WO2006051983A1 - Surface status measuring method, surface status measuring device, microscope and information processor - Google Patents

Surface status measuring method, surface status measuring device, microscope and information processor Download PDF

Info

Publication number
WO2006051983A1
WO2006051983A1 PCT/JP2005/020942 JP2005020942W WO2006051983A1 WO 2006051983 A1 WO2006051983 A1 WO 2006051983A1 JP 2005020942 W JP2005020942 W JP 2005020942W WO 2006051983 A1 WO2006051983 A1 WO 2006051983A1
Authority
WO
WIPO (PCT)
Prior art keywords
probes
probe
surface state
measurement
tip
Prior art date
Application number
PCT/JP2005/020942
Other languages
French (fr)
Japanese (ja)
Inventor
Nobuo Satoh
Kei Kobayashi
Hirofumi Yamada
Kazumi Matsushige
Original Assignee
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University filed Critical Kyoto University
Publication of WO2006051983A1 publication Critical patent/WO2006051983A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q10/00Scanning or positioning arrangements, i.e. arrangements for actively controlling the movement or position of the probe
    • G01Q10/04Fine scanning or positioning
    • G01Q10/06Circuits or algorithms therefor
    • G01Q10/065Feedback mechanisms, i.e. wherein the signal for driving the probe is modified by a signal coming from the probe itself
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q70/00General aspects of SPM probes, their manufacture or their related instrumentation, insofar as they are not specially adapted to a single SPM technique covered by group G01Q60/00
    • G01Q70/06Probe tip arrays

