WO2006057229A1 - Process for production of low-molecular olefin polymer having a terminal double bond - Google Patents

Process for production of low-molecular olefin polymer having a terminal double bond Download PDF

Info

Publication number
WO2006057229A1
WO2006057229A1 PCT/JP2005/021415 JP2005021415W WO2006057229A1 WO 2006057229 A1 WO2006057229 A1 WO 2006057229A1 JP 2005021415 W JP2005021415 W JP 2005021415W WO 2006057229 A1 WO2006057229 A1 WO 2006057229A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
containing group
transition metal
molecular weight
compound
Prior art date
Application number
PCT/JP2005/021415
Other languages
French (fr)
Japanese (ja)
Inventor
Junji Saito
Seiichi Ishii
Kenji Michiue
Sadahiko Matsuura
Makoto Mitani
Terunori Fujita
Original Assignee
Mitsui Chemicals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals, Inc. filed Critical Mitsui Chemicals, Inc.
Priority to JP2006547775A priority Critical patent/JPWO2006057229A1/en
Publication of WO2006057229A1 publication Critical patent/WO2006057229A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers

Definitions

  • the present invention relates to an olefin polymerization method using an olefin polymerization catalyst, and more specifically, an olefin (co) polymer characterized by having a low molecular weight and a double bond at the end of a polymer main chain. And a method for polymerizing olefins using a novel catalyst for olefin polymerization having high polymerization activity. More specifically, the present invention relates to a method for polymerizing olefins in which a specific transition metal compound, an organometallic compound, and a compound that reacts with a transition metal compound to form an ion pair are polymerized or copolymerized.
  • JP-A-11-315109 describes a transition metal compound having a salicylaldoimine ligand, and it is described that this complex exhibits high refining and olefin polymerization activity.
  • JP-A-11-315109 describes a transition metal compound having a salicylaldoimine ligand, and it is described that this complex exhibits high refining and olefin polymerization activity.
  • Japanese Patent Application Laid-Open No. 2001-2731 European Patent Application Publication No. 1043341 and Japanese Patent Application Laid-Open No. 2003-073412
  • a novel compound containing a double bond at one end can be produced by using the transition metal compound.
  • Low molecular weight ethylene polymers, modified end double bonds, and their uses are described. Further, US Pat. No.
  • 6,531,555 discloses a method for producing a low molecular weight ethylene polymer containing a double bond at one end by using the transition metal compound having an electron withdrawing group introduced at a specific position. Yes. Among these, by using the transition metal compound substituted with bromine, a polymer having a high single-end vinyl bond rate (also referred to as single-end unsaturation rate in this specification) is produced. However, in this production method, the vinyl bond ratio at one end is not yet sufficient and the productivity is not sufficient.
  • Patent Document 2 JP 2001-2731 A
  • Patent Document 3 European Patent Application Publication No. 1043341
  • Patent Document 4 Japanese Patent Laid-Open No. 2003-073412
  • Patent Document 5 US Patent No. 6531555
  • the problem to be solved by the present invention is to achieve high productivity, low molecular weight olefins having high single-terminal unsaturated bonds and higher single-terminal unsaturated ratios. It is to provide a method for manufacturing coalescence.
  • the method for producing a low molecular weight olefin-containing polymer having a single-end double bond includes:
  • a catalyst comprising at least one compound selected from compounds that react with (A) to form ion pairs, ethylene is homopolymerized or ethylene is copolymerized with 3 to 10 carbon olefins. It is characterized by that.
  • M represents a transition metal atom of Group 4 of the periodic table
  • R 2 to R 5 may be the same or different from each other, hydrogen atom, halogen atom, hydrocarbon group, heterocyclic compound residue, oxygen-containing group, nitrogen-containing group, boron-containing group, X-containing group , A phosphorus-containing group, a silicon-containing group, a germanium-containing group, or a tin-containing group, and two or more of R 2 to R 5 may be connected to each other to form a ring.
  • two R 2 to R 5 may be connected to each other.
  • n is a number that satisfies the valence of M
  • X represents a hydrogen atom, a halogen atom, a hydrocarbon group, an oxygen-containing group, a X-containing group, a nitrogen-containing group, a boron-containing group, an aluminum-containing group, a phosphorus-containing group, a halogen-containing group, a heterocyclic compound residue, a key Represents a silicon-containing group, a germanium-containing group, or a tin-containing group, and when n is 2 or more, a plurality of groups represented by X may be the same or different from each other, and a plurality of groups represented by X You can combine with Le to form a ring. )
  • R 1 is hydrogen or a methyl group
  • R 5 is a phenylethyl group, a diphenylmethyl group, a cuminole group, a diphenylethyl group, or a triphenylmethyl group
  • M is Zr.
  • the low molecular weight olefin polymer containing a single terminal double bond obtained in the present invention contains a vinyl, vinylene, or vinylidene type double bond at one terminal, and in the presence of the above olefin polymerization catalyst, Can be produced by homopolymerization or copolymerization of ethylene and hyolein having 3 to 10 carbon atoms.
  • Examples of the olefin having 3 to 10 carbon atoms used in the present invention include propylene, 1-butene, 3_methyl-1-butene, 1-pentene, 3-methyl-1-butene, and 1-to.
  • Xene 4-methyl-1-pentene, 4-methinole_1_pentene, 3-methyl-1-pentene, 1-octene, 1-decene, etc., and one or more of these are used .
  • propylene and 1-butene are particularly preferred.
  • the low molecular weight (co) polymer obtained in the present invention contains 95 to 100 mol% of structural units derived from ethylene, preferably 96 to 100 mol%, particularly preferably 97 to 100 mol%.
  • the structural unit derived from ⁇ -olefin having 3 to 10 carbon atoms is 0 to 5 mol%, preferably 0 to 4 mol%, more preferably 0 to 3 mol%.
  • the weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) of the low molecular weight (co) polymer obtained in the present invention is 500 or more and 2000 or less, preferably 800 or more and 1800 or less. Further, the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) (Mw / Mn, also referred to as molecular weight distribution in the present specification) is 1.:! To 2.5. 1. 2 to 2.3, more preferably ⁇ 1. It is in the range of 3 to 2.2.
  • Mw and Mw / Mn are measured as follows using GPC-150 manufactured by Millipore.
  • the separation column is TSK GNH HT, the column size is 7.5 mm in diameter and 300 mm in length, and the column temperature is 140 ° C.
  • the sample concentration is 0.1% by weight, the sample injection volume is 500 microliters, and a differential refractometer is used as the detector.
  • Standard polystyrene is manufactured by Tosoh Corporation.
  • the low molecular weight (co) polymer obtained in the present invention has a vinyl, vinylene, or vinylidene group at the end of the polymer main chain, and the content of these groups as measured by _NMR or 13 C-NMR
  • the ratio of the saturated bonds) is 95% or more of all terminal ends, more preferably 96% or more, and particularly preferably 97% or more.
  • one end means a terminal having an unsaturated bond in the polymer main chain in the case of a polymer having an unsaturated bond, and a polymer main chain in the case of a polymer having no unsaturated bond. Check the other end.
  • NMR is measured at 120 ° C after completely dissolving the polymer in orthodichlorobenzene containing a small amount of deuterated benzene as a lock solvent in a sample tube.
  • the amount of terminal unsaturated bonds and the degree of unsaturation in one terminal in a low molecular weight polymer consisting only of ethylene are determined by ifi-NMR.
  • Each hydrogen peak of the polymer has a terminal saturated methyl group (A) of 0 ⁇ 65 to 0 ⁇ 85 ⁇ m, and a bull group peak of 4 ⁇ 85 to 5.0 ⁇ m (B), 5.5 to 5.8ppm.
  • Single-terminal unsaturation (U%) is the peak area of (A), (B), and (C).
  • the numerator indicates the peak area based on terminal bulle, vinylene, and vinylidene
  • the denominator indicates the area of the terminal methyl group.
  • the single-terminal olefination rate (single-terminal unsaturation rate (V%)) of a copolymer of ethylene and eleven-year-old lefin is the sum of the peak areas derived from all unsaturated terminals in 13 C_NMR and the total S
  • V (%) ⁇ S / (S + S) ⁇ X 200 (%)
  • the numerator indicates the area of the peak based on all unsaturated terminals
  • the denominator indicates the area of all terminals.
  • the production method of the present invention efficiently provides a low molecular weight olefin polymer containing a single-end double bond useful in various applications.
  • the method for producing a low molecular weight olefin polymer containing a single-end double bond in the present invention will be specifically described.
  • the term “polymerization” is sometimes used in the meaning including not only homopolymerization but also copolymerization, and the term “polymer” refers to a copolymer that is not only a homopolymer. Is sometimes used in a meaning that also includes.
  • the olefin polymerization catalyst used in the present invention is:
  • (B-2) an organoaluminum compound
  • Transition metal compound A compound that reacts with (A) to form an ion pair Force At least one compound selected
  • the (A) transition metal compound used in the present invention is a compound represented by the following general formula (I).
  • N ⁇ M is generally a force indicating coordination, and may or may not be coordinated in the present invention.
  • M represents a transition metal belonging to Group 4 of the periodic table, specifically titanium, dinolecodium, and hafnium, and preferably dinoleconium.
  • n represents an integer of 1 to 2, and is preferably 2.
  • a methyl group or a hydrogen atom Preferably a methyl group or a hydrogen atom.
  • R 2 to R 5 may be the same as or different from each other, a hydrogen atom, a halogen atom, a hydrocarbon group, a heterocyclic compound residue, an oxygen-containing group, a nitrogen-containing group, a boron-containing group, a thio-containing group, phosphorus-containing groups, Kei-containing group, a germanium-containing group or a tin-containing group, Yo also form a ring more than is bonded to each other of R 2 to R 5 les, but, R 5 Is preferably a hydrocarbon group, particularly preferably a phenylethyl group, a diphenylmethyl group, a tamyl group, a diphenylethyl group, or a triphenylmethyl group.
  • transition metal compound (A) is represented by the following formula (II).
  • each of R 2 to R 5 may be connected to each other.
  • is a number satisfying the valence of ⁇ , specifically 2, 3, preferably 2.
  • X represents a hydrogen atom, a halogen atom, a hydrocarbon group, an oxygen-containing group, a X-containing group, a nitrogen-containing group, a boron-containing group, an aluminum-containing group, a phosphorus-containing group, a halogen-containing group, a heterocyclic compound residue, a key Represents a silicon-containing group, a germanium-containing group, or a tin-containing group, and among them, a halogen atom and a hydrocarbon group are particularly preferable.
  • a plurality of groups represented by X may be the same or different from each other, and a plurality of groups represented by X may be bonded to each other to form a ring.
  • halogen atom examples include fluorine, chlorine, bromine and iodine.
  • hydrocarbon group examples include alkyl groups such as methinole, ethyl, propyl, and butyl; alkenyl groups such as vinyl, propenyl, and cyclohexenyl; and benzyl, phenyl, phenylpropyl, and other alkenyl groups.
  • Reel alkyl groups forces including, but not limited to phenyl, tolyl, dimethylphenylol, trimethylphenyl, ethylphenyl, propylphenyl, biphenyl, naphthyl, methylnaphthyl, anthryl, phenanthryl, and the like.
  • transition metal compound ( ⁇ ) represented by the general formula (I) are shown below, but are not limited thereto.
  • zirconium metal is titanium, Hough.
  • a transition metal compound replaced with can also be used.
  • the method for producing such a transition metal compound (A) is not particularly limited and can be produced, for example, as follows.
  • the ligand constituting the transition metal compound (A) is a salicylaldehyde compound and a primary amin compound represented by the formula Ri-NH (R 1 is as defined above), for example, A
