WO2006052342A2 - System, method, and device for providing communications using a distributed mobile architecture - Google Patents

System, method, and device for providing communications using a distributed mobile architecture Download PDF

Info

Publication number
WO2006052342A2
WO2006052342A2 PCT/US2005/035648 US2005035648W WO2006052342A2 WO 2006052342 A2 WO2006052342 A2 WO 2006052342A2 US 2005035648 W US2005035648 W US 2005035648W WO 2006052342 A2 WO2006052342 A2 WO 2006052342A2
Authority
WO
WIPO (PCT)
Prior art keywords
distributed
mobile
architecture server
server
coupled
Prior art date
Application number
PCT/US2005/035648
Other languages
French (fr)
Other versions
WO2006052342A3 (en
Inventor
Shaowei Pan
Nicholas Labun
Original Assignee
Lemko, Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/983,516 external-priority patent/US7539158B2/en
Priority claimed from US11/105,173 external-priority patent/US7548763B2/en
Priority claimed from US11/104,925 external-priority patent/US7486967B2/en
Application filed by Lemko, Corporation filed Critical Lemko, Corporation
Priority to CN200580033404.XA priority Critical patent/CN101044769B/en
Priority to GB0706179A priority patent/GB2435751B/en
Priority to EP05801092A priority patent/EP1810465A4/en
Publication of WO2006052342A2 publication Critical patent/WO2006052342A2/en
Publication of WO2006052342A3 publication Critical patent/WO2006052342A3/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2854Wide area networks, e.g. public data networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/54Store-and-forward switching systems 
    • H04L12/56Packet switching systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/12Access point controller devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/14Backbone network devices

