補 鎖合成によって得られた単純反復配列とそれ以外の配列力 なるプローブ。相補鎖 合成によって伸長した部分には、ピオチン (B)が導入されている。(b)l本鎖化されたプ ローブと円で示したプラスミドがハイブリダィズによって 3本鎖を形成して 、る。(c)スト レプトアビジンを有する磁性粒子によって、プローブが捕捉され、更にハイブリダィズ したプラスミドが回収される。 FIG. 1 is a diagram showing a preferred embodiment of the method for isolating simple repetitive sequences according to the present invention. (A) A simple repetitive sequence obtained by complementary strand synthesis and a probe having other sequence power. Piotin (B) is introduced into the extended part by complementary strand synthesis. (B) The l-stranded probe and the circled plasmid form triple strands by hybridization. (C) The probe is captured by the magnetic particles having streptavidin, and the hybridized plasmid is recovered.
[図 2]従来技術に基づぐゲノム中の SSRsなどの単離方法を示す図。断片化されたゲ ノム DNAは、まずアダプターが付加され、平滑末端化される (bluntended)。次いでビ ォチンィ匕したプローブとハイブリダィズされる。(d)ハイブリダィズしたゲノム断片は、ス トレブトアビジンを有する磁性粒子によって回収される。(e)回収されたゲノム断片が P CRで増幅される。(D増幅産物がプラスミドに組み込まれ、クローニングされる。  [Fig. 2] A diagram showing a method for isolating SSRs in the genome based on the prior art. The fragmented genomic DNA is first blunted by adding an adapter. It is then hybridized with a biotinized probe. (D) The hybridized genomic fragment is recovered by magnetic particles having streptavidin. (E) The recovered genomic fragment is amplified with PCR. (The D amplification product is incorporated into a plasmid and cloned.
[図 3]相補鎖合成による本発明のプローブの合成方法を示す図。 [図 4]本発明によってイネのゲノムから単離された単純反復配列を含む DNAの数と 種類を示す。図中、左の縦軸は単離された DNAのクローン数またはその種類 (cluster)の数を示す。左側のカラムが単離された DNAのクローン数を、右側のカラム がその種類 (cluster)の数を示している。更に横軸は、単離に使用したプレートの数を 示す。 FIG. 3 shows a method for synthesizing the probe of the present invention by complementary strand synthesis. FIG. 4 shows the number and type of DNA containing simple repeats isolated from the rice genome according to the present invention. In the figure, the left vertical axis indicates the number of isolated DNA clones or the number of their clusters. The left column indicates the number of isolated DNA clones, and the right column indicates the number of clusters. The horizontal axis shows the number of plates used for isolation.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0013] 本発明は、次の工程を含む、単純反復配列 (SSRs)を含む 2本鎖 DNAの単離方法に 関する。 [0013] The present invention relates to a method for isolating double-stranded DNA containing simple repetitive sequences (SSRs), comprising the following steps.
(1) 2本鎖 DNAプラスミドライブラリーを、単離すべき単純反復配列を含むプローブと 、相同組換え蛋白質の存在下でインキュベートする工程、および  (1) incubating a double-stranded DNA plasmid library with a probe containing a simple repetitive sequence to be isolated in the presence of a homologous recombinant protein; and
(2)プローブとハイブリダィズしたプラスミドを単離する工程  (2) Isolating the plasmid hybridized with the probe
[0014] 本発明にお 、て、プラスミドライブラリーとは、スクリーニングすべき DNAを保持した 複数種のプラスミドの集合体である。本発明におけるプラスミドは、 SSRsを含む可能 性のある DNAを保持した 2本鎖の DNAからなる。またライブラリーを構成するプラス ミドは、好ましくは、適当な宿主細胞に形質転換することによって増幅することができ る DNAである。プラスミドの形状は限定されない。通常、プラスミドは環状 2本鎖 DN Aである。あるいは直鎖状 2本鎖 DNAであっても、宿主細胞に形質転換することによ つて、増幅することができるプラスミドは、本発明におけるプラスミドとして好ましい。  [0014] In the present invention, a plasmid library is an assembly of a plurality of types of plasmids holding the DNA to be screened. The plasmid in the present invention consists of double-stranded DNA carrying DNA that may contain SSRs. The plasmid constituting the library is preferably DNA that can be amplified by transformation into an appropriate host cell. The shape of the plasmid is not limited. Usually, the plasmid is a circular double-stranded DNA. Alternatively, a plasmid that can be amplified even by linear double-stranded DNA by transformation into a host cell is preferred as the plasmid in the present invention.
[0015] なおプラスミドの宿主細胞における増幅とは、たとえば、細胞内におけるコピー数の 増加を含む。また、細胞当たりのコピー数とは無関係に、細胞の分裂に伴って分裂し た細胞にプラスミドが伝達される場合にも、プラスミドは増幅される。たとえば細胞当 たり 1つのプラスミドのみを保持している場合でも、分裂によって細胞数が増加すれ ば、プラスミドの数は増える。細胞の分裂は、酵母における出芽を含む。  [0015] The amplification of the plasmid in the host cell includes, for example, an increase in the copy number in the cell. A plasmid is also amplified when the plasmid is transferred to a cell that has divided as the cell divides, regardless of the number of copies per cell. For example, even if you have only one plasmid per cell, the number of plasmids will increase if the number of cells increases due to division. Cell division includes budding in yeast.
[0016] 本発明にお 、て、スクリーニングすべき DNAは、 SSRsを含む可能性のある DNAで ある。 DNAの由来は限定されない。通常、細胞のゲノム由来の DNAが用いられる。 細胞のゲノム由来の DNAを対象とすることによって、 SSRsを含む DNAをゲノム全体 力ら単離することができる。あるいは、 BACクローン、または YACクローンなどに由来 する DNAを対象とすることもできる。特定の BACクローン、または YACクローン由来 の断片を対象とすることによって、ゲノムの特定の領域から、 SSRsを含む DNAを単離 することができる。 [0016] In the present invention, DNA to be screened is DNA that may contain SSRs. The origin of DNA is not limited. Usually, DNA derived from the cell genome is used. By targeting DNA derived from the genome of a cell, DNA containing SSRs can be isolated from the entire genome. Alternatively, DNA derived from a BAC clone, a YAC clone, or the like can be used. From specific BAC clone or YAC clone DNA containing SSRs can be isolated from a specific region of the genome.
[0017] 以下、特に断らない限り、「ゲノム DNA」と記載するときは、 DNAの由来は限定され ない。したがって、「ゲノム DNA」は、細胞由来の DNA、および BAC、 YAC、あるいは コスミドベクターなどの単離されたゲノム断片に由来する DNAを含む。  [0017] Hereinafter, unless otherwise specified, when "genomic DNA" is described, the origin of the DNA is not limited. Thus, “genomic DNA” includes cell-derived DNA and DNA derived from isolated genomic fragments, such as BAC, YAC, or cosmid vectors.
[0018] ゲノム DNAは、必要に応じて断片化してプラスミドに挿入することができる。断片の 大きさは、スクリーニングすべき SSRsの予想される長さに応じて適宜選択することがで きる。すなわち、単離すべき塩基配列よりも長いサイズの断片を選択することができる 。一方、本発明の原理に基づけば、 100— 7000程度のインサートサイズを有するプ ラスミドを単離することができる。したがって、たとえば、マイクロサテライト DNAの単 離を目的とする場合には、通常 100— 5000bp、たとえば 100— 2000bp、好ましくは 800— 1500bpの範囲の断片を保持したプラスミドを用いることができる。実際には、 約 lOOObp前後の断片を保持したプラスミドを選択し、本発明の方法を適用すること ができる。  [0018] Genomic DNA can be fragmented and inserted into a plasmid as necessary. The size of the fragment can be selected as appropriate according to the expected length of the SSRs to be screened. That is, a fragment having a size longer than the base sequence to be isolated can be selected. On the other hand, based on the principle of the present invention, a plasmid having an insert size of about 100-7000 can be isolated. Therefore, for example, for the purpose of isolating microsatellite DNA, a plasmid carrying a fragment usually in the range of 100 to 5000 bp, for example, 100 to 2000 bp, preferably 800 to 1500 bp can be used. In practice, the method of the present invention can be applied by selecting a plasmid retaining a fragment of about lOOOObp.
[0019] 本発明において、プラスミドライブラリーの調製に当たり、ゲノム DNAを断片化する ための方法は任意である。一般に、物理的な方法、あるいは生化学的な方法によつ て、ゲノムを断片化する方法が利用されている。物理的な方法としては、超音波によ る DNAの切断が挙げられる。生化学的な方法には、制限酵素による消化が含まれる 。断片化されたゲノム DNAを、プラスミドベクターにライゲーシヨンすることによって、 プラスミドライブラリーを得ることができる。断片化された DNAは、ライゲーシヨンの前 に、予め、 目的のサイズを有するものを選択しておくことができる。あるいは、ライゲー シヨンの後に、 目的のサイズを有する DNAが挿入されたプラスミドを選択しても良い。 更に、適当なゲノムライブラリーが商業的に供給されていれば、市販のゲノムライブラ リーを利用することもできる。  [0019] In the present invention, in preparing a plasmid library, any method for fragmenting genomic DNA may be used. In general, a method of fragmenting a genome by a physical method or a biochemical method is used. As a physical method, DNA can be cleaved by ultrasound. Biochemical methods include digestion with restriction enzymes. A plasmid library can be obtained by ligating the fragmented genomic DNA to a plasmid vector. The fragmented DNA can be selected in advance of the desired size before ligation. Alternatively, a plasmid in which DNA having a desired size is inserted may be selected after ligation. Furthermore, a commercially available genomic library can be used if an appropriate genomic library is commercially available.
[0020] ゲノム断片を挿入するためのプラスミドベクターは、限定されない。一般的には、 [0020] The plasmid vector for inserting the genomic fragment is not limited. In general,
SSRSの単離を目的とする場合には、 pBluescriptベクターあるいは pUCベクターなど が用いられる。これらのベクターは大腸菌に形質転換することによって、クローユング 、ある 、は増幅することができる。 [0021] 本発明の単離方法においては、プラスミドライブラリ一は、単離すべき単純反復配 列を含むプローブと、相同組換え蛋白質の存在下でインキュベートされる。単離すベ き単純反復配列を含むプローブは、任意の方法によって調製することができる。目的 とする塩基配列からなる DNAを合成する方法は公知である。たとえば、化学的に塩 基を連結することによって、任意の塩基配列を有する DNAを合成することができる。 また、铸型となる DNAにプライマーをァニールさせて、相補鎖合成反応を行えば、 相補配列からなる DNAを合成することができる。更に、ベクターに保持された DNA から、目的とする塩基配列を有する領域を制限酵素で切り出すこともできる。 For the purpose of SSRS isolation, pBluescript vector or pUC vector is used. These vectors can be amplified by cloning into E. coli. [0021] In the isolation method of the present invention, one plasmid library is incubated with a probe containing a simple repeat sequence to be isolated in the presence of a homologous recombinant protein. Probes containing simple repetitive sequences to be isolated can be prepared by any method. Methods for synthesizing DNA consisting of the target nucleotide sequence are known. For example, DNA having an arbitrary base sequence can be synthesized by chemically linking bases. Also, DNA consisting of complementary sequences can be synthesized by annealing a primer to the DNA that is in the shape of a cage and performing a complementary strand synthesis reaction. Furthermore, a region having the desired base sequence can be excised from the DNA retained in the vector with a restriction enzyme.
[0022] DNAの合成に用いられる塩基として、各種の誘導体を利用することもできる。たと えば、色素分子 (chromophore)、蛍光分子 (fluorophore)、あるいは発光分子  [0022] Various derivatives can also be used as bases used for DNA synthesis. For example, chromophore, fluorophore, or luminescent molecule
(luminophore)等で標識されたヌクレオチド誘導体が公知である。これらのシグナル生 成分子で修飾されたヌクレオチド誘導体を利用することによって、プローブを標識す ることができる。あるいは、結合性リガンドで修飾された塩基を利用することもできる。 たとえば、ピオチンやジゴキシンなどの結合性リガンドで修飾されたヌクレオチド誘導 体が公知である。結合性リガンドで修飾されたプローブは、ハイブリダィズしたプラスミ ドとハイブリダィズしな力つたプラスミドの物理的な分離に有用である。  Nucleotide derivatives labeled with (luminophore) or the like are known. By utilizing nucleotide derivatives modified with these signal generating molecules, the probe can be labeled. Alternatively, a base modified with a binding ligand can be used. For example, nucleotide derivatives modified with binding ligands such as piotin and digoxin are known. Probes modified with binding ligands are useful for physical separation of plasmids that are not hybridized to hybridized plasmids.
