WO2006054659A1 - Communication terminal device and drc signal transmission method - Google Patents

Communication terminal device and drc signal transmission method Download PDF

Info

Publication number
WO2006054659A1
WO2006054659A1 PCT/JP2005/021152 JP2005021152W WO2006054659A1 WO 2006054659 A1 WO2006054659 A1 WO 2006054659A1 JP 2005021152 W JP2005021152 W JP 2005021152W WO 2006054659 A1 WO2006054659 A1 WO 2006054659A1
Authority
WO
WIPO (PCT)
Prior art keywords
drc
communication terminal
signal
packet
value
Prior art date
Application number
PCT/JP2005/021152
Other languages
French (fr)
Japanese (ja)
Inventor
Takeru Usui
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2006054659A1 publication Critical patent/WO2006054659A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/22Negotiating communication rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2201/00Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
    • H04B2201/69Orthogonal indexing scheme relating to spread spectrum techniques in general
    • H04B2201/707Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation
    • H04B2201/70703Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation using multiple or variable rates
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality

Definitions

  • the present invention relates to a communication terminal apparatus and a DRC signal transmission method in a high-speed packet transmission system.
  • Lx means a single carrier.
  • FIG. 1 is a system diagram illustrating a DRC (Data Rate Control) signal transmission method in a conventional high-speed packet transmission system.
  • communication terminal devices user A, user B, user C
  • BTS base station device
  • the station apparatus determines the optimum communication terminal apparatus for transmitting a packet at the time position by the following method.
  • Each communication terminal device in the cell receives the common pilot signal (CPICH) transmitted by the base station device, and measures the downlink reception quality CIR (Carrier to Interference Ratio). . Then, each communication terminal apparatus sets a data rate that can be used for packet reception in the measured reception quality, and transmits a DRC signal having a DRC value indicating the data rate to the base station apparatus at a certain cycle.
  • CPICH common pilot signal
  • CIR Carrier to Interference Ratio
  • the DRC value increases as the reception quality improves, and decreases as the reception quality deteriorates.
  • a communication terminal device with good reception quality can receive a signal with a large number of modulation levels and a low code rate, so a packet with a high data rate is requested by a DRC signal having a high DRC value. be able to.
  • the reception quality Since it is difficult for a bad communication terminal device to receive only a packet with a low data rate, only a DRC signal having a DRC value can be transmitted! /.
  • the base station apparatus uses the DRC value of the DRC signal transmitted from each communication terminal apparatus at each packet allocation timing, and the communication terminal apparatus that transmits the next packet from the average data rate of each communication terminal apparatus. Determine the data rate. Then, the base station apparatus repeatedly notifies the determined communication terminal apparatus of the ID using a transmission packet notification signal (Preamble) at every packet allocation timing.
  • Preamble transmission packet notification signal
  • each communication terminal apparatus detects a transmission packet notification signal addressed to its own ID, the communication terminal apparatus receives the packet data subsequently transmitted at the data rate requested by the DRC signal. .
  • FIG. 2 is a block diagram showing a configuration example of the base station apparatus shown in FIG.
  • an antenna 1601 is connected to a reception RF unit 1602 and a transmission RF unit 1603 through a duplexer (not shown).
  • Reception RF section 1602 converts a radio signal received by antenna 1601 into a baseband signal and outputs it to despreading sections 1604-1 to 1604 n connected in parallel.
  • DRC signal demodulation units 1605-1 to 1605-n are connected to the output terminals of the despreading units 1604-1 to 1604-n in a one-to-one relationship.
  • the serial circuit of the despreading unit and the DRC signal demodulating unit is provided for each communication terminal device, and the input baseband signal is despread using the spread signal corresponding to the communication terminal device, and the corresponding DRC signal is To restore.
  • the restored DRC signal of each communication terminal apparatus is provided to the user scheduler unit 1606.
  • the allocation buffer unit 1607 stores the average data rate of each communication terminal device.
  • the user scheduler unit 1606 uses a scheduling algorithm that uses the restored DRC signal (DRC value) of each communication terminal apparatus at each packet allocation timing or the restored DRC signal (DRC value of each communication terminal apparatus). ) And the allocation buffer section 16
  • the scheduling algorithm using the average data rate of each communication terminal device stored in 07 gives high priority to communication terminal devices with good reception quality, and conversely low priority to communication terminal devices with poor reception quality. give. Then, the communication terminal device having the highest priority among the priorities given to each communication terminal device is determined as the communication terminal device that transmits the packet at the next packet allocation timing (packet allocation).
  • Packet format assigning section 1608 assigns a modulation format corresponding to the data rate to a packet to be transmitted to the communication terminal apparatus determined by user scheduler section 1606, and provides it to adaptive modulation section 1609. Further, the packet format assigning unit 1608 assigns a predetermined modulation format to a signal notifying that the packet has been assigned to the communication terminal apparatus determined by the user scheduler unit 1606, and provides the signal to the transmission packet notification signal generating unit 1612.
  • Transmission packet notification signal generation section 1612 generates a transmission packet notification signal to be transmitted to the communication terminal apparatus determined by user scheduler section 1606 in the modulation format assigned by packet format assignment section 1608.
  • the generated transmission packet notification signal becomes a spread signal in spreading section 1613 and is input to signal multiplexing section 1611.
  • adaptive modulation section 1609 applies the packet signal to be transmitted to the communication terminal apparatus determined by user scheduler section 1606 to the modulation format assigned by packet format assignment section 1608, and applies it to the modulation format using a predetermined modulation scheme. Modulate.
  • the modulated packet signal is converted into a spread signal by the spreader 1610 and input to the signal multiplexer 1611.
  • the pilot signal generated by pilot signal generation section 1614 becomes a spread signal by spreading section 1615 and is input to signal multiplexing section 1611.
  • the signal multiplexing unit 1611 provides the transmission RF unit 1603 with a baseband signal obtained by time-multiplexing the packet signal, the transmission packet notification signal, and the pilot signal.
  • the transmission RF unit 1603 converts the time-multiplexed packet signal, the transmission bucket notification signal, and the pilot signal into a radio signal, and supplies it to the antenna 1601 via a duplexer (not shown).
  • FIG. 3 is a block diagram showing a configuration example of the communication terminal apparatus shown in FIG.
  • a reception RF unit 1702 and a transmission RF unit 1703 are connected to an antenna 1701 via a duplexer (not shown).
  • the reception RF unit 1702 converts the radio signal received by the antenna 1701 into a baseband signal, and despreading units 1704, 1 connected in parallel Output to 705 and 1706.
  • Receiveding section 1704 despreads the data portion in the input baseband signal using a predetermined spread signal, and provides it to adaptive demodulation section 1707.
  • the despreading section 1705 despreads the control information portion in the input baseband signal using a predetermined spread signal, and gives it to the control information demodulation section 1708.
  • Adaptive demodulation section 1707 restores the original data signal from the output of despreading section 1704 in accordance with the control information from control information demodulation section 1708, and provides it to reception processing section 1709.
  • the reception processing unit 1709 extracts information indicating the reception processing status from the data restored by the adaptive demodulation unit 1707 and supplies the information to the packet reception availability information generation unit 17 16.
  • Receiveding section 1706 despreads the pilot signal in the input baseband signal using a predetermined spread signal, and provides the received signal to reception quality measuring section 1710.
  • Reception quality measurement section 171 0 measures reception quality CIR using the reception level of the pilot signal output from despreading section 1706.
  • the DRC signal selection unit 1711 selects a receivable data rate (DRC value) corresponding to the measured reception quality.
  • the DRC signal generation unit 1712 generates a DRC signal having the selected DRC value.
  • the generated DRC signal is modulated by a modulation unit 1713 according to a predetermined modulation method, becomes a spread signal by a spreading unit 1714, and is input to a signal multiplexing unit 1715.
  • the packet reception availability information generating unit 1716 receives the reception processing status from the reception processing unit 1709 and generates packet reception availability information (ACK, NACK).
  • the generated packet reception availability information becomes a spread signal in the spreading unit 1717 and is input to the signal multiplexing unit 1715.
  • the pilot signal generated by pilot signal generation section 1718 becomes a spread signal at spreading section 1719 and is input to signal multiplexing section 1715.
  • the signal multiplexing unit 1715 provides the transmission RF unit 1703 with a baseband signal obtained by time-multiplexing the DRC signal, the DRC signal, and the pilot signal.
  • Transmission RF section 1703 converts the time-multiplexed packet signal, transmission packet notification signal, and pilot signal into a radio signal, and supplies it to antenna 1701 via a duplexer (not shown).
  • the communication terminal apparatus Upon receiving the pilot signal transmitted by the base station apparatus (ST1801), the communication terminal apparatus measures the downlink reception quality CIR from the reception level of the pilot signal (ST1802), and supports the measured reception quality CIR. The usable data rate is determined as the requested data rate (ST1803). Then, the communication terminal apparatus generates a DRC signal having a DRC value indicating the requested data rate (ST1804) and transmits it to the base station apparatus (ST18 05).
  • the base station apparatus Upon receiving the DRC signal (ST1806), the base station apparatus calculates the priority of each communication terminal apparatus based on the DRC value or based on the DRC value and the average data rate (ST1807). Then, the packet to be transmitted next time is assigned to the communication terminal apparatus having a high priority (ST18 08). Then, the base station device generates a packet with a modulation format corresponding to the data rate requested by the DRC signal having the assigned communication terminal device power (ST1809), and transmits the packet to the assigned communication terminal device. (ST1810).
  • the communication terminal device When the communication terminal device receives the packet addressed to itself (ST1811: Yes), it performs packet reception processing (ST1812), and sends an acknowledgment ACK or negative response N ACK to the base station device based on the reception result. Transmit (ST1813).
  • packet allocation processing ST1807, ST1808 in the base station apparatus will be described using a specific example.
  • Various scheduling methods for determining communication terminal device priorities have been studied, but here, representative examples are the MaxCIR method (Fig. 5), which determines the communication terminal device priority based on the DRC value, and the DRC value.
  • the Proportional Fairness method (Fig. 6), which determines the priority of communication terminal devices based on the average data rate, is explained.
  • FIG. 5 is a diagram showing an example of a bucket assignment result by the MaxCIR method for determining the priority of the communication terminal device based on the DRC value.
  • Fig. 6 is a diagram showing an example of the packet allocation result by the proportional fairness method.
  • the number of communication terminal devices is “3”. Also, four packet allocation timings # 1 to # 4 are shown.
  • each bucket The DRC value of each communication terminal device is determined as the priority of that communication terminal device. Then, the highest DRC value (priority) among the DRC values (priority) of each communication terminal device is determined as an “assigned DRC value”, and packets are preferentially assigned to the communication terminal devices having this “assigned DRC value”.
  • the DRC values of the DRC signals that have received the user A, B, and C forces are “10”, “8”, and “3”, respectively.
  • the highest DRC value “10” becomes the “assigned DRC value”, and the packet is preferentially assigned to user A who has the “assigned DRC value” “10”.
  • packet allocation timings # 2, # 3, and # 4 packets are allocated in the order of user B, user A, and user B.
  • User C cannot receive packet allocation at packet allocation timings # 1 to # 4 because the reception environment is poor.
  • the packet is transmitted to the user B.
  • a packet is transmitted to user A.
  • the packet is transmitted to the user B.
  • FIG. 7 is a system diagram illustrating a DRC signal transmission method according to the prior art in a multicarrier high-speed packet transmission system.
  • a broadband system such as the EV-DO system
  • the adjacent carriers have a wide bandwidth, so the multipath fading received by each carrier has no correlation.
  • each communication terminal apparatus (users A, B, and C) in the cell estimates the reception environment in each carrier and transmits the DRC signal for each carrier to the base station.
  • Send to device There is a need to.
  • the base station device needs to check the priority for each carrier and perform packet allocation.
  • Patent Document 1 Special Table 2004—502328
  • Patent Document 2 Japanese Patent Laid-Open No. 2002-118514
  • each communication terminal apparatus needs to transmit a DRC signal to the base station apparatus once at a certain period as described above.
  • the communication terminal device transmits the DRC signal using the same channel. Therefore, as pointed out in Patent Documents 1 and 2, if DRC signal transmissions of multiple communication terminal devices overlap at a certain timing, uplink interference may increase and communication quality may deteriorate.
  • the base station apparatus determines the packet transmission communication terminal apparatus from the DRC signals transmitted from the respective communication terminal apparatuses, and sends the next packet only to the determined communication terminal apparatus. Because it transmits, the majority of other DRC signals that do not allocate packets to the base station are unnecessary at that time.
  • Patent Document 1 proposes a method in which each communication terminal apparatus transmits a DRC signal only when base station apparatus power S scheduling is performed. Therefore, the DRC signal unnecessary for the base station device is transmitted.
  • the communication terminal device C cannot receive the packet allocation at the packet allocation timings # 1 to # 4, but this happens because the reception quality of the downlink is poor at this point. Because. However, conventionally, each communication terminal device reports the DRC value regardless of the possibility of packet assignment, so communication terminal device C has a low possibility of packet assignment, and packet assignment timings # 1 to # 4 Keep sending unnecessary DRC signals Will be. As a result, in the communication terminal apparatus C, processing for generating a DR C signal with low possibility of packet allocation is wasted, and transmission power is wasted.
  • the DRC signal may cause interference with other communication terminal apparatuses (users A and B).
  • the packet allocation timing # 1 it is erroneously received that the user C's DRC value of 3 is not "12" but the base station device incorrectly allocates a packet to user C. Will happen.
  • the actual reception quality of user C is inferior, the data cannot be received correctly and the packet is retransmitted. As a result, throughput may be adversely affected.
  • user C cannot receive a packet assignment because the priority is low at packet assignment timings # 1 to # 3, but priority is given to the progress of packet assignment timings # 1 to # 3.
  • the packet allocation timing # 4 is higher than that of the other communication terminal devices (users A and B), so that packet allocation can be received.
  • the DRC signal transmission at packet allocation timings # 1 to # 3 is useless transmission for user C.
  • user C wants to send a DRC signal only at this packet allocation timing # 4.
  • each communication terminal apparatus needs to transmit a DRC signal in each carrier. Since the device needs to perform packet allocation processing in each carrier, the communication terminal devices (users A, B, and C) in the cell increase the processing amount and power consumption of DRC signal generation, and In the station equipment, the scheduling load increases by the number of carriers. This can be a major challenge when introducing multi-carrier systems.
  • An object of the present invention is to provide a communication terminal apparatus in a high-speed packet transmission system that can be controlled so as not to transmit a DRC signal having a DRC value while suppressing the deterioration of throughput and suppressing packet degradation. And providing a DRC signal transmission method.
  • a communication terminal apparatus comprises reception quality measuring means for measuring reception quality of a downlink, A selection means for selecting a data rate of a packet transmitted from the communication partner base station apparatus based on the measured reception quality, and a DRC (Data Rate Control) signal indicating the selected data rate.
  • DRC signal generating means for generating, and transmitting means for transmitting the generated DRC signal to the base station apparatus, wherein the selecting means is configured such that the selected data rate is equal to or higher than a threshold value.
  • the data rate is output to the DRC signal generation means only in the above.
  • the DRC signal transmission method of the present invention is based on the reception quality measurement process for measuring the reception quality of the downlink and the data rate of the transmitted packet based on the measured reception quality.
  • a selection step for selecting and selecting, a DRC signal generation step for generating a DRC (Data Rate Control) signal indicating the selected data rate, and the DRC signal generated for the base station apparatus A transmission step of transmitting, and the selection step employs a method of outputting the data rate to the DRC signal generation step only when the selected data rate is equal to or higher than a threshold value.
  • FIG. 1 A system diagram for explaining a DRC signal transmission method in a conventional high-speed packet transmission system.
  • FIG. 2 is a block diagram showing a configuration example of the base station apparatus shown in FIG.
  • FIG. 3 is a block diagram showing a configuration example of the communication terminal apparatus shown in FIG.
  • FIG. 4 is a flowchart for explaining conventional downlink packet transmission processing.
  • FIG. 5 A diagram showing an example of conventional packet allocation results by the MaxCIR method that determines the priority of communication terminal devices based on DRC values.
  • ⁇ 6 A diagram showing an example of a conventional packet allocation result by the Proportional Fairness method that determines the priority of the communication terminal device based on the DRC value and the average data rate
  • FIG.7 System diagram for explaining DRC signal transmission method by conventional technology in multi-carrier high-speed packet transmission system
  • FIG. 8 is a system diagram illustrating a DRC signal transmission method in the high-speed packet transmission system according to the first embodiment of the present invention.
  • FIG. 10 Block diagram showing a configuration example of the communication terminal device shown in FIG.
  • ⁇ 13 A diagram showing an example of a packet allocation result when Embodiment 1 of the present invention is applied to the Proportional Fairness method that determines the priority of a communication terminal device based on the DRC value and the average data rate
  • FIG. 14 is a system diagram illustrating a DRC signal transmission method in the high-speed packet transmission system according to the second embodiment of the present invention.
  • FIG. 19 is a system diagram for explaining a DRC signal transmission method in a multi-carrier high-speed packet transmission system according to Embodiment 3 of the present invention.
  • FIG. 20 Block diagram showing a configuration example of the communication terminal device shown in FIG.
  • FIG. 8 is a system diagram illustrating a DRC signal transmission method in the high-speed packet transmission system according to Embodiment 1 of the present invention.
  • a communication terminal device (user A) 102, a communication terminal device (user B) 103, and a communication terminal device (user C) 104 which are mobile devices in the cell of the base station device (BTS) 101
  • the base station apparatus 101 communicates with the base station apparatus 101 at the time-division time position, but the base station apparatus 101 can receive packet allocations such as past packet allocation status and history of DRC signals sent from each communication terminal apparatus.
  • a DRC threshold value 105 that gives a criterion for the possibility is calculated, communicated to each communication terminal device in the cell at a certain period, and optimal for transmitting a packet at that time position Is determined by the following method.
  • Each communication terminal apparatus in the cell holds the DRC threshold value 105 transmitted from the base station apparatus 101, receives the common pilot signal (CPICH) transmitted from the base station apparatus 101, and receives the downlink signal. Measure the line reception quality CIR. Then, each communication terminal sets a data rate that can be used for packet reception in the measured reception quality, and when the DRC value indicating the data rate exceeds the DRC threshold 105, the DRC A DRC signal having a value is transmitted to base station apparatus 101.
  • CPICH common pilot signal
  • the DRC value increases as the reception quality improves, and decreases as the reception quality deteriorates.
  • a communication terminal device with good reception quality can receive a signal with a large number of modulation levels and a low code rate, so the DRC value indicating the data rate corresponding to the measured reception quality is DRC. If the threshold value 105 is exceeded, it is judged that there is a possibility of receiving a knot assignment, and a DRC signal is transmitted, and a packet with a data rate corresponding to the measured reception quality is requested.
  • communication terminal apparatus 102 and communication terminal apparatus 103 transmit a DRC signal because the DRC value indicating the data rate corresponding to the measured reception quality exceeds DRC threshold! /, Value 105. However, since the DRC value indicating the data rate corresponding to the measured reception quality does not exceed the DRC threshold! /, The value 105 does not exceed! /, The communication terminal device C does not transmit the DRC signal! The
  • base station apparatus 101 determines the next packet from the DRC value of the DRC signal transmitted from communication terminal apparatus 102 and communication terminal apparatus 103, and from the average data rate of each communication terminal apparatus. The communication terminal device to be transmitted and the data rate to be used are determined. Then, base station apparatus 101 repeats notifying the determined communication terminal apparatus of the ID using a transmission packet notification signal (Preamble) at every packet allocation timing.