  • both starting compounds are dissolved in a solvent.
  • solvents that can be used commonly used for such a reaction, alcohol solvents such as methanol and ethanol, hydrocarbon solvents such as tonolene, and the like are preferable.
  • Subsequent stirring from room temperature to reflux conditions for about :! to 48 hours gives the corresponding ligand in good yield.
  • an acid catalyst such as formic acid, acetic acid, or paratoluenesulfonic acid may be used as the catalyst.
  • molecular sieves anhydrous magnesium sulfate or anhydrous sodium sulfate is used as a dehydrating agent, or the reaction is performed while dehydrating with Dean Stark, the reaction proceeds effectively.
  • the corresponding transition metal compound (A) can be synthesized by reacting the ligand thus obtained with the transition metal M-containing compound. Specifically, the synthesized ligand is dissolved in a solvent and brought into contact with a base as necessary to prepare a phenoxide salt, and then mixed with a metal compound such as a metal halide or metal alkylate at a low temperature. Stir for about 1 to 48 hours at ° C to room temperature or under reflux conditions.
  • solvents that can be used commonly used for such reactions, polar solvents such as ether and tetrahydrofuran (THF), hydrocarbon solvents such as toluene, and the like are preferably used.
  • Examples of the base used in preparing the phenoxide salt include lithium salts such as n-butyllithium, metal salts such as sodium salts such as sodium hydride; strengths that can exemplify triethylamine, pyridine and the like. Not as long.
  • the corresponding transition metal compound (A) can be synthesized by directly reacting the ligand with the metal compound without going through the preparation of the phenoxide salt. Further, the transition metal M in the synthesized transition metal compound (A) can be exchanged with another transition metal by a conventional method. Also, for example! When one or more of ⁇ ⁇ 5 is hydrogen, substituents other than hydrogen can be introduced at any stage of the synthesis.
  • transition metal compound (A) can be used in the polymerization as it is without isolating the transition metal compound (A).
  • organometallic compounds (B_l) used in the present invention include the following organometallic compounds of Groups 1, 2 and 12, 13 of the periodic table, but are not limited thereto.
  • tri-n-alkyl aluminums such as trimethylaluminum, triethylaluminum, trioctylaluminum, and tridecylaluminum; tri-branched alkylaluminums such as triisopropylaluminum and triisobutylaluminum; Tricycloalkylaluminum such as hexanolamine and tricyclooctylaluminum; Dialkylaluminum hydride such as diisobutylaluminum hydride; Organic such as dialkylaluminum alkoxide such as dimethylaluminum methoxide, jetylaluminum ethoxide, and dibutylaluminum butoxide Examples include aluminum compounds.
  • the organometallic compound (B-1) is used singly or in combination of two or more.
  • the organoaluminum compound (B-2) used in the present invention may be a conventionally known aluminoxane, or may be insoluble in benzene as exemplified in JP-A-2-78687. It may be an organoaluminum compound.
  • the organoaluminum compound is used singly or in combination of two or more.
  • the compound (B-3) (also referred to as “ionized ionic compound (B-3)” in the present specification) that forms an ion pair by reacting with the transition metal compound (A) used in the present invention, JP-A-1-501950, JP-A-1-502036, JP-A-3-179005, JP-A-3-179006, JP-A-3-207703, JP-A-3-207704, US Examples include Lewis acids, ionic compounds, borane compounds and carborane compounds described in Japanese Patent No. 5321106. In addition, heteropoly compounds and An isopoly compound can also be mentioned.
  • the ionized ionic compounds (B-3) as described above are used singly or in combination of two or more.
  • transition metal compound (A) used in the present invention is used as a catalyst
  • an organoaluminum compound (B-2) such as methylaluminoxane as a promoter component is used in combination
  • an olefinic compound is obtained.
  • it exhibits very high polymerization activity.
  • component (A) and component (B) are added to the polymerization vessel in any order.
  • At least two or more of the catalyst components may be contacted in advance.
  • an olefin polymer is obtained by polymerizing or copolymerizing olefins in the presence of the catalyst for olefin polymerization as described above.
  • the polymerization can be carried out by any of liquid phase polymerization methods such as solution polymerization and suspension polymerization, and gas phase polymerization methods.
  • the inert hydrocarbon medium used in the liquid phase polymerization method include aliphatic hydrocarbons such as propane, butane, pentane, hexane, heptane, octane, decane, dodecane, and kerosene; cyclopentane, cyclohexane And alicyclic hydrocarbons such as xane and methylcyclopentane; aromatic hydrocarbons such as benzene, toluene and xylene; halogenated hydrocarbons such as ethylene chloride, chlorobenzene and dichloromethane, and mixtures thereof. Olefin itself can also be used as a solvent.
  • Ingredient (A) is, per liter of the reaction volume, usually 10- 12 ⁇ 10- 2 mol, preferably 10- 1Q ⁇ : used in an amount such that 10-3 molar.
  • Component (Bl) is a molar ratio of component (Bl) to all transition metal atoms (M) in component (A) [(B-1) / M] force usually from 0.01 to 100000, preferably 0. Can be used in an amount of between 05 and 50000.
  • Component (B-2) is a mono-it [(B-2) / M] of aluminum atoms in component (B-2) and all transition metals (M) in component (A), usually 10 to 500,000. The amount is preferably 20 to 100000.
  • Component (B-3) has a molar ratio [(B-3) / M] of component (B-3) to transition metal atom (M) in component (A) usually:! To 10, preferably Is used in an amount of 1-5.
  • the polymerization temperature of olefins using such olefin polymerization catalysts is usually -50 to
  • the polymerization pressure is usually from normal pressure to 100 kg / cm 2 , preferably from normal pressure to 50 kg / cm 2 , and the polymerization reaction can be carried out in any of batch, semi-continuous and continuous methods. it can. Furthermore, the polymerization can be carried out in two or more stages having different reaction conditions.
  • the molecular weight of the obtained olefin polymer can be adjusted by the presence of hydrogen in the polymerization system, the force for changing the polymerization temperature, or the amount of ⁇ -olefins introduced. Furthermore, it can be adjusted according to the amount of ingredient ( ⁇ ) used.
  • Ligand L-2 was synthesized based on the production method described in US Pat. No. 6,531,555.
  • Ligand L-2 1.94 g (7.18 mmol) was dissolved in tetrahydrofuran 20 mL in a 200 mL reactor thoroughly dried and purged with argon. This solution was added dropwise over 30 minutes to a suspension of 1 OmL of tetrahydrofuran and 268 mg (7.18 mmol) of sodium hydride cooled to _30 ° C, stirred at that temperature for 2 hours, and then slowly warmed to room temperature. The mixture was further stirred at room temperature for 3 hours to prepare a sodium salt.
  • the solution thus prepared was added dropwise to 50 mL of a tetrahydrofuran solution containing 1.38 g (20.8 mol) of a ZrCl (THF) complex cooled to -78 ° C. After completion of the dropwise addition, stirring was continued while slowly raising the temperature to room temperature. After further stirring for 12 hours at room temperature, the solvent of the reaction solution was distilled off. The obtained solid was dissolved in 70 mL of methylene chloride, and insoluble matters were removed with a glass filter. The filtrate was concentrated under reduced pressure, and the precipitated solid was suspended in 40 mL of n-hexane, filtered and dried under reduced pressure to obtain 372 mg (yield 14.8%) of a yellow powder compound represented by the following formula (2).
  • a stainless steel autoclave with an internal volume of lOOOOmL that was sufficiently purged with nitrogen was charged with 500 mL of heptane, and ethylene was allowed to flow at 100 liter / hr for 15 minutes at room temperature to saturate the liquid phase and gas phase. Subsequently, the temperature was raised to 80 ° C., and then the pressure of ethylene was increased to 8 kg / m3 to maintain the temperature.
  • MMAO manufactured by Tosohichi Finechem Co., Ltd.
  • a hexane solution (aluminum atom equivalent 1.00 mmol / mL) 0.20 mL (0.20 mmol) is injected, and the toluene solution (0.0002 mmol / mL) of compound (1) 0.15 mL (0.00003 mmol) was injected to initiate the polymerization.
  • the pressure was maintained while continuously supplying ethylene gas, and the polymerization was carried out at 80 ° C for 15 minutes, and then the polymerization was stopped by injecting 5 mL of methanol.
  • the product was obtained by distilling off the solvent from the resulting polymer slurry.
  • a stainless steel autoclave with an internal volume of lOOOOmL that was sufficiently purged with nitrogen was charged with 500 mL of heptane, and ethylene was allowed to flow at 100 liter / hr for 15 minutes at room temperature to saturate the liquid phase and gas phase. Subsequently, the temperature was raised to 80 ° C, and then the pressure of ethylene was increased to 8 kgm 2 G to maintain the temperature.
  • MMAO manufactured by Tosohichi Finechem Co., Ltd.
  • a hexane solution (1.00m mol / mL in terms of aluminum atom) was injected with 0.20mL (0.20mmol)
  • the toluene solution of compound (2) (0.0002mmol / mL) 1.0 mL (0.0002 mmol) was injected to initiate the polymerization.
  • Continuous supply of ethylene gas While maintaining the pressure, polymerization was carried out at 80 ° C. for 15 minutes, and then the polymerization was terminated by press-fitting 5 mL of methanol.
  • the product was obtained by distilling off the solvent from the resulting polymer slurry. By drying under reduced pressure at 80 ° C.
  • a stainless steel autoclave with an internal volume of lOOOOmL that was sufficiently purged with nitrogen was charged with 500 mL of heptane, and ethylene was allowed to flow at 100 liter / hr for 15 minutes at room temperature to saturate the liquid phase and gas phase. Subsequently, after raising the temperature to 80 ° C, the pressure was increased to 8 kg m 2 G of ethylene to maintain the temperature.
  • MMAO manufactured by Tosoichi Finechem
  • hexane aluminum atom equivalent 1.00 mm ol / mL 0.20 mL (0.20 mmol
  • the solution of compound (3) in toluene 0.0002 mmol / ml
  • lmL 0.0002mmol
  • Polymerization was carried out at 80 ° C for 15 minutes while maintaining a constant pressure by supplying ethylene gas continuously, and then the polymerization was stopped by injecting 5 mL of methanol.
  • the resulting polymer solution was added to 3 L of methanol containing a small amount of hydrochloric acid to precipitate the polymer.
  • Example 2 450 mL of heptane was charged into a stainless steel autoclave with an internal volume of lOOOOmL that had been sufficiently purged with nitrogen, and propylene was allowed to flow at room temperature for 15 minutes at 100 liter / hr to saturate the liquid phase and gas phase. Subsequently, the temperature was raised to 80 ° C, and then propylene was increased to 4 kg ⁇ m 2 G to maintain the temperature. In addition, ethylene was introduced to 8 kgm and the temperature was maintained.
  • MMAO Tosoh Finechem Co., Ltd.
  • hexane solution aluminum atom equivalent 1.00mmol / mL
  • 0.25mL 0.25mmol
  • compound (1) in toluene solution 0.0003mmol / mL
  • 1.0mL 0.0 003mmol
  • the pressure was maintained while continuously supplying ethylene gas, and the polymerization was carried out at 80 ° C for 15 minutes, and then the polymerization was stopped by injecting 5 mL of methanol.
  • the product was obtained by distilling off the solvent from the resulting polymer slurry. By drying under reduced pressure at 80 ° C.
  • MMAO manufactured by Tosoichi Finechem
  • hexane solution (1.00 mmol / mL in terms of aluminum atom) was injected with 0.25 mL (0.25 mmol), and then compound (1) in toluene solution (0.0005 mmol / mL) 2.0 mL ( 0.0005 mmol) was injected to initiate the polymerization.
  • the pressure was maintained while continuously supplying ethylene gas, and the polymerization was carried out at 80 ° C for 15 minutes, and then the polymerization was stopped by injecting 5 mL of methanol.
  • the product was obtained by distilling off the solvent from the resulting polymer slurry. By drying under reduced pressure at 80 ° C.
  • the low molecular weight olefin polymer containing a single-end double bond efficiently provided by the production method of the present invention may be used as it is or after further modification. In a blended form of resin and additives, it exhibits useful performance in various industrial fields.

