WO2006054412A1 - Storage device employing electric double layer capacitor - Google Patents

Storage device employing electric double layer capacitor Download PDF

Info

Publication number
WO2006054412A1
WO2006054412A1 PCT/JP2005/019054 JP2005019054W WO2006054412A1 WO 2006054412 A1 WO2006054412 A1 WO 2006054412A1 JP 2005019054 W JP2005019054 W JP 2005019054W WO 2006054412 A1 WO2006054412 A1 WO 2006054412A1
Authority
WO
WIPO (PCT)
Prior art keywords
double layer
electric double
voltage
layer capacitor
output voltage
Prior art date
Application number
PCT/JP2005/019054
Other languages
French (fr)
Japanese (ja)
Inventor
Harumi Takeda
Satoshi Tamazawa
Original Assignee
Limited Company Tm
Takeda Technological Research Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Limited Company Tm, Takeda Technological Research Co., Ltd. filed Critical Limited Company Tm
Publication of WO2006054412A1 publication Critical patent/WO2006054412A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0016Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters
    • H02M1/0019Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters the disturbance parameters being load current fluctuations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade

Definitions

  • the present invention relates to a power storage device using an electric double layer capacitor.
  • Patent Document 1 Japanese Patent Laid-Open No. 07-135025 (Page 4-5, Fig. 4)
  • the present invention has been made in view of such circumstances, and an electric double layer capacitor capable of efficiently supplying a stable voltage to a load with a relatively simple configuration. It is a first object to provide the power storage device used. Also provided is a power storage device using an electric double layer capacitor that can reduce wasteful consumption of input energy due to forced discharge by an overcharge prevention means added to the electric double layer capacitor that has reached a predetermined voltage. This is the second purpose.
  • the present invention has the following configuration.
  • a power storage device using the electric double layer capacitor according to the invention of claim 1 includes a power storage means including an electric double layer capacitor, and a DC AC conversion that converts a DC input voltage into an AC output voltage and applies it to a load.
  • DC input voltage to DC / AC conversion means DC-DC conversion means that converts the output voltage to a DC output voltage within the allowable input voltage range, and the output path so that the output voltage of the storage means is supplied to either the DC / AC conversion means or the DC / DC conversion means!
  • Switching means for switching between, and a control means for detecting the output voltage of the power storage means and controlling the switching means according to the voltage value, the output voltage of the power storage means is outside the allowable input voltage range of the DC-AC conversion means
  • the switching means is controlled to supply the output voltage of the power storage means to the DC / DC conversion means, and the DC output voltage of the DC / DC conversion means is supplied to the DC / AC conversion means, while the output voltage of the power storage means is
  • the switching means is controlled so that the output voltage of the power storage means is directly supplied to the DC / AC conversion means, and the DC / DC conversion means is in a non-operating state. Control means.
  • the control means monitors the output voltage of the power storage means and controls the switching means according to the voltage value as follows. That is, when the output voltage of the power storage means is outside the allowable input voltage range of the DC / AC conversion means, the switching means is controlled so that the output voltage of the power storage means is supplied to the DC / DC conversion means.
  • the DC output voltage of the conversion means is given to the DC / AC conversion means.
  • the control means switches the switching means so as to directly supply the output voltage of the power storage means to the DC / AC conversion means.
  • the DC / DC converting means is put into a non-operating state, so that the power loss associated with the operation of the DC / DC converting means is reduced and power can be efficiently supplied to the load.
  • the power storage means comprises a plurality of electric double layer capacitor forces, and includes a plurality of overcharge prevention means connected in parallel to each electric double layer capacitor, each overcharge prevention means comprising: When the terminal voltage of the electric double layer capacitor corresponding to each becomes a predetermined voltage, the capacitor is forcibly discharged. In this case, each of the plurality of electric double layer capacitors is monitored by overcharge prevention means. Thus, even if there is a variation in capacitance between capacitors, all the capacitors can be fully charged.
  • the power storage means includes a circuit configuration in which a plurality of electric double layer capacitors are connected in series, and each electric double layer capacitor of the power storage means includes a first Z switch that switches between energization and non-energization of the electric double layer capacitor.
  • a short-circuit wire connected in series to each of the switches, connected in parallel to the electric double layer capacitor and the corresponding first switch, and a second switch for switching between energization and non-energization provided in the short-circuit wire.
  • Detecting means for detecting the terminal voltage of each electric double layer capacitor, and the first means of the electric double layer capacitor detected by the detecting means to reach a predetermined voltage lower than the predetermined voltage at the overcharge preventing means.
  • Power supply control means for switching the switch to de-energization and switching the second switch of the short-circuit wiring corresponding to the electric double layer capacitor to energization. It is preferred.
  • the energization control means de-energizes the first switch of the electric double layer capacitor that is detected by the detection means to have reached a predetermined voltage lower than the predetermined voltage of the overcharge prevention means.
  • the electric double layer capacitor having a predetermined voltage can be electrically disconnected, and the electric The forced discharge by the overcharge prevention means added to the multilayer capacitor can be reduced, and the waste of input energy due to the forced discharge by the overcharge prevention means can be reduced.
  • the charging time of other electric double layer capacitors (other electric double layer capacitors that are not separated) can be shortened.
  • the energization control means based on the terminal voltage detection of each electric double layer capacitor by the detection means, so that the output voltage of the power storage means is not less than the input lower limit voltage of the DC-DC conversion means, It is preferable that the first switch corresponding to the electric double layer capacitor that has reached the predetermined voltage lower than the predetermined voltage in the overcharge preventing means and the second switch of the short-circuit wiring are controlled to be switched.
  • the energization control means prevents the output voltage of the power storage means from being lower than the input lower limit voltage of the DC-DC conversion means based on the terminal voltage detection of each electric double layer capacitor by the detection means. Since the first switch corresponding to the electric double layer capacitor and the second switch of the short-circuit wiring are switched, the output of the power storage means is charged.
  • the electric double layer capacitor that has become a predetermined voltage lower than the predetermined voltage in the overcharge prevention means can be electrically disconnected so that the force voltage does not fall below the input lower limit voltage of the DC-DC conversion means.
  • the forced discharge by the overcharge prevention means added to the electric double layer capacitor that has become a voltage can be reduced, and the waste of input energy due to the forced discharge by the overcharge prevention means can be reduced. This also shortens the charging time of other electric double layer capacitors (other electric double layer capacitors that are not separated).
  • the present specification also discloses the following means for solving problems.
  • Power storage means comprising an electric double layer capacitor
  • DC / AC conversion means for converting the DC input voltage into AC output voltage and applying it to the load;
  • DC / DC conversion means for converting the DC input voltage to a DC output voltage within the allowable input voltage range of the DC / AC conversion means;
  • Control means for detecting the output voltage of the power storage means and controlling the operation of the direct current to direct current conversion means according to the voltage value
  • the direct current to direct current conversion means is a boosting chiba type direct current direct current conversion circuit comprising the following components (a) to (d):
  • the control means gives a pulse signal of a predetermined frequency to the gate of the switching transistor of the DC / DC conversion means to When the conversion means is activated and the output voltage of the storage means is within the allowable input voltage range of the DC / AC conversion means, the switch Stops the no-less signal applied to the gate of the switching transistor and maintains the switching transistor in the off state.
  • a power storage device using an electric double layer capacitor using an electric double layer capacitor.
  • the control means when the output voltage of the power storage means is lower than the allowable input voltage range of the DC / AC conversion means, the control means operates the DC / DC conversion means, The output voltage of the means is boosted and provided to the DC / AC conversion means. As a result, a stable voltage can be supplied to the DC / AC conversion means load.
  • the control means stops the pulse signal applied to the gate of the switching transistor and maintains the switching transistor in the OFF state. Is output to the DC-AC conversion means as it is through the inductance and the diode. During this time, the loss is essentially only the amount of diode passing, and the efficiency can be increased compared to when the operation stop control is not performed.
  • the output voltage of the power storage means when the output voltage of the power storage means is outside the allowable input voltage range of the DC / AC conversion means, the output voltage of the power storage means is changed to DC / AC via the DC / DC conversion means. Since the voltage is applied to the conversion means, a stable voltage can be supplied to the load even if the output voltage of the power storage means varies.
  • the output voltage of the storage means when the output voltage of the storage means is within the allowable input voltage range of the DC / AC conversion means, the output voltage of the storage means directly through the DC-DC conversion means is directly applied to the DC / AC conversion means. The power loss associated with the operation of the conversion means is reduced, and power can be efficiently supplied to the load.
  • FIG. 1 is a block diagram showing an embodiment of a power storage device according to the present invention.
  • FIG. 2 is a circuit diagram of a parallel monitor circuit group.
  • FIG. 3 is a diagram for explaining the operation of the parallel monitor circuit.
  • FIG. 4 is a block diagram showing a configuration of an example apparatus.
  • FIG. 5 is a diagram for explaining operation stop control of a DC-DC converter.
  • FIG. 6 A diagram showing the difference in efficiency depending on whether or not DC-DC converter operation is stopped.
  • FIG. 7 is a diagram showing a circuit configuration of an EDLC portion of the EDLC unit of Embodiment 2.
  • FIG. 8 is a diagram for explaining disconnection of a fully charged electric double layer capacitor (EDLC).
  • EDLC fully charged electric double layer capacitor
  • FIG. 9 is a block diagram showing a main configuration of an EDLC unit according to a second embodiment.
  • FIG. 10 is a diagram illustrating the detection of the voltage between terminals of the EDLC of Example 2.
  • FIG. 11 is a diagram illustrating the detection of the voltage between terminals of each EDLC in Example 2.
  • FIG. 12 is a diagram for explaining disconnection of a fully charged electric double layer capacitor (EDLC). Explanation of symbols
  • the control means detects the output voltage of the power storage means and controls the switching means according to the voltage value, and the output voltage of the power storage means is DC-AC converted.
  • the switching means is controlled to supply the output voltage of the power storage means to the DC / DC conversion means, and the DC output voltage of the DC / DC conversion means is supplied to the DC / AC conversion means.
  • the switching means is controlled so that the output voltage of the storage means is directly supplied to the DC / AC conversion means, and the DC / DC conversion is performed.
  • FIG. 1 is a block diagram showing an embodiment of a power storage device using the electric double layer capacitor according to the present invention.
  • the power storage device body 10 stores the DC power supplied from the DC current source 11, converts it into AC power, and supplies it to the load 12.
  • the DC current source 11 as an external device is composed of, for example, a solar cell, a wind power generator, an engine generator, or the like.
  • the power storage device body 10 is broadly provided with a power storage unit 10A and a power conversion unit 10B that converts direct current power stored in the power storage unit 10A into AC power.
  • the power storage unit 10A includes an EDLC unit 13 composed of an electric double layer capacitor (EDLC) and a parallel monitor circuit group 14 connected thereto.
  • EDLC electric double layer capacitor
  • the EDLC unit 13 is also configured with a plurality of electric double layer capacitor forces. For example,
  • the EDLC unit 13 corresponds to the power storage means in the present invention.
  • the parallel monitor circuit group 14 includes a plurality of parallel monitor circuits 14A, 14B connected in parallel to the electric double layer capacitors CAP1, CAP2,... Constituting the EDLC unit 13, respectively. It is composed of ...
  • Each parallel monitor circuit 14A, 14B is the same Since it is configured, the parallel monitor circuit 14A will be described below as an example.
  • the parallel monitor circuit 14A includes a resistor 15 and a field effect transistor (FET) 16 connected in series.
  • the discharge path bypasses both terminals of the capacitor CAP1, and the discharge control circuit 17 controls the opening and closing of the discharge path. It consists of and.
  • the discharge control circuit 17 monitors the terminal voltage of the capacitor CAP1, and when this terminal voltage exceeds the predetermined voltage (withstand voltage of the electric double layer capacitor), a control signal is given to the FET 16 to make it conductive.
  • Capacitor CAP1 is forcibly discharged with the discharge path closed.
  • Each parallel monitor circuit 14A, 14 ⁇ , ... prevents the corresponding electric double layer capacitors CAP1, CAP2, ... from falling into overcharge.
  • Each of the parallel monitor circuits 14A, 14B,... Corresponds to the overcharge prevention means in the present invention.
  • FIG. 3 shows changes in the terminal voltage during the charging operation of the 12 electric double layer capacitors (CAP1 to CAP12) constituting the EDLC unit 13.
  • CAP1 to CAP12 electric double layer capacitors
  • the power converter 10B includes a direct current alternating current (DC—AC) inverter 18, a direct current direct current (DC—DC) converter 19, a switch 20, and an operation stop control circuit 21.
  • DC—AC inverter 18 converts the DC input voltage to AC output voltage and applies it to load 12.
  • the DC-DC converter 19 converts the DC input voltage into a DC output voltage within the input voltage allowable range (for example, 10 to 15 V) of the DC-AC inverter 18.
  • the switch ⁇ 20 switches the output path so that the output voltage of the EDLC unit 13 is supplied to one of the DC—AC inverter 18 and the DC—DC converter 19.
  • the operation stop control circuit 21 detects the output voltage of the EDLC unit 13 and controls switching according to the voltage value. That is, the operation stop control circuit 21 (control means) When the output voltage of the LC unit 13 is outside the allowable input voltage range of the DC—AC inverter 18, the switch 20 is controlled so that the output voltage of the EDLC unit 13 is supplied to the DC-DC converter 19, and the DC — When the DC output voltage of DC converter 19 is applied to DC—AC inverter 18 while the output voltage of EDLC unit 13 is within the allowable input voltage range of DC—AC inverter 18, the output voltage of EDLC unit 13 is set to DC— The switch is controlled so that it is supplied directly to the AC inverter 18 and the DC-DC converter 19 is made non-operating.
  • the DC-AC inverter 18 is a DC / AC converter in the present invention
  • the DC-DC converter 19 is a DC-DC converter in the present invention
  • the switch is a switch in the present invention. 21 corresponds to the control means in the present invention.