Definitions

  • the present disclosure relates generally to the distributed mobile communication systems.
  • Access to basic telephony service is particularly important for rural and isolated communities. Telephony access allows small-scale enterprises, cooperatives, and farmers to obtain accurate information on fair prices for their products and to access regional and national markets. Access also reduces the cost of transportation and supports the local tourist industry. By bringing markets to people via telecommunications, rather than forcing people to leave in search of markets, urban migration is reduced and greater income and employment potential are generated in rural areas.
  • a typical cellular system that includes a mobile switching center (MSC), a base station controller (BSC), and a home location register/visitor location register (HLR/VLR) can cost over $2.0 million.
  • MSC mobile switching center
  • BSC base station controller
  • HLR/VLR home location register/visitor location register
  • MSC mobile switching center
  • BSC base station controller
  • HLR/VLR home location register/visitor location register
  • An alternative to such a cellular system can include a wired system, but the costs associated with deploying and maintaining land lines are too high for certain rural areas.
  • FIG. 1 is a view of a distributed management architecture server having a first illustrative form factor
  • FIG. 2 is a view of an alternative embodiment of a distributed management architecture server having a second illustrative form factor
  • FIG. 3 is a diagram of another alternative embodiment of a distributed management architecture server having a third illustrative form factor
  • FIG. 4 is a diagram of a distributed and associative communication system
  • FIG. 5 is a block diagram of a distributed management architecture server
  • FIG. 6 is a flow chart to illustrate operating logic of a distributed management architecture server
  • FIG. 7 is a flow chart to illustrate call hand-off logic of a distributed management architecture server
  • FIG. 8 is a flow chart to illustrate group call logic of a distributed management architecture server
  • FIG. 9 is a diagram of an exemplary communication system in which a distributed management architecture server can be incorporated.
  • FIG. 10 is a diagram of a wireless local loop communication system in which a distributed management architecture server can be incorporated;
  • FIG. 11 is a diagram of plural wireless local loop communication systems connected to the public switched telephone network via a single back-haul connection;
  • FIG. 12 is a diagram of a communication system in which a distributed management architecture server can be deployed to extend an existing cellular network
  • FIG. 13 is a diagram of a communication system in which a distributed management architecture server can be deployed to cover urban fringe around an existing network;
  • FIG. 14 is a diagram of a communication system in which a single distributed management architecture server can be connected to plural base transceiver stations and can provide a single backhaul to the public switched telephone network;
  • FIG. 15 is a diagram of an in-building communication system in which a distributed management architecture server can be deployed;
  • FIG. 16 is a diagram of a mobile in-field communication system in which multiple distributed management architecture servers can be deployed via multiple vehicles;
  • FIG. 17 is a diagram of a communication system in which a distributed management architecture server can utilize a satellite connection as a backhaul connection;
  • FIG. 18 is a diagram of a communication system in which a distributed management architecture server can receive multiple backhaul signals via multiple satellite signals;
  • FIG. 19 is a diagram of a communication system in which a single distributed management architecture server can be connected to multiple base transceiver stations;
  • FIG. 20 is a diagram of a mobile communication system in which a distributed management architecture server can be deployed via an airplanes;
  • FIG. 21 is a diagram of a mobile communication system in which a distributed management architecture server can be deployed via a ship;
  • FIG. 22 is a flow chart to illustrate a method of deploying a distributed management architecture server.
  • FIG. 23 is a flow chart to illustrate a method of replacing a distributed management architecture server.
  • a distributed management architecture (DMA) server is shown and is generally designated 100.
  • the DMA server 100 includes a base 102 and a lid 104.
  • the lid 104 is attached to the base by a first lid hinge 106 and a second Hd hinge 108.
  • the Hd 104 can be rotated about the first lid hinge 106 and the second lid hinge 108 between an open position, shown in FIG. 1, and a closed position (not shown) in which the lid 104 overlays the base 102 and the DMA server 100 is essentially shaped like a box or a briefcase.
  • the base 102 has a length 110, a width 112 and a height 114.
  • FIG. 1 shows that the DMA server 100 includes a keyboard input device 116 that is incorporated in an upper surface of the base 102. Further, the DMA server 100 includes a mouse input device 118 that is also incorporated into the upper surface of the base 102. In a particular embodiment, the mouse input device 118 is a touch mouse input device 118. Additionally, the DMA server 100 includes a right side button 120 and a left side button 122. In a particular embodiment, the right side button 120 can be used to perform right-click functionality associated with the mouse input device 118. Moreover, the left side button 122 can be used to perform left-click functionality associated with the mouse input device 118.
  • FIG. 1 further indicates that the base 102 of the DMA server 100 is formed with a vent 124 to permit air exchange with the interior of the base 102 of the DMA server 100 and to facilitate cooling of the electronic components of the DMA server 100 housed within the base 102.
  • the base 102 of the DMA server 100 includes a handle 126 that is attached to the base 102 via a first handle hinge 128 and a second handle hinge 130.
  • the base 102 also includes a pair of latch engagement notches 132.
  • the lid 104 includes a flat panel display 134 incorporated therein.
  • the display 134 is adjacent to the keyboard 116.
  • the lid 104 and the base 102 cooperate to protect the display 134, the keyboard 116, the mouse 118, and the buttons 120, 122.
  • FIG. 1 also depicts a latch 136 that is incorporated into the lid 104. When the lid 104 is closed, the latch 136 can engage the latch engagement notches 132 in order to lock the lid in the closed position.
  • an antenna 138 is incorporated into the lid 104. The antenna 138 can be extended during operation and retracted when the DMA server 100 is not operating.
  • the length 110 of the base 102 is 31.0 centimeters. Further, in a particular embodiment, the width 112 of the base 102 is 25.5 centimeters. Additionally, in a particular embodiment, the height 114 of the base 102 with the lid 104 in the closed position is 7.0 centimeters. Accordingly, the DMA server 100 has a total volume of 5,533.5 centimeters cubed and a footprint area of 790.5 centimeters squared. Further, in a particular embodiment, the DMA server 100 weighs approximately 5.8 kilograms (kg). As such, in a particular embodiment, the DMA server 100 has a total volume that is less than 6,000 centimeters cubed, a footprint area that is less than 800 centimeters squared, and a weight that is less than 6.0 kilograms.
  • the DMA server 100 is relatively rugged. Particularly, the DMA server 100 is operable in a temperature range from negative twenty degrees Celsius to positive fifty-five degrees Celsius (-20° C to 55° C). Also, the DMA server 100 is substantially shock resistant and can withstand a one meter drop. Further, the DMA server 100 is substantially weather resistant, substantially dust resistant, and substantially sand resistant. The DMA server 100 is portable and it can be mounted in a vehicle or carried like a briefcase. Further, multiple DMA servers 100 can be deployed as described herein.
  • FIG. 2 depicts an alternative embodiment of a distributed management architecture (DMA) server that is generally designated 200.
  • the DMA server 200 includes a base 202 and a lid 204 that is coupled to the base 202 via a plurality of fasteners 206, e.g., a plurality of screws.
  • the DMA server 200 has a length 208, a width 210, and a height 212.
  • the base 202 of the DMA server 200 includes a first vent 214, a second vent 216, and a third vent 218.
  • the vents 214, 216, 218 permit air exchange with the interior of the base 202 of the DMA server 200 and facilitate cooling of the electronic components of the DMA server 200 housed within the base 202.
  • the DMA server 200 includes an access window 220.
  • One or more interfaces 222 e.g., wires can be accessed via the access window 220 and coupled to a base transceiver station (BTS) during deployment of the DMA server 200.
  • BTS base transceiver station
  • the DMA server 200 can be mounted within a vehicle 224. Further, multiple DMA servers 200 can be deployed as described herein.
  • the length 208 of the base 202 is 92.0 centimeters.
  • the width 210 of the base 202 is 45.0 centimeters.
  • the height 212 of the base 202 is 34.0 centimeters.
  • the DMA server 200 has a total volume of approximately 140,760 centimeters cubed and a footprint area of approximately 4,140 centimeters squared.
  • the DMA server 200 weighs approximately 48 kilograms (kg).
  • the DMA server 100 has a total volume that is less than 150,000 centimeters cubed, a footprint area that is less than 5,000 centimeters squared, and a weight that is less than 50.0 kilograms.
  • FIG. 3 illustrates another alternative embodiment of a distributed management architecture (DMA) server that is generally designated 300.
  • the DMA server 300 includes a housing 302 that has a length 304, a width 306, and a height 308. Additionally, the housing 302 can be formed with a first vent 310 and a second vent 312. In a particular embodiment, the vents 310, 312 permit air exchange with the interior of the housing 302 of the DMA server 300 and facilitate cooling of the electronic components of the DMA server 300 within the housing 302.
  • DMA distributed management architecture
  • the housing 302 is formed with a rib 314 to allow the DMA server 300 to be slid into a server rack (not shown).
  • the DMA server 300 includes a clip 316 that is coupled to the housing 302 via a fastener, e.g., a bolt. The clip 316 can be engaged with a server rack (not shown) to prevent the DMA server 300 from unintentionally sliding out of the server rack (not shown).
  • the length 304 of the housing 302 is approximately 76.2 centimeters.
  • the width 306 of the housing 302 is approximately 48.2 centimeters. Additionally, in a particular embodiment, the height 308 of the housing 302 is approximately 4.3 centimeters. Accordingly, the DMA server 300 has a total volume of approximately
  • the DMA server 300 weighs approximately 17.7 kilograms (kg).
  • the DMA server 300 is stackable in order to support various capacity requirements.
  • the DMA server 100 has a total volume that is less than 16,000 centimeters cubed, a footprint area that is less than 4,000 centimeters squared, and a weight that is less than 20.0 kilograms
  • FIG. 4 a non-limiting, exemplary embodiment of a distributive and associated telecommunications system is illustrated and is generally designated 400.
  • the system 400 includes four cellular coverage sites 402.
  • Each coverage site 402 includes an antenna 404.
  • the antenna 404 is connected to a transceiver belonging to a base transceiver station (BTS) and the BTS is a 3-sector BTS.
  • BTS base transceiver station
  • FIG. 4 also indicates that a distributed mobile architecture (DMA) server 406 can be connected to each antenna 404.
  • each DMA server 406 is physically and directly connected to its respective antenna 404, e.g., by a wire or cable 408.
  • the DMA servers 406 can be any of the DMA servers shown in FIG. 1, FIG. 2, and FIG. 3.
  • each DMA server 406 is interconnected with the other DMA servers 406 via an Internet protocol network 410. As such, there exists a peer-to-peer connection 412 between each DMA server 406 in the system 400.
  • the DMA servers 406 can handle telephony traffic that is communicated at each antenna 404. For example, the DMA servers 406 can switch and route calls received via each antenna 404. Additionally, the DMA servers 406 can hand-off calls to each other as mobile communication devices move around and between the cellular coverage sites 402.
  • the DMA servers 406 can communicate with each other via the IP network 410 and can further transmit calls to each other via the IP network 410. It should be understood that more than four cellular coverage sites 402 can be included in the system and that the inclusion of only four cellular coverage sites 402 in FIG. 4 is merely for clarity and explanation purposes.
  • the controlling logic can be distributed and de-centralized. Moreover, the wireless coverage provided by the disclosed system 400 is self-healing and redundant. In other words, due to the hiterconnectivity via the IP network 410, if one or more of the DMA servers 406 loses powers, fails, or is otherwise inoperable, telephony traffic handled by the inoperable DMA server 406 can re-routed to one of the remaining operable DMA servers 406. Additionally, user data stored in a database, e.g., a home locator resource (HLR) or a visitor locator resource (VLR), can be distributed equally and fully among all of the DMA servers 406.
  • HLR home locator resource
  • VLR visitor locator resource
  • a DMA server can be deployed as described below, connected to an antenna, connected to the IP network, and activated to provided cellular coverage in a new area.
  • FIG. 5 shows an exemplary, non-limiting, detailed embodiment of a DMA server, e.g., one of the DMA servers 406 described in conjunction with FIG. 4. Further, any of the DMA servers 100, 200, 300 shown in FIG. 1, FIG. 2, and FIG. 3 can include the components depicted in FIG. 5 and described herein.
  • the DMA server 406 is essentially a processor, or computer, having a housing and a computer readable medium 500 that is disposed therein.
  • a power supply 502 can also be disposed within the housing of the DMA server 406 in order to provide power to the DMA server 406.
  • the power supply 502 can be a rechargeable battery disposed within the DMA server 406 or it can be external to the DMA server 406, i.e., a standard power outlet.
  • a cooling system 504 e.g., a fan with a thermostat, can be within the DMA server 406 in order to keep the DMA server 406 from overheating.
  • the DMA server 406 can be a single board processor that does not require a fan.
  • the DMA server 406 can include a mobile switching center (MSC) module 506 and a base station controller (BSC) module 508 embedded within the computer readable medium 500.
  • the MSC module 506 can include a gatekeeper (GK) 510 that is connected to several gateways.
  • GK gatekeeper
  • CGW circuit gateway
  • the CGW 512 can provide a circuit switched to packet data conversion.
  • the PSTN portion of the ISDN/PSTN interface 514 can be an inter-office interface that uses the Bellcore industry standard ISDN user part (ISUP) signaling on a signaling system seven (SS7) link set.
  • ISUP ISDN user part
  • SS7 signaling system seven
  • the voice trunks on this interface can be timeslots on a Tl connection. Inbound and outbound voice calls can be supported on the ISDN portion of the ISDN/PSTN interface 514.
  • a packet data server node (PDSN) gateway 516 for CDMA, or a Gateway GPRS Support Node (GGSN) for Global System for Mobile Communication (GSM), and a Session Initiation Protocol (SEP) gateway 518 can also be connected to the GK 510.
  • the PDSN gateway 516 and the SIP gateway 518 can provide connectivity to an Internet protocol (IP) interface 520.
  • IP Internet protocol
  • the PDSN gateway 516 or a GGSN can establish a reverse tunnel with the PDSN or GGSN gateway 516 using generic routing encapsulation (GRE).
  • GRE generic routing encapsulation
  • the PDSN gateway 516, or GGSN can implement the Pseudo Random Function (PRF)/ Foreign Agent (FA) functionality of the DMA server 406 which supports mobile IP functions.
  • PRF Pseudo Random Function
  • FA Foreign Agent
  • FIG. 5 further shows an SS7 gateway 522 that provides connectivity to an ANSI-41 and GSM Mobile Application Part (MAP) interface 524.
  • the ANSI-41 interface can be an SS7 TCAP/SCCP interface on the same SS7 link set used for ISUP signaling.
  • the same SS7 point code can be used to identify the DMA server 406 in the ANSI-41 network.
  • the ANSI-41 interface can be used for roamer registration.