Definitions

  • the present invention is based on a displacement detection circuit and a probe holder in order to stably control the position of two or more probes (multi-probes) relative to each other, and the distance between the multi-probes with high accuracy and small size.
  • the present invention relates to a surface state measuring method, a surface state measuring device, a microscope using the same, and an information processing device capable of measuring the surface state of an object to be measured at the molecular level by controlling Background art
  • each characteristic electrical characteristic, optical characteristic, magnetic characteristic of the molecule used for the molecular material of the device Needs to know enough of at least one of mechanical rigidity etc.
  • an atomic force microscope which is a kind of probe microscope having an atomic level resolution, is expected as a method of evaluating a fine shape.
  • Atomic force microscopy is expected as a means for observing the surface shape of a novel insulating material, and is under investigation.
  • the principle is that the atomic force acting between the probe with a sufficiently sharp tip (tip) and the sample is measured as the displacement of the spring element to which the probe is attached, and the displacement of the spring element is kept constant. Meanwhile, the sample surface is scanned, and the shape of the sample surface is measured by using a control signal for keeping the displacement amount of the spring element constant as shape information.
  • an optical method optical interference method, optical lever method
  • a self-detection method pieoresistive detection method, piezoelectric detection method
  • the probe used in the above atomic force microscope is formed at the tip of a cantilevered support member called a cantilever, and is mainly in the form of a square supper.
  • the material of the above probe is silicon.
  • the probe is processed using an anisotropic etching technique.
  • Probe control circuit power of such an information processing apparatus In Patent Document 1, a signal generated from a physical phenomenon of a probe and a medium opposed to this is detected as a detection signal, and the probe is detected by a position control signal based on the detection signal. It has been proposed to perform position control of
  • Patent Document 1 Japanese Patent Publication JP-A-8-249732 (release date: September 27, 1996) Disclosure of the Invention
  • the present invention has been made in view of the above problems, and its object is to control the distance or relative position between two or more probes by controlling the distance or relative position between the probes.
  • Surface state measurement method surface state measurement device capable of accurately measuring various characteristics (such as the electrical characteristics, optical characteristics, magnetic characteristics, mechanical rigidity, etc.) of materials and the like (surface characteristics, etc. It is to provide. Means to solve the problem
  • the surface state measuring apparatus in order to solve the above problems, a plurality of probes facing the measurement object, and a probe drive unit for moving each of the probes with respect to the measurement object. And a detection unit that detects and outputs a detection signal generated from a physical phenomenon between the measurement object and each probe, and a first control unit for controlling c with a position control signal based on the detection signal. And a measurement unit that measures the surface state of the measurement object from the detection signal.
  • the probe drive unit moves or scans each probe with respect to the surface of the measurement object, so that the detection unit can obtain a detection signal associated with the scan.
  • the detection signal force accompanying scanning can also measure the surface condition (for example, surface shape) of the measurement object.
  • the configuration of the plurality of probes is Position control can be performed respectively.
  • the relative position between the probes is a concept including the spatial arrangement of a plurality of probes and the distance and spacing between the probes.
  • the relative position between two probes can be expressed by the directions [longitudinal, horizontal, height] to each other and the distance between the probes.
  • the resolution of a microscope such as an atomic force microscope can be improved, and the information is a storage device such as a memory. If it is used for analysis of the processing device, the information processing amount of the information processing device can be improved!
  • the first control unit preferably brings the probes close to each other!
  • each of the probes is preferably disposed so that the tip portions of the respective probes are close to each other!,.
  • the surface state measurement apparatus may further include a cantilever having the probe at its tip.
  • the tip of each of the probes is preferably formed so as to extend in the direction opposite to the object to be measured.
  • each of the probes is preferably formed with a sharp tip
  • a protrusion extending along the longitudinal direction of each probe may be formed at the tip of each of the probes.
  • the projection is formed to extend in the longitudinal direction of each probe, the rigidity of each probe can be softened to reduce its resonance frequency.
  • each probe becomes longer due to the formation of the protrusion, the risk of damaging the object to be measured during measurement can be reduced.
  • the protrusion may be formed to have a pointed tip.
  • the protruding portion may have a bending portion in which the tip end side is bent toward the measurement object! //.
  • the rigidity of the probe can be softened and the resonance frequency thereof can be reduced.
  • the leading end portions of the respective probes interact with each other, so that stable measurement can be realized.
  • the position of the probe is less likely to be behind the object to be measured, so the operability at the time of measurement can be enhanced.
  • the physical phenomenon is preferably at least one selected from a group force which is also an atomic force, a tunneling current, and an electrostatic force.
  • the surface state measuring apparatus preferably further includes a second control unit that controls each probe drive unit so that the distance between each probe and the measurement target is constant based on the detection signal. ,.
  • each probe can be independently controlled while controlling the spacing between the plurality of probes. Can be driven.
  • the measurement unit includes a probe position detection unit that detects the position of each probe.
  • a microscope of the present invention is characterized by including the surface state measuring device described in any of the above.
  • An information processing apparatus is characterized by including the surface state measuring apparatus described in any of the above.
  • the measurement object is scanned while controlling the relative position between the plurality of probes facing the measurement object, and the measurement object is measured. And detecting the detection signal generated from the physical phenomenon between each probe, and measuring the surface condition of the measurement object.
  • the physical phenomenon is at least one selected from atomic force, tunneling current, and electrostatic force.
  • the surface state measuring apparatus includes a plurality of probes facing the object to be measured, a probe drive unit for moving each of the probes with respect to the object to be measured, the object to be measured, and A detection unit for detecting and outputting a detection signal generated from a physical phenomenon between the probes; a first control unit for controlling the relative position between the probes by the position control signal based on the detection signal; And a measurement unit configured to measure the surface state of the measurement object from the signal.
  • position control of a plurality of probes can be performed respectively. Since the gap length that influences the measurement of molecular level and atomic level can be stably controlled, the surface state of the object to be measured can be stably measured on the nanometer scale.
  • the present invention since the surface state of the measurement object can be stably measured on the nanometer scale, resolution of a microscope such as an atomic force microscope can be improved. Furthermore, when the present invention is used for analysis of an information processing apparatus that is a storage device such as a memory, the information processing amount of the above information processing apparatus can be improved!
  • FIG. 1 (a) is a schematic front view of each probe showing position control between each probe in the surface state measurement method of the present invention.
  • FIG. 1 (b) is a waveform diagram showing changes in detection signals before and after the probes approach each other in position control between the probes in the surface state measurement method of the present invention.
  • FIG. 2 is a block diagram of a surface state measuring device according to the present invention.
  • FIG. 3 (a) is a schematic front view of the measurement object and the probe, showing position control between the measurement object and the probe in the surface state measurement method of the present invention.
  • FIG. 3 (b) shows position control between the measurement object and the probe in the surface state measurement method of the present invention, and the measurement object and the probe approach each other (contact) and approach each other (contact) It is each waveform chart which shows change of a detection signal after.
  • FIG. 4 is a schematic front view of each probe showing a modification of the surface state measurement method described above.
  • FIG. 5 is a schematic front view of each probe showing another modification of the surface state measurement method described above.
  • FIG. 6 is a schematic front view of each probe, showing still another modified example of the surface state measuring method described above.
  • FIG. 7 (a) is a front view showing a modified example of the probe.
  • FIG. 7 (b) is a front view showing another modified example of the probe.
  • FIG. 8 (a) As a modification of the above-mentioned probe, it is a top view showing the form of two probes.
  • FIG. 8 (b) is a plan view showing a form in which three probes are provided as a modified example of the above-mentioned probe.
  • FIG. 8 (c) is a plan view showing a form of probe force as a modified example of the probe.
  • FIG. 8 (d) As a modification of the above-mentioned probe, it is a plan view showing a form of eight probes.
  • FIG. 9 is a schematic front view of the surface state measurement device when atomic force is used for physical phenomena.
  • FIG. 10 is a schematic view of each atom for explaining the atomic force.
  • FIG. 11 is a graph showing the relationship between the interatomic force and the interatomic distance between the atoms.
  • FIG. 12 is a schematic view of each of the charges generating the electrostatic force in order to explain the electrostatic force as a physical phenomenon.
  • FIG. 13 is a schematic front view showing an example of the surface state measuring method of the present invention using the surface state measuring device.
  • FIG. 1 a plurality of probes 2 (only one is shown in FIG. 2) is provided to face the measurement object 1.
  • the measurement object 1 is mounted on a mounting table 3 which moves in a two-dimensional manner in an XY direction (that is, a horizontal direction substantially parallel to the surface of the measurement object 1) shown in FIG.
  • each of the probes 2 has a tapered shape which is gradually tapered toward the tip.
  • the shape of each probe 2 is arbitrary as long as the interaction can be detected as described later, and may be, for example, a triangular pyramid shape, a quadrangular pyramid shape, or a conical shape.
  • the material of each probe 2 is arbitrary as long as it can detect the interaction described later.
  • a suitable material which can be easily formed into the above-mentioned shape for example, silicon can be mentioned.
  • silicon an anisotropic etching technique is suitable for its formation.
  • a scan unit 4 for driving the mounting table 3 is attached as a probe drive unit.
  • a scan system 5 for generating control signals for controlling the scan unit 4 is provided.
  • the cantilever 6 having the probe 2 at its tip is attached in a pipe shape of a cantilever beam with a length of 0.1 mm to 1 mm.
  • the probe 2 is provided at the tip of the cantilever 6 so that its tip is directed to the surface of the measurement object 1.
  • each cantilever 6 is attached so that the tips of the tip portions provided with the respective probes 2 abut each other, and the longitudinal direction of each cantilever 6 is substantially parallel to the surface of the measurement object 1 .
  • a material of the cantilever 6 it may be conductive so as to detect the interaction and have rigidity enough to withstand the excitation described later.
  • suitable materials for the cantilever 6 include aluminum, copper, alloys thereof, carbon and the like.
  • the first drive unit 7 for reciprocating the probe 2 in the vertical direction (z direction in FIG. 2) and the probe 2 are orthogonal to the longitudinal direction of the cantilever 6.
  • the parts 9 are each formed as a probe drive part.
  • the first driving unit 7, the second driving unit 8, and the third driving unit 9 respectively drive the probe 2 in a micron order (general maximum driving distance is about 0.1 m to 10 m). It may be any one as long as it can be used, but specific examples thereof include an automatic drive by a piezoelectric element, a stepping motor or an impact stage, or a fine movement drive mechanism using a manual screw type. As the above-mentioned fine movement driving mechanism, in particular, one that can also be a piezoelectric element is preferable. Therefore, the first drive unit 7, the second drive unit 8, and the third drive unit 9 change the relative positions of the plurality of probes 2 to one another, and the relative position of the respective probes 2 to the surface of the measurement object 1 Each can be moved to change its position.
  • the position of the probe 2 (especially in the z direction) is optically
  • a semiconductor laser 10, a mirror 11 and a photodiode 12 are mounted for detection in the lever method.
  • the opposite surface (rear surface) of the attachment position of the probe 2 at the tip of the cantilever 6 is preferably mirror-finished.
  • the semiconductor laser 10 emits laser light to the opposite surface.
  • the mirror 11 guides the reflected light of the laser light with the above-described opposite surface force to the light receiving surface of the photodiode 12.
  • the photodiode 12 converts the received light into an electrical signal including a positional information signal of the probe 2 by, for example, a push-pull method, and outputs the electrical signal.
  • the position information signal of the probe 2 is calculated from the electric signal, and the surface shape of the measurement object 1 is calculated from the position information signal.
  • a detection unit 16 which detects and outputs a detection signal generated from a physical phenomenon between the measurement object 1 and each of the probes 2 and a position control signal based on the detection signal
  • a control unit 17 for controlling the relative position between the probes 2 is provided.
  • the above physical phenomena include interactions such as atomic force, tunneling current and electrostatic force.
  • the detection unit 16 When detecting the tunnel current, the detection unit 16 applies a voltage between the measurement object 1 and the probe 2 through the wires A and B, and the distance between the measurement object 1 and the probe 2 It is possible to detect the tunneling current generated when the value approaches 1 nanometer (nm)! Furthermore, the detection unit 16 applies a voltage between the adjacent probes 2 through the wires B, and occurs when the distance between the adjacent probes 2 approaches 1 nanometer (nm) or so. The tunnel current can be detected. These tunnel currents change very accurately with changes in the distance between the probes 2, so that the distance can be detected or controlled with a resolution of at least 0. In m.
  • the control unit 17 generates surface shape data in two dimensions from the shape signal output from the measurement unit 13 and outputs it to the memory 15, and also generates a physical phenomenon force between the measurement object 1 and each probe 2. Maintain a constant distance between probe 2 and measurement object 1 based on the signal
  • the first drive unit 7, the second drive unit 8 and the third drive unit 9 can be controlled to feedback-control the position of the probe 2 (that is, the cantilever 6).
  • the feedback control is performed.
  • the amplitude of the detection signal in the detection unit 16 is increased or decreased (or the frequency of the detection signal in the detection unit 16 is increased or decreased).
  • control unit 17 can control the scan system 5 so as to scan the surface of the measurement object 1 two-dimensionally with each of the probes 2. Furthermore, the control unit 17 can control the first drive unit 7 to reciprocate the probe 2 at the tip of the cantilever 6 in the vertical direction (z direction), and preferably excites at the resonance frequency of the cantilever 6. It is also possible to shake it.
  • the detection unit is a displacement detection mechanism provided on at least one of the probes 2 while exciting each of the probes 2 in order to control the distance between the probes 2.
  • the third drive unit 9 which is also a piezoelectric element force which is a fine movement drive mechanism, brings the mutual distance closer.
  • the displacement is detected by the signal on the probe 2 side having a displacement detection mechanism. .
  • this displacement By causing this displacement to reach the set value, stable probe position control can be performed.
  • the probe 2 and the probe 2 will be broken by contact or collision, but when using the above displacement detection mechanism There is no such problem.
  • the relative position between each of the plurality of probes 2 can be controlled by a simple device configuration, and the gap length to the molecule or atom can be stably controlled.
  • it can be applied to high resolution scanning tunneling microscopes and storage devices such as memories to increase their storage capacity.
  • each probe 2 is not excited and each probe 2 is not excited.
  • the tunnel current between the probes 2 may be monitored.
  • the atomic force between the probes 2 is monitored. Good.
  • the atomic force between the probes 2 may be monitored while exciting both of the probes 2.
  • a force whose tip is a quadrangular pyramid shape whose force is directed to the surface of the measurement object 1 is illustrated for position control between the respective probes 2.
  • a rod-like protrusion 18 extending in the longitudinal direction of the cantilever 6.
  • the projecting portion 18 be formed on the proximal end side of the probe 2 which is more desirably formed on the probe 2 on the distal end side of the cantilever 6.
  • the protrusion 18 be formed so as to be tapered toward the tip thereof so that the tip 18 has a tapered shape.
  • the tip end of the protrusion 18 is bent in the direction of the surface of the measurement object 1 to facilitate position control between the probes 2. It is preferable to have a bent portion 18a. It is more preferable that the bent portion 18a be formed in such a manner that the shape thereof is tapered toward the tip so as to be tapered.
  • FIG. 8 (a) two probes 2 are provided so as to be in contact with each other.
  • FIG. 8 (b) As shown in FIG. 8 (c), three of them may be provided so that their tip sides are in contact with each other, and four of them may be provided in such a manner that their tip sides are in contact with each other.
  • eight pieces may be provided such that their tip sides are in contact with each other.
  • the atomic force acting between the probe 2 and the surface of the object 1 to be measured is a probe 2 Can be detected as the deflection of the cantilever 6.
  • the position of the probe 2 so as to make the deflection constant and scanning the surface of the measurement object 1 two-dimensionally, the surface shape can be measured and imaged.
  • (b) is It is the schematic diagram which expanded a part of (a).
  • the atomic force is an interaction between nonpolar neutral atoms, as shown in FIG. 10, and the interaction has a Lennard-Jeyons (Jones) type potential. It can be approximated.
  • the relationship between potential energy U and interatomic distance r is
  • the atomic force F acting between these atoms is represented by the following formula (2).
  • an attractive force is generated between the tip of the probe 2 and the surface of the measurement object 1 at a long distance (0.2 nm or more).
  • This attraction is due to the dispersive force (in other words, the cohesion).
  • the dispersive force is the force acting between these dipoles, which are generated by the momentary dipole (even nonpolar atoms and momentarily charge bias occurs) in the other atom.
  • a repulsive force works at a short distance where the distance between the tip of the probe 2 and the surface of the measurement object 1 is less than 0.2 nm.
  • This repulsion is due to exchange interaction.
  • the electron clouds of two atoms overlap each other, the electron cloud can not shield the positive charge of the nucleus electrostatically, and the Coulomb (Coulomb) force is generated between the positive charges in each nucleus.
  • the Coulomb (Coulomb) force is generated between the positive charges in each nucleus.
  • electrons of the same energy level can not occupy the same space.
  • the two atoms approach a short distance of less than 0.2 nm, the electron cloud is distorted, and as a result, a force is exerted between the tip of the probe 2 and the surface of the measurement object 1.
  • the electrostatic force is the distance, as shown in Figure 12: Each electrostatic charge Q, the electrostatic force F acting between Q
  • the electrostatic force F is represented by the following formula (3).
  • the electrostatic force acting between the probe 2 and the surface of the measurement object 1 is attached to the probe 2!
  • the surface shape can be measured and imaged by two-dimensionally scanning the shape of the surface of the measurement object 1 by detecting as a deflection and controlling the position of the probe 2 so as to make the deflection constant. .
  • a plurality of probes 2 can be controlled on the nanoscale independently of each other. Therefore, according to the present invention, in the nanotechnology field, characteristics of individual functional elements (including molecules) la formed on the surface of the measurement object 1, for example, pentacene molecules (how much current flows, how much It is possible to directly evaluate
  • the surface condition measuring method and surface condition measuring apparatus of the present invention divide the surface condition of the object to be measured. Since measurement can be performed accurately at the child level, it can be suitably used for information processing fields such as surface shape measurement devices such as microscopes, storage fields such as semiconductor measurement fields and semiconductor manufacturing fields, and memories.

Abstract

Relative positions of a plurality of probes (2), which are facing an object (1) to be measured, to the object (1), and a relative position between the probes (2) are controlled. A detection signal generated by physical phenomenon between the object (1) and the probes (2) is detected. The surface status of the object (1) is measured from the detection signal. Thus, a surface status measuring method and a surface status measuring device for accurately measuring the surface status of the object to be measured are provided.