Abstract

[PROBLEMS] To provide a process for producing, with high productivity, a low-molecular olefin polymer which is enhanced in the content of unsaturated bonds present at one terminal thereof. [MEANS FOR SOLVING PROBLEMS] A process for the production of a low-molecular olefin polymer having a double bond at the terminal of the backbone chain, characterized by conducting the homopolymerization of ethylene or the copolymerization of ethylene with an α-olefin of 3 to 10 carbon atoms in the presence of a catalyst consisting of (A) a transition metal compound represented by the general formula (I) and (B) at least one member selected from among (B-1) organometallic compounds, (B-2) organoaluminum oxy compounds, and (B-3) compounds capable of reacting with a transition metal compound (A) to form an ion pair: wherein M is a Group 4 transition metal of the periodic table; m is an integer of 1 or 2; R1 is a straight-chain hydrocarbon group of 1 to 5 carbon atoms (Cn'H2n'+1 wherein n' is 1 to 5) or the like; R2 to R5 are each hydrogen, halogeno, hydrocarbyl, or the like; n is a number satisfying the valence of M; and X is hydrogen, halogeno, or the like.

Description

明 細 書  Specification
片末端二重結合含有低分子量ォレフィン重合体の製造方法  Method for producing low molecular weight olefin polymer containing double bond at one end
技術分野  Technical field
[0001] 本発明は、ォレフィン重合用触媒を用いたォレフィンの重合方法に関し、さらに詳し くは、低分子量かつ二重結合を重合体主鎖末端に持つことを特徴とするォレフィン( 共)重合体が得られるとともに、高い重合活性を有する新規なォレフィン重合用触媒 を用いたォレフィンの重合方法に関する。さらに詳しくは、特定の遷移金属化合物、 有機金属化合物、および遷移金属化合物と反応してイオン対を形成する化合物を用 レ、て、ォレフィンを重合または共重合させるォレフィンの重合方法に関する。  The present invention relates to an olefin polymerization method using an olefin polymerization catalyst, and more specifically, an olefin (co) polymer characterized by having a low molecular weight and a double bond at the end of a polymer main chain. And a method for polymerizing olefins using a novel catalyst for olefin polymerization having high polymerization activity. More specifically, the present invention relates to a method for polymerizing olefins in which a specific transition metal compound, an organometallic compound, and a compound that reacts with a transition metal compound to form an ion pair are polymerized or copolymerized.
背景技術  Background art
[0002] 近年、新しいォレフィン重合触媒として、特開平 11-315109号公報には、サリチルァ ルドイミン配位子を有する遷移金属化合物が記載され、この錯体は高レ、ォレフイン重 合活性を示すことが記載されている。さらに特開 2001-2731号公報、欧州特許出願公 開第 1043341号公報、特開 2003-073412号公報において、該遷移金属化合物を用い る事によって製造できる、片末端に二重結合を含有する新規な低分子量エチレン系 重合体、末端二重結合の変性体、及びそれらの用途について記載されている。更に 米国特許 6531555号公報において、特定の位置に電子吸引性基を導入した該遷移 金属化合物を用いることによる、片末端に二重結合を含有する低分子量エチレン系 重合体の製造方法が開示されている。この中で臭素が置換された該遷移金属化合 物を用いることで、片末端ビニル結合率 (本明細書において、片末端不飽和率ともい う。)が高い重合体が製造されている。し力しながら、この製造方法では、その片末端 ビニル結合率ではまだ充分ではなぐかつ生産性も充分ではなかった。  [0002] In recent years, as a new olefin polymerization catalyst, JP-A-11-315109 describes a transition metal compound having a salicylaldoimine ligand, and it is described that this complex exhibits high refining and olefin polymerization activity. Has been. Furthermore, in Japanese Patent Application Laid-Open No. 2001-2731, European Patent Application Publication No. 1043341 and Japanese Patent Application Laid-Open No. 2003-073412, a novel compound containing a double bond at one end can be produced by using the transition metal compound. Low molecular weight ethylene polymers, modified end double bonds, and their uses are described. Further, US Pat. No. 6,531,555 discloses a method for producing a low molecular weight ethylene polymer containing a double bond at one end by using the transition metal compound having an electron withdrawing group introduced at a specific position. Yes. Among these, by using the transition metal compound substituted with bromine, a polymer having a high single-end vinyl bond rate (also referred to as single-end unsaturation rate in this specification) is produced. However, in this production method, the vinyl bond ratio at one end is not yet sufficient and the productivity is not sufficient.
[0003] このような片末端に二重結合を含有する低分子量エチレン系 (共)重合体、末端二 重結合の変性体としては、その用途(トナー用離型剤、顔料分散剤、塩化ビニル樹 脂用滑剤)においてより高い性能を発揮させる為、重合体鎖末端の二重結合中の不 飽和結合基含量が更に高い重合体が求められており、かつ高生産性であることも求 められていた。 特許文献 1:特開平 11-315109号公報 [0003] Such low molecular weight ethylene (co) polymers containing a double bond at one end and modified end double bonds are used for their purposes (toner release agents, pigment dispersants, vinyl chloride, etc. In order to achieve higher performance in resin lubricants), a polymer having a higher unsaturated bond group content in the double bond at the end of the polymer chain is required, and high productivity is also required. It was done. Patent Document 1: Japanese Patent Laid-Open No. 11-315109
特許文献 2:特開 2001-2731号公報  Patent Document 2: JP 2001-2731 A
特許文献 3:欧州特許出願公開第 1043341号明細書  Patent Document 3: European Patent Application Publication No. 1043341
特許文献 4:特開 2003-073412号公報  Patent Document 4: Japanese Patent Laid-Open No. 2003-073412
特許文献 5:米国特許第 6531555号明細書  Patent Document 5: US Patent No. 6531555
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] かかる状況において、本発明が解決しょうとする課題、すなわち本発明の目的は、 高生産性で、かつ片末端不飽和結合量、片末端不飽和率がより高い低分子量ォレ フィン重合体の製造方法を提供することである。 [0004] In such a situation, the problem to be solved by the present invention, that is, the object of the present invention, is to achieve high productivity, low molecular weight olefins having high single-terminal unsaturated bonds and higher single-terminal unsaturated ratios. It is to provide a method for manufacturing coalescence.
課題を解決するための手段  Means for solving the problem
[0005] 本出願人は、上記目的を達成するために鋭意研究を重ねた結果、本発明に到達し たものである。すなわち、本発明に係る片末端二重結合含有低分子量ォレフィン重 合体の製造方法は、 [0005] The applicant has reached the present invention as a result of intensive studies in order to achieve the above object. That is, the method for producing a low molecular weight olefin-containing polymer having a single-end double bond according to the present invention includes:
(A)下記一般式 (I)で表される遷移金属化合物と、(BXB-1)有機金属化合物、 (B-2) 有機アルミニウムォキシィ匕合物、および (B-3)遷移金属化合物 (A)と反応してイオン 対を形成する化合物から選ばれる少なくとも 1種の化合物とからなる触媒の存在下、 エチレンを単独重合またはエチレンと炭素数 3〜 10のひ -ォレフインとを共重合させ ることを特徴としている。  (A) a transition metal compound represented by the following general formula (I), (BXB-1) an organometallic compound, (B-2) an organoaluminum compound, and (B-3) a transition metal compound In the presence of a catalyst comprising at least one compound selected from compounds that react with (A) to form ion pairs, ethylene is homopolymerized or ethylene is copolymerized with 3 to 10 carbon olefins. It is characterized by that.
[0006] [化 1] [0006] [Chemical 1]
Figure imgf000004_0001
Figure imgf000004_0001
(式中、 Mは周期律表 4族の遷移金属原子を示し、 (In the formula, M represents a transition metal atom of Group 4 of the periodic table,
mは、 1〜2の整数を示し、 R1は、炭素数 1〜5の直鎖炭化水素基(C H 、 n = l〜5)または水素原子を示し η' 2η'+1 m represents an integer of 1 to 2, R 1 represents a linear hydrocarbon group having 1 to 5 carbon atoms (CH 2, n = 1 to 5) or a hydrogen atom η ′ 2η ′ + 1
、 R2〜R5は、互いに同一でも異なっていてもよ 水素原子、ハロゲン原子、炭化水 素基、ヘテロ環式化合物残基、酸素含有基、窒素含有基、ホウ素含有基、ィォゥ含 有基、リン含有基、ケィ素含有基、ゲルマニウム含有基、またはスズ含有基を示し、 R2 〜R5のうちの 2個以上が互いに連結して環を形成していてもよぐ , R 2 to R 5 may be the same or different from each other, hydrogen atom, halogen atom, hydrocarbon group, heterocyclic compound residue, oxygen-containing group, nitrogen-containing group, boron-containing group, X-containing group , A phosphorus-containing group, a silicon-containing group, a germanium-containing group, or a tin-containing group, and two or more of R 2 to R 5 may be connected to each other to form a ring.
また、 mが 2の場合には、それぞれ 2個存在する R2〜R5は互いに連結されていても よ When m is 2, two R 2 to R 5 may be connected to each other.
nは、 Mの価数を満たす数であり、  n is a number that satisfies the valence of M;
Xは、水素原子、ハロゲン原子、炭化水素基、酸素含有基、ィォゥ含有基、窒素含 有基、ホウ素含有基、アルミニウム含有基、リン含有基、ハロゲン含有基、ヘテロ環式 化合物残基、ケィ素含有基、ゲルマニウム含有基、またはスズ含有基を示し、 nが 2 以上の場合は、 Xで示される複数の基は互いに同一でも異なっていてもよぐまた X で示される複数の基は互レ、に結合して環を形成してもよレ、。 )  X represents a hydrogen atom, a halogen atom, a hydrocarbon group, an oxygen-containing group, a X-containing group, a nitrogen-containing group, a boron-containing group, an aluminum-containing group, a phosphorus-containing group, a halogen-containing group, a heterocyclic compound residue, a key Represents a silicon-containing group, a germanium-containing group, or a tin-containing group, and when n is 2 or more, a plurality of groups represented by X may be the same or different from each other, and a plurality of groups represented by X You can combine with Le to form a ring. )
上記遷移金属化合物は、 R1が水素またはメチル基であり、 R5がフエニルェチル基、 ジフヱニルメチル基、クミノレ基、ジフヱニルェチル基、またはトリフエニルメチル基であ り、 Mが Zrであることが好ましい。 In the above transition metal compound, it is preferable that R 1 is hydrogen or a methyl group, R 5 is a phenylethyl group, a diphenylmethyl group, a cuminole group, a diphenylethyl group, or a triphenylmethyl group, and M is Zr.
[0008] 本発明で得られる片末端二重結合含有低分子量ォレフィン重合体は、片末端にビ ニル、ビニレン、またはビニリデン型の二重結合を含み、上記ォレフィン重合用触媒 の存在下において、エチレンを単独重合、またはエチレンと炭素数 3〜: 10のひーォ レフインとを共重合することによって製造することができる。本発明に用いられる炭素 数 3〜10のひ-ォレフィンとしては、例えば、プロピレン、 1 -ブテン、 3_メチル - 1 -ブテ ン、 1-ペンテン、 3-メチル -1-ブテン、 1-へキセン、 4-メチル -1-ペンテン、 4-メチノレ _1_ペンテン、 3-メチル -1-ペンテン、 1 -オタテン、 1 -デセン等が挙げられ、これらの 中の 1種又は 2種以上が用いられる。この中でも特にプロピレン、 1-ブテンが好ましい [0008] The low molecular weight olefin polymer containing a single terminal double bond obtained in the present invention contains a vinyl, vinylene, or vinylidene type double bond at one terminal, and in the presence of the above olefin polymerization catalyst, Can be produced by homopolymerization or copolymerization of ethylene and hyolein having 3 to 10 carbon atoms. Examples of the olefin having 3 to 10 carbon atoms used in the present invention include propylene, 1-butene, 3_methyl-1-butene, 1-pentene, 3-methyl-1-butene, and 1-to. Xene, 4-methyl-1-pentene, 4-methinole_1_pentene, 3-methyl-1-pentene, 1-octene, 1-decene, etc., and one or more of these are used . Of these, propylene and 1-butene are particularly preferred.