  • the GSM MAP interface can be an SS7 TCAP/SCCP interface on the same SS7 link set used for ISUP signaling. It can be appreciated that there are different protocols of MAP from MAP/B to MAP/I, but in the illustrative embodiment, the different MAP/x protocols are not stacked - they are used independently.
  • a media gateway 526 can also be coupled to the GK 510.
  • the media gateway 526 can include cellular transcoders, one or more intranet gateways, conferencing bridges, and group calling functionality.
  • an authentication, authorization, and accounting (AAA) module 528 can be coupled to the GK 510.
  • AAA authentication, authorization, and accounting
  • the GK 510 can act as an AAA server and a feather server to support advanced supplementary service, short message service, etc. Moreover, the GK 510 can act as a call manager and can support ISUP and PSTN function calls. Additionally, the GK 510 can act as a signal gateway, e.g., IP to SS7 inter-working, ISUP, GSM MAP or ANSI-41 to PSTN and ANSI- 42/GSM. The GK 510 can also function as a data call server.
  • the BSC module 508 includes a cellular radio network controller (CRNC) 530 and a cellular selection/distribution unit (CSDU) 532 that are connected to a call protocol controller (CPC) 534.
  • the CPC 534 can be connected to a plurality of base transceiver stations (BTSs) 536.
  • the DMA server 406 includes a BTS interface 538 at the CPC 534 that can be physically and directly connected to the BTSs 536.
  • the CRNC 530 can provide cellular radio resource management and cellular call control.
  • the CSDU 532 can provide Fundamental Channel (FCH) soft handoff and distribution, Link Access Control (LAC) processing for inband signaling, multiplexer (MUX) functions, and centralized power control. Further, the CPC 534 can convert a Tl or El message or ATM interface to a data packet message. In a particular embodiment, each BTS 536 supports signals and traffic up to the front point of the CPC 534, e.g., up to the BTS interface 538. Further, in a particular embodiment, the CRNC 530, the CPC 534, the CSDU 532 and the OAMP 540 can perform one or more of the functions of legacy Base Station Controllers (BSC).
  • BSC Base Station Controllers
  • the BTS interface 538 can be an IS-95A OR IS-2000 interface over El or ATM, or the BTS interface 538 can be a GSM BTS interface using MAP or customized application for mobile network enhanced logic (CAMEL).
  • the CPC 534 can be connected to one or more BTSs 536.
  • FIG. 5 further shows that the BSC module 508 includes an operations, administration, maintenance, and provisioning (OAMP) module 540.
  • the OAMP module 540 can use simple network management protocol (SNMP) for operations interfaces.
  • the OAMP module 540 can include a JAVA user interface.
  • the OAMP module 540 can also include a software agent that is assigned to each component within the DMA server 406. The agents independently monitor their respective components. Moreover, each agent can provision its respective component.
  • FIG. 6 an exemplary, non-limiting embodiment of a flow chart is provided to illustrate operating logic of a DMA server 406 (FIG. 4).
  • the operating logic commences at block 600 with a function loop wherein during operation, the succeeding steps are performed.
  • a call is received, e.g., at an antenna 404 (FIG. 4) in communication with a DMA server 406 (FIG. 4).
  • decision step 604 it is determined whether the call is local, i.e., it is determined whether the call is between two mobile communication devices within the same cellular coverage site.
  • the logic moves to block 606, and the call is switched at the local DMA server, i.e., the DMA server within the cellular coverage site in which the call is received. Then, at block 608, the call is connected from the first mobile communication device that initiated the call to a second mobile communication device via the local DMA server.
  • the logic proceeds to block 610 and the call is switched at the DMA server connected to the antenna 404 at which the call was received. Thereafter, at block 612, the call is connected from the first mobile communication device that initiated the call to a second mobile communication device via a peer-to- peer connection between a first DMA server and a second DMA server.
  • the logic continues to block 614 where the call is monitored.
  • the location of the first mobile communication device that initiated the call can be monitored, the location of the second mobile communication device that received the call can be monitored, the DMA server that is handling the call can be monitored, other DMA servers s through which the call is connected can be monitored, and the connections (such as the peer-to-peer IP network connection) through which the call is transmitted can be monitored.
  • decision step 616 it is determined if the first mobile communication device or the second mobile communication device involved in the call is roaming, i.e., moving between cellular coverage sites provided by individual antennas.
  • the logic moves to block 618 where the call at the roaming 0 mobile communication device is automatically handed off to a new DMA server and associated antenna at a new cellular coverage site. If none of the mobile communication devices involved in the call is roaming, the logic moves to decision step 620.
  • decision step 620 it is determined whether any DMA server has failed. If so, the call is re-routed around the failed DMA server by establishing one or more different peer-to-peer connections between 5 one or more different DMA servers that are still operable. Thereafter, the logic moves to decision step 624. Decision step 624 can also be reached if it is determined that no DMA servers have failed at decision step 620. At decision step 624, it is determined whether the call has ended. If not, the logic moves to block 626 and the connection or connections through which the call has been established are maintained. Otherwise, if the call has ended, the logic moves to block 628 and the peer-to-peer 0 connection, or connections, through which the call was established are terminated, and the logic ends, at state 630.
  • FIG. 7 depicts a flow chart to illustrate call hand-off logic that can be performed by a DMA server 406 (FIG. 4) in order to hand off calls, or user service connections, between a first BTS and a second BTS as a mobile communication device moves between cellular coverage zones.
  • the logic commences at 5 block 700 with a loop wherein when a mobile communication device is activated, the following steps are performed.
  • the location of a mobile communication device is monitored at a local DMA server.
  • decision step 704 it is determined if the mobile communication device is about to move from a first cellular coverage site provided by a first BTS to a second cellular coverage site provided by a second BTS. If not, the logic moves to decision step 706 where it is determined 0 whether the call has terminated. If the call terminates, the logic ends at state 708. On the other hand, if the call does not terminate, the logic returns to block 702 and continues as described above.
  • decision step 710 it is determined whether the second BTS is connected locally, i.e., to the 5 same DMA server as the first BTS. If so, the logic moves to block 712 and the DMA server hands off the call, e.g., as a soft hand off, or the user service connection, from a first BTS connected to the DMA server to a second BTS connected to the same DMA server.
  • the logic continues to block 714 where the DMA server hands off the call from a first BTS connected to the DMA server to a second BTS connected to a second DMA server. From block 712 or block 714, the logic proceeds to decision step 706 and continues as described above.
  • FIG. 8 portrays an exemplary, non-limiting embodiment of a method to illustrate group call logic that can be executed at a DMA 406 (FIG. 4) to provide a group call between several mobile communication devices and PSTN/ISDN users.
  • a loop is entered wherein during operation, the following steps are performed.
  • decision step 802 it is determined whether greater than three (3) callers are participating in a telephone call handled via one or more DMA servers 406 (FIG. 4). If not, the logic continues to block 804 and normal calling, e.g., two-way calling, three-party conference calling, etc., is allowed. The logic then ends at state 806.
  • decision step 802 if greater than three (3) callers are participating in a telephone call that is handled via one or more DMA servers 406 (FIG. 4), the logic moves to block 808 and group calling is allowed between all participants with full duplex capability.
  • decision step 810 it is determined whether one or more participants have disconnected. If so, at decision block 812, the disconnected participant or participants are dropped from the group call. At block 814, full duplex calling is maintained between the remaining group call participants.
  • decision step 816 if no participants have disconnected, the logic proceeds to decision step 816 where it is determined whether a new participant has connected to the group call. Decision step 816 is also reached from block 814, above.
  • decision step 816 if a new participant enters the group call, the new participant is allowed to connect to the group call and may communicate with any one or more of the other participants with full duplex capability. The logic then moves to decision step 820. Decision step 820 is also reached from decision step 816 if no new participants have entered the group call. At decision step 820, it is determined whether all participants have disconnected from the group call. If not, the logic returns to block 808 and continues as described above. On the other hand, if all participants have disconnected from the group call, the logic moves to block 822 where the group call is terminated and then ends at state 806.
  • the system includes one or more DMA servers 902 that are connected to a wireless carrier's central MSC 904.
  • the DMA server(s) 902 can be connected to the MSC 904 via an El CCS (G.703, G732) connection, or any other applicable connection.
  • the MSC 904 is connected to a code division multiple access (CDMA) network 906.
  • FIG. 9 further shows that the DMA server(s) 902 can be connected to a switching transfer point (STP) 908 of a stand-alone carrier.
  • STP switching transfer point
  • the DMA server 902 can be connected to the STP 908 via an IS-41 + IS-880 (DSO) connection, or an ISUP ITU N7 connection.
  • DSO IS-41 + IS-880
  • the STP 908 can be connected to a short messaging service (SMS) server 910 in order to provide text-messaging capabilities for the mobile communication devices using the system 900 shown in FIG. 9. Additionally, the STP 908 can be connected to a home location register (HLR) 912, a pre-paid wireless server 914 and an international roaming network 916 in order to provide pre-paid services and roaming between multiple countries.
  • HLR home location register
  • FIG. 9 shows that the DMA server(s) 902 can be connected to the PTSN 918 via an El CCS (G.703, G732) connection, or any other appropriate connection.
  • a wireless local loop (WLL) system is portrayed and is generally designated 1000.
  • the system 1000 includes a DMA server 1002 that is connected to a BTS 1004.
  • the BTS 1004 is connected to an antenna 1006.
  • the antenna 1006 provides cellular coverage for one or more subscribers 1008 within transmission distance of the antenna 1006.
  • FIG. 10 indicates that the system 1000 can further include a data network connection 1010 from the DMA server 1002.
  • the data network connection 1010 can connect the DMA server 1002 to the PSTN via an ISUPASDN signaling connection on an SS7 link set or a Tl/El wireless connection.
  • the data network connection 1010 can be an IEEE 802.11 connection between the DMA server 1002 depicted in FIG. 10 and other DMA servers not shown.
  • the DMA server 1002 can beneficially utilize existing infrastructure used for cellular and SMS data services.
  • FIG. 11 shows a multi-WLL system, generally designated 1100.
  • the system 1100 includes a plurality of WLLs 1102.
  • Each WLL 1102 can include a DMA server 1104 and an antenna 1106 connected thereto to provide a cellular coverage site around the antenna 1106.
  • the WLLs 1102 can be interconnected via a wireless local area network (WLAN), or a wide area network, such as a microwave connection.
  • WLAN wireless local area network
  • a DMA server 1104 within one of the WLLs 1102 can provide a back-haul connection 1108 to the PSTN 1110. This type of deployment scenario can greatly reduce the costs associated with a wireless system.
  • the DMA servers 1104 are connected to each other via the WLAN or microwave connections, the relatively expensive inter-site back-haul component is removed. Further, using the hand-off logic, the DMA servers 1104 can enable roaming between the WLLs 1102 and can further provide roaming to an external wireless or other network.
  • a telecommunications system is depicted and is designated 1200.
  • the system 1200 includes a DMA server 1202 that can be connected to a plurality of BTSs 1204.
  • Each BTS 1204 can provide cellular coverage for one or more mobile communication devices 1206, e.g., one or more mobile handsets configured to communicate via the DMA server 1202.
  • FIG. 12 further shows that the DMA server 1202 can be connected to an MSC 1208, such as an MSC of an existing cellular system.
  • the DMA server 1202 can be connected to the MSC via an IS-41 subset or a MAP subset over a wireless El /Tl connection.
  • the DMA server 1202 can extend an existing cellular network when connected to an existing cellular system MSC 1208.
  • FIG. 13 shows an additional telecommunications system, generally designated 1300.
  • the system 1300 includes a city area coverage site 1302 and an urban fringe/nearby village coverage site 1304.
  • the city area coverage site 1302 includes a first MSC/BSC center 1306 connected to a second MSC/BSC center 1308.
  • a first representative BTS 1310 and a second representative BTS 1312 are connected to the first MSC/BSC center 1306.
  • the particular deployment of equipment is configured to provide adequate cellular coverage for mobile communication devices within the city area coverage site 1302.
  • the urban fringe/nearby village coverage site 1304 includes a DMA server 1314 having a plurality of BTSs 1316 connected thereto.
  • the DMA server 1314 can provide hand-off of calls between the BTSs 1316 and can switch calls made between the BTSs 1316 locally.
  • the DMA server 1314 within the urban fringe/nearby village coverage site 1304 can also connect telephony traffic to the first MSC/BSC center 1306 within the city area coverage site 1302 via a data network connection 1318.
  • the data network connection can be an El connection, a Tl connection, a microwave connection, or an 802.11 connection established via an IS-41 subset or MAP subset.
  • a DMA server 1314 in a location such as that described above, i.e., in urban fringe or in a nearby village, and the connection of the DMA server 1314 to an MSC/BSC center 1306 in a city area, can provide service to potential wireless customers that typically would not receive cellular coverage from the city area cellular coverage site 1302.
  • new subscribers receive access to wireless communication service and can further communicate with wireless customers within the city area cellular coverage site 1302.
  • the system 1400 includes a DMA server 1402 that can be connected to a plurality of BTSs 1404. Each BTS 1404 can provide cellular coverage for one or more mobile communication devices 1406.
  • FIG. 14 further shows that the DMA server 1402 can include a data network connection 1408 that provides a back-haul connection to the PSTN 1410.
  • the data network connection can be an El connection, a Tl connection, a cable connection, a microwave connection, or a satellite connection.
  • the system 1400 depicted in FIG. 14 can be deployed using CDMA IS-95, CDMA IX, GSM/GPRS, W-CDMA, or other industry standard technologies.
  • the system 1400 shown in FIG. 14 can be deployed relatively rapidly and can be maintained remotely. Additionally, with the inclusion of the OAMP module 540 (FIG. 5) and the AAA module 528 (FIG. 5), subscriber accounts can be managed locally and billing can be performed locally, i.e., within the DMA server 1402. Moreover, as the number of subscribers increase, the size of the system can be increased modularly, e.g., by adding DMA servers, corresponding BTSs, and the appropriate connections.
  • FIG. 15 illustrates an in-building telecommunications network that is generally designated 1500.
  • FIG. 15 depicts a structure 1502, e.g., an office building, a commercial building, a house, etc.
  • An enterprise local area network (LAN) 1504 is installed within the building 1502.
  • a micro-BTS 1506 is connected to the enterprise LAN 1504.
  • a voice mail server 1508 and plural enterprise services servers 1510 are connected to the enterprise LAN 1504.