  • Preamble transmission packet notification signal
  • communication terminal apparatus 102 and communication terminal apparatus 103 receive packet assignments 106 and 107, respectively.
  • communication terminal apparatus 102 and communication terminal apparatus 103 detect a transmission packet notification signal (Preamble) addressed to their own ID, they receive the subsequent packet data transmitted at the data rate requested by the DRC signal. Will do.
  • Preamble transmission packet notification signal
  • FIG. 9 is a block diagram showing a configuration example of the base station apparatus shown in FIG.
  • components that are the same as or equivalent to the components shown in FIG. 2 are given the same reference numerals.
  • the parts related to the first embodiment will be described.
  • the base station apparatus As shown in FIG. 9, in the configuration shown in FIG. 2, the base station apparatus according to Embodiment 1 has a DRC threshold value calculation section 201, a broadcast signal generation section 202, and a spreading section 203. And have been added.
  • the DRC threshold value calculation unit 201 calculates the DRC threshold value by, for example, the following methods (1) to (5), and provides the calculated DRC threshold value to the notification signal generation unit 202.
  • (1) Based on each DRC signal from the DRC signal demodulating units 1605-1 to 1605-n, the average value of all the received DRC values in the past several times is calculated and used as the DRC threshold value.
  • (2) Calculate the average value of all received DRC values in the past several times, and set the average value plus an offset as the DRC threshold value.
  • Allocation buffer unit The average value of the past several packet allocation DRC values accumulated in 1607 is calculated and used as the DRC threshold value.
  • Allocation buffer unit Calculates the average value of the past several packet allocation DRC values accumulated in 1607 and adds an offset to the average value. This is the DRC threshold. (5) Further, determine the DRC threshold by combining the methods (1) to (4). For example, the lower one of the DRC threshold value calculated by method (1) and the DRC threshold value calculated by method (3) is the DRC threshold value! /.
  • a signal for notifying each communication terminal device of the DRC threshold calculated by the DRC threshold calculation unit 201 is generated by, for example, the following methods (1) to (3): . That is, (1) DRC threshold information is inserted into a transmission packet notification signal (Preamble) placed at the head of packet data. (2) Embed DRC threshold information in another downlink channel. (3) Embed DRC threshold information in a new broadcast channel.
  • Spreading section 203 converts the broadcast signal generated by broadcast signal generation section 202 into a spread signal and provides it to signal multiplexing section 1611. As a result, the packet signal, the transmission packet notification signal, the pilot signal, and the DRC threshold notification signal are time-multiplexed and transmitted toward the cell.
  • FIG. 10 is a block diagram showing a configuration example of the communication terminal apparatus shown in FIG.
  • the same or similar components as those shown in FIG. 3 are denoted by the same reference numerals.
  • the part related to the first embodiment will be described.
  • the communication terminal apparatus has a configuration shown in FIG. 3, to which a despreading section 301 and a DRC threshold detection section 302 are added, and A DRC signal selection unit 303 is provided instead of the DRC signal selection unit 1711.
  • Despreading section 301 performs despreading using a predetermined spread signal according to the DRC threshold component in the baseband signal input from reception RF section 1702.
  • the DRC threshold value detection unit 302 also detects the DRC threshold value for the output signal power of the despreading unit 301.
  • DRC signal selection section 303 selects a DRC value indicating a data rate suitable for downlink reception quality C IR measured by reception quality measurement section 1710, and selects the selected DRC value and DRC threshold value detection section.
  • the DRC threshold detected by 302 is compared with the value, and when the selected DRC value is equal to or greater than the DRC threshold value, the selected DRC value is given to the DRC signal generation unit 1712. When the selected DRC value is smaller than the DRC value, the selected DRC value is not given to the DRC signal generation unit 1712.
  • FIG. 11 a base station apparatus and a communication terminal apparatus configured as described above are used.
  • the downlink packet transmission process performed in this way will be described.
  • FIG. 11 the same or similar processing steps as those shown in FIG. 4 are denoted by the same reference numerals.
  • the description will focus on the parts related to the first embodiment.
  • a DRC signal transmission availability determination process (ST401) is inserted between the requested data rate determination process (ST1803) and the DRC signal generation process (ST1804) shown in FIG.
  • DRC value ⁇ DRC threshold value ST401: No
  • the process returns to pilot signal reception processing (ST1801). In other words, it is determined that there is no possibility of receiving packet allocation, and transmission of a DRC signal having a predetermined DRC value corresponding to the received quality is stopped.
  • a DRC threshold value calculation process (ST402, ST403) is inserted between the packet allocation process (ST1808) and the packet generation process (ST1809) shown in FIG. Instead of transmission processing (ST1810), transmission processing (ST404) is performed.
  • the allocation result in the packet allocation process (ST 1808) is stored in a buffer (ST402), and the stored past allocation history power DRC threshold is stored. Calculate (ST403). As a result, each communication terminal apparatus in the cell transmits a DRC threshold value in addition to the packet (ST404).
  • FIG. 12 is a diagram showing an example of a packet allocation result when Embodiment 1 of the present invention is applied to the MaxCIR method for determining the priority of the communication terminal apparatus based on the DRC value.
  • FIG. 13 shows the implementation of the present invention in the proportional fairness method for determining the priority of the communication terminal device based on the DRC value and the average data rate. It is a figure which shows an example of the packet allocation result at the time of applying 1.
  • “DRC threshold” is added to the items shown in FIG. 5 and FIG.
  • “DRC threshold” indicates an average value of all received DRC values when the past several times are set to once (that is, the previous time). That is, the “DRC threshold” shown in FIG. 12 is calculated as an average value of all DRC values received at that time at each packet allocation timing.
  • the received DRC value is “10”, “8”, “3”, so the average DRC value is “7”.
  • the base station apparatus reports this average DRC value “7” to all communication terminal apparatuses as a DRC value at the next packet allocation timing # 2.
  • Each user transmits a DR C signal only when the DRC value to be transmitted is equal to or greater than the DRC threshold value "7". Therefore, at allocation timing # 2, communication terminal apparatus A and communication terminal apparatus B Because the DRC value is greater than or equal to the DRC threshold, the communication terminal device C that transmits the DRC signal does not transmit the DRC signal because the DRC value is less than the DRC threshold. Thereafter, the communication terminal apparatus C does not transmit a DRC signal until the reception quality is improved and the possibility that a packet is allocated becomes high. However, the packet allocation result is the same as that shown in Fig. 5.
  • DRC threshold indicates the priority DRCZR of the user who performed packet allocation.
  • the value is obtained by subtracting the value “3” from (t).
  • communication terminal apparatuses A, B, and C transmit DRC signals as usual. Since each priority D RC / R (t) is “10” “8” “3”, the assigned DRC value is “10”, and the DRC threshold value is “7”.
  • the base station apparatus reports the value “7” to each communication terminal apparatus as the DRC threshold value at the next packet allocation timing # 2.
  • the value “4” obtained by subtracting the value “3” from this is the DRC threshold value.
  • the base station apparatus reports the value “4” to each communication terminal apparatus as a value when performing DRC at the next packet allocation timing # 4.
  • Communication terminal device C does not transmit a DRC signal at packet allocation timings # 2 and # 3, but the priority gradually increases, and at packet allocation timing # 4, DRC threshold "4" As described above, a DRC signal is transmitted. Thus, even when the proportional fairness method is used, the packet allocation result is the same as that shown in FIG.
  • the base station apparatus performs DRC and informs each communication terminal apparatus of the value so that the communication terminal apparatus can determine the packet allocation possibility. Therefore, each communication terminal device has a good reception quality and a high possibility of packet allocation according to uniform judgment criteria, and only the communication terminal device transmits a DRC signal, so that the communication quality is poor and the packet allocation possibility is low.
  • the terminal device can perform control not to transmit a DRC signal. Therefore, a communication terminal apparatus having a low packet allocation possibility does not need to perform a wasteful process for generating a DRC signal and does not waste a transmission power.
  • the uplink interference component is reduced, the communication quality can be improved. Furthermore, in addition to reducing the scheduling load, the base station apparatus reduces the occurrence of packet retransmission due to erroneous detection of the DRC value, thereby suppressing throughput degradation. In addition, even if the DRC signal transmission restriction according to the first embodiment is applied, the packet allocation results are the same as those in the conventional example (Figs. 5 and 6). Throughput can be maintained.
  • FIG. 14 is a system diagram illustrating a DRC signal transmission method in the high-speed packet transmission system according to the second embodiment of the present invention.
  • a base station apparatus (BTS) 701 performs the same packet allocation operation with the same configuration as the base station apparatus shown in the conventional example (FIG. 1).
  • the DRC value for which the packet was actually assigned is also the DRC value that is N levels below the DRC threshold shown in the first embodiment.
  • FIG. 15 shows a configuration example of a communication terminal apparatus that implements this method
  • FIG. 16 shows the overall operation (downlink packet transmission processing) including the base station apparatus.
  • the DRC threshold shown in Embodiment 1 is the value when the probability that packets are actually allocated falls below N% among the DRC values transmitted in the past.
  • FIG. 17 shows a configuration example of a communication terminal apparatus that implements this method
  • FIG. 18 shows an overall operation (downlink packet transmission processing) including the base station apparatus.
  • FIG. 15 is a block diagram showing a configuration example of the communication terminal apparatus shown in FIG. 14 (part 1).
  • FIG. 16 is a flowchart for explaining the overall operation (downstream packet transmission processing) including the base station apparatus (part 1).
  • the communication terminal apparatus (part 1) according to the second embodiment has a DRC signal transmission determination unit 801, a transmission DRC signal buffer unit 802, and a minimum in accordance with the configuration shown in FIG. An allocation DRC value selection unit 803 is added.
  • DRC signal transmission determining section 801 first provides the DRC value to be transmitted acquired from DRC signal selecting section 1711 as well as to DRC signal generating section 1712 and also to transmission DRC signal buffer section 802.
  • the transmission DRC signal buffer unit 802 monitors the processing result of the reception processing unit 1709, and when processing is performed on a packet assigned to the transmitted DRC value received from the DRC signal transmission determination unit 801, Stores the transmitted DR C value that received the packet assignment.
  • the minimum allocated DRC value selection unit 803 sets the minimum DRC value “D RCmin” among the transmitted DRC values that have received the packet allocation accumulated in the transmission DRC signal buffer unit 802 as described above. This is selected and given to the DRC signal transmission judgment unit 801. Needless to say, the minimum allocated DRC value selection unit 803 starts the selection operation when the transmission DRC signal buffer unit 802 stores the transmitted DRC value values that have received the packet allocation.
  • the DRC signal transmission determination unit 801 receives the DRC value “DRC min” from the minimum allocation DRC value selection unit 803, the DRC signal transmission determination unit 801 also determines the DRC value in the N stages as the “DRC threshold” Compares the magnitude relationship with the DRC value to be transmitted input from the selection unit 1711, and when the DRC value to be transmitted is equal to or greater than the “DRC threshold value”, the DRC value to be transmitted is set to the DRC signal. This is given to the generation unit 1712. Also, the DRC signal transmission determination unit 801 gives the DRC value to be transmitted to the DRC signal generation unit 1712.
  • a DRC signal transmission availability determination process (ST901) is inserted between the required data rate determination process (ST1803) and the DRC signal generation process (ST1804) shown in FIG.
  • a minimum allocation DRC value determination process (ST902 to ST904) is added.
  • the DRC value force indicated by the data rate determined in the required data rate determination process (ST180 3) is obtained in the minimum allocation DRC value determination process (ST90 02 to ST904).
  • Minimum DRC value “DRCmin” force It is determined whether or not the DRC value under the N stage is exceeded. If DRC value ⁇ DRCmin—N (ST901: Yes), there is a possibility that the packet can be assigned. The process proceeds to the DRC signal generation process (ST1804). As a result, a DRC signal having a predetermined DRC value corresponding to the reception quality is transmitted to the base station apparatus.
  • DRC value ⁇ DRCmin—N (ST901: No)
  • the process returns to pilot signal reception processing (ST1801). In other words, it is determined that there is no possibility of receiving the packet allocation. Stops sending a DRC signal with a predetermined DRC value corresponding to the signal quality to the base station.
  • the minimum allocation DRC value determination process (ST902 to ST904), when a packet addressed to its own device is detected (ST1811), it is checked whether or not the packet is an allocated packet (ST902). If the packet is a packet (ST902: Yes), the transmitted DRC value that is the target of packet allocation is stored in the buffer (ST903). Then, the smallest DRC value “DRCmin” is selected from the packet allocation DRC values stored in the notifier, and is given to the DRC signal transmission availability determination process (ST901) (ST904).
  • FIG. 17 is a block diagram showing a configuration example of the communication terminal apparatus shown in FIG. 14 (part 2).
  • FIG. 18 is a flowchart for explaining the overall operation (downstream packet transmission process) including the base station apparatus (part 2).
  • the communication terminal apparatus (part 2) according to the second embodiment has the DRC signal transmission judgment unit 1001, the transmission DRC signal buffer unit 1002, and the DRC value for each configuration in the configuration shown in FIG. An allocation probability calculation unit 1003 is added.
  • DRC signal transmission determining section 1001 first provides the DRC value to be transmitted acquired from DRC signal selecting section 1711 to DRC signal generating section 1712 and also to transmission DRC signal buffer section 1002. .
  • the transmission DRC signal buffer unit 1002 stores the transmitted DRC value received from the DRC signal transmission determination unit 801, monitors the processing result of the reception processing unit 1709, and receives the assigned packet. This information is added to the transmitted DRC value.
  • the allocation probability calculation unit 1003 for each DRC value indicates the actual packet allocation probability among the transmitted DRC values accumulated in the transmission DRC signal buffer unit 1002 as described above for each transmitted DRC value. And provided to the DRC signal transmission judgment unit 1001.
  • the DRC signal transmission determination unit 1001 determines the DRC value that is N% lower than that as the "DRC threshold". I will. Then, the DRC value to be transmitted input from the DRC signal selection unit 1711 is given to the transmission DRC signal buffer unit 1002, and the magnitude relationship between the DRC value to be transmitted and “DRC threshold V, value” is compared. When the DRC value to be transmitted is greater than or equal to “DRC threshold, value”, the DRC value to be transmitted is given to the DRC signal generation unit 1712.
  • a DRC signal transmission availability determination process (ST1101) is inserted between the required data rate determination process (ST1803) and the DRC signal generation process (ST1804) shown in FIG.
  • an allocation probability calculation process (ST1102 to ST1104) is added.
  • the allocation probability obtained in the DRC value power allocation probability calculation process (ST1102 to ST1104) indicated by the data rate determined in the requested data rate determination process (ST18 03) It is determined whether the DRC value is less than the force N%, and if the allocation probability is ⁇ N% (ST1101: Yes), it is determined that there is a possibility of receiving the packet allocation and the DRC signal generation process Proceed to (ST1804). As a result, a DRC signal having a predetermined DRC value corresponding to the reception quality is transmitted to the base station apparatus.
  • the process returns to the pilot signal reception process (ST1801). That is, it is determined that there is no possibility of receiving packet allocation, and transmission of a DRC signal having a predetermined DRC value corresponding to the reception quality to the base station apparatus is stopped.
  • the communication terminal apparatus autonomously estimates the packet allocation status with respect to its own DRC signal transmission, and estimates the possibility of packet allocation. Since transmission control for determining whether or not to transmit a signal is performed, the estimation accuracy of packet assignability is somewhat inferior to that of Embodiment 1, but the same operation and effect as Embodiment 1 can be obtained. it can.
  • the base station apparatus does not need to report the DRC threshold value as in the first embodiment! Therefore, the processing load should not be increased! When you are done!
  • a multi-carrier high-speed packet transmission system that will be used in the future will be described.
  • a broadband system such as an EV-DO system
  • the adjacent carriers have a wide bandwidth, and the multipath fading received by each carrier has no correlation.
  • each communication terminal device which is a mobile device, needs to estimate the reception environment of each carrier and transmit a DRC signal for each carrier to the base station device.
  • the base station apparatus needs to check the priority for each carrier and perform packet allocation.
  • each communication terminal device increases the amount of DRC signal generation and power consumption.
  • FIG. 19 is a system diagram illustrating a DRC signal transmission method in a multi-carrier high-speed packet transmission system according to Embodiment 3 of the present invention.
  • base station apparatus (BTS) 1201 has a conventional single carrier configuration for a plurality of carriers, and it is assumed that packet allocation is performed for each carrier.
  • a DRC signal having a DRC value indicating a data rate determined from the reception quality of each downlink is transmitted to the base station apparatus (BTS) 1201 by the corresponding carrier.
  • BTS base station apparatus
  • a DRC signal corresponding to a predetermined carrier having good reception quality is transmitted.
  • each of the communication terminal devices 1202, 1203, 1204 transmits (1) a DRC signal corresponding to the carrier having the highest reception quality, or (2) a higher number having good reception quality.
  • Each DRC signal corresponding to the carrier is transmitted.
  • FIG. 20 is a block diagram showing a configuration example of the communication terminal apparatus shown in FIG.
  • a reception RF unit 1302 and a transmission RF unit 1303 are connected to an antenna 1301 via a duplexer (not shown).
  • the receiving RF unit 1302 is connected to carrier receiving units 1304-1 to 1304 -N that receive baseband signals in parallel.
  • the transmission RF unit 1303 is connected to carrier transmission units 1305-1 to 1305 -N that output baseband signals in parallel.
  • Carrier receiving units 1304-1 to 1304-N have the same configuration, and are each despreading units 1704 to 1706, adaptive demodulation unit 1707, control information demodulation unit 1708, and reception processing unit shown in FIG. 1709 and a reception quality measuring unit 1710.
  • Carrier transmission units 1305-1 to 1305-N have the same configuration, and each includes DRC signal generation unit 1712, modulation unit 1713, spreading unit 1714, and packet reception availability information generation unit shown in FIG. 1716, a spreading unit 1717, a pilot signal generating unit 1718, a spreading unit 1719, and a signal multiplexing unit 1715 are provided.
  • a transmission DRC signal selection unit 1306 is provided between the carrier reception units 1304-1 to 1304 -N and the carrier transmission units 1305-1 to 1305 -N.
  • the transmission DRC signal selection unit 1306 receives the measurement results of the reception quality measurement units 1710 of the carrier reception units 1304-1 to 1304-N, and the DRC signal corresponding to the carrier having the highest reception quality or the reception quality
  • a DRC signal corresponding to a good upper number carrier is supplied to a corresponding DRC signal generation unit 1712 of each DRC signal generation unit 1712 of the carrier transmission units 1305-1 to 1 305 -N.
  • the processing results of the reception processing units 1709 of the carrier reception units 1304-1 to 1304 -N are supplied to the packet reception availability information generation unit 1716 of the carrier transmission units 1305-1 to 1305 -N.
  • each carrier packet reception processing (ST1401), received packets Reception quality measurement processing using signals (ST1402), and data rate determination processing (ST1403) corresponding to the measured reception quality. Then, each DRC value indicating the data rate obtained for each carrier is compared (ST1404), for example, a DRC signal of the top N carriers with good reception quality is generated and transmitted to the base station apparatus (ST1405). .
  • DRC signal reception processing ST1406
  • priority calculation processing of each communication terminal device based on the received DRC value ST1407
  • communication to a communication terminal device with high priority Packet allocation processing ST1408
  • transmission packet generation processing ST1409 in a modulation format according to the DRC value
  • packet transmission processing ST1410
  • processing for detecting reception of a packet addressed to the own device (ST 1411), reception processing of the packet addressed to the own device (ST1412), and response (ACK, NACK) transmission based on the reception processing result for each carrier Processing (ST1413) is performed.
  • each communication terminal apparatus transmits a DRC signal corresponding to a predetermined carrier having good reception quality. Therefore, each communication terminal device suppresses an increase in the processing amount and power consumption of DRC signal generation, and the base station device suppresses an increase in the scheduling load allocated to the packet by the number of carriers. it can.
  • the present invention is suitable for use in a communication terminal apparatus in a high-speed packet transmission system.
  • a communication terminal apparatus in a high-speed packet transmission system.
  • multi-carrier high-speed packet transmission systems that are expected to be used in the future. It is useful.