Description

明 細 書  Specification
表面状態計測方法、表面状態計測装置、顕微鏡、情報処理装置 技術分野  Surface condition measuring method, surface condition measuring apparatus, microscope, information processing apparatus
[0001] 本発明は、 2本以上の複数のプローブ(マルチプローブ)の互 、の位置を安定して 制御するために、変位検出回路およびプローブホルダにより、小型で高精度なマル チプローブ間の距離を制御して、計測対象物の表面状態を分子レベルにて計測で きる表面状態計測方法、表面状態計測装置、それを用いた顕微鏡および情報処理 装置に関するものである。 背景技術  The present invention is based on a displacement detection circuit and a probe holder in order to stably control the position of two or more probes (multi-probes) relative to each other, and the distance between the multi-probes with high accuracy and small size. The present invention relates to a surface state measuring method, a surface state measuring device, a microscope using the same, and an information processing device capable of measuring the surface state of an object to be measured at the molecular level by controlling Background art
[0002] メモリなどのストレージデバイスにおいて、高密度記録のために分子レベルでの記 録を実現するには、デバイスの分子材料に用いたその分子の各特性 (電気特性、光 学特性、磁気特性のほか機械的剛性など)の少なくとも一つを十分に知る必要がある  [0002] In storage devices such as memories, in order to realize recording at the molecular level for high density recording, each characteristic (electrical characteristic, optical characteristic, magnetic characteristic) of the molecule used for the molecular material of the device Needs to know enough of at least one of mechanical rigidity etc.)
[0003] そのために、従来、上記分子の特性の計測方法として、数ミクロン程度のギャップを 備えた電極を微細加工技術により作製し、上記ギャップにお 、て偶発的に架橋した 分子の諸特性を測定できることが知られて 、る。 [0003] Therefore, conventionally, as a method of measuring the characteristics of the above-mentioned molecules, an electrode provided with a gap of about several microns is manufactured by a microfabrication technique, and various characteristics of the accidentally cross-linked molecules are It is known that it can measure.
[0004] ところが、上記方法では、「光の回折限界」によって、上記微細加工には限界がある ため、分子レベルと!/、つたナノメートルスケールでの分子特性の計測には限界がある  However, in the above-described method, there is a limit to the measurement of molecular level and molecular properties on the scale of nanometer / scale because the above-mentioned microfabrication is limited by “diffraction limit of light”.
[0005] 一方、微細形状の評価方法として原子レベルの分解能を有しているプローブ顕微 鏡の一種である原子間力顕微鏡が期待されて 、る。 On the other hand, an atomic force microscope, which is a kind of probe microscope having an atomic level resolution, is expected as a method of evaluating a fine shape.
[0006] 原子間力顕微鏡 (AFM)は新規な絶縁性物質の表面形状観察手段として期待さ れ、研究が進められている。その原理は先端を充分に鋭くしたプローブ (探針)と試料 との間に働く原子間力を前記プローブが取り付けられているばね要素の変位として 測定し、前記ばね要素の変位量を一定に保ちながら前記試料表面を走査し、前記 ばね要素の変位量を一定に保っための制御信号を形状情報として、前記試料表面 の形状を計測するものである。 [0007] ばね要素の変位検出手段としては光学的方式 (光干渉法、光てこ法)およびパネ 要素の変形ひずみを電気信号として検出する自己検出方式 (ピエゾ抵抗検出法、圧 電検出法)がある。 Atomic force microscopy (AFM) is expected as a means for observing the surface shape of a novel insulating material, and is under investigation. The principle is that the atomic force acting between the probe with a sufficiently sharp tip (tip) and the sample is measured as the displacement of the spring element to which the probe is attached, and the displacement of the spring element is kept constant. Meanwhile, the sample surface is scanned, and the shape of the sample surface is measured by using a control signal for keeping the displacement amount of the spring element constant as shape information. As a displacement detection means of a spring element, an optical method (optical interference method, optical lever method) and a self-detection method (piezoresistive detection method, piezoelectric detection method) for detecting deformation strain of a panel element as an electric signal are used. is there.
[0008] 上記原子間力顕微鏡に用いられるプローブは、カンチレバーと称される片持ち梁 状の支持部材の先端部に形成されており、主に四角垂状をしている。上記プローブ の材質としてはシリコンが挙げられる。上記プローブにシリコンを用いる場合、上記プ ローブは異方性エッチング技術を用いて加工される。  The probe used in the above atomic force microscope is formed at the tip of a cantilevered support member called a cantilever, and is mainly in the form of a square supper. The material of the above probe is silicon. When silicon is used for the probe, the probe is processed using an anisotropic etching technique.
[0009] このような原子間力顕微鏡(G. Binnig, C. F. Quate, Ch. Gerber: Phys. Rev. Lett.  Such atomic force microscope (G. Binnig, C. F. Quate, Ch. Gerber: Phys. Rev. Lett.
56 (1986) 930.)のカンチレバーを特性計測用プローブとして用いることで、メモリ(ス トレージデバイス)などの情報処理装置と ヽつた様々な分子系デバイスの特性を測定 できると期待されている。  56 (1986) 930.) is expected to be able to measure the characteristics of various molecular devices as well as information processing equipment such as memories (storage devices) by using the cantilever as a probe for characteristic measurement.
[0010] そのような情報処理装置のプローブ制御回路力 特許文献 1において、プローブと これに対向する媒体との物理現象から生じる信号を検出信号として検出し、該検出 信号に基づく位置制御信号によってプローブの位置制御を行うことが提案されてい る。 Probe control circuit power of such an information processing apparatus In Patent Document 1, a signal generated from a physical phenomenon of a probe and a medium opposed to this is detected as a detection signal, and the probe is detected by a position control signal based on the detection signal. It has been proposed to perform position control of
特許文献 1 :日本特許公報 特開平 8— 249732号公報 (公開日: 1996年 9月 27日) 発明の開示  Patent Document 1: Japanese Patent Publication JP-A-8-249732 (release date: September 27, 1996) Disclosure of the Invention
発明が解決しょうとする課題  Problem that invention tries to solve
[0011] し力しながら、上記従来の構成および方法では、プローブと試料との間の距離が制 御される一方、複数のプローブ間の距離や相対位置は不安定となる。この結果、上 記従来の構成および方法では、複数のプローブによる計測において、分子材料など のナノスケールでの諸特性 (前記電気特性、光学特性、磁気特性、機械的剛性など) を精度良く計測できな力 たという問題点が生じていた。  [0011] In the conventional configuration and method described above, the distance between the probes and the sample is controlled while the distance and the relative position between the plurality of probes become unstable. As a result, in the above-described conventional configuration and method, various characteristics (such as the electrical characteristics, optical characteristics, magnetic characteristics, mechanical rigidity, etc.) of the molecular material etc. can be accurately measured in the measurement by a plurality of probes. There was a problem that was happening.
[0012] 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、 2本以上の複 数のプローブにおいて、各プローブ間の距離ないし相対位置を制御することで、分 子材料などのナノスケールでの諸特性 (前記電気特性、光学特性、磁気特性、機械 的剛性など)を精度良く計測できる表面状態計測方法、表面状態計測装置、それを 用いた顕微鏡および情報処理装置を提供することにある。 課題を解決するための手段 The present invention has been made in view of the above problems, and its object is to control the distance or relative position between two or more probes by controlling the distance or relative position between the probes. Surface state measurement method, surface state measurement device capable of accurately measuring various characteristics (such as the electrical characteristics, optical characteristics, magnetic characteristics, mechanical rigidity, etc.) of materials and the like (surface characteristics, etc. It is to provide. Means to solve the problem
[0013] 本発明に係る表面状態計測装置は、上記課題を解決するために、計測対象物と対 向する複数のプローブと、上記各プローブを上記計測対象物に対しそれぞれ移動さ せるプローブ駆動部と、上記計測対象物および各プローブの間の物理現象から生じ る検出信号を検出して出力する検出部と、上記検出信号に基づく位置制御信号によ つて cを制御するための第一制御部と、上記検出信号から上記計測対象物の表面状 態を計測する計測部とを有して 、ることを特徴として 、る。  The surface state measuring apparatus according to the present invention, in order to solve the above problems, a plurality of probes facing the measurement object, and a probe drive unit for moving each of the probes with respect to the measurement object. And a detection unit that detects and outputs a detection signal generated from a physical phenomenon between the measurement object and each probe, and a first control unit for controlling c with a position control signal based on the detection signal. And a measurement unit that measures the surface state of the measurement object from the detection signal.
[0014] 上記構成によれば、プローブ駆動部により各プローブを計測対象物の表面に対し て移動つまり走査することによって、検出部により当該走査に伴う検出信号を得ること ができ、計測部により上記走査に伴う検出信号力も計測対象物の表面状態 (例えば 表面形状)を計測することができる。  According to the above configuration, the probe drive unit moves or scans each probe with respect to the surface of the measurement object, so that the detection unit can obtain a detection signal associated with the scan. The detection signal force accompanying scanning can also measure the surface condition (for example, surface shape) of the measurement object.
[0015] その上、上記構成は、計測対象物と対向する複数のプローブをそれぞれ移動させ て、各プローブ間の相対位置を制御するための第一制御部を備えているので、複数 のプローブの位置制御をそれぞれ行うことができる。ここで、各プローブ間の相対位 置とは、複数のプローブの空間的配置や各プローブ間の距離や間隔を含む概念で ある。具体例をあげれば、 2本のプローブ間の相対位置を、互いのプローブ位置への 方向 [縦、横、高さ]やプローブ間の距離によって表現することができる。  Furthermore, since the above configuration includes the first control unit for moving the plurality of probes facing the measurement object to control the relative position between the probes, the configuration of the plurality of probes is Position control can be performed respectively. Here, the relative position between the probes is a concept including the spatial arrangement of a plurality of probes and the distance and spacing between the probes. As a specific example, the relative position between two probes can be expressed by the directions [longitudinal, horizontal, height] to each other and the distance between the probes.