  • the enterprise services servers 1510 can include a dynamic host configuration protocol (DHCP) server, a radius server, a domain name server (DNS), etc.
  • DHCP dynamic host configuration protocol
  • DNS domain name server
  • FIG. 15 a plurality of phones 1512, e.g., IP desk phones, can be connected to the enterprise LAN 1504.
  • FIG. 15 further indicates that an office DMA server 1514 can be connected to the enterprise LAN 1504.
  • the office DMA server 1514 can also be connected to the PSTN 1516, which, in turn, can be connected to a cellular voice and data network 1518.
  • the enterprise LAN 1504 can also be connected to the cellular voice and data network 1518 via an Internet protocol (IP) network 1520.
  • IP Internet protocol
  • a signaling system seven (SS7) network 1522 can be connected to the cellular voice and data network 1518 and the IP network 1520.
  • FIG. 15 further indicates that an office DMA server 1514 can be connected to the enterprise LAN 1504.
  • the office DMA server 1514 can also be connected to the PSTN 1516, which, in turn, can be connected to a cellular voice and data network 1518.
  • the enterprise LAN 1504 can also be connected to the cellular voice and data network 15
  • FIG. 15 also depicts an SS7 gateway 1524 between the SS7 network 1522 and the IP network 1520 and a firewall 1526 between the enterprise LAN 1504 and the IP network 1520.
  • FIG. 15 shows a wireless communication device 1528 in communication with the cellular voice and data network 1518 and the micro-BTS 1506.
  • a mobile in-field telecommunications system is depicted and is generally designated 1600.
  • the system 1600 includes a plurality of mobile cellular coverage sites 1602.
  • Each mobile cellular coverage site 1602 includes a vehicle 1604 in which a field DMA server 1606 is disposed.
  • a BTS 1608 is disposed within each vehicle 1604 and is in direct physical connection with the field DMA server 1606, e.g., by a wire or cable connected there between.
  • the field DMA server 1606 and the BTS 1608 can be removably installed within the vehicle 1604 or permanently affixed therein.
  • FIG. 16 further indicates that each BTS 1608 can include an antenna 1610 that is designed to communicate with mobile communication devices.
  • each field DMA server 1606 includes an antenna 1612.
  • the field DMA servers 1606 can communicate wirelessly with each other via the antennae 1612, e.g., via 802.1 Ia, 802.1 Ib, microwaves, or other wireless link.
  • the mobile cellular coverage sites 1602 can be deployed to provide a temporary web of cellular coverage for a plurality of mobile communication devices, e.g., devices carried by soldiers during a battle.
  • the mobile in-field communications system 1600 can be recalled, moved, and re-deployed as necessary. Further, the system can include a wireless connection, e.g., 802.1 Ia, 802.1 Ib, microwaves, to the PSTN 1614.
  • FIG. 17 still another telecommunications system is illustrated and is generally designated 1700.
  • the system 1700 includes a DMA server 1702 that is connected to a BTS 1704.
  • the BTS 1704 is connected to an antenna 1706.
  • FIG. 17 further illustrates that a first satellite transceiver 1708 is also connected to the DMA server 1702.
  • the first satellite transceiver 1708 communicates with a second satellite transceiver 1710 via a satellite 1712.
  • the second satellite transceiver 1710 includes a data network connection 1714, e.g., a Tl connection, or an El connection.
  • the satellite transceivers 1708, 1710 and the satellite 1712 can provide a backhaul connection for the DMA server 1702.
  • the satellite transceivers 1708, 1710 and the satellite 1712 can connect the DMA server 1702 to an additional DMA server (not shown).
  • FIG. 18 shows yet another telecommunications system that is generally designated 1800.
  • the system includes a DMA 1802 that is connected to a first satellite transceiver 1804.
  • the DMA 1802 includes a primary network connection 1806, e.g., a Tl connection, or an El connection, and a secondary network connection 1808, e.g., an IP connection.
  • FIG. 18 shows that the first satellite transceiver 1804 communicates with a second satellite transceiver 1810 and a third satellite transceiver 1812 via a satellite 1814.
  • Each of the second and third satellite transceivers 1810, 1812 is connected to an interworking unit (IWU) 1816 via a data network connection 1818, e.g., an IP connection.
  • IWU interworking unit
  • Each IWU 1816 is connected to a BTS 1820, which in turn, is connected to an antenna 1822.
  • the satellite transceivers 1804, 1810, 1812 provide an IP network extension for the DMA server 1802.
  • the DMA server 1802 can act as a centralized micro-switch for handling calls received at the antennas 1822 and transmitted via the second and third satellite transceivers 1810, 1812.
  • FIG. 19 another telecommunications system is depicted and is designated 1900. As shown, the system 1900 includes a DMA server 1902 having a primary network connection 1904.
  • the DMA server 1902 can be connected to a plurality of IWUs 1906.
  • the DMA server 1902 can be connected to each IWU 1906 via a secondary network connection 1908, such as a category five (Cat 5) cable connection, a microwave connection, or a WLAN connection.
  • each IWU 1906 is connected to a BTS 1910 and each BTS 1910, in turn, is connected to an antenna 1912.
  • Each BTS 1910 can be a 3-sector BTS.
  • the DMA server 1902 can act as a centralized micro-switch that can be used to handle telephony traffic received at the antennae 1912.
  • FIG. 20 illustrates yet another embodiment of a communications system, designated 2000.
  • the system 2000 includes an airplane 2002 in which a DMA server 2004 is installed.
  • the DMA server 2004 is coupled to a BTS 2006 and a first satellite transceiver 2008.
  • FIG. 20 also shows a mobile communication device 2010 within the airplane 2002.
  • the mobile communication device 2010 can be in wireless communication with the BTS 2006.
  • the first satellite transceiver 2008 can communicate with a second satellite transceiver 2012 via a satellite 2014.
  • the second satellite transceiver 2012 can be connected to a terrestrial server gateway 2016, e.g. a DMA server gateway, that can provide connectivity to an operations and management platform (OMP) 2018, a call detail record (CDR) 2020, and a visitor location register gateway (VLR-GW) 2022.
  • OMP operations and management platform
  • CDR call detail record
  • VLR-GW visitor location register gateway
  • the OMP 2018, the CDR 202, and the VRL-GW 2022 can be separate from or incorporated within the server gateway 2016.
  • FIG. 20 further shows that the server gateway 2016 can be connected to a first mobile switching center (MSC) 2024 that is coupled to a second MSC 2026.
  • MSC mobile switching center
  • the system 2000 shown in FIG. 20 can allow a user in the airplane 2002 to communicate with a ground based telephone.
  • the mobile communication device 2010 can communicate with the BTS 2006, which, in turn, can communicate with the first satellite transceiver 2008 via the DMA server 2004.
  • the first satellite transceiver 2008 can transmit the call to a ground based communication system via the second satellite transceiver 2012 and the satellite 2014.
  • FIG. 20 shows a single airplane, however, multiple airplanes can be configured as described herein to provide communication from multiple airplanes to ground based telephones. Further, airplane to airplane communication can be provided. Additionally, the system 2000 can include other airborne vehicles, e.g., blimps.
  • FIG. 21 illustrates yet another embodiment of a communications system, designated 2100.
  • the system 2100 includes a ship 2102 in which a DMA server 2104 is installed.
  • the DMA server 2104 is coupled to a BTS 2106 and a first satellite transceiver 2108.
  • FIG. 21 also shows a mobile communication device 2110 within the ship 2102.
  • the mobile communication device 2110 can be in wireless communication with the BTS 2106.
  • the first satellite transceiver 2108 can communicate with a second satellite transceiver 2112 via a satellite 2114.
  • the second satellite transceiver 2112 can be connected to a terrestrial server gateway 2116, e.g. a DMA server gateway, that can provide connectivity to an operations and management platform (OMP) 2118, a call detail record (CDR) 2120, and a visitor location register gateway (VLR-GW) 2122.
  • OMP 2118, the CDR 212, and the VRL-GW 2122 can be separate from or incorporated within the server gateway 2116.
  • FIG. 21 further shows that the server gateway 2116 can be connected to a first mobile switching center (MSC) 2124 that is coupled to a second MSC 2126.
  • MSC mobile switching center
  • the system shown in FIG. 2100 can allow a user within the ship 2102 to communicate with a ground based telephone.
  • the mobile communication device 2110 can communicate with the BTS 2106, which, in turn, can communicate with the first satellite transceiver 2108 via the DMA server 2104.
  • the first satellite transceiver 2108 can transmit the call to a ground based communication system via the second satellite transceiver 2112 and the satellite 2114.
  • FIG. 21 shows a single ship, however, multiple ships can be configured as described herein to provide communication from multiple ships to ground based telephones. Further, ship to ship communication can be provided. Additionally, the system 2100 can include other waterborne vehicles.
  • a method of deploying a distributed management architecture server commences at block 2200 wherein during deployment, the succeeding steps are performed.
  • the DMA server is moved to a desired location proximate to a BTS.
  • the DMA server is opened. For example, if the DMA server is the DMA server shown in FIG. 1, the latch is unlocked and the lid is rotated about the hinges into the open position.
  • a physical connection is established between the DMA server and the BTS, e.g., the BTS is coupled to the DMA server via a wire.
  • the DMA server is activated, e.g., powered on.
  • a network connection is established with another remote DMA server.
  • the network connection is a peer-to-peer connection between the DMA servers.
  • DMA server software within the DMA server is activated.
  • decision step 2214 it is determined whether the system is operational. That decision can be a performed by the DMA server, e.g., by a self-diagnostic routine or module within the DMA server. Alternatively, that decision can be determined manually by a technician. If the system is not operational, a system check is performed at block 2216.
  • the system check performed at block 2216 is performed by a self-diagnostic routine or module within the DMA server. On the other hand, a technician can perform the system check. After the system check , the logic then returns to decision step 2214 and continues as described herein. At decision step 2214, if the system is operational, the method proceeds to block 2218 and call transmission is allowed. The method then ends at state 2220.
  • a method of deploying a distributed management architecture server commences at block 2300 wherein a direct physical connection between a first DMA server and a base transceiver station is disconnected.
  • the first DMA server is removed.
  • a second DMA server is moved to a location that is substantially proximate to the base transceiver station.
  • the second DMA server is opened. For example, if the DMA server is the DMA server shown in FIG. 1, the latch is unlocked and the lid is rotated about the hinges into the open position.
  • a direct physical connection is established between the second DMA server and the base transceiver station.
  • the second DMA server is activated.
  • a network connection is established between the second DMA server and another remote DMA server.
  • the network connection is a peer-to-peer IP connection between the DMA servers.
  • the peer-to-peer connection is established via a private IP network.
  • DMA server software within the second DMA server is activated.
  • decision step 2316 it is determined whether the system is operational. That decision can be a performed by the second DMA server, e.g., by a self-diagnostic routine or module within the second DMA server. Alternatively, the decision can be determined manually by a technician. If the system is not operational, a system check is performed at block 2318. In a particular embodiment, the system check performed at block 2318 is performed by a self-diagnostic routine or module within the second DMA server. On the other hand, a technician can perform the system check. After the system check , the logic then returns to decision step 2316 and continues as described herein. At decision step 2316, if the system is operational, the method proceeds to block 2320 and call transmission is allowed via the second DMA server. The method then ends at state 2322.
  • the present disclosure provides a flexible telecommunications device, i.e., the DMA server 406 (FIG. 4), that is distributive and associative, i.e., it can operate stand-alone or seamlessly within an existing cellular or other network.
  • the DMA server 406 can be integrated with virtually any third party base station.
  • the DMA server 406 can operate with multiple air interfaces including CDMA IS-95, CDMA IX, CDMA EVDO, GSM, GPRS, W-CDMA, 802.11 (Wi-fi), 802.16 (Wi-fi), etc.
  • the DMA server 406 can provide integrated prepaid billing, OAMP, network management, and AAA functionality.
  • the DMA server 406 can include a Java based user interface and feature configuration system. Also, the DMA server 406 can provide real time call metering, call detail record (CDR) generation, and real time call provisioning. The DMA server 406 may be implemented in a relatively small footprint and has a relatively low power requirement. Further, the DMA server 406 may be implemented using inexpensive and widely available computer equipment.
  • CDR call detail record
  • the present system provides mobile to landline calls from mobile handsets within a DMA server cellular coverage area.
  • mobile to landline calls can be made from mobile handsets roaming into DMA coverage areas.
  • Mobile to mobile calls can be made from home/roaming handsets to DMA handsets and vice versa.
  • mobile to IP calls and IP to mobile calls can be made from within a DMA server coverage area.
  • IP to IP calls can be made from any DMA handset to any IP phone.
  • IP to landline calls and landline to IP calls can be made from a DMA handset to any phone.
  • land-line to mobile calls to DMA handsets can be made.
  • the systems described above can support call forwarding, call waiting, 3-way calling caller ID, voice mail, and mobile to mobile SMS service, i.e., text messaging. Further, the systems described above can provide broadcast SMS service, mobile to land high-speed IP data (IX or GPRS) service and mobile- to-mobile high speed IP data (IX or GPRS) service. Also, the systems described above can provide IP- PBX capability.
  • IX or GPRS mobile to land high-speed IP data
  • IX or GPRS mobile- to-mobile high speed IP data
  • one or more of the illustrated systems can provide IP transport between distributed elements, e.g., DMA servers 406 (FIG. 4). Packet back-haul from BTS to RAN can be provided. Further, the control logic within the DMA servers 406 (FIG. 4) can be distributed and associated. Associated systems can be redundant, self-healing, self-organizing, and scalable. Distributed systems can be "snap-together," i.e., a DMA server 406 (FIG. 4) can be linked to a previously deployed DMA server 406 (FIG. 4) in order to broaden, or otherwise extend, cellular coverage. Further, distributed systems can be de-centralized to avoid single points of failure.
  • One or more of the systems described above can also provide soft and softer call handoffs on the same frequency interfaces. Also, soft handoffs can be provided on different systems. Further, a DMA based system can operate stand-alone with a billing system provided by a DMA server and CDR generation. Or, a system can use the SS7 network to pass CDRs to a central switch for integrated billing and operation with an existing network.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A device for providing a communication path between two or more wireless telephones via one or more wireless transceivers is disclosed. The device includes a housing that includes a mobile switching center module and includes a base station controller module. Further, in another particular embodiment, the mobile switching center module includes a program for switching received telephone calls. Additionally, the mobile switching center module includes a program to establish a peer-to-peer connection with a remote distributed mobile architecture server. The mobile switching center module further includes a program to transmit telephone calls to a remote distributed mobile architecture server via one or more peer-to-peer Internet protocol connections.