  • the operation stop control circuit 21 monitors the output voltage of the EDLC unit 13, and when the output voltage is lower than the allowable input voltage range of the DC-AC inverter 18 (for example, 10 to 15V), the operation stop control circuit 21 Turn off 20 to supply output voltage to DC-DC converter 19. As a result, the output voltage of the EDLC unit 13 is boosted by the DC-DC converter 19 to a predetermined voltage (for example, 12.5 V) within the allowable input voltage range of the DC-AC inverter 18. The output voltage of the DC—DC converter 19 applied to the DC—AC inverter 18 is converted into an alternating voltage by the DC—AC inverter 18 and supplied to the load 12.
  • a predetermined voltage for example, 12.5 V
  • the operation stop control circuit 21 supplies the output voltage of the EDLC unit 13 to the DC—AC inverter 18.
  • the switching 20 is controlled, and the DC-DC converter 19 is put into a non-operating state.
  • the output voltage of the EDLC unit 13 is directly applied to the DC-AC inverter 18 to be converted into an AC voltage and supplied to the load 12.
  • the DC-DC converter 19 becomes non-operational, so the power loss associated with the operation of the DC-DC converter 19 is reduced. Thus, power can be efficiently supplied to the load.
  • FIG. 1 shows a specific example of the DC-DC converter 19 and the switch 20 in the apparatus shown in FIG.
  • the other configuration is the same as that of the apparatus shown in FIG. 1, and a description thereof is omitted here.
  • the DC-DC converter 19 of this embodiment is a step-up hopper type DC-DC converter, and also has a function as a cut-off, as will be apparent from the following description.
  • the DC-DC converter 19 has an inductance 22 connected to the DLC unit 13 side at one end, an anode connected to the other end of the inductance 22, and a power sword connected to the DC-AC inverter 18 side.
  • FET switching transistor
  • the operation stop control circuit 21 monitors the output voltage of the EDLC unit 13, and when the output voltage is lower than the allowable input voltage range of the DC-AC inverter 18, A pulse signal (operation control signal) with a predetermined frequency is applied to the gate of transistor 25. As a result, the DC-DC converter 19 is activated, and the output voltage of the EDLC unit 13 is boosted and applied to the DC-AC inverter 18. As described above, the DC-DC converter 19 is operated by the control signal from the operation stop control circuit 21 to boost the output voltage of the EDLC unit 13 from the operation stop control circuit 21 in the apparatus of FIG. This is equivalent to controlling the switcher 20 by the control signal and supplying the output voltage of the EDLC unit 13 to the DC-DC converter 19.
  • the operation stop control circuit 21 when the output voltage of the EDLC unit 13 is within the input voltage allowable range of the DC—AC inverter 18, the operation stop control circuit 21 is connected to the gate of the switching transistor 25. Stop the pulse signal applied to the switching transistor 25 Keep it off. Then, the DC-DC converter 19 is stopped, and is supplied to the DC-AC inverter 18 as it is through the output voltage force inductance 22 and the diode 23 of the ED LC unit 13. The loss during this period is substantially only the passage of the diode 23, and the efficiency is increased as compared with the case where the operation stop control is not performed.
  • control signal from the operation stop control circuit 21 disables the DC-DC converter 19 and applies the output voltage of the EDLC unit 13 to the DC-AC inverter 18 as it is.
  • the switch 20 is controlled by the control signal from the operation stop control circuit 21 to supply the output voltage of the EDLC unit 13 to the DC-AC inverter 18 and DC.
  • Output voltage of DC converter 19 is shown in Fig. 5.
  • the output voltage of the EDLC unit 13 is lower than the input voltage range of the DC-AC inverter 18, the output voltage of the EDLC unit 13 is boosted by the DC-DC converter 19 to output a substantially constant DC voltage
  • the output voltage of the EDLC unit 13 is within the input voltage range of the DC—AC inverter 18, it can be seen that the output voltage force of the EDLC unit 13 is almost output from the DC—DC converter 19 (non-operating state).
  • the depth was compared.
  • the depth of discharge indicates how much power stored in the electric double layer capacitor can be used.
  • the output voltage of the EDLC unit 13 is lower than the operating voltage lower limit (4V) of the DC-DC converter 19. It can be obtained by measuring the voltage across the terminals of each electric double layer capacitor when the system stops operating.
  • V DC—below the DC converter 19 operating voltage lower limit (4V), and the equipment stops operating.
  • V Electric double layer capacitor withstand voltage (full charge voltage)
  • the depth of discharge when the DC-DC converter 19 is stopped is as high as 89%. It was confirmed that the electric power stored in the electric double layer capacitor can be used effectively. This value is high when considering that the discharge depth is about 40% when the output voltage of the EDLC unit 13 is directly applied to the DC-AC inverter 18 with the DC-DC converter 19 used. It is a power to be a value.
  • the power storage means includes a circuit configuration in which a plurality of electric double layer capacitors are connected in series, and each electric double layer capacitor of the power storage means is energized to the electric double layer capacitor.
  • a first switch that switches energization is connected in series to each other, and the short circuit wiring connected in parallel to the electric double layer capacitor and the corresponding first switch, and the energization Z de-energization provided in the short circuit wiring
  • the second switch to be switched, the detection means for detecting the terminal voltage of each electric double layer capacitor, and the electric double layer detected by the detection means as having reached a predetermined voltage lower than the predetermined voltage at the overcharge prevention means
  • Energization control to switch the first switch of the capacitor to de-energization and to switch the second switch of the short-circuit wiring corresponding to the electric double layer capacitor to energization
  • an electric double layer capacitor that can reduce waste of input energy due to forced discharge by means of an overcharge prevention means added to the electric double layer capacitor that has reached
  • Example 1 The second objective of providing power storage devices was realized.
  • the effectiveness of the technique of Example 1 was shown. In other words, we showed a method that can supply a stable voltage efficiently to a load with a relatively simple configuration.
  • the results of Fig. 3 show that in the charging process of each of the 12 electric double layer capacitors CAP1, CAP2, ..., CAP12, due to variations in the capacitance of these capacitors (capacitors), they are fully charged. The time required to reach the difference is different for each capacitor.
  • an electric double layer capacitor with as little capacitance error as possible should be used. It is not practical to construct a device because it leads to waste of time and cost for measuring capacitance. In particular, it takes a lot of time to accurately measure the capacitance of a large-capacity electric double layer capacitor used when constructing a large-capacity power storage device.
  • the second embodiment solves this problem and is configured as follows, for example.
  • FIG. 7 is a diagram illustrating a circuit configuration of the EDLC portion of the EDL C unit according to the second embodiment.
  • Fig. 8 is a diagram illustrating the separation of a fully charged electric double layer capacitor (EDLC).
  • FIG. 9 is a block diagram showing a main configuration of the EDLC unit according to the second embodiment.
  • FIG. 10 is a diagram for explaining the detection of the voltage between the terminals of the EDLC of the second embodiment.
  • FIG. 11 is a diagram for explaining the detection of the voltage between terminals of each EDLC of the second embodiment.
  • Fig. 12 is a diagram illustrating the separation of a fully charged electric double layer capacitor (EDLC).
  • This Example 2 shows a specific example of the EDLC unit 13 in the apparatus shown in FIG.
  • the EDLC unit 13 includes a plurality (n) of electric double layer capacitors CAP. 1, CAP2, ... Includes a circuit configuration in which CAPn is connected in series.
  • Each electric double layer capacitor CAP1, CAP2, ..., CAPn is a switch Sl, S2, ..., Sn for switching between energization Z to non-energization of its own electric double layer capacitor. Yes. That is, switch S1 is connected in series to electric double layer capacitor CAP1, switch S2 is connected in series to electric double layer capacitor CAP2, and so on.
  • electric double layer capacitors CAP1, CAP2, ..., CAPn and corresponding switches Sl, S2, ..., short-circuit wiring for each set of Sn, hl, h2, ..., hn are connected in parallel. That is, the shorting wiring hi is connected in parallel to the set of the electric double layer capacitor CAP1 and the corresponding switch S1, and the shorting wiring h2 is connected to the set of the electric double layer capacitor CAP2 and the corresponding switch S2. Connected in parallel, and so on.
  • Each short-circuit wiring hl, h2, ..., hn is energized Z switches for switching between non-energized Sbl, Sb
  • ... Sbn are connected in series. That is, the switch Sb1 is connected in series to the short-circuit wiring hi, the switch Sb2 is connected in series to the short-circuit wiring h2, and so on.
  • the EDLC unit 13 of the second embodiment includes a first stage block including an electric double layer capacitor CAP1 and a switch S1, a short-circuit wiring hi and a switch Sbl, an electric double layer capacitor CAP 2 and a switch S2.
  • the EDLC unit 13 includes a voltage detection circuit 30 for detecting the terminal voltages of the respective electric double layer capacitors CAP1, C ⁇ 2,..., CAPn, and this voltage detection circuit.
  • the electric double layer capacitor CAPi switch that was detected as having reached the predetermined voltage (close to full charge) at 30 at lower than the predetermined voltage (full charge voltage) in the parallel monitor circuit (see Fig. 2) at 30 Si
  • a switching circuit 32 that switches the switch Sbi of the short-circuit wiring hi corresponding to the electric double layer capacitor CAPi to energization.
  • the switching circuit 32 is based on the detection of the terminal voltage of each electric double layer capacitor CAP1, CAP2,. Switch the switch Si corresponding to the electric double layer capacitor CAPi that has reached a voltage close to full charge and switch Sbi so that the output voltage of 3 does not fall below the input lower limit voltage of the DC-DC converter 19. Control.
  • switches Sl, S2,..., Sn are the first switch in the present invention
  • switches Sbl, Sb2,..., Sbn are the second switch in the present invention.
  • the switching circuit 32 corresponds to energization control means in the present invention.
  • the method of the second embodiment is such that the parallel monitor circuit (see Fig. 2) is not operated as much as possible.
  • the EDLC unit 13 is configured, and the electric double layer capacitor CAPi that is almost fully charged is electrically disconnected from the EDLC unit 13.
  • charging is started from a state in which all electric double layer capacitors CAP1, CAP2,..., CAPn are connected in series. Then, when charging proceeds, for example, when the voltage of the electric double layer capacitor CAP2 in the second stage block is close to full charge (withstand voltage), switch S2 is turned off and switch Sb2 is turned on as shown in Fig. 7 (b). By doing so, the electric double layer capacitor CAP2 with high inter-terminal voltage is temporarily electrically disconnected from the EDLC unit 13. In this way, the forced discharge by the parallel monitoring circuit added to the electric double layer capacitor CAP2 can cause unnecessary energy consumption and other electric double layer capacitors (other unseparated other capacitors). The charging time of the electric double layer capacitor) can be shortened.
  • the output voltage Vt of the EDLC unit 13 temporarily decreases by electrically disconnecting the electric double layer capacitor, in this method, the output voltage Vt is generally not supplied directly to the inverter. Actually, there is not much problem because a DC-DC converter with a low input lower limit voltage is used.
  • some electric double layer capacitors have a capacitance error of about 20%, and this capacitance error is reflected in the voltage between terminals.
  • this capacitance error is reflected in the voltage between terminals.
  • the worst condition In other words, if there is a capacity error of ⁇ 20% of the rating, when charged under the same conditions, the electric double layer capacitor whose capacitance is 20% smaller than the rating will reach full charge quickly, and the voltage between terminals will be the withstand voltage. 2 Suppose that it becomes 3 [V]. At that time, the voltage between the terminals of the electric double layer capacitor as rated is 1.91 [V], and the voltage between the terminals of the electric double layer capacitor whose capacitance is 20% larger than the rating is 1.53 [V].
  • the disconnected electric double layer capacitor may be connected to the EDLC unit 13 again.
  • the voltage between terminals of each electric double layer capacitor may be obtained by using AD conversion, but a transformer may be used as shown in FIG. In FIGS. 9 and 12, the parallel monitor circuit is not shown.
  • the secondary coil of switch S is connected to the voltage across the terminals of the electric double layer capacitor CAPi.
  • the example voltage is generated.
  • the voltage detection circuit 30 can measure the voltage between the terminals of the electric double layer capacitors CAPl to CAPn. Furthermore, the switching circuit 32 detects the electric double layer capacitor CAPi that is close to full charge (withstand voltage) based on the measurement value of the voltage detection circuit 30, and switches the switches S and S to switch the target electric circuit. Double layer capacitor CAPi EDLC unit
  • FIG. 12 (a) shows the equivalent of Fig. 12 (a) for easier viewing. In other words, unnecessary circuits are deleted in Fig. 12 (b).
  • the switching circuit 32 detects that the voltage detection circuit 30 has reached a predetermined voltage lower than the predetermined voltage in the parallel monitor circuit (see FIG. 2).
  • Switch of electric double layer capacitor CAPi is switched to de-energization, and switch Sbi of the short-circuit wiring hi corresponding to the electric double layer capacitor CAPi is switched to energization.
  • the forced discharge by the parallel monitor circuit added to the electric double-layer capacitor CAPi that has reached the specified voltage can be reduced, and the forced discharge by the parallel monitor circuit reduces the wasted input energy. it can.
  • the charging time of other electric double layer capacitors (other electric double layer capacitors that are not separated) can be shortened.
  • the switching circuit 32 is configured so that the output voltage of the EDLC unit 13 is input to the DC DC converter 19 based on the terminal voltage detection of each electric double layer capacitor CAP1, CAP2, ..., CAPn by the voltage detection circuit 30.
  • Switch sbi of switch Si corresponding to electric double layer capacitor CAPi that has reached a predetermined voltage close to full charge and switch Sbi so that it does not fall below the lower limit voltage.
  • the output voltage of 13 is lower than the specified voltage (full charge) in the parallel monitor circuit so that it does not fall below the DC DC converter 19 input lower limit voltage.
  • the electric double layer capacitor CAPi can be electrically disconnected, and the forced discharge caused by the parallel monitor circuit added to the electric double layer capacitor CAR at the specified voltage can be reduced.
  • Input energy in the control discharge can be reduced to be wasted.
  • the time can be shortened.
  • discharging when the output voltage of the EDLC unit 13 approaches the input lower limit voltage of the DC DC converter 19, the electric double layer capacitor CAPi that has been charged and electrically disconnected is connected again, and the EDLC unit The output voltage of 13 can be increased.
  • the electric double layer capacitors shown in FIGS. 7 to 9 and 12 may be connected in parallel rather than one.
  • the present invention can more efficiently use the electric double layer capacitor.
  • the configuration is relatively simple and complicated control is not required, it is advantageous in terms of maintenance and manufacturing costs.
  • the DC-DC converter becomes larger as the scale of power to be handled increases, so the present invention is particularly suitable for handling relatively small power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

A storage device capable of supplying a stabilized voltage from a DC-AC converting means to a load even if the output voltage from a storage means is varied because an operation interruption control circuit controls a switch to supply the output voltage from an electric double layer capacitor (EDLC) unit to a DC-DC converter when the output voltage from the EDLC unit deviates from the allowable input voltage range of a DC-AC inverter and supplies DC output voltage from the DC-DC converter to the DC-AC inverter. When the output voltage from the EDLC unit falls within the allowable input voltage range of the DC-AC inverter, the switch is controlled to supply the output voltage from the EDLC unit to the DC-AC inverter and the DC-DC converter is brought into nonoperating state. Consequently, power loss incident to operation of a DC-DC converting means is reduced and power can be supplied efficiently to the load.