[0009] 本発明で得られる低分子量 (共)重合体は、エチレンに由来する構造単位が 95〜1 00mol%、好ましくは 96〜: 100mol%、特に好ましくは 97〜: 100mol%である。一方 炭素数 3〜: 10の α—ォレフインに由来する構造単位は、 0〜5mol%、好ましくは 0〜 4mol%、より好ましくは 0〜3mol%である。 [0009] The low molecular weight (co) polymer obtained in the present invention contains 95 to 100 mol% of structural units derived from ethylene, preferably 96 to 100 mol%, particularly preferably 97 to 100 mol%. On the other hand, the structural unit derived from α-olefin having 3 to 10 carbon atoms is 0 to 5 mol%, preferably 0 to 4 mol%, more preferably 0 to 3 mol%.
本発明で得られる低分子量 (共)重合体のゲルパーミエーシヨンクロマトグラフィー( GPC)により測定した重量平均分子量 (Mw)が 500以上 2000以下であり、好ましく は 800以上 1800以下である。また、重量平均分子量 (Mw)と数平均分子量 (Mn)と の比(Mw/Mn、本明細書において分子量分布ともいう。)が 1. :!〜 2. 5であり、好 ましく ίま 1. 2〜2. 3、より好ましく ίま 1. 3〜2. 2の範囲にある。  The weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) of the low molecular weight (co) polymer obtained in the present invention is 500 or more and 2000 or less, preferably 800 or more and 1800 or less. Further, the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) (Mw / Mn, also referred to as molecular weight distribution in the present specification) is 1.:! To 2.5. 1. 2 to 2.3, more preferably ί 1. It is in the range of 3 to 2.2.
[0010] Mw及び Mw/Mnはミリポア社製 GPC-150を用い以下のようにして測定する。  [0010] Mw and Mw / Mn are measured as follows using GPC-150 manufactured by Millipore.
分離カラムは、 TSK GNH HTであり、カラムサイズは直径 7.5mm、長さ 300mm であり、カラム温度は 140°Cとする。移動相には 0-ジクロルベンゼン (和光純薬)及び 酸化防止剤として BHT (武田薬品) 0. 025重量%を用い、 1. Oml/分で移動させる 。試料濃度は 0. 1重量%とし、試料注入量は 500マイクロリットルとし、検出器として 示差屈折計を用いる。標準ポリスチレンは東ソ一社製を用いる。  The separation column is TSK GNH HT, the column size is 7.5 mm in diameter and 300 mm in length, and the column temperature is 140 ° C. Use 0-dichlorobenzene (Wako Pure Chemicals) as the mobile phase and 0.025% by weight BHT (Takeda Pharmaceutical) as the antioxidant, and move at 1. Oml / min. The sample concentration is 0.1% by weight, the sample injection volume is 500 microliters, and a differential refractometer is used as the detector. Standard polystyrene is manufactured by Tosoh Corporation.
[0011] 本発明で得られる低分子量 (共)重合体は、ビニル、ビニレン、またはビニリデン基 を重合体主鎖末端に持ち、 _NMRまたは13 C-NMRで測定したこれらの基の含有 量 (不飽和結合の割合)が全片末端の 95%以上であり、より好ましくは 96%以上、特 に好ましくは 97%以上である。ここで、片末端とは、不飽和結合を有する重合体では 、重合体主鎖において不飽和結合を有する側の末端をいい、不飽和結合を有しな レ、重合体では、重合体主鎖のレ、ずれか一方の末端をレ、う。 [0011] The low molecular weight (co) polymer obtained in the present invention has a vinyl, vinylene, or vinylidene group at the end of the polymer main chain, and the content of these groups as measured by _NMR or 13 C-NMR The ratio of the saturated bonds) is 95% or more of all terminal ends, more preferably 96% or more, and particularly preferably 97% or more. Here, one end means a terminal having an unsaturated bond in the polymer main chain in the case of a polymer having an unsaturated bond, and a polymer main chain in the case of a polymer having no unsaturated bond. Check the other end.
[0012] NMRは、サンプル管中で重合体を、ロック溶媒として少量の重水素化ベンゼンを 含むオルトジクロルベンゼンに完全に溶解させた後、 120°Cにおいて測定される。 エチレンのみからなる低分子量重合体中の末端不飽和結合量、片末端不飽和率 は、 ifi-NMRによって決定される。該重合体の各水素のピークは、末端の飽和メチ ル基(A)が 0·65〜0·85卯 m、ビュル基のピークが 4·85〜5.0卯 m (B)と 5.5〜5.8ppm (C )、に観測される。片末端不飽和率 (U%)は、(A)、(B)、(C)のピーク面積を各々 S  [0012] NMR is measured at 120 ° C after completely dissolving the polymer in orthodichlorobenzene containing a small amount of deuterated benzene as a lock solvent in a sample tube. The amount of terminal unsaturated bonds and the degree of unsaturation in one terminal in a low molecular weight polymer consisting only of ethylene are determined by ifi-NMR. Each hydrogen peak of the polymer has a terminal saturated methyl group (A) of 0 · 65 to 0 · 85 卯 m, and a bull group peak of 4 · 85 to 5.0 卯 m (B), 5.5 to 5.8ppm. Observed at (C). Single-terminal unsaturation (U%) is the peak area of (A), (B), and (C).
A  A
、 S、及び S とすれば、下記式にて算出される。  , S, and S, the following formula is used.
B C  B C
[0013] U (%) = [ (S + S ) /3]/{S /3} X 200 (%)  [0013] U (%) = [(S + S) / 3] / {S / 3} X 200 (%)
B C A  B C A
なお、上式において分子は、末端ビュル、ビニレン、ビニリデンに基づくピークの面 積量を示し、分母は末端メチル基の面積量を示す。 エチレンとひ一才レフインとからなる共重合体の片末端ォレフイン化率 (片末端不飽 和率 (V%) )は、 13C_NMRおいて全不飽和末端に由来するピーク面積の和 Sと全 In the above formula, the numerator indicates the peak area based on terminal bulle, vinylene, and vinylidene, and the denominator indicates the area of the terminal methyl group. The single-terminal olefination rate (single-terminal unsaturation rate (V%)) of a copolymer of ethylene and eleven-year-old lefin is the sum of the peak areas derived from all unsaturated terminals in 13 C_NMR and the total S
X  X
飽和末端に由来するピーク面積の和 sとすれば、下記式にて算出される。  If the sum of the peak areas derived from the saturated ends is s, it is calculated by the following formula.
γ  γ
[0014] V (%) = {S / (S + S ) } X 200 (%)  [0014] V (%) = {S / (S + S)} X 200 (%)
X X Y  X X Y
なお、上式において分子は全不飽和末端に基づくピークの面積量、分母は全末端 の面積量を示す。  In the above formula, the numerator indicates the area of the peak based on all unsaturated terminals, and the denominator indicates the area of all terminals.
発明の効果  The invention's effect
[0015] 本発明の製造方法によって、様々な用途で有用な片末端二重結合含有低分子量 ォレフィン重合体が効率良く提供される。  [0015] The production method of the present invention efficiently provides a low molecular weight olefin polymer containing a single-end double bond useful in various applications.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 以下、本発明における片末端二重結合含有低分子量ォレフィン重合体の製造方 法について具体的に説明する。なお、本明細書において「重合」という語は、単独重 合だけでな 共重合をも包含した意味で用いられることがあり、「重合体」という語は 、単独重合体だけでなぐ共重合体をも包含した意味で用いられることがある。 本発明に用いられるォレフィン重合触媒は、  [0016] Hereinafter, the method for producing a low molecular weight olefin polymer containing a single-end double bond in the present invention will be specifically described. In the present specification, the term “polymerization” is sometimes used in the meaning including not only homopolymerization but also copolymerization, and the term “polymer” refers to a copolymer that is not only a homopolymer. Is sometimes used in a meaning that also includes. The olefin polymerization catalyst used in the present invention is:
(A)—般式 (I)で表される遷移金属化合物と、  (A) —a transition metal compound represented by the general formula (I);
(B) (B-1)有機金属化合物、  (B) (B-1) an organometallic compound,
(B-2)有機アルミニウムォキシィ匕合物、および  (B-2) an organoaluminum compound, and
(B-3)遷移金属化合物 (A)と反応してイオン対を形成する化合物 力 選ばれる少なくとも 1種の化合物  (B-3) Transition metal compound A compound that reacts with (A) to form an ion pair Force At least one compound selected
とからなることを特徴とする。  It is characterized by the following.
[遷移金属化合物 (A) ]  [Transition metal compounds (A)]
本発明で用いられる (A)遷移金属化合物は、下記一般式 (I)で表される化合物で ある。  The (A) transition metal compound used in the present invention is a compound represented by the following general formula (I).
[0017] [化 2] [0017] [Chemical 2]
Figure imgf000008_0001
Figure imgf000008_0001
[0018] (なお、ここで N■· ·■· · Mは、一般的には配位していることを示す力 本発明において は配位していてもしていなくてもよレ、。 )  [0018] (Here, N ····· M is generally a force indicating coordination, and may or may not be coordinated in the present invention.)
一般式 (I)中、 Mは周期律表第 4族の遷移金属を示し、具体的にはチタン、ジノレコ 二ゥム、ハフニウムであり、好ましくはジノレコニゥムである。  In the general formula (I), M represents a transition metal belonging to Group 4 of the periodic table, specifically titanium, dinolecodium, and hafnium, and preferably dinoleconium.
mは、 1〜2の整数を示し、好ましくは 2である。  m represents an integer of 1 to 2, and is preferably 2.
[0019] R1は、炭素数 1〜5の直鎖炭化水素基(C H 、n = l〜5)または水素原子を示し η' 2η'+1 [0019] R 1 represents a straight-chain hydrocarbon group having 1 to 5 carbon atoms (CH 2, n = 1 to 5) or a hydrogen atom η '2η' + 1
、好ましくはメチル基、水素原子である。  Preferably a methyl group or a hydrogen atom.
R2〜R5は、互いに同一でも異なっていてもよ 水素原子、ハロゲン原子、炭化水 素基、ヘテロ環式化合物残基、酸素含有基、窒素含有基、ホウ素含有基、ィォゥ含 有基、リン含有基、ケィ素含有基、ゲルマニウム含有基、またはスズ含有基を示し、 R2 〜R5のうちの 2個以上が互いに連結して環を形成していてもょレ、が、 R5は、好ましくは 炭化水素基であり、特に好ましくはフエニルェチル基、ジフエニルメチル基、タミル基 、ジフヱニルェチル基、またはトリフエニルメチル基である。 R 2 to R 5 may be the same as or different from each other, a hydrogen atom, a halogen atom, a hydrocarbon group, a heterocyclic compound residue, an oxygen-containing group, a nitrogen-containing group, a boron-containing group, a thio-containing group, phosphorus-containing groups, Kei-containing group, a germanium-containing group or a tin-containing group, Yo also form a ring more than is bonded to each other of R 2 to R 5 les, but, R 5 Is preferably a hydrocarbon group, particularly preferably a phenylethyl group, a diphenylmethyl group, a tamyl group, a diphenylethyl group, or a triphenylmethyl group.
[0020] mが 2の場合は、遷移金属化合物 (A)は、下記式 (II)で表される。  [0020] When m is 2, the transition metal compound (A) is represented by the following formula (II).
[0021] [化 3]  [0021] [Chemical 3]
(
Figure imgf000008_0002
X、 nと同義 であり、 '〜1 5'は、それぞれ上記式 (I)における 1^〜1 5と同義である。 )
(
Figure imgf000008_0002
X, has the same meaning as n, '~ 1 5' are each synonymous with 1 ^ to 1 5 in the formula (I). )
mが 2の場合は、それぞれ 2個存在する R2〜R5は互いに連結されていてもよぐこれ は、上記式 (Π)において、 R1と R1'とが、 R2と R2'とが、 R3と R3'とが、 R4と R4'とが、 R5と R5' とが、連結されていてもよいことを意味する。 When m is 2, each of R 2 to R 5 may be connected to each other. In the above formula (Π), R 1 and R 1 ′, R 2 and R 2 ′, R 3 and R 3 ′, R 4 and R 4 ′, R 5 and R 5 'Means that they may be concatenated.
[0023] ηは、 Μの価数を満たす数であり、具体的には 2、 3、好ましくは 2である。 [0023] η is a number satisfying the valence of Μ, specifically 2, 3, preferably 2.