Abstract

There is provided a communication terminal device for suppressing deterioration of throughput in a high-speed transmission system. In this communication terminal device, an inverse-spread unit (301) executes inverse spread by using a predetermined spread signal for a DRC threshold value component in a reception base band signal. A DRC threshold value detection unit (302) detects a DRC threshold value from the output signal from the inverse-spread unit (301). A DRC signal selection unit (303) selects a DRC value indicating a data rate appropriate for the reception quality CIR of the downstream line measured by a reception quality measuring unit (1710). If the selected DRC value is not smaller than the DRC threshold value, the DRC value is given to a DRC signal generation unit (1712). If the selected DRC value is smaller than the DRC threshold value, the DRC value is not given to the DRC signal generation unit (1712).

Description

明 細 書  Specification
通信端末装置及び DRC信号送信方法  Communication terminal device and DRC signal transmission method
技術分野  Technical field
[0001] 本発明は、高速パケット伝送システムにおける通信端末装置及び DRC信号送信方 法に関する。  [0001] The present invention relates to a communication terminal apparatus and a DRC signal transmission method in a high-speed packet transmission system.
背景技術  Background art
[0002] 携帯電話網 cdma2000において採用されているデータ伝送の高速ィ匕を図る技術 HDR(High Data Rate)は、標準化団体 3GPP2において標準化されている(3GPP2 C.S0024 Ver.4.0)力 この HDR技術をベースとしてデータ部分のみの高速化を図つ た高速パケット伝送システムは、 lxEV— DO (Evolution Data Only)システムと称され ている。なお、「lx」は、シングルキャリアであることを意味している。  [0002] Cellular phone network technology cdma2000 used for high speed data transmission HDR (High Data Rate) is standardized by 3GPP2 (3GPP2 C.S0024 Ver.4.0) A high-speed packet transmission system that uses only the data portion to increase the speed is called the lxEV—DO (Evolution Data Only) system. “Lx” means a single carrier.
[0003] この lxEV— DOシステムは、例えば特許文献 1、 2に紹介されている。ここでは、図 1から図 7を参照して、本発明に関わる部分についてその概要を説明する。  [0003] This lxEV-DO system is introduced in Patent Documents 1 and 2, for example. Here, the outline of the parts related to the present invention will be described with reference to FIGS.
[0004] 図 1は、従来の高速パケット伝送システムにおける DRC (Data Rate Control)信号 送信方法を説明するシステム図である。図 1において、基地局装置 (BTS)のセル内 に居る移動機である通信端末装置 (ユーザ A、ユーザ B、ユーザ C)は、時分割された 時間位置で基地局装置と通信するが、基地局装置は、その時間位置でパケットを送 信するのに最適な通信端末装置を以下の方法で判断する。  FIG. 1 is a system diagram illustrating a DRC (Data Rate Control) signal transmission method in a conventional high-speed packet transmission system. In FIG. 1, communication terminal devices (user A, user B, user C), which are mobile devices in the cell of the base station device (BTS), communicate with the base station device at time-division time positions. The station apparatus determines the optimum communication terminal apparatus for transmitting a packet at the time position by the following method.
[0005] セル内の各通信端末装置は、基地局装置が送信する共通パイロット信号 (CPICH )を受信し、下り回線の受信品質 CIR (Carrier to Interference Ratio :搬送波対干渉 雑音電力比)を測定する。そして、各通信端末装置は、測定した受信品質において パケットの受信に使用可能なデータレートを設定し、そのデータレートを示す DRC値 を持つ DRC信号を基地局装置にある周期で送信する。  [0005] Each communication terminal device in the cell receives the common pilot signal (CPICH) transmitted by the base station device, and measures the downlink reception quality CIR (Carrier to Interference Ratio). . Then, each communication terminal apparatus sets a data rate that can be used for packet reception in the measured reception quality, and transmits a DRC signal having a DRC value indicating the data rate to the base station apparatus at a certain cycle.
[0006] ここで、 DRC値は、受信品質が良くなるほど大きな値となり、受信品質が悪くなるほ ど小さな値となる。受信品質の良い通信端末装置では、それだけ変調多値数が多く 、符号ィ匕率の低い信号を受信することが可能であるので、高い DRC値を持つ DRC 信号によって高いデータレートのパケットを要求することができる。逆に、受信品質の 悪い通信端末装置では、データレートの低いパケットでしか受信することが困難であ るので、低 、DRC値を持つ DRC信号しか送信できな!/、ことになる。 [0006] Here, the DRC value increases as the reception quality improves, and decreases as the reception quality deteriorates. A communication terminal device with good reception quality can receive a signal with a large number of modulation levels and a low code rate, so a packet with a high data rate is requested by a DRC signal having a high DRC value. be able to. Conversely, the reception quality Since it is difficult for a bad communication terminal device to receive only a packet with a low data rate, only a DRC signal having a DRC value can be transmitted! /.
[0007] 基地局装置は、各パケット割当てタイミングにおいて各通信端末装置から送信され てきた DRC信号の DRC値、更に各通信端末装置の平均データレートから、次回パ ケットを送信する通信端末装置と用いるデータレートとを決定する。そして、基地局装 置は、パケット割当てタイミング毎に、決定した通信端末装置にその IDを送信パケット 通知信号 (Preamble)によって通知することを繰り返す。  [0007] The base station apparatus uses the DRC value of the DRC signal transmitted from each communication terminal apparatus at each packet allocation timing, and the communication terminal apparatus that transmits the next packet from the average data rate of each communication terminal apparatus. Determine the data rate. Then, the base station apparatus repeatedly notifies the determined communication terminal apparatus of the ID using a transmission packet notification signal (Preamble) at every packet allocation timing.
[0008] 各通信端末装置は、自装置の ID宛ての送信パケット通知信号を検出した場合、そ の後に続いて送信されてくるパケットデータを DRC信号によって要求したデータレー トで受信することになる。  [0008] When each communication terminal apparatus detects a transmission packet notification signal addressed to its own ID, the communication terminal apparatus receives the packet data subsequently transmitted at the data rate requested by the DRC signal. .
[0009] これらの処理を各処理時間単位で繰り返し行うことによって、効率的にパケットを割 当てることが可能となり、スループットが増大する。図 1では、ユーザ A、 Bがパケット割 当てを受けるが、ユーザ Cはパケット割当てを受けないとしている。次に、従来の基地 局装置と通信端末装置の構成と具体的な動作について説明する。  [0009] By repeatedly performing these processes for each processing time unit, packets can be allocated efficiently, and throughput is increased. In Figure 1, users A and B receive packet allocation, but user C receives no packet allocation. Next, the configuration and specific operation of the conventional base station apparatus and communication terminal apparatus will be described.
[0010] 図 2は、図 1に示す基地局装置の構成例を示すブロック図である。図 2において、ァ ンテナ 1601には、図示しない送受共用器を介して受信 RF部 1602と送信 RF部 160 3とが接続されている。受信 RF部 1602は、アンテナ 1601にて受信された無線信号 をベースバンド信号に変換し、それを並列に接続される逆拡散部 1604— 1〜 1604 nに出力する。  FIG. 2 is a block diagram showing a configuration example of the base station apparatus shown in FIG. In FIG. 2, an antenna 1601 is connected to a reception RF unit 1602 and a transmission RF unit 1603 through a duplexer (not shown). Reception RF section 1602 converts a radio signal received by antenna 1601 into a baseband signal and outputs it to despreading sections 1604-1 to 1604 n connected in parallel.
[0011] 逆拡散部 1604— 1〜1604— nの出力端には、 DRC信号復調部 1605— 1〜160 5— nが 1対 1の関係で接続されている。即ち、逆拡散部と DRC信号復調部の直列回 路は、通信端末装置毎に設けられ、入力するベースバンド信号をその通信端末装置 に対応した拡散信号を用いて逆拡散し、対応する DRC信号を復元する。復元された 各通信端末装置の DRC信号はユーザスケジューラ部 1606に与えられる。割当てバ ッファ部 1607には、各通信端末装置の平均データレートが格納されている。  [0011] DRC signal demodulation units 1605-1 to 1605-n are connected to the output terminals of the despreading units 1604-1 to 1604-n in a one-to-one relationship. In other words, the serial circuit of the despreading unit and the DRC signal demodulating unit is provided for each communication terminal device, and the input baseband signal is despread using the spread signal corresponding to the communication terminal device, and the corresponding DRC signal is To restore. The restored DRC signal of each communication terminal apparatus is provided to the user scheduler unit 1606. The allocation buffer unit 1607 stores the average data rate of each communication terminal device.
[0012] ユーザスケジューラ部 1606は、各パケット割当てタイミングにおいて、復元された各 通信端末装置の DRC信号 (DRC値)を用いるスケジューリングアルゴリズムによって 、または、復元された各通信端末装置の DRC信号 (DRC値)と割当てバッファ部 16 07に格納される各通信端末装置の平均データレートとを用いるスケジューリングアル ゴリズムによって、受信品質の良い通信端末装置には高い優先度を与え、逆に受信 品質の悪い通信端末装置には低い優先度を与える。そして、各通信端末装置に与 えた優先度の中で最高の優先度を持つ通信端末装置を次回のパケット割当てタイミ ングにおいてパケットを送信する通信端末装置と決定する (パケット割当て)。 [0012] The user scheduler unit 1606 uses a scheduling algorithm that uses the restored DRC signal (DRC value) of each communication terminal apparatus at each packet allocation timing or the restored DRC signal (DRC value of each communication terminal apparatus). ) And the allocation buffer section 16 The scheduling algorithm using the average data rate of each communication terminal device stored in 07 gives high priority to communication terminal devices with good reception quality, and conversely low priority to communication terminal devices with poor reception quality. give. Then, the communication terminal device having the highest priority among the priorities given to each communication terminal device is determined as the communication terminal device that transmits the packet at the next packet allocation timing (packet allocation).
[0013] パケットフォーマット割当て部 1608は、ユーザスケジューラ部 1606が決定した通信 端末装置に送信するパケットにデータレートに応じた変調フォーマットを割当てて適 応変調部 1609に与える。また、パケットフォーマット割当て部 1608は、ユーザスケジ ユーラ部 1606が決定した通信端末装置にパケットを割当てた旨を通知する信号に 所定の変調フォーマットを割当てて送信パケット通知信号生成部 1612に与える。  [0013] Packet format assigning section 1608 assigns a modulation format corresponding to the data rate to a packet to be transmitted to the communication terminal apparatus determined by user scheduler section 1606, and provides it to adaptive modulation section 1609. Further, the packet format assigning unit 1608 assigns a predetermined modulation format to a signal notifying that the packet has been assigned to the communication terminal apparatus determined by the user scheduler unit 1606, and provides the signal to the transmission packet notification signal generating unit 1612.
[0014] 送信パケット通知信号生成部 1612は、パケットフォーマット割当て部 1608から割 当てを受けた変調フォーマットでユーザスケジューラ部 1606が決定した通信端末装 置に送信する送信パケット通知信号を生成する。生成された送信パケット通知信号 は拡散部 1613にて拡散信号となり、信号多重部 1611に入力される。  [0014] Transmission packet notification signal generation section 1612 generates a transmission packet notification signal to be transmitted to the communication terminal apparatus determined by user scheduler section 1606 in the modulation format assigned by packet format assignment section 1608. The generated transmission packet notification signal becomes a spread signal in spreading section 1613 and is input to signal multiplexing section 1611.
[0015] また、適応変調部 1609は、パケットフォーマット割当て部 1608から割当てを受けた 変調フォーマットにユーザスケジューラ部 1606が決定した通信端末装置に送信する パケット信号を適用し、それを所定の変調方式で変調する。変調されたパケット信号 は拡散部 1610にて拡散信号となり、信号多重部 1611に入力される。  [0015] In addition, adaptive modulation section 1609 applies the packet signal to be transmitted to the communication terminal apparatus determined by user scheduler section 1606 to the modulation format assigned by packet format assignment section 1608, and applies it to the modulation format using a predetermined modulation scheme. Modulate. The modulated packet signal is converted into a spread signal by the spreader 1610 and input to the signal multiplexer 1611.
[0016] さらに、パイロット信号生成部 1614にて生成されるパイロット信号は拡散部 1615に て拡散信号となり、信号多重部 1611に入力される。信号多重部 1611は、パケット信 号と送信パケット通知信号とパイロット信号とを時間多重したベースバンド信号を送信 RF部 1603に与える。送信 RF部 1603は、時間多重されたパケット信号と送信バケツ ト通知信号とパイロット信号とを無線信号に変換し、図示しな!、送受共用器を介して アンテナ 1601に供給する。  Further, the pilot signal generated by pilot signal generation section 1614 becomes a spread signal by spreading section 1615 and is input to signal multiplexing section 1611. The signal multiplexing unit 1611 provides the transmission RF unit 1603 with a baseband signal obtained by time-multiplexing the packet signal, the transmission packet notification signal, and the pilot signal. The transmission RF unit 1603 converts the time-multiplexed packet signal, the transmission bucket notification signal, and the pilot signal into a radio signal, and supplies it to the antenna 1601 via a duplexer (not shown).
[0017] また図 3は、図 1に示す通信端末装置の構成例を示すブロック図である。図 3にお いて、アンテナ 1701には、図示しない送受共用器を介して受信 RF部 1702と送信 R F部 1703とが接続されている。受信 RF部 1702は、アンテナ 1701にて受信された 無線信号をベースバンド信号に変換し、それを並列に接続される逆拡散部 1704、 1 705、 1706に出力する。 FIG. 3 is a block diagram showing a configuration example of the communication terminal apparatus shown in FIG. In FIG. 3, a reception RF unit 1702 and a transmission RF unit 1703 are connected to an antenna 1701 via a duplexer (not shown). The reception RF unit 1702 converts the radio signal received by the antenna 1701 into a baseband signal, and despreading units 1704, 1 connected in parallel Output to 705 and 1706.
[0018] 逆拡散部 1704は、入力するベースバンド信号内のデータ部分について所定の拡 散信号を用いて逆拡散し、適応復調部 1707に与える。逆拡散部 1705は、入力する ベースバンド信号内の制御情報の部分につ 、て所定の拡散信号を用いて逆拡散し 、制御情報復調部 1708に与える。適応復調部 1707は、逆拡散部 1704の出力から 元のデータ信号を復元することを制御情報復調部 1708からの制御情報に従って行 い、受信処理部 1709に与える。受信処理部 1709は、適応復調部 1707にて復元さ れたデータから受信処理状況を示す情報を抽出し、パケット受信可否情報生成部 17 16に与える。 [0018] Despreading section 1704 despreads the data portion in the input baseband signal using a predetermined spread signal, and provides it to adaptive demodulation section 1707. The despreading section 1705 despreads the control information portion in the input baseband signal using a predetermined spread signal, and gives it to the control information demodulation section 1708. Adaptive demodulation section 1707 restores the original data signal from the output of despreading section 1704 in accordance with the control information from control information demodulation section 1708, and provides it to reception processing section 1709. The reception processing unit 1709 extracts information indicating the reception processing status from the data restored by the adaptive demodulation unit 1707 and supplies the information to the packet reception availability information generation unit 17 16.
[0019] 逆拡散部 1706は、入力するベースバンド信号内のパイロット信号について所定の 拡散信号を用いて逆拡散し、受信品質測定部 1710に与える。受信品質測定部 171 0は逆拡散部 1706が出力するパイロット信号の受信レベルを用いて受信品質 CIRを 測定する。 DRC信号選択部 1711は、測定された受信品質に対応する受信可能な データレート(DRC値)を選択する。 DRC信号生成部 1712は、選択された DRC値 を持つ DRC信号を生成する。生成された DRC信号は、変調部 1713にて所定の変 調方式で変調され、拡散部 1714にて拡散信号となり、信号多重部 1715に入力され る。  Despreading section 1706 despreads the pilot signal in the input baseband signal using a predetermined spread signal, and provides the received signal to reception quality measuring section 1710. Reception quality measurement section 171 0 measures reception quality CIR using the reception level of the pilot signal output from despreading section 1706. The DRC signal selection unit 1711 selects a receivable data rate (DRC value) corresponding to the measured reception quality. The DRC signal generation unit 1712 generates a DRC signal having the selected DRC value. The generated DRC signal is modulated by a modulation unit 1713 according to a predetermined modulation method, becomes a spread signal by a spreading unit 1714, and is input to a signal multiplexing unit 1715.
[0020] パケット受信可否情報生成部 1716は、受信処理部 1709から受信処理状況を受け てパケット受信可否情報 (ACK、 NACK)を生成する。生成されたパケット受信可否 情報は、拡散部 1717にて拡散信号となり、信号多重部 1715に入力される。また、パ ィロット信号生成部 1718にて生成されるパイロット信号は拡散部 1719にて拡散信号 となり、信号多重部 1715に入力される。信号多重部 1715は、 DRC信号と DRC信号 とパイロット信号とを時間多重したベースバンド信号を送信 RF部 1703に与える。送 信 RF部 1703は、時間多重されたパケット信号と送信パケット通知信号とパイロット信 号とを無線信号に変換し、図示しない送受共用器を介してアンテナ 1701に供給す る。  [0020] The packet reception availability information generating unit 1716 receives the reception processing status from the reception processing unit 1709 and generates packet reception availability information (ACK, NACK). The generated packet reception availability information becomes a spread signal in the spreading unit 1717 and is input to the signal multiplexing unit 1715. The pilot signal generated by pilot signal generation section 1718 becomes a spread signal at spreading section 1719 and is input to signal multiplexing section 1715. The signal multiplexing unit 1715 provides the transmission RF unit 1703 with a baseband signal obtained by time-multiplexing the DRC signal, the DRC signal, and the pilot signal. Transmission RF section 1703 converts the time-multiplexed packet signal, transmission packet notification signal, and pilot signal into a radio signal, and supplies it to antenna 1701 via a duplexer (not shown).
[0021] 次に、図 4を参照して、上記構成の基地局装置と通信端末装置とによる従来の下り パケット送信処理について説明する。なお、フローチャートの説明では、処理手順を 示すステップは、「ST」と略記する。 Next, with reference to FIG. 4, a conventional downlink packet transmission process performed by the base station apparatus and communication terminal apparatus having the above configuration will be described. In the explanation of the flowchart, the processing procedure is The steps shown are abbreviated as “ST”.
[0022] 通信端末装置では、基地局装置が送信するパイロット信号を受信すると (ST1801 )、そのパイロット信号の受信レベルから下り回線の受信品質 CIRを測定し (ST1802 )、測定した受信品質 CIRに対応した使用可能なデータレートを要求データレートと して決定する(ST1803)。そして、通信端末装置では、要求データレートを示す DR C値を有する DRC信号を生成し (ST1804)、基地局装置に向けて送信する(ST18 05)。 [0022] Upon receiving the pilot signal transmitted by the base station apparatus (ST1801), the communication terminal apparatus measures the downlink reception quality CIR from the reception level of the pilot signal (ST1802), and supports the measured reception quality CIR. The usable data rate is determined as the requested data rate (ST1803). Then, the communication terminal apparatus generates a DRC signal having a DRC value indicating the requested data rate (ST1804) and transmits it to the base station apparatus (ST18 05).
[0023] 基地局装置では、 DRC信号を受信すると(ST1806)、その DRC値に基づき、また は、その DRC値と平均データレートとに基づき、各通信端末装置の優先度を算出し( ST1807)、優先度の高い通信端末装置に次回送信するパケットを割当てる(ST18 08)。そして、基地局装置では、その割当てた通信端末装置力もの DRC信号で要求 しているデータレートに応じた変調フォーマットでパケットを生成し(ST1809)、その 割当てた通信端末装置に向けてパケットを送信する(ST1810)。  [0023] Upon receiving the DRC signal (ST1806), the base station apparatus calculates the priority of each communication terminal apparatus based on the DRC value or based on the DRC value and the average data rate (ST1807). Then, the packet to be transmitted next time is assigned to the communication terminal apparatus having a high priority (ST18 08). Then, the base station device generates a packet with a modulation format corresponding to the data rate requested by the DRC signal having the assigned communication terminal device power (ST1809), and transmits the packet to the assigned communication terminal device. (ST1810).
[0024] 通信端末装置では、自装置宛てのパケットを受信すると(ST1811 :Yes)、パケット の受信処理を行い(ST1812)、受信結果に基づき肯定応答 ACKまたは否定応答 N ACKを基地局装置宛てに送信する(ST1813)。  [0024] When the communication terminal device receives the packet addressed to itself (ST1811: Yes), it performs packet reception processing (ST1812), and sends an acknowledgment ACK or negative response N ACK to the base station device based on the reception result. Transmit (ST1813).