[0023] プローブを構成する単純反復配列は、生物種ごとにある程度、頻度の高!、配列が 明らかにされている場合もある。このような既知の単純反復配列を利用することによつ て、出現頻度の高い単純反復配列を含む DNAを単離することもできる。あるいは、 未知の単純反復配列をプローブの塩基配列として利用することによって、新規な単 純反復配列を同定することもできる。たとえば、ヒトにおける 3塩基以上の単純反復配 列の存在は稀とされている。したがって、 3塩基以上の繰り返し単位を含む単純反復 配列をプローブとして利用すれば、未知の単純反復配列を単離できる可能性がある 。プローブは 1種類でも良いし、複数種のプローブを混合して用いることもできる。以 下にイネなどの高等植物の SSRSに利用することができる代表的なプローブの塩基配 列を例示する。以下に例示する塩基配列において、 nの数は、 1一 100、たとえば 10 一 50、通常 20— 40である。  [0023] The simple repetitive sequence constituting the probe is often high in frequency for each species, and the sequence may be clarified. By using such a known simple repetitive sequence, DNA containing a simple repetitive sequence having a high frequency of appearance can be isolated. Alternatively, a novel simple repetitive sequence can be identified by using an unknown simple repetitive sequence as the probe base sequence. For example, the presence of simple repeat sequences of 3 or more bases in humans is rare. Therefore, if a simple repeat sequence containing a repeat unit of 3 bases or more is used as a probe, an unknown simple repeat sequence may be isolated. One type of probe may be used, or a plurality of types of probes may be mixed and used. The following are examples of typical probe base sequences that can be used for SSRS in higher plants such as rice. In the base sequences exemplified below, the number of n is 1 to 100, for example, 10 to 50, usually 20 to 40.
(CA)n (TA)n (CA) n (TA) n
(GC)n  (GC) n
(GGA)n  (GGA) n
(TTA)n  (TTA) n
[0024] 本発明に用いられるプローブの塩基配列は、単純反復配列を構成する塩基配列そ のもの、あるいはその相補配列を含む。本発明においては、 2本鎖 DNAプラスミドを ハイブリダィズの対象とする。言うまでも無ぐ 2本鎖 DNAは、相補配列を有している 。したがって、プローブの塩基配列は、単離すべき単純反復配列そのものであっても 良い。  [0024] The base sequence of the probe used in the present invention includes a base sequence constituting a simple repetitive sequence or a complementary sequence thereof. In the present invention, a double-stranded DNA plasmid is targeted for hybridization. Needless to say, double-stranded DNA has a complementary sequence. Therefore, the base sequence of the probe may be the simple repetitive sequence itself to be isolated.
[0025] 相同組換え蛋白質は、相同組換え活性を有していれば、由来に関わらず本発明に 利用することができる。本発明において、相同組換え活性とは、 2本鎖 DNAに含まれ る 1本鎖 DNAに相同な塩基配列からなる部分を、当該 1本鎖 DNAによって組換える 活性を言う。この活性は、 1本鎖の DNAを 2本鎖中に存在する相補的な塩基配列に 対してハイブリダィズさせる活性という言うこともできる。このような活性を有する多くの 蛋白質が知られている。たとえば RecAは大腸菌に由来する相同組換え蛋白質である 。遺伝子組み換えによって製造された RecAの精製品が市販されている(〃RecA〃; New England Biolabs/NEB社の商品名, Product Code M0249S- 200 g入り-)。また 以下のとおり、大腸菌等の RecAのアミノ酸配列も決定されている。  [0025] The homologous recombination protein can be used in the present invention regardless of its origin as long as it has homologous recombination activity. In the present invention, the homologous recombination activity refers to the activity of recombining a portion consisting of a base sequence homologous to a single-stranded DNA contained in a double-stranded DNA with the single-stranded DNA. This activity can also be said to be an activity of hybridizing a single-stranded DNA to a complementary base sequence present in a double-stranded DNA. Many proteins having such activity are known. For example, RecA is a homologous recombinant protein derived from E. coli. A refined product of RecA produced by genetic recombination is commercially available (〃RecA〃; trade name of New England Biolabs / NEB, Product Code M0249S-200 g included). In addition, the amino acid sequence of RecA such as E. coli has also been determined as follows.
E.coli; V00328, J01672  E.coli; V00328, J01672
Shigella flexnen; X55553  Shigella flexnen; X55553
Salmonella; NP.457222  Salmonella; NP.457222
[0026] RecAの真核細胞生物におけるホモログとして、 Rad51並びに Rad52が、ヒトゃ酵母 (GenBank Accession Number: X64270, S38937)で同定されている (; G Basils, M Aker, and R K Mortimer, Mol Cell Biol. 1992 July; 12(7): 3235-3246. "Nucleotide sequence and transcriptional regulation of the yeast recombinational repair gene RAD51.)。これらの相同組換え蛋白質を本発明に利用することができる。これらの相 同組換え蛋白質は、天然由来のもののみならず、遺伝子組み換え体として得られた 蛋白質であっても良い。更に、本発明に必要な相同組換え活性を有する限り、ァミノ 酸配列の変異を含む変異体を利用することもできる。たとえば、相同組み換え活性の 維持に必要な領域を含む、 Rad51の断片、あるいはその断片を部分構造として含む 変異蛋白質は、本発明における相同組み換え蛋白質として有用である。 Rad51の相 同組み換え活性に必要なドメインは既に同定されている (Miller KA, Sawicka D, Barsky D, Albala JS., Nucleic Acids Res. 2004 Jan 02;32(1):169— 78. Domain mapping of the Rad51 paralog protein complexes.)。同様【こ RecA【こつ ヽても、本発明 に必要な相同組換え活性を有する限り、アミノ酸配列の変異を含む変異体を利用す ることがでさる。 [0026] As homologues of RecA in eukaryotic organisms, Rad51 and Rad52 have been identified in human yeast (GenBank Accession Number: X64270, S38937) (; G Basils, M Aker, and RK Mortimer, Mol Cell Biol 1992 July; 12 (7): 3235-3246. "Nucleotide sequence and transcriptional regulation of the yeast recombinational repair gene RAD51.". These homologous recombination proteins can be used in the present invention. The replacement protein may be not only a naturally-derived protein, but also a protein obtained as a gene recombinant, and as long as it has the homologous recombination activity necessary for the present invention, an amino acid may be used. Mutants containing acid sequence mutations can also be used. For example, a Rad51 fragment containing a region necessary for maintaining homologous recombination activity, or a mutant protein containing the fragment as a partial structure is useful as a homologous recombination protein in the present invention. Domains required for the homologous recombination activity of Rad51 have already been identified (Miller KA, Sawicka D, Barsky D, Albala JS., Nucleic Acids Res. 2004 Jan 02; 32 (1): 169—78. Domain mapping of the Rad51 paralog protein complexes.). Similarly, as long as it has the homologous recombination activity necessary for the present invention, it is possible to use a mutant containing an amino acid sequence mutation.
[0027] 本発明にお 、て、 2本鎖 DNAプラスミドライブラリ一は、単離すべき単純反復配列 を含むプローブとともに、相同組換え蛋白質の存在下でインキュベートされる。これら の要素は、利用する相同組換え蛋白質による、 2本鎖 DNAへのプローブの配列特 異的なノ、イブリダィズが可能な条件下でインキュベートされる。通常、予めプローブと 相同組換え蛋白質との複合体を形成させた後に、 2本鎖プラスミドが混合される。し たがって、本発明において、工程 (1) 2本鎖 DNAプラスミドライブラリーを、単離すベ き単純反復配列を含むプローブと、相同組換え蛋白質の存在下でインキュベートす る工程は、たとえば次のようにして実施することができる。  In the present invention, a double-stranded DNA plasmid library is incubated with a probe containing a simple repetitive sequence to be isolated in the presence of a homologous recombinant protein. These elements are incubated under conditions that allow the sequence-specific expression and hybridization of the probe to double-stranded DNA by the homologous recombinant protein to be used. Usually, a double-stranded plasmid is mixed after a complex of a probe and a homologous recombination protein is formed in advance. Therefore, in the present invention, the step (1) of incubating a double-stranded DNA plasmid library with a probe containing a simple repeat sequence to be isolated in the presence of a homologous recombinant protein is, for example, Can be implemented in this way.
[0028] (la)単離すべき単純反復配列を含むプローブと、相同組換え蛋白質をインキュベー トする工程、および  [La] (la) Incubating the homologous recombinant protein with a probe containing a simple repetitive sequence to be isolated; and
(lb)工程 (la)の後に 2本鎖 DNAプラスミドライブラリーをカ卩えて更にインキュベートす る工程  (lb) Step (2) After step (la), a double-stranded DNA plasmid library is added and incubated further
より具体的には、たとえば、相同組換え蛋白質として RecAを用いた場合の反応条 件としては、次のような条件を示すことができる。  More specifically, for example, the following conditions can be shown as reaction conditions when RecA is used as a homologous recombinant protein.
[0029] まずプローブ(1本鎖の DNA)と RecA蛋白質を ATPとともにとインキュベートする。ィ ンキュベーシヨンの条件は、たとえば 20— 40°Cで 5分一 30分程度である。これらの要 素は、通常、中性付近の pHでインキュベーションされる。具体的には、 pH7— 8が好 適である。インキュベーションによって、 RecA蛋白質は ATPとともにプローブ(1本鎖 D NA)との複合体を形成する。インキュベーションには、たとえば以下の組成の緩衝液 を利用することができる。 25mMトリス酢酸緩衝液 (pH7.5) [0029] First, a probe (single-stranded DNA) and RecA protein are incubated with ATP. The conditions for incubation are, for example, 20-40 ° C for 5 minutes to 30 minutes. These elements are usually incubated at near neutral pH. Specifically, pH 7-8 is suitable. Upon incubation, RecA protein forms a complex with ATP and a probe (single-stranded DNA). For the incubation, for example, a buffer solution having the following composition can be used. 25 mM Tris acetate buffer (pH 7.5)
8mM酢酸マグネシウム  8mM magnesium acetate
2mM CoCl  2mM CoCl
2  2
lmg/mLゥシ血清アルブミン (BSA)  lmg / mL ushi serum albumin (BSA)
ATPは 0. 1— 10mMが添カ卩される。 ATPに代えて、 ATPの誘導体を利用することも できる。たとえば、デキシアデニントリフォスフェート (dATP)、あるいはアデノシン 5し [ y -チォ]トリフォスフェート( γ -S-ATP)を ATPに代えて用いることもできる。あるいは ATPと γ -S-ATPを混合して用いることもできる。 y -S-ATP,あるいは ATPとの混合物 の利用によって、 RecAの作用によって形成される 3本鎖構造がより安定に維持される 。したがって、 γ -S-ATPの利用は本発明にお 、て好ま 、条件である。 ATPと γ -S-ATPとを混合する場合には、両者を合計した濃度が上記濃度範囲となるように調 整することができる。 ATPと γ -S- ATPの混合割合は、たとえば 1: 10— 10 : 1、通常 1: 2— 2 : 1、好ましくは 1 : 1とすることができる。より具体的には、 ImMの ATPと ImMの γ -S-ATPを含むことができる。上記のような条件の場合、 RecAはたとえば 0. 1— 10 g/mL、通常 0. 2— lg/mL、より具体的には 8 g/30 L (約 0. 27g/mL)添加される (Zhumabayava et al, BioTechniques 27:834-845 (October 1999), RecA- Mediated Affinity Capture: A Method for FuU- Length cDNA Cloning)。  ATP is added at 0.1-10mM. Instead of ATP, a derivative of ATP can also be used. For example, dexiadenine triphosphate (dATP) or adenosine 5 and [y-thio] triphosphate (γ-S-ATP) can be used instead of ATP. Alternatively, ATP and γ-S-ATP can be mixed and used. By using y-S-ATP or a mixture with ATP, the triple-stranded structure formed by the action of RecA is more stably maintained. Therefore, the use of γ-S-ATP is a preferred condition in the present invention. When ATP and γ-S-ATP are mixed, the total concentration of both can be adjusted to be within the above-mentioned concentration range. The mixing ratio of ATP and γ-S-ATP can be, for example, 1: 10—10: 1, usually 1: 2—2: 1, preferably 1: 1. More specifically, ImM ATP and ImM γ-S-ATP can be included. Under the above conditions, RecA is added, for example, 0.1—10 g / mL, usually 0.2—lg / mL, more specifically 8 g / 30 L (about 0.27 g / mL). (Zhumabayava et al, BioTechniques 27: 834-845 (October 1999), RecA-Mediated Affinity Capture: A Method for FuU-Length cDNA Cloning).
[0030] 続いてプラスミドを添カ卩し、相同組換え蛋白質による 2本鎖 DNAに対するプローブ のハイブリダィズが可能な条件下でインキュベートする。実際には、予め形成された 複合体 [RecA蛋白質 ATP プローブ(1本鎖 DNA) ]にプラスミド(2本鎖 DNA)を添 加すればよい。たとえば 20— 40°Cで 5分一 30分程度インキュベートすれば、プロ一 ブは 2本鎖 DNAの中の相補配列にハイブリダィズすることができる。プローブがハイ ブリダィズしたところは、 2本鎖の間にプローブが入り込んだ 3本鎖構造を取っている [0030] Subsequently, the plasmid is added and incubated under conditions that allow hybridization of the probe to the double-stranded DNA by the homologous recombination protein. In practice, a plasmid (double-stranded DNA) may be added to the complex [RecA protein ATP probe (single-stranded DNA)] formed in advance. For example, if incubated at 20–40 ° C for 5 to 30 minutes, the probe can hybridize to complementary sequences in double-stranded DNA. When the probe is hybridized, it has a three-stranded structure with the probe inserted between the two strands.
[0031] あるいはヒト由来の相同組換え蛋白質である Rad51では、プローブ(1本鎖 DNA)は ATPとともにインキュベートされる。 ATPは 0. 1— 10mMが添カ卩される。 Rad51におい ても、 ATPに代えてその誘導体を用いることもできる。インキュベーションの条件は、 たとえば 15— 30°C、 1—20分である。反応のための緩衝液としては、以下のような組 成の緩衝液を用いることができる。 [0031] Alternatively, in Rad51, which is a human-derived homologous recombination protein, a probe (single-stranded DNA) is incubated with ATP. ATP is added at 0.1-10mM. Also in Rad51, its derivatives can be used in place of ATP. Incubation conditions are, for example, 15-30 ° C, 1-20 minutes. The following buffer is used for the reaction. Synthetic buffers can be used.