[0016] これにより、複数のプローブ間の距離や、各プローブと計測対象物との間隔である ギャップ長を安定的に制御できることになるため、計測対象物の表面状態をナノメー トルスケール、すなわち分子レベルや原子レベルにて安定的に計測できる。  This makes it possible to stably control the distance between a plurality of probes and the gap length which is the distance between each of the probes and the measurement object, so that the surface state of the measurement object has a nanometer scale, ie, a molecule. It can be measured stably at the level or atomic level.
[0017] すなわち、上記構成によれば、計測対象物の表面状態をナノメートルスケールにて 安定的に計測できるので、原子間力顕微鏡といった顕微鏡の分解能を向上でき、メ モリといったストレージデバイスである情報処理装置の解析に用いると、上記情報処 理装置の情報処理量を改善できると!、う効果を奏する。  That is, according to the above configuration, since the surface state of the measurement object can be stably measured on the nanometer scale, the resolution of a microscope such as an atomic force microscope can be improved, and the information is a storage device such as a memory. If it is used for analysis of the processing device, the information processing amount of the information processing device can be improved!
[0018] 上記表面状態計測装置においては、前記第一制御部は、各プローブを互いに近 接させるようになって!/、ることが好ま 、。  [0018] In the above-mentioned surface state measurement device, the first control unit preferably brings the probes close to each other!
[0019] 上記表面状態計測装置にお!、ては、前記各プローブは、各プローブの先端部を互 Vヽに近接するようにそれぞれ配置されて!、ることが好ま 、。 [0020] 上記表面状態計測装置では、さらに、前記プローブを先端に備えたカンチレバー を有するものであってもよ 、。 In the above-mentioned surface condition measuring device, each of the probes is preferably disposed so that the tip portions of the respective probes are close to each other!,. The surface state measurement apparatus may further include a cantilever having the probe at its tip.
[0021] 上記表面状態計測装置にお!、ては、前記各プローブの先端部は、前記計測対象 物と対向する方向に延びるように形成されて ヽることが好ま ヽ。 In the surface state measuring apparatus, the tip of each of the probes is preferably formed so as to extend in the direction opposite to the object to be measured.
[0022] 上記表面状態計測装置では、前記各プローブは、先端が尖って形成されて!、るこ とが好ましい。 In the above-mentioned surface state measuring apparatus, each of the probes is preferably formed with a sharp tip!
[0023] 上記表面状態計測装置にお!、ては、前記各プローブの先端部には、各プローブの 長手方向に沿って延びる突出部が形成されて 、てもよ 、。  In the above-described surface state measurement apparatus, a protrusion extending along the longitudinal direction of each probe may be formed at the tip of each of the probes.
[0024] 上記の構成によれば、突出部が各プローブの長手方向に延びるように形成される ので、各プローブの剛性を柔らかくして、その共振周波数を小さくすることができる。 また、上記突出部の形成によって各プローブが長くなるので、測定中に測定対象物 を傷付ける危険を減少させることができる。 According to the above configuration, since the projection is formed to extend in the longitudinal direction of each probe, the rigidity of each probe can be softened to reduce its resonance frequency. In addition, since each probe becomes longer due to the formation of the protrusion, the risk of damaging the object to be measured during measurement can be reduced.
[0025] 上記表面状態計測装置では、前記突出部は、その先が尖って形成されていてもよ い。 [0025] In the surface state measurement device, the protrusion may be formed to have a pointed tip.
[0026] 上記表面状態計測装置においては、前記突出部は、先端側が前記計測対象物に 向力つて折れ曲がる屈曲部を備えて!/、てもよ!/、。  [0026] In the above-mentioned surface state measuring device, the protruding portion may have a bending portion in which the tip end side is bent toward the measurement object! //.
[0027] 上記の構成によれば、屈曲部の先端側が計測対象物に向力つて折れ曲がつてい るので、プローブの剛性をより柔らかくして、その共振周波数を小さくすることができる 。また、各プローブを対向させて配置する場合には、各プローブの最先端部分が相 互作用することになるので、安定的な測定を実現することができる。さらに、上記構成 を採用すれば、プローブの位置が計測対象物の陰になり難くなるので、計測時の操 作性を高めることができる。  According to the above configuration, since the tip end side of the bending portion is bent toward the measurement object, the rigidity of the probe can be softened and the resonance frequency thereof can be reduced. In addition, when the respective probes are disposed to face each other, the leading end portions of the respective probes interact with each other, so that stable measurement can be realized. Furthermore, if the above configuration is adopted, the position of the probe is less likely to be behind the object to be measured, so the operability at the time of measurement can be enhanced.
[0028] 上記表面状態計測装置では、前記物理現象は、原子間力、トンネル電流、および 静電気力もなる群力も選択された少なくとも一つであることが好ましい。  [0028] In the surface state measurement device, the physical phenomenon is preferably at least one selected from a group force which is also an atomic force, a tunneling current, and an electrostatic force.
[0029] 上記表面状態計測装置においては、さらに、各プローブと計測対象物との間隔を 前記検出信号に基づき一定とするように各プローブ駆動部を制御する第二制御部を 備えることも好まし 、。  The surface state measuring apparatus preferably further includes a second control unit that controls each probe drive unit so that the distance between each probe and the measurement target is constant based on the detection signal. ,.
上記の構成によれば、複数のプローブの間隔を制御しながら、各プローブを独立し て駆動することが可能となる。 According to the above configuration, each probe can be independently controlled while controlling the spacing between the plurality of probes. Can be driven.
[0030] また、前記計測部は、各プローブの位置を検出するプローブ位置検出部を備えるこ とも好ましい。  Preferably, the measurement unit includes a probe position detection unit that detects the position of each probe.
[0031] 上記の構成によれば、プローブ位置検出部によって、各プローブの絶対的な位置 をモニタリングすることが可能となるので、各プローブの制御をより容易なものとするこ とがでさる。  According to the above configuration, since the absolute position of each probe can be monitored by the probe position detection unit, control of each probe can be made easier.
[0032] 本発明の顕微鏡は、上記の何れかに記載の表面状態計測装置を有していることを 特徴としている。  A microscope of the present invention is characterized by including the surface state measuring device described in any of the above.
[0033] 本発明の情報処理装置は、上記の何れかに記載の表面状態計測装置を有して 、 ることを特徴としている。  An information processing apparatus according to the present invention is characterized by including the surface state measuring apparatus described in any of the above.
[0034] 本発明の表面状態計測方法は、前記課題を解決するために、計測対象物と対向 する複数のプローブ間の相対位置を制御しながら該計測対象物を走査して、該計測 対象物および各プローブの間の物理現象から生じる検出信号を検出し、上記検出信 号力 上記計測対象物の表面状態を計測することを特徴としている。 [0034] In the surface state measuring method of the present invention, in order to solve the above-mentioned problem, the measurement object is scanned while controlling the relative position between the plurality of probes facing the measurement object, and the measurement object is measured. And detecting the detection signal generated from the physical phenomenon between each probe, and measuring the surface condition of the measurement object.
[0035] 上記表面状態計測方法においては、上記各プローブと上記計測対象物との相対 位置を制御することが好ま 、。 [0035] In the surface state measurement method, it is preferable to control the relative position between each of the probes and the measurement object.
[0036] 上記表面状態計測方法にお!、ては、前記物理現象は、原子間力、トンネル電流、 および静電気力もなる群力も選択された少なくとも一つであることが好ましい。 In the surface state measuring method, preferably, the physical phenomenon is at least one selected from atomic force, tunneling current, and electrostatic force.
[0037] 上記表面状態計測方法では、前記各プローブの先端部を互 ヽに近接するように各 プローブをそれぞれ移動させることが好まし 、。 [0037] In the surface state measurement method, it is preferable to move the respective probes so that the tip portions of the respective probes come close to each other.
[0038] (発明の効果)  (Effect of the Invention)
本発明に係る表面状態計測装置は、以上のように、計測対象物と対向する複数の プローブと、上記各プローブを上記計測対象物に対しそれぞれ移動させるプローブ 駆動部と、上記計測対象物および各プローブの間の物理現象から生じる検出信号を 検出して出力する検出部と、上記検出信号に基づく位置制御信号によって各プロ一 ブ間の相対位置を制御するための第一制御部と、上記検出信号から上記計測対象 物の表面状態を計測する計測部とを有する構成である。  As described above, the surface state measuring apparatus according to the present invention includes a plurality of probes facing the object to be measured, a probe drive unit for moving each of the probes with respect to the object to be measured, the object to be measured, and A detection unit for detecting and outputting a detection signal generated from a physical phenomenon between the probes; a first control unit for controlling the relative position between the probes by the position control signal based on the detection signal; And a measurement unit configured to measure the surface state of the measurement object from the signal.
[0039] それゆえ、本発明によれば、複数のプローブの位置制御をそれぞれ行うことができ 、分子レベルや原子レベルの計測に影響するギャップ長を安定的に制御できること になるため、計測対象物の表面状態をナノメートルスケールにて安定的に計測するこ とがでさる。 Therefore, according to the present invention, position control of a plurality of probes can be performed respectively. Since the gap length that influences the measurement of molecular level and atomic level can be stably controlled, the surface state of the object to be measured can be stably measured on the nanometer scale.
[0040] すなわち、本発明によれば、計測対象物の表面状態をナノメートルスケールにて安 定的に計測できるので、原子間力顕微鏡といった顕微鏡の分解能を向上できる。さら に、本発明をメモリといったストレージデバイスである情報処理装置の解析に用いると 、上記情報処理装置の情報処理量を改善できると!、う効果を奏する。  That is, according to the present invention, since the surface state of the measurement object can be stably measured on the nanometer scale, resolution of a microscope such as an atomic force microscope can be improved. Furthermore, when the present invention is used for analysis of an information processing apparatus that is a storage device such as a memory, the information processing amount of the above information processing apparatus can be improved!