Description

SYSTEM, METHOD, AND DEVICE FOR PROVIDING COMMUNICATIONS USING A DISTRIBUTED MOBILE ARCHITECTURE
FIELD OF THE DISCLOSURE
The present disclosure relates generally to the distributed mobile communication systems.
BACKGROUND
Access to basic telephony service is particularly important for rural and isolated communities. Telephony access allows small-scale enterprises, cooperatives, and farmers to obtain accurate information on fair prices for their products and to access regional and national markets. Access also reduces the cost of transportation and supports the local tourist industry. By bringing markets to people via telecommunications, rather than forcing people to leave in search of markets, urban migration is reduced and greater income and employment potential are generated in rural areas.
Unfortunately, the last decade of the telecommunications boom has not alleviated the disparities between urban and rural communities. The average imbalance, in terms of telephone penetration, in Asia, for example, is over ten to one and is often as high as twenty to 1.2. This means that a country whose urban markets have a penetration of four (4) telephone lines per one-hundred (100) inhabitants, e.g., India and Pakistan, has a rural penetration of less than 0.2 per one-hundred (100). The situation is more acute in most African countries and in some parts of Latin America. By comparison, the disparity in average income level between urban and rural residents in the developing world is usually less than 4 to 1.
Current telephone systems are expensive to deploy. For example, a typical cellular system that includes a mobile switching center (MSC), a base station controller (BSC), and a home location register/visitor location register (HLR/VLR) can cost over $2.0 million. Moreover, such a system may require a minimum often thousand users in order to be economically viable. In many rural areas, the population is not large enough to support the installation of such a system. Further, in many cases, the conditions in which the equipment, e.g., the MSC, BSC, and HLR/VLR, are to be operated are extremely harsh and environmentally prohibitive. An alternative to such a cellular system can include a wired system, but the costs associated with deploying and maintaining land lines are too high for certain rural areas.
Accordingly, there exists a need for an improved communications system that is relatively inexpensive to deploy and relatively inexpensive to operate. BRIEF DESCRIPTION OF THE DRAWINGS
The present invention is pointed out with particularity in the appended claims. However, other features are described in the following detailed description in conjunction with the accompanying drawings in which:
FIG. 1 is a view of a distributed management architecture server having a first illustrative form factor;
FIG. 2 is a view of an alternative embodiment of a distributed management architecture server having a second illustrative form factor;
FIG. 3 is a diagram of another alternative embodiment of a distributed management architecture server having a third illustrative form factor;
FIG. 4 is a diagram of a distributed and associative communication system;
FIG. 5 is a block diagram of a distributed management architecture server;
FIG. 6 is a flow chart to illustrate operating logic of a distributed management architecture server;
FIG. 7 is a flow chart to illustrate call hand-off logic of a distributed management architecture server;
FIG. 8 is a flow chart to illustrate group call logic of a distributed management architecture server;
FIG. 9 is a diagram of an exemplary communication system in which a distributed management architecture server can be incorporated;
FIG. 10 is a diagram of a wireless local loop communication system in which a distributed management architecture server can be incorporated;
FIG. 11 is a diagram of plural wireless local loop communication systems connected to the public switched telephone network via a single back-haul connection;
FIG. 12 is a diagram of a communication system in which a distributed management architecture server can be deployed to extend an existing cellular network;
FIG. 13 is a diagram of a communication system in which a distributed management architecture server can be deployed to cover urban fringe around an existing network;
FIG. 14 is a diagram of a communication system in which a single distributed management architecture server can be connected to plural base transceiver stations and can provide a single backhaul to the public switched telephone network; FIG. 15 is a diagram of an in-building communication system in which a distributed management architecture server can be deployed;
FIG. 16 is a diagram of a mobile in-field communication system in which multiple distributed management architecture servers can be deployed via multiple vehicles;
FIG. 17 is a diagram of a communication system in which a distributed management architecture server can utilize a satellite connection as a backhaul connection;
FIG. 18 is a diagram of a communication system in which a distributed management architecture server can receive multiple backhaul signals via multiple satellite signals;
FIG. 19 is a diagram of a communication system in which a single distributed management architecture server can be connected to multiple base transceiver stations;
FIG. 20 is a diagram of a mobile communication system in which a distributed management architecture server can be deployed via an airplanes;
FIG. 21 is a diagram of a mobile communication system in which a distributed management architecture server can be deployed via a ship;
FIG. 22 is a flow chart to illustrate a method of deploying a distributed management architecture server; and
FIG. 23 is a flow chart to illustrate a method of replacing a distributed management architecture server.
DETAILED DESCRIPTION OF THE DRAWINGS
Referring to FIG. 1, a distributed management architecture (DMA) server is shown and is generally designated 100. As illustrated in FIG. 1, the DMA server 100 includes a base 102 and a lid 104. As shown, the lid 104 is attached to the base by a first lid hinge 106 and a second Hd hinge 108. In a particular embodiment, the Hd 104 can be rotated about the first lid hinge 106 and the second lid hinge 108 between an open position, shown in FIG. 1, and a closed position (not shown) in which the lid 104 overlays the base 102 and the DMA server 100 is essentially shaped like a box or a briefcase.
As indicated in FIG. 1, the base 102 has a length 110, a width 112 and a height 114. FIG. 1 shows that the DMA server 100 includes a keyboard input device 116 that is incorporated in an upper surface of the base 102. Further, the DMA server 100 includes a mouse input device 118 that is also incorporated into the upper surface of the base 102. In a particular embodiment, the mouse input device 118 is a touch mouse input device 118. Additionally, the DMA server 100 includes a right side button 120 and a left side button 122. In a particular embodiment, the right side button 120 can be used to perform right-click functionality associated with the mouse input device 118. Moreover, the left side button 122 can be used to perform left-click functionality associated with the mouse input device 118. FIG. 1 further indicates that the base 102 of the DMA server 100 is formed with a vent 124 to permit air exchange with the interior of the base 102 of the DMA server 100 and to facilitate cooling of the electronic components of the DMA server 100 housed within the base 102. Moreover, the base 102 of the DMA server 100 includes a handle 126 that is attached to the base 102 via a first handle hinge 128 and a second handle hinge 130. The base 102 also includes a pair of latch engagement notches 132.
As shown in FIG. 1, the lid 104 includes a flat panel display 134 incorporated therein. When the lid 104 is closed, the display 134 is adjacent to the keyboard 116. Moreover, when the lid 104 is closed, the lid 104 and the base 102 cooperate to protect the display 134, the keyboard 116, the mouse 118, and the buttons 120, 122. FIG. 1 also depicts a latch 136 that is incorporated into the lid 104. When the lid 104 is closed, the latch 136 can engage the latch engagement notches 132 in order to lock the lid in the closed position. As depicted in FIG. 1, an antenna 138 is incorporated into the lid 104. The antenna 138 can be extended during operation and retracted when the DMA server 100 is not operating.
In a particular embodiment, the length 110 of the base 102 is 31.0 centimeters. Further, in a particular embodiment, the width 112 of the base 102 is 25.5 centimeters. Additionally, in a particular embodiment, the height 114 of the base 102 with the lid 104 in the closed position is 7.0 centimeters. Accordingly, the DMA server 100 has a total volume of 5,533.5 centimeters cubed and a footprint area of 790.5 centimeters squared. Further, in a particular embodiment, the DMA server 100 weighs approximately 5.8 kilograms (kg). As such, in a particular embodiment, the DMA server 100 has a total volume that is less than 6,000 centimeters cubed, a footprint area that is less than 800 centimeters squared, and a weight that is less than 6.0 kilograms.
In a particular embodiment, the DMA server 100 is relatively rugged. Particularly, the DMA server 100 is operable in a temperature range from negative twenty degrees Celsius to positive fifty-five degrees Celsius (-20° C to 55° C). Also, the DMA server 100 is substantially shock resistant and can withstand a one meter drop. Further, the DMA server 100 is substantially weather resistant, substantially dust resistant, and substantially sand resistant. The DMA server 100 is portable and it can be mounted in a vehicle or carried like a briefcase. Further, multiple DMA servers 100 can be deployed as described herein.
FIG. 2 depicts an alternative embodiment of a distributed management architecture (DMA) server that is generally designated 200. As shown in FIG. 2, the DMA server 200 includes a base 202 and a lid 204 that is coupled to the base 202 via a plurality of fasteners 206, e.g., a plurality of screws.
Additionally, the DMA server 200 has a length 208, a width 210, and a height 212. Further, the base 202 of the DMA server 200 includes a first vent 214, a second vent 216, and a third vent 218. In a particular embodiment, the vents 214, 216, 218 permit air exchange with the interior of the base 202 of the DMA server 200 and facilitate cooling of the electronic components of the DMA server 200 housed within the base 202. As shown in FIG. 2, the DMA server 200 includes an access window 220. One or more interfaces 222, e.g., wires can be accessed via the access window 220 and coupled to a base transceiver station (BTS) during deployment of the DMA server 200. As shown in FIG. 2, the DMA server 200 can be mounted within a vehicle 224. Further, multiple DMA servers 200 can be deployed as described herein.
In a particular embodiment, the length 208 of the base 202 is 92.0 centimeters. Further, in a particular embodiment, the width 210 of the base 202 is 45.0 centimeters. Additionally, in a particular embodiment, the height 212 of the base 202 is 34.0 centimeters. Accordingly, the DMA server 200 has a total volume of approximately 140,760 centimeters cubed and a footprint area of approximately 4,140 centimeters squared. Further, in a particular embodiment, the DMA server 200 weighs approximately 48 kilograms (kg). As such, in a particular embodiment, the DMA server 100 has a total volume that is less than 150,000 centimeters cubed, a footprint area that is less than 5,000 centimeters squared, and a weight that is less than 50.0 kilograms.
FIG. 3 illustrates another alternative embodiment of a distributed management architecture (DMA) server that is generally designated 300. As depicted in FIG. 3, the DMA server 300 includes a housing 302 that has a length 304, a width 306, and a height 308. Additionally, the housing 302 can be formed with a first vent 310 and a second vent 312. In a particular embodiment, the vents 310, 312 permit air exchange with the interior of the housing 302 of the DMA server 300 and facilitate cooling of the electronic components of the DMA server 300 within the housing 302.
As shown in FIG. 3, at least one side of the housing 302 is formed with a rib 314 to allow the DMA server 300 to be slid into a server rack (not shown). Further, the DMA server 300 includes a clip 316 that is coupled to the housing 302 via a fastener, e.g., a bolt. The clip 316 can be engaged with a server rack (not shown) to prevent the DMA server 300 from unintentionally sliding out of the server rack (not shown).
In a particular embodiment, the length 304 of the housing 302 is approximately 76.2 centimeters.
Further, in a particular embodiment, the width 306 of the housing 302 is approximately 48.2 centimeters. Additionally, in a particular embodiment, the height 308 of the housing 302 is approximately 4.3 centimeters. Accordingly, the DMA server 300 has a total volume of approximately
15,756.5 centimeters cubed and a footprint area of approximately 3,672.9 centimeters squared.
Further, in a particular embodiment, the DMA server 300 weighs approximately 17.7 kilograms (kg).
Also, in a particular embodiment, the DMA server 300 is stackable in order to support various capacity requirements. As such, in a particular embodiment, the DMA server 100 has a total volume that is less than 16,000 centimeters cubed, a footprint area that is less than 4,000 centimeters squared, and a weight that is less than 20.0 kilograms
Referring to FIG. 4, a non-limiting, exemplary embodiment of a distributive and associated telecommunications system is illustrated and is generally designated 400. As depicted in FIG. 4, the system 400 includes four cellular coverage sites 402. Each coverage site 402 includes an antenna 404. In one embodiment, the antenna 404 is connected to a transceiver belonging to a base transceiver station (BTS) and the BTS is a 3-sector BTS. FIG. 4 also indicates that a distributed mobile architecture (DMA) server 406 can be connected to each antenna 404. In one embodiment, each DMA server 406 is physically and directly connected to its respective antenna 404, e.g., by a wire or cable 408. Further, in an illustrative embodiment, the DMA servers 406 can be any of the DMA servers shown in FIG. 1, FIG. 2, and FIG. 3.
As illustrated in FIG. 4, each DMA server 406 is interconnected with the other DMA servers 406 via an Internet protocol network 410. As such, there exists a peer-to-peer connection 412 between each DMA server 406 in the system 400. As described in detail below, the DMA servers 406 can handle telephony traffic that is communicated at each antenna 404. For example, the DMA servers 406 can switch and route calls received via each antenna 404. Additionally, the DMA servers 406 can hand-off calls to each other as mobile communication devices move around and between the cellular coverage sites 402. The DMA servers 406 can communicate with each other via the IP network 410 and can further transmit calls to each other via the IP network 410. It should be understood that more than four cellular coverage sites 402 can be included in the system and that the inclusion of only four cellular coverage sites 402 in FIG. 4 is merely for clarity and explanation purposes.
Within the distributed and associative telecommunications system 400 the controlling logic can be distributed and de-centralized. Moreover, the wireless coverage provided by the disclosed system 400 is self-healing and redundant. In other words, due to the hiterconnectivity via the IP network 410, if one or more of the DMA servers 406 loses powers, fails, or is otherwise inoperable, telephony traffic handled by the inoperable DMA server 406 can re-routed to one of the remaining operable DMA servers 406. Additionally, user data stored in a database, e.g., a home locator resource (HLR) or a visitor locator resource (VLR), can be distributed equally and fully among all of the DMA servers 406. It can also be appreciated that new cellular coverage sites can be easily added to the system 400 as the demand for users increases. Specifically, a DMA server can be deployed as described below, connected to an antenna, connected to the IP network, and activated to provided cellular coverage in a new area.
FIG. 5 shows an exemplary, non-limiting, detailed embodiment of a DMA server, e.g., one of the DMA servers 406 described in conjunction with FIG. 4. Further, any of the DMA servers 100, 200, 300 shown in FIG. 1, FIG. 2, and FIG. 3 can include the components depicted in FIG. 5 and described herein.
In a particular embodiment, the DMA server 406 is essentially a processor, or computer, having a housing and a computer readable medium 500 that is disposed therein. A power supply 502 can also be disposed within the housing of the DMA server 406 in order to provide power to the DMA server 406. The power supply 502 can be a rechargeable battery disposed within the DMA server 406 or it can be external to the DMA server 406, i.e., a standard power outlet. Moreover, a cooling system 504, e.g., a fan with a thermostat, can be within the DMA server 406 in order to keep the DMA server 406 from overheating. In an alternative embodiment, the DMA server 406 can be a single board processor that does not require a fan. As depicted in FIG. 5, the DMA server 406 can include a mobile switching center (MSC) module 506 and a base station controller (BSC) module 508 embedded within the computer readable medium 500. In an exemplary, non-limiting embodiment, the MSC module 506 can include a gatekeeper (GK) 510 that is connected to several gateways. For example, a circuit gateway (CGW) 512 can be connected to the GK 510 and can provide connectivity to an integrated services digital network/public switched telephone network (ISDN/PSTN) interface 514. The CGW 512 can provide a circuit switched to packet data conversion. In an exemplary, non-limiting embodiment, the PSTN portion of the ISDN/PSTN interface 514 can be an inter-office interface that uses the Bellcore industry standard ISDN user part (ISUP) signaling on a signaling system seven (SS7) link set. Moreover, the voice trunks on this interface can be timeslots on a Tl connection. Inbound and outbound voice calls can be supported on the ISDN portion of the ISDN/PSTN interface 514.