[0025] ここで、基地局装置でのパケット割当て処理(ST1807、 ST1808)について具体 例を用いて説明する。通信端末装置の優先度を定めるスケジューリング方法は、種 々検討されているが、ここでは、代表例として、 DRC値に基づき通信端末装置の優 先度を定める MaxCIR法(図 5)と、 DRC値と平均データレートとに基づき通信端末 装置の優先度を定めるプロポーショナルフェアネス(Proportional Fairness)法(図 6) とを取り上げて説明する。  Here, packet allocation processing (ST1807, ST1808) in the base station apparatus will be described using a specific example. Various scheduling methods for determining communication terminal device priorities have been studied, but here, representative examples are the MaxCIR method (Fig. 5), which determines the communication terminal device priority based on the DRC value, and the DRC value. The Proportional Fairness method (Fig. 6), which determines the priority of communication terminal devices based on the average data rate, is explained.
[0026] 図 5は、 DRC値に基づき通信端末装置の優先度を定める MaxCIR法によるバケツ ト割当て結果の一例を示す図である。図 6は、プロポーショナルフェアネス法によるパ ケット割当て結果の一例を示す図である。なお、図 5と図 6では、通信端末装置数は" 3"としている。また、パケット割当てタイミングは、 # 1〜# 4の 4つが示されている。  [0026] FIG. 5 is a diagram showing an example of a bucket assignment result by the MaxCIR method for determining the priority of the communication terminal device based on the DRC value. Fig. 6 is a diagram showing an example of the packet allocation result by the proportional fairness method. In FIGS. 5 and 6, the number of communication terminal devices is “3”. Also, four packet allocation timings # 1 to # 4 are shown.
[0027] 図 5では、項目として「パケット割当てタイミング」と、各通信端末装置から受信した「 DRC値」と、決定した「割当て DRC値」とが示されている。 MaxCIR法では、各バケツ ト割当てタイミングにおいて、各通信端末装置の DRC値をその通信端末装置が持つ 優先度と決定する。そして、各通信端末装置が持つ DRC値 (優先度)の中で最高の DRC値を「割当て DRC値」と決定し、この「割当て DRC値」を持つ通信端末装置に 優先的にパケットを割当てる。 In FIG. 5, “packet allocation timing”, “DRC value” received from each communication terminal device, and “assigned DRC value” determined are shown as items. In the MaxCIR method, each bucket The DRC value of each communication terminal device is determined as the priority of that communication terminal device. Then, the highest DRC value (priority) among the DRC values (priority) of each communication terminal device is determined as an “assigned DRC value”, and packets are preferentially assigned to the communication terminal devices having this “assigned DRC value”.
[0028] 即ち、パケット割当てタイミング # 1においては、ユーザ A、 B、 C力も受信した DRC 信号が持つ DRC値は、それぞれ" 10""8""3"である。この場合は、最高の DRC値" 10"が「割当て DRC値」となり、「割当て DRC値」 "10"を持つユーザ Aに優先的にパ ケットを割当てる。以降、同様であって、パケット割当てタイミング # 2、 # 3、 # 4では 、ユーザ B、ユーザ A、ユーザ Bの順でパケットが割当てられる。ユーザ Cは、パケット 割当てタイミング # 1〜# 4では、受信環境が悪いのでパケットの割当てを受けること ができない。 That is, at the packet allocation timing # 1, the DRC values of the DRC signals that have received the user A, B, and C forces are “10”, “8”, and “3”, respectively. In this case, the highest DRC value “10” becomes the “assigned DRC value”, and the packet is preferentially assigned to user A who has the “assigned DRC value” “10”. Thereafter, the same applies, and at packet allocation timings # 2, # 3, and # 4, packets are allocated in the order of user B, user A, and user B. User C cannot receive packet allocation at packet allocation timings # 1 to # 4 because the reception environment is poor.
[0029] これによつて、パケット割当てタイミング # 1では、ユーザ Aにパケットが送信される。  Accordingly, a packet is transmitted to user A at packet allocation timing # 1.
次のパケット割当てタイミング # 2では、ユーザ Bにパケットが送信される。次のバケツ ト割当てタイミング # 3では、ユーザ Aにパケットが送信される。その次の図示しない パケット割当てタイミング # 4では、ユーザ Bにパケットが送信されることになる。  At the next packet allocation timing # 2, the packet is transmitted to the user B. At the next bucket allocation timing # 3, a packet is transmitted to user A. At the next packet allocation timing # 4 (not shown), the packet is transmitted to the user B.
[0030] 図 6では、項目として「パケット割当てタイミング」と、各通信端末装置から受信した D RC値を平均データレート R (t)で除算した値「DRCZR (t)」と、決定した「割当て DR C値」とが示されている。プロポーショナルフェアネス法では、各パケット割当てタイミ ングにおいて、通信端末装置毎に算出した値「DRCZR(t)」をその通信端末装置 が持つ優先度とする。そして、各通信端末装置が持つ優先度「DRCZR(t)」の中で 最高の優先度「DRCZR (t)」を「割当て DRC値」と決定し、この「割当て DRC値」を 持つ通信端末装置に優先的にパケットを割当てる。  In FIG. 6, as items, “packet allocation timing”, a value “DRCZR (t)” obtained by dividing the D RC value received from each communication terminal device by the average data rate R (t), and the determined “allocation” DR C value "is shown. In the proportional fairness method, at each packet allocation timing, the value “DRCZR (t)” calculated for each communication terminal apparatus is set as the priority of the communication terminal apparatus. Then, the highest priority “DRCZR (t)” in the priority “DRCZR (t)” of each communication terminal device is determined as the “assigned DRC value”, and the communication terminal device having this “assigned DRC value” Preferentially assign packets to.
[0031] このような割当て方法では、パケットが割当てられた通信端末装置は平均データレ ート R(t)が上昇するので、優先度「DRCZR (t)」が徐々に低くなる。一方、パケット が割当てられて!/、な 、通信端末装置では平均データレート R (t)が下降して 、くので 、優先度「DRCZR(t)」が徐々に高くなつていく。その結果、パケットが割当てられて V、な 、通信端末装置でもパケットの割当てを受けることができるようになる。このように 、プロポーショナルフェアネス法では、通信端末装置毎のパケット割当てをできるだけ 公平に実施できるようになって 、る。 In such an allocation method, since the average data rate R (t) increases in the communication terminal device to which the packet is allocated, the priority “DRCZR (t)” gradually decreases. On the other hand, the average data rate R (t) decreases in the communication terminal device when the packet is allocated! /, So the priority “DRCZR (t)” gradually increases. As a result, the packet is assigned and V, and the communication terminal device can receive the packet assignment. In this way, with the proportional fairness method, packet allocation for each communication terminal device is possible as much as possible. It will be possible to implement fairly.
[0032] 図 6において、パケット割当てタイミング # 1では、ユーザ A、 B、 Cの優先度「DRC ZR (t)」は、それぞれ" 10""8""3"であり、「割当て DRC値」は" 10"となる。パケット 割当てタイミング # 2では、ユーザ Bの優先度「DRCZR(t)」 "9"が「割当て DRC値」 となり、ユーザ Cの優先度「DRCZR(t)」は "3"から" 4"に上昇する一方、ユーザ Aの 優先度「DRCZR (t)」は "10"から" 5"に大きく下降する。  In FIG. 6, at packet allocation timing # 1, the priorities “DRC ZR (t)” of users A, B, and C are “10”, “8”, and “3”, respectively, and “allocated DRC value” Becomes "10". At packet allocation timing # 2, user B's priority “DRCZR (t)” “9” becomes “allocation DRC value”, and user C ’s priority “DRCZR (t)” increases from “3” to “4”. On the other hand, the priority “DRCZR (t)” of user A drops greatly from “10” to “5”.
[0033] パケット割当てタイミング # 3では、ユーザ Aの優先度「DRCZR (t)」 "7"が「割当て DRC値」となり、ユーザ Cの優先度「DRCZR(t)」は" 4"から" 5"に上昇する一方、 ユーザ Bの優先度「DRCZR(t)」は "9"から" 3"に大きく下降する。そして、パケット 割当てタイミング # 4では、ユーザ A、 B、 Cの優先度「DRCZR (t)」は、それぞれ" 2 ""4""6"であり、「割当て DRC値」はユーザ Cが持つ優先度「DRCZR (t)」 "6"とな る。  [0033] At packet allocation timing # 3, user A's priority “DRCZR (t)” “7” becomes “allocation DRC value”, and user C's priority “DRCZR (t)” changes from “4” to “5”. On the other hand, the priority “DRCZR (t)” of user B greatly decreases from “9” to “3”. At packet allocation timing # 4, the priority “DRCZR (t)” of users A, B, and C is “2”, “4”, and “6”, respectively, and “allocation DRC value” is the priority that user C has. Degree “DRCZR (t)” “6”.
[0034] このように、ユーザ Cは、パケット割当てタイミング # 1、 # 2、 # 3では、優先度「DR CZR(t)」がユーザ A、 Bのそれよりもかなり低いので、パケットは割当てられないが、 プロポーショナルフェアネス法では、ユーザ Cの優先度「DRCZR (t)」は徐々に上昇 していくので、ユーザ Cは、パケット割当てタイミング # 4では、パケット割当てを受け ることがでさる。  [0034] In this manner, at the packet allocation timings # 1, # 2, and # 3, user C has a priority “DR CZR (t)” that is significantly lower than that of users A and B. However, in the proportional fairness method, user C's priority “DRCZR (t)” gradually increases, so user C can receive a packet allocation at packet allocation timing # 4.
[0035] ところで、以上はシングルキャリアシステムでの説明であるが、今後、要求されるデ ータ伝送速度及びスループットの増大に伴って、このような高速パケット伝送システム のマルチキャリア化が想定される。実際、米国のクアルコム(Qualcomm)社では、 IxE V— DOシステムのオプションとして、 lxEV— DOシステムのキャリアを複数本にした システム(2x、 3xEV— DOシステム)の検討を行って 、る。  [0035] By the way, the above is a description on a single carrier system. However, with the increase in required data transmission speed and throughput, it is assumed that such a high-speed packet transmission system will be multi-carrier. . In fact, Qualcomm in the United States is examining a system with multiple lxEV—DO system carriers (2x, 3xEV—DO system) as an option for the IxE V—DO system.
[0036] 図 7は、マルチキャリアの高速パケット伝送システムにおける従来技術による DRC 信号送信方法を説明するシステム図である。 EV— DOシステムのような広帯域システ ムをマルチキャリア化した場合、隣り合うキャリアでも帯域幅が広いので、それぞれの キャリアが受けるマルチパスフェージングは全く相関性が無い。このこと力ら、図 7に 示すように、セル内の各通信端末装置 (ユーザ A、 B、 C)は、それぞれのキャリアにお ける受信環境を推定し、それぞれのキャリアに対する DRC信号を基地局装置に送信 する必要がある。そして、基地局装置は、キャリア毎に優先度を調べてパケット割当て を行う必要がある。 FIG. 7 is a system diagram illustrating a DRC signal transmission method according to the prior art in a multicarrier high-speed packet transmission system. When a broadband system such as the EV-DO system is converted to a multicarrier, the adjacent carriers have a wide bandwidth, so the multipath fading received by each carrier has no correlation. Because of this, as shown in FIG. 7, each communication terminal apparatus (users A, B, and C) in the cell estimates the reception environment in each carrier and transmits the DRC signal for each carrier to the base station. Send to device There is a need to. The base station device needs to check the priority for each carrier and perform packet allocation.
特許文献 1:特表 2004— 502328号公報  Patent Document 1: Special Table 2004—502328
特許文献 2 :特開 2002— 118514号公報  Patent Document 2: Japanese Patent Laid-Open No. 2002-118514
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0037] 従来の高速パケット伝送システムである lxEV— DOシステムでは、上記のように各 通信端末装置は、 DRC信号をある一定の周期で一度は基地局装置に送信する必 要があるが、各通信端末装置は、同一チャネルを用いて DRC信号を送信している。 したがって、特許文献 1、 2でも指摘しているように、あるタイミングにおいて複数通信 端末装置の DRC信号送信が重なった場合、上りリンクの干渉が増大し通信品質が 劣化してしまう可能性がある。  [0037] In the lxEV-DO system, which is a conventional high-speed packet transmission system, each communication terminal apparatus needs to transmit a DRC signal to the base station apparatus once at a certain period as described above. The communication terminal device transmits the DRC signal using the same channel. Therefore, as pointed out in Patent Documents 1 and 2, if DRC signal transmissions of multiple communication terminal devices overlap at a certain timing, uplink interference may increase and communication quality may deteriorate.
[0038] また、上記のように基地局装置では、各通信端末装置から送信された DRC信号の 中からパケット送信通信端末装置を決定し、決定した通信端末装置に対してのみ次 回のパケットを送信するので、基地局装置にとってパケット割当てをしない他の大多 数の DRC信号はその時点では不必要なものである。この点に関し特許文献 1では、 基地局装置力 Sスケジューリングを行う時にのみ各通信端末装置が DRC信号を送信 する方法が提案されているが、各通信端末装置はパケット割当て可能性に関係なく DRC信号を送信するので、基地局装置にとって不必要な DRC信号が送信されてく ることには変わりない。  [0038] Further, as described above, the base station apparatus determines the packet transmission communication terminal apparatus from the DRC signals transmitted from the respective communication terminal apparatuses, and sends the next packet only to the determined communication terminal apparatus. Because it transmits, the majority of other DRC signals that do not allocate packets to the base station are unnecessary at that time. In this regard, Patent Document 1 proposes a method in which each communication terminal apparatus transmits a DRC signal only when base station apparatus power S scheduling is performed. Therefore, the DRC signal unnecessary for the base station device is transmitted.
[0039] ここで、各通信端末装置が DRC信号をある一定の周期で一度は基地局装置に送 信する点に関し、図 5と図 6に示したパケット割当て処理方法を検討すると、次のよう なことが解る。  [0039] Here, the packet allocation processing methods shown in Figs. 5 and 6 are examined in terms of the point that each communication terminal apparatus transmits a DRC signal to the base station apparatus once at a certain period. I understand that.
[0040] 図 5において、通信端末装置 Cは、パケット割当てタイミング # 1〜 # 4では、バケツ トの割当てを受けることができないが、これは、たまたまこの時点で下り回線の受信品 質が劣悪なためである。しかし、従来では、各通信端末装置はパケット割当ての可能 性に関係なく DRC値を報告するので、通信端末装置 Cは、パケット割当ての可能性 が低 、パケット割当てタイミング # 1〜 # 4にお 、て無駄な DRC信号を送信し続けて いることになる。その結果、通信端末装置 Cでは、パケット割当ての可能性が低い DR C信号生成のための処理が無駄になり、送信電力を浪費することになる。 [0040] In FIG. 5, the communication terminal device C cannot receive the packet allocation at the packet allocation timings # 1 to # 4, but this happens because the reception quality of the downlink is poor at this point. Because. However, conventionally, each communication terminal device reports the DRC value regardless of the possibility of packet assignment, so communication terminal device C has a low possibility of packet assignment, and packet assignment timings # 1 to # 4 Keep sending unnecessary DRC signals Will be. As a result, in the communication terminal apparatus C, processing for generating a DR C signal with low possibility of packet allocation is wasted, and transmission power is wasted.
[0041] また、ユーザ Cが送信し続けるパケット割当ての可能性が低 、DRC信号は、他の 通信端末装置 (ユーザ A、 B)にとつて干渉となり得る。その結果、例えば、ノ ケット割 当てタイミング # 1において、ユーザ Cの DRC値力 3"ではなぐ' 12"と誤って受信さ れてしまった場合、基地局装置ではユーザ Cにパケットを誤って割当ててしまうことが 起こる。しかし、ユーザ Cは、実際の受信品質は劣悪なでるので、正確にデータを受 信することができずにパケットの再送が起こる。そのため、スループットにも悪影響を 及ぼす可能性がある。 [0041] Further, since the possibility of packet allocation that user C continues to transmit is low, the DRC signal may cause interference with other communication terminal apparatuses (users A and B). As a result, if, for example, at the packet allocation timing # 1, it is erroneously received that the user C's DRC value of 3 is not "12" but the base station device incorrectly allocates a packet to user C. Will happen. However, since the actual reception quality of user C is inferior, the data cannot be received correctly and the packet is retransmitted. As a result, throughput may be adversely affected.
[0042] また、図 6において、ユーザ Cは、パケット割当てタイミング # 1〜 # 3では優先度が 低いのでパケット割当てを受け得ないが、パケット割当てタイミング # 1〜 # 3と進行 するに伴 、優先度が上昇し、パケット割当てタイミング # 4では他の通信端末装置( ユーザ A、 B)のそれよりも高くなるので、パケット割当てを受けることできる。しかし、こ の例においても、ユーザ Cにとつて、パケット割当てタイミング # 1〜# 3での DRC信 号送信は無駄な送信であると言える。つまり、図 6に示す例では、ユーザ Cは、このパ ケット割当てタイミング # 4でのみ DRC信号を送るのが望ま 、。  [0042] In FIG. 6, user C cannot receive a packet assignment because the priority is low at packet assignment timings # 1 to # 3, but priority is given to the progress of packet assignment timings # 1 to # 3. The packet allocation timing # 4 is higher than that of the other communication terminal devices (users A and B), so that packet allocation can be received. However, even in this example, it can be said that the DRC signal transmission at packet allocation timings # 1 to # 3 is useless transmission for user C. In other words, in the example shown in FIG. 6, user C wants to send a DRC signal only at this packet allocation timing # 4.
[0043] そして、図 7に示したように、高速パケット伝送システムのマルチキャリア化が行われ た場合には、各通信端末装置は、それぞれのキャリアにおいて DRC信号を送信する 必要があり、基地局装置は、それぞれのキャリアにおいてパケット割当て処理を行う 必要があるので、セル内の各通信端末装置 (ユーザ A、 B、 C)では、 DRC信号生成 の処理量と電力消費量とが増大し、基地局装置ではスケジューリング負荷がキャリア 本数倍に増大する。このことは、マルチキャリアシステムの導入の際には大きな課題と なる可能性がある。  [0043] As shown in FIG. 7, when the high-speed packet transmission system is converted to multicarriers, each communication terminal apparatus needs to transmit a DRC signal in each carrier. Since the device needs to perform packet allocation processing in each carrier, the communication terminal devices (users A, B, and C) in the cell increase the processing amount and power consumption of DRC signal generation, and In the station equipment, the scheduling load increases by the number of carriers. This can be a major challenge when introducing multi-carrier systems.
[0044] 本発明の目的は、スループットの劣化を抑制しつつパケット割当て可能性の低!、D RC値を持つ DRC信号は送信しな 、ように制御できる高速パケット伝送システムにお ける通信端末装置及び DRC信号送信方法を提供することである。  [0044] An object of the present invention is to provide a communication terminal apparatus in a high-speed packet transmission system that can be controlled so as not to transmit a DRC signal having a DRC value while suppressing the deterioration of throughput and suppressing packet degradation. And providing a DRC signal transmission method.
課題を解決するための手段  Means for solving the problem
[0045] 本発明の通信端末装置は、下り回線の受信品質を測定する受信品質測定手段と、 通信相手の基地局装置から送信されるパケットのデータレートを前記測定された受 信品質に基づ!、て選択する選択手段と、前記選択されたデータレートを示す DRC ( Data Rate Control)信号を生成する DRC信号生成手段と、前記基地局装置に対し て前記生成された DRC信号を送信する送信手段と、を具備し、前記選択手段は、前 記選択したデータレートがしきい値以上のときにのみ当該データレートを前記 DRC 信号生成手段に出力する構成を採る。 [0045] A communication terminal apparatus according to the present invention comprises reception quality measuring means for measuring reception quality of a downlink, A selection means for selecting a data rate of a packet transmitted from the communication partner base station apparatus based on the measured reception quality, and a DRC (Data Rate Control) signal indicating the selected data rate. DRC signal generating means for generating, and transmitting means for transmitting the generated DRC signal to the base station apparatus, wherein the selecting means is configured such that the selected data rate is equal to or higher than a threshold value. The data rate is output to the DRC signal generation means only in the above.
[0046] 本発明の DRC信号送信方法は、下り回線の受信品質を測定する受信品質測定ェ 程と、通信相手の基地局装置力 送信されるパケットのデータレートを前記測定され た受信品質に基づ!/ヽて選択する選択工程と、前記選択されたデータレートを示す D RC (Data Rate Control)信号を生成する DRC信号生成工程と、前記基地局装置に 対して前記生成された DRC信号を送信する送信工程と、を具備し、前記選択工程は 、前記選択したデータレートがしきい値以上のときにのみ当該データレートを前記 D RC信号生成工程に出力する方法を採る。 [0046] The DRC signal transmission method of the present invention is based on the reception quality measurement process for measuring the reception quality of the downlink and the data rate of the transmitted packet based on the measured reception quality. A selection step for selecting and selecting, a DRC signal generation step for generating a DRC (Data Rate Control) signal indicating the selected data rate, and the DRC signal generated for the base station apparatus A transmission step of transmitting, and the selection step employs a method of outputting the data rate to the DRC signal generation step only when the selected data rate is equal to or higher than a threshold value.
発明の効果  The invention's effect
[0047] 本発明によれば、パケット割当て可能性が低い場合に持つ DRC信号を送信しない ように制御できるので、スループットの劣化を抑制することができる。この結果、(1)上 りリンク干渉量の減少による通信品質改善、 (2)通信端末装置での処理量及び電力 消費量の削減、(3)基地局装置でのパケット割当てスケジューリングの処理量削減等 の効果が得られる。特に、 (2) (3)の効果が得られることは、今後、運用が想定される マルチキャリアの高速パケット伝送システムにおいて大きな意義を持つ。  [0047] According to the present invention, since it is possible to control not to transmit the DRC signal that is possessed when the packet allocation possibility is low, it is possible to suppress degradation of throughput. As a result, (1) communication quality improvement by reducing uplink interference amount, (2) processing amount and power consumption reduction in communication terminal equipment, and (3) packet allocation scheduling processing amount reduction in base station equipment Etc. are obtained. In particular, the effects of (2) and (3) are significant in multi-carrier high-speed packet transmission systems that are expected to be used in the future.
図面の簡単な説明  Brief Description of Drawings