図面の簡単な説明  Brief description of the drawings
[0041] [図 1(a)]本発明の表面状態計測方法における各プローブ間の位置制御を示す各プ ローブの概略正面図である。  FIG. 1 (a) is a schematic front view of each probe showing position control between each probe in the surface state measurement method of the present invention.
[図 1(b)]本発明の表面状態計測方法における各プローブ間の位置制御において、 各プローブが互いに近づく前と、近づいた後の検出信号の変化を示す各波形図で ある。  FIG. 1 (b) is a waveform diagram showing changes in detection signals before and after the probes approach each other in position control between the probes in the surface state measurement method of the present invention.
[図 2]本発明の表面状態計測装置のブロック図である。  FIG. 2 is a block diagram of a surface state measuring device according to the present invention.
[図 3(a)]本発明の表面状態計測方法における計測対象物とプローブとの間の位置制 御を示す、上記計測対象物とプローブとの概略正面図である。  FIG. 3 (a) is a schematic front view of the measurement object and the probe, showing position control between the measurement object and the probe in the surface state measurement method of the present invention.
[図 3(b)]本発明の表面状態計測方法における計測対象物とプローブとの間の位置制 御を示し、計測対象物とプローブとが互いに近づく (接触)前と、近づいた (接触)後 の検出信号の変化を示す各波形図である。  [FIG. 3 (b)] shows position control between the measurement object and the probe in the surface state measurement method of the present invention, and the measurement object and the probe approach each other (contact) and approach each other (contact) It is each waveform chart which shows change of a detection signal after.
[図 4]上記の表面状態計測方法の一変形例を示す、各プローブの概略正面図である  FIG. 4 is a schematic front view of each probe showing a modification of the surface state measurement method described above.
[図 5]上記の表面状態計測方法の他の変形例を示す、各プローブの概略正面図で ある。 FIG. 5 is a schematic front view of each probe showing another modification of the surface state measurement method described above.
[図 6]上記の表面状態計測方法のさらに他の変形例を示す、各プローブの概略正面 図である。  FIG. 6 is a schematic front view of each probe, showing still another modified example of the surface state measuring method described above.
[図 7(a)]上記プローブの一変形例を示す正面図である。  FIG. 7 (a) is a front view showing a modified example of the probe.
[図 7(b)]上記プローブの他の変形例を示す正面図である。  FIG. 7 (b) is a front view showing another modified example of the probe.
[図 8(a)]上記プローブの変形例として、プローブが 2個の形態を示す平面図である。 [図 8(b)]上記プローブの変形例として、プローブが 3個の形態を示す平面図である。 [FIG. 8 (a)] As a modification of the above-mentioned probe, it is a top view showing the form of two probes. FIG. 8 (b) is a plan view showing a form in which three probes are provided as a modified example of the above-mentioned probe.
[図 8(c)]上記プローブの変形例として、プローブ力 個の形態を示す平面図である。  FIG. 8 (c) is a plan view showing a form of probe force as a modified example of the probe.
[図 8(d)]上記プローブの変形例として、プローブが 8個の形態を示す平面図である。  [FIG. 8 (d)] As a modification of the above-mentioned probe, it is a plan view showing a form of eight probes.
[図 9]物理現象に原子間力を用いた場合の上記表面状態計測装置の概略正面図で ある。  FIG. 9 is a schematic front view of the surface state measurement device when atomic force is used for physical phenomena.
[図 10]上記原子間力を説明するための各原子の模式図である。  FIG. 10 is a schematic view of each atom for explaining the atomic force.
[図 11]上記各原子間の原子間力と原子間距離との関係を示すグラフである。  FIG. 11 is a graph showing the relationship between the interatomic force and the interatomic distance between the atoms.
[図 12]物理現象としての静電気力を説明するために、上記静電気力を発生する各電 荷の模式図である。  FIG. 12 is a schematic view of each of the charges generating the electrostatic force in order to explain the electrostatic force as a physical phenomenon.
[図 13]上記表面状態計測装置を用いた、本発明の表面状態計測方法の一例を示す 模式正面図である。  FIG. 13 is a schematic front view showing an example of the surface state measuring method of the present invention using the surface state measuring device.
符号の説明  Explanation of sign
[0042] 1 計測対象物 [0042] 1 Measurement object
2 プローブ  2 probe
6 カンチレバー  6 cantilever
7 第一駆動部  7 1st drive part
9 第三駆動部  9 3rd drive part
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0043] 本発明に係る表面状態計測装置の実施の一形態につ!、て図 1な!、し図 13に基づ 、 て説明すると以下の通りである。すなわち、上記表面状態計測装置では、図 2に示す ように、計測対象物 1と対向するように複数のプローブ 2 (図 2では一つのみ記載)が 設けられている。計測対象物 1は、図 2に示す X— y方向(つまり計測対象物 1の表面 と略平行な水平方向)に二次元にて移動する載置台 3上に装着されて 、る。  One embodiment of the surface state measuring device according to the present invention will be described below with reference to FIG. 1, FIG. 1 and FIG. That is, in the surface state measurement apparatus, as shown in FIG. 2, a plurality of probes 2 (only one is shown in FIG. 2) is provided to face the measurement object 1. The measurement object 1 is mounted on a mounting table 3 which moves in a two-dimensional manner in an XY direction (that is, a horizontal direction substantially parallel to the surface of the measurement object 1) shown in FIG.
[0044] 各プローブ 2の形状としては、先端に向力つて順次細くなるテーパー形状を備えて いる。各プローブ 2の形状としては、後述する相互作用の検出ができる形状であれば 任意であるが、例えば三角錘形状や、四角錐形状や、円錐形状が挙げられる。また 、各プローブ 2の素材としては、後述する相互作用の検出ができるものであれば任意 である。上記形状に成形し易い好適な素材としては、例えばシリコンが挙げられる。 各プローブ 2にシリコンを用いた場合、その成形には異方性エッチング技術が好適で ある。 The shape of each of the probes 2 has a tapered shape which is gradually tapered toward the tip. The shape of each probe 2 is arbitrary as long as the interaction can be detected as described later, and may be, for example, a triangular pyramid shape, a quadrangular pyramid shape, or a conical shape. The material of each probe 2 is arbitrary as long as it can detect the interaction described later. As a suitable material which can be easily formed into the above-mentioned shape, for example, silicon can be mentioned. When silicon is used for each probe 2, an anisotropic etching technique is suitable for its formation.
載置台 3を駆動するためのスキャン部 4がプローブ駆動部として取り付けられている。 スキャン部 4を制御するための制御信号を生成するスキャンシステム 5が設けられて いる。  A scan unit 4 for driving the mounting table 3 is attached as a probe drive unit. A scan system 5 for generating control signals for controlling the scan unit 4 is provided.
[0045] 一方、上記表面状態計測装置においては、プローブ 2を先端部に有するカンチレ バー 6が片もち梁のパイプ形状で長さ 0. lmm〜 lmmにて取り付けられている。プロ ーブ 2は、その先端が計測対象物 1の表面に向力うようにカンチレバー 6の先端部に 設けられている。また、各カンチレバー 6は、各プローブ 2をそれぞれ備えた先端部の 先端が互いに突き合わせるように、かつ各カンチレバー 6の長手方向が計測対象物 1の表面と略平行となるように取り付けられている。カンチレバー 6の素材としては、相 互作用の検出のための導電性を有し、後述する励振に耐える剛性を備えていればよ い。例えば、カンチレバー 6に好適な素材としては、アルミニウム、銅、それらの合金、 またはカーボン等が挙げられる。  On the other hand, in the surface state measuring apparatus, the cantilever 6 having the probe 2 at its tip is attached in a pipe shape of a cantilever beam with a length of 0.1 mm to 1 mm. The probe 2 is provided at the tip of the cantilever 6 so that its tip is directed to the surface of the measurement object 1. Also, each cantilever 6 is attached so that the tips of the tip portions provided with the respective probes 2 abut each other, and the longitudinal direction of each cantilever 6 is substantially parallel to the surface of the measurement object 1 . As a material of the cantilever 6, it may be conductive so as to detect the interaction and have rigidity enough to withstand the excitation described later. For example, suitable materials for the cantilever 6 include aluminum, copper, alloys thereof, carbon and the like.
[0046] カンチレバー 6の基端側には、プローブ 2を上下方向(図 2では z方向)に往復移動 させるための第一駆動部 7と、プローブ 2をカンチレバー 6の長手方向に対し直交す る水平方向(図 2では y方向)に往復移動させるための第二駆動部 8と、プローブ 2を カンチレバー 6の長手方向に沿った方向(図 2では X方向)に往復移動させるための 第三駆動部 9とが、それぞれ、プローブ駆動部として形成されている。  At the proximal end side of the cantilever 6, the first drive unit 7 for reciprocating the probe 2 in the vertical direction (z direction in FIG. 2) and the probe 2 are orthogonal to the longitudinal direction of the cantilever 6. Second drive unit 8 for reciprocating in the horizontal direction (y direction in FIG. 2) and third drive for reciprocating the probe 2 in the direction along the longitudinal direction of cantilever 6 (X direction in FIG. 2) The parts 9 are each formed as a probe drive part.
[0047] 第一駆動部 7、第二駆動部 8および第三駆動部 9は、それぞれプローブ 2をミクロン オーダー(一般的な最大駆動距離は 0. 1 m〜10 m程度である)にて駆動できる ものであればよいが、その具体例としては、圧電素子、ステッピングモータまたはイン パクトステージによる自動駆動、または手動ネジ式を用いた微動駆動機構が挙げら れる。上記微動駆動機構としては、特に圧電素子力もなるものが好適である。よって、 第一駆動部 7、第二駆動部 8および第三駆動部 9は、複数の各プローブ 2を、それら の相対位置を互いに変化させるように、また、計測対象物 1の表面に対する相対位 置を変化させるように、それぞれ移動できるようになって 、る。  The first driving unit 7, the second driving unit 8, and the third driving unit 9 respectively drive the probe 2 in a micron order (general maximum driving distance is about 0.1 m to 10 m). It may be any one as long as it can be used, but specific examples thereof include an automatic drive by a piezoelectric element, a stepping motor or an impact stage, or a fine movement drive mechanism using a manual screw type. As the above-mentioned fine movement driving mechanism, in particular, one that can also be a piezoelectric element is preferable. Therefore, the first drive unit 7, the second drive unit 8, and the third drive unit 9 change the relative positions of the plurality of probes 2 to one another, and the relative position of the respective probes 2 to the surface of the measurement object 1 Each can be moved to change its position.