20mMトリス塩酸緩衝液 (pH7.4)  20 mM Tris-HCl buffer (pH 7.4)
1.5mM MgCl  1.5 mM MgCl
2  2
0.1mg/mL ゥシ血清アルブミン (BSA)  0.1mg / mL ushi serum albumin (BSA)
[0032] インキュベート後、更に Rad54を加えてインキュベートすることによって、プローブ(1 本鎖 DNA)と組換え蛋白質カゝらなる複合体が形成される。その後プラスミドライブラリ 一(2本鎖 DNA)を加えれば、相同組換えによってプラスミドにプローブをハイブリダ ィズさせることができる。複合体とプラスミドをインキュベートするための条件としては、 たとえば 20— 40°Cで 5分 60分を示すことができる。こうして、プローブ(1本鎖 DNA )とプラスミド(2本鎖 DNA)からなる 3本鎖構造が形成される。  [0032] After the incubation, a complex consisting of a probe (single-stranded DNA) and a recombinant protein is formed by further adding Rad54 and incubating. If a single plasmid library (double-stranded DNA) is then added, the probe can be hybridized to the plasmid by homologous recombination. The conditions for incubating the complex with the plasmid can be, for example, 5–60 minutes at 20–40 ° C. In this way, a triple-stranded structure consisting of a probe (single-stranded DNA) and a plasmid (double-stranded DNA) is formed.
[0033] 工程 (1)で 2本鎖 DNAプラスミドライブラリ一力 単離すべき単純反復配列を含むプ ローブと、相同組換え蛋白質の存在下でインキュベートされると、単離すべき単純反 復配列を含むプラスミドはプローブとハイブリダィズする。ハイブリダィズしたプラスミド を単離すれば、 目的とする単純反復配列を含むクローンを得ることができる。たとえ ば予め結合性リガンド修飾したプローブを用いれば、結合性リガンドとの親和性を利 用して、ノ、イブリダィズしたクローンを容易に回収することができる。  [0033] Double-stranded DNA plasmid library in step (1), including a simple repeat sequence to be isolated, and a simple repeat sequence to be isolated when incubated in the presence of a homologous recombinant protein The plasmid hybridizes with the probe. By isolating the hybridized plasmid, a clone containing the desired simple repetitive sequence can be obtained. For example, if a probe that has been modified with a binding ligand in advance is used, clones that have been or hybridized can be easily recovered using the affinity for the binding ligand.
[0034] 具体的には、ピオチンィ匕プローブを用いた場合には、アビジンを結合した固相との 接触によって、プローブとハイブリダィズしたクローンを固相に捕捉することができる。 捕捉されたクローンは、ハイブリダィズしなカゝつたクローンと分離される。固相の洗浄 によって、ハイブリダィズしなかったクローンは除去される。次いで、固相をハイブリダ ィズを解消する条件に置けば、ハイブリダィズしたクローンを回収することができる。 一連の工程を図 1に示した。  [0034] Specifically, when a pyotin probe is used, a clone hybridized with the probe can be captured on the solid phase by contact with the solid phase to which avidin is bound. The captured clone is separated from a hybridized clone. By washing the solid phase, clones that did not hybridize are removed. Subsequently, the hybridized clone can be recovered by placing the solid phase under conditions for eliminating the hybridization. A series of steps is shown in Fig. 1.
[0035] 本発明においては、回収されたクローンを更に増幅することもできる。クローンの増 幅には、 SSRsを偏り無く増幅できる方法を用いるのが望ましい。たとえば PCR法は、 偏りを与える可能性を有する方法であることは既に述べたとおりである。 SSRsの塩基 配列の構成、あるいは長さによって、増幅の程度が異なると、最終的に単離される D NAに偏りを生じる可能性がある。したがって、本発明によって回収されたクローンを 増幅するためには、たとえば、生物学的な方法を利用するのが好ましい。具体的に は、プラスミドを適当な宿主細胞に導入し、細胞内において増幅することができる。す なわち本発明は、次の工程 (2a)— (2c)によってプラスミドを単離する工程を含む、 SSRs を含む DNAを単離する方法を提供する。 [0035] In the present invention, the recovered clones can be further amplified. It is desirable to use a method that can amplify SSRs evenly. For example, as described above, the PCR method has a possibility of imparting bias. If the degree of amplification varies depending on the structure or length of the SSRs base sequence, the final DNA isolated may be biased. Therefore, in order to amplify the clone recovered by the present invention, it is preferable to use, for example, a biological method. Specifically Can be amplified by introducing the plasmid into a suitable host cell. That is, the present invention provides a method for isolating DNA containing SSRs, comprising the steps of isolating a plasmid by the following steps (2a)-(2c).
(2a)プローブとハイブリダィズしたプラスミドを回収する工程、  (2a) recovering the plasmid hybridized with the probe,
(2b)回収されたプラスミドを、当該プラスミドを導入することができる宿主細胞に形質 転換する工程、および  (2b) transforming the recovered plasmid into a host cell into which the plasmid can be introduced, and
(2c)宿主細胞にお!、て増幅されたプラスミドを前記宿主細胞から回収する工程  (2c) recovering the amplified plasmid from the host cell
[0036] 本発明の SSRsを含む DNAの単離方法においては、プラスミドを単離の対象として 利用する。プラスミドは、通常、適当な宿主細胞に形質転換することによって、増幅す ることができる。細胞内におけるプラスミドのコピーは、原則的には、プラスミドが保持 しているインサートの種類などとは無関係である。つまり、インサート DNAの塩基配列 などに関わらず、形質転換されたプラスミドのコピーが分裂する細胞に伝達される。そ して、好ましくは細胞内においてもコピーが生成される。こうして、回収されたプラスミ ドは増幅される。 [0036] In the method for isolating DNA containing SSRs of the present invention, a plasmid is used as an isolation target. The plasmid can usually be amplified by transformation into a suitable host cell. In principle, the copy of the plasmid in the cell is independent of the type of insert carried by the plasmid. In other words, regardless of the base sequence of the insert DNA, a copy of the transformed plasmid is transmitted to the dividing cell. And preferably a copy is also produced in the cell. Thus, the collected plasmid is amplified.
[0037] たとえば、プローブに導入された結合性リガンドを利用して、単離すべき SSRsを含 む DNAを有するプラスミドが固相に捕捉される。遠心分離やろ過によって固相を分 離する。あるいは固相に磁性粒子を利用すれば、磁気的に固相を回収することもで きる。次いで固相を洗浄して、ノ、イブリダィズしな力つたプラスミドが除かれる。捕捉さ れたプラスミドは、変性条件に置くことによって、プローブとのハイブリダィズから解か れて回収される。こうして回収されたプラスミドを宿主細胞に形質転換する。たとえば 大腸菌で増幅できるプラスミドであれば、大腸菌に形質転換する。そしてプラスミドを 有する大腸菌を単離すれば、目的とする SSRsを含む DNAを保持したプラスミドがク ローニングされる。こうして、本発明によって SSRsを含む 2本鎖 DNAが単離される。ク ローニングされたプラスミドは、必要に応じて精製され、そのインサートの塩基配列を 決定することちできる。  [0037] For example, using a binding ligand introduced into a probe, a plasmid having DNA containing SSRs to be isolated is captured on a solid phase. Separate the solid phase by centrifugation or filtration. Alternatively, if magnetic particles are used for the solid phase, the solid phase can be recovered magnetically. The solid phase is then washed to remove any vigorous plasmids. The captured plasmid is recovered from the hybridization with the probe by placing it in denaturing conditions. The thus recovered plasmid is transformed into a host cell. For example, a plasmid that can be amplified in E. coli is transformed into E. coli. If E. coli having the plasmid is isolated, the plasmid carrying the DNA containing the target SSRs is cloned. Thus, double-stranded DNA containing SSRs is isolated according to the present invention. The cloned plasmid can be purified as necessary, and the nucleotide sequence of the insert can be determined.
[0038] 一連の過程で各クローンの増幅効率は等しいと見なすことができる。たとえば、プラ スミドの形質転換効率は、インサートの塩基配列の構成には影響されない。また形質 転換されたプラスミドが、細胞内でコピーされたり、あるいは細胞の分裂に伴って伝達 される過程においても、インサートの塩基配列によって偏りが生じる可能性は低いと 考えられる。特に、ライブラリーを合成する段階で、インサートサイズを制限した場合 には、インサートの長さは一定の範囲に留まる。そのため、インサートの長さに起因す る増幅効率の偏りが抑制され、プラスミドの増幅効率は高度に均一に保たれる。その 結果、プローブとハイブリダィズした SSRsを含む DNAを偏り無く単離することができる 。すなわち、本発明によって SSRsを含む DNAの単離効率の向上が期待できる。 [0038] In a series of processes, the amplification efficiency of each clone can be regarded as equal. For example, plasmid transformation efficiency is not affected by the base sequence composition of the insert. In addition, the transformed plasmid is copied inside the cell or transmitted as the cell divides. Even in the process, it is considered unlikely that bias will occur due to the base sequence of the insert. In particular, if the insert size is limited at the stage of synthesizing the library, the length of the insert will remain within a certain range. Therefore, the bias of amplification efficiency due to the length of the insert is suppressed, and the amplification efficiency of the plasmid is kept highly uniform. As a result, DNA containing SSRs hybridized with the probe can be isolated without bias. That is, the present invention can be expected to improve the isolation efficiency of DNA containing SSRs.
[0039] 本発明に基づ 、てクローユングされたプラスミド間で、 SSRsの塩基配列を照合する こともできる。照合の結果、同じ塩基配列からなる SSRsを同種と判定し、クラスターに まとめることができる。クラスターの数は、同定された SSRsの種類を意味している。クラ スタリングされた塩基配列を既に報告されている SSRsと照合すれば、未知の SSRsを 同定することができる。 [0039] Based on the present invention, the base sequences of SSRs can be verified between the cloned plasmids. As a result of the verification, SSRs consisting of the same base sequence can be determined as the same type and grouped into clusters. The number of clusters means the type of SSRs identified. Unknown SSRs can be identified by comparing the clustered nucleotide sequences with previously reported SSRs.
[0040] ところで、単離すべき単純反復配列(またはその相補配列)を含んで!/、れば、本発 明に用いられるプローブの構造は制限されない。したがって、プローブは付カ卩的な塩 基配列を含むことができる。たとえば、プローブとなる塩基配列に対して、プラスミドと のハイブリダィズ以外の機能を有する塩基配列を付加することができる。このような付 加的な塩基配列として、たとえば結合性リガンドを導入するための付加的な塩基配列 を示すことができる。  [0040] By the way, the structure of the probe used in the present invention is not limited as long as it includes a simple repetitive sequence (or its complementary sequence) to be isolated! Thus, the probe can include a common base sequence. For example, a base sequence having a function other than hybridization with a plasmid can be added to the base sequence to be a probe. As such an additional base sequence, for example, an additional base sequence for introducing a binding ligand can be shown.
[0041] 代表的な相同組換え蛋白質である RecAは、 2本鎖 DNAをきわめて短時間で探索 し、相同配列を見つけ出すことができる (Honigberg et al., Proc. Natl. Acad. Sci. USA. 9586-9590, 1986)。この作用を相同配列の探索に応用する試みが知られてい る。すなわち、プローブを相同組換え蛋白質の作用によって 2本鎖 DNAにハイブリ ダイズさせる方法が、 cDNAの単離などに応用されている (Teintze et al., Biochem. Biophys. Res. Commun" Vol.201, No.3, 804-811, 1995)。  [0041] RecA, a typical homologous recombination protein, can search double-stranded DNA in a very short time to find a homologous sequence (Honigberg et al., Proc. Natl. Acad. Sci. USA. 9586-9590, 1986). Attempts to apply this action to homologous sequence searches are known. In other words, a method in which a probe is hybridized to double-stranded DNA by the action of a homologous recombination protein has been applied to cDNA isolation and the like (Teintze et al., Biochem. Biophys. Res. Commun "Vol. 201, No. 3, 804-811, 1995).
[0042] 結合性リガンドを導入したプローブの応用も報告されている (Rigas et al, Proc.  [0042] The application of probes incorporating binding ligands has also been reported (Rigas et al, Proc.
Natl. Acad. Sci. USA. Vol.83, 9591-9595, 1986)。たとえば、これらの方法において は、プローブとハイブリダィズした 2本鎖 DNAは、結合性リガンドの結合パートナーを 使って回収することができる。この原理を利用して cDNAから目的とする塩基配列を 含むクローンを単離するための方法が実用化された (CloneCapture™cDNA Selection Kit; Clonetech)。しかし公知の方法においては、 2本鎖 DNAにハイブリダ ィズする領域に結合性リガンドが導入されて 、た。 Natl. Acad. Sci. USA. Vol. 83, 9591-9595, 1986). For example, in these methods, double-stranded DNA hybridized with the probe can be recovered using the binding partner of the binding ligand. Using this principle, a method for isolating clones containing the desired nucleotide sequence from cDNA has been put into practical use (CloneCapture ™ cDNA Selection Kit; Clonetech). However, in the known method, a binding ligand was introduced into the region that hybridizes to the double-stranded DNA.