[0048] [図 1]従来の高速パケット伝送システムにおける DRC信号送信方法を説明するシス テム図  [0048] [FIG. 1] A system diagram for explaining a DRC signal transmission method in a conventional high-speed packet transmission system.
[図 2]図 1に示す基地局装置の構成例を示すブロック図  FIG. 2 is a block diagram showing a configuration example of the base station apparatus shown in FIG.
[図 3]図 1に示す通信端末装置の構成例を示すブロック図  FIG. 3 is a block diagram showing a configuration example of the communication terminal apparatus shown in FIG.
[図 4]従来の下りパケット送信処理を説明するフローチャート  FIG. 4 is a flowchart for explaining conventional downlink packet transmission processing.
[図 5]DRC値に基づき通信端末装置の優先度を定める MaxCIR法による従来のパ ケット割当て結果の一例を示す図 圆 6]DRC値と平均データレートとに基づき通信端末装置の優先度を定めるプロボ ーショナルフェアネス(Proportional Fairness)法による従来のパケット割当て結果の 一例を示す図 [Fig. 5] A diagram showing an example of conventional packet allocation results by the MaxCIR method that determines the priority of communication terminal devices based on DRC values. 圆 6] A diagram showing an example of a conventional packet allocation result by the Proportional Fairness method that determines the priority of the communication terminal device based on the DRC value and the average data rate
[図 7]マルチキャリアの高速パケット伝送システムにおける従来技術による DRC信号 送信方法を説明するシステム図  [Fig.7] System diagram for explaining DRC signal transmission method by conventional technology in multi-carrier high-speed packet transmission system
[図 8]本発明の実施の形態 1に係る高速パケット伝送システムにおける DRC信号送 信方法を説明するシステム図  FIG. 8 is a system diagram illustrating a DRC signal transmission method in the high-speed packet transmission system according to the first embodiment of the present invention.
圆 9]図 8に示す基地局装置の構成例を示すブロック図 [9] Block diagram showing a configuration example of the base station device shown in FIG.
圆 10]図 8に示す通信端末装置の構成例を示すブロック図 [10] Block diagram showing a configuration example of the communication terminal device shown in FIG.
圆 11]本発明の実施の形態 1に係る下りパケット送信処理を説明するフローチャート [図 12]DRC値に基づき通信端末装置の優先度を定める MaxCIR法に本発明の実 施の形態 1を適用した場合のパケット割当て結果の一例を示す図 圆 11] Flowchart for explaining downlink packet transmission processing according to the first embodiment of the present invention. [Fig. 12] The first embodiment of the present invention is applied to the MaxCIR method for determining the priority of the communication terminal device based on the DRC value. Of an example of packet allocation results
圆 13]DRC値と平均データレートとに基づき通信端末装置の優先度を定めるプロボ ーショナルフェアネス(Proportional Fairness)法に本発明の実施の形態 1を適用した 場合のパケット割当て結果の一例を示す図 圆 13] A diagram showing an example of a packet allocation result when Embodiment 1 of the present invention is applied to the Proportional Fairness method that determines the priority of a communication terminal device based on the DRC value and the average data rate
[図 14]本発明の実施の形態 2に係る高速パケット伝送システムにおける DRC信号送 信方法を説明するシステム図  FIG. 14 is a system diagram illustrating a DRC signal transmission method in the high-speed packet transmission system according to the second embodiment of the present invention.
圆 15]図 14に示す通信端末装置の構成例を示すブロック図(その 1) [15] Block diagram showing a configuration example of the communication terminal device shown in FIG. 14 (part 1)
圆 16]本発明の実施の形態 2に係る下りパケット送信処理を説明するフローチヤ一ト( その 1) [16] Flowchart explaining downlink packet transmission processing according to Embodiment 2 of the present invention (part 1)
圆 17]図 14に示す通信端末装置の構成例を示すブロック図(その 2) [17] Block diagram showing a configuration example of the communication terminal device shown in FIG. 14 (part 2)
圆 18]本発明の実施の形態 2に係る下りパケット送信処理を説明するフローチヤ一ト( その 2) [18] Flowchart for explaining downlink packet transmission processing according to Embodiment 2 of the present invention (part 2)
[図 19]本発明の実施の形態 3に係るマルチキャリア化した高速パケット伝送システム における DRC信号送信方法を説明するシステム図  FIG. 19 is a system diagram for explaining a DRC signal transmission method in a multi-carrier high-speed packet transmission system according to Embodiment 3 of the present invention.
圆 20]図 19に示す通信端末装置の構成例を示すブロック図 [20] Block diagram showing a configuration example of the communication terminal device shown in FIG.
圆 21]本発明の実施の形態 3に係る下りパケット送信処理を説明するフローチャート 発明を実施するための最良の形態 [0049] 以下、本発明の実施の形態について図面を参照して詳細に説明する。 圆 21] Flowchart for explaining downlink packet transmission processing according to Embodiment 3 of the present invention Best Mode for Carrying Out the Invention Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0050] (実施の形態 1)  [0050] (Embodiment 1)
図 8は、本発明の実施の形態 1に係る高速パケット伝送システムにおける DRC信号 送信方法を説明するシステム図である。図 8において、基地局装置(BTS) 101のセ ル内に居る移動機である通信端末装置 (ユーザ A) 102、通信端末装置 (ユーザ B) 1 03、通信端末装置 (ユーザ C) 104は、時分割された時間位置で基地局装置 101と 通信するが、基地局装置 101は、過去のパケット割当て状況や、各通信端末装置か ら送られてくる DRC信号の履歴等力 パケット割当てを受け得る可能性の判断基準 を与える DRCしきい値 105を算出し、それをセル内に居る各通信端末装置に対して ある周期で報知し、その時間位置でパケットを送信するのに最適な通信端末装置を 以下の方法で判断する。  FIG. 8 is a system diagram illustrating a DRC signal transmission method in the high-speed packet transmission system according to Embodiment 1 of the present invention. In FIG. 8, a communication terminal device (user A) 102, a communication terminal device (user B) 103, and a communication terminal device (user C) 104, which are mobile devices in the cell of the base station device (BTS) 101, The base station apparatus 101 communicates with the base station apparatus 101 at the time-division time position, but the base station apparatus 101 can receive packet allocations such as past packet allocation status and history of DRC signals sent from each communication terminal apparatus. A DRC threshold value 105 that gives a criterion for the possibility is calculated, communicated to each communication terminal device in the cell at a certain period, and optimal for transmitting a packet at that time position Is determined by the following method.
[0051] セル内の各通信端末装置は、基地局装置 101から送られてくる DRCしきい値 105 を保持するとともに、基地局装置 101が送信する共通パイロット信号 (CPICH)を受 信し、下り回線の受信品質 CIRを測定する。そして、各通信端末装置は、測定した受 信品質においてパケットの受信に使用可能なデータレートを設定し、そのデータレー トを示す DRC値が DRCしきい値 105を超えているときに、その DRC値を持つ DRC 信号を基地局装置 101に送信する。  [0051] Each communication terminal apparatus in the cell holds the DRC threshold value 105 transmitted from the base station apparatus 101, receives the common pilot signal (CPICH) transmitted from the base station apparatus 101, and receives the downlink signal. Measure the line reception quality CIR. Then, each communication terminal sets a data rate that can be used for packet reception in the measured reception quality, and when the DRC value indicating the data rate exceeds the DRC threshold 105, the DRC A DRC signal having a value is transmitted to base station apparatus 101.
[0052] ここで、 DRC値は、受信品質が良くなるほど大きな値となり、受信品質が悪くなるほ ど小さな値となる。受信品質の良い通信端末装置では、それだけ変調多値数が多く 、符号ィ匕率の低い信号を受信することが可能であるので、測定した受信品質に対応 するデータレートを示す DRC値が DRCしきい値 105を超えているときは、ノ ケット割 当てを受け得る可能性が有ると判断して DRC信号を送信し、測定した受信品質に対 応するデータレートのパケットを要求する。逆に、受信品質の悪い通信端末装置では 、測定した受信品質に対応するデータレートを示す DRC値が DRCしき 、値 105を超 えないときは、パケット割当てを受け得る可能性が低いと判断し、その低い DRC値を 持つ DRC信号の送信を見合わせる。  [0052] Here, the DRC value increases as the reception quality improves, and decreases as the reception quality deteriorates. A communication terminal device with good reception quality can receive a signal with a large number of modulation levels and a low code rate, so the DRC value indicating the data rate corresponding to the measured reception quality is DRC. If the threshold value 105 is exceeded, it is judged that there is a possibility of receiving a knot assignment, and a DRC signal is transmitted, and a packet with a data rate corresponding to the measured reception quality is requested. Conversely, in a communication terminal device with poor reception quality, if the DRC value indicating the data rate corresponding to the measured reception quality exceeds the DRC value and does not exceed the value 105, it is determined that the possibility of receiving packet allocation is low. , Stop sending DRC signals with low DRC values.
[0053] 図 8では、通信端末装置 102と通信端末装置 103が、測定した受信品質に対応す るデータレートを示す DRC値が DRCしき!/、値 105を超えたので、 DRC信号を送信 するが、通信端末装置 Cは、測定した受信品質に対応するデータレートを示す DRC 値が DRCしき!/、値 105を超えな!/、ので、 DRC信号を送信しな!、として!/、る。 In FIG. 8, communication terminal apparatus 102 and communication terminal apparatus 103 transmit a DRC signal because the DRC value indicating the data rate corresponding to the measured reception quality exceeds DRC threshold! /, Value 105. However, since the DRC value indicating the data rate corresponding to the measured reception quality does not exceed the DRC threshold! /, The value 105 does not exceed! /, The communication terminal device C does not transmit the DRC signal! The
[0054] 基地局装置 101は、各パケット割当てタイミングにおいて、通信端末装置 102と通 信端末装置 103から送信されてきた DRC信号の DRC値、更に各通信端末装置の 平均データレートから、次回パケットを送信する通信端末装置と用いるデータレートと を決定する。そして、基地局装置 101は、パケット割当てタイミング毎に、決定した通 信端末装置にその IDを送信パケット通知信号 (Preamble)によって通知することを繰 り返す。 [0054] At each packet allocation timing, base station apparatus 101 determines the next packet from the DRC value of the DRC signal transmitted from communication terminal apparatus 102 and communication terminal apparatus 103, and from the average data rate of each communication terminal apparatus. The communication terminal device to be transmitted and the data rate to be used are determined. Then, base station apparatus 101 repeats notifying the determined communication terminal apparatus of the ID using a transmission packet notification signal (Preamble) at every packet allocation timing.
[0055] 図 8では、通信端末装置 102と通信端末装置 103がパケット割当て 106、 107をそ れぞれ受けるとしている。通信端末装置 102と通信端末装置 103は、自装置の ID宛 ての送信パケット通知信号 (Preamble)を検出した場合、その後に続いて送信されて くるパケットデータを DRC信号によって要求したデータレートで受信することになる。  In FIG. 8, it is assumed that communication terminal apparatus 102 and communication terminal apparatus 103 receive packet assignments 106 and 107, respectively. When communication terminal apparatus 102 and communication terminal apparatus 103 detect a transmission packet notification signal (Preamble) addressed to their own ID, they receive the subsequent packet data transmitted at the data rate requested by the DRC signal. Will do.
[0056] 次に、図 8から図 13を参照して、基地局装置と通信端末装置の構成例と、本実施 の形態 1に係る下りパケット送信処理動作とについて説明する。図 9は、図 8に示す基 地局装置の構成例を示すブロック図である。なお、図 9では、図 2に示した構成要素 と同一ないしは同等である構成要素には、同一の符号が付されている。ここでは、本 実施の形態 1に関わる部分について説明する。  Next, configuration examples of the base station apparatus and the communication terminal apparatus and the downlink packet transmission processing operation according to Embodiment 1 will be described with reference to FIG. 8 to FIG. FIG. 9 is a block diagram showing a configuration example of the base station apparatus shown in FIG. In FIG. 9, components that are the same as or equivalent to the components shown in FIG. 2 are given the same reference numerals. Here, the parts related to the first embodiment will be described.
[0057] 図 9に示すように、本実施の形態 1に係る基地局装置は、図 2に示した構成におい て、 DRCしきい値算出部 201と、報知信号生成部 202と、拡散部 203とが追加され ている。  As shown in FIG. 9, in the configuration shown in FIG. 2, the base station apparatus according to Embodiment 1 has a DRC threshold value calculation section 201, a broadcast signal generation section 202, and a spreading section 203. And have been added.
[0058] DRCしきい値算出部 201では、例えば、次の(1)〜(5)の方法で DRCしきい値を 算出し、その算出した DRCしきい値を報知信号生成部 202に与える。即ち、 (1) DR C信号復調部 1605— 1〜1605— nから各 DRC信号に基づき、過去数回の全受信 DRC値の平均値を算出し、それを DRCしきい値とする。(2)過去数回の全受信 DR C値の平均値を算出し、その平均値にオフセットをカ卩えたものを DRCしきい値とする 。 (3)割当てバッファ部 1607に蓄積される過去数回のパケット割当て DRC値の平均 値を算出し、それを DRCしきい値とする。(4)割当てバッファ部 1607に蓄積される過 去数回のパケット割当て DRC値の平均値を算出し、その平均値にオフセットを加え たものを DRCしきい値とする。(5)更に、(1)〜(4)の方法を組み合わせて DRCしき い値を求める。例えば、(1)の方法で算出した DRCしきい値と、(3)の方法で算出し た DRCしき!/、値とのうち、低 、方を DRCしき!/、値とする。 The DRC threshold value calculation unit 201 calculates the DRC threshold value by, for example, the following methods (1) to (5), and provides the calculated DRC threshold value to the notification signal generation unit 202. (1) Based on each DRC signal from the DRC signal demodulating units 1605-1 to 1605-n, the average value of all the received DRC values in the past several times is calculated and used as the DRC threshold value. (2) Calculate the average value of all received DRC values in the past several times, and set the average value plus an offset as the DRC threshold value. (3) Allocation buffer unit The average value of the past several packet allocation DRC values accumulated in 1607 is calculated and used as the DRC threshold value. (4) Allocation buffer unit Calculates the average value of the past several packet allocation DRC values accumulated in 1607 and adds an offset to the average value. This is the DRC threshold. (5) Further, determine the DRC threshold by combining the methods (1) to (4). For example, the lower one of the DRC threshold value calculated by method (1) and the DRC threshold value calculated by method (3) is the DRC threshold value! /.
[0059] 報知信号生成部 202では、 DRCしきい値算出部 201が算出した DRCしきい値を 各通信端末装置に報知する信号の生成を例えば次の(1)〜(3)の方法で行う。即ち 、(1)パケットデータの先頭に載置される送信パケット通知信号 (Preamble)に DRCし きい値情報を挿入する。(2)別の下りチャネルに DRCしきい値情報を埋め込む。(3) 新規の報知チャネルに DRCしきい値情報を埋め込む。  In the notification signal generation unit 202, a signal for notifying each communication terminal device of the DRC threshold calculated by the DRC threshold calculation unit 201 is generated by, for example, the following methods (1) to (3): . That is, (1) DRC threshold information is inserted into a transmission packet notification signal (Preamble) placed at the head of packet data. (2) Embed DRC threshold information in another downlink channel. (3) Embed DRC threshold information in a new broadcast channel.
[0060] 拡散部 203では、報知信号生成部 202が生成した報知信号を拡散信号に変換し て信号多重部 1611に与える。これによつて、基地局装置力もセル内に向けて、パケ ット信号と送信パケット通知信号とパイロット信号と DRCしきい値の報知信号とが時間 多重されて送信される。  [0060] Spreading section 203 converts the broadcast signal generated by broadcast signal generation section 202 into a spread signal and provides it to signal multiplexing section 1611. As a result, the packet signal, the transmission packet notification signal, the pilot signal, and the DRC threshold notification signal are time-multiplexed and transmitted toward the cell.
[0061] 次に、図 10は、図 8に示す通信端末装置の構成例を示すブロック図である。なお、 図 10では、図 3に示した構成要素と同一ないしは同等である構成要素には、同一の 符号が付されている。ここでは、本実施の形態 1に関わる部分について説明する。  Next, FIG. 10 is a block diagram showing a configuration example of the communication terminal apparatus shown in FIG. In FIG. 10, the same or similar components as those shown in FIG. 3 are denoted by the same reference numerals. Here, the part related to the first embodiment will be described.
[0062] 図 10に示すように、本実施の形態 1に係る通信端末装置は、図 3に示した構成に おいて、逆拡散部 301と DRCしきい値検出部 302とが追加され、また DRC信号選択 部 1711に代えた DRC信号選択部 303が設けられている。  [0062] As shown in FIG. 10, the communication terminal apparatus according to the first embodiment has a configuration shown in FIG. 3, to which a despreading section 301 and a DRC threshold detection section 302 are added, and A DRC signal selection unit 303 is provided instead of the DRC signal selection unit 1711.
[0063] 逆拡散部 301は、受信 RF部 1702から入力するベースバンド信号内の DRCしきい 値成分にっ 、て所定の拡散信号を用いて逆拡散する。 DRCしき 、値検出部 302は 、逆拡散部 301の出力信号力も DRCしきい値を検出する。  [0063] Despreading section 301 performs despreading using a predetermined spread signal according to the DRC threshold component in the baseband signal input from reception RF section 1702. The DRC threshold value detection unit 302 also detects the DRC threshold value for the output signal power of the despreading unit 301.
[0064] DRC信号選択部 303は、受信品質測定部 1710が測定した下り回線の受信品質 C IRに適したデータレートを示す DRC値を選択し、その選択した DRC値と DRCしき ヽ 値検出部 302が検出した DRCしき 、値との大小関係を比較し、選択した DRC値が DRCしきい値以上のときに、選択した DRC値を DRC信号生成部 1712に与える。選 択した DRC値が DRCしき 、値より小さ 、ときは、選択した DRC値を DRC信号生成 部 1712に与えない。  [0064] DRC signal selection section 303 selects a DRC value indicating a data rate suitable for downlink reception quality C IR measured by reception quality measurement section 1710, and selects the selected DRC value and DRC threshold value detection section. The DRC threshold detected by 302 is compared with the value, and when the selected DRC value is equal to or greater than the DRC threshold value, the selected DRC value is given to the DRC signal generation unit 1712. When the selected DRC value is smaller than the DRC value, the selected DRC value is not given to the DRC signal generation unit 1712.
[0065] 次に、図 11を参照して、以上のように構成される基地局装置と通信端末装置によつ て実施される下りパケット送信処理について説明する。なお、図 11では図 4に示した 処理手順と同一ないしは同等である処理手順には、同一の符号が付されている。ここ では、本実施の形態 1に関わる部分を中心に説明する。 Next, referring to FIG. 11, a base station apparatus and a communication terminal apparatus configured as described above are used. The downlink packet transmission process performed in this way will be described. In FIG. 11, the same or similar processing steps as those shown in FIG. 4 are denoted by the same reference numerals. Here, the description will focus on the parts related to the first embodiment.
[0066] 図 11では、図 4に示した要求データレート決定処理(ST1803)と DRC信号生成処 理(ST1804)との間に、 DRC信号送信可否判断処理(ST401)が挿入されている。 In FIG. 11, a DRC signal transmission availability determination process (ST401) is inserted between the requested data rate determination process (ST1803) and the DRC signal generation process (ST1804) shown in FIG.
[0067] DRC信号送信可否判断処理(ST401)では、要求データレート決定処理(ST180In the DRC signal transmission availability determination process (ST401), the requested data rate determination process (ST180)
3)にて決定したデータレートが示す DRC値が基地局装置力 送られてきた DRCし きい値を超えるか否かを判断し、 DRC値≥DRCしきい値である場合(ST401: Yes) は、パケットの割当てを受け得る可能性があると判断して DRC信号生成処理 (ST18It is determined whether the DRC value indicated by the data rate determined in 3) exceeds the DRC threshold sent by the base station equipment, and if DRC value ≥ DRC threshold (ST401: Yes) The DRC signal generation process (ST18
04)に進む。これによつて、受信品質に対応した所定の DRC値を持つ DRC信号が 基地局装置に送信される。 Go to 04). As a result, a DRC signal having a predetermined DRC value corresponding to the reception quality is transmitted to the base station apparatus.
[0068] 一方、 DRC値 < DRCしきい値である場合(ST401 :No)は、パイロット信号受信処 理 (ST1801)に戻る。即ち、パケットの割当てを受け得る可能性がないと判断して受 信品質に対応した所定の DRC値を持つ DRC信号を基地局装置に送信するのを止 める。  On the other hand, if DRC value <DRC threshold value (ST401: No), the process returns to pilot signal reception processing (ST1801). In other words, it is determined that there is no possibility of receiving packet allocation, and transmission of a DRC signal having a predetermined DRC value corresponding to the received quality is stopped.
[0069] また、図 11では、図 4に示したパケット割当て処理(ST1808)とパケット生成処理( ST1809)との間に、 DRCしきい値算出処理(ST402、 ST403)が揷入され、また、 送信処理(ST1810)に代えて送信処理(ST404)となっている。  In FIG. 11, a DRC threshold value calculation process (ST402, ST403) is inserted between the packet allocation process (ST1808) and the packet generation process (ST1809) shown in FIG. Instead of transmission processing (ST1810), transmission processing (ST404) is performed.