また、上記表面状態計測装置では、プローブ 2の位置 (特に z方向での)を光学的 (光 てこ法)に検出するための半導体レーザ 10、ミラー 11およびフォトダイオード 12が装 着されている。この光学的な検出のために、カンチレバー 6の先端部における、プロ ーブ 2の取り付け位置の反対面 (背面)は、鏡面仕上げとなっていることが好ましい。 半導体レーザ 10は、上記反対面に対しレーザ光を照射するものである。ミラー 11は 、上記反対面力ものレーザ光の反射光をフォトダイオード 12の受光面に導くものであ る。フォトダイオード 12は、受光した光を、例えばプッシュプル法にてプローブ 2の位 置情報信号を含む電気信号に変換して出力するものである。 Further, in the above-mentioned surface condition measuring apparatus, the position of the probe 2 (especially in the z direction) is optically A semiconductor laser 10, a mirror 11 and a photodiode 12 are mounted for detection in the lever method. For this optical detection, the opposite surface (rear surface) of the attachment position of the probe 2 at the tip of the cantilever 6 is preferably mirror-finished. The semiconductor laser 10 emits laser light to the opposite surface. The mirror 11 guides the reflected light of the laser light with the above-described opposite surface force to the light receiving surface of the photodiode 12. The photodiode 12 converts the received light into an electrical signal including a positional information signal of the probe 2 by, for example, a push-pull method, and outputs the electrical signal.
[0048] さらに、上記表面状態計測装置においては、上記電気信号が入力されると、当該 電気信号からプローブ 2の位置情報信号を算出し、この位置情報信号から計測対象 物 1の表面形状 (表面状態)を示す形状信号を出力する計測部 13と、計測対象物 1 の表面形状を上記形状信号に基づき表示するためのディスプレイ 14と、そのディス プレイ 14のためのビデオ RAMであるメモリ 15とが設けられて!/、る。  Furthermore, in the surface state measuring apparatus, when the electric signal is input, the position information signal of the probe 2 is calculated from the electric signal, and the surface shape of the measurement object 1 is calculated from the position information signal. A display 14 for displaying the shape of the surface of the measurement object 1 based on the shape signal, and a memory 15 which is a video RAM for the display 14. It is provided!
[0049] そして、上記表面状態計測装置では、計測対象物 1および各プローブ 2の間の物 理現象から生じる検出信号を検出して出力する検出部 16と、上記検出信号に基づく 位置制御信号によって各プローブ 2間の相対位置を制御するための制御部 17とが 設けられている。上記物理現象の例としては、原子間力、トンネル電流、静電気力な どの相互作用が挙げられる。  Then, in the above-mentioned surface state measuring apparatus, a detection unit 16 which detects and outputs a detection signal generated from a physical phenomenon between the measurement object 1 and each of the probes 2 and a position control signal based on the detection signal A control unit 17 for controlling the relative position between the probes 2 is provided. Examples of the above physical phenomena include interactions such as atomic force, tunneling current and electrostatic force.
[0050] 検出部 16は、トンネル電流を検出する場合、計測対象物 1とプローブ 2との間に電 圧を各配線 A、 Bを通して印加しておき、計測対象物 1とプローブ 2との間隔が 1ナノメ 一トル (nm)程度までに近づくと生じるトンネル電流を検出できるようになって!/、る。さ らに、検出部 16は、互いに隣り合う各プローブ 2の間に電圧を各配線 Bを通して印加 しておき、互いに隣り合う各プローブ 2の間隔が 1ナノメートル (nm)程度までに近づく と生じるトンネル電流を検出できるようになつている。これらトンネル電流は、各プロ一 ブ 2の間隔の変化に対し非常に精度良く変化するので、当該間隔を少なくとも 0. In mの精度の分解能にて検出ないし制御できるものである。  When detecting the tunnel current, the detection unit 16 applies a voltage between the measurement object 1 and the probe 2 through the wires A and B, and the distance between the measurement object 1 and the probe 2 It is possible to detect the tunneling current generated when the value approaches 1 nanometer (nm)! Furthermore, the detection unit 16 applies a voltage between the adjacent probes 2 through the wires B, and occurs when the distance between the adjacent probes 2 approaches 1 nanometer (nm) or so. The tunnel current can be detected. These tunnel currents change very accurately with changes in the distance between the probes 2, so that the distance can be detected or controlled with a resolution of at least 0. In m.
制御部 17は、計測部 13から出力される形状信号から二次元での表面形状データを 生成してメモリ 15に出力すると共に、計測対象物 1および各プローブ 2の間の物理現 象力も生じる検出信号に基づいてプローブ 2と計測対象物 1との間隔を一定に維持 するようにプローブ 2の位置(つまり、カンチレバー 6)をフィードバック制御するように 第一駆動部 7、第二駆動部 8および第三駆動部 9を制御できるものである。上記フィ ードバック制御は、図 3 (a)に示すように、カンチレバー 6の先端部のプローブ 2が計 測対象物 1の表面にナノメートルスケールにて接近すると、図 3 (b)に示すように、検 出部 16での検出信号の振幅が増減 (または、検出部 16での検出信号の周波数が増 減)することを利用したものである。 The control unit 17 generates surface shape data in two dimensions from the shape signal output from the measurement unit 13 and outputs it to the memory 15, and also generates a physical phenomenon force between the measurement object 1 and each probe 2. Maintain a constant distance between probe 2 and measurement object 1 based on the signal Thus, the first drive unit 7, the second drive unit 8 and the third drive unit 9 can be controlled to feedback-control the position of the probe 2 (that is, the cantilever 6). As shown in FIG. 3 (a), when the probe 2 at the tip of the cantilever 6 approaches the surface of the measurement object 1 on the nanometer scale, as shown in FIG. 3 (b), the feedback control is performed. The amplitude of the detection signal in the detection unit 16 is increased or decreased (or the frequency of the detection signal in the detection unit 16 is increased or decreased).
[0051] その上、制御部 17は、計測対象物 1の表面を各プローブ 2により二次元的に走査 するようにスキャンシステム 5を制御できるようにもなつている。さらに、制御部 17は、 第一駆動部 7を制御してカンチレバー 6の先端部のプローブ 2を上下方向(z方向)に 往復移動させることができるとともに、好ましくはカンチレバー 6の共振周波数にて励 振できるようにもなつている。  Furthermore, the control unit 17 can control the scan system 5 so as to scan the surface of the measurement object 1 two-dimensionally with each of the probes 2. Furthermore, the control unit 17 can control the first drive unit 7 to reciprocate the probe 2 at the tip of the cantilever 6 in the vertical direction (z direction), and preferably excites at the resonance frequency of the cantilever 6. It is also possible to shake it.
[0052] 次に、上記表面状態計測装置を用いた表面状態計測方法について説明する。図 1  Next, a surface state measurement method using the above-described surface state measurement device will be described. Figure 1
(a)に示すように、上記表面状態計測方法では、各プローブ 2の間隔を制御するため に、各プローブ 2を励振しながら、プローブ 2の少なくとも一方に設けた変位検出機構 である検出部 16および制御部 17により、微動駆動機構である圧電素子力もなる第三 駆動部 9によって、互いの距離を近づけていく。その際に、互いに隣り合うプローブ 2 とプローブ 2との間において相互作用(トンネル電流)により、図 1 (b)に示すように、 変位検出機構を持つプローブ 2側の信号によって変位が検出される。この変位を設 定値に到達させることで、安定なプローブ位置制御がなされる。一般に目視などによ つて、プローブ 2とプローブ 2との距離を調整しょうとすると、プローブ 2とプローブ 2が 接触、あるいは激突して破壊する場合が考えられるが、上記変位検出機構を用いた 場合には、そのような問題が生じない。  As shown in (a), in the surface state measurement method described above, the detection unit is a displacement detection mechanism provided on at least one of the probes 2 while exciting each of the probes 2 in order to control the distance between the probes 2. And, by the control unit 17, the third drive unit 9, which is also a piezoelectric element force which is a fine movement drive mechanism, brings the mutual distance closer. At that time, due to the interaction (tunneling current) between the probe 2 and the probe 2 adjacent to each other, as shown in FIG. 1 (b), the displacement is detected by the signal on the probe 2 side having a displacement detection mechanism. . By causing this displacement to reach the set value, stable probe position control can be performed. Generally, when trying to adjust the distance between the probe 2 and the probe 2 by visual inspection etc., there is a possibility that the probe 2 and the probe 2 will be broken by contact or collision, but when using the above displacement detection mechanism There is no such problem.
本発明は、簡単な装置構成により、複数の各プローブ 2間の相対位置の制御を行うこ とができ、分子や原子に至るギャップ長を安定に制御できることになるため、分子エレ タトロ-タスにおける研究進展を飛躍的に増進できるとともに、走査型トンネル顕微鏡 の高分解能化、およびメモリなどのストレージデバイスに適用してその記憶容量を増 大化できる。  In the present invention, the relative position between each of the plurality of probes 2 can be controlled by a simple device configuration, and the gap length to the molecule or atom can be stably controlled. Along with dramatically advancing research progress, it can be applied to high resolution scanning tunneling microscopes and storage devices such as memories to increase their storage capacity.
[0053] 本実施の形態の一変形例として、図 4に示すように、各プローブ 2を励振せずに、各 プローブ 2間のトンネル電流をモニタしてもよい。また、本実施の形態における他の変 形例として、図 5に示すように、各プローブ 2の一方を励振しながら他方を励振せずに 、各プローブ 2間の原子間力をモニタしてもよい。本実施の形態のさらに他の変形例 として、図 6に示すように、各プローブ 2の双方を励振しながら各プローブ 2間の原子 間力をモニタしてもよい。 As one modified example of the present embodiment, as shown in FIG. 4, each probe 2 is not excited and each probe 2 is not excited. The tunnel current between the probes 2 may be monitored. Further, as another modification in the present embodiment, as shown in FIG. 5, even if one of the probes 2 is excited while the other is not excited, the atomic force between the probes 2 is monitored. Good. As another modification of this embodiment, as shown in FIG. 6, the atomic force between the probes 2 may be monitored while exciting both of the probes 2.
[0054] なお、本実施の形態では、プローブ 2の形状として、先端が計測対象物 1の表面に 向力う四角錐形状のものを挙げた力 各プローブ 2間の位置制御のために、図 7 (a) に示すように、カンチレバー 6の長手方向に延びる棒状の突出部 18をプローブ 2に 形成することが好ましい。突出部 18は、カンチレバー 6の先端側のプローブ 2に形成 することがより望ましぐプローブ 2の基端側に形成することがさらに好ましい。また、 突出部 18は、その形状を先端に向力つて細くなるように形成されることが好ましぐ先 が尖ったテーパー形状がより好ましい。  In the present embodiment, as the shape of the probe 2, a force whose tip is a quadrangular pyramid shape whose force is directed to the surface of the measurement object 1 is illustrated for position control between the respective probes 2. As shown in 7 (a), it is preferable to form in the probe 2 a rod-like protrusion 18 extending in the longitudinal direction of the cantilever 6. It is more preferable that the projecting portion 18 be formed on the proximal end side of the probe 2 which is more desirably formed on the probe 2 on the distal end side of the cantilever 6. In addition, it is preferable that the protrusion 18 be formed so as to be tapered toward the tip thereof so that the tip 18 has a tapered shape.