[0043] 代表的な結合性リガンドであるピオチンの分子量は、約 244である。これに対してヌ クレオチド 1分子の大きさは、平均 330程度である。つまり結合性リガンドで修飾され た部分は、通常の 1本鎖オリゴヌクレオチドの部分に対して、大きく膨らんだ構造とな つている。 2本鎖 1本鎖間のハイブリダィズおいては、 2本鎖の間に 1本鎖 DNAが割 り込む構造が形成される。つまり 1本鎖間のハイブリダィズに比較して、より構造的な 変化に対してデリケートな状態にあると考えられる。そのため、 2本鎖 1本鎖間のハ イブリダィズは、修飾分子による立体障害を受けやすい。つまり相同組換え蛋白質を 用いる公知の方法においては、相同組換え蛋白質による 1本鎖 DNAの 2本鎖 DNA とのハイブリダィズにあたっては、結合性リガンドが立体障害の原因となる可能性があ つた o [0043] The molecular weight of a typical binding ligand, piotin, is about 244. In contrast, the average size of a single molecule is about 330. In other words, the portion modified with the binding ligand has a greatly swollen structure compared to the normal single-stranded oligonucleotide portion. In a hybrid between double strands and single strands, a structure in which single strand DNA is interrupted between the two strands is formed. In other words, compared to hybrids between single strands, it is considered to be more sensitive to structural changes. Therefore, the hybridization between two strands and one strand is susceptible to steric hindrance by the modifying molecule. In other words, in known methods using homologous recombination proteins, the binding ligand may cause steric hindrance when hybridizing single-stranded DNA with double-stranded DNA using homologous recombination proteins.
[0044] このような結合性リガンドによる立体障害の可能性を回避するために、本発明にお けるプローブにおいては、付加配列を利用することができる。具体的には、 2本鎖 DN Aにハイブリダィズするための塩基配列ではなぐ付加配列部分に結合性リガンドを 有するプローブを利用することができる。すなわち本発明は、次の領域 (a)および (b)を 含むプローブ、並びにこのプローブによって SSRsを含む 2本鎖 DNAを単離する方法 を提供する。  [0044] In order to avoid the possibility of such steric hindrance by the binding ligand, an additional sequence can be used in the probe of the present invention. Specifically, a probe having a binding ligand in an additional sequence portion that is not a base sequence for hybridizing to double-stranded DNA can be used. That is, the present invention provides a probe containing the following regions (a) and (b), and a method for isolating double-stranded DNA containing SSRs using this probe.
(a)単純反復配列からなる領域、および  (a) a region consisting of simple repeat sequences, and
(b)領域 (a)の 3'側および 5'側の両方、またはいずれかに位置し、単純反復配列以外 の塩基配列で構成された領域  (b) Region located on both the 3 'side and / or 5' side of region (a) and consisting of base sequences other than simple repeat sequences
[0045] 上記の構造を有するプローブの領域 (a)が 2本鎖 DNAを構成する DNAの!、ずれか の鎖にハイブリダィズする領域である。そして領域 (b)が領域 (a)に付加される領域であ る。領域 (b)は、シグナル生成分子や結合性リガンドなどで修飾されていても良い。一 方、領域 (a)においては、ヌクレオチドの修飾が無いことが好ましい。領域 (b)はハイブ リダィズには関与しない領域である。したがって、領域 (b)の修飾は、ハイブリダィズに おける立体障害の原因とならない。  [0045] The region (a) of the probe having the above structure is a region that hybridizes to one of the strands of the DNA constituting the double-stranded DNA. Region (b) is added to region (a). Region (b) may be modified with a signal generating molecule or a binding ligand. On the other hand, it is preferable that there is no nucleotide modification in the region (a). Region (b) is a region that does not participate in hybridization. Therefore, modification of region (b) does not cause steric hindrance in the hybrid.
[0046] 本発明におけるプローブの領域 (b)は、ハイブリダィズに関与しな 、ため、任意の塩 基配列で構成することができる。たとえば、少数の塩基の連続で構成される塩基配列 は、合成が容易である。更に同一分子内でハイブリダィズが起きない構成とすること は、プローブに求められる一般的な条件である。本発明においては、領域 (a)が単純 反復配列で構成されることから、領域 (a)と領域 (b)の間で、相補的な塩基配列、あるい は同じ塩基配列が存在しな 、ようにデザインするのが好ま 、。これらの条件を満た すために、たとえば、 a、 t、 c、 g、あるいは uの連続力 なる塩基配列は、領域 (b)を構 成する塩基配列として好適である。中でも、 a、 t、あるいは uが連続した塩基配列は好 ましい。これらの塩基は、 c/g間の結合に比べると塩基対結合の親和性が低い。その ため同一鎖内のハイブリダィズによる影響をより小さくできると予測される。 [0046] The region (b) of the probe in the present invention does not participate in hybridization, and therefore, any salt. It can consist of a base sequence. For example, a base sequence composed of a series of a small number of bases is easy to synthesize. Furthermore, it is a general condition required for a probe that no hybridization occurs within the same molecule. In the present invention, since the region (a) is composed of a simple repetitive sequence, a complementary base sequence or the same base sequence does not exist between the region (a) and the region (b). Like to design, so that. In order to satisfy these conditions, for example, a base sequence having a continuous force of a, t, c, g, or u is suitable as a base sequence constituting the region (b). Among them, a base sequence in which a, t, or u is continuous is preferable. These bases have a lower affinity for base pair binding than binding between c / g. For this reason, it is expected that the influence of hybridization within the same strand can be further reduced.
[0047] 上記のような構造を有するプローブは、任意の方法によって調製することができる。  [0047] The probe having the structure as described above can be prepared by any method.
たとえば、領域 (a)と領域 (b)をィ匕学的に合成し、両者を連結することによってプローブ を得ることができる。あるいは、予め合成された領域 (a)に、ターミナルトランスフェラー ゼなどの酵素によって、その末端に塩基を付加することができる。ターミナルトランス フェラーゼによって付加される塩基の数を人為的に制御することは難しい。したがつ て、この方法によって得られるプローブを構成する領域 (b)は、長さが不均一となる可 能性がある。領域 (b)の長さを制御するためには、完全に化学的に合成するか、ある いは铸型依存性の相補鎖合成反応の利用が好まし 、。  For example, a probe can be obtained by synthesizing region (a) and region (b) and linking them together. Alternatively, a base can be added to the end of the previously synthesized region (a) by an enzyme such as terminal transferase. It is difficult to artificially control the number of bases added by terminal transferase. Therefore, the region (b) constituting the probe obtained by this method may have a non-uniform length. In order to control the length of the region (b), it is preferable to synthesize it completely chemically or to use a complementary strand synthesis reaction which is dependent on the cage type.
[0048] 本発明に用いられる上記構造を有するプローブにおいて、領域 (a)の長さは、単離 すべき SSRsの長さに応じて任意の長さにデザインすることができる。一般的な SSRsの 単離においては、領域 (a)の長さは、通常 25— 100塩基程度である。一方、領域 (b)の 長さは制限されない。化学的に合成する場合には、 30— 60塩基とすることによって、 容易に合成することができるので有利である。  [0048] In the probe having the above structure used in the present invention, the length of the region (a) can be designed to an arbitrary length depending on the length of the SSRs to be isolated. In general SSRs isolation, the length of region (a) is usually about 25-100 bases. On the other hand, the length of region (b) is not limited. When chemically synthesizing, 30-60 bases is advantageous because it can be easily synthesized.
[0049] 上記構造を有するプローブは、铸型依存性の相補鎖合成反応を利用して合成する ことができる。すなわち本発明は、次の工程を含む反復配列にノ、イブリダィズするプ ローブの製造方法を提供する。  [0049] The probe having the above-described structure can be synthesized by utilizing a cage-type-dependent complementary strand synthesis reaction. In other words, the present invention provides a method for producing a probe that can be repeated and repeated in a repetitive sequence including the following steps.
A) 3 '側に配置された反復配列と、 5 '側に配置された反復配列以外の任意の塩基配 列からなるオリゴヌクレオチドを铸型とし、少なくとも 3'末端に前記铸型の反復配列に 相補的な塩基配列を含むオリゴヌクレオチドをプライマーとして相補鎖を合成するェ 程、および A) An oligonucleotide consisting of a repetitive sequence arranged on the 3 ′ side and an arbitrary nucleotide sequence other than the repetitive sequence arranged on the 5 ′ side is used as a cage, and at least the 3 ′ end has the above-mentioned cage-type repeat. A complementary strand is synthesized using an oligonucleotide containing a complementary base sequence as a primer. About, and
B)工程 A)で合成された相補鎖を回収する工程  B) Step of recovering the complementary strand synthesized in step A)
上記工程は、具体的には以下のように図示することができる。  Specifically, the above steps can be illustrated as follows.
錶型: 3' - [単純反復配列] - [反復配列以外の任意の塩基配列] - 5'  Type: 3 '-[Simple repetitive sequence]-[Any base sequence other than repetitive sequence]-5'
5' - [ プライマ一 ] > -3'  5 '-[Primer]> -3'
才リゴヌクレオチド  Old Rigo nucleotide
[0050] 相補鎖合成反応によって生成された産物は、铸型として用いたオリゴヌクレオチド の相補配列で構成される。相補鎖合成にあたり、基質としてヌクレオチド誘導体を与 えた場合には、相補鎖合成産物にヌクレオチド誘導体を導入することもできる。たとえ ば、結合性リガンドで修飾されたヌクレオチド誘導体は、結合性リガンドで修飾された 相補鎖合成産物を与える。相補鎖合成産物の単純反復配列に相当する部分はブラ イマ一として供給されているので、修飾されない。その結果、 2本鎖 DNAにハイブリ ダイズする単純反復配列部分は修飾されず、ハイブリダィズに関与しな ヽ領域が結 合性リガンドによって修飾されたプローブを得ることができる。  [0050] The product generated by the complementary strand synthesis reaction is composed of a complementary sequence of the oligonucleotide used as a cage. When a nucleotide derivative is given as a substrate in the complementary strand synthesis, the nucleotide derivative can also be introduced into the complementary strand synthesis product. For example, a nucleotide derivative modified with a binding ligand gives a complementary strand synthesis product modified with the binding ligand. Since the portion corresponding to the simple repeat sequence of the complementary strand synthesis product is supplied as a primer, it is not modified. As a result, a simple repetitive sequence portion that hybridizes to a double-stranded DNA is not modified, and a probe in which a region that is not involved in hybridization is modified with a binding ligand can be obtained.
なおこの態様において合成されたプローブを構成する [プライマー]に相当する領域 力 プローブにおける領域 (a)に、そして相補鎖合成反応によって伸長された部分が 領域 (b)に、それぞれ相当する。領域 (b)は [反復配列以外の任意の塩基配列]の相補 配列で構成される。 The region force corresponding to [primer] constituting the probe synthesized in this embodiment corresponds to the region ( a ) in the probe, and the portion extended by the complementary strand synthesis reaction corresponds to the region (b). Region (b) is composed of a complementary sequence of [any base sequence other than repetitive sequence].
[0051] 本発明にお 、ては、上記プライマーとして、 5'側に反復配列以外の任意の塩基配 列を有する構造を利用することもできる。すなわち本発明は、次の工程を含む反復配 列にハイブリダィズするプローブの製造方法を提供する。  [0051] In the present invention, a structure having an arbitrary base sequence other than a repetitive sequence on the 5 'side can also be used as the primer. That is, the present invention provides a method for producing a probe that hybridizes to a repetitive sequence including the following steps.
A) 3 '末端を含む領域にお!、て互 ヽに相補的な塩基配列を有する少なくとも 1組のプ ライマーセットの 3'末端を含む領域をハイブリダィズさせる工程であって、当該プライ マーが、 3'側に配置された反復配列と、 5'側に配置された反復配列以外の任意の 塩基配列からなるオリゴヌクレオチドである工程、  A) a step of hybridizing a region containing the 3 ′ end with a region containing the 3 ′ end of at least one primer set having mutually complementary nucleotide sequences, wherein the primer comprises: A step of being an oligonucleotide comprising a repetitive sequence arranged on the 3 ′ side and an arbitrary base sequence other than the repetitive sequence arranged on the 5 ′ side,
B)相補鎖合成反応によってプライマーの 3'末端を伸長させる工程、および  B) extending the 3 ′ end of the primer by complementary strand synthesis reaction; and
C)工程 B)で得られた 2本鎖 DNAを回収する工程  C) Step of recovering the double-stranded DNA obtained in step B)
上記工程は次のように図示することができる。 錶型: く-ー3' - [単純反復配列 A] - [反復配列以外] - 5' The above process can be illustrated as follows. Type: Ku--3 '-[Simple repetitive sequence A]-[Other than repetitive sequences]-5'
5' [反復配列以外] - [単純反復配列 B ] - 3'―) :プライマー 5 '[other than repetitive sequence]-[simple repetitive sequence B]-3'―): primer