[0070] DRCしきい値算出処理(ST402、 ST403)では、例えば、パケット割当て処理(ST 1808)での割当て結果をバッファに保存し(ST402)、保存した過去の割当て履歴 力 DRCしきい値を算出する(ST403)。その結果、セル内の各通信端末装置には 、パケットにカ卩えて DRCしきい値も送信される(ST404)。  [0070] In the DRC threshold calculation process (ST402, ST403), for example, the allocation result in the packet allocation process (ST 1808) is stored in a buffer (ST402), and the stored past allocation history power DRC threshold is stored. Calculate (ST403). As a result, each communication terminal apparatus in the cell transmits a DRC threshold value in addition to the packet (ST404).
[0071] ここで、図 12と図 13を参照して、通信端末装置が DRC信号の送信を制御できるよ うにした結果、基地局装置でのパケット割当て処理がどのようになるかについて説明 する。なお、図 12は、 DRC値に基づき通信端末装置の優先度を定める MaxCIR法 に本発明の実施の形態 1を適用した場合のパケット割当て結果の一例を示す図であ る。また、図 13は、 DRC値と平均データレートとに基づき通信端末装置の優先度を 定めるプロポーショナルフェアネス(Proportional Fairness)法に本発明の実施の开態 1を適用した場合のパケット割当て結果の一例を示す図である。図 12と図 13では、 図 5と図 6に示した項目に、「DRCしきい値」が追加されている。 Here, with reference to FIG. 12 and FIG. 13, description will be given of how packet allocation processing is performed in the base station apparatus as a result of enabling the communication terminal apparatus to control transmission of the DRC signal. FIG. 12 is a diagram showing an example of a packet allocation result when Embodiment 1 of the present invention is applied to the MaxCIR method for determining the priority of the communication terminal apparatus based on the DRC value. FIG. 13 shows the implementation of the present invention in the proportional fairness method for determining the priority of the communication terminal device based on the DRC value and the average data rate. It is a figure which shows an example of the packet allocation result at the time of applying 1. In FIG. 12 and FIG. 13, “DRC threshold” is added to the items shown in FIG. 5 and FIG.
[0072] 図 12では、「DRCしきい値」は、過去数回を 1回(つまり前回)とした場合の全受信 DRC値の平均値を示している。つまり、図 12にしめす「DRCしきい値」は、各パケット 割当てタイミングにお 、て、その時点で受信した全 DRC値の平均値として算出され ている。 In FIG. 12, “DRC threshold” indicates an average value of all received DRC values when the past several times are set to once (that is, the previous time). That is, the “DRC threshold” shown in FIG. 12 is calculated as an average value of all DRC values received at that time at each packet allocation timing.
[0073] 図 12において、パケット割当てタイミング # 1の例では、受信 DRC値は、 "10""8"" 3"であるので、平均 DRC値は" 7"となる。基地局装置は、この平均 DRC値" 7"を次 回のパケット割当てタイミング # 2での DRCしき 、値として全通信端末装置に報知す る。  In FIG. 12, in the example of packet allocation timing # 1, the received DRC value is “10”, “8”, “3”, so the average DRC value is “7”. The base station apparatus reports this average DRC value “7” to all communication terminal apparatuses as a DRC value at the next packet allocation timing # 2.
[0074] 各ユーザでは、送信予定の DRC値がこの DRCしきい値" 7"以上の場合にのみ DR C信号を送信するので、割当てタイミング # 2では、通信端末装置 Aと通信端末装置 Bは、 DRC値が DRCしきい値以上であるので DRC信号を送信する力 通信端末装 置 Cは、 DRC値が DRCしきい値を未満であるので、 DRC信号を送信しない。以降、 通信端末装置 Cでは、受信品質が良くなり、パケットが割当てられる可能性が高くな るまでは、 DRC信号を送信することが無い。但し、パケットの割当て結果は、図 5に示 した場合と同様である。  [0074] Each user transmits a DR C signal only when the DRC value to be transmitted is equal to or greater than the DRC threshold value "7". Therefore, at allocation timing # 2, communication terminal apparatus A and communication terminal apparatus B Because the DRC value is greater than or equal to the DRC threshold, the communication terminal device C that transmits the DRC signal does not transmit the DRC signal because the DRC value is less than the DRC threshold. Thereafter, the communication terminal apparatus C does not transmit a DRC signal until the reception quality is improved and the possibility that a packet is allocated becomes high. However, the packet allocation result is the same as that shown in Fig. 5.
[0075] 図 13では、「DRCしきい値」は、パケット割当てを行ったユーザの優先度 DRCZR  In FIG. 13, “DRC threshold” indicates the priority DRCZR of the user who performed packet allocation.
(t)から値" 3"を引いた値となっている。パケット割当てタイミング # 1では、通信端末 装置 A、 B、 Cは、それぞれ通常通り DRC信号を送信している。それぞれの優先度 D RC/R(t)は" 10""8""3"であるので、割当て DRC値は" 10"であり、 DRCしきい値 は" 7"となる。基地局装置は、値" 7"を次のパケット割当てタイミング # 2での DRCし きい値として各通信端末装置に報知する。  The value is obtained by subtracting the value “3” from (t). At packet allocation timing # 1, communication terminal apparatuses A, B, and C transmit DRC signals as usual. Since each priority D RC / R (t) is “10” “8” “3”, the assigned DRC value is “10”, and the DRC threshold value is “7”. The base station apparatus reports the value “7” to each communication terminal apparatus as the DRC threshold value at the next packet allocation timing # 2.
[0076] 次のパケット割当てタイミング # 2では、優先度が値" 7"以上の通信端末装置 Bの み DRC信号を送信する。このときの通信端末装置 Bの優先度 DRCZR(t)は" 9"で あるので、これから値" 3"を減じた値" 6"が DRCしきい値となる。基地局装置は、値" 6"を次のパケット割当てタイミング # 3での DRCしき 、値として各通信端末装置に報 知する。 [0077] 次のパケット割当てタイミング # 3では、優先度が値" 6"以上の通信端末装置 Aの み DRC信号を送信する。このときの通信端末装置 Aの優先度 DRCZR (t)は" 7"で あるので、これから値" 3"を減じた値" 4"が DRCしきい値となる。基地局装置は、値" 4"を次のパケット割当てタイミング # 4での DRCしき 、値として各通信端末装置に報 知する。 [0076] At the next packet allocation timing # 2, only the communication terminal apparatus B with the priority value "7" or higher transmits a DRC signal. Since the priority DRCZR (t) of the communication terminal device B at this time is “9”, the value “6” obtained by subtracting the value “3” from this is the DRC threshold value. The base station apparatus reports the value “6” to each communication terminal apparatus as a value when performing DRC at the next packet allocation timing # 3. [0077] At the next packet allocation timing # 3, only the communication terminal apparatus A with the priority value "6" or higher transmits a DRC signal. Since the priority DRCZR (t) of the communication terminal device A at this time is “7”, the value “4” obtained by subtracting the value “3” from this is the DRC threshold value. The base station apparatus reports the value “4” to each communication terminal apparatus as a value when performing DRC at the next packet allocation timing # 4.
[0078] 通信端末装置 Cは、パケット割当てタイミング # 2、 # 3では DRC信号の送信をして いないが、徐々に優先度が上昇し、パケット割当てタイミング # 4では、 DRCしきい値 "4"以上であるので DRC信号を送信する。このように、プロポーショナルフェアネス法 を用いる場合も、パケットの割当て結果は、図 6に示した場合と同様となる。  [0078] Communication terminal device C does not transmit a DRC signal at packet allocation timings # 2 and # 3, but the priority gradually increases, and at packet allocation timing # 4, DRC threshold "4" As described above, a DRC signal is transmitted. Thus, even when the proportional fairness method is used, the packet allocation result is the same as that shown in FIG.
[0079] 以上のように、本実施の形態 1によれば、基地局装置が DRCしき 、値を各通信端 末装置に報知して通信端末装置がパケット割当て可能性を判断できるようにしたの で、各通信端末装置は一様な判断基準によって、受信品質が良好でパケット割当て 可能性の高!、通信端末装置のみが DRC信号を送信し、受信品質が悪くパケット割 当て可能性が低い通信端末装置は、 DRC信号を送信しない制御を行うことができる 。したがって、パケット割当て可能性が低い通信端末装置では、 DRC信号生成のた めの無駄な処理をしないで済み、また送信電力を無駄に浪費することも無くなる。  [0079] As described above, according to the first embodiment, the base station apparatus performs DRC and informs each communication terminal apparatus of the value so that the communication terminal apparatus can determine the packet allocation possibility. Therefore, each communication terminal device has a good reception quality and a high possibility of packet allocation according to uniform judgment criteria, and only the communication terminal device transmits a DRC signal, so that the communication quality is poor and the packet allocation possibility is low. The terminal device can perform control not to transmit a DRC signal. Therefore, a communication terminal apparatus having a low packet allocation possibility does not need to perform a wasteful process for generating a DRC signal and does not waste a transmission power.
[0080] また、上りリンクの干渉成分が減るので、通信品質の改善が図れる。さらに、基地局 装置では、スケジューリング負荷が減るのに加えて、 DRC値の誤検出によるパケット 再送の起こる事態が少なくなるので、スループットの劣化を抑制することができる。加 えて、本実施の形態 1による DRC信号の送信制限を施しても、パケットの割当て結果 は、従来例(図 5、図 6)と同じ結果であるので、従来の高速パケット伝送システムにお けるスループットを維持することができる。  [0080] Further, since the uplink interference component is reduced, the communication quality can be improved. Furthermore, in addition to reducing the scheduling load, the base station apparatus reduces the occurrence of packet retransmission due to erroneous detection of the DRC value, thereby suppressing throughput degradation. In addition, even if the DRC signal transmission restriction according to the first embodiment is applied, the packet allocation results are the same as those in the conventional example (Figs. 5 and 6). Throughput can be maintained.
[0081] (実施の形態 2)  [0081] (Embodiment 2)
図 14は、本発明の実施の形態 2に係る高速パケット伝送システムにおける DRC信 号送信方法を説明するシステム図である。図 14において、基地局装置(BTS) 701 は、従来例(図 1)に示した基地局装置と同様の構成によって同様のパケット割当て 動作を行う。一方、セル内の移動機である通信端末装置 702、通信端末装置 703、 通信端末装置 704は、それぞれ、自装置の DRC信号送信に対するパケット割当て 状況から自律的にパケット割当て可能性を推定し、 DRC信号を送信する力否を決定 する送信制御を行うようになって!/、る。 FIG. 14 is a system diagram illustrating a DRC signal transmission method in the high-speed packet transmission system according to the second embodiment of the present invention. In FIG. 14, a base station apparatus (BTS) 701 performs the same packet allocation operation with the same configuration as the base station apparatus shown in the conventional example (FIG. 1). On the other hand, the communication terminal device 702, the communication terminal device 703, and the communication terminal device 704, which are mobile devices in the cell, each assign a packet for DRC signal transmission of its own device. It is now possible to autonomously estimate the packet allocation possibility from the situation and perform transmission control to determine the power of transmitting DRC signals! /
[0082] 各通信端末装置が自装置の DRC信号送信に対するパケット割当て状況から自律 的にパケット割当て可能性を推定し、 DRC信号を送信するか否を決定する方法には 、種々の方法が考えられる力 ここでは、次の(1) (2)による方法について説明する。  [0082] Various methods can be considered as a method for each communication terminal apparatus to autonomously estimate the packet allocation possibility from the packet allocation status for its own DRC signal transmission and to determine whether or not to transmit the DRC signal. Force Here, the following methods (1) and (2) will be described.
[0083] (1)過去に送信済みの DRC値の中でパケットが実際に割当てられた DRC値の最 小値力も N段階下の DRC値を、実施の形態 1にて示した DRCしきい値とする。この 方法を実施する通信端末装置の構成例を図 15に示し、基地局装置を含めた全体的 な動作(下りパケット送信処理)を図 16に示してある。  [0083] (1) Among the DRC values that have been transmitted in the past, the DRC value for which the packet was actually assigned is also the DRC value that is N levels below the DRC threshold shown in the first embodiment. And FIG. 15 shows a configuration example of a communication terminal apparatus that implements this method, and FIG. 16 shows the overall operation (downlink packet transmission processing) including the base station apparatus.
[0084] (2)過去に送信済みの DRC値の中で実際にパケットの割当てられた確率が N%だ け下回った場合の値を、実施の形態 1にて示した DRCしきい値とする。この方法を実 施する通信端末装置の構成例を図 17に示し、基地局装置を含めた全体的な動作( 下りパケット送信処理)を図 18に示してある。  [0084] (2) The DRC threshold shown in Embodiment 1 is the value when the probability that packets are actually allocated falls below N% among the DRC values transmitted in the past. . FIG. 17 shows a configuration example of a communication terminal apparatus that implements this method, and FIG. 18 shows an overall operation (downlink packet transmission processing) including the base station apparatus.
[0085] まず、(1)の方法を用いる場合の通信端末装置の構成例と全体的な動作 (下りパケ ット送信処理)について説明する。図 15は、図 14に示す通信端末装置の構成例を示 すブロック図である(その 1)。図 16は、基地局装置を含めた全体的な動作 (下りパケ ット送信処理)を説明するフローチャートである(その 1)。  First, a configuration example and overall operation (downlink packet transmission processing) of the communication terminal apparatus when the method (1) is used will be described. FIG. 15 is a block diagram showing a configuration example of the communication terminal apparatus shown in FIG. 14 (part 1). FIG. 16 is a flowchart for explaining the overall operation (downstream packet transmission processing) including the base station apparatus (part 1).
[0086] 図 15では、図 3に示した構成要素と同一ないしは同等である構成要素には、同一 の符号が付されている。ここでは、本実施の形態 2に関わる部分について説明する。 図 15に示すように、本実施の形態 2に係る通信端末装置 (その 1)は、図 3に示した構 成にぉ ヽて、 DRC信号送信判断部 801と送信 DRC信号バッファ部 802と最小割当 て DRC値選択部 803とが追加されて 、る。  In FIG. 15, components that are the same as or equivalent to the components shown in FIG. 3 are given the same reference numerals. Here, parts related to the second embodiment will be described. As shown in FIG. 15, the communication terminal apparatus (part 1) according to the second embodiment has a DRC signal transmission determination unit 801, a transmission DRC signal buffer unit 802, and a minimum in accordance with the configuration shown in FIG. An allocation DRC value selection unit 803 is added.
[0087] DRC信号送信判断部 801は、まず、 DRC信号選択部 1711から取得した送信する DRC値を DRC信号生成部 1712〖こ与えるととも〖こ、送信 DRC信号バッファ部 802に も与える。送信 DRC信号バッファ部 802は、受信処理部 1709の処理結果を監視し、 DRC信号送信判断部 801から受け取った送信済みの DRC値に割当てが行われた パケットについての処理が行われるときに、そのパケット割当てを受けた送信済み DR C値を保存する。 [0088] 最小割当て DRC値選択部 803は、送信 DRC信号バッファ部 802に、以上のように して蓄積されるパケット割当てを受けた送信済み DRC値の中から最小の DRC値「D RCmin」を選択し、それを DRC信号送信判断部 801に与える。最小割当て DRC値 選択部 803は、送信 DRC信号バッファ部 802にパケット割当てを受けた送信済み D RC値力^つ格納されると、選択動作を開始することは言うまでもない。 [0087] DRC signal transmission determining section 801 first provides the DRC value to be transmitted acquired from DRC signal selecting section 1711 as well as to DRC signal generating section 1712 and also to transmission DRC signal buffer section 802. The transmission DRC signal buffer unit 802 monitors the processing result of the reception processing unit 1709, and when processing is performed on a packet assigned to the transmitted DRC value received from the DRC signal transmission determination unit 801, Stores the transmitted DR C value that received the packet assignment. [0088] The minimum allocated DRC value selection unit 803 sets the minimum DRC value “D RCmin” among the transmitted DRC values that have received the packet allocation accumulated in the transmission DRC signal buffer unit 802 as described above. This is selected and given to the DRC signal transmission judgment unit 801. Needless to say, the minimum allocated DRC value selection unit 803 starts the selection operation when the transmission DRC signal buffer unit 802 stores the transmitted DRC value values that have received the packet allocation.
[0089] DRC信号送信判断部 801は、最小割当て DRC値選択部 803から DRC値「DRC min」が入力すると、それ力も N段階下の DRC値を「DRCしきい値」と定め、 DRC信 号選択部 1711から入力する送信しょうとする DRC値との大小関係を比較し、送信し ようとする DRC値が「DRCしき 、値」以上であるときに、その送信しょうとする DRC値 を DRC信号生成部 1712に与える。また、 DRC信号送信判断部 801は、その送信し ようとする DRC値を DRC信号生成部 1712に与える。  [0089] When the DRC signal transmission determination unit 801 receives the DRC value “DRC min” from the minimum allocation DRC value selection unit 803, the DRC signal transmission determination unit 801 also determines the DRC value in the N stages as the “DRC threshold” Compares the magnitude relationship with the DRC value to be transmitted input from the selection unit 1711, and when the DRC value to be transmitted is equal to or greater than the “DRC threshold value”, the DRC value to be transmitted is set to the DRC signal. This is given to the generation unit 1712. Also, the DRC signal transmission determination unit 801 gives the DRC value to be transmitted to the DRC signal generation unit 1712.
[0090] 次に、図 16を参照して、以上のように構成される基地局装置と通信端末装置によつ て実施される下りパケット送信処理について説明する。なお、図 16では図 4に示した 処理手順と同一ないしは同等である処理手順には、同一の符号が付されている。ここ では、本実施の形態 1に関わる部分を中心に説明する。  Next, with reference to FIG. 16, description will be given of downlink packet transmission processing performed by the base station apparatus and communication terminal apparatus configured as described above. In FIG. 16, the same reference numerals are given to the processing procedures that are the same as or equivalent to the processing procedures shown in FIG. Here, the description will focus on the parts related to the first embodiment.
[0091] 図 16では、図 4に示した要求データレート決定処理(ST1803)と DRC信号生成処 理(ST1804)との間に、 DRC信号送信可否判断処理(ST901)が挿入されている。 また、図 16では、最小割当て DRC値判断処理(ST902〜ST904)が追加されてい る。  In FIG. 16, a DRC signal transmission availability determination process (ST901) is inserted between the required data rate determination process (ST1803) and the DRC signal generation process (ST1804) shown in FIG. In FIG. 16, a minimum allocation DRC value determination process (ST902 to ST904) is added.
[0092] DRC信号送信可否判断処理(ST901)では、要求データレート決定処理(ST180 3)にて決定したデータレートが示す DRC値力 最小割当て DRC値判断処理 (ST9 02〜ST904)にて得られた最小割当て DRC値「DRCmin」力 N段階下の DRC値 を超えるか否かを判断し、 DRC値≥DRCmin—Nである場合(ST901 :Yes)は、パ ケットの割当てを受け得る可能性があると判断して DRC信号生成処理 (ST1804)に 進む。これによつて、受信品質に対応した所定の DRC値を持つ DRC信号が基地局 装置に送信される。  [0092] In the DRC signal transmission availability determination process (ST901), the DRC value force indicated by the data rate determined in the required data rate determination process (ST180 3) is obtained in the minimum allocation DRC value determination process (ST90 02 to ST904). Minimum DRC value “DRCmin” force It is determined whether or not the DRC value under the N stage is exceeded. If DRC value ≥DRCmin—N (ST901: Yes), there is a possibility that the packet can be assigned. The process proceeds to the DRC signal generation process (ST1804). As a result, a DRC signal having a predetermined DRC value corresponding to the reception quality is transmitted to the base station apparatus.
[0093] 一方、 DRC値 < DRCmin— Nである場合(ST901 :No)は、パイロット信号受信処 理 (ST1801)に戻る。即ち、パケットの割当てを受け得る可能性がないと判断して受 信品質に対応した所定の DRC値を持つ DRC信号を基地局装置に送信するのを止 める。 On the other hand, when DRC value <DRCmin—N (ST901: No), the process returns to pilot signal reception processing (ST1801). In other words, it is determined that there is no possibility of receiving the packet allocation. Stops sending a DRC signal with a predetermined DRC value corresponding to the signal quality to the base station.
[0094] 最小割当て DRC値判断処理(ST902〜ST904)では、自装置宛てのパケットが検 出される (ST1811)と、割当てを受けたパケットである力否かを調べ(ST902)、割当 てを受けたパケットであるとき(ST902 : Yes)、パケット割当ての対象となった送信済 み DRC値をバッファに取り込み蓄積する(ST903)。そして、ノ ッファに蓄積されたパ ケット割当て DRC値の中で最小の DRC値「DRCmin」を選択し、それを DRC信号 送信可否判断処理(ST901)に与える(ST904)。  [0094] In the minimum allocation DRC value determination process (ST902 to ST904), when a packet addressed to its own device is detected (ST1811), it is checked whether or not the packet is an allocated packet (ST902). If the packet is a packet (ST902: Yes), the transmitted DRC value that is the target of packet allocation is stored in the buffer (ST903). Then, the smallest DRC value “DRCmin” is selected from the packet allocation DRC values stored in the notifier, and is given to the DRC signal transmission availability determination process (ST901) (ST904).