[0055] さらに、突出部 18は、各プローブ 2間の位置制御を容易とするため、図 7 (b)に示 すように、突出部 18の先端側が計測対象物 1の表面の方向に折れ曲がった屈曲部 1 8aを備えていることが好ましい。屈曲部 18aは、その形状を先端に向力つて細くなる ように形成されることが好ましぐ先が尖ったテーパー形状とすることがより好ましい。  Furthermore, as shown in FIG. 7 (b), the tip end of the protrusion 18 is bent in the direction of the surface of the measurement object 1 to facilitate position control between the probes 2. It is preferable to have a bent portion 18a. It is more preferable that the bent portion 18a be formed in such a manner that the shape thereof is tapered toward the tip so as to be tapered.
[0056] また、本実施の形態では、各プローブ 2を、図 8 (a)に示すように、 2個、互いにつき あうように設けた例を挙げたが、図 8 (b)に示すように、 3個、それらの先端側を互いに つきあうように設けてもよぐ図 8 (c)に示すように、 4個、それらの先端側を互いにつき あうように設けても、図 8 (d)に示すように、 8個、それらの先端側を互いにつきあうよう に設けてもよい。  Further, in the present embodiment, as shown in FIG. 8 (a), two probes 2 are provided so as to be in contact with each other. However, as shown in FIG. 8 (b), As shown in Fig. 8 (c), three of them may be provided so that their tip sides are in contact with each other, and four of them may be provided in such a manner that their tip sides are in contact with each other. As shown in), eight pieces may be provided such that their tip sides are in contact with each other.
[0057] 以下、前記物理現象の例として、原子間力および静電気力といった相互作用につ いてそれぞれ説明する。  Hereinafter, as an example of the physical phenomenon, interactions such as atomic force and electrostatic force will be respectively described.
[0058] まず、原子間力について説明すると、図 9に示すように、本発明の表面状態計測装 置では、プローブ 2と計測対象物 1の表面との間に働く原子間力を、プローブ 2が取り 付けられて 、るカンチレバー 6のたわみとして検出することができる。このたわみを一 定とするようにプローブ 2の位置を制御しながら、計測対象物 1の表面を二次元的に 走査することで、その表面形状を計測して画像ィ匕できる。なお、図 9において、(b)は (a)の一部を拡大した模式図である。 First, the atomic force will be described. As shown in FIG. 9, in the surface state measuring apparatus of the present invention, the atomic force acting between the probe 2 and the surface of the object 1 to be measured is a probe 2 Can be detected as the deflection of the cantilever 6. By controlling the position of the probe 2 so as to make the deflection constant and scanning the surface of the measurement object 1 two-dimensionally, the surface shape can be measured and imaged. In FIG. 9, (b) is It is the schematic diagram which expanded a part of (a).
[0059] 原子間力とは、図 10に示すように、無極性の中性原子間の相互作用であって、当 該相互作用は、レナード(Lennard)—ジヨーンズ (Jones)型のポテンシャルにて近似 できるものである。ポテンシャルエネルギー Uと、原子間距離 rとの関係は、以下の The atomic force is an interaction between nonpolar neutral atoms, as shown in FIG. 10, and the interaction has a Lennard-Jeyons (Jones) type potential. It can be approximated. The relationship between potential energy U and interatomic distance r is
0 0  0 0
式(1)で表される。  It is expressed by equation (1).
[0060] [数 1] ひ 0(r0)[0060] [Equation 1] 0 0 (r 0 )
Figure imgf000014_0001
Figure imgf000014_0003
は凝集エネルギー、 σは平衡原子間距離である。
Figure imgf000014_0001
Figure imgf000014_0003
Is the cohesive energy, σ is the equilibrium interatomic distance.
[0061] :れらの原子間に働く原子間力 Fは、以下の式(2)にて表される。  [0061] The atomic force F acting between these atoms is represented by the following formula (2).
[0062] [数 2] [0062] [Number 2]
FaFa
Figure imgf000014_0004
Figure imgf000014_0002
上記式(2)を変形し具体的な数値を代入し、プロットした結果を図 11に示した。図 1 1によれば、原子間距離が約 0. 2nm以上では引力(attractive force)が働く一方、原 子間距離が約 0. 2nm未満に近づくと斥力が働くことが分かる。
Figure imgf000014_0004
Figure imgf000014_0002
The result of plotting the above equation (2) with substitution of specific numerical values and plotting is shown in FIG. According to Fig. 11, it can be seen that attractive force works when the interatomic distance is about 0.2 nm or more, and repulsive force works when the interatomic distance approaches less than about 0.2 nm.
このように、プローブ 2の先端と計測対象物 1の表面との間には、遠距離 (0. 2nm以 上)においては引力が発生する。この引力は、分散力(言い換えると凝集力)によるも のである。分散力とは、瞬間双極子 (無極性原子でも瞬間的には電荷の偏りが発生 している)によって他方の原子にも双極子が生成し、これらの双極子の間に働く力で ある。大きい原子分子ほど、電子を保持する力が弱いため瞬間双極子を生じ易ぐ結 果として分散力が大きくなる。  Thus, an attractive force is generated between the tip of the probe 2 and the surface of the measurement object 1 at a long distance (0.2 nm or more). This attraction is due to the dispersive force (in other words, the cohesion). The dispersive force is the force acting between these dipoles, which are generated by the momentary dipole (even nonpolar atoms and momentarily charge bias occurs) in the other atom. The larger the atomic molecule, the weaker the ability to hold an electron, and the easier it is to generate an instantaneous dipole, resulting in an increase in the dispersive power.
[0063] 一方、プローブ 2の先端と計測対象物 1の表面との間が 0. 2nm未満となる近距離 では、斥力が働く。この斥力は、交換相互作用によるものである。交換相互作用とは 、 2つの原子の電子雲が互いに重なり合うと、原子核の正電荷を電子雲が静電的に 遮蔽できず、双方の各原子核における正電荷同士の間にクーロン (Coulomb)力が生 じる。また、パウリ(Pauli)の禁則により、同一のエネルギーレベルの電子は同一空間 を占めることはできない。それらのため、 2つの原子が 0. 2nm未満となる近距離に近 づくと電子雲が歪み、結果としてプローブ 2の先端と計測対象物 1の表面との間に斥 力が働くことになる。 On the other hand, a repulsive force works at a short distance where the distance between the tip of the probe 2 and the surface of the measurement object 1 is less than 0.2 nm. This repulsion is due to exchange interaction. When the electron clouds of two atoms overlap each other, the electron cloud can not shield the positive charge of the nucleus electrostatically, and the Coulomb (Coulomb) force is generated between the positive charges in each nucleus. Living You Also, due to Pauli's prohibition, electrons of the same energy level can not occupy the same space. As a result, when the two atoms approach a short distance of less than 0.2 nm, the electron cloud is distorted, and as a result, a force is exerted between the tip of the probe 2 and the surface of the measurement object 1.
[0064] 次に、物理現象の他の例として、静電気力といった相互作用について説明する。静 電気力とは、図 12に示すように、距離!:離れた各電荷 Q、 Qの間に働く静電気力 F  Next, as another example of the physical phenomenon, interaction such as electrostatic force will be described. The electrostatic force is the distance, as shown in Figure 12: Each electrostatic charge Q, the electrostatic force F acting between Q
0 1 2 0 であり、その静電気力 Fは、下記の式(3)にて表される。  The electrostatic force F is represented by the following formula (3).
0  0
[0065] [数 3]  [0065] [Number 3]
F0 = k^ . . . (3) ここで、 k=8. 99 X 109 (Nm2ZC2)である。 F 0 = k ^.. (3) Here, k = 8. 99 X 10 9 (Nm 2 ZC 2 ).
物理現象として静電気力を用いた場合、本発明の表面状態計測装置においては、 プローブ 2と計測対象物 1の表面との間に働く静電気力を、プローブ 2が取り付けられ て!、るカンチレバー 6のたわみとして検出し、このたわみを一定とするようにプローブ 2の位置を制御して、計測対象物 1の表面の形状を二次元的に走査することで、当該 表面形状を計測して画像化できる。  When electrostatic force is used as a physical phenomenon, in the surface state measurement device of the present invention, the electrostatic force acting between the probe 2 and the surface of the measurement object 1 is attached to the probe 2! The surface shape can be measured and imaged by two-dimensionally scanning the shape of the surface of the measurement object 1 by detecting as a deflection and controlling the position of the probe 2 so as to make the deflection constant. .
本発明によれば、図 13に示すように、複数のプローブ 2を、互いに独立して、ナノス ケールにて制御できる。したがって、本発明によれば、ナノテクノロジー分野において 、計測対象物 1の表面に形成された、個々の機能性素子 (分子を含む) la、例えば ペンタセン分子の特性(どの程度電流が流れる、どの程度堅!、など)を直接的に評価 することが可能となる。  According to the present invention, as shown in FIG. 13, a plurality of probes 2 can be controlled on the nanoscale independently of each other. Therefore, according to the present invention, in the nanotechnology field, characteristics of individual functional elements (including molecules) la formed on the surface of the measurement object 1, for example, pentacene molecules (how much current flows, how much It is possible to directly evaluate
[0066] その上、本発明を適用した原子間力顕微鏡によれば、複数の各プローブ 2間の距 離を安定的に制御できるので、多数のプローブ 2によって、一度に広範囲の表面形 状を観察できる。これにより、計測対象物 1の表面計測を迅速ィ匕することが可能にな る。  Moreover, according to the atomic force microscope to which the present invention is applied, since the distance between each of the plurality of probes 2 can be stably controlled, a large number of surface shapes can be obtained at one time by a large number of probes 2. It can be observed. This makes it possible to quickly measure the surface of the measurement object 1.
産業上の利用の可能性  Industrial Applicability
[0067] 本発明の表面状態計測方法、表面状態計測装置は、計測対象物の表面状態を分 子レベルにて精度よく計測できるので、顕微鏡などの表面形状測定装置と 、つた測 定分野や半導体製造分野およびメモリなどのストレージデバイスといった情報処理分 野に好適に利用できる。 The surface condition measuring method and surface condition measuring apparatus of the present invention divide the surface condition of the object to be measured. Since measurement can be performed accurately at the child level, it can be suitably used for information processing fields such as surface shape measurement devices such as microscopes, storage fields such as semiconductor measurement fields and semiconductor manufacturing fields, and memories.