[0052] この態様においては、互いに相補的な単純反復配列 Aおよび Bをそれぞれが有し 、その 5'側に反復配列以外の任意の塩基配列を連結した構造を有するオリゴヌタレ ォチドの組み合わせが用いられる。互いに相補的な単純反復配列 Aおよび Bがァ- ールし、互 、を铸型として矢印の方向に「反復配列以外の任意の塩基配列」を铸型 として相補鎖合成反応が進行する。その結果、中央に単純反復配列を有し、その 5' 側と 3'側に単純反復配列以外の塩基配列(またはその相補配列)を有する DNAが 合成される。合成後に変性させれば、铸型あるいはプライマーには、再び新たなブラ イマ一あるいは铸型がァニールし、同じ反応が繰り返される。すなわち PCR法の原理 で、同じ構造の DNAが指数的に増幅される。上記のように 3'側に互いに相補的な塩 基配列を有する DNAがァニールして、両者の 3'末端力も相補鎖を合成する反応は、 Overgo法とも呼ばれる公知の反応である。しかし、結合性リガンドで修飾された反復 配列を含むプローブの合成に応用することは新規である。 [0052] In this embodiment, a combination of oligonucleotides each having a simple repeat sequence A and B complementary to each other and having a structure in which any base sequence other than the repeat sequence is linked to its 5 'side is used. . Complementary strand synthesis reactions proceed with simple repeat sequences A and B complementary to each other, with each other in the shape of an arrow and “arbitrary base sequences other than repeat sequences” in the direction of the arrows. As a result, DNA having a simple repetitive sequence at the center and a base sequence other than the simple repetitive sequence (or its complementary sequence) on the 5 ′ side and 3 ′ side is synthesized. If it is denatured after synthesis, the new primer or cage is annealed again to the cage or primer, and the same reaction is repeated. In other words, DNA with the same structure is exponentially amplified by the principle of PCR. The reaction in which DNAs having a base sequence complementary to each other on the 3 ′ side as described above are annealed to synthesize a complementary strand with both 3 ′ terminal forces is a known reaction also called the Overgo method. However, its application to the synthesis of probes containing repetitive sequences modified with binding ligands is novel.
なおこの態様において合成された DNAを構成する [単純反復配列 A]および [単純 反復配列 B]に相当する領域が、プローブにおける領域 (a)に、そして相補鎖合成反 応によって伸長された部分が領域 (b)に、それぞれ相当する。領域 (b)は [反復配列以 外の任意の塩基配列]の相補配列で構成される。  The region corresponding to [simple repetitive sequence A] and [simple repetitive sequence B] constituting the DNA synthesized in this embodiment is the region (a) in the probe, and the portion extended by the complementary strand synthesis reaction It corresponds to each area (b). Region (b) is composed of a complementary sequence of [any base sequence other than repetitive sequence].
[0053] こうして合成された DNAの単純反復配列以外の塩基配列の相補配列(すなわち領 域 (b))には、修飾ヌクレオチドを導入することができる。たとえば結合性リガンドで修 飾された DNAは、本発明におけるプローブとして有用である。本発明においては、 単純反復配列を含む 2本鎖 DNAの単離を目的とする。したがって上記のようにして 合成された DNAは、単純反復配列 Aおよび Bを含む DNAは、いずれもプローブとし て利用することができる。  [0053] A modified nucleotide can be introduced into a complementary sequence (that is, region (b)) of the base sequence other than the simple repetitive sequence of the DNA thus synthesized. For example, DNA modified with a binding ligand is useful as a probe in the present invention. The purpose of the present invention is to isolate double-stranded DNA containing a simple repetitive sequence. Therefore, the DNA synthesized as described above can be used as a probe for any of the DNAs containing simple repeats A and B.
[0054] 本発明にお ヽて、工程 A)における相補鎖合成反応は、铸型依存性の相補鎖合成 反応を触媒する DNAポリメラーゼによって実施することができる。たとえば大腸菌由 来の DNAポリメラーゼの活性断片である Klenow断片は、上記の反応に基づくプロ一 ブの合成方法に有用である。その他、 PCRなどに用いられている Taqポリメラーゼなど の DNAポリメラーゼも本発明の方法に利用することができる。 [0054] In the present invention, the complementary strand synthesis reaction in step A) can be performed by a DNA polymerase that catalyzes the saddle type-dependent complementary strand synthesis reaction. For example, the Klenow fragment, which is an active fragment of DNA polymerase derived from Escherichia coli, is useful in a method for synthesizing a probe based on the above reaction. In addition, Taq polymerase used in PCR, etc. These DNA polymerases can also be used in the method of the present invention.
[0055] 本発明のプローブを得るための相補鎖合成反応において、反復配列以外の任意 の塩基配列は制限されない。たとえば、先に述べたように、同じ塩基の連鎖を反復配 列以外の任意の塩基配列として利用することができる。具体的には、 aの連鎖 (a stretch)などを反復配列以外の任意の塩基配列とすることができる。相補鎖合成反応 のための基質として、修飾オリゴヌクレオチドを利用することができる。たとえばビォチ ン化されたゥラシルを結合性リガンド修飾ヌクレオチドとして用いることができる。 [0055] In the complementary strand synthesis reaction for obtaining the probe of the present invention, any base sequence other than the repetitive sequence is not limited. For example, as described above, the same base sequence can be used as an arbitrary base sequence other than a repetitive sequence. Specifically, a sequence such as a stretch can be any base sequence other than a repetitive sequence. Modified oligonucleotides can be used as substrates for complementary strand synthesis reactions. For example, biotinylated uracil can be used as a binding ligand-modified nucleotide.
[0056] 相補鎖合成反応によって本発明に用いるプローブを合成するとき、相補鎖合成反 応のストリンジエンシーを高く保つことによって、より均一性の高いプローブを合成す ることができる。しかし上記の方法においては、 cacacaca.…といった単純反復配列が tgtgtgtg ..... t 、う塩基配列にァニールする。このような塩基配列の組み合わせにお いては、ァニールする位置にズレが生じる可能性を否定できない。ァニールする位置 のズレは、単純反復配列の長さが異なる複数種のプローブを生成する原因となる。 [0056] When a probe used in the present invention is synthesized by a complementary strand synthesis reaction, a highly uniform probe can be synthesized by keeping the stringency of the complementary strand synthesis reaction high. However, in the above method, a simple repetitive sequence such as cacacaca .... anneals to the base sequence of tgtgtgtg ..... t. In such a combination of base sequences, the possibility of deviation at the annealing position cannot be denied. The misalignment position causes the generation of multiple types of probes with different simple repeat sequences.
[0057] たとえば以下の例においては、 caと gtとで構成される単純反復配列を含むプローブ を合成している。なお (ca) は 5'- ca- 3'の 25回の繰り返し配列を、(gt)25は 5'- tg- 3'の 2 [0057] For example, in the following example, a probe including a simple repetitive sequence composed of ca and gt is synthesized. (Ca) is 25'-ca-3 'repeat sequence 25 times, (gt) 25 is 5'-tg-3' 2
25  twenty five
5回の繰り返し配列をそれぞれ示して 、る。  Each of the 5 repeat sequences is shown.
aaaaa- (ca) 25-3' aaaaa- (ca) 25 -3 '
3 - (gt) 25-aaaaa 3-(gt) 25 -aaaaa
[0058] (ca) と をァニールさせると、互いの 5'側の aaaaa .....を铸型として、それぞれの  [0058] When (ca) and are annealed, aaaaa ..... on the 5 'side of each other is used as a saddle shape,
25 25  25 25
3'末端力も相補鎖が合成される。相補鎖合成によって、理論的には以下のような構 造の DNAが生成される。  A complementary strand is also synthesized with a 3 ′ end force. Theoretically, complementary-strand synthesis produces DNA with the following structure.
aaaaa- (ca 25-uuuuu -3 aaaaa- (ca 25 -uuuuu -3
3 - uuuuu- (gt) 25-aaaaa 3-uuuuu- (gt) 25 -aaaaa
[0059] ところが実際には、単純反復配列間のァニールにおいて、 25回の繰り返し配列が 完全に一致せず、 n単位のズレが生じる可能性がある。 n単位のずれによって、 n回 分の繰り返し配列が多 、プローブが合成される。以下の例では 2単位のズレ (+— +で 示した部分)が生じている。繰り返し単位のずれによって、繰り返し単位が多い DNA プローブが生成されることを図 3にも示した。 +―+ However, in reality, in the annealing between simple repeat sequences, the 25 repeat sequences do not completely match, and there is a possibility that a deviation of n units will occur. Due to the deviation of n units, the probe is synthesized with many repeating sequences of n times. In the example below, there is a deviation of 2 units (the part indicated by + — +). Figure 3 also shows that DNA probes with many repeating units are generated due to the difference in repeating units. + ― +
aaaaa-cacaca cacaca-3'  aaaaa-cacaca cacaca-3 '
3' -gtgtgt gtgtgt-aaaaa その結果生成される DNAは、以下のように 4単位長い繰り返し配列を有することに なる。  3'-gtgtgt gtgtgt-aaaaa The resulting DNA will have a 4 unit long repeat sequence as follows.
aaaaa- a) 2 (ca) 25 (ca) 2-uuuuu - 3' aaaaa- a) 2 (ca) 25 (ca) 2 -uuuuu-3 '
3 - uuuuu- (gt) 2 (gt) 25 (gt) 2-aaaaa 3-uuuuu- (gt) 2 (gt) 25 (gt) 2 -aaaaa
[0060] 本発明において、このように数単位のアニーリング位置のズレをともなって生成され た DNAプローブは、単純反復配列を含む DNAの単離において、むしろ有用である 。未知の単純反復配列の単離においては、長さが特定できない単純反復配列も単 離できることが望ましい。プローブの長さのバリエーションを増やすことは、そのため の有効な手段の一つとなりうる。したがって単一の長さの出発材料から、長さの異なる 単純反復配列を含むプローブの混合物を得ることができる上記の方法は、単純反復 配列を単離するためのプローブの合成方法として好ましい。すなわち本発明は、次 の領域 (a)および (b)からなり、領域 (a)を構成する単純反復配列の反復の数が異なる 複数種のプローブの混合物を提供する。 [0060] In the present invention, the DNA probe thus generated with several units of annealing position deviation is rather useful in the isolation of DNA containing a simple repetitive sequence. In the isolation of unknown simple repeat sequences, it is desirable that simple repeat sequences whose length cannot be specified can also be isolated. Increasing the length variation of the probe can be an effective means for that. Therefore, the above-described method, which can obtain a mixture of probes containing simple repetitive sequences of different lengths from a single length of starting material, is preferred as a method for synthesizing probes for isolating simple repetitive sequences. That is, the present invention provides a mixture of a plurality of types of probes comprising the following regions (a) and (b) and having different numbers of repeats of the simple repetitive sequence constituting the region (a).
(a)単純反復配列からなる領域、および  (a) a region consisting of simple repeat sequences, and
(b)領域 (a)の 3 '側および 5 '側の両方、またはいずれかに位置し、単純反復配列以外 の塩基配列で構成された領域、  (b) a region composed of a base sequence other than a simple repetitive sequence, located on either or both of the 3 'side and 5' side of region (a),
[0061] 本発明の SSRsの単離方法を構成する各要素は、予め組み合わせてキットを構成す ることができる。すなわち本発明は、次の要素を含む、単純反復配列の単離用のキッ トを提供する。  [0061] The components constituting the method for isolating SSRs of the present invention can be combined in advance to form a kit. That is, the present invention provides a kit for the isolation of simple repetitive sequences comprising the following elements.
0次の領域 (a)および (b)力 なり、かつ領域 (b)に結合性リガンドを有するプローブ、 A zero-order region (a) and (b) force, and a probe having a binding ligand in region (b),
(a)単純反復配列からなる領域、および (a) a region consisting of simple repeat sequences, and
(b)領域 (a)の 3 '側および 5 '側の両方、またはいずれかに位置し、単純反復配列以外 の塩基配列で構成された領域、  (b) a region composed of a base sequence other than a simple repetitive sequence, located on either or both of the 3 'side and 5' side of region (a),
ii)相同糸且換え蛋白質、および  ii) homologous thread and reversible protein, and
iii)前記結合性リガンドと結合する固相  iii) Solid phase that binds to the binding ligand
実施例 [0062] 1. DNAプローブの合成 Example [0062] 1. Synthesis of DNA probe
以下の塩基配列力 なる 2種類のオリゴヌクレオチドを合成した。(A)30は 30merから なる Aの連鎖を、(CA)25と (TG)25は、それぞれ caと tgの 25回の繰り返しを示す。 CA-オリゴ: 5'- (A)30(CA)25- 3' (配列番号: 1、 80mer)  Two types of oligonucleotides with the following base sequence capabilities were synthesized. (A) 30 is a 30-mer chain of A, (CA) 25 and (TG) 25 are 25 repetitions of ca and tg, respectively. CA-oligo: 5'- (A) 30 (CA) 25-3 '(SEQ ID NO: 1, 80mer)
TG-オリゴ: 5'- (A)30(TG)25- 3' (配列番号: 2、 80mer)  TG-oligo: 5'- (A) 30 (TG) 25-3 '(SEQ ID NO: 2, 80mer)
ビォチン化には Amersham社の Megaprime DNA labeling systemを利用した。具体 的な操作は次のとおりである。まず CA-オリゴ 200pmolと TG-オリゴ 200pmolをァニー リングさせた。次いで、 dATP,dGTP,dCTP,dTTPをそれぞれ 20pmolカ卩え、最後にピオ チン 21- dUTPを lOOOpmolカ卩えた。更に DNAポリメラーゼ (Klenow断片)を 2ユニット加 えて室温で 2時間反応させた。  Amersham's Megaprime DNA labeling system was used for biotinylation. The specific operation is as follows. First, 200 pmol of CA-oligo and 200 pmol of TG-oligo were annealed. Next, 20 pmol of dATP, dGTP, dCTP, and dTTP, respectively, and finally lOOOpmol of piotin 21-dUTP were obtained. Further, 2 units of DNA polymerase (Klenow fragment) was added and reacted at room temperature for 2 hours.