As further illustrated in FIG. 5, a packet data server node (PDSN) gateway 516 for CDMA, or a Gateway GPRS Support Node (GGSN) for Global System for Mobile Communication (GSM), and a Session Initiation Protocol (SEP) gateway 518 can also be connected to the GK 510. The PDSN gateway 516 and the SIP gateway 518 can provide connectivity to an Internet protocol (IP) interface 520. Further, the PDSN gateway 516 or a GGSN can establish a reverse tunnel with the PDSN or GGSN gateway 516 using generic routing encapsulation (GRE). Moreover, the PDSN gateway 516, or GGSN, can implement the Pseudo Random Function (PRF)/ Foreign Agent (FA) functionality of the DMA server 406 which supports mobile IP functions.
FIG. 5 further shows an SS7 gateway 522 that provides connectivity to an ANSI-41 and GSM Mobile Application Part (MAP) interface 524. In a particular embodiment, the ANSI-41 interface can be an SS7 TCAP/SCCP interface on the same SS7 link set used for ISUP signaling. The same SS7 point code can be used to identify the DMA server 406 in the ANSI-41 network. The ANSI-41 interface can be used for roamer registration. Further, in an exemplary, non-limiting embodiment, the GSM MAP interface can be an SS7 TCAP/SCCP interface on the same SS7 link set used for ISUP signaling. It can be appreciated that there are different protocols of MAP from MAP/B to MAP/I, but in the illustrative embodiment, the different MAP/x protocols are not stacked - they are used independently.
As depicted in FIG. 5, a media gateway 526 can also be coupled to the GK 510. In an exemplary, non- limiting embodiment, the media gateway 526 can include cellular transcoders, one or more intranet gateways, conferencing bridges, and group calling functionality. Further, an authentication, authorization, and accounting (AAA) module 528 can be coupled to the GK 510. In an exemplary, non-limiting embodiment, there are three levels of authentication management. The highest level is for administration, the mid-level is for operations, and the lowest level is for normal users. The functions of the AAA module 528 can be included in the user level.
In an exemplary, non-limiting embodiment, the GK 510 can act as an AAA server and a feather server to support advanced supplementary service, short message service, etc. Moreover, the GK 510 can act as a call manager and can support ISUP and PSTN function calls. Additionally, the GK 510 can act as a signal gateway, e.g., IP to SS7 inter-working, ISUP, GSM MAP or ANSI-41 to PSTN and ANSI- 42/GSM. The GK 510 can also function as a data call server.
As illustrated in FIG. 5, the BSC module 508 includes a cellular radio network controller (CRNC) 530 and a cellular selection/distribution unit (CSDU) 532 that are connected to a call protocol controller (CPC) 534. In turn, the CPC 534 can be connected to a plurality of base transceiver stations (BTSs) 536. Specifically, the DMA server 406 includes a BTS interface 538 at the CPC 534 that can be physically and directly connected to the BTSs 536. The CRNC 530 can provide cellular radio resource management and cellular call control. The CSDU 532 can provide Fundamental Channel (FCH) soft handoff and distribution, Link Access Control (LAC) processing for inband signaling, multiplexer (MUX) functions, and centralized power control. Further, the CPC 534 can convert a Tl or El message or ATM interface to a data packet message. In a particular embodiment, each BTS 536 supports signals and traffic up to the front point of the CPC 534, e.g., up to the BTS interface 538. Further, in a particular embodiment, the CRNC 530, the CPC 534, the CSDU 532 and the OAMP 540 can perform one or more of the functions of legacy Base Station Controllers (BSC).
In an exemplary, non-limiting embodiment, the BTS interface 538 can be an IS-95A OR IS-2000 interface over El or ATM, or the BTS interface 538 can be a GSM BTS interface using MAP or customized application for mobile network enhanced logic (CAMEL). In an illustrative embodiment, the CPC 534 can be connected to one or more BTSs 536. FIG. 5 further shows that the BSC module 508 includes an operations, administration, maintenance, and provisioning (OAMP) module 540. In an exemplary, non-limiting embodiment, the OAMP module 540 can use simple network management protocol (SNMP) for operations interfaces. Further, the OAMP module 540 can include a JAVA user interface. The OAMP module 540 can also include a software agent that is assigned to each component within the DMA server 406. The agents independently monitor their respective components. Moreover, each agent can provision its respective component.
Referring to FIG. 6, an exemplary, non-limiting embodiment of a flow chart is provided to illustrate operating logic of a DMA server 406 (FIG. 4). The operating logic commences at block 600 with a function loop wherein during operation, the succeeding steps are performed. At step 602, a call is received, e.g., at an antenna 404 (FIG. 4) in communication with a DMA server 406 (FIG. 4). Next, at decision step 604 it is determined whether the call is local, i.e., it is determined whether the call is between two mobile communication devices within the same cellular coverage site. If the call is local, the logic moves to block 606, and the call is switched at the local DMA server, i.e., the DMA server within the cellular coverage site in which the call is received. Then, at block 608, the call is connected from the first mobile communication device that initiated the call to a second mobile communication device via the local DMA server. Returning to decision step 604, if the call is not local, the logic proceeds to block 610 and the call is switched at the DMA server connected to the antenna 404 at which the call was received. Thereafter, at block 612, the call is connected from the first mobile communication device that initiated the call to a second mobile communication device via a peer-to- peer connection between a first DMA server and a second DMA server. After the call is connected, either at block 608 or block 612, the logic continues to block 614 where the call is monitored. For example, the location of the first mobile communication device that initiated the call can be monitored, the location of the second mobile communication device that received the call can be monitored, the DMA server that is handling the call can be monitored, other DMA servers s through which the call is connected can be monitored, and the connections (such as the peer-to-peer IP network connection) through which the call is transmitted can be monitored. Proceeding to decision step 616, it is determined if the first mobile communication device or the second mobile communication device involved in the call is roaming, i.e., moving between cellular coverage sites provided by individual antennas. If so, the logic moves to block 618 where the call at the roaming 0 mobile communication device is automatically handed off to a new DMA server and associated antenna at a new cellular coverage site. If none of the mobile communication devices involved in the call is roaming, the logic moves to decision step 620.
At decision step 620, it is determined whether any DMA server has failed. If so, the call is re-routed around the failed DMA server by establishing one or more different peer-to-peer connections between 5 one or more different DMA servers that are still operable. Thereafter, the logic moves to decision step 624. Decision step 624 can also be reached if it is determined that no DMA servers have failed at decision step 620. At decision step 624, it is determined whether the call has ended. If not, the logic moves to block 626 and the connection or connections through which the call has been established are maintained. Otherwise, if the call has ended, the logic moves to block 628 and the peer-to-peer 0 connection, or connections, through which the call was established are terminated, and the logic ends, at state 630.
FIG. 7 depicts a flow chart to illustrate call hand-off logic that can be performed by a DMA server 406 (FIG. 4) in order to hand off calls, or user service connections, between a first BTS and a second BTS as a mobile communication device moves between cellular coverage zones. The logic commences at 5 block 700 with a loop wherein when a mobile communication device is activated, the following steps are performed. At block 702, the location of a mobile communication device is monitored at a local DMA server. Continuing to decision step 704, it is determined if the mobile communication device is about to move from a first cellular coverage site provided by a first BTS to a second cellular coverage site provided by a second BTS. If not, the logic moves to decision step 706 where it is determined 0 whether the call has terminated. If the call terminates, the logic ends at state 708. On the other hand, if the call does not terminate, the logic returns to block 702 and continues as described above.
Returning to decision step 704, if the user is about to move from a first cellular coverage site provided by a first BTS to a second cellular coverage site by a second BTS, the logic proceeds to decision step 710. At decision step 710, it is determined whether the second BTS is connected locally, i.e., to the 5 same DMA server as the first BTS. If so, the logic moves to block 712 and the DMA server hands off the call, e.g., as a soft hand off, or the user service connection, from a first BTS connected to the DMA server to a second BTS connected to the same DMA server. Conversely, if the second BTS is not local, the logic continues to block 714 where the DMA server hands off the call from a first BTS connected to the DMA server to a second BTS connected to a second DMA server. From block 712 or block 714, the logic proceeds to decision step 706 and continues as described above.
FIG. 8 portrays an exemplary, non-limiting embodiment of a method to illustrate group call logic that can be executed at a DMA 406 (FIG. 4) to provide a group call between several mobile communication devices and PSTN/ISDN users. At block 800, a loop is entered wherein during operation, the following steps are performed. At decision step 802, it is determined whether greater than three (3) callers are participating in a telephone call handled via one or more DMA servers 406 (FIG. 4). If not, the logic continues to block 804 and normal calling, e.g., two-way calling, three-party conference calling, etc., is allowed. The logic then ends at state 806.
At decision step 802, if greater than three (3) callers are participating in a telephone call that is handled via one or more DMA servers 406 (FIG. 4), the logic moves to block 808 and group calling is allowed between all participants with full duplex capability. Next, at decision step 810, it is determined whether one or more participants have disconnected. If so, at decision block 812, the disconnected participant or participants are dropped from the group call. At block 814, full duplex calling is maintained between the remaining group call participants. Returning to decision step 810, if no participants have disconnected, the logic proceeds to decision step 816 where it is determined whether a new participant has connected to the group call. Decision step 816 is also reached from block 814, above.
At decision step 816, if a new participant enters the group call, the new participant is allowed to connect to the group call and may communicate with any one or more of the other participants with full duplex capability. The logic then moves to decision step 820. Decision step 820 is also reached from decision step 816 if no new participants have entered the group call. At decision step 820, it is determined whether all participants have disconnected from the group call. If not, the logic returns to block 808 and continues as described above. On the other hand, if all participants have disconnected from the group call, the logic moves to block 822 where the group call is terminated and then ends at state 806.
Referring now to FIG. 9, an exemplary, non-limiting embodiment of a telecommunications system is shown and is generally designated 900. As shown, the system includes one or more DMA servers 902 that are connected to a wireless carrier's central MSC 904. The DMA server(s) 902 can be connected to the MSC 904 via an El CCS (G.703, G732) connection, or any other applicable connection. The MSC 904, in turn, is connected to a code division multiple access (CDMA) network 906. FIG. 9 further shows that the DMA server(s) 902 can be connected to a switching transfer point (STP) 908 of a stand-alone carrier. As shown, the DMA server 902 can be connected to the STP 908 via an IS-41 + IS-880 (DSO) connection, or an ISUP ITU N7 connection.
As further depicted in FIG. 9, the STP 908 can be connected to a short messaging service (SMS) server 910 in order to provide text-messaging capabilities for the mobile communication devices using the system 900 shown in FIG. 9. Additionally, the STP 908 can be connected to a home location register (HLR) 912, a pre-paid wireless server 914 and an international roaming network 916 in order to provide pre-paid services and roaming between multiple countries. FIG. 9 shows that the DMA server(s) 902 can be connected to the PTSN 918 via an El CCS (G.703, G732) connection, or any other appropriate connection.
Referring to FIG. 10, a wireless local loop (WLL) system is portrayed and is generally designated 1000. As illustrated in FIG. 10, the system 1000 includes a DMA server 1002 that is connected to a BTS 1004. The BTS 1004, in turn, is connected to an antenna 1006. The antenna 1006 provides cellular coverage for one or more subscribers 1008 within transmission distance of the antenna 1006. FIG. 10 indicates that the system 1000 can further include a data network connection 1010 from the DMA server 1002. The data network connection 1010 can connect the DMA server 1002 to the PSTN via an ISUPASDN signaling connection on an SS7 link set or a Tl/El wireless connection. Further, the data network connection 1010 can be an IEEE 802.11 connection between the DMA server 1002 depicted in FIG. 10 and other DMA servers not shown. The DMA server 1002 can beneficially utilize existing infrastructure used for cellular and SMS data services.
FIG. 11 shows a multi-WLL system, generally designated 1100. As shown, the system 1100 includes a plurality of WLLs 1102. Each WLL 1102 can include a DMA server 1104 and an antenna 1106 connected thereto to provide a cellular coverage site around the antenna 1106. As illustrated in FIG. 11, the WLLs 1102 can be interconnected via a wireless local area network (WLAN), or a wide area network, such as a microwave connection. Moreover, a DMA server 1104 within one of the WLLs 1102 can provide a back-haul connection 1108 to the PSTN 1110. This type of deployment scenario can greatly reduce the costs associated with a wireless system. Since the DMA servers 1104 are connected to each other via the WLAN or microwave connections, the relatively expensive inter-site back-haul component is removed. Further, using the hand-off logic, the DMA servers 1104 can enable roaming between the WLLs 1102 and can further provide roaming to an external wireless or other network.
Referring to FIG. 12, a telecommunications system is depicted and is designated 1200. As illustrated in FIG. 12, the system 1200 includes a DMA server 1202 that can be connected to a plurality of BTSs 1204. Each BTS 1204 can provide cellular coverage for one or more mobile communication devices 1206, e.g., one or more mobile handsets configured to communicate via the DMA server 1202. FIG. 12 further shows that the DMA server 1202 can be connected to an MSC 1208, such as an MSC of an existing cellular system. The DMA server 1202 can be connected to the MSC via an IS-41 subset or a MAP subset over a wireless El /Tl connection. With this implementation, the DMA server 1202 can extend an existing cellular network when connected to an existing cellular system MSC 1208.
FIG. 13 shows an additional telecommunications system, generally designated 1300. As shown, the system 1300 includes a city area coverage site 1302 and an urban fringe/nearby village coverage site 1304. In an exemplary, non-limiting embodiment, the city area coverage site 1302 includes a first MSC/BSC center 1306 connected to a second MSC/BSC center 1308. Also, a first representative BTS 1310 and a second representative BTS 1312 are connected to the first MSC/BSC center 1306. The particular deployment of equipment is configured to provide adequate cellular coverage for mobile communication devices within the city area coverage site 1302.
As illustrated in FIG. 13, the urban fringe/nearby village coverage site 1304 includes a DMA server 1314 having a plurality of BTSs 1316 connected thereto. The DMA server 1314 can provide hand-off of calls between the BTSs 1316 and can switch calls made between the BTSs 1316 locally. However, the DMA server 1314 within the urban fringe/nearby village coverage site 1304 can also connect telephony traffic to the first MSC/BSC center 1306 within the city area coverage site 1302 via a data network connection 1318. In one embodiment, the data network connection can be an El connection, a Tl connection, a microwave connection, or an 802.11 connection established via an IS-41 subset or MAP subset. The deployment of a DMA server 1314 in a location such as that described above, i.e., in urban fringe or in a nearby village, and the connection of the DMA server 1314 to an MSC/BSC center 1306 in a city area, can provide service to potential wireless customers that typically would not receive cellular coverage from the city area cellular coverage site 1302. Thus, new subscribers receive access to wireless communication service and can further communicate with wireless customers within the city area cellular coverage site 1302.
Referring now to FIG. 14, another telecommunications system is depicted and is designated 1400. As illustrated in FIG. 14, the system 1400 includes a DMA server 1402 that can be connected to a plurality of BTSs 1404. Each BTS 1404 can provide cellular coverage for one or more mobile communication devices 1406. FIG. 14 further shows that the DMA server 1402 can include a data network connection 1408 that provides a back-haul connection to the PSTN 1410. In one embodiment, the data network connection can be an El connection, a Tl connection, a cable connection, a microwave connection, or a satellite connection. Moreover, the system 1400 depicted in FIG. 14 can be deployed using CDMA IS-95, CDMA IX, GSM/GPRS, W-CDMA, or other industry standard technologies.