Xは、水素原子、ハロゲン原子、炭化水素基、酸素含有基、ィォゥ含有基、窒素含 有基、ホウ素含有基、アルミニウム含有基、リン含有基、ハロゲン含有基、ヘテロ環式 化合物残基、ケィ素含有基、ゲルマニウム含有基、またはスズ含有基を示し、この中 で特にハロゲン原子、炭化水素基が好ましい。 Xで示される複数の基は互いに同一 でも異なっていてもよぐまた Xで示される複数の基は互いに結合して環を形成しても よい。  X represents a hydrogen atom, a halogen atom, a hydrocarbon group, an oxygen-containing group, a X-containing group, a nitrogen-containing group, a boron-containing group, an aluminum-containing group, a phosphorus-containing group, a halogen-containing group, a heterocyclic compound residue, a key Represents a silicon-containing group, a germanium-containing group, or a tin-containing group, and among them, a halogen atom and a hydrocarbon group are particularly preferable. A plurality of groups represented by X may be the same or different from each other, and a plurality of groups represented by X may be bonded to each other to form a ring.
[0024] ハロゲン原子としては、フッ素、塩素、臭素、ヨウ素が挙げられる。  [0024] Examples of the halogen atom include fluorine, chlorine, bromine and iodine.
炭化水素基として、具体的には、メチノレ、ェチル、プロピル、ブチル、などのアルキ ル基;ビニル、プロぺニル、シクロへキセニルなどのアルケニル基;ベンジル、フエ二 ルェチル、フエニルプロピルなどのァリールアルキル基;フエニル、トリル、ジメチルフ ェニノレ、トリメチルフエニル、ェチルフエニル、プロピルフエニル、ビフエニル、ナフチ ル、メチルナフチル、アントリル、フエナントリルなどのァリール基などが挙げられる力 これらに限定されるものではない。  Specific examples of the hydrocarbon group include alkyl groups such as methinole, ethyl, propyl, and butyl; alkenyl groups such as vinyl, propenyl, and cyclohexenyl; and benzyl, phenyl, phenylpropyl, and other alkenyl groups. Reel alkyl groups; forces including, but not limited to phenyl, tolyl, dimethylphenylol, trimethylphenyl, ethylphenyl, propylphenyl, biphenyl, naphthyl, methylnaphthyl, anthryl, phenanthryl, and the like.
[0025] 以下に、上記一般式 (I)で表される遷移金属化合物 (Α)の具体的な例を示すが、 これらに限定されるものではない。  [0025] Specific examples of the transition metal compound (Α) represented by the general formula (I) are shown below, but are not limited thereto.
[0026] [化 4] [0026] [Chemical 4]
Figure imgf000010_0001
Figure imgf000010_0001
Figure imgf000010_0002
Figure imgf000010_0002
Figure imgf000010_0003
Figure imgf000010_0003
Figure imgf000010_0004
Figure imgf000010_0004
[0027] 本発明では、上記のような化合物において、ジルコニウム金属をチタン、ハフ に置き換えた遷移金属化合物を用いることもできる。 [0027] In the present invention, in the compound as described above, zirconium metal is titanium, Hough. A transition metal compound replaced with can also be used.
このような遷移金属化合物 (A)の製造方法は、特に限定されることなぐたとえば以 下のようにして製造することができる。  The method for producing such a transition metal compound (A) is not particularly limited and can be produced, for example, as follows.
まず、遷移金属化合物 (A)を構成する配位子は、サリチルアルデヒド類化合物と、 式 Ri-NHで表される第 1級ァミン類化合物 (R1は上記と同義である。)、例えば、ァ First, the ligand constituting the transition metal compound (A) is a salicylaldehyde compound and a primary amin compound represented by the formula Ri-NH (R 1 is as defined above), for example, A
2  2
ルキルアミン類化合物とを反応させることにより得られる。具体的には、両方の出発化 合物を溶媒に溶解する。溶媒としては、このような反応に一般的なものを使用できる 力 なかでも、メタノール、エタノール等のアルコール溶媒、またはトノレェン等の炭化 水素溶媒などが好ましい。次いで、室温から還流条件で、約:!〜 48時間攪拌すると、 対応する配位子が良好な収率で得られる。配位子化合物を合成する際、触媒として 、蟻酸、酢酸、パラトルエンスルホン酸等の酸触媒を用いてもよい。また、脱水剤とし てモレキュラーシーブス、無水硫酸マグネシウムまたは無水硫酸ナトリウムを用いたり 、ディーンスタークにより脱水しながら反応を行うと、反応進行に効果的である。  It can be obtained by reacting with a rualkylamine compound. Specifically, both starting compounds are dissolved in a solvent. Among solvents that can be used commonly used for such a reaction, alcohol solvents such as methanol and ethanol, hydrocarbon solvents such as tonolene, and the like are preferable. Subsequent stirring from room temperature to reflux conditions for about :! to 48 hours gives the corresponding ligand in good yield. When synthesizing the ligand compound, an acid catalyst such as formic acid, acetic acid, or paratoluenesulfonic acid may be used as the catalyst. In addition, when molecular sieves, anhydrous magnesium sulfate or anhydrous sodium sulfate is used as a dehydrating agent, or the reaction is performed while dehydrating with Dean Stark, the reaction proceeds effectively.
[0028] 次に、こうして得られた配位子と遷移金属 M含有化合物とを反応させることで、対応 する遷移金属化合物 (A)を合成できる。具体的には、合成した配位子を溶媒に溶解 し、必要に応じて塩基と接触させてフエノキサイド塩を調製した後、金属ハロゲン化物 、金属アルキル化物等の金属化合物と低温で混合し、 78°Cから室温で、または還 流条件下で、約 1〜48時間攪拌する。溶媒としては、このような反応に一般的なもの を使用できる力 なかでも、エーテル、テトラヒドロフラン (THF)等の極性溶媒、トルェ ン等の炭化水素溶媒などが好ましく使用される。また、フエノキサイド塩を調製する際 に使用する塩基としては、 n-ブチルリチウム等のリチウム塩、水素化ナトリウム等のナ トリウム塩などの金属塩;トリェチルァミン、ピリジンなどを例示することができる力 こ の限りではない。 [0028] Next, the corresponding transition metal compound (A) can be synthesized by reacting the ligand thus obtained with the transition metal M-containing compound. Specifically, the synthesized ligand is dissolved in a solvent and brought into contact with a base as necessary to prepare a phenoxide salt, and then mixed with a metal compound such as a metal halide or metal alkylate at a low temperature. Stir for about 1 to 48 hours at ° C to room temperature or under reflux conditions. Among solvents that can be used commonly used for such reactions, polar solvents such as ether and tetrahydrofuran (THF), hydrocarbon solvents such as toluene, and the like are preferably used. Examples of the base used in preparing the phenoxide salt include lithium salts such as n-butyllithium, metal salts such as sodium salts such as sodium hydride; strengths that can exemplify triethylamine, pyridine and the like. Not as long.
[0029] また、化合物の性質によっては、フエノキサイド塩調製を経由せず、配位子と金属 化合物とを直接反応させることで、対応する遷移金属化合物 (A)を合成することがで きる。さらに、合成した遷移金属化合物 (A)中の遷移金属 Mを、常法により別の遷移 金属と交換することも可能である。また、例えば、!^〜 5のうちの 1つ以上が水素であ る場合には、合成の任意の段階において、水素以外の置換基を導入することができ る。 [0029] Depending on the properties of the compound, the corresponding transition metal compound (A) can be synthesized by directly reacting the ligand with the metal compound without going through the preparation of the phenoxide salt. Further, the transition metal M in the synthesized transition metal compound (A) can be exchanged with another transition metal by a conventional method. Also, for example! When one or more of ^ ~ 5 is hydrogen, substituents other than hydrogen can be introduced at any stage of the synthesis. The
[0030] また、遷移金属化合物 (A)を単離せず、配位子と遷金属化合物との反応溶液をそ のまま重合に用いることもできる。  [0030] In addition, the transition metal compound (A) can be used in the polymerization as it is without isolating the transition metal compound (A).
<有機金属化合物 (B-l) >  <Organic metal compound (B-l)>
本発明で用レ、られる有機金属化合物 (B_l)として、具体的には、下記のような周期 表第 1、 2族および第 12、 13族の有機金属化合物が用いられるがこの限りではない。  Specific examples of organometallic compounds (B_l) used in the present invention include the following organometallic compounds of Groups 1, 2 and 12, 13 of the periodic table, but are not limited thereto.
[0031] 具体的には、トリメチルアルミニウム、トリェチルアルミニウム、トリオクチルアルミユウ ム、トリデシルアルミニウム等のトリ n-アルキルアルミニウム;トリイソプロピルアルミニゥ ム、トリイソブチルアルミニウム等のトリ分岐鎖アルキルアルミニウム;トリシクロへキシ ルァノレミニゥム、トリシクロォクチルアルミニウム等のトリシクロアルキルアルミニウム;ジ イソブチルアルミニウムハイドライド等のジアルキルアルミニウムハイドライド;ジメチル アルミニウムメトキシド、ジェチルアルミニウムエトキシド、ジブチルアルミニウムブトキ シド等のジアルキルアルミニウムアルコキシドなどの有機アルミニウム化合物が挙げら れる。  [0031] Specifically, tri-n-alkyl aluminums such as trimethylaluminum, triethylaluminum, trioctylaluminum, and tridecylaluminum; tri-branched alkylaluminums such as triisopropylaluminum and triisobutylaluminum; Tricycloalkylaluminum such as hexanolamine and tricyclooctylaluminum; Dialkylaluminum hydride such as diisobutylaluminum hydride; Organic such as dialkylaluminum alkoxide such as dimethylaluminum methoxide, jetylaluminum ethoxide, and dibutylaluminum butoxide Examples include aluminum compounds.
[0032] 有機金属化合物 (B-1)は、 1種単独でまたは 2種以上組み合わせて用いられる。  [0032] The organometallic compound (B-1) is used singly or in combination of two or more.
<有機アルミニウムォキシィ匕合物 (B-2) >  <Organic aluminum oxide compound (B-2)>
本発明で用いられる有機アルミニウムォキシィ匕合物 (B-2)は、従来公知のアルミノキ サンであってもよぐまた特開平 2-78687号公報に例示されているようなベンゼン不 溶性の有機アルミニウムォキシ化合物であってもよい。  The organoaluminum compound (B-2) used in the present invention may be a conventionally known aluminoxane, or may be insoluble in benzene as exemplified in JP-A-2-78687. It may be an organoaluminum compound.
[0033] 有機アルミニウムォキシィ匕合物は、 1種単独でまたは 2種以上組み合わせて用いら れる。 [0033] The organoaluminum compound is used singly or in combination of two or more.
く遷移金属化合物 (A)と反応してイオン対を形成する化合物 (B-3) >  Compounds that react with transition metal compounds (A) to form ion pairs (B-3)>
本発明で用いられる遷移金属化合物 (A)と反応してイオン対を形成する化合物 (B- 3) (本明細書において、「イオン化イオン性化合物 (B-3)」ともいう。)としては、特開平 1-501950号公報、特開平 1-502036号公報、特開平 3-179005号公報、特開平 3-179006号公報、特開平 3-207703号公報、特開平 3-207704号公報、米国特 許第 5321106号明細書などに記載されたルイス酸、イオン性化合物、ボラン化合物 およびカルボラン化合物などを挙げることができる。さらに、ヘテロポリ化合物および イソポリィ匕合物も挙げることができる。 As the compound (B-3) (also referred to as “ionized ionic compound (B-3)” in the present specification) that forms an ion pair by reacting with the transition metal compound (A) used in the present invention, JP-A-1-501950, JP-A-1-502036, JP-A-3-179005, JP-A-3-179006, JP-A-3-207703, JP-A-3-207704, US Examples include Lewis acids, ionic compounds, borane compounds and carborane compounds described in Japanese Patent No. 5321106. In addition, heteropoly compounds and An isopoly compound can also be mentioned.
[0034] 具体的には、トリス(ペンタフルオロフヱニル)ボロン、トリフエ二ルカルべ二ゥムテトラ キス(ペンタフルオロフェニル)ボレート、 N,N_ジメチルァニリニゥムテトラキス(ペンタ フルオロフヱニル)ボレートなどが挙げられるがこの限りではない。  [0034] Specifically, tris (pentafluorophenyl) boron, triphenylcarbtetrakis (pentafluorophenyl) borate, N, N_dimethylaniliniumtetrakis (pentafluorophenyl) borate, etc. This is not the case.
上記のようなイオン化イオン性化合物 (B-3)は、 1種単独でまたは 2種以上組み合せ て用いられる。  The ionized ionic compounds (B-3) as described above are used singly or in combination of two or more.
[0035] 本発明に用いられる遷移金属化合物 (A)を触媒とする場合、助触媒成分としてのメ チルアルミノキサンなどの有機アルミニウムォキシ化合物 (B-2)を併用すると、ォレフィ ンィ匕合物に対して非常に高い重合活性を示す。  [0035] When the transition metal compound (A) used in the present invention is used as a catalyst, when an organoaluminum compound (B-2) such as methylaluminoxane as a promoter component is used in combination, an olefinic compound is obtained. On the other hand, it exhibits very high polymerization activity.
重合の際には、各成分の使用法、添加順序は任意に選ばれるが、以下のような方 法が例示される。  In the polymerization, the method of using each component and the order of addition are arbitrarily selected, and the following methods are exemplified.
(1) 成分 (A)を単独で重合器に添加する方法。  (1) A method in which component (A) is added alone to the polymerization vessel.