[0063] この反応によって、 CA-オリゴと TG-オリゴの 3'側に 30残基のピオチンィ匕 Uが連結さ れ、それぞれ配列番号: 3および配列番号: 4に示すような構造の DNAプローブが合 成される。したがって得られた DNAプローブは、プローブとして機能する DNA部分 に、付カ卩的に U (RNA)が連結されたキメラ分子である。更に、この反応においては、 CA-オリゴの CAの繰り返しと、 TG-オリゴの TGの繰り返しがずれてアニーリングするこ とによって生成された、繰り返し単位の異なる DNAプローブも合成されている可能性 がある。以下に、繰り返し単位のずれについて、図 3に基づいて説明する。  [0063] By this reaction, a 30-residue piotin 匕 U was linked to the 3 ′ side of the CA-oligo and TG-oligo, and DNA probes having structures as shown in SEQ ID NO: 3 and SEQ ID NO: 4, respectively. Synthesized. Therefore, the obtained DNA probe is a chimeric molecule in which U (RNA) is optionally linked to a DNA portion that functions as a probe. Furthermore, in this reaction, it is possible that DNA probes with different repeating units were synthesized by annealing with the CA repeat of the CA-oligo and the TG repeat of the TG-oligo shifted. . Hereinafter, the deviation of the repeating unit will be described with reference to FIG.
[0064] たとえば繰り返し単位が 5単位分ずれてアニーリングした場合には、配列番号: 5お よび配列番号: 6に記載された塩基配列を有する DNAプローブが生成される。その 他にも、 n個の繰り返し単位がずれてァニールすることによって、配列番号: 7および 配列番号: 8に記載した一般式で示される塩基配列を有する DNAプローブが生成さ れる可能性がある。このように繰り返し単位がずれた場合には、 DNAプローブの tに 相当する位置には、実際には uまたは tが導入されるため、プローブ部分にも RNAを 含む場合がある。更に図 3においては、理解を助けるために、铸型となるオリゴヌタレ ォチドの Aに対していずれも Uからなる相補鎖を記載した。しかし実際には、相補鎖合 成に当たっては dTTPも dUTPと同じ可能性で導入される。その結果、合成された相補 鎖においては、 Tの場合と Uがの場合がありえる。両者の割合は、基質 dTTPと dUTP の濃度に依存する。 アニーリング条件は、通常、室温で 10分間程度である。アニーリングには一般的な 緩衝液を利用することができる。具体的には、以下の組成を有する緩衝液を示すこと ができる。 [0064] For example, when annealing is performed with the repeating unit shifted by 5 units, DNA probes having the base sequences described in SEQ ID NO: 5 and SEQ ID NO: 6 are generated. In addition, when n repeating units are displaced and annealed, a DNA probe having the base sequence represented by the general formula described in SEQ ID NO: 7 and SEQ ID NO: 8 may be generated. When the repeating unit is shifted in this way, u or t is actually introduced at the position corresponding to t of the DNA probe, and thus the probe part may contain RNA. Further, in FIG. 3, in order to help understanding, the complementary strand consisting of U with respect to A of the oligonucleotide oligonucleotide that is a saddle type is shown. In practice, however, dTTP is introduced with the same potential as dUTP for complementary strand synthesis. As a result, the synthesized complementary strand can be T or U. The ratio of both depends on the concentrations of the substrates dTTP and dUTP. The annealing conditions are usually about 10 minutes at room temperature. Common buffers can be used for annealing. Specifically, a buffer solution having the following composition can be shown.
Tris-HCl  Tris-HCl
MgCl  MgCl
2  2
β— mercaptoethanol  β— mercaptoethanol
市販の緩衝液中でアニーリングさせることもできる。たとえば、 Amersham Biosciences社の Megaprime DNA labelling system (キッ卜 Jをアニーリングに使用する ことができる。更に、相補鎖合成に好適な緩衝液の組成も公知である。たとえば DNA ポリメラーゼに Klenow断片を用いる場合には、次のような組成の緩衝液を利用するこ とがでさる。  It can also be annealed in a commercially available buffer. For example, Amersham Biosciences Megaprime DNA labeling system (Kit J can be used for annealing. In addition, a buffer composition suitable for complementary strand synthesis is also known. For example, when using a Klenow fragment for DNA polymerase. It is possible to use a buffer solution having the following composition.
50mM Tris-HCl (pH 7.5)  50 mM Tris-HCl (pH 7.5)
10mM MgCl  10 mM MgCl
2  2
ImM DTT  ImM DTT
[0065] 2.ピオチン化されたプローブの精製  [0065] 2. Purification of piotinylated probe
合成されたプローブは、 QIAGEN社 QIAquick nucleotide removal kitによって回収し た。操作は製品の指示書にしたがった。精製されたピオチン化プローブをァガロース 電気泳動によって分離して、 目的のサイズ (100-200bp)を有する 2本鎖のバンドを切り 出した。切り出したァガロースゲルから、フィルター(ultrafree-DA、アミコン社製)で D NAを精製した。回収された DNAをさらにエタノール沈殿によって精製した。  The synthesized probe was recovered by QIAGEN QIAquick nucleotide removal kit. Operation was in accordance with product instructions. The purified pyotinylated probe was separated by agarose electrophoresis, and a double-stranded band having the desired size (100-200 bp) was cut out. DNA was purified from the excised agarose gel with a filter (ultrafree-DA, manufactured by Amicon). The recovered DNA was further purified by ethanol precipitation.
[0066] 3.スクリーニング用プラスミドライブラリー  [0066] 3. Plasmid library for screening
イネのゲノム DNAを抽出し、超音波処理によって機械的に断片化した。 l-13kbの 大きさのゲノム DNA断片を選択し、 Smalで消化後に脱リン酸ィ匕したプラスミドベクタ 一にライゲーシヨンした。プラスミドベクターには pUC 18を用いた。ゲノム DN Aを挿入 したベクターを大腸菌 DH10B株に形質転換してプレーティングして、約 1.000.000クロ ーンカゝらなるプラスミドライブラリーが得られた。形質転換された大腸菌から、アルカリ 法によって DNAをまとめて精製し、以降のハイブリダィゼーシヨンによるスクリーニン グに用いた。 [0067] 4. 3重鎖形成 Rice genomic DNA was extracted and mechanically fragmented by sonication. A genomic DNA fragment of l-13 kb in size was selected and ligated into a plasmid vector that had been digested with Smal and dephosphorylated. PUC 18 was used as the plasmid vector. The vector inserted with genomic DNA was transformed into E. coli DH10B strain and plated to obtain a plasmid library of about 1.000.000 clones. DNA was collectively purified from the transformed E. coli by the alkaline method and used for subsequent screening by hybridization. [0067] 4. Triple chain formation
2で作成したピオチンィ匕プローブを 5分間煮沸後に氷上で急冷して 1本鎖化した。 1 本鎖化したピオチン化プローブに緩衝液をカ卩え、さらに 2.5mM CoCl、 ATP(ATPと  The biotin probe prepared in 2 was boiled for 5 minutes and then rapidly cooled on ice to form a single strand. Buffer solution is added to single-stranded piotinated probe, and 2.5 mM CoCl, ATP (ATP and
2  2
ATP- gumma- Sの混合液)、および RecAタンパク 8microgramをカ卩え、 37°Cで 20分間ィ ンキュペートした。緩衝液の組成は次のとおりである。  ATP-gumma-S mixture) and RecA protein 8 microgram were collected and incubated at 37 ° C for 20 minutes. The composition of the buffer is as follows.
25mMトリス酢酸緩衝液 (pH7.5)  25 mM Tris acetate buffer (pH 7.5)
8mM酢酸マグネシウム  8mM magnesium acetate
2mM CoCl  2mM CoCl
2  2
lmg/mLゥシ血清アルブミン (BSA)  lmg / mL ushi serum albumin (BSA)
次!、で 3で精製されたプラスミドライブラリー lOmicrogramをカ卩えて 37°Cで 1時間イン キュペートして、 3重鎖を形成させた。その後、 0.1% SDS存在下でプロティナーゼ K処 理によって RecAを分解し、さらに Phenylmethylsulfonyl Fluoride(PMSF)をカ卩えてプロ ティナーゼ Kを不活ィ匕した。  Next, the plasmid library lOmicrogram purified in step 3 was collected and incubated at 37 ° C for 1 hour to form triple chains. Thereafter, RecA was decomposed by proteinase K treatment in the presence of 0.1% SDS, and proteinase K was inactivated by adding Phenylmethylsulfonyl Fluoride (PMSF).
[0068] 5. Streptavidin microbeads【こよ5捕捉. [0068] 5. Streptavidin microbeads
ピオチン化プローブとプラスミドベクターを含む 4の液を緩衝液で平衡化した Streptavidin磁気ビーズと混合した。平衡ィ匕用の緩衝液の組成は次のとおりである。  Four solutions containing a pyotinylated probe and a plasmid vector were mixed with Streptavidin magnetic beads equilibrated with buffer. The composition of the buffer solution for equilibration is as follows.
10mM Tris-HCl (pH7.5)  10 mM Tris-HCl (pH 7.5)
ImM EDTA  ImM EDTA
1M NaCl  1M NaCl
室温で放置後、ストレプトアビジンと結合しなかった DNAを洗浄した。洗浄液の組 成は次のとおりである。  After standing at room temperature, DNA that did not bind to streptavidin was washed. The composition of the cleaning solution is as follows.
10mM Tris-HCl (pH7.5)  10 mM Tris-HCl (pH 7.5)
ImM EDTA  ImM EDTA
2M NaCl  2M NaCl
洗浄後にアルカリ液 (0. IN NaOH, ImM EDTA )によって結合した DNAを溶出した。 溶出されたプラスミドベクターは、エタノール沈殿で精製した。  After washing, the bound DNA was eluted with an alkaline solution (0. IN NaOH, ImM EDTA). The eluted plasmid vector was purified by ethanol precipitation.
[0069] 6.単離されたプラスミドの解析 [0069] 6. Analysis of isolated plasmid
5で回収されたプラスミドベクターで大腸菌を形質転換し、ライブラリーを構築した。 更にこのライブラリーを希釈して 96ゥエルのマイクロプレートに播いてクローユングし た。各クローン力も DNAを精製してインサートの塩基配列を決定した。塩基配列に含 まれる単純反復配列は、 Repeat maskerなどの市販のソフトウェアによって検出した。 検出された単純反復配列の数を単離された SSRクローン数として集計した。更に、同 一の塩基配列を有する複数のクローンは一つのクラスタ一として集計した。すなわち クラスターの数は、単離された単純反復配列の種類を意味する。 Escherichia coli was transformed with the plasmid vector recovered in 5 to construct a library. The library was further diluted and plated on 96-well microplates. For each clone, DNA was purified and the nucleotide sequence of the insert was determined. Simple repeat sequences contained in the base sequences were detected by commercially available software such as Repeat masker. The number of simple repetitive sequences detected was counted as the number of isolated SSR clones. Furthermore, a plurality of clones having the same base sequence were counted as one cluster. That is, the number of clusters means the kind of isolated simple repeat sequence.
同様の操作によって、(TAA)n、(GGA)n、(GC)n、および (TA)nからなる単純反復配 列について単離を試みた結果を以下にまとめた。表 1には各単純反復配列のクロー ユング結果を示す。  The results of attempts to isolate simple repeat sequences consisting of (TAA) n, (GGA) n, (GC) n, and (TA) n by the same procedure are summarized below. Table 1 shows the cloning results for each simple repeat sequence.
[表 1] [table 1]
Figure imgf000025_0001
Figure imgf000025_0001
ライブラリー Zモチーフ:プローブの塩基配列を構成するモチーフと、当該プローブ によって濃縮されたライブラリーの名称を示す。 Library Z motif: Indicates the motif that constitutes the base sequence of the probe and the name of the library concentrated by the probe.
ヒットしたクローン数:ポジティブクローンの数、すなわち 96ゥエル中のポジティブクロ ーンが検出されたゥエルの数と、その割合 (%)を示す。 Number of clones hit: Shows the number of positive clones, that is, the number of wells in which 96 positive clones were detected and the percentage (%).
SSRs:クローユングされた単純反復配列を含むプラスミドの数を示す。  SSRs: indicates the number of plasmids containing cloned simple repeats.
SSRsの種類:同定された単純反復配列のうち、塩基配列が異なる単純反復配列の数 Type of SSRs: Number of simple repeats with different base sequences among the identified simple repeats
(単純反復配列の種類)を示す。クラスターの数と同じ数である。 (Simple repetitive sequence type). The number is the same as the number of clusters.
平均長 (bp):同定された単純反復配列の長さ (bp)の平均を示す。 Average length (bp): Shows the average length (bp) of identified simple repeats.
最大長 (bp) :同定された単純反復配列のうち、最長のものの長さ (bp)を示す。 Maximum length (bp): Indicates the length (bp) of the longest simple repeat sequence identified.
これらの SSRSの単離に用いたプローブの塩基配列を以下に示す。なお塩基配列 中 T/Uと記載した部分には、プローブの合成において、 Tとなる場合と Uとなる場合が あることを示している。更に *を付けたプローブにおいては、モチーフ部分の Tも Uとな る場合がある。  The base sequences of the probes used for isolation of these SSRS are shown below. The portion of the nucleotide sequence indicated as T / U indicates that it may become T or U in probe synthesis. Furthermore, in the probes marked with *, the T in the motif part may also be U.
(TAA)n用プローブ: 5' (A)30 (TAA)16- 33(T/U)30* (配列番号: 9) (TTA)n用プローブ: 5' (A)30 (TTA)16-33(T/U)30* (配列番号: 10) (GGA)n用プローブ: 5' (A)30 (GGA)16_33(T/U)30 (配列番号: 11) (CCT)n用プローブ: 5' (A)30 (CCT)16-33(T/U)30* (配列番号: 12) (GC)n用プローブ: 5' (A)30 (GC)25-50(T/U)30 (配列番号: 13) Probe for (TAA) n: 5 '(A) 30 (TAA) 16-33 (T / U) 30 * (SEQ ID NO: 9) (TTA) n probe: 5 '(A) 30 (TTA) 16-33 (T / U) 30 * (SEQ ID NO: 10) (GGA) n probe: 5' (A) 30 (GGA) 16_33 ( T / U) 30 (SEQ ID NO: 11) Probe for (CCT) n: 5 '(A) 30 (CCT) 16-33 (T / U) 30 * (SEQ ID NO: 12) Probe for (GC) n: 5 '(A) 30 (GC) 25-50 (T / U) 30 (SEQ ID NO: 13)