[0095] 次に、(2)の方法を用いる場合の通信端末装置の構成例と全体的な動作 (下りパケ ット送信処理)について説明する。図 17は、図 14に示す通信端末装置の構成例を示 すブロック図である(その 2)。図 18は、基地局装置を含めた全体的な動作 (下りパケ ット送信処理)を説明するフローチャートである(その 2)。  Next, a configuration example and overall operation (downlink packet transmission process) of the communication terminal apparatus when using the method (2) will be described. FIG. 17 is a block diagram showing a configuration example of the communication terminal apparatus shown in FIG. 14 (part 2). FIG. 18 is a flowchart for explaining the overall operation (downstream packet transmission process) including the base station apparatus (part 2).
[0096] 図 17では、図 3に示した構成要素と同一ないしは同等である構成要素には、同一 の符号が付されている。ここでは、本実施の形態 2に関わる部分について説明する。 図 17に示すように、本実施の形態 2に係る通信端末装置 (その 2)は、図 3に示した構 成において、 DRC信号送信判断部 1001と送信 DRC信号バッファ部 1002と DRC 値毎の割当て確率算出部 1003とが追加されている。  In FIG. 17, components that are the same as or equivalent to the components shown in FIG. 3 are given the same reference numerals. Here, parts related to the second embodiment will be described. As shown in FIG. 17, the communication terminal apparatus (part 2) according to the second embodiment has the DRC signal transmission judgment unit 1001, the transmission DRC signal buffer unit 1002, and the DRC value for each configuration in the configuration shown in FIG. An allocation probability calculation unit 1003 is added.
[0097] DRC信号送信判断部 1001は、まず、 DRC信号選択部 1711から取得した送信す る DRC値を DRC信号生成部 1712〖こ与えるととも〖こ、送信 DRC信号バッファ部 100 2にも与える。送信 DRC信号バッファ部 1002は、 DRC信号送信判断部 801から受 け取った送信済みの DRC値を保存するとともに、受信処理部 1709の処理結果を監 視し、割当てが行われたパケットの受信処理である力否かの情報を、その送信済み の DRC値に付記すること行う。  [0097] DRC signal transmission determining section 1001 first provides the DRC value to be transmitted acquired from DRC signal selecting section 1711 to DRC signal generating section 1712 and also to transmission DRC signal buffer section 1002. . The transmission DRC signal buffer unit 1002 stores the transmitted DRC value received from the DRC signal transmission determination unit 801, monitors the processing result of the reception processing unit 1709, and receives the assigned packet. This information is added to the transmitted DRC value.
[0098] DRC値毎の割当て確率算出部 1003は、送信 DRC信号バッファ部 1002に以上の ようにして蓄積される送信済み DRC値の中で実際にパケットの割当てられた確率を 送信済み DRC値毎に算出し、 DRC信号送信判断部 1001に与える。  [0098] The allocation probability calculation unit 1003 for each DRC value indicates the actual packet allocation probability among the transmitted DRC values accumulated in the transmission DRC signal buffer unit 1002 as described above for each transmitted DRC value. And provided to the DRC signal transmission judgment unit 1001.
[0099] DRC信号送信判断部 1001は、 DRC値毎の割当て確率算出部 1003から DRC値 毎の割当て確率が入力すると、それから N%下回った DRC値を「DRCしきい値」と定 める。そして、 DRC信号選択部 1711から入力する送信しょうとする DRC値を送信 D RC信号バッファ部 1002に与えるとともに、その送信しょうとする DRC値と「DRCしき V、値」との大小関係を比較し、送信しょうとする DRC値が「DRCしき 、値」以上である ときに、その送信しょうとする DRC値を DRC信号生成部 1712に与える。 [0099] When the allocation probability for each DRC value is input from the allocation probability calculation unit 1003 for each DRC value, the DRC signal transmission determination unit 1001 determines the DRC value that is N% lower than that as the "DRC threshold". I will. Then, the DRC value to be transmitted input from the DRC signal selection unit 1711 is given to the transmission DRC signal buffer unit 1002, and the magnitude relationship between the DRC value to be transmitted and “DRC threshold V, value” is compared. When the DRC value to be transmitted is greater than or equal to “DRC threshold, value”, the DRC value to be transmitted is given to the DRC signal generation unit 1712.
[0100] 次に、図 18を参照して、以上のように構成される基地局装置と通信端末装置によつ て実施される下りパケット送信処理について説明する。なお、図 18では図 4に示した 処理手順と同一ないしは同等である処理手順には、同一の符号が付されている。ここ では、本実施の形態 1に関わる部分を中心に説明する。  Next, with reference to FIG. 18, description will be given of downlink packet transmission processing performed by the base station apparatus and communication terminal apparatus configured as described above. In FIG. 18, the same or similar processing procedures as those shown in FIG. 4 are given the same reference numerals. Here, the description will focus on the parts related to the first embodiment.
[0101] 図 18では、図 4に示した要求データレート決定処理(ST1803)と DRC信号生成処 理(ST1804)との間に、 DRC信号送信可否判断処理(ST1101)が挿入されている 。また、図 18では、割当て確率算出処理(ST1102〜ST1104)が追加されている。  In FIG. 18, a DRC signal transmission availability determination process (ST1101) is inserted between the required data rate determination process (ST1803) and the DRC signal generation process (ST1804) shown in FIG. In FIG. 18, an allocation probability calculation process (ST1102 to ST1104) is added.
[0102] DRC信号送信可否判断処理(ST1101)では、要求データレート決定処理(ST18 03)にて決定したデータレートが示す DRC値力 割当て確率算出処理(ST1102〜 ST1104)にて得られた割当て確率力 N%だけ下回った DRC値を超えるか否かを 判断し、割当て確率≥N%である場合 (ST1101 :Yes)は、パケットの割当てを受け 得る可能性があると判断して DRC信号生成処理 (ST1804)に進む。これによつて、 受信品質に対応した所定の DRC値を持つ DRC信号が基地局装置に送信される。  [0102] In the DRC signal transmission availability determination process (ST1101), the allocation probability obtained in the DRC value power allocation probability calculation process (ST1102 to ST1104) indicated by the data rate determined in the requested data rate determination process (ST18 03) It is determined whether the DRC value is less than the force N%, and if the allocation probability is ≥N% (ST1101: Yes), it is determined that there is a possibility of receiving the packet allocation and the DRC signal generation process Proceed to (ST1804). As a result, a DRC signal having a predetermined DRC value corresponding to the reception quality is transmitted to the base station apparatus.
[0103] 一方、割当て確率 <N%である場合 (ST1101 :No)は、パイロット信号受信処理( ST1801)に戻る。即ち、パケットの割当てを受け得る可能性がないと判断して受信 品質に対応した所定の DRC値を持つ DRC信号を基地局装置に送信するのを止め る。  [0103] On the other hand, if the allocation probability is <N% (ST1101: No), the process returns to the pilot signal reception process (ST1801). That is, it is determined that there is no possibility of receiving packet allocation, and transmission of a DRC signal having a predetermined DRC value corresponding to the reception quality to the base station apparatus is stopped.
[0104] 割当て確率算出処理(ST1102〜ST1104)では、自装置宛てのパケットが検出さ れる(ST1811)と、割当てを受けたパケットである力否かを調べ(ST1102)、送信済 み DRC値とパケット割当て有無との関係をバッファに蓄積する(ST1103)。そして、 ノ ッファに蓄積された送信済み DRC値にっ 、て割当て確率を算出し、それを DRC 信号送信可否判断処理 (ST1101)に与える(ST1104)。  [0104] In the allocation probability calculation process (ST1102 to ST1104), when a packet addressed to its own device is detected (ST1811), it is checked whether the packet is an allocated packet (ST1102), and the transmitted DRC value and The relationship with the presence / absence of packet allocation is stored in the buffer (ST1103). Then, the allocation probability is calculated based on the transmitted DRC value accumulated in the notifier, and is given to the DRC signal transmission availability determination process (ST1101) (ST1104).
[0105] 以上のように、本実施の形態 2によれば、通信端末装置が、自装置の DRC信号送 信に対するパケット割当て状況力 自律的にバケツト割当て可能性を推定し、 DRC 信号を送信するか否を決定する送信制御を行うようにしたので、パケット割当て可能 性の推定精度は実施の形態 1よりも多少劣るが、実施の形態 1と同様の作用、効果を 得ることができる。 [0105] As described above, according to the second embodiment, the communication terminal apparatus autonomously estimates the packet allocation status with respect to its own DRC signal transmission, and estimates the possibility of packet allocation. Since transmission control for determining whether or not to transmit a signal is performed, the estimation accuracy of packet assignability is somewhat inferior to that of Embodiment 1, but the same operation and effect as Embodiment 1 can be obtained. it can.
[0106] 力!]えて、本実施の形態 2によれば、基地局装置は、実施の形態 1のように、 DRCし き ヽ値を報知する必要が無!、ので、処理負荷を増加させな!/、で済むと!、う効果も得 られる。  [0106] Power! According to the second embodiment, the base station apparatus does not need to report the DRC threshold value as in the first embodiment! Therefore, the processing load should not be increased! When you are done!
[0107] (実施の形態 3)  [Embodiment 3]
本実施の形態 3では、今後、運用が想定されるマルチキャリア化した高速パケット伝 送システムについて説明する。前述したように、 EV— DOシステムのような広帯域シ ステムをマルチキャリア化した場合、隣り合うキャリアでも帯域幅が広いので、それぞ れのキャリアが受けるマルチパスフェージングは全く相関性が無い。このこと力ら、移 動機である各通信端末装置は、それぞれのキャリアにおける受信環境を推定し、そ れぞれのキャリアに対する DRC信号を基地局装置に送信する必要がある。そして、 基地局装置は、キャリア毎に優先度を調べてパケット割当てを行う必要がある。  In this third embodiment, a multi-carrier high-speed packet transmission system that will be used in the future will be described. As described above, when a broadband system such as an EV-DO system is converted to a multicarrier, the adjacent carriers have a wide bandwidth, and the multipath fading received by each carrier has no correlation. For this reason, each communication terminal device, which is a mobile device, needs to estimate the reception environment of each carrier and transmit a DRC signal for each carrier to the base station device. The base station apparatus needs to check the priority for each carrier and perform packet allocation.
[0108] したがって、マルチキャリアを用いた高速パケット伝送システム (複数キャリアを用い た EV— DOシステム)を実現するには、各通信端末装置では、 DRC信号生成の処 理量と電力消費量の増大を抑制し、基地局装置では、スケジューリング負荷がキヤリ ァ本数倍に増大するのを抑制することが急務の課題となる。  [0108] Therefore, in order to realize a high-speed packet transmission system using multiple carriers (EV-DO system using multiple carriers), each communication terminal device increases the amount of DRC signal generation and power consumption. In the base station apparatus, it is an urgent task to prevent the scheduling load from increasing by the number of carriers.
[0109] 先に説明した実施の形態 1、 2の方法も有効な措置であるが、本実施の形態 3では 、実施の形態 1、 2に比べて比較的導入が容易であると考えられる方法を示す。即ち 、図 19は、本発明の実施の形態 3に係るマルチキャリア化した高速パケット伝送シス テムにおける DRC信号送信方法を説明するシステム図である。  [0109] Although the methods of the first and second embodiments described above are also effective measures, the method of the third embodiment is considered to be relatively easy to introduce compared to the first and second embodiments. Indicates. That is, FIG. 19 is a system diagram illustrating a DRC signal transmission method in a multi-carrier high-speed packet transmission system according to Embodiment 3 of the present invention.
[0110] 図 19において、基地局装置(BTS) 1201は、従来のシングルキャリア構成を複数 キャリア分備えた構成であり、キャリア毎に、パケット割当てを行うとする。一方、セル 内の各通信端末装置 1202、 1203、 1204では、各下り回線の受信品質から定めた データレートを示す DRC値の DRC信号をそれぞれ該当するキャリアによって基地局 装置 (BTS) 1201に対して送信する場合に、受信品質が良好な所定キャリアに対応 する DRC信号を送信するようになって ヽる。 [0111] 具体的には、各通信端末装置 1202、 1203、 1204は、(1)受信品質が最高である キャリアに対応する DRC信号を送信する、または、(2)受信品質が良好な上位数キ ャリアに対応する DRC信号をそれぞれ送信する。 In FIG. 19, base station apparatus (BTS) 1201 has a conventional single carrier configuration for a plurality of carriers, and it is assumed that packet allocation is performed for each carrier. On the other hand, in each communication terminal apparatus 1202, 1203, 1204 in the cell, a DRC signal having a DRC value indicating a data rate determined from the reception quality of each downlink is transmitted to the base station apparatus (BTS) 1201 by the corresponding carrier. When transmitting, a DRC signal corresponding to a predetermined carrier having good reception quality is transmitted. [0111] Specifically, each of the communication terminal devices 1202, 1203, 1204 transmits (1) a DRC signal corresponding to the carrier having the highest reception quality, or (2) a higher number having good reception quality. Each DRC signal corresponding to the carrier is transmitted.
[0112] 図 20は、図 19に示す通信端末装置の構成例を示すブロック図である。図 20にお いて、アンテナ 1301には、図示しない送受共用器を介して受信 RF部 1302と送信 R F部 1303とが接続されている。受信 RF部 1302には、ベースバンド信号を並列に受 けるキャリア受信部 1304— 1〜 1304— Nが接続されている。また、送信 RF部 1303 には、ベースバンド信号を並列に出力するキャリア送信部 1305— 1〜1305—Nが 接続されている。  FIG. 20 is a block diagram showing a configuration example of the communication terminal apparatus shown in FIG. In FIG. 20, a reception RF unit 1302 and a transmission RF unit 1303 are connected to an antenna 1301 via a duplexer (not shown). The receiving RF unit 1302 is connected to carrier receiving units 1304-1 to 1304 -N that receive baseband signals in parallel. The transmission RF unit 1303 is connected to carrier transmission units 1305-1 to 1305 -N that output baseband signals in parallel.
[0113] キャリア受信部 1304— 1〜1304— Nは、それぞれ同一の構成であって、それぞれ 図 3に示した逆拡散部 1704〜1706、適応復調部 1707、制御情報復調部 1708、 受信処理部 1709、受信品質測定部 1710を備えて 、る。  [0113] Carrier receiving units 1304-1 to 1304-N have the same configuration, and are each despreading units 1704 to 1706, adaptive demodulation unit 1707, control information demodulation unit 1708, and reception processing unit shown in FIG. 1709 and a reception quality measuring unit 1710.
[0114] キャリア送信部 1305— 1〜1305— Nは、それぞれ同一の構成であって、それぞれ 図 3に示した DRC信号生成部 1712、変調部 1713、拡散部 1714、パケット受信可 否情報生成部 1716、拡散部 1717、パイロット信号生成部 1718、拡散部 1719、信 号多重部 1715を備えて ヽる。  [0114] Carrier transmission units 1305-1 to 1305-N have the same configuration, and each includes DRC signal generation unit 1712, modulation unit 1713, spreading unit 1714, and packet reception availability information generation unit shown in FIG. 1716, a spreading unit 1717, a pilot signal generating unit 1718, a spreading unit 1719, and a signal multiplexing unit 1715 are provided.
[0115] そして、送信 DRC信号選択部 1306が、キャリア受信部 1304— 1〜1304— Nとキ ャリア送信部 1305— 1〜 1305— Nとの間に設けられている。送信 DRC信号選択部 1306は、キャリア受信部 1304— 1〜1304—Nの各受信品質測定部 1710の測定 結果を受けて、受信品質が最高であるキャリアに対応する DRC信号、または、受信 品質が良好な上位数キャリアに対応する DRC信号を、キャリア送信部 1305— 1〜1 305- Nの各 DRC信号生成部 1712の対応する DRC信号生成部 1712に与える。  A transmission DRC signal selection unit 1306 is provided between the carrier reception units 1304-1 to 1304 -N and the carrier transmission units 1305-1 to 1305 -N. The transmission DRC signal selection unit 1306 receives the measurement results of the reception quality measurement units 1710 of the carrier reception units 1304-1 to 1304-N, and the DRC signal corresponding to the carrier having the highest reception quality or the reception quality A DRC signal corresponding to a good upper number carrier is supplied to a corresponding DRC signal generation unit 1712 of each DRC signal generation unit 1712 of the carrier transmission units 1305-1 to 1 305 -N.
[0116] また、キャリア受信部 1304— 1〜1304—Nの各受信処理部 1709の処理結果は、 キャリア送信部 1305— 1〜1305— Nの各パケット受信可否情報生成部 1716に与 えられる。  Further, the processing results of the reception processing units 1709 of the carrier reception units 1304-1 to 1304 -N are supplied to the packet reception availability information generation unit 1716 of the carrier transmission units 1305-1 to 1305 -N.
[0117] 次に、マルチキャリア化した高速パケット伝送システムでの下りパケット送信処理に ついて、図 21を用いて説明する。  [0117] Next, downlink packet transmission processing in a multicarrier high-speed packet transmission system will be described with reference to FIG.
[0118] 通信端末装置では、キャリア毎に、パケット受信処理 (ST1401)、受信したパケット 信号による受信品質測定処理 (ST1402)、測定した受信品質に対応したデータレ ートの決定処理(ST1403)を行う。そして、キャリア毎に求められたデータレートを示 す各 DRC値を比較し (ST1404)、例えば、受信品質が良好な上位 Nキャリアの DR C信号を生成して基地局装置に送信する (ST1405)。 [0118] In the communication terminal apparatus, for each carrier, packet reception processing (ST1401), received packets Reception quality measurement processing using signals (ST1402), and data rate determination processing (ST1403) corresponding to the measured reception quality. Then, each DRC value indicating the data rate obtained for each carrier is compared (ST1404), for example, a DRC signal of the top N carriers with good reception quality is generated and transmitted to the base station apparatus (ST1405). .
[0119] 基地局装置では、キャリア毎に、 DRC信号の受信処理(ST1406)、受信した DRC 値に基づく各通信端末装置の優先度算出処理 (ST1407)、優先度の高い通信端 末装置へのパケット割当て処理(ST1408)、 DRC値に応じた変調フォーマットでの 送信パケットの生成処理(ST1409)、パケットの送信処理(ST1410)が行われる。  [0119] In the base station device, for each carrier, DRC signal reception processing (ST1406), priority calculation processing of each communication terminal device based on the received DRC value (ST1407), and communication to a communication terminal device with high priority Packet allocation processing (ST1408), transmission packet generation processing (ST1409) in a modulation format according to the DRC value, and packet transmission processing (ST1410) are performed.
[0120] 通信端末装置では、キャリア毎に、自装置宛てのパケット受信を検出する処理 (ST 1411)、自装置宛てパケットの受信処理 (ST1412)、受信処理結果に基づく応答( ACK、 NACK)送信処理(ST1413)が行われる。  [0120] In the communication terminal device, processing for detecting reception of a packet addressed to the own device (ST 1411), reception processing of the packet addressed to the own device (ST1412), and response (ACK, NACK) transmission based on the reception processing result for each carrier Processing (ST1413) is performed.
[0121] 以上のように、本実施の形態 3によれば、マルチキャリアを用いた高速パケット伝送 システムにおいて、各通信端末装置は、受信品質が良好な所定キャリアに対応する DRC信号を送信するようにしたので、各通信端末装置では、 DRC信号生成の処理 量と電力消費量の増大を抑制し、基地局装置では、パケット割当てるスケジユーリン グ負荷がキャリア本数倍に増大するのを抑制することができる。  [0121] As described above, according to Embodiment 3, in a high-speed packet transmission system using multicarriers, each communication terminal apparatus transmits a DRC signal corresponding to a predetermined carrier having good reception quality. Therefore, each communication terminal device suppresses an increase in the processing amount and power consumption of DRC signal generation, and the base station device suppresses an increase in the scheduling load allocated to the packet by the number of carriers. it can.
[0122] 力!]えて、実施の形態 3によれば、マルチキャリアを用いた高速パケット伝送システム にお 、て、特定の通信端末装置のみが複数キャリアを独占してパケットを受信するこ とがな!/、ので、通信端末装置間の公平性も保つことが可能である。  [0122] Power! Therefore, according to Embodiment 3, in a high-speed packet transmission system using multicarriers, only a specific communication terminal device cannot monopolize multiple carriers and receive packets! / It is also possible to maintain fairness between communication terminal devices.
[0123] なお、本明細書では、 lxEV— DOシステムを念頭に説明したが、その他、携帯電 話網 W— CDMAでの高速パケット伝送システムである HSDPA (High Speed Downli nk Packet Data Access)システムにおいても同様に、本発明を適用できることは言うま でもない。  [0123] In this specification, the lxEV—DO system has been described in mind, but in addition to the HSDPA (High Speed Downlink Packet Data Access) system, which is a high-speed packet transmission system for the mobile phone network W—CDMA. Similarly, it goes without saying that the present invention can be applied.
[0124] 本明細書は、 2004年 11月 18日出願の特願 2004— 335013に基づく。この内容 はすべてここに含めておく。  [0124] This specification is based on Japanese Patent Application No. 2004-335013 filed on Nov. 18, 2004. All this content is included here.
産業上の利用可能性  Industrial applicability
[0125] 本発明は、高速パケット伝送システムにおける通信端末装置に用いるに好適である 。特に、今後、運用が想定されるマルチキャリア化した高速パケット伝送システムにお いて有用である。 [0125] The present invention is suitable for use in a communication terminal apparatus in a high-speed packet transmission system. In particular, for multi-carrier high-speed packet transmission systems that are expected to be used in the future. It is useful.