Description

明 細 書  Specification
電気二重層コンデンサを用いた蓄電装置  Power storage device using electric double layer capacitor
技術分野  Technical field
[0001] 本発明は、電気二重層コンデンサを用いた蓄電装置に関する。  The present invention relates to a power storage device using an electric double layer capacitor.
背景技術  Background art
[0002] 近年、電気二重層コンデンサは、サイクル寿命が長 ヽことや使用温度範囲が広 ヽ などの特徴から、二次電池に替わる新 、蓄電デバイスとして注目を集めて!/、る(例 えば、特許文献 1参照)。しかし、コンデンサは蓄えられた電荷量に比例して出力電 圧が変化することや、単体では出力電圧が低いことから、一般的には直列や直並列 に接続して用いられることが多 、。  [0002] In recent years, electric double layer capacitors have attracted attention as new storage devices that replace secondary batteries because of their long cycle life and wide operating temperature range. Patent Document 1). However, capacitors are generally used in series or series-parallel connection because the output voltage changes in proportion to the amount of stored charge, or because the output voltage of a single capacitor is low.
[0003] コンデンサを直列あるいは直並列接続した際に、負荷に安定した電圧を供給する には、複数の電気二重層コンデンサを複雑なスィッチを用いて直列や並列接続に切 り替える方法が多く用いられてきた。  [0003] In order to supply a stable voltage to a load when capacitors are connected in series or series-parallel, a method of switching a plurality of electric double layer capacitors to a series or parallel connection using a complicated switch is often used. Has been.
特許文献 1:特開平 07— 135025号公報 (第 4— 5頁、図 4)  Patent Document 1: Japanese Patent Laid-Open No. 07-135025 (Page 4-5, Fig. 4)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 本発明は、このような事情に鑑みてなされたものであって、比較的に簡単な構成に よって、負荷に安定した電圧を効率よく供給することができる、電気二重層コンデン サを用いた蓄電装置を提供することを第 1の目的とする。また、所定電圧に達した電 気二重層コンデンサに付加された過充電防止手段による強制放電で入力エネルギ 一が無駄に消費されることを低減できる、電気二重層コンデンサを用いた蓄電装置 を提供することを第 2の目的とする。 The present invention has been made in view of such circumstances, and an electric double layer capacitor capable of efficiently supplying a stable voltage to a load with a relatively simple configuration. It is a first object to provide the power storage device used. Also provided is a power storage device using an electric double layer capacitor that can reduce wasteful consumption of input energy due to forced discharge by an overcharge prevention means added to the electric double layer capacitor that has reached a predetermined voltage. This is the second purpose.
課題を解決するための手段  Means for solving the problem
[0005] 本発明は、このような目的を達成するために、次のような構成をとる。 In order to achieve such an object, the present invention has the following configuration.
すなわち、請求項 1に記載の発明に係る電気二重層コンデンサを用いた蓄電装置 は、電気二重層コンデンサからなる蓄電手段と、直流入力電圧を交流出力電圧に変 換して負荷に与える直流 交流変換手段と、直流入力電圧を直流 交流変換手段 の入力電圧許容範囲内の直流出力電圧に変換する直流一直流変換手段と、蓄電 手段の出力電圧を直流 交流変換手段および直流 直流変換手段の!/、ずれか一 方に供給するように出力経路を切り換える切換手段と、蓄電手段の出力電圧を検出 し、その電圧値に応じて切換手段を制御する制御手段であって、蓄電手段の出力電 圧が直流 交流変換手段の入力電圧許容範囲外であるときは、蓄電手段の出力電 圧を直流 直流変換手段に供給するように切換手段を制御して、直流 直流変換 手段の直流出力電圧を直流 交流変換手段に与える一方、蓄電手段の出力電圧 が直流 交流変換手段の入力電圧許容範内であるときは、蓄電手段の出力電圧を 直流 交流変換手段に直接に供給するように切換手段を制御するとともに、直流 直流変換手段を非動作状態にする制御手段と、を備えたものである。 That is, a power storage device using the electric double layer capacitor according to the invention of claim 1 includes a power storage means including an electric double layer capacitor, and a DC AC conversion that converts a DC input voltage into an AC output voltage and applies it to a load. And DC input voltage to DC / AC conversion means DC-DC conversion means that converts the output voltage to a DC output voltage within the allowable input voltage range, and the output path so that the output voltage of the storage means is supplied to either the DC / AC conversion means or the DC / DC conversion means! Switching means for switching between, and a control means for detecting the output voltage of the power storage means and controlling the switching means according to the voltage value, the output voltage of the power storage means is outside the allowable input voltage range of the DC-AC conversion means In some cases, the switching means is controlled to supply the output voltage of the power storage means to the DC / DC conversion means, and the DC output voltage of the DC / DC conversion means is supplied to the DC / AC conversion means, while the output voltage of the power storage means is When the input voltage of the DC / AC conversion means is within the allowable range, the switching means is controlled so that the output voltage of the power storage means is directly supplied to the DC / AC conversion means, and the DC / DC conversion means is in a non-operating state. Control means.
[0006] 本発明の蓄電装置の作用 ·効果は次のとおりである。制御手段は、蓄電手段の出 力電圧を監視し、その電圧値に応じて切換手段を次のように制御する。すなわち、蓄 電手段の出力電圧が直流 交流変換手段の入力電圧許容範囲外であるときは、蓄 電手段の出力電圧を直流 直流変換手段に供給するように切換手段を制御して、 直流一直流変換手段の直流出力電圧を直流 交流変換手段に与える。その結果、 蓄電手段の出力電圧が変動しても、直流一直流変換手段によって一定の直流出力 電圧が直流 交流変換手段に与えられるので、直流 交流変換手段から負荷に対 して安定した電圧を供給することができる。  [0006] Operations and effects of the power storage device of the present invention are as follows. The control means monitors the output voltage of the power storage means and controls the switching means according to the voltage value as follows. That is, when the output voltage of the power storage means is outside the allowable input voltage range of the DC / AC conversion means, the switching means is controlled so that the output voltage of the power storage means is supplied to the DC / DC conversion means. The DC output voltage of the conversion means is given to the DC / AC conversion means. As a result, even if the output voltage of the storage means fluctuates, a constant DC output voltage is given to the DC / AC conversion means by the DC / DC conversion means, so that a stable voltage is supplied from the DC / AC conversion means to the load. can do.
[0007] 一方、蓄電手段の出力電圧が直流 交流変換手段の入力電圧許容範内であると き、制御手段は、蓄電手段の出力電圧を直流 交流変換手段に直接に供給するよ うに切換手段を制御するとともに、直流一直流変換手段を非動作状態にするので、 直流一直流変換手段の動作に伴う電力損失が低減され、負荷に対して効率よく給電 することができる。  [0007] On the other hand, when the output voltage of the power storage means is within the allowable input voltage range of the DC / AC conversion means, the control means switches the switching means so as to directly supply the output voltage of the power storage means to the DC / AC conversion means. In addition to controlling, the DC / DC converting means is put into a non-operating state, so that the power loss associated with the operation of the DC / DC converting means is reduced and power can be efficiently supplied to the load.
[0008] さらに、蓄電手段は複数個の電気二重層コンデンサ力 構成されており、かつ、各 電気二重層コンデンサにそれぞれ並列接続された複数個の過充電防止手段を備え 、各過充電防止手段は、それぞれに対応した電気二重層コンデンサの端子電圧が 所定電圧になると、当該コンデンサを強制放電させるものである。この場合には、複 数個の電気二重層コンデンサのそれぞれが過充電防止手段によって監視されるの で、コンデンサ間に容量のバラツキがあっても、全てのコンデンサを満充電の状態に まで充電することができる。 [0008] Furthermore, the power storage means comprises a plurality of electric double layer capacitor forces, and includes a plurality of overcharge prevention means connected in parallel to each electric double layer capacitor, each overcharge prevention means comprising: When the terminal voltage of the electric double layer capacitor corresponding to each becomes a predetermined voltage, the capacitor is forcibly discharged. In this case, each of the plurality of electric double layer capacitors is monitored by overcharge prevention means. Thus, even if there is a variation in capacitance between capacitors, all the capacitors can be fully charged.
[0009] さらに、蓄電手段は、電気二重層コンデンサを複数個直列接続した回路構成を含 み、蓄電手段の各電気二重層コンデンサは、電気二重層コンデンサへの通電 Z非 通電を切り替える第 1のスィッチがそれぞれに直列接続され、電気二重層コンデンサ およびそれに対応する第 1のスィッチに対して並列接続された短絡用配線と、短絡用 配線に設けられた通電 Z非通電を切り替える第 2のスィッチと、各電気二重層コンデ ンサの端子電圧をそれぞれ検出する検出手段と、検出手段で過充電防止手段での 所定電圧よりも低 、所定電圧に達したと検出された電気二重層コンデンサの第 1のス イッチを非通電に切り替えるとともに、その電気二重層コンデンサに対応する短絡用 配線の第 2のスィッチを通電に切り替える通電制御手段と、を備えたものが好ましい。  [0009] Further, the power storage means includes a circuit configuration in which a plurality of electric double layer capacitors are connected in series, and each electric double layer capacitor of the power storage means includes a first Z switch that switches between energization and non-energization of the electric double layer capacitor. A short-circuit wire connected in series to each of the switches, connected in parallel to the electric double layer capacitor and the corresponding first switch, and a second switch for switching between energization and non-energization provided in the short-circuit wire. Detecting means for detecting the terminal voltage of each electric double layer capacitor, and the first means of the electric double layer capacitor detected by the detecting means to reach a predetermined voltage lower than the predetermined voltage at the overcharge preventing means. Power supply control means for switching the switch to de-energization and switching the second switch of the short-circuit wiring corresponding to the electric double layer capacitor to energization. It is preferred.
[0010] この場合には、通電制御手段は、検出手段で過充電防止手段での所定電圧よりも 低い所定電圧に達したと検出された電気二重層コンデンサの第 1のスィッチを非通 電に切り替えるとともに、その電気二重層コンデンサに対応する短絡用配線の第 2の スィッチを通電に切り替えるので、所定電圧となった電気二重層コンデンサを電気的 に切り離すことができ、所定電圧となった電気二重層コンデンサに付加された過充電 防止手段による強制放電を低減でき、過充電防止手段による強制放電で入力エネ ルギ一が無駄に消費されることを低減できる。し力も、他の電気二重層コンデンサ (切 り離されていない他の電気二重層コンデンサ)の充電時間を短縮することができる。 [0010] In this case, the energization control means de-energizes the first switch of the electric double layer capacitor that is detected by the detection means to have reached a predetermined voltage lower than the predetermined voltage of the overcharge prevention means. At the same time, since the second switch of the short-circuit wiring corresponding to the electric double layer capacitor is switched to energization, the electric double layer capacitor having a predetermined voltage can be electrically disconnected, and the electric The forced discharge by the overcharge prevention means added to the multilayer capacitor can be reduced, and the waste of input energy due to the forced discharge by the overcharge prevention means can be reduced. In addition, the charging time of other electric double layer capacitors (other electric double layer capacitors that are not separated) can be shortened.
[0011] さらに、通電制御手段は、検出手段による各電気二重層コンデンサの端子電圧検 出に基づいて、蓄電手段の出力電圧が直流一直流変換手段の入力下限電圧以下 とならな 、ように、過充電防止手段での所定電圧よりも低 、所定電圧に達した電気二 重層コンデンサに対応する第 1のスィッチおよび短絡用配線の第 2のスィッチを切り 替え制御するものであることが好ま 、。 [0011] Further, the energization control means, based on the terminal voltage detection of each electric double layer capacitor by the detection means, so that the output voltage of the power storage means is not less than the input lower limit voltage of the DC-DC conversion means, It is preferable that the first switch corresponding to the electric double layer capacitor that has reached the predetermined voltage lower than the predetermined voltage in the overcharge preventing means and the second switch of the short-circuit wiring are controlled to be switched.
[0012] この場合には、通電制御手段は、検出手段による各電気二重層コンデンサの端子 電圧検出に基づいて、蓄電手段の出力電圧が直流一直流変換手段の入力下限電 圧以下とならないように、電気二重層コンデンサに対応する第 1のスィッチおよび短 絡用配線の第 2のスィッチを切り替え制御するので、充電の際には、蓄電手段の出 力電圧が直流一直流変換手段の入力下限電圧以下とならないように、過充電防止 手段での所定電圧よりも低い所定電圧となった電気二重層コンデンサを電気的に切 り離すことができ、所定電圧となった電気二重層コンデンサに付加された過充電防止 手段による強制放電を低減でき、過充電防止手段による強制放電で入力エネルギ 一が無駄に消費されることを低減できる。し力も、他の電気二重層コンデンサ (切り離 されていない他の電気二重層コンデンサ)の充電時間を短縮することができる。また、 放電の際には、蓄電手段の出力電圧が直流一直流変換手段の入力下限電圧に近 づくと、充電されて電気的に切り離された電気二重層コンデンサを再び接続して、蓄 電手段の出力電圧を上げることができる。 [0012] In this case, the energization control means prevents the output voltage of the power storage means from being lower than the input lower limit voltage of the DC-DC conversion means based on the terminal voltage detection of each electric double layer capacitor by the detection means. Since the first switch corresponding to the electric double layer capacitor and the second switch of the short-circuit wiring are switched, the output of the power storage means is charged. The electric double layer capacitor that has become a predetermined voltage lower than the predetermined voltage in the overcharge prevention means can be electrically disconnected so that the force voltage does not fall below the input lower limit voltage of the DC-DC conversion means. The forced discharge by the overcharge prevention means added to the electric double layer capacitor that has become a voltage can be reduced, and the waste of input energy due to the forced discharge by the overcharge prevention means can be reduced. This also shortens the charging time of other electric double layer capacitors (other electric double layer capacitors that are not separated). When discharging, when the output voltage of the power storage means approaches the input lower limit voltage of the DC-DC conversion means, the charged and electrically disconnected electric double layer capacitor is connected again, and the power storage means Can increase the output voltage.