Claims

請求の範囲 The scope of the claims
[1] 計測対象物と対向する複数のプローブと、  [1] with multiple probes facing the object to be measured
上記各プローブを上記計測対象物に対しそれぞれ移動させるプローブ駆動部と、 上記計測対象物および各プローブの間の物理現象から生じる検出信号を検出して 出力する検出部と、  A probe drive unit that moves each of the probes with respect to the measurement target, and a detection unit that detects and outputs a detection signal generated from a physical phenomenon between the measurement target and each of the probes;
上記検出信号に基づく位置制御信号によって各プローブ間の相対位置を制御す るための第一制御部と、  A first control unit for controlling a relative position between the probes by a position control signal based on the detection signal;
上記検出信号から上記計測対象物の表面状態を計測する計測部とを有しているこ とを特徴とする表面状態計測装置。  What is claimed is: 1. A surface state measurement device comprising: a measurement unit that measures the surface state of the measurement object from the detection signal.
[2] 前記第一制御部は、各プローブを互いに近接させるようになつていることを特徴と する請求項 1記載の表面状態計測装置。  [2] The surface condition measuring apparatus according to claim 1, wherein the first control unit causes the probes to be close to each other.
[3] 前記各プローブは、各プローブの先端部を互いに近接するようにそれぞれ配置さ れていることを特徴とする請求項 1または 2記載の表面状態計測装置。 [3] The surface condition measuring apparatus according to claim 1 or 2, wherein the respective probes are arranged such that the tip portions of the respective probes are close to each other.
[4] さらに、前記プローブを先端部に備えたカンチレバーを有していることを特徴とする 請求項 1ないし 3の何れか 1項に記載の表面状態計測装置。 [4] The surface state measuring apparatus according to any one of claims 1 to 3, further comprising a cantilever having the probe at its tip.
[5] 前記各プローブの先端部は、前記計測対象物に対向する方向に延びるように設定 されていることを特徴とする請求項 4記載の表面状態計測装置。 [5] The surface state measuring apparatus according to claim 4, wherein a tip of each of the probes is set to extend in a direction facing the object to be measured.
[6] 前記各プローブは、先端が尖って形成されていることを特徴とする請求項 5記載の 表面状態計測装置。 [6] The surface condition measuring device according to claim 5, wherein each of the probes is formed with a sharp tip.
[7] 前記カンチレバーの先端部には、カンチレバーの長手方向に沿って延びる突出部 が形成されて ヽることを特徴とする請求項 4な ヽし 6の何れか 1項に記載の表面状態 計測装置。  [7] The surface state measurement according to any one of [4] to [6], wherein a protrusion extending along the longitudinal direction of the cantilever is formed at the tip of the cantilever. apparatus.
[8] 前記突出部は、先が尖って形成されていることを特徴とする請求項 7記載の表面状 態計測装置。  [8] The surface state measuring device according to claim 7, wherein the projecting portion is formed to have a pointed tip.
[9] 前記突出部は、先端側が前記計測対象物に向力つて折れ曲がる屈曲部を備えて いることを特徴とする請求項 7または 8記載の表面状態計測装置。  [9] The surface state measuring device according to claim 7 or 8, wherein the projecting portion includes a bending portion that is bent at a distal end side toward the object to be measured.
[10] 前記物理現象は、原子間力、トンネル電流、および静電気からなる群から選択され た少なくとも一つであることを特徴とする請求項 1ないし 9の何れか 1項に記載の表面 状態計測装置。 [10] The surface according to any one of claims 1 to 9, wherein the physical phenomenon is at least one selected from the group consisting of atomic force, tunneling current, and static electricity. Condition measuring device.
[11] さらに、各プローブと計測対象物との間隔を前記検出信号に基づき一定とするよう に各プローブ駆動部を制御する第二制御部を備えていることを特徴とする請求項 1 ないし 10の何れか 1項に記載の表面状態計測装置。  [11] The apparatus according to [1], further comprising: a second control unit configured to control each probe drive unit so as to make the distance between each probe and the measurement object constant based on the detection signal. The surface state measuring device according to any one of the above.
[12] 前記計測部は、各プローブの位置を検出するプローブ位置検出部を備えているこ とを特徴とする請求項 1な 、し 11の何れか 1項に記載の表面状態計測装置。 [12] The surface condition measuring apparatus according to any one of claims 1 to 11, wherein the measuring unit includes a probe position detecting unit that detects the position of each probe.
[13] 請求項 1ないし 12の何れか 1項に記載の表面状態計測装置を有していることを特 徴とする顕微鏡。 [13] A microscope characterized by having the surface state measuring device according to any one of claims 1 to 12.
[14] 請求項 1ないし 12の何れか 1項に記載の表面状態計測装置を有していることを特 徴とする情報処理装置。  [14] An information processing apparatus characterized by including the surface state measuring apparatus according to any one of claims 1 to 12.
[15] 計測対象物と対向する複数のプローブ間の相対位置を制御しながら該計測対象 物を走査して、該計測対象物および各プローブの間の物理現象から生じる検出信号 を検出し、 [15] The object to be measured is scanned while controlling the relative position between the plurality of probes facing the object to be measured, and a detection signal resulting from the physical phenomenon between the object to be measured and each probe is detected.
上記検出信号力 上記計測対象物の表面状態を計測することを特徴とする表面状 態計測方法。  Said detection signal force The surface state measurement method characterized by measuring the surface state of the said measurement object.
[16] 上記各プローブと上記計測対象物との相対位置を制御することを特徴とする請求 項 15に記載の表面状態計測方法。  [16] The surface state measuring method according to claim 15, characterized in that the relative position between each of the probes and the measurement object is controlled.
[17] 前記物理現象は、原子間力、トンネル電流、および静電気からなる群から選択され た少なくとも一つであることを特徴とする請求項 15または 16に記載の表面状態計測 方法。 [17] The surface state measuring method according to claim 15 or 16, wherein the physical phenomenon is at least one selected from the group consisting of atomic force, tunneling current, and static electricity.
[18] 前記各プローブの先端部を互いに近接するように各プローブをそれぞれ移動させ ることを特徴とする請求項 15ないし 17の何れか 1項に記載の表面状態計測方法。  [18] The surface state measuring method according to any one of claims 15 to 17, wherein each of the probes is moved so that the tips of the respective probes are close to each other.
PCT/JP2005/020942 2004-11-15 2005-11-15 Surface status measuring method, surface status measuring device, microscope and information processor WO2006051983A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-331103 2004-11-15
JP2004331103A JP4621908B2 (en) 2004-11-15 2004-11-15 Surface state measuring method, surface state measuring device, microscope, information processing device

Publications (1)

Publication Number Publication Date
WO2006051983A1 true WO2006051983A1 (en) 2006-05-18

Family

ID=36336648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/020942 WO2006051983A1 (en) 2004-11-15 2005-11-15 Surface status measuring method, surface status measuring device, microscope and information processor

Country Status (2)

Country Link
JP (1) JP4621908B2 (en)
WO (1) WO2006051983A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2447723A1 (en) * 2009-06-23 2012-05-02 Kyoto University Scanning probe microscope and probe proximity detection method therefor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4863405B2 (en) * 2008-04-25 2012-01-25 独立行政法人産業技術総合研究所 Non-contact scanning probe microscope
JP2011215112A (en) * 2010-04-02 2011-10-27 National Institute Of Advanced Industrial Science & Technology Multi-probe afm nanoprober and measurement method using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06201369A (en) * 1992-12-28 1994-07-19 Matsushita Electric Ind Co Ltd Multiprobe head of scanning probe microscope
JPH06265342A (en) * 1992-01-30 1994-09-20 Seiko Instr Inc Infinitesimal displacement measuring head
JP2001024038A (en) * 1999-07-05 2001-01-26 Hitachi Ltd Probe positioning method and apparatus and method of evaluating member using the same
JP2001174491A (en) * 1999-12-20 2001-06-29 Japan Science & Technology Corp Apparatus for evaluating electric characteristic

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08249732A (en) * 1995-03-06 1996-09-27 Canon Inc Probe control circuit for information processor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06265342A (en) * 1992-01-30 1994-09-20 Seiko Instr Inc Infinitesimal displacement measuring head
JPH06201369A (en) * 1992-12-28 1994-07-19 Matsushita Electric Ind Co Ltd Multiprobe head of scanning probe microscope
JP2001024038A (en) * 1999-07-05 2001-01-26 Hitachi Ltd Probe positioning method and apparatus and method of evaluating member using the same
JP2001174491A (en) * 1999-12-20 2001-06-29 Japan Science & Technology Corp Apparatus for evaluating electric characteristic

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2447723A1 (en) * 2009-06-23 2012-05-02 Kyoto University Scanning probe microscope and probe proximity detection method therefor
EP2447723A4 (en) * 2009-06-23 2014-01-15 Univ Kyoto Scanning probe microscope and probe proximity detection method therefor
JP5733724B2 (en) * 2009-06-23 2015-06-10 国立大学法人京都大学 Scanning probe microscope and probe proximity detection method thereof

Also Published As

Publication number Publication date
JP2006138821A (en) 2006-06-01
JP4621908B2 (en) 2011-02-02

Similar Documents

Publication Publication Date Title
US6861649B2 (en) Balanced momentum probe holder
JP2004523748A5 (en)
US7155964B2 (en) Method and apparatus for measuring electrical properties in torsional resonance mode
JP4200147B2 (en) Fine structure, cantilever, scanning probe microscope, and method for measuring deformation of fine structure
KR20090087876A (en) Probe assembly for a scanning probe microscope
EP1756595B1 (en) Method and apparatus for measuring electrical properties in torsional resonance mode
KR102097351B1 (en) Multiple integrated tips scanning probe microscope
JP5340119B2 (en) Proximity method of probe and sample in scanning probe microscope
WO2006051983A1 (en) Surface status measuring method, surface status measuring device, microscope and information processor
Serry et al. Characterization and Measurement of Microcomponents with the Atomic Force Microscope (AFM)
US7009414B2 (en) Atomic force microscope and method for determining properties of a sample surface using an atomic force microscope
US8689358B2 (en) Dynamic mode nano-scale imaging and position control using deflection signal direct sampling of higher mode-actuated microcantilevers
JP2007322363A (en) Probe structure and scanning probe microscope
KR100597067B1 (en) Device for Assembling Nano Material on Probe Tips and Scanning Probe Microscope Employed Therefor
JP2007240238A (en) Probe microscope and measuring method of probe microscope
JP4497665B2 (en) Probe scanning control device, scanning probe microscope using the scanning control device, probe scanning control method, and measurement method using the scanning control method
JP2006524317A (en) Rapid scanning stage for scanning probe microscopes
Nie Scanning probe techniques
Satoh et al. Multi-Probe Atomic Force Microscopy Using Piezo-Resistive Cantilevers and Interaction between Probes
WO2018131343A1 (en) Scanner and scanning probe microscope
Grant Development of Non-Contact Scanning Force Microscopy for Imaging in Liquid Environments
Snitka et al. Vibration measurement by atomic force microscopy with laser readout
JPH10213749A (en) Surface observing method by scanning type probe microscope
JPH04330752A (en) Interatomic power microscope

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05807072

Country of ref document: EP

Kind code of ref document: A1