Claims

請求の範囲 The scope of the claims
[1] 下り回線の受信品質を測定する受信品質測定手段と、  [1] reception quality measuring means for measuring the reception quality of the downlink,
通信相手の基地局装置から送信されるパケットのデータレートを前記測定された受 信品質に基づ!/、て選択する選択手段と、  A selection means for selecting a data rate of a packet transmitted from a base station apparatus of a communication partner based on the measured reception quality!
前記選択されたデータレートを示す DRC (Data Rate Control)信号を生成する DR C信号生成手段と、  DRC signal generation means for generating a DRC (Data Rate Control) signal indicating the selected data rate;
前記基地局装置に対して前記生成された DRC信号を送信する送信手段と、を具 備し、  Transmitting means for transmitting the generated DRC signal to the base station apparatus,
前記選択手段は、前記選択したデータレートがしきい値以上のときにのみ当該デ ータレートを前記 DRC信号生成手段に出力する通信端末装置。  The communication terminal apparatus, wherein the selecting means outputs the data rate to the DRC signal generating means only when the selected data rate is equal to or greater than a threshold value.
[2] 前記基地局装置力 パケットがマルチキャリアで送信される場合、 [2] When the base station apparatus power packet is transmitted by multicarrier,
前記受信品質測定手段は、キャリア毎に下り回線の受信品質を測定し、 前記選択手段は、キャリア毎にデータレートを前記測定された受信品質に基づいて 選択し、しきい値以上のデータレートのみを前記 DRC信号生成手段に出力する請 求項 1に記載の通信端末装置。  The reception quality measuring means measures downlink reception quality for each carrier, and the selecting means selects a data rate for each carrier based on the measured reception quality, and only a data rate equal to or higher than a threshold value is selected. The communication terminal device according to claim 1, wherein the communication terminal device outputs the signal to the DRC signal generation means.
[3] 前記しき!、値は、前記基地局装置から報知された値である請求項 1記載の通信端 末装置。 3. The communication terminal apparatus according to claim 1, wherein the threshold value is a value notified from the base station apparatus.
[4] 前記しきい値は、当該通信端末装置においてパケットの割当て可能性力も推定し た値である請求項 1記載の通信端末装置。  4. The communication terminal apparatus according to claim 1, wherein the threshold value is a value obtained by estimating a packet assignability in the communication terminal apparatus.
[5] 下り回線の受信品質を測定する受信品質測定工程と、 [5] A reception quality measurement process for measuring the reception quality of the downlink,
通信相手の基地局装置から送信されるパケットのデータレートを前記測定された受 信品質に基づ!、て選択する選択工程と、  A selection step of selecting a data rate of a packet transmitted from a base station apparatus of a communication partner on the basis of the measured reception quality;
前記選択されたデータレートを示す DRC (Data Rate Control)信号を生成する DR C信号生成工程と、  A DRC signal generation step of generating a DRC (Data Rate Control) signal indicating the selected data rate;
前記基地局装置に対して前記生成された DRC信号を送信する送信工程と、を具 備し、  A transmission step of transmitting the generated DRC signal to the base station device,
前記選択工程は、前記選択したデータレートがしきい値以上のときにのみ当該デ ータレートを前記 DRC信号生成工程に出力する DRC信号送信方法。  The DRC signal transmission method, wherein the selecting step outputs the data rate to the DRC signal generating step only when the selected data rate is equal to or higher than a threshold value.
PCT/JP2005/021152 2004-11-18 2005-11-17 Communication terminal device and drc signal transmission method WO2006054659A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004335013A JP2006148490A (en) 2004-11-18 2004-11-18 Drc signal transmission method in high-speed packet transmission system
JP2004-335013 2004-11-18

Publications (1)

Publication Number Publication Date
WO2006054659A1 true WO2006054659A1 (en) 2006-05-26

Family

ID=36407197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/021152 WO2006054659A1 (en) 2004-11-18 2005-11-17 Communication terminal device and drc signal transmission method

Country Status (2)

Country Link
JP (1) JP2006148490A (en)
WO (1) WO2006054659A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102668430A (en) * 2009-09-29 2012-09-12 汤姆森特许公司 WLAN data rate adaption method

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4812534B2 (en) 2006-06-19 2011-11-09 株式会社エヌ・ティ・ティ・ドコモ Base station, mobile station, and channel quality information notification method
WO2008069616A2 (en) 2006-12-07 2008-06-12 Lg Electronics Inc. Methods of transferring data in a wireless communication system
KR101342365B1 (en) 2006-12-07 2013-12-16 엘지전자 주식회사 Method of transferring data in wireless communication system
EP2100392A4 (en) 2007-01-08 2013-09-25 Lg Electronics Inc Method for receiving common channel in wireless communication and terminal thereof
WO2008084984A2 (en) 2007-01-09 2008-07-17 Lg Electronics Inc. Method of controlling data retransmission in a wireless communication system
EP2103071A4 (en) 2007-01-09 2013-07-31 Lg Electronics Inc Method of transmitting and receiving scheduling information in a wireless communication system
WO2008084985A2 (en) 2007-01-09 2008-07-17 Lg Electronics Inc. Method of transmitting and receiving data in a wireless communication system
WO2008084955A1 (en) 2007-01-10 2008-07-17 Lg Electronics Inc. Method for constructing data format in mobile communication and terminal thereof
CN101578783A (en) 2007-01-10 2009-11-11 Lg电子株式会社 Method for constructing data format in mobile communication and terminal thereof
KR101211758B1 (en) 2007-01-10 2012-12-12 엘지전자 주식회사 Method for generating block data in wireless communication system
JP4951475B2 (en) 2007-11-26 2012-06-13 株式会社日立製作所 base station
JP2011050042A (en) * 2009-07-29 2011-03-10 Kyocera Corp Wireless terminal and transmission speed prediction method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002010363A (en) * 2000-06-26 2002-01-11 Matsushita Electric Ind Co Ltd Base satation apparatus, communication terminal apparatus and communication method
JP2003009240A (en) * 2001-06-22 2003-01-10 Kddi Corp Base station, mobile station and radio communication method
JP2004514371A (en) * 2000-11-15 2004-05-13 クゥアルコム・インコーポレイテッド Method and apparatus for reducing transmission power in high data rate systems

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002010363A (en) * 2000-06-26 2002-01-11 Matsushita Electric Ind Co Ltd Base satation apparatus, communication terminal apparatus and communication method
JP2004514371A (en) * 2000-11-15 2004-05-13 クゥアルコム・インコーポレイテッド Method and apparatus for reducing transmission power in high data rate systems
JP2003009240A (en) * 2001-06-22 2003-01-10 Kddi Corp Base station, mobile station and radio communication method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102668430A (en) * 2009-09-29 2012-09-12 汤姆森特许公司 WLAN data rate adaption method
US9270408B2 (en) 2009-09-29 2016-02-23 Thomson Licensing WLAN data rate adaption method

Also Published As

Publication number Publication date
JP2006148490A (en) 2006-06-08

Similar Documents

Publication Publication Date Title
WO2006054659A1 (en) Communication terminal device and drc signal transmission method
KR100663278B1 (en) Method and apparatus for the transmission and reception of downlink control information in mobile telecommunication system supporting uplink packet data service
CN104869657B (en) For handling the method and arrangement of the unreliable scheduling grant in telecommunication network
JP3828431B2 (en) Base station, control apparatus, communication system, and communication method
KR101448014B1 (en) Base station and mobile station
JP4791592B2 (en) Method and apparatus for determining, communicating and using information that can be used for interference control
US8325655B2 (en) Multi-carrier HSDPA channel establishing method and the multi-carrier downlink packet data transmitting method
US20190387526A9 (en) Radio Resource Management for a High-Speed Shared Channel
US8731562B2 (en) Detection of control messages for HSDPA
JP3343107B2 (en) Base station device, communication terminal device and communication method
JP5485870B2 (en) Methods and configurations for communication networks
JP2006502659A (en) Enhanced uplink packet forwarding
KR101226879B1 (en) Shared control channel detection strategies
JP2006518171A (en) Scheduled and autonomous transmission and approval
JPWO2005034545A1 (en) Communication method
KR20030015859A (en) Cell selection
US20100041410A1 (en) Method and Arrangement in a Telecommunication System
HUE034852T2 (en) Uplink resource allocation in a mobile communication system
KR20080099316A (en) An apparatus and method for fast access in a wireless communication system
JP2008199157A (en) Method for controlling communication of radio terminal, and radio terminal
EP1401230A1 (en) Base station device and communication terminal device
JP2004135180A (en) Communication apparatus and communication method
JP5007329B2 (en) Communication mode control method, mobile communication system, and mobile communication terminal
US20120020337A1 (en) Scheduling method
WO2011072738A1 (en) Optimized delay

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05806915

Country of ref document: EP

Kind code of ref document: A1