(TA)n用プローブ: 5' (A)30 (TA)25_50(T/U)30* (配列番号: 14)  Probe for (TA) n: 5 '(A) 30 (TA) 25_50 (T / U) 30 * (SEQ ID NO: 14)
[0071] 更に濃縮後の各ライブラリ一力 単離された SSRsのモチーフの数を以下にまとめた 。いずれのライブラリーにおいても、プローブに用いたモチーフ配列を含むクローン を選択的に単離できて 、ることがわ力る。 [0071] Each library after further enrichment The number of isolated SSRs motifs is summarized below. In any library, it can be appreciated that a clone containing the motif sequence used for the probe can be selectively isolated.
(表 2)各ライブラリ一力も単離された CA-モチーフを含むクローンが検出されたプレ 一トのゥエルの数 (hit clone)と単離された SSRsの数 (CA-SSR)  (Table 2) The number of pre-wells (hit clones) and the number of isolated SSRs (CA-SSR) in which clones containing CA-motifs that were isolated from each library were detected
hit clone CA-SSR  hit clone CA-SSR
[CA library 39 47]  [CA library 39 47]
Gし library 1 1  G then library 1 1
G JA library 3 3  G JA library 3 3
TAA library 6 6  TAA library 6 6
[0072] (表 3)各ライブラリ一力も単離された GC-モチーフを含むクローンが検出されたプレ 一トのゥエルの数 (hit clone)と単離された SSRsの数 (GC-SSR) [0072] (Table 3) Number of pre-wells (hit clones) and clones containing isolated SSRs (GC-SSR)
nit clone GC-SSR  nit clone GC-SSR
CA library 1 1  CA library 1 1
[Gし library 5 6]  [G library 5 6]
GGA library 2 2  GGA library 2 2
TAA library 0 0  TAA library 0 0
[0073] (表 4)各ライブラリ一力 単離された GGA-モチーフを含むクローンが検出されたプレ 一トのゥエルの数 (hit clone)と単離された SSRsの数 (GGA-SSR) [0073] (Table 4) The power of each library The number of pre-wells (hit clones) and the number of isolated SSRs (GGA-SSR) in which clones containing the isolated GGA-motif were detected
hit clone GGA-SSR  hit clone GGA-SSR
CA library 11 13  CA library 11 13
GC library 8 10  GC library 8 10
[GGA library 22 38] TAA library 12 14 [GGA library 22 38] TAA library 12 14
[0074] (表 5)各ライブラリ一力 単離された TAA-モチーフを含むクローンが検出されたプレ 一トのゥエルの数 (hit clone)と単離された SSRsの数 (TAA-SSR) [0074] (Table 5) The power of each library The number of pre-wells in which clones containing the isolated TAA-motif were detected (hit clone) and the number of isolated SSRs (TAA-SSR)
hit clone TAA-SSR  hit clone TAA-SSR
CA library 5 5  CA library 5 5
GC library 9 9  GC library 9 9
GGA library 7 7  GGA library 7 7
[TAA library 41 49]  [TAA library 41 49]
[0075] 各プローブによって単離された SSRsを含む DNAのうち、プローブの塩基配列とは 異なる力 その塩基配列に類似するモチーフを含む DNAの割合を以下にまとめた。 表 6からわ力るように、本発明においては、プローブの塩基配列に対する高い特異性 が期待できる。 [0075] Among DNAs containing SSRs isolated by each probe, the ratio of DNAs containing a motif similar to the base sequence is summarized below. As shown in Table 6, in the present invention, high specificity for the probe base sequence can be expected.
[表 6]  [Table 6]
Figure imgf000027_0001
Figure imgf000027_0001
* : 29個中 24個が TCリピート。  *: 24 out of 29 TC repeats.
** : 15個中 10個力 STAリピート。  **: 10 out of 15 STA repeats.
***: 16個中 1個が ΤΑリピート。  ***: 1 out of 16 ΤΑ repeats.
イネのゲノム中に多く含まれている (CA)n、(TAA)n、(GGA)nについては、得られたゲ ノムライブラリーから 20— 40%に濃縮された。本発明によって、単純反復配列を含む プラスミドを効率的に濃縮できることが示された。  (CA) n, (TAA) n, and (GGA) n, which are abundantly contained in the rice genome, were enriched to 20-40% from the obtained genomic library. The present invention has shown that plasmids containing simple repeat sequences can be efficiently enriched.
更に、上記のようにして単離されたイネの (CA)nリピートを構成する塩基配列を、実 際にイネのゲノム配列にマッピングした。各染色体上の分布をまとめたのが表 7であ る。  Furthermore, the base sequence constituting the (CA) n repeat of rice isolated as described above was actually mapped to the rice genome sequence. Table 7 summarizes the distribution on each chromosome.
[表 7] chr.1 chr.2 chr.3 chr.4 chr.5 chr.6 chr.7 chr.8 chr.9 chr.10chr.11 chr.12位置不明 合計 [Table 7] chr.1 chr.2 chr.3 chr.4 chr.5 chr.6 chr.7 chr.8 chr.9 chr.10chr.11 chr.12 Unknown position Total
Figure imgf000028_0001
Figure imgf000028_0001
*SSR:各染色体にマッピングされた 9bp以上の CAまたは ACまたは GTまたは TGリビー トの数。 * SSR: The number of CA or AC or GT or TG repeats 9bp or more mapped to each chromosome.
*クラスターの数:各染色体にマッピングされた SSR中で、塩基配列が重複しない SSR の数。重複は染色体上の位置により clusteringした。すなわち、実際に単離された DN Aにおけるリピートの数が異なっていても、同じ位置にマッピングされた場合には、ク ラスターの数は 1とした。  * Number of clusters: The number of SSRs that do not have overlapping nucleotide sequences among the SSRs mapped to each chromosome. Duplication was clustered by chromosomal location. In other words, even if the number of repeats in the actually isolated DNA was different, the number of clusters was set to 1 when mapped at the same position.
位置不明の SSRは、現段階で決定されているゲノムの塩基配列上に見出せない塩 基配列であると考えられる。このようなマッピングできな力つた塩基配列は、各塩基配 列間のアセンブル結果に基づいてクラスターの数を決定した。  An SSR with an unknown position is considered to be a base sequence that cannot be found on the genomic base sequence determined at this stage. Such a strong base sequence that could not be mapped determined the number of clusters based on the assembly results between the base sequences.
*クローン:各染色体にマッピングされた塩基配列が由来する、単離された SSRを含む クローンの数。  * Clone: Number of clones containing an isolated SSR from which the nucleotide sequence mapped to each chromosome is derived.
[0077] 表 7の結果は(CA)nで濃縮した 1056クローン(96ゥエルプレート 11枚分)から実際 に (CA)nが 503個 (440クローン)得られ、染色体上の 270力所に位置付けられたことを示 している。クローン化された SSRは 12本の染色体へ分散した。つまり、染色体の広い 範囲にわたって、効率よく SSR配列をマッピングできたと言える。  [0077] The results in Table 7 show that 503 (440) clones of (CA) n were actually obtained from 1056 clones (11 plates of 96 well plates) enriched with (CA) n. Indicates that it has been positioned. The cloned SSR was distributed over 12 chromosomes. In other words, it can be said that SSR sequences could be mapped efficiently over a wide range of chromosomes.
[0078] 更に、 96ゥヱルプレート 11枚分の解析結果を図 4にまとめた。図 4から明らかなよう に、プレートの枚数(すなわちクローンの数)の増加に伴って、単離される SSRの数 (力 ラム左: SSR)と種類 (カラム右:クラスター)が順調に増加して 、る。すなわち本発明に よって構築された SSR濃縮ライブラリーにおいては、多様な SSRが効率的に濃縮され て 、ることを示している。  [0078] Further, the analysis results for 11 sheets of 96 wall plates are summarized in FIG. As is clear from Fig. 4, as the number of plates (ie, the number of clones) increases, the number of isolated SSRs (force ram left: SSR) and type (column right: cluster) increase steadily. RU That is, the SSR enriched library constructed according to the present invention shows that various SSRs are efficiently enriched.
[0079] 本発明は PCRに依存しないため、長いインサートを持ったクローンも濃縮可能であ る。また、従来法では、配列毎に PCRでの増幅のレベルが異なり、得られる SSRに関し て大きくバイアスが力かっていた。本法はきわめて配列の偏りの低いライブラリーの作 成を可能とした。今回の実験結果に基づくと、理論的には、 1つのモチーフに対して 5000から 1万クローンのシーケンスを行なうことで、 1000 (たとえば GGAモチーフの場 合)力ら 2000 (たとえば CAモチーフ、あるいは TTAモチーフの場合)の SSRが得られ ると予測できる。 [0079] Since the present invention does not depend on PCR, clones having long inserts can be concentrated. In addition, in the conventional method, the level of amplification by PCR differs from sequence to sequence, and the resulting SSR was heavily biased. This method creates libraries with extremely low sequence bias. Made possible. Based on the results of this experiment, theoretically, a sequence of 5000 to 10,000 clones was performed for one motif, and 1000 (for example, for GGA motif) force 2000 (for example, CA motif or TTA) It can be predicted that the SSR of the motif will be obtained.
産業上の利用可能性  Industrial applicability
[0080] 本発明は、単純反復配列 (SSRs)を含む DN Aの単離に有用である。本発明によって 、サテライト DNA、ミニサテライト DNA、あるいはマイクロサテライト DNAなどの、 SSRsを構成単位として含む各種の DNAを単離することができる。本発明によって単 離される SSRsを含む DNAの塩基配列の解析によって、遺伝マーカーとして有用な 塩基配列を同定することができる。  [0080] The present invention is useful for isolation of DNA containing simple repetitive sequences (SSRs). According to the present invention, various DNAs containing SSRs as structural units, such as satellite DNA, minisatellite DNA, or microsatellite DNA, can be isolated. By analyzing the base sequence of DNA containing SSRs isolated by the present invention, a base sequence useful as a genetic marker can be identified.
[0081] たとえばミニサテライト配列は、個人識別や親子鑑別などに有用である。あるいは、 マイクロサテライト DNAの塩基配列は、ゲノム配列上にマッピングすることによってゲ ノム上の物理的な位置を知るためのマーカーとして利用することができる。マイクロサ テライト DNAの塩基配列情報をマーカーとして利用するには、マーカーがゲノム全 体に高 、密度でマッピングされて 、ることが前提である。高密度にマッピングされたマ 一力一を利用することで、具体的には次のような利点を期待できる。  [0081] For example, the minisatellite array is useful for personal identification, parent-child discrimination, and the like. Alternatively, the base sequence of microsatellite DNA can be used as a marker for knowing the physical position on the genome by mapping on the genome sequence. In order to use the base sequence information of microsatellite DNA as a marker, it is assumed that the marker is mapped to the entire genome at a high density. Specifically, the following advantages can be expected by using one-on-one mapping with high density.
[0082] まず、 BACあるいは YACなどの人口染色体にクロー-ングされたゲノムの断片を、 マーカーを利用することによって、迅速に、かつ容易に整列化することができる。更に 、遺伝マーカーとして利用する場合には、高密度にマッピングされたマーカーは特に 重要である。たとえば表現形質との連鎖解析においては、マーカーのマッピング密度 は、ポジショナルクローニングなどの、 map based cloningの精度を大きく左右する。ま たマーカー選抜育種においても、高密度なマーカーの存在は重要な手がかりとなる  [0082] First, genomic fragments cloned into an artificial chromosome such as BAC or YAC can be quickly and easily aligned using a marker. Furthermore, when used as a genetic marker, markers that are densely mapped are particularly important. For example, in linkage analysis with phenotypes, the mapping density of markers greatly affects the accuracy of map based cloning such as positional cloning. The presence of high-density markers is also an important clue in selective marker breeding.
[0083] あるいは、量的形質に寄与する遺伝子座のマッピングにおいても、高密度なマーカ 一力 精度の向上に貢献すると考えられている。一般に、イネの種子重量のような量 的に変化する形質には、複数の遺伝子座が関与している。したがって、通常の連鎖 解析では、遺伝子座と形質との関連が、しばしば不連続となる。しカゝし多数の DNA マーカーを使って遺伝子連鎖地図上のマーカーの密度を高めることで、形質に寄与 する遺伝子座の特定が可能になる。 [0083] Alternatively, it is considered that the mapping of loci that contribute to quantitative traits also contributes to the improvement of the accuracy of high-density markers. In general, multiple loci are involved in quantitatively changing traits such as rice seed weight. Thus, in normal linkage analysis, the association between loci and traits is often discontinuous. Increase the density of markers on the genetic linkage map using a large number of DNA markers and contribute to traits It is possible to identify the locus to be used.
ゲノムサイズは、イネでは 4. 3億塩基対、ヒトにおいては 60億塩基対に及ぶ。これ らの種のゲノムの解析は、既にかなりの精度で完了したと言って良い。しかしゲノムの 大きさに応じた多くの遺伝マーカーを同定することは、今後の大きな課題である。言 V、換えれば、巨大なゲノムの全体をカバーしうるマイクロサテライト DNAマーカーを 単離することの重要性が急激に高まって 、る。 SSRsの効率的な単離を可能とする本 発明の方法は、 SSRsマーカーの単離を通じて、今後の遺伝子解析の進展に大きく貢 献する。  Genome sizes range from 430 million base pairs in rice and 6 billion base pairs in humans. It can be said that the analysis of the genomes of these species has already been completed with considerable accuracy. However, identifying many genetic markers according to the size of the genome is a major challenge in the future. Word V, in other words, the importance of isolating microsatellite DNA markers that can cover the entire large genome has increased rapidly. The method of the present invention that enables efficient isolation of SSRs will greatly contribute to the progress of gene analysis in the future through the isolation of SSRs markers.