(2) 成分 (A)をおよび成分 (B)を任意の順序で重合器に添加する方法。  (2) A method in which component (A) and component (B) are added to the polymerization vessel in any order.
[0036] 上記 (2)の方法においては、各触媒成分の少なくとも 2つ以上は予め接触されてい てもよい。  [0036] In the method (2), at least two or more of the catalyst components may be contacted in advance.
本発明に係るォレフィンの重合方法では、上記のようなォレフィン重合用触媒の存 在下に、ォレフィンを重合または共重合することによりォレフィン重合体を得る。  In the method for polymerizing olefins according to the present invention, an olefin polymer is obtained by polymerizing or copolymerizing olefins in the presence of the catalyst for olefin polymerization as described above.
本発明では、重合は溶解重合、懸濁重合などの液相重合法および気相重合法の いずれにおいても実施できる。液相重合法において用いられる不活性炭化水素媒 体として具体的には、プロパン、ブタン、ペンタン、へキサン、ヘプタン、オクタン、デ カン、ドデカン、灯油などの脂肪族炭化水素;シクロペンタン、シクロへキサン、メチル シクロペンタンなどの脂環族炭化水素;ベンゼン、トルエン、キシレンなどの芳香族炭 ィ匕水素;エチレンクロリド、クロルベンゼン、ジクロロメタンなどのハロゲン化炭化水素 またはこれらの混合物などを挙げることができ、ォレフィン自身を溶媒として用いること もできる。  In the present invention, the polymerization can be carried out by any of liquid phase polymerization methods such as solution polymerization and suspension polymerization, and gas phase polymerization methods. Specific examples of the inert hydrocarbon medium used in the liquid phase polymerization method include aliphatic hydrocarbons such as propane, butane, pentane, hexane, heptane, octane, decane, dodecane, and kerosene; cyclopentane, cyclohexane And alicyclic hydrocarbons such as xane and methylcyclopentane; aromatic hydrocarbons such as benzene, toluene and xylene; halogenated hydrocarbons such as ethylene chloride, chlorobenzene and dichloromethane, and mixtures thereof. Olefin itself can also be used as a solvent.
[0037] 上記のようなォレフィン重合用触媒を用いて、ォレフィンの重合を行うに際して、成 分 (A)は、反応容積 1リットル当り、通常 10— 12〜: 10— 2モル、好ましくは 10— 1Q〜: 10— 3モル になるような量で用いられる。 成分 (B-l)は、成分 (B-l)と、成分 (A)中の全遷移金属原子(M)とのモル比〔(B-1)/ M〕力通常 0. 01〜: 100000、好ましくは 0. 05〜50000となるような量で用レヽられる 。成分 (B-2)は、成分 (B-2)中のアルミニウム原子と、成分 (A)中の全遷移金属(M)と のモノレ it〔(B— 2)/M〕 、通常 10〜500000、好ましくは 20〜: 100000となるような量 で用いられる。成分 (B-3)は、成分 (B-3)と、成分 (A)中の遷移金属原子(M)とのモル 比〔(B-3)/M〕が、通常:!〜 10、好ましくは 1〜5となるような量で用いられる。 [0037] Using the Orefin polymerization catalyst as described above, when performing polymerization of Orefin, Ingredient (A) is, per liter of the reaction volume, usually 10- 12 ~ 10- 2 mol, preferably 10- 1Q ~: used in an amount such that 10-3 molar. Component (Bl) is a molar ratio of component (Bl) to all transition metal atoms (M) in component (A) [(B-1) / M] force usually from 0.01 to 100000, preferably 0. Can be used in an amount of between 05 and 50000. Component (B-2) is a mono-it [(B-2) / M] of aluminum atoms in component (B-2) and all transition metals (M) in component (A), usually 10 to 500,000. The amount is preferably 20 to 100000. Component (B-3) has a molar ratio [(B-3) / M] of component (B-3) to transition metal atom (M) in component (A) usually:! To 10, preferably Is used in an amount of 1-5.
[0038] また、このようなォレフィン重合触媒を用いたォレフィンの重合温度は、通常- 50〜  [0038] The polymerization temperature of olefins using such olefin polymerization catalysts is usually -50 to
+ 200°C、好ましくは 0〜: 170°Cの範囲である。重合圧力は、通常常圧〜 100kg/c m2、好ましくは常圧〜 50kg/cm2の条件下であり、重合反応は、回分式、半連続式 、連続式のいずれの方法においても行うことができる。さらに重合を反応条件の異な る 2段以上に分けて行うことも可能である。 + 200 ° C, preferably in the range of 0 to 170 ° C. The polymerization pressure is usually from normal pressure to 100 kg / cm 2 , preferably from normal pressure to 50 kg / cm 2 , and the polymerization reaction can be carried out in any of batch, semi-continuous and continuous methods. it can. Furthermore, the polymerization can be carried out in two or more stages having different reaction conditions.
[0039] 得られるォレフィン重合体の分子量は、重合系に水素を存在させるか、重合温度を 変化させる力、または α -ォレフィンの導入量によって調節することができる。さらに、 使用する成分 (Β)の量により調節することもできる。  [0039] The molecular weight of the obtained olefin polymer can be adjusted by the presence of hydrogen in the polymerization system, the force for changing the polymerization temperature, or the amount of α-olefins introduced. Furthermore, it can be adjusted according to the amount of ingredient (成分) used.
以下、実施例に基づいて本発明を更に具体的に説明するが、本発明はこれらに限 定される物ではない。  Hereinafter, the present invention will be described more specifically based on examples, but the present invention is not limited to these examples.
[0040] [実施例]  [0040] [Example]
[合成例 1] (配位子 L-1の合成)  [Synthesis Example 1] (Synthesis of Ligand L-1)
充分に乾燥、窒素置換した lOOmLの反応器に、 5-クロル- 3 -タミルサリチルアルデヒ ド 15.4g (56.1mmol)、トルエン 60mL、メチルァミン 4.42g (40%メタノール溶液、 56.9mm ol)を仕込み、室温で 5時間攪拌した。この反応溶液を減圧濃縮することにより、下記 式 L-1で示される赤褐色オイル 16.0g (収率 99%)を得た。  A fully dry, nitrogen-substituted lOOmL reactor is charged with 15.4 g (56.1 mmol) of 5-chloro-3-tamylsalicylide, 60 mL of toluene and 4.42 g of methylamine (40% methanol solution, 56.9 mmol) at room temperature. For 5 hours. The reaction solution was concentrated under reduced pressure to obtain 16.0 g (yield 99%) of a reddish brown oil represented by the following formula L-1.
'Η NMR(CDCl ) : 1.71(s,6H),3.33(s,3H),7.10-7.44(m,7H),8.16(s,lH), 13.8(s,lH) 'Η NMR (CDCl): 1.71 (s, 6H), 3.33 (s, 3H), 7.10-7.44 (m, 7H), 8.16 (s, lH), 13.8 (s, lH)
[0041] [化 5] [0041] [Chemical 5]
Figure imgf000015_0001
Figure imgf000015_0001
L-1 L-1
[0042] [合成例 2] (配位子 L-2の合成)  [0042] [Synthesis Example 2] (Synthesis of Ligand L-2)
米国特許第 6531555号明細書に記載の製法に基づいて、配位子 L-2を合成した。  Ligand L-2 was synthesized based on the production method described in US Pat. No. 6,531,555.
[0043] [化 6] [0043] [Chemical 6]
Figure imgf000015_0002
Figure imgf000015_0002
L-2 L-2
[0044] [合成例 3] (遷移金属化合物 (1)の合成)  [0044] [Synthesis Example 3] (Synthesis of transition metal compound (1))
充分に乾燥、アルゴン置換した 500mLの反応器に、配位子 L-l 12.1g(42.0mmol)と ジェチルエーテル 150mLを仕込み、 -78°Cに冷却し攪拌した。これに n_プチルリチウ ム 27.8mL(n-へキサン溶液、 1.57M、 43.7mmol)を 30分かけて滴下した。滴下終了後、 そのままの温度で 2時間攪拌した後、ゆっくりと室温まで昇温し、室温でさらに 3時間 攪拌してリチウム塩を調整した。この溶液を、 -78°Cに冷却した ZrCl (THF)錯体 4.84g  In a 500 mL reactor thoroughly dried and purged with argon, 12.1 g (42.0 mmol) of ligand L-l and 150 mL of jetyl ether were charged, cooled to -78 ° C, and stirred. To this, 27.8 mL (n-hexane solution, 1.57M, 43.7 mmol) of n_butyllithium was added dropwise over 30 minutes. After completion of the dropwise addition, the mixture was stirred at the same temperature for 2 hours, then slowly warmed to room temperature, and further stirred at room temperature for 3 hours to prepare a lithium salt. This solution was added to 4.84 g of ZrCl (THF) complex cooled to -78 ° C.
4 2  4 2
(20.8mol)を含むテトラヒドロフラン溶液 150mLに滴下した。滴下終了後、ゆっくりと室 温まで昇温しながら攪拌を続けた。さらに室温で 12時間攪拌した後、反応液の溶媒 を留去した。得られた固体を塩化メチレン 200mLに溶解し、不溶物をガラスフィルター で除去した。ろ液を減圧濃縮し、析出した固体をジェチルエーテル 80mL、 n_へキサ ン 150mLで再沈し、減圧乾燥することにより下記式 (1)で示される黄色粉末の化合物 1 1.4g (収率 75%)を得た。 The solution was added dropwise to 150 mL of a tetrahydrofuran solution containing (20.8 mol). After completion of the dropwise addition, stirring was continued while slowly raising the temperature to room temperature. After further stirring for 12 hours at room temperature, the solvent of the reaction solution was distilled off. Dissolve the resulting solid in 200 mL of methylene chloride and filter the insoluble matter with a glass filter. Removed. The filtrate was concentrated under reduced pressure, and the precipitated solid was reprecipitated with 80 mL of jetyl ether and 150 mL of n_hexane, and dried under reduced pressure to obtain 11.4 g of a yellow powder compound represented by the following formula (1) (yield 75%) was obtained.
'Η NMR(CDCl ) : 1.67(s,6H), 1.92(s,6H),2.30(s,6H),7.00-7.60(m, 12H),7.70(s,2H),7.7 'Η NMR (CDCl): 1.67 (s, 6H), 1.92 (s, 6H), 2.30 (s, 6H), 7.00-7.60 (m, 12H), 7.70 (s, 2H), 7.7
9(s,2H) 9 (s, 2H)
FD-質量分析: 734  FD-mass spectrometry: 734
[0045] [化 7]  [0045] [Chemical 7]
Figure imgf000016_0001
化合物(1)
Figure imgf000016_0001
Compound (1)
[0046] [合成例 4] (遷移金属化合物 (2)の合成)  [Synthesis Example 4] (Synthesis of transition metal compound (2))
充分に乾燥、アルゴン置換した 200mLの反応器に、配位子 L-2 1.94g(7.18mmol)を テトラヒドロフラン 20mLに溶解させた。この溶液を _30°Cに冷却したテトラヒドロフラン 1 OmLと水素化ナトリウム 268mg(7.18mmol)との懸濁液に 30分かけて滴下し、そのままの 温度で 2時間攪拌した後、ゆっくりと室温まで昇温し、室温でさらに 3時間攪拌してナト リウム塩を調整した。こうして調製した溶液を、 -78°Cに冷却した ZrCl (THF)錯体 1.38 g(20.8mol)を含むテトラヒドロフラン溶液 50mLに滴下した。滴下終了後、ゆっくりと室 温まで昇温しながら攪拌を続けた。さらに室温で 12時間攪拌した後、反応液の溶媒 を留去した。得られた固体を塩化メチレン 70mLに溶解し、不溶物をガラスフィルター で除去した。ろ液を減圧濃縮し、析出した固体を n-へキサン 40mLで懸濁し、濾過後 減圧乾燥することにより下記式 (2)で示される黄色粉末の化合物 372mg (収率 14.8%) を得た。  Ligand L-2 1.94 g (7.18 mmol) was dissolved in tetrahydrofuran 20 mL in a 200 mL reactor thoroughly dried and purged with argon. This solution was added dropwise over 30 minutes to a suspension of 1 OmL of tetrahydrofuran and 268 mg (7.18 mmol) of sodium hydride cooled to _30 ° C, stirred at that temperature for 2 hours, and then slowly warmed to room temperature. The mixture was further stirred at room temperature for 3 hours to prepare a sodium salt. The solution thus prepared was added dropwise to 50 mL of a tetrahydrofuran solution containing 1.38 g (20.8 mol) of a ZrCl (THF) complex cooled to -78 ° C. After completion of the dropwise addition, stirring was continued while slowly raising the temperature to room temperature. After further stirring for 12 hours at room temperature, the solvent of the reaction solution was distilled off. The obtained solid was dissolved in 70 mL of methylene chloride, and insoluble matters were removed with a glass filter. The filtrate was concentrated under reduced pressure, and the precipitated solid was suspended in 40 mL of n-hexane, filtered and dried under reduced pressure to obtain 372 mg (yield 14.8%) of a yellow powder compound represented by the following formula (2).
FD-質量分析: 699 [0047] [化 8] FD-mass spectrometry: 699 [0047] [Chemical 8]
Figure imgf000017_0001
Figure imgf000017_0001
化合物 (2) Compound (2)
[0048] [実施例 1]  [0048] [Example 1]