なお、本明細書は、次のような課題解決手段も開示している。  The present specification also discloses the following means for solving problems.
電気二重層コンデンサからなる蓄電手段と、  Power storage means comprising an electric double layer capacitor;
直流入力電圧を交流出力電圧に変換して負荷に与える直流 交流変換手段と、 直流入力電圧を直流 交流変換手段の入力電圧許容範囲内の直流出力電圧に 変換する直流 直流変換手段と、  DC / AC conversion means for converting the DC input voltage into AC output voltage and applying it to the load; DC / DC conversion means for converting the DC input voltage to a DC output voltage within the allowable input voltage range of the DC / AC conversion means;
蓄電手段の出力電圧を検出し、その電圧値に応じて直流一直流変換手段の動作 を制御する制御手段とを備え、  Control means for detecting the output voltage of the power storage means and controlling the operation of the direct current to direct current conversion means according to the voltage value;
前記直流一直流変換手段は、次の(a)〜(d)の構成要素からなる昇圧チヨツバ型の 直流 直流変換回路であり、  The direct current to direct current conversion means is a boosting chiba type direct current direct current conversion circuit comprising the following components (a) to (d):
(a)一端が蓄電手段側に接続されたインダクタンスと、  (a) an inductance having one end connected to the power storage means side;
(b)このインダクタンスの他端にアノードが接続され、力ソードが直流 交流変換手 段側に接続されたダイオードと、  (b) a diode having an anode connected to the other end of this inductance and a force sword connected to the DC / AC converter stage side;
(c)このダイオードの力ソードと接地ラインとの間に介在するコンデンサと、  (c) a capacitor interposed between the power sword of this diode and the ground line;
(d)ダイオードのアノードと接地ラインとの間に介在するスイッチングトランジスタとを 備え、  (d) a switching transistor interposed between the anode of the diode and the ground line,
かつ、前記制御手段は、蓄電手段の出力電圧が直流 交流変換手段の入力電圧 許容範囲よりも低いときは、直流一直流変換手段のスイッチングトランジスタのゲート に所定周波数のパルス信号を与えて直流一直流変換手段を作動させる一方、蓄電 手段の出力電圧が直流 交流変換手段の入力電圧許容範内であるときは、スィッチ ングトランジスタのゲートに与えるノ ノレス信号を止めてスイッチングトランジスタを才フ 状態に維持する When the output voltage of the power storage means is lower than the input voltage allowable range of the DC / AC conversion means, the control means gives a pulse signal of a predetermined frequency to the gate of the switching transistor of the DC / DC conversion means to When the conversion means is activated and the output voltage of the storage means is within the allowable input voltage range of the DC / AC conversion means, the switch Stops the no-less signal applied to the gate of the switching transistor and maintains the switching transistor in the off state.
ことを特徴とする電気二重層コンデンサを用いた蓄電装置。  A power storage device using an electric double layer capacitor.
[0014] 上記の課題解決手段によれば、蓄電手段の出力電圧が直流 交流変換手段の入 力電圧許容範囲よりも低いときは、制御手段が直流一直流変換手段を作動させるこ とにより、蓄電手段の出力電圧が昇圧されて直流 交流変換手段に与えられる。そ の結果、直流 交流変換手段力 負荷に対して安定した電圧を供給することができ る。一方、蓄電手段の出力電圧が直流 交流変換手段の入力電圧許容範内である ときは、制御手段がスイッチングトランジスタのゲートに与えるパルス信号を止めてス イッチングトランジスタをオフ状態に維持するので、蓄電手段の出力電圧が、インダク タンスぉよびダイオードを介して、そのまま直流—交流変換手段に与えられる。この 間の損失は実質的にダイオードの通過分のみとなり、動作停止制御を行わない場合 に比べて効率をあげることができる。  [0014] According to the above problem solving means, when the output voltage of the power storage means is lower than the allowable input voltage range of the DC / AC conversion means, the control means operates the DC / DC conversion means, The output voltage of the means is boosted and provided to the DC / AC conversion means. As a result, a stable voltage can be supplied to the DC / AC conversion means load. On the other hand, when the output voltage of the storage means is within the allowable input voltage range of the DC / AC conversion means, the control means stops the pulse signal applied to the gate of the switching transistor and maintains the switching transistor in the OFF state. Is output to the DC-AC conversion means as it is through the inductance and the diode. During this time, the loss is essentially only the amount of diode passing, and the efficiency can be increased compared to when the operation stop control is not performed.
発明の効果  The invention's effect
[0015] 本発明に係る蓄電装置によれば、蓄電手段の出力電圧が直流 交流変換手段の 入力電圧許容範囲外であるときは、蓄電手段の出力電圧を直流一直流変換手段を 介して直流 交流変換手段に与えるので、蓄電手段の出力電圧が変動しても、負荷 に対して安定した電圧を供給することができる。一方、蓄電手段の出力電圧が直流 交流変換手段の入力電圧許容範内であるときは、直流一直流変換手段を介する ことなぐ蓄電手段の出力電圧を直接に直流 交流変換手段に与えるので、直流 直流変換手段の動作に伴う電力損失が低減され、負荷に対して効率よく給電するこ とがでさる。  [0015] According to the power storage device of the present invention, when the output voltage of the power storage means is outside the allowable input voltage range of the DC / AC conversion means, the output voltage of the power storage means is changed to DC / AC via the DC / DC conversion means. Since the voltage is applied to the conversion means, a stable voltage can be supplied to the load even if the output voltage of the power storage means varies. On the other hand, when the output voltage of the storage means is within the allowable input voltage range of the DC / AC conversion means, the output voltage of the storage means directly through the DC-DC conversion means is directly applied to the DC / AC conversion means. The power loss associated with the operation of the conversion means is reduced, and power can be efficiently supplied to the load.
図面の簡単な説明  Brief Description of Drawings
[0016] [図 1]本発明に係る蓄電装置の実施態様を示したブロック図である。 FIG. 1 is a block diagram showing an embodiment of a power storage device according to the present invention.
[図 2]並列モニタ回路群の回路図である。  FIG. 2 is a circuit diagram of a parallel monitor circuit group.
[図 3]並列モニタ回路の動作説明に供する図である。  FIG. 3 is a diagram for explaining the operation of the parallel monitor circuit.
[図 4]実施例装置の構成を示すブロック図である。  FIG. 4 is a block diagram showing a configuration of an example apparatus.
[図 5]DC— DCコンバータの動作停止制御の説明に供する図である。 [図 6]DC— DCコンバータの動作停止制御の有無による効率の違いを示した図であ る。 FIG. 5 is a diagram for explaining operation stop control of a DC-DC converter. [Fig. 6] A diagram showing the difference in efficiency depending on whether or not DC-DC converter operation is stopped.
[図 7]実施例 2の EDLCユニットの EDLC部分の回路構成を示す図である。  FIG. 7 is a diagram showing a circuit configuration of an EDLC portion of the EDLC unit of Embodiment 2.
[図 8]満充電された電気二重層コンデンサ(EDLC)の切り離しを説明する図である。  FIG. 8 is a diagram for explaining disconnection of a fully charged electric double layer capacitor (EDLC).
[図 9]実施例 2の EDLCユニットの要部構成を示すブロック図である。  FIG. 9 is a block diagram showing a main configuration of an EDLC unit according to a second embodiment.
[図 10]実施例 2の EDLCの端子間電圧の検出を説明する図である。  FIG. 10 is a diagram illustrating the detection of the voltage between terminals of the EDLC of Example 2.
圆 11]実施例 2の各 EDLCの端子間電圧の検出を説明する図である。 [11] FIG. 11 is a diagram illustrating the detection of the voltage between terminals of each EDLC in Example 2.
[図 12]満充電された電気二重層コンデンサ(EDLC)の切り離しを説明する図である。 符号の説明  FIG. 12 is a diagram for explaining disconnection of a fully charged electric double layer capacitor (EDLC). Explanation of symbols
10 … 蓄電装置本体  10… Power storage device body
10A … 畜  10A… livestock
10B ' … 電力変換部  10B '… Power converter
11 … 直流電流源  11… DC current source
12 … 負荷  12… Load
13 … EDLCユニット  13… EDLC unit
14 … 並列モニタ回路群  14… Parallel monitor circuit group
14A … 並列モニタ回路  14A… Parallel monitor circuit
15 … 抵抗  15… Resistance
16 … 電界効果トランジスタ  16… Field-effect transistor
17 … 放電制御回路  17… Discharge control circuit
18 … DC— ACインバータ  18… DC—AC inverter
19 … DC— DCコンバータ  19… DC—DC converter
20 … 切  20… off
21 … 動作停止制御回路  21… Operation stop control circuit
22 … インダクタンス  22… Inductance
23 … ダイオード  23… Diode
24 … コンデンサ  24… Capacitor
25 … スイッチングトランジス 発明を実施するための最良の形態 25… Switching transistors BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 電気二重層コンデンサを用いた蓄電装置において、蓄電手段の出力電圧を検出し 、その電圧値に応じて切換手段を制御する制御手段であって、蓄電手段の出力電 圧が直流 交流変換手段の入力電圧許容範囲外であるときは、蓄電手段の出力電 圧を直流 直流変換手段に供給するように切換手段を制御して、直流 直流変換 手段の直流出力電圧を直流 交流変換手段に与える一方、蓄電手段の出力電圧 が直流 交流変換手段の入力電圧許容範内であるときは、蓄電手段の出力電圧を 直流 交流変換手段に直接に供給するように切換手段を制御するとともに、直流 直流変換手段を非動作状態にする制御手段と、を備えることで、比較的に簡単な構 成によって、負荷に安定した電圧を効率よく供給することができる、電気二重層コン デンサを用いた蓄電装置を提供するという目的を実現した。  [0018] In a power storage device using an electric double layer capacitor, the control means detects the output voltage of the power storage means and controls the switching means according to the voltage value, and the output voltage of the power storage means is DC-AC converted. When the input voltage is outside the allowable input voltage range, the switching means is controlled to supply the output voltage of the power storage means to the DC / DC conversion means, and the DC output voltage of the DC / DC conversion means is supplied to the DC / AC conversion means. On the other hand, when the output voltage of the storage means is within the allowable input voltage range of the DC / AC conversion means, the switching means is controlled so that the output voltage of the storage means is directly supplied to the DC / AC conversion means, and the DC / DC conversion is performed. And a control means for bringing the means into a non-operating state by using an electric double layer capacitor capable of efficiently supplying a stable voltage to the load with a relatively simple configuration. Realized the purpose of providing a power storage device.
[0019] 以下、図面を参照して本発明の実施形態を説明する。図 1は、本発明に係る電気 二重層コンデンサを用いた蓄電装置の一実施形態を示すブロック図である。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing an embodiment of a power storage device using the electric double layer capacitor according to the present invention.
[0020] 蓄電装置本体 10は、直流電流源 11から供給された直流電力を蓄電し、これを交 流電力に変換して負荷 12に供給する。  The power storage device body 10 stores the DC power supplied from the DC current source 11, converts it into AC power, and supplies it to the load 12.
[0021] 外部装置としての直流電流源 11は、例えば太陽電池、風力発電機、エンジン発電 機などで構成される。  [0021] The DC current source 11 as an external device is composed of, for example, a solar cell, a wind power generator, an engine generator, or the like.
[0022] 蓄電装置本体 10は、大きく分けて、蓄電部 10Aと、この蓄電部 10Aに蓄えられた直 流電力を交流電力に変換する電力変換部 10Bとを備える。  [0022] The power storage device body 10 is broadly provided with a power storage unit 10A and a power conversion unit 10B that converts direct current power stored in the power storage unit 10A into AC power.
[0023] まず、蓄電部 10Aについて説明する。蓄電部 10Aは、電気二重層コンデンサ(Elect ric Double layer Capacitor: EDLC)からなる EDLCユニット 13と、これに接続された 並列モニタ回路群 14とを含む。 First, the power storage unit 10A will be described. The power storage unit 10A includes an EDLC unit 13 composed of an electric double layer capacitor (EDLC) and a parallel monitor circuit group 14 connected thereto.
[0024] EDLCユニット 13は、複数個の電気二重層コンデンサ力も構成されている。例えば[0024] The EDLC unit 13 is also configured with a plurality of electric double layer capacitor forces. For example
、静電容量 3500F、耐電圧 2. 3Vの電気二重層コンデンサを、 6直列 2並列接続して 構成されている。 EDLCユニット 13は、本発明における蓄電手段に相当する。 It consists of 6 series and 2 parallel electric double layer capacitors with a capacitance of 3500F and a withstand voltage of 2.3V. The EDLC unit 13 corresponds to the power storage means in the present invention.
[0025] 並列モニタ回路群 14は、図 2に示すように、 EDLCユニット 13を構成する各電気二 重層コンデンサ CAP1、 CAP2、 · · ·にそれぞれ並列接続される複数個の並列モニタ 回路 14A、 14B、 · · ·から構成されている。各並列モニタ回路 14A、 14B、 · · ·は同じ 構成であるので、以下では並列モニタ回路 14Aを例に採って説明する。 As shown in FIG. 2, the parallel monitor circuit group 14 includes a plurality of parallel monitor circuits 14A, 14B connected in parallel to the electric double layer capacitors CAP1, CAP2,... Constituting the EDLC unit 13, respectively. It is composed of ... Each parallel monitor circuit 14A, 14B is the same Since it is configured, the parallel monitor circuit 14A will be described below as an example.
[0026] 並列モニタ回路 14Aは、抵抗 15および電解効果トランジスタ (FET) 16を直列接続 してなり、コンデンサ CAP1の両端子をバイパスする放電経路と、この放電経路を開 閉制御する放電制御回路 17とから構成されている。放電制御回路 17は、コンデンサ CAP1の端子電圧を監視しており、この端子電圧が所定電圧 (電気二重層コンデンサ の耐電圧)を越えると、 FET16に制御信号を与えて導通状態にすることにより、放電 経路を閉状態にしてコンデンサ CAP1を強制放電させる。各並列モニタ回路 14A、 1 4Β、 · · ·は、それぞれに対応した電気二重層コンデンサ CAPl、 CAP2、 · · ·が過充電 に陥るのを阻止する。各並列モニタ回路 14A、 14B、 · · ·は、本発明における過充電 防止手段に相当する。 [0026] The parallel monitor circuit 14A includes a resistor 15 and a field effect transistor (FET) 16 connected in series. The discharge path bypasses both terminals of the capacitor CAP1, and the discharge control circuit 17 controls the opening and closing of the discharge path. It consists of and. The discharge control circuit 17 monitors the terminal voltage of the capacitor CAP1, and when this terminal voltage exceeds the predetermined voltage (withstand voltage of the electric double layer capacitor), a control signal is given to the FET 16 to make it conductive. Capacitor CAP1 is forcibly discharged with the discharge path closed. Each parallel monitor circuit 14A, 14 、, ... prevents the corresponding electric double layer capacitors CAP1, CAP2, ... from falling into overcharge. Each of the parallel monitor circuits 14A, 14B,... Corresponds to the overcharge prevention means in the present invention.