Claims

請求の範囲 [I] 次の工程を含む、単純反復配列を含む 2本鎖 DNAの単離方法。 Claims [I] A method for isolating double-stranded DNA comprising a simple repetitive sequence, comprising the following steps:
(1) 2本鎖 DNAプラスミドライブラリーを、単離すべき単純反復配列を含むプローブと 、相同組換え蛋白質の存在下でインキュベートする工程、  (1) incubating a double-stranded DNA plasmid library with a probe containing a simple repetitive sequence to be isolated in the presence of a homologous recombinant protein;
(2)プローブとハイブリダィズしたプラスミドを単離する工程  (2) Isolating the plasmid hybridized with the probe
[2] プラスミドライブラリーがゲノムの断片を含むプラスミドライブラリーである請求項 1に記 載の方法。  [2] The method according to claim 1, wherein the plasmid library is a plasmid library containing genomic fragments.
[3] プラスミドを単離する工程が、次の工程 (2a)— (2c)を含む請求項 2に記載の方法。  [3] The method according to claim 2, wherein the step of isolating the plasmid comprises the following steps (2a) — (2c).
(2a)プローブとハイブリダィズしたプラスミドを回収する工程、  (2a) recovering the plasmid hybridized with the probe,
(2b)回収されたプラスミドを、当該プラスミドを導入することができる宿主細胞に形質 転換する工程、および  (2b) transforming the recovered plasmid into a host cell into which the plasmid can be introduced, and
(2c)増幅されたプラスミドを前記宿主細胞から回収する工程  (2c) recovering the amplified plasmid from the host cell
[4] プローブが、次の領域 (a)および (b)力 なる請求項 1に記載の方法。 [4] The method of claim 1, wherein the probe has the following areas (a) and (b) force.
(a)単純反復配列からなる領域、および  (a) a region consisting of simple repeat sequences, and
(b)領域 (a)の 3 '側および 5 '側の両方、またはいずれかに位置し、単純反復配列以外 の塩基配列で構成された領域  (b) Region located on the 3 'side and / or 5' side of region (a) and consisting of base sequences other than simple repeats
[5] 領域 (b)の塩基配列力 a、 t、 c、 g、および u力 なる群力 選択される 、ずれかの塩基 が連続した配列である請求項 4に記載の方法。  [5] The method according to claim 4, wherein the base sequence force a, t, c, g, and u force of the region (b) is selected, and any one of the bases is a continuous sequence.
[6] プローブが領域 (b)に結合性リガンドを有して 、る請求項 4に記載の方法。 6. The method according to claim 4, wherein the probe has a binding ligand in the region (b).
[7] プラスミドとプローブをインキュベートする前、または後に、結合性リガンドに結合する 固相にプラスミドを捕捉する工程を含む、請求項 6に記載の方法。 [7] The method according to claim 6, comprising a step of capturing the plasmid on a solid phase that binds to a binding ligand before or after the incubation of the plasmid and the probe.
[8] 領域 (a)の長さが 25— 100塩基である請求項 4に記載の方法。 8. The method according to claim 4, wherein the length of the region (a) is 25-100 bases.
[9] 領域 (b)の長さが 30— 60塩基である請求項 4に記載の方法。 [9] The method according to claim 4, wherein the length of the region (b) is 30 to 60 bases.
[10] プローブが、領域 (a)を構成する単純反復配列の反復の数が異なる複数種のプロ一 ブを含む請求項 4に記載の方法。  [10] The method according to claim 4, wherein the probe comprises a plurality of types of probes having different numbers of repeats of the simple repetitive sequence constituting the region (a).
[I I] 相同組換え蛋白質が、 RecA蛋白質、 Rad51蛋白質、および Rad52蛋白質力もなる群 から選択される請求項 1に記載の方法。  [I I] The method according to claim 1, wherein the homologous recombinant protein is selected from the group consisting of RecA protein, Rad51 protein, and Rad52 protein.
[12] 次の要素を含む、単純反復配列の単離用のキット。 i)次の領域 (a)および (b)力 なり、かつ領域 (b)に結合性リガンドを有するプローブ、[12] A kit for the isolation of simple repetitive sequences, comprising: i) the following region (a) and (b) force and a probe having a binding ligand in region (b),
(a)単純反復配列からなる領域、および (a) a region consisting of simple repeat sequences, and
(b)領域 (a)の 3 '側および 5 '側の両方、またはいずれかに位置し、単純反復配列以外 の塩基配列で構成された領域、  (b) a region composed of a base sequence other than a simple repetitive sequence, located on either or both of the 3 'side and 5' side of region (a),
ii)相同糸且換え蛋白質、および  ii) homologous thread and reversible protein, and
iii)前記結合性リガンドと結合する固相  iii) Solid phase that binds to the binding ligand
[13] 次の工程を含む反復配列にハイブリダィズするプローブの製造方法。  [13] A method for producing a probe that hybridizes to a repetitive sequence including the following steps.
A) 3 '側に配置された反復配列と、 5 '側に配置された反復配列以外の任意の塩基配 列からなるオリゴヌクレオチドを铸型とし、少なくとも 3'末端に前記铸型の反復配列に 相補的な塩基配列を含むオリゴヌクレオチドをプライマーとして相補鎖を合成するェ 程、および  A) An oligonucleotide consisting of a repetitive sequence arranged on the 3 ′ side and an arbitrary nucleotide sequence other than the repetitive sequence arranged on the 5 ′ side is used as a cage, and at least the 3 ′ end has the above-mentioned cage-type repeat. A process of synthesizing a complementary strand using an oligonucleotide containing a complementary base sequence as a primer, and
B)工程 A)で合成された相補鎖を回収する工程  B) Step of recovering the complementary strand synthesized in step A)
[14] 次の領域 (a)および (b)からなるプローブ。 [14] Probe consisting of the following regions (a) and (b).
(a)単純反復配列からなる領域、および  (a) a region consisting of simple repeat sequences, and
(b)領域 (a)の 3 '側および 5 '側の両方、またはいずれかに位置し、単純反復配列以外 の塩基配列で構成された領域、  (b) a region composed of a base sequence other than a simple repetitive sequence, located on either or both of the 3 'side and 5' side of region (a),
[15] プローブが、領域 (a)を構成する単純反復配列の反復の数が異なる複数種のプロ一 ブを含む混合物である請求項 14に記載のプローブ。  15. The probe according to claim 14, wherein the probe is a mixture comprising a plurality of types of probes having different numbers of repeats of the simple repetitive sequence constituting the region (a).
[16] プローブが、領域 (b)に結合性リガンドおよびシグナル生成分子の 、ずれか、または 両方を有する請求項 14に記載のプローブ。 16. The probe according to claim 14, wherein the probe has a binding ligand and / or a signal generating molecule in the region (b).
PCT/JP2004/017938 2004-12-02 2004-12-02 Method of isolating double-stranded dna containing simple sequence repeats WO2006059386A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006546553A JPWO2006059386A1 (en) 2004-12-02 2004-12-02 Method for isolating double-stranded DNA containing simple repetitive sequence
PCT/JP2004/017938 WO2006059386A1 (en) 2004-12-02 2004-12-02 Method of isolating double-stranded dna containing simple sequence repeats

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/017938 WO2006059386A1 (en) 2004-12-02 2004-12-02 Method of isolating double-stranded dna containing simple sequence repeats

Publications (1)

Publication Number Publication Date
WO2006059386A1 true WO2006059386A1 (en) 2006-06-08

Family

ID=36564830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/017938 WO2006059386A1 (en) 2004-12-02 2004-12-02 Method of isolating double-stranded dna containing simple sequence repeats

Country Status (2)

Country Link
JP (1) JPWO2006059386A1 (en)
WO (1) WO2006059386A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993025709A1 (en) * 1992-06-09 1993-12-23 Medical Research Council Preparation of nucleic acids

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993025709A1 (en) * 1992-06-09 1993-12-23 Medical Research Council Preparation of nucleic acids

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KARAGYOZOV L. ET AL: "Construction of random small-insert genomic libraries highly enriched for simple sequence repeats", NUCLEIC ACIDS RES., vol. 21, no. 16, 1993, pages 3911 - 3912, XP000606267 *
RIGAS B. ET AL: "Rapid plasmid library screening using RecA-coated biotinylated probes", PROC.NATL.ACAD.SCI. USA, vol. 83, no. 24, 1986, pages 9591 - 9595, XP009009381 *
TAIDI-LASKOWSKI B. ET AL: "Use of RecA protein to enrich for homologous genes in a genomic library", NUCLEIC ACIDS RES., vol. 16, no. 16, 1988, pages 8157 - 8169, XP002999544 *
TAIDI-LASKOWSKI B. ET AL: "Use of RecA protein to enrich for homologous genes in a genomic library.", NUCLEIC ACIDS RESEARCH, vol. 16, no. 16, 1988, pages 8157 - 8169, XP002983780 *

Also Published As

Publication number Publication date
JPWO2006059386A1 (en) 2008-06-05

Similar Documents

Publication Publication Date Title
US11339432B2 (en) Nucleic acid constructs and methods of use
JP4385072B2 (en) Selective restriction fragment amplification: General DNA fingerprinting
JP3535159B2 (en) Selective approach to DNA analysis
Fazio et al. Development and characterization of PCR markers in cucumber
JP5166276B2 (en) A method for high-throughput screening of transposon tagging populations and massively parallel sequencing of insertion sites
US5525493A (en) Cloning method and kit
US20120094847A1 (en) The use of class iib restriction endonucleases in 2nd generation sequencing applications
EP2334802A1 (en) Methods of generating gene specific libraries
US7141371B2 (en) Methods for detecting and localizing DNA mutations by microarray
AU2006295556A1 (en) High throughput screening of mutagenized populations
EP2929056A1 (en) Methods for targeted genomic analysis
JP2013530709A (en) Target 3-D genome region sequencing strategy
EP3443115A1 (en) Method and kit for the generation of dna libraries for massively parallel sequencing
US20200102612A1 (en) Method for identifying the source of an amplicon
US20090215034A1 (en) Method for selectively detecting subsets of nucleic acid molecules
WO1991018114A1 (en) Polynucleotide amplification
WO2000055364A2 (en) Genetic analysis
EP1034261A2 (en) Method of parallel screening for insertion mutants and a kit to perform this method
Zhumabayeva et al. RecA-mediated affinity capture: a method for full-length cDNA cloning
JPH10508483A (en) Methods for producing oligonucleotide probes or primers, vectors therefor and their use
WO2006059386A1 (en) Method of isolating double-stranded dna containing simple sequence repeats
US20220213546A1 (en) Protocol for detecting interactions within one or more dna molecules within a cell
JP2005117943A (en) Method for analyzing gene expression
WO2005038026A1 (en) Method of typing mutation
JP2003038177A (en) Method for preparing library of dna having modified target base sequence

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006546553

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 04822489

Country of ref document: EP

Kind code of ref document: A1