充分に窒素置換した内容積 lOOOmLのステンレス製オートクレーブに、ヘプタン 500 mLを装入し、室温でエチレンを 100リットル/ hrで 15分間流通させ、液相及び気相を 飽和させた。続いて 80°Cに昇温した後、エチレンを 8kgん m¾に昇圧し、温度を維持 した。 MMAO (東ソ一ファインケム社製)のへキサン溶液(アルミニウム原子換算 1.00m mol/mL) 0.20mL (0.20mmol)を圧入し、っレ、で化合物 (1)のトルエン溶液(0.0002mmol /mL) 0.15mL (0.00003mmol)を圧入し、重合を開始した。エチレンガスを連続的に供 給しながら圧力を保ち、 80°Cで 15分間重合を行った後、 5mLのメタノールを圧入する ことにより重合を停止した。得られたポリマースラリーより溶媒を留去することにより生 成物を得た。 80°Cにて 10時間減圧乾燥することにより重合体 48.22gを得た。重合活 性は 6429kg/mmo卜 Zr' hであり、生成物はポリエチレン換算で Mw=1550、 Mw/Mn=2. 32、 H-NMRで測定した片末端不飽和率 =99.0mol%であった。  A stainless steel autoclave with an internal volume of lOOOOmL that was sufficiently purged with nitrogen was charged with 500 mL of heptane, and ethylene was allowed to flow at 100 liter / hr for 15 minutes at room temperature to saturate the liquid phase and gas phase. Subsequently, the temperature was raised to 80 ° C., and then the pressure of ethylene was increased to 8 kg / m³ to maintain the temperature. MMAO (manufactured by Tosohichi Finechem Co., Ltd.) in a hexane solution (aluminum atom equivalent 1.00 mmol / mL) 0.20 mL (0.20 mmol) is injected, and the toluene solution (0.0002 mmol / mL) of compound (1) 0.15 mL (0.00003 mmol) was injected to initiate the polymerization. The pressure was maintained while continuously supplying ethylene gas, and the polymerization was carried out at 80 ° C for 15 minutes, and then the polymerization was stopped by injecting 5 mL of methanol. The product was obtained by distilling off the solvent from the resulting polymer slurry. By drying under reduced pressure at 80 ° C. for 10 hours, 48.22 g of a polymer was obtained. The polymerization activity was 6429 kg / mmo 卜 Zr'h, and the product was Mw = 1550, Mw / Mn = 2.32 in terms of polyethylene, and the one-terminal unsaturation rate measured by H-NMR = 99.0 mol%. .
[0049] [比較例 1] [0049] [Comparative Example 1]
充分に窒素置換した内容積 lOOOmLのステンレス製オートクレーブに、ヘプタン 500 mLを装入し、室温でエチレンを 100リットル/ hrで 15分間流通させ、液相及び気相を 飽和させた。続いて 80°Cに昇温した後、エチレンを 8kgん m2Gに昇圧し、温度を維持 した。 MMAO (東ソ一ファインケム社製)のへキサン溶液(アルミニウム原子換算 1.00m mol/mL) 0.20mL (0.20mmol)を圧入し、っレ、で化合物 (2)のトルエン溶液(0.0002mmol /mL) 1.0mL (0.0002mmol)を圧入し、重合を開始した。エチレンガスを連続的に供給 しながら圧力を保ち、 80°Cで 15分間重合を行った後、 5mLのメタノールを圧入するこ とにより重合を停止した。得られたポリマースラリーより溶媒を留去することにより生成 物を得た。 80°Cにて 10時間減圧乾燥することにより重合体 20.1gを得た。重合活性は 402kg/mmo卜 Zr'hであり、生成物はポリエチレン換算で Mw=1490、 Mw/Mn=2.70、 'Η _NMRで測定した片末端不飽和率 =95.5mol%であった。 A stainless steel autoclave with an internal volume of lOOOOmL that was sufficiently purged with nitrogen was charged with 500 mL of heptane, and ethylene was allowed to flow at 100 liter / hr for 15 minutes at room temperature to saturate the liquid phase and gas phase. Subsequently, the temperature was raised to 80 ° C, and then the pressure of ethylene was increased to 8 kgm 2 G to maintain the temperature. MMAO (manufactured by Tosohichi Finechem Co., Ltd.) in a hexane solution (1.00m mol / mL in terms of aluminum atom) was injected with 0.20mL (0.20mmol), and the toluene solution of compound (2) (0.0002mmol / mL) 1.0 mL (0.0002 mmol) was injected to initiate the polymerization. Continuous supply of ethylene gas While maintaining the pressure, polymerization was carried out at 80 ° C. for 15 minutes, and then the polymerization was terminated by press-fitting 5 mL of methanol. The product was obtained by distilling off the solvent from the resulting polymer slurry. By drying under reduced pressure at 80 ° C. for 10 hours, 20.1 g of a polymer was obtained. The polymerization activity was 402 kg / mmo 卜 Zr'h, and the product was Mw = 1490, Mw / Mn = 2.70 in terms of polyethylene, and the single-terminal unsaturation measured by Η NMR was 95.5 mol%.
[0050] [比較例 2] [0050] [Comparative Example 2]
充分に窒素置換した内容積 lOOOmLのステンレス製オートクレーブに、ヘプタン 500 mLを装入し、室温でエチレンを 100リットル/ hrで 15分間流通させ、液相及び気相を 飽和させた。続いて 80°Cに昇温した後、エチレン 8kgん m2Gに昇圧し、温度を維持し た。 MMAO (東ソ一ファインケム社製)のへキサン溶液(アルミニウム原子換算 1.00mm ol/mL) 0.20mL (0.20mmol)を圧入し、っレ、で化合物 (3)のトルエン溶液(0.0002mmol/ ml) lmL (0.0002mmol)を圧入し、重合を開始した。エチレンガスを連続的に供給しな 力 圧力を保ち、 80°Cで 15分間重合を行った後、 5mLのメタノールを圧入することに より重合を停止した。得られたポリマー溶液を、少量の塩酸を含む 3Lのメタノール中 に加えてポリマーを析出させた。メタノールで洗浄後、 80°Cにて 10時間減圧乾燥し、 エチレン重合体 24.36gを得た。重合活性は、 487kg/mmo卜 Zr' hであり、生成物はポリ エチレン換算で Mw=2220、 Mw/Mn=2.4 片末端ビュル化率(片末端不飽和率) =94 •OmoP/oであった。 A stainless steel autoclave with an internal volume of lOOOOmL that was sufficiently purged with nitrogen was charged with 500 mL of heptane, and ethylene was allowed to flow at 100 liter / hr for 15 minutes at room temperature to saturate the liquid phase and gas phase. Subsequently, after raising the temperature to 80 ° C, the pressure was increased to 8 kg m 2 G of ethylene to maintain the temperature. MMAO (manufactured by Tosoichi Finechem) in hexane (aluminum atom equivalent 1.00 mm ol / mL) 0.20 mL (0.20 mmol) was injected, and the solution of compound (3) in toluene (0.0002 mmol / ml) lmL (0.0002mmol) was injected to initiate the polymerization. Polymerization was carried out at 80 ° C for 15 minutes while maintaining a constant pressure by supplying ethylene gas continuously, and then the polymerization was stopped by injecting 5 mL of methanol. The resulting polymer solution was added to 3 L of methanol containing a small amount of hydrochloric acid to precipitate the polymer. After washing with methanol, it was dried under reduced pressure at 80 ° C. for 10 hours to obtain 24.36 g of an ethylene polymer. The polymerization activity is 487 kg / mmo 卜 Zr 'h, and the product is Mw = 2220 in terms of polyethylene, Mw / Mn = 2.4 One-end bullation rate (one-end unsaturation rate) = 94 • OmoP / o It was.
[0051] [化 9] [0051] [Chemical 9]
Figure imgf000018_0001
化合物 (3)
Figure imgf000018_0001
Compound (3)
[0052] [実施例 2] 充分に窒素置換した内容積 lOOOmLのステンレス製オートクレーブに、ヘプタン 450 mLを装入し、室温でプロピレンを 100リットル/ hrで 15分間流通させ、液相及び気相を 飽和させた。続いて 80°Cに昇温した後、プロピレンを 4kgん m2Gに昇圧し、温度を維 持した。さらに、エチレンを 8kgん m になるまで導入し、温度を維持した。 MMAO (東 ソーファインケム社製)のへキサン溶液(アルミニウム原子換算 1.00mmol/mL) 0.25mL (0.25mmol)を圧入し、次いで化合物 (1)のトルエン溶液(0.0003mmol/mL) 1.0mL (0.0 003mmol)を圧入し、重合を開始した。エチレンガスを連続的に供給しながら圧力を 保ち、 80°Cで 15分間重合を行った後、 5mLのメタノールを圧入することにより重合を 停止した。得られたポリマースラリーより溶媒を留去することにより生成物を得た。 80 °Cにて 10時間減圧乾燥することにより共重合体 38.86gを得た。重合活性は 518kg/m mo卜 Zr' hであり、生成物はポリエチレン換算で Mw=1380、 Mw/Mn=2.20であり、 13C_ NMRで測定した片末端不飽和率 =99.5mol%であった。 [0052] [Example 2] 450 mL of heptane was charged into a stainless steel autoclave with an internal volume of lOOOOmL that had been sufficiently purged with nitrogen, and propylene was allowed to flow at room temperature for 15 minutes at 100 liter / hr to saturate the liquid phase and gas phase. Subsequently, the temperature was raised to 80 ° C, and then propylene was increased to 4 kg · m 2 G to maintain the temperature. In addition, ethylene was introduced to 8 kgm and the temperature was maintained. MMAO (Tosoh Finechem Co., Ltd.) in hexane solution (aluminum atom equivalent 1.00mmol / mL) 0.25mL (0.25mmol) was injected, then compound (1) in toluene solution (0.0003mmol / mL) 1.0mL (0.0 003mmol) ) Was injected to initiate polymerization. The pressure was maintained while continuously supplying ethylene gas, and the polymerization was carried out at 80 ° C for 15 minutes, and then the polymerization was stopped by injecting 5 mL of methanol. The product was obtained by distilling off the solvent from the resulting polymer slurry. By drying under reduced pressure at 80 ° C. for 10 hours, 38.86 g of a copolymer was obtained. The polymerization activity was 518 kg / m mo 卜 Zr 'h, the product was Mw = 1380 and Mw / Mn = 2.20 in terms of polyethylene, and the one-terminal unsaturation measured by 13 C_NMR was 99.5 mol%. .
[0053] [実施例 3] [0053] [Example 3]
充分に窒素置換した内容積 lOOOmLのステンレス製オートクレーブに、ヘプタン 440 mLを装入し、室温でプロピレンを 100リットル/ hrで 15分間流通させ、液相及び気相を 飽和させた。続いて 80°Cに昇温した後、プロピレンを 0. 6MPaGに昇圧し、温度を維 持した。更にエチレンを 0.8MPaGになるまで導入し、温度を維持した。 MMAO (東ソ一 ファインケム社製)のへキサン溶液(アルミニウム原子換算 1.00mmol/mL) 0.25mL (0. 25mmol)を圧入し、ついで化合物(1)のトルエン溶液(0.0005 mmol/mL) 2.0mL (0.0 005mmol)を圧入し、重合を開始した。エチレンガスを連続的に供給しながら圧力を 保ち、 80°Cで 15分間重合を行った後、 5mLのメタノールを圧入することにより重合を 停止した。得られたポリマースラリーより溶媒を留去することにより生成物を得た。 80 °Cにて 10時間減圧乾燥することにより共重合体 19.16gを得た。生成物はポリエチレン 換算で Mw=1050、 Mw/Mn=2.34、プロピレン含量は 3.7mol%であり、片末端不飽和率 =99.5mol%であった。  440 mL of heptane was charged into a stainless steel autoclave with an internal volume of lOOOOmL that had been sufficiently purged with nitrogen, and propylene was allowed to flow at 100 liter / hr for 15 minutes at room temperature to saturate the liquid phase and gas phase. Subsequently, the temperature was raised to 80 ° C, and then propylene was increased to 0.6 MPaG to maintain the temperature. Further, ethylene was introduced until the pressure became 0.8 MPaG, and the temperature was maintained. MMAO (manufactured by Tosoichi Finechem) hexane solution (1.00 mmol / mL in terms of aluminum atom) was injected with 0.25 mL (0.25 mmol), and then compound (1) in toluene solution (0.0005 mmol / mL) 2.0 mL ( 0.0005 mmol) was injected to initiate the polymerization. The pressure was maintained while continuously supplying ethylene gas, and the polymerization was carried out at 80 ° C for 15 minutes, and then the polymerization was stopped by injecting 5 mL of methanol. The product was obtained by distilling off the solvent from the resulting polymer slurry. By drying under reduced pressure at 80 ° C. for 10 hours, 19.16 g of a copolymer was obtained. The product had a polyethylene conversion of Mw = 1050, Mw / Mn = 2.34, a propylene content of 3.7 mol%, and a single-terminal unsaturation rate of 99.5 mol%.
産業上の利用可能性  Industrial applicability
[0054] 本発明の製造方法によって効率良く提供される片末端二重結合含有低分子量ォ レフイン重合体は、このままで或いは更なる変性が加えられた後に、必要に応じて他 樹脂や添加剤がブレンドされた形態で、産業上の様々な分野で有用な性能を発揮 する。 [0054] The low molecular weight olefin polymer containing a single-end double bond efficiently provided by the production method of the present invention may be used as it is or after further modification. In a blended form of resin and additives, it exhibits useful performance in various industrial fields.