[0027] 更に、図 3を参照して、充電動作時における並列モニタ回路 14Α、 14Β、 · · ·の機能 を説明する。図 3は、 EDLCユニット 13を構成している 12個の電気二重層コンデンサ (CAP1〜CAP12)の充電動作時の端子電圧の変化を示している。規格上は同容量 の電気二重層コンデンサであっても、実際には、その容量にバラツキがあるので、充 電時間はコンデンサごとに異なることがわかる。したがって、 1つのコンデンサが満充 電になったとしても、他のコンデンサは満充電に至っていない場合もある。そこで、上 述したように、全てのコンデンサに並列モニタ回路を設けることにより、 1つのコンデン サが満充電に達した時点で全コンデンサの充電を終了することなぐ全てのコンデン サを満充電にすることができる。  Furthermore, with reference to FIG. 3, the functions of the parallel monitor circuits 14, 14,... During the charging operation will be described. FIG. 3 shows changes in the terminal voltage during the charging operation of the 12 electric double layer capacitors (CAP1 to CAP12) constituting the EDLC unit 13. According to the standard, even if an electric double layer capacitor has the same capacity, the charging time varies depending on the capacitor because the capacity actually varies. Therefore, even if one capacitor is fully charged, the other capacitor may not be fully charged. Therefore, as described above, by providing a parallel monitor circuit for all capacitors, all capacitors that do not end charging all capacitors when one capacitor reaches full charge are fully charged. be able to.
[0028] 次に電力変換部 10Bの構成を説明する。図 1に示すように、電力変換部 10Bは、直 流 交流(DC— AC)インバータ 18と、直流一直流(DC— DC)コンバータ 19と、切換 器 20と、動作停止制御回路 21とを含む。 DC— ACインバータ 18は、直流入力電圧を 交流出力電圧に変換して負荷 12に与える。 DC— DCコンバータ 19は、直流入力電 圧を DC— ACインバータ 18の入力電圧許容範囲(例えば、 10〜15V)内の直流出力 電圧に変換する。切^ ^20は、 EDLCユニット 13の出力電圧を DC— ACインバータ 1 8および DC— DCコンバータ 19のいずれか一方に供給するように出力経路を切り換 える。動作停止制御回路 21は、 EDLCユニット 13の出力電圧を検出し、その電圧値 に応じて切 を制御する。すなわち、動作停止制御回路 21 (制御手段)は、 ED LCユニット 13の出力電圧が DC— ACインバータ 18の入力電圧許容範囲外であると きは、 EDLCユニット 13の出力電圧を DC - DCコンバータ 19に供給するように切翻 20を制御して、 DC— DCコンバータ 19の直流出力電圧を DC— ACインバータ 18に 与える一方、 EDLCユニット 13の出力電圧が DC— ACインバータ 18の入力電圧許容 範囲内であるときは、 EDLCユニット 13の出力電圧を DC— ACインバータ 18に直接に 供給するように切 を制御するとともに DC— DCコンバータ 19を非動作状態に する。 Next, the configuration of the power conversion unit 10B will be described. As shown in FIG. 1, the power converter 10B includes a direct current alternating current (DC—AC) inverter 18, a direct current direct current (DC—DC) converter 19, a switch 20, and an operation stop control circuit 21. . DC—AC inverter 18 converts the DC input voltage to AC output voltage and applies it to load 12. The DC-DC converter 19 converts the DC input voltage into a DC output voltage within the input voltage allowable range (for example, 10 to 15 V) of the DC-AC inverter 18. The switch ^^ 20 switches the output path so that the output voltage of the EDLC unit 13 is supplied to one of the DC—AC inverter 18 and the DC—DC converter 19. The operation stop control circuit 21 detects the output voltage of the EDLC unit 13 and controls switching according to the voltage value. That is, the operation stop control circuit 21 (control means) When the output voltage of the LC unit 13 is outside the allowable input voltage range of the DC—AC inverter 18, the switch 20 is controlled so that the output voltage of the EDLC unit 13 is supplied to the DC-DC converter 19, and the DC — When the DC output voltage of DC converter 19 is applied to DC—AC inverter 18 while the output voltage of EDLC unit 13 is within the allowable input voltage range of DC—AC inverter 18, the output voltage of EDLC unit 13 is set to DC— The switch is controlled so that it is supplied directly to the AC inverter 18 and the DC-DC converter 19 is made non-operating.
[0029] DC— ACインバータ 18は本発明における直流 交流変換手段に、 DC— DCコンパ ータ 19は本発明における直流-直流変換手段に、切 は本発明における切 換手段に、動作停止制御回路 21は本発明における制御手段に、それぞれ相当する  [0029] The DC-AC inverter 18 is a DC / AC converter in the present invention, the DC-DC converter 19 is a DC-DC converter in the present invention, and the switch is a switch in the present invention. 21 corresponds to the control means in the present invention.
[0030] 次に図 1に示した装置の動作 (特に電力変換に係る動作)を説明する。動作停止制 御回路 21は、 EDLCユニット 13の出力電圧を監視し、その出力電圧が DC— ACイン バータ 18の入力電圧許容範囲(例えば、 10〜15V)よりも低いときは、 EDLCユニット 13の出力電圧を DC - DCコンパータ 19に供給するように切 20を制御する。こ れにより EDLCユニット 13の出力電圧が DC— DCコンバータ 19により、 DC— ACイン バータ 18の入力電圧許容範囲内の所定電圧 (例えば、 12. 5V)まで昇圧される。 D C— ACインバータ 18に与えられた DC— DCコンバータ 19の出力電圧は、 DC— A Cインバータ 18で交流電圧に変換されて負荷 12に供給される。このように EDLCュ- ット 13の出力電圧が DC— ACインバータ 18の入力電圧許容範囲よりも低くても、 DC — DCコンバータ 19で所定電圧にまで昇圧して DC— ACインバータ 18に与えられる ので、 DC— ACインバータ 18から負荷 12に対して安定した電圧を供給することがで きる。 Next, the operation of the apparatus shown in FIG. 1 (particularly the operation related to power conversion) will be described. The operation stop control circuit 21 monitors the output voltage of the EDLC unit 13, and when the output voltage is lower than the allowable input voltage range of the DC-AC inverter 18 (for example, 10 to 15V), the operation stop control circuit 21 Turn off 20 to supply output voltage to DC-DC converter 19. As a result, the output voltage of the EDLC unit 13 is boosted by the DC-DC converter 19 to a predetermined voltage (for example, 12.5 V) within the allowable input voltage range of the DC-AC inverter 18. The output voltage of the DC—DC converter 19 applied to the DC—AC inverter 18 is converted into an alternating voltage by the DC—AC inverter 18 and supplied to the load 12. Thus, even if the output voltage of the EDLC unit 13 is lower than the input voltage allowable range of the DC-AC inverter 18, it is boosted to a predetermined voltage by the DC-DC converter 19 and applied to the DC-AC inverter 18. Therefore, a stable voltage can be supplied from the DC-AC inverter 18 to the load 12.
[0031] 一方、 EDLCユニット 13の出力電圧が DC— ACインバータ 18の入力電圧許容範囲 内であるときは、動作停止制御回路 21は、 EDLCユニット 13の出力電圧を DC— AC インバータ 18に供給するように切翻 20を制御するとともに、 DC— DCコンバータ 1 9を非動作状態にする。これにより EDLCユニット 13の出力電圧が直接に DC— ACィ ンバータ 18に与えられて交流電圧に変換され、負荷 12に供給される。このように ED LCユニット 13の出力電圧が DC— ACインバータ 18の入力電圧許容範囲内であると きは、 DC— DCコンバータ 19が非動作状態になるので、 DC— DCコンバータ 19の 動作に伴う電力損失が低減され、負荷に対して効率よく給電することができる。 On the other hand, when the output voltage of the EDLC unit 13 is within the input voltage allowable range of the DC—AC inverter 18, the operation stop control circuit 21 supplies the output voltage of the EDLC unit 13 to the DC—AC inverter 18. In this way, the switching 20 is controlled, and the DC-DC converter 19 is put into a non-operating state. As a result, the output voltage of the EDLC unit 13 is directly applied to the DC-AC inverter 18 to be converted into an AC voltage and supplied to the load 12. ED like this When the output voltage of the LC unit 13 is within the allowable input voltage range of the DC-AC inverter 18, the DC-DC converter 19 becomes non-operational, so the power loss associated with the operation of the DC-DC converter 19 is reduced. Thus, power can be efficiently supplied to the load.
実施例 1  Example 1
[0032] 以下、図 4を参照して本発明の実施例を説明する。この実施例は、図 1に示した装 置における DC - DCコンバータ 19及び切換器 20の具体例を示して!/、る。その他の 構成は図 1に示した装置と同様であるので、ここでの説明は省略する。  Hereinafter, an embodiment of the present invention will be described with reference to FIG. This embodiment shows a specific example of the DC-DC converter 19 and the switch 20 in the apparatus shown in FIG. The other configuration is the same as that of the apparatus shown in FIG. 1, and a description thereof is omitted here.
[0033] この実施例の DC— DCコンバータ 19は、昇圧チヨッパ型 DC— DCコンバータであ つて、後述する説明から明らかになるように、切 としての機能も備えている。  [0033] The DC-DC converter 19 of this embodiment is a step-up hopper type DC-DC converter, and also has a function as a cut-off, as will be apparent from the following description.
[0034] 具体的には、 DC— DCコンバータ 19は、一端力 ¾DLCユニット 13側に接続された インダクタンス 22と、このインダクタンス 22の他端にアノードが接続され、力ソードが D C— ACインバータ 18側に接続されたダイオード 23と、このダイオード 23の力ソードと 接地ラインとの間に介在するコンデンサ 24と、ダイオード 23のアノードと接地ラインと の間に介在するスイッチングトランジスタ (FET) 25とを備えている。そして、スィッチ ングトランジスタ 25のゲートに動作停止制御回路 21から制御信号が与えられている  [0034] Specifically, the DC-DC converter 19 has an inductance 22 connected to the DLC unit 13 side at one end, an anode connected to the other end of the inductance 22, and a power sword connected to the DC-AC inverter 18 side. A diode 23 connected to the capacitor 23, a capacitor 24 interposed between the power sword of the diode 23 and the ground line, and a switching transistor (FET) 25 interposed between the anode of the diode 23 and the ground line. Yes. Then, a control signal is given to the gate of the switching transistor 25 from the operation stop control circuit 21.
[0035] 次に実施例装置の動作を説明する。図 1に示した装置と同様に、動作停止制御回 路 21は、 EDLCユニット 13の出力電圧を監視し、その出力電圧が DC— ACインバー タ 18の入力電圧許容範囲よりも低いときは、スイッチングトランジスタ 25のゲートに所 定周波数のパルス信号 (動作制御信号)を与える。これにより DC— DCコンバータ 19 が作動し、 EDLCユニット 13の出力電圧が昇圧されて DC— ACインバータ 18に与え られる。このように動作停止制御回路 21からの制御信号により、 DC— DCコンバータ 19を作動させて、 EDLCユニット 13の出力電圧を昇圧させることは、図 1の装置にお いて、動作停止制御回路 21からの制御信号により、切換器 20を制御して EDLCュ- ット 13の出力電圧を DC - DCコンパータ 19に供給することと等価である。 Next, the operation of the embodiment apparatus will be described. Similar to the device shown in Fig. 1, the operation stop control circuit 21 monitors the output voltage of the EDLC unit 13, and when the output voltage is lower than the allowable input voltage range of the DC-AC inverter 18, A pulse signal (operation control signal) with a predetermined frequency is applied to the gate of transistor 25. As a result, the DC-DC converter 19 is activated, and the output voltage of the EDLC unit 13 is boosted and applied to the DC-AC inverter 18. As described above, the DC-DC converter 19 is operated by the control signal from the operation stop control circuit 21 to boost the output voltage of the EDLC unit 13 from the operation stop control circuit 21 in the apparatus of FIG. This is equivalent to controlling the switcher 20 by the control signal and supplying the output voltage of the EDLC unit 13 to the DC-DC converter 19.
[0036] 一方、図 4の実施例装置において、 EDLCユニット 13の出力電圧が DC— ACイン バータ 18の入力電圧許容範囲内であるときは、動作停止制御回路 21は、スィッチン グトランジスタ 25のゲートに与えるパルス信号を止めてスイッチングトランジスタ 25を オフ状態に維持する。そうすると DC— DCコンバータ 19は動作停止状態になり、 ED LCユニット 13の出力電圧力 インダクタンス 22およびダイオード 23を介して、そのま ま DC—ACインバータ 18に与えられる。この間の損失は実質的にダイオード 23の通 過分のみとなり、動作停止制御を行わない場合に比べて効率が上がる。このように動 作停止制御回路 21からの制御信号により、 DC— DCコンバータ 19を非動作状態に して、 EDLCユニット 13の出力電圧をそのまま DC— ACインバータ 18に与えることは 、図 1の装置において、動作停止制御回路 21からの制御信号により、切換器 20を制 御して EDLCユニット 13の出力電圧を DC— ACインバータ 18に与えるとともに、 DCOn the other hand, in the embodiment apparatus of FIG. 4, when the output voltage of the EDLC unit 13 is within the input voltage allowable range of the DC—AC inverter 18, the operation stop control circuit 21 is connected to the gate of the switching transistor 25. Stop the pulse signal applied to the switching transistor 25 Keep it off. Then, the DC-DC converter 19 is stopped, and is supplied to the DC-AC inverter 18 as it is through the output voltage force inductance 22 and the diode 23 of the ED LC unit 13. The loss during this period is substantially only the passage of the diode 23, and the efficiency is increased as compared with the case where the operation stop control is not performed. In this way, the control signal from the operation stop control circuit 21 disables the DC-DC converter 19 and applies the output voltage of the EDLC unit 13 to the DC-AC inverter 18 as it is. In this case, the switch 20 is controlled by the control signal from the operation stop control circuit 21 to supply the output voltage of the EDLC unit 13 to the DC-AC inverter 18 and DC.
— DCコンバータ 19を非動作状態にすることと等価である。 — Equivalent to setting the DC converter 19 to the non-operating state.
[0037] 図 4の実施例装置の有用性を確認するために次のような測定を行った。まず、無負 荷の状態で EDLCユニット 13を充電した。すべての電気二重層コンデンサが満充電 に達した時点で充電を停止し、 10Wの白熱灯負荷を接続して放電を開始した。また 蓄電電圧が DC— DCコンバータ 19の動作電圧範囲 (4V)を下回った時点で測定を 終了した。この実験を、 EDLCユニット 13の出力電圧が DC— ACインバータ 18の入 力電圧範囲に入った時点で、 DC— DCコンバータ 19の動作停止制御を行う場合と、 行わな 、場合にっ 、て測定を行った。動作停止制御を行った場合の測定結果 (DC [0037] In order to confirm the usefulness of the apparatus of the embodiment of FIG. 4, the following measurements were performed. First, the EDLC unit 13 was charged with no load. When all the electric double layer capacitors reached full charge, charging was stopped, and a discharge was started by connecting a 10 W incandescent lamp load. The measurement was completed when the stored voltage fell below the operating voltage range (4V) of the DC-DC converter 19. This experiment was measured with and without the DC-DC converter 19 operation stop control when the output voltage of the EDLC unit 13 entered the DC-AC inverter 18 input voltage range. Went. Measurement results when operation stop control is performed (DC
— DCコンバータ 19の出力電圧)を図 5に示す。 EDLCユニット 13の出力電圧が DC —ACインバータ 18の入力電圧範囲よりも低いときは、 EDLCユニット 13の出力電圧 が DC— DCコンバータ 19により昇圧されて、ほぼ一定の直流電圧が出力され、一方 、 EDLCユニット 13の出力電圧が DC— ACインバータ 18の入力電圧範囲内である ときは、 EDLCユニット 13の出力電圧力 ほぼそのまま DC— DCコンバータ 19(非動 作状態)から出力されているのがわかる。 — Output voltage of DC converter 19) is shown in Fig. 5. When the output voltage of the EDLC unit 13 is lower than the input voltage range of the DC-AC inverter 18, the output voltage of the EDLC unit 13 is boosted by the DC-DC converter 19 to output a substantially constant DC voltage, When the output voltage of the EDLC unit 13 is within the input voltage range of the DC—AC inverter 18, it can be seen that the output voltage force of the EDLC unit 13 is almost output from the DC—DC converter 19 (non-operating state). .