Using a single back-haul connection greatly minimizes costs associated with the wireless communication network. Further, the system 1400 shown in FIG. 14 can be deployed relatively rapidly and can be maintained remotely. Additionally, with the inclusion of the OAMP module 540 (FIG. 5) and the AAA module 528 (FIG. 5), subscriber accounts can be managed locally and billing can be performed locally, i.e., within the DMA server 1402. Moreover, as the number of subscribers increase, the size of the system can be increased modularly, e.g., by adding DMA servers, corresponding BTSs, and the appropriate connections.
FIG. 15 illustrates an in-building telecommunications network that is generally designated 1500. FIG. 15 depicts a structure 1502, e.g., an office building, a commercial building, a house, etc. An enterprise local area network (LAN) 1504 is installed within the building 1502. A micro-BTS 1506 is connected to the enterprise LAN 1504. Moreover, a voice mail server 1508 and plural enterprise services servers 1510 are connected to the enterprise LAN 1504. In an exemplary, non-limiting embodiment, the enterprise services servers 1510 can include a dynamic host configuration protocol (DHCP) server, a radius server, a domain name server (DNS), etc. As depicted in FIG. 15, a plurality of phones 1512, e.g., IP desk phones, can be connected to the enterprise LAN 1504. FIG. 15 further indicates that an office DMA server 1514 can be connected to the enterprise LAN 1504. The office DMA server 1514 can also be connected to the PSTN 1516, which, in turn, can be connected to a cellular voice and data network 1518. The enterprise LAN 1504 can also be connected to the cellular voice and data network 1518 via an Internet protocol (IP) network 1520. A signaling system seven (SS7) network 1522 can be connected to the cellular voice and data network 1518 and the IP network 1520. FIG. 15 also depicts an SS7 gateway 1524 between the SS7 network 1522 and the IP network 1520 and a firewall 1526 between the enterprise LAN 1504 and the IP network 1520. FIG. 15 shows a wireless communication device 1528 in communication with the cellular voice and data network 1518 and the micro-BTS 1506.
Referring to FIG. 16, a mobile in-field telecommunications system is depicted and is generally designated 1600. As depicted, the system 1600 includes a plurality of mobile cellular coverage sites 1602. Each mobile cellular coverage site 1602 includes a vehicle 1604 in which a field DMA server 1606 is disposed. Moreover, a BTS 1608 is disposed within each vehicle 1604 and is in direct physical connection with the field DMA server 1606, e.g., by a wire or cable connected there between. The field DMA server 1606 and the BTS 1608 can be removably installed within the vehicle 1604 or permanently affixed therein. FIG. 16 further indicates that each BTS 1608 can include an antenna 1610 that is designed to communicate with mobile communication devices. Also, each field DMA server 1606 includes an antenna 1612. In an exemplary, non-limiting embodiment, the field DMA servers 1606 can communicate wirelessly with each other via the antennae 1612, e.g., via 802.1 Ia, 802.1 Ib, microwaves, or other wireless link.
The mobile cellular coverage sites 1602 can be deployed to provide a temporary web of cellular coverage for a plurality of mobile communication devices, e.g., devices carried by soldiers during a battle. The mobile in-field communications system 1600 can be recalled, moved, and re-deployed as necessary. Further, the system can include a wireless connection, e.g., 802.1 Ia, 802.1 Ib, microwaves, to the PSTN 1614.
Referring to FIG. 17, still another telecommunications system is illustrated and is generally designated 1700. As depicted in FIG. 17, the system 1700 includes a DMA server 1702 that is connected to a BTS 1704. The BTS 1704, in turn, is connected to an antenna 1706. FIG. 17 further illustrates that a first satellite transceiver 1708 is also connected to the DMA server 1702. The first satellite transceiver 1708 communicates with a second satellite transceiver 1710 via a satellite 1712. Additionally, the second satellite transceiver 1710 includes a data network connection 1714, e.g., a Tl connection, or an El connection. The satellite transceivers 1708, 1710 and the satellite 1712 can provide a backhaul connection for the DMA server 1702. Or, the satellite transceivers 1708, 1710 and the satellite 1712 can connect the DMA server 1702 to an additional DMA server (not shown).
FIG. 18 shows yet another telecommunications system that is generally designated 1800. As illustrated in FIG. 18, the system includes a DMA 1802 that is connected to a first satellite transceiver 1804. Moreover, the DMA 1802 includes a primary network connection 1806, e.g., a Tl connection, or an El connection, and a secondary network connection 1808, e.g., an IP connection. FIG. 18 shows that the first satellite transceiver 1804 communicates with a second satellite transceiver 1810 and a third satellite transceiver 1812 via a satellite 1814. Each of the second and third satellite transceivers 1810, 1812 is connected to an interworking unit (IWU) 1816 via a data network connection 1818, e.g., an IP connection. Each IWU 1816 is connected to a BTS 1820, which in turn, is connected to an antenna 1822. The satellite transceivers 1804, 1810, 1812 provide an IP network extension for the DMA server 1802. Moreover, in the deployment illustrated in FIG. 18, the DMA server 1802 can act as a centralized micro-switch for handling calls received at the antennas 1822 and transmitted via the second and third satellite transceivers 1810, 1812.
Referring to FIG. 19, another telecommunications system is depicted and is designated 1900. As shown, the system 1900 includes a DMA server 1902 having a primary network connection 1904.
Moreover, the DMA server 1902 can be connected to a plurality of IWUs 1906. In an exemplary, non- limiting embodiment, the DMA server 1902 can be connected to each IWU 1906 via a secondary network connection 1908, such as a category five (Cat 5) cable connection, a microwave connection, or a WLAN connection. Further, each IWU 1906 is connected to a BTS 1910 and each BTS 1910, in turn, is connected to an antenna 1912. Each BTS 1910 can be a 3-sector BTS. In the deployment depicted in FIG. 19, the DMA server 1902 can act as a centralized micro-switch that can be used to handle telephony traffic received at the antennae 1912.
FIG. 20 illustrates yet another embodiment of a communications system, designated 2000. As shown, the system 2000 includes an airplane 2002 in which a DMA server 2004 is installed. As shown, the DMA server 2004 is coupled to a BTS 2006 and a first satellite transceiver 2008. FIG. 20 also shows a mobile communication device 2010 within the airplane 2002. The mobile communication device 2010 can be in wireless communication with the BTS 2006.
In a particular embodiment, the first satellite transceiver 2008 can communicate with a second satellite transceiver 2012 via a satellite 2014. As shown, the second satellite transceiver 2012 can be connected to a terrestrial server gateway 2016, e.g. a DMA server gateway, that can provide connectivity to an operations and management platform (OMP) 2018, a call detail record (CDR) 2020, and a visitor location register gateway (VLR-GW) 2022. The OMP 2018, the CDR 202, and the VRL-GW 2022 can be separate from or incorporated within the server gateway 2016. FIG. 20 further shows that the server gateway 2016 can be connected to a first mobile switching center (MSC) 2024 that is coupled to a second MSC 2026.
Accordingly, the system 2000 shown in FIG. 20 can allow a user in the airplane 2002 to communicate with a ground based telephone. For example, the mobile communication device 2010 can communicate with the BTS 2006, which, in turn, can communicate with the first satellite transceiver 2008 via the DMA server 2004. Further, the first satellite transceiver 2008 can transmit the call to a ground based communication system via the second satellite transceiver 2012 and the satellite 2014.
FIG. 20 shows a single airplane, however, multiple airplanes can be configured as described herein to provide communication from multiple airplanes to ground based telephones. Further, airplane to airplane communication can be provided. Additionally, the system 2000 can include other airborne vehicles, e.g., blimps.
FIG. 21 illustrates yet another embodiment of a communications system, designated 2100. As shown, the system 2100 includes a ship 2102 in which a DMA server 2104 is installed. As shown, the DMA server 2104 is coupled to a BTS 2106 and a first satellite transceiver 2108. FIG. 21 also shows a mobile communication device 2110 within the ship 2102. The mobile communication device 2110 can be in wireless communication with the BTS 2106.
In a particular embodiment, the first satellite transceiver 2108 can communicate with a second satellite transceiver 2112 via a satellite 2114. As shown, the second satellite transceiver 2112 can be connected to a terrestrial server gateway 2116, e.g. a DMA server gateway, that can provide connectivity to an operations and management platform (OMP) 2118, a call detail record (CDR) 2120, and a visitor location register gateway (VLR-GW) 2122. The OMP 2118, the CDR 212, and the VRL-GW 2122 can be separate from or incorporated within the server gateway 2116. FIG. 21 further shows that the server gateway 2116 can be connected to a first mobile switching center (MSC) 2124 that is coupled to a second MSC 2126.
Accordingly, the system shown in FIG. 2100 can allow a user within the ship 2102 to communicate with a ground based telephone. For example, the mobile communication device 2110 can communicate with the BTS 2106, which, in turn, can communicate with the first satellite transceiver 2108 via the DMA server 2104. Further, the first satellite transceiver 2108 can transmit the call to a ground based communication system via the second satellite transceiver 2112 and the satellite 2114.
FIG. 21 shows a single ship, however, multiple ships can be configured as described herein to provide communication from multiple ships to ground based telephones. Further, ship to ship communication can be provided. Additionally, the system 2100 can include other waterborne vehicles.
Referring to FIG. 22, a method of deploying a distributed management architecture server is shown and commences at block 2200 wherein during deployment, the succeeding steps are performed. At block 2202, the DMA server is moved to a desired location proximate to a BTS. Moving to block 2204, the DMA server is opened. For example, if the DMA server is the DMA server shown in FIG. 1, the latch is unlocked and the lid is rotated about the hinges into the open position. Proceeding to block 2206, a physical connection is established between the DMA server and the BTS, e.g., the BTS is coupled to the DMA server via a wire.
Continuing to block 2208, the DMA server is activated, e.g., powered on. At block 2210, a network connection is established with another remote DMA server. In a particular embodiment, the network connection is a peer-to-peer connection between the DMA servers. Moving to block 2212, DMA server software within the DMA server is activated. Thereafter, at decision step 2214, it is determined whether the system is operational. That decision can be a performed by the DMA server, e.g., by a self-diagnostic routine or module within the DMA server. Alternatively, that decision can be determined manually by a technician. If the system is not operational, a system check is performed at block 2216. In a particular embodiment, the system check performed at block 2216 is performed by a self-diagnostic routine or module within the DMA server. On the other hand, a technician can perform the system check. After the system check , the logic then returns to decision step 2214 and continues as described herein. At decision step 2214, if the system is operational, the method proceeds to block 2218 and call transmission is allowed. The method then ends at state 2220.
Referring to FIG. 23, a method of deploying a distributed management architecture server is shown and commences at block 2300 wherein a direct physical connection between a first DMA server and a base transceiver station is disconnected. At block 2302, the first DMA server is removed. Proceeding to block 2304, a second DMA server is moved to a location that is substantially proximate to the base transceiver station. At block 2306, the second DMA server is opened. For example, if the DMA server is the DMA server shown in FIG. 1, the latch is unlocked and the lid is rotated about the hinges into the open position. Next, at block 2308, a direct physical connection is established between the second DMA server and the base transceiver station.
Continuing to block 2310, the second DMA server is activated. At block 2312, a network connection is established between the second DMA server and another remote DMA server. In a particular embodiment, the network connection is a peer-to-peer IP connection between the DMA servers. Further, in a particular embodiment, the peer-to-peer connection is established via a private IP network. At block 2314, DMA server software within the second DMA server is activated.
Proceeding to decision step 2316, it is determined whether the system is operational. That decision can be a performed by the second DMA server, e.g., by a self-diagnostic routine or module within the second DMA server. Alternatively, the decision can be determined manually by a technician. If the system is not operational, a system check is performed at block 2318. In a particular embodiment, the system check performed at block 2318 is performed by a self-diagnostic routine or module within the second DMA server. On the other hand, a technician can perform the system check. After the system check , the logic then returns to decision step 2316 and continues as described herein. At decision step 2316, if the system is operational, the method proceeds to block 2320 and call transmission is allowed via the second DMA server. The method then ends at state 2322.
With the configuration of structure described above, the present disclosure provides a flexible telecommunications device, i.e., the DMA server 406 (FIG. 4), that is distributive and associative, i.e., it can operate stand-alone or seamlessly within an existing cellular or other network. Moreover, the DMA server 406 can be integrated with virtually any third party base station. The DMA server 406 can operate with multiple air interfaces including CDMA IS-95, CDMA IX, CDMA EVDO, GSM, GPRS, W-CDMA, 802.11 (Wi-fi), 802.16 (Wi-fi), etc. Further, the DMA server 406 can provide integrated prepaid billing, OAMP, network management, and AAA functionality. The DMA server 406 can include a Java based user interface and feature configuration system. Also, the DMA server 406 can provide real time call metering, call detail record (CDR) generation, and real time call provisioning. The DMA server 406 may be implemented in a relatively small footprint and has a relatively low power requirement. Further, the DMA server 406 may be implemented using inexpensive and widely available computer equipment.
With one or more of the deployment configurations described above, the present system provides mobile to landline calls from mobile handsets within a DMA server cellular coverage area. Also, mobile to landline calls can be made from mobile handsets roaming into DMA coverage areas. Mobile to mobile calls can be made from home/roaming handsets to DMA handsets and vice versa. Further, mobile to IP calls and IP to mobile calls can be made from within a DMA server coverage area. IP to IP calls can be made from any DMA handset to any IP phone. Additionally, IP to landline calls and landline to IP calls can be made from a DMA handset to any phone. Further, land-line to mobile calls to DMA handsets can be made.
The systems described above can support call forwarding, call waiting, 3-way calling caller ID, voice mail, and mobile to mobile SMS service, i.e., text messaging. Further, the systems described above can provide broadcast SMS service, mobile to land high-speed IP data (IX or GPRS) service and mobile- to-mobile high speed IP data (IX or GPRS) service. Also, the systems described above can provide IP- PBX capability.
Further, one or more of the illustrated systems can provide IP transport between distributed elements, e.g., DMA servers 406 (FIG. 4). Packet back-haul from BTS to RAN can be provided. Further, the control logic within the DMA servers 406 (FIG. 4) can be distributed and associated. Associated systems can be redundant, self-healing, self-organizing, and scalable. Distributed systems can be "snap-together," i.e., a DMA server 406 (FIG. 4) can be linked to a previously deployed DMA server 406 (FIG. 4) in order to broaden, or otherwise extend, cellular coverage. Further, distributed systems can be de-centralized to avoid single points of failure.
One or more of the systems described above can also provide soft and softer call handoffs on the same frequency interfaces. Also, soft handoffs can be provided on different systems. Further, a DMA based system can operate stand-alone with a billing system provided by a DMA server and CDR generation. Or, a system can use the SS7 network to pass CDRs to a central switch for integrated billing and operation with an existing network.
The above-disclosed subject matter is to be considered illustrative, and not restrictive, and the appended claims are intended to cover all such modifications, enhancements, and other embodiments, which fall within the true spirit and scope of the present invention. Thus, to the maximum extent allowed by law, the scope of the present invention is to be determined by the broadest permissible interpretation of the following claims and their equivalents, and shall not be restricted or limited by the foregoing detailed description.