Claims

請求の範囲 (A)下記一般式 (I)で表される遷移金属化合物と、 (B) (B-1)有機金属化合物、(B-2)有機アルミニウムォキシ化合物、および (B-3)遷移 金属化合物 (A)と反応してイオン対を形成する化合物から選ばれる少なくとも 1種の 化合物とからなる触媒の存在下、エチレンを単独重合またはエチレンと炭素数 3〜1 0の α _ォレフィンとを共重合させることを特徴とする、二重結合を重合体主鎖末端に 持つ低分子量ォレフィン重合体の製造方法。 Claims (A) A transition metal compound represented by the following general formula (I): (B) (B-1) an organometallic compound, (B-2) an organoaluminum compound, and (B-3) In the presence of a catalyst comprising at least one compound selected from compounds that react with transition metal compounds (A) to form ion pairs, ethylene is homopolymerized or ethylene and α-olefin having 3 to 10 carbon atoms A process for producing a low molecular weight olefin polymer having a double bond at the end of a polymer main chain, wherein the polymer is copolymerized.
[化 1]  [Chemical 1]
Figure imgf000021_0001
Figure imgf000021_0001
(式中、 Μは周期律表 4族の遷移金属原子を示し、  (Where Μ represents a transition metal atom of group 4 of the periodic table,
mは、 1〜2の整数を示し、  m represents an integer of 1 to 2,
R1は、炭素数 1〜5の直鎖炭化水素基(C H 、n = l〜5)または水素原子を示し R 1 represents a straight hydrocarbon group having 1 to 5 carbon atoms (CH 2, n = 1 to 5) or a hydrogen atom.
n' 2n'+l  n '2n' + l
R2〜R5は、互いに同一でも異なっていてもよ 水素原子、ハロゲン原子、炭化水 素基、ヘテロ環式化合物残基、酸素含有基、窒素含有基、ホウ素含有基、ィォゥ含 有基、リン含有基、ケィ素含有基、ゲルマニウム含有基、またはスズ含有基を示し、 R2 〜R5のうちの 2個以上が互いに連結して環を形成していてもよぐ R 2 to R 5 may be the same as or different from each other, a hydrogen atom, a halogen atom, a hydrocarbon group, a heterocyclic compound residue, an oxygen-containing group, a nitrogen-containing group, a boron-containing group, a thio-containing group, Indicates a phosphorus-containing group, a silicon-containing group, a germanium-containing group, or a tin-containing group, and two or more of R 2 to R 5 may be connected to each other to form a ring.
また、 mが 2の場合には、それぞれ 2個存在する R2〜R5は互いに連結されていても よ When m is 2, two R 2 to R 5 may be connected to each other.
nは、 Mの価数を満たす数であり、  n is a number that satisfies the valence of M;
Xは、水素原子、ハロゲン原子、炭化水素基、酸素含有基、ィォゥ含有基、窒素含 有基、ホウ素含有基、アルミニウム含有基、リン含有基、ハロゲン含有基、ヘテロ環式 化合物残基、ケィ素含有基、ゲルマニウム含有基、またはスズ含有基を示し、 nが 2 以上の場合は、 Xで示される複数の基は互いに同一でも異なっていてもよぐまた X で示される複数の基は互レ、に結合して環を形成してもよレ、。 ) X is a hydrogen atom, a halogen atom, a hydrocarbon group, an oxygen-containing group, a X-containing group, a nitrogen-containing group, a boron-containing group, an aluminum-containing group, a phosphorus-containing group, a halogen-containing group, a heterocyclic group A compound residue, a silicon-containing group, a germanium-containing group, or a tin-containing group. When n is 2 or more, a plurality of groups represented by X may be the same or different from each other, and are represented by X A plurality of groups may be bonded to each other to form a ring. )
[2] 一般式 (I)において、 R1が水素またはメチル基であることを特徴とする請求項 1に記 載の低分子量ォレフィン重合体の製造方法 [2] The method for producing a low molecular weight olefin polymer according to claim 1, wherein, in the general formula (I), R 1 is hydrogen or a methyl group.
[3] 前記一般式 (I)におレ、て、 R5がフエニルェチル基、ジフヱニルメチル基、タミル基、 ジフエニルェチル基、またはトリフエニルメチル基であることを特徴とする請求項 1また は 2に記載の低分子量ォレフィン重合体の製造方法。 [3] The general formula (I), wherein R 5 is a phenylethyl group, a diphenylmethyl group, a Tamyl group, a diphenylethyl group, or a triphenylmethyl group. A method for producing a low molecular weight olefin polymer.
[4] 前記一般式 (I)において、 Mが Zrであることを特徴とする請求項 1〜3のいずれかに 記載の低分子量ォレフィン重合体の製造方法。 [4] The method for producing a low molecular weight olefin polymer according to any one of [1] to [3], wherein in the general formula (I), M is Zr.
[5] 前記二重結合を重合体主鎖末端に持つ重合体が、 [5] The polymer having the double bond at the end of the polymer main chain,
(1)エチレンに由来する構造単位が 95〜100モル0 /0、 α _ォレフィンに由来する構造 単位が 0〜5モル%の範囲にあり、 (1) structural units structural units derived from ethylene is 95 to 100 mole 0/0, derived from alpha _ Orefin is in the range of 0 to 5 mol%,
(2) GPCで測定した重量平均分子量 (Mw)が 500以上 2000以下であり、  (2) The weight average molecular weight (Mw) measured by GPC is 500 or more and 2000 or less,
(3)分子量分布(Mw/Mn)が 1 · l≤Mw/Mn≤2. 5であり  (3) The molecular weight distribution (Mw / Mn) is 1 · l≤Mw / Mn≤2.5
(4)ビニル、ビニレン、またはビニリデン基を重合体主鎖末端に持ち、 _NMRまた は13 C-NMRで測定したこれらの基の含有量が全片末端の 95%以上であることを特 徴とする請求項 1〜4のいずれかに記載の低分子量ォレフィン重合体の製造方法。 (4) It has a vinyl, vinylene, or vinylidene group at the end of the polymer main chain, and the content of these groups measured by _NMR or 13 C-NMR is 95% or more of all the ends. The method for producing a low molecular weight olefin polymer according to any one of claims 1 to 4.
PCT/JP2005/021415 2004-11-26 2005-11-22 Process for production of low-molecular olefin polymer having a terminal double bond WO2006057229A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006547775A JPWO2006057229A1 (en) 2004-11-26 2005-11-22 Method for producing low molecular weight olefin polymer containing double bond at one end

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004342745 2004-11-26
JP2004-342745 2004-11-26

Publications (1)

Publication Number Publication Date
WO2006057229A1 true WO2006057229A1 (en) 2006-06-01

Family

ID=36497966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/021415 WO2006057229A1 (en) 2004-11-26 2005-11-22 Process for production of low-molecular olefin polymer having a terminal double bond

Country Status (2)

Country Link
JP (1) JPWO2006057229A1 (en)
WO (1) WO2006057229A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008013085A1 (en) 2006-07-25 2008-01-31 Nippon Paper Chemicals Co., Ltd. Modified polyolefin resin and uses thereof
US9670346B2 (en) 2014-12-09 2017-06-06 Mitsui Chemicals, Inc. Propylene-based resin composition
US9714306B2 (en) 2014-03-28 2017-07-25 Mitsui Chemicals, Inc. Olefin resin and method for producing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11315109A (en) * 1997-04-25 1999-11-16 Mitsui Chem Inc Catalyst for polymerizing olefin, transition metal compound, polymerization of olefin and alpha-olefin-conjugated diene copolymer
WO2004052980A1 (en) * 2002-12-11 2004-06-24 Johnson Matthey Plc Polymerisation reaction and catalyst therefor
JP2004523503A (en) * 2000-12-19 2004-08-05 ユニベーション・テクノロジーズ・エルエルシー Olefin oligomerization catalysts, their production and use
CN1524836A (en) * 2003-09-17 2004-09-01 大连理工大学 Preparing method and application of schiff base coordinate zirconium complex ethylene oligomerization catalyst

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11315109A (en) * 1997-04-25 1999-11-16 Mitsui Chem Inc Catalyst for polymerizing olefin, transition metal compound, polymerization of olefin and alpha-olefin-conjugated diene copolymer
JP2004523503A (en) * 2000-12-19 2004-08-05 ユニベーション・テクノロジーズ・エルエルシー Olefin oligomerization catalysts, their production and use
WO2004052980A1 (en) * 2002-12-11 2004-06-24 Johnson Matthey Plc Polymerisation reaction and catalyst therefor
CN1524836A (en) * 2003-09-17 2004-09-01 大连理工大学 Preparing method and application of schiff base coordinate zirconium complex ethylene oligomerization catalyst

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008013085A1 (en) 2006-07-25 2008-01-31 Nippon Paper Chemicals Co., Ltd. Modified polyolefin resin and uses thereof
US8236900B2 (en) 2006-07-25 2012-08-07 Nippon Paper Chemicals Co., Ltd. Modified polyolefin resin and uses thereof
US9714306B2 (en) 2014-03-28 2017-07-25 Mitsui Chemicals, Inc. Olefin resin and method for producing same
US9670346B2 (en) 2014-12-09 2017-06-06 Mitsui Chemicals, Inc. Propylene-based resin composition

Also Published As

Publication number Publication date
JPWO2006057229A1 (en) 2008-06-05

Similar Documents

Publication Publication Date Title
JP3176609B2 (en) Method for producing syndiotactic polyolefin, metallocene used in the method and catalyst containing the same
EP0721954B1 (en) Transition metal compound, olefin polymerization catalyst, and process for producing olefin polymer by using said catalyst
JP4794293B2 (en) Metal compound, vinyl monomer polymerization catalyst composition using the same, and use of the vinyl monomer for polymerization using the composition
JP2796376B2 (en) Manufacturing method of synthetic lubricating oil
CN103025770B (en) Catalyst component for the polymerization of olefins having a guanidinate ligand
US20020198338A1 (en) &#34;Living&#34; free radical polymerization process
JP2003510430A (en) Hydrolyzable olefin copolymer
US8110643B2 (en) Preparation of styrene homopolymers and styrene-ethlyene copolymers
JP3148217B2 (en) Method for producing random-propylene-copolymer
JPH06172414A (en) Production of propylene block copolymer
WO2006057229A1 (en) Process for production of low-molecular olefin polymer having a terminal double bond
JPH02173104A (en) Catalyst component for olefin polymerization and polymerization of olefin
EP0965600B1 (en) Process for preparing polymer by using copper compound
KR20120092977A (en) New transition metal compound, new organic ligand compound, catalysts composition comprising the transition metal compound and preparation method of poly-olefin using the catalysts composition
JP3319780B2 (en) Terminally modified polyolefin
CN113683716B (en) Ethylene polymerization catalyst, preparation method thereof and preparation method of ethylene-isobutylene copolymer
JPH11171915A (en) Production of polymer using copper compound
JP2004359861A (en) Branched olefin polymer
JP3371919B2 (en) Olefin polymerization catalyst and method for producing polyolefin using the catalyst
JPH02173111A (en) Production of alpha-olefin-based random copolymer
JP3322703B2 (en) Terminally modified polyolefin
US6433130B1 (en) Process for preparing polymer by using copper compound
JPH03255116A (en) Production of ethylenic copolymer
JP2001329023A (en) Copolymer and its production
WO2000044793A1 (en) Catalyst for olefin polymerization and process for producing olefin polymer

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006547775

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05809379

Country of ref document: EP

Kind code of ref document: A1