[0038] 上述した実験において、 DC— DCコンバータ 19の動作停止制御を行う場合と、行 わない場合の効率をそれぞれ測定した。その結果を図 6に示す。ここでは、 DC-D Cコンバータ 19の入力電圧と入力電流、および出力電圧、出力電流を測定し、入出 力の電力より効率を算出した。図 6の結果力も明らかなように、動作停止制御が最も 有効に働いた時には、最大約 5%の効率の改善が得られた。  [0038] In the above-described experiment, the efficiency when the operation stop control of the DC-DC converter 19 is performed and when the operation is not performed are measured. The result is shown in Fig. 6. Here, the input voltage and input current of the DC-DC converter 19 and the output voltage and output current were measured, and the efficiency was calculated from the power of the input and output. As can be seen from the results shown in Fig. 6, when the operation stop control functioned most effectively, an efficiency improvement of up to about 5% was obtained.
[0039] また、 DC— DCコンバータ 19の動作停止制御を行う場合と、行わない場合の放電 深度を比較した。放電深度とは、電気二重層コンデンサに蓄えられた電力をどこまで 使えるかを示したもので、本実験の場合、 EDLCユニット 13の出力電圧が DC— DC コンバータ 19の動作電圧下限 (4V)を下回り、システムの動作が停止した時点での 各電気二重層コンデンサの端子間電圧を測定することにより得られる。 [0039] Further, the discharge when the operation stop control of the DC-DC converter 19 is performed and when it is not performed. The depth was compared. The depth of discharge indicates how much power stored in the electric double layer capacitor can be used. In this experiment, the output voltage of the EDLC unit 13 is lower than the operating voltage lower limit (4V) of the DC-DC converter 19. It can be obtained by measuring the voltage across the terminals of each electric double layer capacitor when the system stops operating.
各電気二重層コンデンサの放電深度は、次の算出式  The depth of discharge of each electric double layer capacitor is calculated using the following formula:
放電深度 (%) =[i - (v 2/V 2) ] X 100 Depth of discharge (%) = [i-(v 2 / V 2 )] X 100
1 2  1 2
V: DC— DCコンバータ 19の動作電圧下限 (4V)を下回り、装置の動作が停止し V: DC—below the DC converter 19 operating voltage lower limit (4V), and the equipment stops operating.
1 1
た時点での各電気二重層コンデンサの端子間電圧  Terminal voltage of each electric double layer capacitor at the time
V:電気二重層コンデンサの耐電圧 (満充電電圧)  V: Electric double layer capacitor withstand voltage (full charge voltage)
2  2
により求めることができる。  It can ask for.
[0040] DC— DCコンバータ 19の動作停止制御を行った場合の放電深度は 89%と高ぐ 電気二重層コンデンサに蓄えられた電力を有効に使えることが確認できた。この値は 、 DC - DCコンバータ 19を用 ヽな 、で EDLCユニット 13の出力電圧を直接に DC - ACインバータ 18に与えた場合の放電深度が 40%程度であることを考えると、力なり 高い値であることがわ力る。  [0040] The depth of discharge when the DC-DC converter 19 is stopped is as high as 89%. It was confirmed that the electric power stored in the electric double layer capacitor can be used effectively. This value is high when considering that the discharge depth is about 40% when the output voltage of the EDLC unit 13 is directly applied to the DC-AC inverter 18 with the DC-DC converter 19 used. It is a power to be a value.
実施例 2  Example 2
[0041] 実施例 1の蓄電装置において、蓄電手段は、電気二重層コンデンサを複数個直列 接続した回路構成を含み、蓄電手段の各電気二重層コンデンサは、電気二重層コン デンサへの通電 Z非通電を切り替える第 1のスィッチがそれぞれに直列接続され、 電気二重層コンデンサおよびそれに対応する第 1のスィッチに対して並列接続され た短絡用配線と、短絡用配線に設けられた通電 Z非通電を切り替える第 2のスィッチ と、各電気二重層コンデンサの端子電圧をそれぞれ検出する検出手段と、検出手段 で過充電防止手段での所定電圧よりも低い所定電圧に達したと検出された電気二重 層コンデンサの第 1のスィッチを非通電に切り替えるとともに、その電気二重層コンデ ンサに対応する短絡用配線の第 2のスィッチを通電に切り替える通電制御手段と、を 備えることで、所定電圧に達した電気二重層コンデンサに付加された過充電防止手 段による強制放電で入力エネルギーが無駄に消費されることを低減できる、電気二 重層コンデンサを用いた蓄電装置を提供するという第 2の目的を実現した。 [0042] 前述の実施例 1では、この実施例 1の手法の有効性を示した。つまり、比較的に簡 単な構成によって、負荷に安定した電圧を効率よく供給することができるという手法を 示した。し力し、図 3の結果をみると、 12個の各電気二重層コンデンサ CAP1、 CAP2 、 · · ·、 CAP12の充電過程において、これらのキャパシタ(コンデンサ)の静電容量の ばらつきによって、満充電に達するまでの時間がキャパシタ毎に異なっていることが ゎカゝる。 [0041] In the power storage device of Example 1, the power storage means includes a circuit configuration in which a plurality of electric double layer capacitors are connected in series, and each electric double layer capacitor of the power storage means is energized to the electric double layer capacitor. A first switch that switches energization is connected in series to each other, and the short circuit wiring connected in parallel to the electric double layer capacitor and the corresponding first switch, and the energization Z de-energization provided in the short circuit wiring The second switch to be switched, the detection means for detecting the terminal voltage of each electric double layer capacitor, and the electric double layer detected by the detection means as having reached a predetermined voltage lower than the predetermined voltage at the overcharge prevention means Energization control to switch the first switch of the capacitor to de-energization and to switch the second switch of the short-circuit wiring corresponding to the electric double layer capacitor to energization Using an electric double layer capacitor that can reduce waste of input energy due to forced discharge by means of an overcharge prevention means added to the electric double layer capacitor that has reached a predetermined voltage. The second objective of providing power storage devices was realized. [0042] In Example 1 described above, the effectiveness of the technique of Example 1 was shown. In other words, we showed a method that can supply a stable voltage efficiently to a load with a relatively simple configuration. However, the results of Fig. 3 show that in the charging process of each of the 12 electric double layer capacitors CAP1, CAP2, ..., CAP12, due to variations in the capacitance of these capacitors (capacitors), they are fully charged. The time required to reach the difference is different for each capacitor.
[0043] すなわち、静電容量の大きいキャパシタが満充電に達するまでの間、すでに満充 電に達した静電容量の小さいキャパシタに付加された並列モニタ回路が稼動し、強 制放電が行われて過充電を防止していることがわかる。換言すれば、この間に、入力 エネルギーが抵抗で無駄に消費されて 、ることを表わして 、る。  [0043] That is, until the capacitor having a large capacitance reaches full charge, the parallel monitor circuit added to the capacitor having small capacitance that has already reached full charge operates and forced discharge is performed. It can be seen that overcharging is prevented. In other words, during this time, the input energy is wasted due to the resistance.
[0044] したがって、入力エネルギーをより効率よく蓄積するためには、できるだけ静電容量 誤差の少ない電気二重層コンデンサ (EDLC)を用いることである力 静電容量の揃つ た電気二重層コンデンサを集めて装置を構築することは、静電容量の測定時間の浪 費とコストアップにつながるので現実的ではない。特に、大容量の蓄電装置を構築す る場合に用いられる大容量の電気二重層コンデンサの静電容量を正確に測定するこ とは多大な時間を必要とする。  [0044] Therefore, in order to accumulate input energy more efficiently, an electric double layer capacitor (EDLC) with as little capacitance error as possible should be used. It is not practical to construct a device because it leads to waste of time and cost for measuring capacitance. In particular, it takes a lot of time to accurately measure the capacitance of a large-capacity electric double layer capacitor used when constructing a large-capacity power storage device.
[0045] 本実施例 2は、この問題を解決するものであり、例えば、以下のように構成されてい る。  [0045] The second embodiment solves this problem and is configured as follows, for example.
[0046] 以下、図 7〜図 12を参照して本発明の実施例 2を説明する。図 7は実施例 2の EDL Cユニットの EDLC部分の回路構成を示す図である。図 8は満充電された電気二重層 コンデンサ (EDLC)の切り離しを説明する図である。図 9は実施例 2の EDLCユニット の要部構成を示すブロック図である。図 10は実施例 2の EDLCの端子間電圧の検出 を説明する図である。図 11は実施例 2の各 EDLCの端子間電圧の検出を説明する図 である。図 12は満充電された電気二重層コンデンサ(EDLC)の切り離しを説明する 図である。  Hereinafter, Embodiment 2 of the present invention will be described with reference to FIGS. FIG. 7 is a diagram illustrating a circuit configuration of the EDLC portion of the EDL C unit according to the second embodiment. Fig. 8 is a diagram illustrating the separation of a fully charged electric double layer capacitor (EDLC). FIG. 9 is a block diagram showing a main configuration of the EDLC unit according to the second embodiment. FIG. 10 is a diagram for explaining the detection of the voltage between the terminals of the EDLC of the second embodiment. FIG. 11 is a diagram for explaining the detection of the voltage between terminals of each EDLC of the second embodiment. Fig. 12 is a diagram illustrating the separation of a fully charged electric double layer capacitor (EDLC).
[0047] この実施例 2は、図 1に示した装置における EDLCユニット 13の具体例を示している This Example 2 shows a specific example of the EDLC unit 13 in the apparatus shown in FIG.
。その他の構成は図 1に示した装置と同様であるので、ここでの説明は省略する。 . Other configurations are the same as those of the apparatus shown in FIG.
[0048] 図 7に示すように、 EDLCユニット 13は、複数個(n個)の電気二重層コンデンサ CAP 1、 CAP2、 · · ·、 CAPnを直列接続した回路構成を含むものである。各電気二重層コ ンデンサ CAP1、 CAP2、 · · ·、 CAPnは、自己の電気二重層コンデンサへの通電 Z非 通電を切り替えるためのスィッチ Sl、 S2、 · · ·、 Snがそれぞれに直列接続されている。 つまり、電気二重層コンデンサ CAP1にスィッチ S1が直列接続され、電気二重層コン デンサ CAP2にスィッチ S2が直列接続され、以下同様となっている。 [0048] As shown in FIG. 7, the EDLC unit 13 includes a plurality (n) of electric double layer capacitors CAP. 1, CAP2, ... Includes a circuit configuration in which CAPn is connected in series. Each electric double layer capacitor CAP1, CAP2, ..., CAPn is a switch Sl, S2, ..., Sn for switching between energization Z to non-energization of its own electric double layer capacitor. Yes. That is, switch S1 is connected in series to electric double layer capacitor CAP1, switch S2 is connected in series to electric double layer capacitor CAP2, and so on.
[0049] また、電気二重層コンデンサ CAP1、 CAP2、 · · ·、 CAPnおよびそれに対応するスィ ツチ Sl、 S2、 · · ·、 Snの各組に対して短絡用配線 hl、 h2、 · · ·、 hnがそれぞれ並列 接続されている。つまり、電気二重層コンデンサ CAP1およびそれに対応するスィッチ S1の組に対して短絡用配線 hiが並列接続され、電気二重層コンデンサ CAP2およ びそれに対応するスィッチ S2の組に対して短絡用配線 h2が並列接続され、以下同 様となっている。  [0049] In addition, electric double layer capacitors CAP1, CAP2, ..., CAPn and corresponding switches Sl, S2, ..., short-circuit wiring for each set of Sn, hl, h2, ..., hn are connected in parallel. That is, the shorting wiring hi is connected in parallel to the set of the electric double layer capacitor CAP1 and the corresponding switch S1, and the shorting wiring h2 is connected to the set of the electric double layer capacitor CAP2 and the corresponding switch S2. Connected in parallel, and so on.
[0050] 各短絡用配線 hl、 h2、 · · ·、 hnには、通電 Z非通電を切り替えるスィッチ Sbl、 Sb [0050] Each short-circuit wiring hl, h2, ..., hn is energized Z switches for switching between non-energized Sbl, Sb
2、 · · ·、 Sbnがーつずつ直列接続されている。つまり、短絡用配線 hiにはスィッチ Sb 1が直列接続され、短絡用配線 h2にはスィッチ Sb2が直列接続され、以下同様となつ ている。 2, ... Sbn are connected in series. That is, the switch Sb1 is connected in series to the short-circuit wiring hi, the switch Sb2 is connected in series to the short-circuit wiring h2, and so on.
[0051] つまり、実施例 2の EDLCユニット 13は、電気二重層コンデンサ CAP1とスィッチ S1と 短絡用配線 hiとスィッチ Sblとを備えた第 1段ブロックと、電気二重層コンデンサ CAP 2とスィッチ S2と短絡用配線 h2とスィッチ Sb2とを備えた第 2段ブロックと、 · · ·、電気 二重層コンデンサ CAPnとスィッチ Snと短絡用配線 hnとスィッチ Sbnとを備えた第 n段 ブロックを有している。  That is, the EDLC unit 13 of the second embodiment includes a first stage block including an electric double layer capacitor CAP1 and a switch S1, a short-circuit wiring hi and a switch Sbl, an electric double layer capacitor CAP 2 and a switch S2. A second-stage block with a short-circuit wiring h2 and a switch Sb2, and an n-th block with an electric double layer capacitor CAPn and a switch Sn, a short-circuit wiring hn and a switch Sbn .
[0052] さらに、 EDLCユニット 13は、図 9に示すように、各電気二重層コンデンサ CAP1、 C ΑΡ2、 · · ·、 CAPnの端子電圧をそれぞれ検出する電圧検出回路 30と、この電圧検 出回路 30で並列モニタ回路(図 2参照)での所定電圧 (満充電電圧)よりも低!、所定 電圧 (満充電に近 、電圧)に達したと検出された電気二重層コンデンサ CAPiのスィ ツチ Siを非通電に切り替えるとともに、その電気二重層コンデンサ CAPiに対応する 短絡用配線 hiのスィッチ Sbiを通電に切り替える切り替え回路 32と、を備えて!/、る。  Furthermore, as shown in FIG. 9, the EDLC unit 13 includes a voltage detection circuit 30 for detecting the terminal voltages of the respective electric double layer capacitors CAP1, C ΑΡ2,..., CAPn, and this voltage detection circuit. The electric double layer capacitor CAPi switch that was detected as having reached the predetermined voltage (close to full charge) at 30 at lower than the predetermined voltage (full charge voltage) in the parallel monitor circuit (see Fig. 2) at 30 Si And a switching circuit 32 that switches the switch Sbi of the short-circuit wiring hi corresponding to the electric double layer capacitor CAPi to energization.
[0053] また、切り替え回路 32は、図 9に示すように、電圧検出回路 30による各電気二重層 コンデンサ CAP1、 CAP2、 · · ·、 CAPnの端子電圧検出に基づいて、 EDLCユニット 1 3の出力電圧が DC— DCコンバータ 19の入力下限電圧以下とならないように、満充 電に近い電圧に達した電気二重層コンデンサ CAPiに対応するスィッチ Siおよび短 絡用配線 hiのスィッチ Sbiを切り替え制御する。 Further, as shown in FIG. 9, the switching circuit 32 is based on the detection of the terminal voltage of each electric double layer capacitor CAP1, CAP2,. Switch the switch Si corresponding to the electric double layer capacitor CAPi that has reached a voltage close to full charge and switch Sbi so that the output voltage of 3 does not fall below the input lower limit voltage of the DC-DC converter 19. Control.