Claims

WHAT IS CLAIMED IS:
1. A communications system comprising:
one or more distributed mobile architecture servers, each of the one or more distributed mobile architecture servers comprising:
S a compute readable medium;
a mobile switching center module embedded in the computer readable medium; and
a base station controller module embedded in the computer readable medium;
wherein each of the one or more distributed mobile architecture servers is in direct physical connection with a wireless transceiver; and
0 wherein telephony traffic received from the wireless transceiver is switched by at least one of the distributed mobile architecture servers.
2. A method of wireless communication, comprising:
receiving a call from a first mobile communication device at a first wireless transceiver;
forwarding the call from the first wireless transceiver to a distributed management architecture server, 5 wherein the distributed management architecture server includes a mobile switch center module and a base station controller module disposed within a single unit; and
routing the call via the distributed management architecture server to a second wireless transceiver, to communicate with respect to a second mobile communication device.
3. A telephone network comprising:
a plurality of cellular coverage sites;
wherein each of the plurality of cellular coverage sites comprises:
a transceiver; and
a distributed management architecture server in direct physical connection with the transceiver; and
wherein each distributed management architecture server comprises:
a housing;
a mobile switch center module within the housing; and
a base station controller module within the housing;
wherein each of the distributed management architecture servers within each of the plurality of cellular coverage sites are interconnected by an Internet protocol data network; and
wherein telephony traffic received by the transceivers is switched and routed by one or more of the distributed management architecture servers.
4. A distributed communication system comprising:
a first wireless communication site including a first transmission antenna, a first base station coupled to the first transmission antenna, and a first computer system including a first mobile switching system module and a first base station controller module disposed within a single unit;
a second wireless communication site including a second transmission antenna, a second base station coupled to the second transmission antenna, and a second computer system including a second mobile switching system module and a second base station controller module disposed within a single unit; and
an Internet protocol network coupled to the first computer system and the second computer system.
5. A communications system comprising:
a distributed mobile architecture server including a mobile switching center module and a base station controller module disposed within the same housing; and
wherein the distributed mobile architecture server is coupled to a cellular system mobile switching center, a switching transfer point of a stand-alone carrier, and a public switched telephone network.
6. A communications system comprising:
a distributed mobile architecture server including a mobile switching center module and a base station controller module disposed within the same housing; and
wherein the distributed mobile architecture server has a first interface coupled to a base transceiver station and a second interface coupled to a data network connection.
7. A communications system comprising:
a plurality of distributed mobile architecture servers, each distributed mobile architecture server comprising:
a housing
a mobile switching center module disposed within the housing; and
a base station controller module disposed within the housing;
wherein the plurality of distributed mobile architecture servers are interconnected via an Internet protocol data network; and
wherein at least one of the plurality of distributed mobile architecture servers is coupled to the public switched telephone network.
8. A communications system comprising:
a distributed mobile architecture server having a mobile switching center module and a base station controller module disposed within the same housing;
wherein the distributed mobile architecture server is coupled to an enterprise local area network located within a structure and a public switched telephone network outside of the structure; and
wherein the enterprise local area network supports a plurality of phones within the structure and is coupled to an Internet protocol network external to the structure.
9. A communications system comprising:
a distributed mobile architecture server having a mobile switching center module and a base station controller module disposed within the same housing; and
wherein the distributed mobile architecture server is coupled to a base transceiver station and a first satellite transceiver.
10. A Communications system comprising:
a distributed mobile architecture server having a mobile switching center module and a base station controller module disposed within the same housing; and
wherein the distributed mobile architecture server is coupled to a first satellite transceiver and a data network connection.
11. A communications system comprising:
a distributed mobile architecture server having a mobile switching center module and a base station controller module disposed within the same housing; and
wherein the distributed mobile architecture server includes a primary network connection and wherein the distributed mobile architecture server is coupled to a plurality of interworking units via a plurality of secondary network connections.
12. A method of handing off calls in a wireless network, comprising:
monitoring the location of a mobile communication device at a distributed mobile architecture server, the distributed mobile architecture server including a mobile switching center module and a base station controller module within the same housing; and
handing off a call made by the mobile communication device from a first base transceiver station coupled to the distributed mobile architecture server to a second base transceiver station coupled to the distributed mobile architecture server via a peer-to-peer connection.
13. A method of billing wireless telephone subscribers, comprising:
generating a call detail record for one or more subscribers at a distributed mobile architecture server, the distributed mobile architecture server including a mobile switching center module and a base station controller module disposed within the same housing; and
billing the one or more subscribers directly from the distributed mobile architecture server.
14. A device for providing a communication path between two or more
wireless telephones via one or more wireless transceivers, the device having a
volume less than 150,000 cubic centimeters.
15. A device for providing a communication path between two or more
wireless telephones via one or more wireless transceivers, the device weighing
less than 50 kilograms.
16. A portable computer device comprising:
S an interface configured for direct physical connection to a base transceiver
station, wherein the portable computer device provides a call routing function
between a first wireless communication and a second wireless communication
subscriber.
17. A portable computer device directly coupled to a base transceiver station,
0 the portable computer device comprising a base station controller.
18. A device for providing a communication path between two or more
wireless telephones via one or more wireless transceivers, the device comprising:
a base;
a lid coupled to the base; and
s a display incorporated into the lid.
19. A device for providing a communication path between two or more
wireless telephones via one or more wireless transceivers, the device comprising:
a housing;
a mobile switching center module within the housing; and
0 a base station controller module within the housing.
20. A method for deploying a distributed management architecture server, the
method comprising:
establishing a direct physical connection between the distributed
management architecture server and a base transceiver station;
activating the distributed management architecture server; and
establishing a network connection with respect to the distributed
management architecture server.
21. A method of replacing a distributed management architecture server, the
method comprising:
disconnecting a direct physical connection between a first distributed
management architecture server and a base transceiver station; and
establishing a direct physical connection between a second distributed
management architecture server and the base transceiver station.
22. A communication system, comprising:
at least one non-land-based vehicle;
at least one satellite transceiver deployed within the at least one non-land-based vehicle;
at least one base transceiver station deployed within the at least one non-land-based vehicle; and
at least one distributed mobile architecture server coupled to the base transceiver station and coupled to the satellite transceiver, wherein the distributed mobile architecture server includes a mobile switching center module and a base station controller module disposed within the same housing.
23. A method of providing telephone communication, comprising allowing a
group call between four or more participants, each participant calling from a
separate telephone device communicating with a base transceiver station that is
coupled to a distributed mobile architecture server.
24. A system, comprising:
four or more mobile communication devices; and
a distributed mobile architecture server, the distributed mobile architecture
server comprising a program to allow a group call between the four or more
S mobile communication devices.
25. A system, comprising:
at least one distributed mobile architecture server;
at least one rural base transceiver station coupled to the distributed mobile
architecture server;
0 a mobile switching center and base station controller coupled to the
distributed mobile architecture server;
at least one urban base transceiver station coupled to the mobile switching
center and base station controller; and
wherein the distributed mobile architecture server comprises a program to
5 allow a group call between four or more mobile communication devices.
26. A system, comprising:
at least one distributed mobile architecture server;
at least one base transceiver station coupled to the distributed mobile
architecture server;
0 a public switched telephone network coupled to the distributed mobile
architecture server; and
wherein the distributed mobile architecture server comprises a program to
allow a group call between four or more communication devices.
27. A system, comprising:
at least one portable distributed mobile architecture server mounted in a
vehicle;
at least one portable base transceiver station coupled to the distributed
mobile architecture server and mounted in the vehicle; and
wherein the distributed mobile architecture server comprises a program to
allow a group call between four or more communication devices.
PCT/US2005/035648 2004-11-08 2005-10-04 System, method, and device for providing communications using a distributed mobile architecture WO2006052342A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200580033404.XA CN101044769B (en) 2004-11-08 2005-10-04 System, method, and device for providing communications using a distributed mobile architecture
GB0706179A GB2435751B (en) 2004-11-08 2005-10-04 System, method, and device for providing communications using a distributed mobile architecture
EP05801092A EP1810465A4 (en) 2004-11-08 2005-10-04 System, method, and device for providing communications using a distributed mobile architecture

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US10/983,516 US7539158B2 (en) 2004-11-08 2004-11-08 System, method and device for providing communications using a distributed mobile architecture
US10/983,516 2004-11-08
US11/105,173 2005-04-13
US11/105,173 US7548763B2 (en) 2005-04-13 2005-04-13 System, method, and device for providing communications using a distributed mobile architecture
US11/104,925 2005-04-13
US11/104,925 US7486967B2 (en) 2005-04-13 2005-04-13 System, method, and device for providing communications using a distributed mobile architecture

Publications (2)

Publication Number Publication Date
WO2006052342A2 true WO2006052342A2 (en) 2006-05-18
WO2006052342A3 WO2006052342A3 (en) 2007-02-08

Family

ID=36336923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2005/035648 WO2006052342A2 (en) 2004-11-08 2005-10-04 System, method, and device for providing communications using a distributed mobile architecture

Country Status (4)

Country Link
EP (1) EP1810465A4 (en)
CN (4) CN103237361B (en)
GB (1) GB2435751B (en)
WO (1) WO2006052342A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8676197B2 (en) 2006-12-13 2014-03-18 Lemko Corporation System, method, and device to control wireless communications
US8688111B2 (en) 2006-03-30 2014-04-01 Lemko Corporation System, method, and device for providing communications using a distributed mobile architecture
US8744435B2 (en) 2008-09-25 2014-06-03 Lemko Corporation Multiple IMSI numbers
US8780804B2 (en) 2004-11-08 2014-07-15 Lemko Corporation Providing communications using a distributed mobile architecture
US9755931B2 (en) 2008-06-27 2017-09-05 Lemko Corporation Fault tolerant distributed mobile architecture

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10813095B2 (en) * 2019-02-14 2020-10-20 T-Mobile Usa, Inc. Location-matrix based user equipment band scanning

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USH918H (en) * 1988-10-05 1991-05-07 The United States Of America As Represented By The United States Department Of Energy Decarbonylation and dehydrogenation of carbohydrates
CN1120768A (en) * 1995-09-05 1996-04-17 张向东 Method and unit for stratified transmitting data on network of public telephone
US5835856A (en) * 1996-05-08 1998-11-10 Ericsson Inc. Transporting user defined billing data within a mobile telecommunications network
US6148201A (en) * 1997-08-06 2000-11-14 Nortel Networks Corporation Scalable wireless network architecture based on subscriber distribution
US6411825B1 (en) * 1997-09-09 2002-06-25 Samsung Electronics, Co., Ltd. Distributed architecture for a base station transceiver subsystem
KR100375143B1 (en) * 1997-09-09 2003-06-09 삼성전자주식회사 Modular and distributed radio unit architecture and dual carrier connection apparatus using same antennas
USH1918H (en) * 1997-09-26 2000-11-07 Dsc/Celcore, Inc. Integrated authentication center and method for authentication in a wireless telecommunications network
US6539237B1 (en) * 1998-11-09 2003-03-25 Cisco Technology, Inc. Method and apparatus for integrated wireless communications in private and public network environments
JP4179687B2 (en) * 1998-12-24 2008-11-12 株式会社ルネサステクノロジ Semiconductor memory device
CN1115836C (en) * 1999-04-05 2003-07-23 华为技术有限公司 Indication method of network user's coming call
US6947758B2 (en) * 2001-12-05 2005-09-20 Samsung Electronics Co., Ltd. System and method for providing a distributed processing element unit in a mobile telecommunications network
DE03729744T1 (en) * 2002-11-04 2006-04-13 Research In Motion Ltd., Waterloo METHOD AND SYSTEM FOR MAINTAINING A WIRELESS DATA CONNECTION

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of EP1810465A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8780804B2 (en) 2004-11-08 2014-07-15 Lemko Corporation Providing communications using a distributed mobile architecture
US8688111B2 (en) 2006-03-30 2014-04-01 Lemko Corporation System, method, and device for providing communications using a distributed mobile architecture
US8676197B2 (en) 2006-12-13 2014-03-18 Lemko Corporation System, method, and device to control wireless communications
US9515770B2 (en) 2006-12-13 2016-12-06 Lemko Corporation System, method, and device to control wireless communications
US9755931B2 (en) 2008-06-27 2017-09-05 Lemko Corporation Fault tolerant distributed mobile architecture
US10547530B2 (en) 2008-06-27 2020-01-28 Lemko Corporation Fault tolerant distributed mobile architecture
US8744435B2 (en) 2008-09-25 2014-06-03 Lemko Corporation Multiple IMSI numbers

Also Published As

Publication number Publication date
WO2006052342A3 (en) 2007-02-08
EP1810465A4 (en) 2011-03-02
CN103237368A (en) 2013-08-07
GB2435751B (en) 2009-02-25
CN103237360A (en) 2013-08-07
CN103237367B (en) 2016-02-10
GB0706179D0 (en) 2007-05-09
CN103237361B (en) 2016-03-30
CN103237361A (en) 2013-08-07
CN103237368B (en) 2016-04-27
GB2435751A (en) 2007-09-05
CN103237367A (en) 2013-08-07
EP1810465A2 (en) 2007-07-25

Similar Documents

Publication Publication Date Title
US8036158B2 (en) System, method, and device for providing communications using a distributed mobile architecture
US8089920B2 (en) Communications using a distributed mobile architecture
US7548763B2 (en) System, method, and device for providing communications using a distributed mobile architecture
US9515770B2 (en) System, method, and device to control wireless communications
US7653414B2 (en) System, method, and device for providing communications using a distributed mobile architecture
US8688111B2 (en) System, method, and device for providing communications using a distributed mobile architecture
US9253622B2 (en) Roaming mobile subscriber registration in a distributed mobile architecture
US9332478B2 (en) System, method, and device for routing calls using a distributed mobile architecture
WO2009158154A2 (en) System and method to control wireless communications
EP1810465A2 (en) System, method, and device for providing communications using a distributed mobile architecture

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 0706179

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20051004

WWE Wipo information: entry into national phase

Ref document number: 0706179.9

Country of ref document: GB

Ref document number: 2005801092

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580033404.X

Country of ref document: CN

Ref document number: 469/MUMNP/2007

Country of ref document: IN

WWP Wipo information: published in national office

Ref document number: 2005801092

Country of ref document: EP