[0054] なお、スィッチ Sl、 S2、 · · ·、 Snは本発明における第 1のスィッチに、スィッチ Sbl、 S b2、 · · ·、 Sbnは本発明における第 2のスィッチに、電圧検出回路 30は本発明におけ る検出手段に、切り替え回路 32は本発明における通電制御手段に、それぞれ相当 する。 Note that the switches Sl, S2,..., Sn are the first switch in the present invention, and the switches Sbl, Sb2,..., Sbn are the second switch in the present invention. Are equivalent to detection means in the present invention, and the switching circuit 32 corresponds to energization control means in the present invention.
[0055] 実施例 2の手法は、並列モニタ回路(図 2参照)をできるだけ稼動させないようにす るものである。つまり、図 7 (a)のように EDLCユニット 13を構成し、満充電に近くなつた 電気二重層コンデンサ CAPiを EDLCユニット 13から電気的に切り離すというものであ る。  [0055] The method of the second embodiment is such that the parallel monitor circuit (see Fig. 2) is not operated as much as possible. In other words, as shown in FIG. 7 (a), the EDLC unit 13 is configured, and the electric double layer capacitor CAPi that is almost fully charged is electrically disconnected from the EDLC unit 13.
[0056] すなわち、充電は全ての電気二重層コンデンサ CAP1、 CAP2、 · · ·、 CAPnを直列 接続した状態から開始される。そして、充電が進み、例えば、第 2段ブロックの電気二 重層コンデンサ CAP2の電圧が満充電 (耐電圧)に近くなると、図 7 (b)に示すように、 スィッチ S2をオフ,スィッチ Sb2をオンにすることにより、端子間電圧の高い電気二重 層コンデンサ CAP2を一時的に EDLCユニット 13から電気的に切り離す。こうすること により、電気二重層コンデンサ CAP2に付加された並列モニタ回路による強制放電に よって、入力エネルギーを無駄に消費することがなぐし力も、他の電気二重層コンデ ンサ (切り離されていない他の電気二重層コンデンサ)の充電時間を短縮することが できる。  That is, charging is started from a state in which all electric double layer capacitors CAP1, CAP2,..., CAPn are connected in series. Then, when charging proceeds, for example, when the voltage of the electric double layer capacitor CAP2 in the second stage block is close to full charge (withstand voltage), switch S2 is turned off and switch Sb2 is turned on as shown in Fig. 7 (b). By doing so, the electric double layer capacitor CAP2 with high inter-terminal voltage is temporarily electrically disconnected from the EDLC unit 13. In this way, the forced discharge by the parallel monitoring circuit added to the electric double layer capacitor CAP2 can cause unnecessary energy consumption and other electric double layer capacitors (other unseparated other capacitors). The charging time of the electric double layer capacitor) can be shortened.
[0057] なお、電気二重層コンデンサを電気的に切り離すことによって、 EDLCユニット 13の 出力電圧 Vtは一時的に低下するが、本方式では出力電圧 Vtをインバータゃ負荷に 直接供給するのではなぐ一般的に入力下限電圧の低い DC— DCコンバータが用い られるので実際には余り問題はない。  [0057] Although the output voltage Vt of the EDLC unit 13 temporarily decreases by electrically disconnecting the electric double layer capacitor, in this method, the output voltage Vt is generally not supplied directly to the inverter. Actually, there is not much problem because a DC-DC converter with a low input lower limit voltage is used.
[0058] 例えば、電気二重層コンデンサには静電容量誤差が 20%程度のものもあり、この 静電容量誤差が端子間電圧に反映するが、ここで最悪の条件を考えてみる。すなわ ち、定格の ± 20%の容量誤差がある場合、同条件で充電すると、静電容量が定格よ り 20%小さい電気二重層コンデンサは早く満充電に達し、端子間電圧が耐電圧の 2 . 3 [V]になったとする。その時、定格通りの電気二重層コンデンサの端子間電圧は 1 . 91 [V]、静電容量が定格より 20%大きい電気二重層コンデンサの端子間電圧は 1 . 53 [V]となる。 [0058] For example, some electric double layer capacitors have a capacitance error of about 20%, and this capacitance error is reflected in the voltage between terminals. Here, consider the worst condition. In other words, if there is a capacity error of ± 20% of the rating, when charged under the same conditions, the electric double layer capacitor whose capacitance is 20% smaller than the rating will reach full charge quickly, and the voltage between terminals will be the withstand voltage. 2 Suppose that it becomes 3 [V]. At that time, the voltage between the terminals of the electric double layer capacitor as rated is 1.91 [V], and the voltage between the terminals of the electric double layer capacitor whose capacitance is 20% larger than the rating is 1.53 [V].
[0059] したがって、図 8 (a)に示すように、 6個の電気二重層コンデンサを直列接続した蓄 電装置で、 DC— DCコンバータ 19の入力下限電圧が 4. 0[V]の場合、図 8 (b)に示 すように、静電容量が定格より 20%小さい 3個の電気二重層コンデンサが他の電気 二重層コンデンサより早く満充電 (耐電圧)に近く(2. 3 [V])になって EDLCユニット 1 3から電気的に切り離され、残りの 3個の電気二重層コンデンサの静電容量が定格よ り 20%大きい場合であっても、 EDLCユニット 13の出力電圧 Vtは 4. 59 [V] (1. 53 [ V] X 3)となり、十分に DC— DCコンバータ 19は作動する。  [0059] Therefore, as shown in FIG. 8 (a), in a power storage device in which six electric double layer capacitors are connected in series and the input lower limit voltage of the DC-DC converter 19 is 4.0 [V], As shown in Fig. 8 (b), the three electric double layer capacitors whose capacitance is 20% lower than the rated value are close to full charge (withstand voltage) sooner than other electric double layer capacitors (2.3 [V ), And the output voltage Vt of the EDLC unit 13 is still the same even when the remaining three electric double layer capacitors are 20% larger than the rated value. 4. 59 [V] (1.53 [V] X 3), and the DC-DC converter 19 operates sufficiently.
[0060] また、もし EDLCユニット 13の出力電圧 Vtが DC— DCコンバータ 19の入力下限電 圧を下回りそうになれば、切り離した電気二重層コンデンサを再び EDLCユニット 13 に接続すればよい。  [0060] If the output voltage Vt of the EDLC unit 13 is likely to be lower than the input lower limit voltage of the DC-DC converter 19, the disconnected electric double layer capacitor may be connected to the EDLC unit 13 again.
[0061] 上記の方法を実現するためには、各電気二重層コンデンサの端子間電圧を測定 する必要がある。このためには、 AD変 を用いて各電気二重層コンデンサの端 子間電圧を求めても良いが、図 9に示すように、トランスを用いても良い。なお、図 9, 図 12では、並列モニタ回路の図示を省略している。  [0061] In order to realize the above method, it is necessary to measure the voltage between terminals of each electric double layer capacitor. For this purpose, the voltage between terminals of each electric double layer capacitor may be obtained by using AD conversion, but a transformer may be used as shown in FIG. In FIGS. 9 and 12, the parallel monitor circuit is not shown.
[0062] 例えば図 10に示すようにスィッチ制御回路 31によりスィッチ Sをオン,オフすると、  For example, as shown in FIG. 10, when the switch S is turned on and off by the switch control circuit 31,
si  si
スィッチ Sの 2次側コイルには、電気二重層コンデンサ CAPiの端子間電圧に比  The secondary coil of switch S is connected to the voltage across the terminals of the electric double layer capacitor CAPi.
si  si
例した電圧が発生する。  The example voltage is generated.
[0063] したがって、図 11に示すように、スィッチ S 〜S を順次にオン,オフすることにより Therefore, as shown in FIG. 11, by sequentially turning on and off the switches S to S,
sl sn  sl sn
、電圧検出回路 30によって、各電気二重層コンデンサ CAPl〜CAPnの端子間電 圧を計測することができる。さらに、切り替え回路 32は、この電圧検出回路 30での計 測値に基づいて、満充電 (耐電圧)に近づいた電気二重層コンデンサ CAPiを検出し 、スィッチ S , Sを切り替え、対象となる電気二重層コンデンサ CAPiを EDLCユニット The voltage detection circuit 30 can measure the voltage between the terminals of the electric double layer capacitors CAPl to CAPn. Furthermore, the switching circuit 32 detects the electric double layer capacitor CAPi that is close to full charge (withstand voltage) based on the measurement value of the voltage detection circuit 30, and switches the switches S and S to switch the target electric circuit. Double layer capacitor CAPi EDLC unit
13から電気的に切り離す。なお、満充電 (耐電圧)に近づいた電気二重層コンデン サ CAPiが複数個あれば、 EDLCユニット 13の出力電圧が DC - DCコンバータ 19の 入力下限電圧以下とならないことを限度として、それらを EDLCユニット 13から電気的 に切り離す。 Electrically disconnected from 13 Note that if there are multiple electric double layer capacitors CAPi that are close to full charge (withstand voltage), the output voltage of the EDLC unit 13 is limited to the input lower limit voltage of the DC-DC converter 19. Electrical from unit 13 Disconnect.
[0064] 例えば、第 2段ブロックの電気二重層コンデンサ CAP2が満充電 (耐電圧)に近づ いた場合には、図 12 (a)に示すように接続される。なお、図 12 (a)と等価で見やすく したものを図 12 (b)に示す。つまり、図 12 (b)では不要な回路を削除している。  [0064] For example, when the electric double layer capacitor CAP2 of the second stage block approaches full charge (withstand voltage), the connection is made as shown in FIG. 12 (a). Fig. 12 (b) shows the equivalent of Fig. 12 (a) for easier viewing. In other words, unnecessary circuits are deleted in Fig. 12 (b).
[0065] こうすることにより、既に満充電に達した静電容量の小さい電気二重層コンデンサ に付加された並列モニタ回路(図 2参照)による強制放電で、入力エネルギーが無駄 に消費されることなく、静電容量の大き 、電気二重層コンデンサを充電することがで き、し力も充電時間を短縮することができる。  [0065] By doing this, input energy is not wasted by forced discharge by the parallel monitor circuit (see Fig. 2) attached to the electric double layer capacitor with small electrostatic capacity that has already reached full charge. In addition, the capacitance of the electric double layer capacitor can be charged, and the charging time can be shortened.
[0066] つまり、本実施例 2の装置によれば、切り替え回路 32は、電圧検出回路 30で並列 モニタ回路(図 2参照)での所定電圧よりも低 ヽ所定電圧に達したと検出された電気 二重層コンデンサ CAPiのスィッチ Siを非通電に切り替えるとともに、その電気二重層 コンデンサ CAPiに対応する短絡用配線 hiのスィッチ Sbiを通電に切り替えるので、所 定電圧となった電気二重層コンデンサ CAPiを電気的に切り離すことができ、所定電 圧となった電気二重層コンデンサ CAPiに付加された並列モニタ回路による強制放電 を低減でき、並列モニタ回路による強制放電で入力エネルギーが無駄に消費される ことを低減できる。しカゝも、他の電気二重層コンデンサ (切り離されていない他の電気 二重層コンデンサ)の充電時間を短縮することができる。  That is, according to the apparatus of the second embodiment, the switching circuit 32 detects that the voltage detection circuit 30 has reached a predetermined voltage lower than the predetermined voltage in the parallel monitor circuit (see FIG. 2). Switch of electric double layer capacitor CAPi is switched to de-energization, and switch Sbi of the short-circuit wiring hi corresponding to the electric double layer capacitor CAPi is switched to energization. The forced discharge by the parallel monitor circuit added to the electric double-layer capacitor CAPi that has reached the specified voltage can be reduced, and the forced discharge by the parallel monitor circuit reduces the wasted input energy. it can. However, the charging time of other electric double layer capacitors (other electric double layer capacitors that are not separated) can be shortened.
[0067] また、切り替え回路 32は、電圧検出回路 30による各電気二重層コンデンサ CAP1、 CAP2、 · · ·、 CAPnの端子電圧検出に基づいて、 EDLCユニット 13の出力電圧が DC DCコンバータ 19の入力下限電圧以下とならないように、満充電に近い所定電圧 に達した電気二重層コンデンサ CAPiに対応するスィッチ Siおよび短絡用配線 hiのス イッチ Sbiを切り替え制御するので、充電の際には、 EDLCユニット 13の出力電圧が D C DCコンバータ 19の入力下限電圧以下とならないように、並列モニタ回路での所 定電圧 (満充電)よりも低!ヽ所定電圧 (満充電に近!ヽ所定電圧)となった電気二重層 コンデンサ CAPiを電気的に切り離すことができ、所定電圧となった電気二重層コンデ ンサ CARに付加された並列モニタ回路による強制放電を低減でき、並列モニタ回路 による強制放電で入力エネルギーが無駄に消費されることを低減できる。し力も、他 の電気二重層コンデンサ(切り離されていない他の電気二重層コンデンサ)の充電時 間を短縮することができる。また、放電の際には、 EDLCユニット 13の出力電圧が DC DCコンバータ 19の入力下限電圧に近づくと、充電されて電気的に切り離された電 気二重層コンデンサ CAPiを再び接続して、 EDLCユニット 13の出力電圧を上げること ができる。 [0067] In addition, the switching circuit 32 is configured so that the output voltage of the EDLC unit 13 is input to the DC DC converter 19 based on the terminal voltage detection of each electric double layer capacitor CAP1, CAP2, ..., CAPn by the voltage detection circuit 30. Switch sbi of switch Si corresponding to electric double layer capacitor CAPi that has reached a predetermined voltage close to full charge and switch Sbi so that it does not fall below the lower limit voltage. The output voltage of 13 is lower than the specified voltage (full charge) in the parallel monitor circuit so that it does not fall below the DC DC converter 19 input lower limit voltage. The electric double layer capacitor CAPi can be electrically disconnected, and the forced discharge caused by the parallel monitor circuit added to the electric double layer capacitor CAR at the specified voltage can be reduced. Input energy in the control discharge can be reduced to be wasted. When charging other electric double layer capacitors (other electric double layer capacitors that are not separated) The time can be shortened. When discharging, when the output voltage of the EDLC unit 13 approaches the input lower limit voltage of the DC DC converter 19, the electric double layer capacitor CAPi that has been charged and electrically disconnected is connected again, and the EDLC unit The output voltage of 13 can be increased.
[0068] なお、コイルのスイッチングや回路の切り替えに要するエネルギーは、並列モニタ 回路に抵抗によるエネルギー消費に比べると遥かに小さい。  [0068] It should be noted that the energy required for coil switching and circuit switching is much smaller than the energy consumption due to resistance in the parallel monitor circuit.
[0069] また、図 7〜図 9,図 12中に示した電気二重層コンデンサは、一つではなぐ複数 個並列接続したものであっても良 、。 [0069] The electric double layer capacitors shown in FIGS. 7 to 9 and 12 may be connected in parallel rather than one.
産業上の利用可能性  Industrial applicability
[0070] 以上のように、本発明は、電気二重層コンデンサをより効率的に利用することができ[0070] As described above, the present invention can more efficiently use the electric double layer capacitor.
、また、比較的に構成が簡単で複雑な制御を必要としないので、メンテナンスや製造 コスト面においても有利である。なお、扱う電力の規模が大きくなると、 DC— DCコン バータが大型化するので、本発明は比較的小規模な電力を扱う場合に特に適してい る。 In addition, since the configuration is relatively simple and complicated control is not required, it is advantageous in terms of maintenance and manufacturing costs. Note that the DC-DC converter becomes larger as the scale of power to be handled increases, so the present invention is particularly suitable for handling relatively small power.

Claims

請求の範囲 The scope of the claims
[1] 電気二重層コンデンサからなる蓄電手段と、  [1] Power storage means comprising an electric double layer capacitor;
直流入力電圧を交流出力電圧に変換して負荷に与える直流 交流変換手段と、 直流入力電圧を直流 交流変換手段の入力電圧許容範囲内の直流出力電圧に 変換する直流 直流変換手段と、  DC / AC conversion means for converting the DC input voltage into AC output voltage and applying it to the load; DC / DC conversion means for converting the DC input voltage to a DC output voltage within the allowable input voltage range of the DC / AC conversion means;
蓄電手段の出力電圧を直流 交流変換手段および直流 直流変換手段の 、ず れか一方に供給するように出力経路を切り換える切換手段と、  Switching means for switching the output path so that the output voltage of the storage means is supplied to one of the DC / AC conversion means and the DC / DC conversion means;
蓄電手段の出力電圧を検出し、その電圧値に応じて切換手段を制御する制御手 段であって、蓄電手段の出力電圧が直流 交流変換手段の入力電圧許容範囲外 であるときは、蓄電手段の出力電圧を直流一直流変換手段に供給するように切換手 段を制御して、直流一直流変換手段の直流出力電圧を直流 交流変換手段に与え る一方、蓄電手段の出力電圧が直流 交流変換手段の入力電圧許容範内であると きは、蓄電手段の出力電圧を直流 交流変換手段に直接に供給するように切換手 段を制御するとともに、直流一直流変換手段を非動作状態にする制御手段と、 を備えたことを特徴とする電気二重層コンデンサを用いた蓄電装置。  A control means for detecting the output voltage of the power storage means and controlling the switching means in accordance with the voltage value. When the output voltage of the power storage means is outside the allowable input voltage range of the DC / AC conversion means, the power storage means The switching means is controlled so that the output voltage is supplied to the DC / DC converter, and the DC output voltage of the DC / DC converter is supplied to the DC / AC converter, while the output voltage of the storage means is converted to DC / AC. When the input voltage is within the allowable voltage range, the switching means is controlled so that the output voltage of the storage means is supplied directly to the DC / AC converter, and the DC / DC converter is deactivated. And a power storage device using an electric double layer capacitor.
[2] 請求項 1記載の装置において、蓄電手段は複数個の電気二重層コンデンサ力 構 成されており、かつ、各電気二重層コンデンサにそれぞれ並列接続された複数個の 過充電防止手段を備え、各過充電防止手段は、それぞれに対応した電気二重層コ ンデンサの端子電圧が所定電圧になると、当該コンデンサを強制放電させることを特 徴とする電気二重層コンデンサを用いた蓄電装置。  [2] In the device according to claim 1, the power storage means includes a plurality of electric double layer capacitor forces, and includes a plurality of overcharge prevention means connected in parallel to each electric double layer capacitor. Each of the overcharge prevention means is a power storage device using an electric double layer capacitor characterized by forcibly discharging the capacitor when the terminal voltage of the corresponding electric double layer capacitor reaches a predetermined voltage.
[3] 請求項 2に記載の装置において、 [3] In the device according to claim 2,
蓄電手段は、電気二重層コンデンサを複数個直列接続した回路構成を含み、 蓄電手段の各電気二重層コンデンサは、電気二重層コンデンサへの通電 Z非通 電を切り替える第 1のスィッチがそれぞれに直列接続され、  The power storage means includes a circuit configuration in which a plurality of electric double layer capacitors are connected in series, and each electric double layer capacitor of the power storage means has a first switch for switching between energization and non-energization of the electric double layer capacitor in series. Connected,
電気二重層コンデンサおよびそれに対応する第 1のスィッチに対して並列接続され た短絡用配線と、  A short-circuit wiring connected in parallel to the electric double layer capacitor and the corresponding first switch;
短絡用配線に設けられた通電 Z非通電を切り替える第 2のスィッチと、 各電気二重層コンデンサの端子電圧をそれぞれ検出する検出手段と、 検出手段で過充電防止手段での所定電圧よりも低い所定電圧に達したと検出され た電気二重層コンデンサの第 1のスィッチを非通電に切り替えるとともに、その電気 二重層コンデンサに対応する短絡用配線の第 2のスィッチを通電に切り替える通電 制御手段と、 A second switch that switches between energization and non-energization provided in the short-circuit wiring, a detection means that detects the terminal voltage of each electric double layer capacitor, and Switch the first switch of the electric double layer capacitor, which is detected by the detection means to have reached a predetermined voltage lower than the predetermined voltage at the overcharge prevention means, to the non-energized state, and connect the short circuit wiring corresponding to the electric double layer capacitor. Energization control means for switching the second switch to energization,
を備えたことを特徴とする電気二重層コンデンサを用いた蓄電装置。  A power storage device using an electric double layer capacitor.
請求項 3に記載の装置において、通電制御手段は、検出手段による各電気二重層 コンデンサの端子電圧検出に基づいて、蓄電手段の出力電圧が直流一直流変換手 段の入力下限電圧以下とならな 、ように、過充電防止手段での所定電圧よりも低 、 所定電圧に達した電気二重層コンデンサに対応する第 1のスィッチおよび短絡用配 線の第 2のスィッチを切り替え制御するものであることを特徴とする電気二重層コンデ ンサを用いた蓄電装置。  In the apparatus according to claim 3, the energization control means must be such that the output voltage of the power storage means is less than or equal to the input lower limit voltage of the DC-DC conversion means based on the terminal voltage detection of each electric double layer capacitor by the detection means. As described above, the first switch corresponding to the electric double layer capacitor that has reached the predetermined voltage lower than the predetermined voltage in the overcharge prevention means and the second switch of the short-circuit wiring are switched and controlled. A power storage device using an electric double layer capacitor characterized by the following.
PCT/JP2005/019054 2004-11-18 2005-10-17 Storage device employing electric double layer capacitor WO2006054412A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004334601A JP2008035573A (en) 2004-11-18 2004-11-18 Electricity accumulation device employing electric double layer capacitor
JP2004-334601 2004-11-18

Publications (1)

Publication Number Publication Date
WO2006054412A1 true WO2006054412A1 (en) 2006-05-26

Family

ID=36406958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/019054 WO2006054412A1 (en) 2004-11-18 2005-10-17 Storage device employing electric double layer capacitor

Country Status (3)

Country Link
JP (1) JP2008035573A (en)
TW (1) TW200627779A (en)
WO (1) WO2006054412A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009101884A (en) * 2007-10-24 2009-05-14 Daifuku Co Ltd Non-contact electric supply facility
WO2012025017A1 (en) * 2010-08-25 2012-03-01 Huawei Technologies Co., Ltd. High efficiency high power density power architecture based on buck-boost regulators with pass-through band
WO2013040975A1 (en) * 2011-09-24 2013-03-28 辽宁省电力有限公司大连供电公司 Multi-level dc conversion power source device
CN105006602A (en) * 2015-07-15 2015-10-28 何琼 Energy-saving battery formation device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5290349B2 (en) * 2011-04-18 2013-09-18 シャープ株式会社 DC power supply system and control method thereof
US9490079B2 (en) * 2014-03-28 2016-11-08 Cooper Technologies Company Electrochemical energy storage device with flexible metal contact current collector and methods of manufacture
JP2016134966A (en) * 2015-01-16 2016-07-25 Tdk株式会社 Power reception device
JP6904227B2 (en) 2017-11-29 2021-07-14 オムロン株式会社 Power storage system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06261452A (en) * 1993-03-04 1994-09-16 Jeol Ltd Battery charging power supply equipment
JPH10108360A (en) * 1996-09-25 1998-04-24 Honda Motor Co Ltd Capacitor power source
JP2003274670A (en) * 2002-03-13 2003-09-26 Chubu Electric Power Co Inc Ac power source device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06261452A (en) * 1993-03-04 1994-09-16 Jeol Ltd Battery charging power supply equipment
JPH10108360A (en) * 1996-09-25 1998-04-24 Honda Motor Co Ltd Capacitor power source
JP2003274670A (en) * 2002-03-13 2003-09-26 Chubu Electric Power Co Inc Ac power source device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009101884A (en) * 2007-10-24 2009-05-14 Daifuku Co Ltd Non-contact electric supply facility
WO2012025017A1 (en) * 2010-08-25 2012-03-01 Huawei Technologies Co., Ltd. High efficiency high power density power architecture based on buck-boost regulators with pass-through band
US8957644B2 (en) 2010-08-25 2015-02-17 Futurewei Technologies, Inc. High efficiency high power density power architecture based on buck-boost regulators with a pass-through band
US9595870B2 (en) 2010-08-25 2017-03-14 Futurewei Technologies, Inc. High efficiency high power density power architecture based on buck-boost regulators with a pass-through band
WO2013040975A1 (en) * 2011-09-24 2013-03-28 辽宁省电力有限公司大连供电公司 Multi-level dc conversion power source device
CN105006602A (en) * 2015-07-15 2015-10-28 何琼 Energy-saving battery formation device

Also Published As

Publication number Publication date
TW200627779A (en) 2006-08-01
JP2008035573A (en) 2008-02-14

Similar Documents

Publication Publication Date Title
US10404095B2 (en) Uninterruptible power supply unit
US7432617B2 (en) Uninterruptible power system
JP5127001B2 (en) Device for supplying electrical energy to a power supply network and DC voltage transformer used in said device
WO2006054412A1 (en) Storage device employing electric double layer capacitor
US8754545B2 (en) High efficiency backup-power circuits for switch-mode power supplies
CN103119825A (en) DC charging station for a battery of an electric vehicle
JP2007526731A (en) Energy storage system
CN106471705B (en) Uninterruptible power supply device
CN109874366B (en) Electric machine and apparatus
KR20140073579A (en) Voltage conversion circuit and electronic apparatus
JP5196650B2 (en) Battery charge / discharge test equipment
US6949912B2 (en) Enabling circuit for avoiding negative voltage transients
US20170141598A1 (en) Electric battery comprising an electronic management system
JP5569249B2 (en) Uninterruptible power system
US11201552B2 (en) Power supply system and DC/DC converter
JP4774961B2 (en) Uninterruptible power system
JP3796918B2 (en) Battery device
US11996730B2 (en) Backup power supply device
CN102118057A (en) DC UPS circuit with integrated charge-discharge circuit
US7230353B2 (en) Charging circuit in uninterruptible power supply system
US20230216334A1 (en) Uninterruptible power supply device
JP2004304931A (en) Charging method and charging device for electric storage device
JPH05122871A (en) Uninterruptible power source
US20240213798A1 (en) Uninterruptible power supply circuit
JP4186218B2 (en) Secondary battery pack

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05793632

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP