WO2006051843A1 - Power supply apparatus - Google Patents

Power supply apparatus Download PDF

Info

Publication number
WO2006051843A1
WO2006051843A1 PCT/JP2005/020591 JP2005020591W WO2006051843A1 WO 2006051843 A1 WO2006051843 A1 WO 2006051843A1 JP 2005020591 W JP2005020591 W JP 2005020591W WO 2006051843 A1 WO2006051843 A1 WO 2006051843A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
circuit
power
power supply
power failure
Prior art date
Application number
PCT/JP2005/020591
Other languages
French (fr)
Japanese (ja)
Inventor
Shinji Kudo
Original Assignee
Shinji Kudo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinji Kudo filed Critical Shinji Kudo
Priority to JP2006544937A priority Critical patent/JPWO2006051843A1/en
Publication of WO2006051843A1 publication Critical patent/WO2006051843A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads

Definitions

  • the present invention relates to a power supply device that supplies power to an electronic device such as a computer device.
  • This power supply device has a full-wave rectifier 82 for supplying DC power, a smoothing capacitor 84, and a DC voltage conversion circuit 86, while a power failure detection circuit 88 and a charging circuit 90 for coping with a power failure. And a storage battery 91, a voltage conversion circuit 92, and a switching circuit 94. While this power supply device supplies DC power to the computer device, it supplies power from the storage battery 91 in the event of a power failure, and the computer device that has received the power failure status notification from the power failure detection circuit 88 performs an appropriate shutdown process.
  • Patent Document 1 a power supply device that does not use the above storage battery has also been developed.
  • This power supply device increases the capacity of the smoothing capacitor in the power supply circuit, and is stored in this smoothing capacitor during a power failure. It is an attempt to supply power for the time it takes for the computer device to shut down using only the charge.
  • a power failure detection circuit for detecting a power failure has also been developed.
  • a power failure detection circuit shown in FIG. 14 is generally known.
  • the primary side circuit and the secondary side circuit are insulated by using a photo force bra 100.
  • This primary circuit includes a full wave rectifier 101, a time constant circuit of a resistor 102 and a capacitor 103, a transistor 104 as a switching element, and the like.
  • An auxiliary power source 105 is arranged in series with the photocoupler 100 to drive the transistor 104 and supply current to the light emitting diode of the photopower bra 100 when the transistor 104 is turned on.
  • the capacitor 103 is charged while the AC power is normally supplied, and the transistor 104 is turned on by this charging voltage.
  • the transistor 104 is turned on, the light emitting diode of the photopower bra 100 emits light and the light receiving transistor is turned on.
  • the collector voltage of the light receiving transistor of the photocoupler 100 has dropped, and the comparison voltage applied to the terminal (+) of the comparator 106 connected to this collector is lower than the reference voltage of the terminal (-).
  • the output of the comparator 106 is turned off.
  • the capacitor 103 is discharged, the voltage is lowered, the transistor 104 is turned off, and the photocoupler 100 is also turned off.
  • the output of the comparator 106 is turned on when the collector voltage of the photopower plug 100 becomes high, and a detection signal for power failure is output.
  • the auxiliary power source 105 is indispensable for forming a circuit for confirming a power failure of the AC power source in the primary side circuit.
  • the description of the signal detecting means Yore was the photo force bra to the power supply circuit of Patent Document 2, wherein power s of the circuit to the power supply apparatus of Patent Document 3 for detecting the output of the secondary power supply circuit in the photo force bra is there.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 62-277034
  • Patent Document 2 JP-A-9 56159
  • Patent Document 3 JP 2000-333385
  • Patent Document 4 Japanese Utility Model Publication No. 6-9346
  • Patent Document 4 describes a circuit that supplies power from a backup power supply unit equipped with an auxiliary capacitor in the event of a power failure. The loss of switching time is also a problem for the circuit.
  • the time during which the smoothing capacitor can supply power is as short as about 20 ms to 40 ms. For this reason, in order to supply power while the computer device is shut down, the capacity of the smoothing capacitor needs to be considerably increased. However, when the capacity of this smoothing capacitor is increased, a very large inrush current flows when the power is turned on, so a special inrush current prevention circuit is required. Also, since the impedance of the smoothing circuit seen from the input side of the power supply during operation is very low, a very large current flows when the power supply voltage fluctuates, causing the power supply breaker to drop or the rectifier diode to be destroyed. For example, a smoothing capacitor with a large capacity cannot be used easily.
  • the auxiliary power source 105 is indispensable for exerting the power failure confirmation function of the primary circuit.
  • the ground circuit of the primary side circuit and the secondary side circuit are independent from each other. Therefore, the auxiliary power source 105 cannot receive power from the secondary side circuit.
  • a DC power supply circuit is required, and the auxiliary power supply has a problem that power consumption cannot be ignored due to poor efficiency.
  • the capacitor 103 is discharged and the voltage drops, so it takes time to detect the power failure and it is difficult to detect a power failure such as a momentary power failure. There was a problem of being.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a power supply apparatus that can supply a sufficient amount of power during a power failure, has a simple structure, and is economical. To do.
  • a power supply device includes a rectifier 2 that rectifies an AC voltage supplied from an AC power supply, and a smoothing connected to the rectifier, as shown in FIG.
  • Capacitor 4 and this smoothing capacitor are connected in parallel via resistor 8, and a voltage stabilization circuit provided with voltage holding capacitor 6 having a larger capacity than the smoothing capacitor, and an output voltage from this voltage stabilization circuit Voltage is stepped down by DC to DC conversion
  • the power supply device has a configuration in which the capacity of the voltage holding capacitor 6 is formed about 10 to 100 times larger than the capacity of the smoothing capacitor 4.
  • the power supply device has a configuration in which a power factor correction circuit 13 is connected to the rectifier 2 and an output of the power factor improvement circuit is connected to the smoothing capacitor 4 and the voltage holding capacitor 6. .
  • the power failure detection circuit of the power supply device includes a primary side circuit that directly drives the circuit using the AC power supply, and a secondary side circuit that operates by receiving power supply from the voltage conversion circuit. It is the composition which consists of.
  • the power failure detection circuit of the power supply device extracts a portion of a predetermined voltage or more from the AC voltage and pulsates and rectifies it, and applies this to the light emitting diode of the photocoupler 24. And a secondary circuit that detects a power failure of the AC power supply based on a change in the ON / OFF cycle of a light receiving transistor of the photopower bra.
  • the primary side circuit of the power failure detection circuit converts the alternating voltage into positive and negative pulse signals having a predetermined voltage or higher by the trigger diode 18, and converts the signal to the photo force via the rectifier circuit.
  • the photo power bra is periodically turned on / off by inputting it into the bra 24, and when the AC power source falls below the predetermined voltage due to a power failure or step-down, the trigger diode is kept non-conductive and the photo power bra is turned off. In this configuration, the on / off cycle of the light receiving transistor is changed.
  • the primary side circuit of the power failure detection circuit applies a current obtained by rectifying the AC voltage to the constant voltage diode 50, and connects the gate terminal of the bidirectional thyristor 54 to the force sword terminal of the constant voltage diode. Then, the bidirectional voltage thyristor is made conductive by the conduction of the constant voltage diode by the breakdown voltage, thereby turning on the photo force bra 24, and the bidirectional thyristor is made non-conductive when the AC voltage is changed.
  • the photobra is turned on and off periodically by turning off the power bra, and in the event of a power failure of the AC power supply, the bidirectional thyristor is kept non-conductive to turn on and off the light receiving transistor of the photopower bra. Zhou It is a configuration that changes the period.
  • the power failure detection circuit of the power supply device includes: And a secondary side circuit that is connected to the primary side circuit to be applied to the AC power source and detects a power failure of the AC power source based on a change in the ON / OFF cycle of the light receiving transistor of the bidirectional photo force bra. It is the composition which consists of.
  • the primary side circuit of the power failure detection circuit converts the alternating voltage into positive and negative pulsed signals of a predetermined voltage or higher by the trigger diode 18 and converts it into the bidirectional photopower block 40.
  • the bidirectional photo power bra is periodically turned on and off, and when the AC power supply drops below the predetermined voltage due to a power failure or step-down, the trigger diode is kept non-conductive to maintain the bidirectional photo power bra. In this configuration, the ON / OFF cycle of the light receiving transistor of the bra is changed.
  • the secondary circuit of the power failure detection circuit is connected in parallel with the light receiving transistor, and repeats discharging and charging based on the periodic on / off of the light receiving transistor, and the voltage of the capacitor and the reference voltage Comparator 34 for comparing the difference, and when the ON / OFF cycle of the light receiving transistor changes, the comparator detects a power failure of the AC power supply when the charging voltage of the capacitor exceeds the reference voltage. It is a structure to do.
  • the terminal voltage of the voltage holding capacitor is changed to a digital voltage. This is a configuration provided with an AD converter for conversion.
  • the smoothing capacitor connected to the rectifier and the smoothing capacitor are connected in parallel via the resistor, and the voltage holding capacitor having a larger capacity than the smoothing capacitor is provided.
  • a configuration with a voltage stabilization circuit, a voltage conversion circuit, and a power failure detection circuit has been adopted, so that it has excellent durability with a simple configuration, and in the event of a power failure, a power supply sufficient to protect the electronic device to which power is supplied from the voltage holding capacitor.
  • the power failure can be detected quickly and accurately by detecting the power failure. There is an effect.
  • the voltage holding capacitor has a capacity that is 10 to 100 times larger than that of the smoothing capacitor 4. There is an effect that a sufficient amount of power can be supplied for the treatment.
  • the power factor correction circuit is connected to the rectifier and the output of the power factor correction circuit is connected to the smoothing capacitor and the voltage holding capacitor, the voltage rises.
  • Capacitor can be charged at a high voltage with a high voltage, so that a large amount of charge can be held relative to the capacity of the capacitor.
  • the power supply of the necessary voltage can be supplied from the voltage conversion circuit until just before the time is reached, and the efficiency is further improved. Further, the current is kept low, so that the power consumption of the circuit is reduced.
  • the power failure detection circuit includes a primary side circuit that drives a circuit by directly using an AC power supply, and a secondary side circuit that operates by receiving power supply from the voltage conversion circuit. Therefore, an energy-saving circuit with a simple circuit configuration and low power loss can be configured on the primary side circuit, and the secondary side circuit can receive power supply from the voltage stabilization circuit. There is an effect that can be achieved.
  • the power failure detection circuit includes a primary circuit that extracts a portion of a predetermined voltage or more from an AC voltage and applies the extracted portion to the photopower bra, and an AC power
  • the primary side circuit uses an AC power supply directly to drive the circuit, so there is no need to supply additional auxiliary power to the primary side circuit. It is easy to configure and saves energy with low power consumption.
  • a power failure and momentary power failure can be detected in a short period of the AC power supply unit cycle. There is an effect that notification can be performed.
  • the primary side circuit of the power failure detection circuit converts the AC voltage into a pulsed signal by the trigger diode, periodically turns on and off the photo power bra, and the above-mentioned cycle is detected in the event of a power failure. Since the configuration is changed, the number of parts is small and the circuit can be easily configured, which is economical.
  • the primary circuit of the power failure detection circuit is configured to turn on and off the photo power plastic by the constant voltage diode and the bidirectional thyristor, and to change the on / off cycle of the photo power bra in the event of a power failure. Therefore, it has the effect of being economical because a circuit can be configured with simple parts.
  • the power failure detection circuit includes a primary circuit that applies a pulsed AC signal extracted from a portion having a predetermined voltage or more to the bidirectional photo power bra, and an on / off of the bi-directional photo power bra. Because the primary side circuit uses an AC power source as the drive power for the circuit, a separate auxiliary power source is supplied to the primary side circuit. It is not necessary to reduce power consumption and save energy, and since AC signals are used without being rectified, the number of circuit parts is reduced and the economy is reduced. Power outages and momentary power outages are detected, and the power supply destination electronic device can be notified of power outages quickly.
  • the primary side circuit of the power failure detection circuit is configured to periodically turn on and off the bidirectional photo power bra by the trigger diode, and to change the above cycle in the event of a power failure.
  • the secondary side circuit of the power failure detection circuit employs a configuration in which the comparator detects a power failure of the AC power source when the ON / OFF period of the light receiving transistor changes. Power outages and momentary power outages are detected within a short period of the unit cycle, and the power outage electronic device can be notified of power outages quickly.
  • the AD converter that converts the terminal voltage of the voltage holding capacitor to digital is employed in the voltage stabilization circuit. It is possible to predict the power supply time during which the shutdown process can be performed, and it is possible to schedule the maximum possible process within this time and perform an efficient shutdown process.
  • FIG. 1 is a circuit diagram of a power supply device according to an embodiment of the present invention.
  • FIG. 2 is a circuit diagram of another voltage stabilization circuit according to the embodiment.
  • FIG. 3 is a circuit diagram of a first power failure detection circuit according to the embodiment.
  • FIG. 4 is an operation explanatory diagram of the secondary circuit in the power failure detection circuit according to the embodiment.
  • FIG. 5 is a circuit diagram of a second power failure detection circuit according to the embodiment.
  • FIG. 6 is a circuit diagram of a third power failure detection circuit according to the embodiment.
  • FIG. 7 is a circuit diagram of a fourth power failure detection circuit according to the embodiment.
  • FIG. 8 is a circuit diagram of a fifth power failure detection circuit according to the embodiment.
  • FIG. 9 is a circuit diagram of a sixth power failure detection circuit according to the embodiment.
  • FIG. 10 is a circuit diagram of a voltage stabilization circuit using the AD converter according to the embodiment.
  • FIG. 11 is a diagram showing changes in the terminal voltage of the voltage holding capacitor during a power failure.
  • FIG. 12 is a circuit diagram of another voltage stabilization circuit using the AD converter according to the embodiment.
  • FIG. 13 is a circuit diagram of a power supply device according to a conventional example.
  • FIG. 14 is a circuit diagram of a power failure detection circuit according to a conventional example.
  • FIG. 1 shows a power supply device according to an embodiment.
  • This power supply device has a voltage stabilization circuit 1, a voltage conversion circuit 14 and a power failure detection circuit 12 (first power failure detection circuit), and is stable as an uninterruptible power supply to electronic devices (computer devices, etc.) to be supplied. Supply DC power to
  • the voltage stabilizing circuit 1 includes a bridge-type rectifier 2 for full-wave rectification, a smoothing capacitor 4, a voltage holding capacitor 6 that stores and holds charges, a resistor 8, and a diode 10.
  • the smoothing capacitor 4 is mainly used for the purpose of smoothing, and has a capacity comparable to that of a smoothing capacitor used in a normal smoothing circuit.
  • the smoothing capacitor 4 is connected to the rectifier 2 in parallel.
  • the voltage holding capacitor 6 is connected in parallel to the smoothing capacitor 4 via a resistor 8, and the electric charge accumulated in the voltage holding capacitor 6 is output via a diode 10.
  • the capacitors are separated into the smoothing capacitor 4 and the voltage holding capacitor 6, and thereby the smoothing capacitor 4 is formed in a small capacity to be mainly smoothed.
  • the voltage holding capacitor 6 is formed with a large capacity to supply sufficient stored charge during a power failure. The voltage holding capacitor 6 is slowly charged through the resistor 8, thereby preventing an excessive inrush current from being generated in the voltage holding capacitor 6 at the start-up when no charge is accumulated.
  • the capacity of the smoothing capacitor 4 is 100 ⁇ F to 300 ⁇ F, and the capacity of the voltage holding capacitor 6 is 1000 ⁇ F to 30000 ⁇ F. This capacity can be further increased. In this case, the problem of discharge treatment for ensuring safety occurs. In this way, the capacity of the voltage holding capacitor 6 can be formed to be considerably larger than the capacity of the smoothing capacitor 4 (possibly 10 to 1000 times), but practically about 10 to 100 times. In order to secure a sufficient voltage holding time, 20 times to 100 times is appropriate.
  • the charging time of the voltage holding capacitor 6 can be adjusted by adjusting the resistance value of the resistor 8.
  • the resistance value of the resistor 8 may be set so that charging is completed within the time when the startup operation system completes the startup process in the computer device to which power is supplied.
  • the resistance value of the resistor 8 is lk ⁇ .
  • the voltage conversion circuit 14 is a circuit that steps down a DC voltage to a predetermined DC voltage by DC-DC conversion. The voltage conversion circuit 14 steps down the primary side voltage to generate a secondary side voltage, but can always generate a constant secondary side voltage with respect to fluctuations in the primary side voltage.
  • FIG. 2 is a circuit diagram in which a power factor correction circuit 13 (PFC circuit: Power Factor Cont roller) is added to the voltage stabilization circuit 1.
  • the power factor correction circuit 13 is a circuit that improves the power factor and regulates harmonics, and includes a capacitor 3, a coil 5, a switching circuit 7 using a transistor, a resistor 9, a voltage limiting circuit 19 including an IC, and a diode 11.
  • the power factor correction circuit 13 rectifies an AC power supply (AC) by a rectifier 2, passes through a coil 5, is turned on / off by a switching circuit 7, and thereby the back electromotive force of the coil 5 is converted to a diode 11 And stored in the smoothing capacitor 4. Further, the voltage of the smoothing capacitor 4 is limited by the voltage limiting circuit 19 so that it does not exceed a predetermined voltage (for example, 370 V), and is output.
  • a predetermined voltage for example, 370 V
  • FIG. 3 shows the first power failure detection circuit 12.
  • the power failure detection circuit 12 is connected to the primary side circuit to which the AC power to be detected is input, and the primary side circuit is connected to the primary side circuit via the photopower bra 24, and is electrically insulated from the primary side circuit.
  • With secondary circuit In the primary side circuit, the AC power source itself is used as the power source for driving the circuit. For this reason, the primary side circuit and the secondary side circuit are separated from each other by using a photo power bra. . Further, the secondary side circuit uses the DC power source from the voltage conversion circuit 14 as an auxiliary power source.
  • the photo power bra 24 includes a light emitting diode and a light receiving transistor that operates by receiving the light emitting diode.
  • the primary circuit includes a resistor 15 and a capacitor 16 that form a CR circuit, a trigger diode (DIAC) 18, a full-wave rectifier diode 22, a resistor 20, and a photocoupler 24.
  • the trigger diode 18 suddenly becomes conductive when a voltage of a predetermined level or higher is applied, and the photo-power bra 24 is turned on by the conduction of the trigger diode 18.
  • the secondary side circuit connected via the photo force bra 24 includes a resistor 26, a capacitor 28, voltage dividing resistors 30 and 32, and a comparator 34.
  • the comparator 34 compares the inputs from the two input terminals (+ terminal, ⁇ terminal).
  • the capacitor 28 is connected in parallel with the light receiving transistor of the photocoupler 24, and the capacitor 28 is connected to the input terminal (+ terminal) of the comparator 34.
  • the reference voltage is input to the input terminal (one terminal) of the comparator 34.
  • a power source 36 for driving the secondary circuit is supplied from the voltage conversion circuit 14.
  • the primary side circuit of the first power failure detection circuit is a time constant circuit composed of a resistor 15 and a capacitor 16 connected to an AC power source (AC), and the capacitor 16 is charged by the AC power source, When this charging voltage reaches the on-voltage of the trigger diode 18, the trigger diode 18 becomes conductive. Then, the electric charge charged in the capacitor 16 passes through the trigger diode 18 and is further rectified through the diode 22, and when this passes through the photocoupler 24, the light emitting diode emits light, and this is received by the light receiving transistor. Photo Power Bra 24 is turned on.
  • the discharge of the capacitor 28 is performed through the light receiving transistor of the photocoupler 24 according to the ON state of the photopower bra 24, and the capacitor 28 The voltage drops abruptly (the part of the voltage waveform in Figure 4 that falls to the right). This phenomenon continues in the primary circuit while the capacitor 16 is discharged through the trigger diode 18 (until the breakover voltage), and in this short period the capacitor 28 is discharged to almost zero voltage.
  • the trigger diode 18 becomes non-conductive and the photopower bra 24 also turns off.
  • the capacitor 28 in the secondary circuit is charged and the voltage rises (the portion of the voltage waveform in FIG. 4 that rises to the right).
  • the time axis represents the case where the AC power supply is 50 Hz (half-wave waveform every 10 ms).
  • This voltage waveform indicates that the trigger diode 18 repeats the conduction / non-conduction cycle every 10 ms, thereby repeating the on / off state of the photocoupler 24.
  • the voltage of the capacitor 28 has a voltage waveform that is repeated in a sawtooth manner.
  • the primary side circuit has a configuration in which the rectified and pulsed AC power source is used as it is for driving the photocabler 24, and therefore, this circuit does not require an auxiliary power source.
  • the resistor 15 can be set to 500 k ⁇ or more, and the capacitor 16 can be set to about 0.01 zF. For this reason, the current flowing in the primary circuit can be kept very low, from several tens of ⁇ ⁇ to several hundred ⁇ or less (about several hundred mA in a circuit using a conventional auxiliary power supply), and almost all power is required. And not.
  • the threshold level L corresponds to the reference voltage of the comparator 34, and when this level L is exceeded, a power failure is detected. By setting this level L appropriately, it is possible to detect even 50Hz half-wave, that is, 10ms power failure.
  • the threshold level L is approximately twice the peak value of the sawtooth waveform in the voltage waveform of FIG.
  • This detection signal is a power failure detection signal generated when the trigger diode 18 is turned off due to a power failure.
  • the power failure detection circuit can detect a momentary power failure that occurs during a half-wave of 50 Hz, that is, 10 ms after a power failure occurs in the AC power supply (50 Hz).
  • the time required to detect this power failure is 20 ms at maximum when the threshold level is set to L (until the voltage at the part rising to the right in Fig. 4 reaches 0 to L). Later, detection becomes possible after a minimum of 10 ms (until the voltage in the dotted line on the right in Fig. 4 reaches L / 2 to L).
  • a computer device requires several tens of seconds to several minutes from when the power is turned on until the operation system completes startup. Therefore, if the voltage holding capacitor 6 can be charged during the startup, there will be no problem with the power supply after startup. Depending on the capacity of the voltage holding capacitor 6, it can be considered that it can be sufficiently charged with a current of 10 mA or less.
  • the power failure detection circuit 12 detects this power failure after 10 ms to 20 ms. Notify the computer of the detection signal. The computer device immediately starts the shutdown process. On the other hand, the voltage stabilizing circuit 1 starts discharging from the voltage holding capacitor 6 following the smoothing capacitor 4, DC power is directly supplied to the computer device via the diode 10, and the shutdown process is continued. .
  • the voltage holding capacitor 6 can be formed with a very large capacity, so that a sufficient amount of power can be supplied to the computer device during a power failure. For this reason, the backup system using the conventional storage battery becomes unnecessary.
  • the electrolytic capacitor used as the voltage holding capacitor 6 has a long life, so that maintenance is not required and the operation cost can be reduced.
  • the storage battery is required to have a charging circuit for charging and guaranteeing self-discharge.
  • these circuits are unnecessary, and the power supply device can be configured extremely safely and efficiently. Therefore, it is an ideal power supply for a computer device to which power is supplied.
  • the smoothing capacitor 4 since the voltage holding capacitor 6 exists, the smoothing capacitor 4 only needs to serve as a smoothing capacitor and has a small capacity.
  • the power failure detection circuit 12 is configured to directly drive the photo power bra using an AC power source and a signal obtained by rectifying the AC power source, and therefore, a DC auxiliary power source is not required for the primary side circuit. For this reason, the number of parts is reduced, the economy is excellent, and the power consumption is small, so that energy can be saved. In addition, it is difficult to detect a momentary power failure (several tens of ms to several hundred ms) that is currently a problem with the conventional detection circuit. The instantaneous power failure can be detected in a short time.
  • FIG. 5 shows the second power failure detection circuit 17.
  • This power failure detection circuit has a resistor 15, a capacitor 16, a trigger diode 18, a bidirectional photopower bra 40 and a resistor 20 in the primary side circuit.
  • the bidirectional photo power bra 40 is a photo power bra corresponding to an AC input in which a light emitting diode is connected in antiparallel to the input side.
  • the rectifying diode can be reduced and the cost can be reduced.
  • the secondary side circuit connected via the bidirectional photo power bra 40 is the same as the secondary side circuit of the first power failure detection circuit 12.
  • the capacitor 16 is charged by an AC power supply (AC), and when the voltage of the capacitor 16 exceeds a predetermined voltage, the trigger diode 18 is turned on and connected to the trigger diode 18 in series. Drive bidirectional photo power bra 40. Then, the light emitting diode in the bidirectional photo force bra 40 emits light, the light receiving transistor becomes conductive, and the bidirectional photocoupler 40 is turned on. Eventually, when the charging voltage of the capacitor 16 decreases, the trigger diode 18 becomes non-conductive, and the bidirectional photo power bra 40 is turned off.
  • AC AC power supply
  • the capacitor 16 is charged again by the AC power source (the sign of the sine wave is inverted), and when the on-voltage of the trigger diode 18 is reached, the capacitor 16 becomes conductive, and the bidirectional photo force bra 40 is turned on. Become.
  • This bidirectional photo power bra 40 repeats the on / off state (100 times / sec) in accordance with the cycle of the AC power supply (50 Hz). While the bidirectional photocoupler 40 is periodically turned on and off, the capacitor 28 of the secondary side circuit cannot rise above a certain voltage, and the detection signal from the comparator 34 is not output.
  • the bidirectional photo power bra 40 when a power failure or voltage drop occurs in the AC power supply, the voltage of the capacitor 16 decreases, the trigger diode 18 remains non-conductive, and the bidirectional photo power bra 40 also remains off.
  • the capacitor 28 continues to be charged, a voltage exceeding the reference voltage is applied to the input terminal (+ terminal) of the comparator 34, and a power failure detection signal is output from the comparator 34.
  • the bidirectional photo force bra 40 operates with respect to alternating current, and the primary side circuit is configured to use an alternating current power source for driving the bidirectional photo force bra 40 as it is. Is unnecessary.
  • FIG. 6 shows a third power failure detection circuit 45.
  • This power failure detection circuit is The circuit has rectifier 42 for full-wave rectification, capacitor 44, resistors 43, 46, 48, constant voltage diode 50, thyristor connection circuit consisting of NPN transistor 52 and PNP transistor 53, and photopower bra 24 .
  • the secondary side circuit connected via the photo force bra 24 is the same as the secondary side circuit of the first power failure detection circuit 12.
  • This power failure detection circuit 45 can use a transistor and a constant voltage diode without using a trigger diode or thyristor, and can make the circuit element an IC.
  • the primary side circuit rectifies the AC power source with the rectifier 42, and when the voltage of the capacitor 44 storing the AC power exceeds the breakdown voltage of the constant voltage diode 50, the current flows to the constant voltage diode 50 through the base of the transistor 53. Current flows from the collector of the transistor 53 to the base of the transistor 52. Since the collector of the transistor 52 is connected to the base of the transistor 53, the base current of the transistor 53 further increases, and both the transistors 52 and 53 are completely turned on immediately. When the transistors 52 and 53 are turned on, the photopower bra 24 connected in series with the transistors 52 and 53 is turned on.
  • the voltage of the capacitor 44 cannot exceed the breakdown voltage of the constant voltage diode 50, so that the transistors 52 and 53 cannot be turned on, and the photopower Bra 24 remains off.
  • the capacitor 28 continues to be charged, a voltage exceeding the reference voltage is applied to the input terminal (+ terminal) of the comparator 34, and a power failure detection signal is output from the comparator 34.
  • the primary side circuit is configured to rectify an AC power source and use it for driving the photopower bra 24, an auxiliary power source is not required for this circuit.
  • FIG. 7 shows a fourth power failure detection circuit 47.
  • This power failure detection circuit is a trigger element.
  • a bidirectional thyristor 54 is used as a child.
  • the bidirectional thyristor 54 is basically the same in operation as the transistors 52 and 53, and both are equivalent.
  • the bidirectional thyristor 54 is used for the purpose of conducting the bidirectional thyristor 54 by flowing a gate current from the bidirectional thyristor 54 toward the constant voltage diode 50. Because the direction is different, it cannot be used for this circuit.
  • the power failure detection circuit 47 includes a rectifier 42, a capacitor 44, resistors 43, 46, and 48, a constant voltage diode 50, a bidirectional thyristor 54, and a photocoupler 24 on a primary side circuit.
  • the secondary side circuit connected via the photo force bra 24 is the same as the secondary side circuit of the first power failure detection circuit 12.
  • This primary side circuit rectifies the AC power supply by the rectifier 42, and when the voltage of the capacitor 44 storing the AC power exceeds the breakdown voltage of the constant voltage diode 50, the constant voltage diode is passed through the gate of the bidirectional thyristor 54. A current flows through 50, and the bidirectional thyristor 54 becomes conductive by this gate current. Then, the photo force bra 24 connected in series to the bidirectional thyristor 54 is turned on.
  • the capacitor 44 cannot exceed the breakdown voltage of the constant voltage diode 50. For this reason, the gate current does not flow through the bidirectional thyristor 54, and the bidirectional thyristor 54 cannot shift to the conductive state, so that the photo force bra 24 is maintained in the OFF state.
  • the capacitor 28 continues to be charged, and a power failure detection signal is output from the comparator 34.
  • the primary side circuit is configured to rectify an AC power source and directly use it for driving the photopower bra 24, an auxiliary power source is not necessary for this circuit.
  • FIG. 8 shows a fifth power failure detection circuit 55.
  • This power failure detection circuit is a trigger element.
  • the thyristor 60 is used for the child. Instead of the thyristor 60, a thyristor connection circuit including the NPN transistor 52 and the PNP transistor 53 can be employed.
  • the power failure detection circuit 55 includes a rectifier 42, a capacitor 44, resistors 43, 46, 58, a constant voltage diode 56, a photocoupler 24, and a thyristor 60 on a primary side circuit.
  • the secondary side circuit connected via the photo force bra 24 is the same as the secondary side circuit of the first power failure detection circuit 12.
  • This primary side circuit rectifies the AC power supply (AC) by the rectifier 42, and when the voltage of the capacitor 44 storing the rectifier exceeds the breakdown voltage of the constant voltage diode 50, the constant voltage diode 56 becomes conductive. . Due to the conduction of the constant voltage diode 56, a gate current flows through the thyristor 60 and the thyristor 60 becomes conductive, and the photocoupler 24 connected in series to the thyristor 60 is turned on.
  • AC AC
  • the voltage of the capacitor 44 cannot exceed the breakdown voltage of the constant voltage diode 56. For this reason, the gate current does not flow through the thyristor 60, and the thyristor 60 cannot shift to the conductive state, and the photopower bra 24 is maintained in the off state. As a result, the capacitor 28 continues to be charged in the secondary circuit, and the comparator 34 power failure detection signal is output.
  • the primary circuit does not require an auxiliary power supply.
  • FIG. 9 shows a sixth power failure detection circuit 69.
  • This power failure detection circuit uses a bidirectional thyristor 54 as a trigger element, and two constant voltage diodes 70 and 71, and does not rectify the AC power supply. 40 is driven.
  • the bidirectional thyristor 54 can be replaced with a transistor thyristor connection circuit as in the third power failure detection circuit.
  • two thyristor connection circuits using transistors are used.
  • it requires a circuit configuration that allows current to flow only in one direction to the circuit, which complicates the circuit.
  • This power failure detection circuit 69 has a capacitor 64, resistors 62, 66, 68, constant voltage diodes 70, 71, a bidirectional thyristor 54, and a bidirectional photocoupler 40 on the primary side circuit.
  • the secondary circuit connected via the bidirectional photo force bra 40 is the same as the secondary circuit of the first power failure detection circuit 12.
  • the constant voltage diodes 70 and 71 are connected in series with opposite polarities so as to operate with respect to both positive and negative voltages.
  • the same effect as that of the first power failure detection circuit is obtained, and the photo power bra is driven by directly using the AC power supply and a signal obtained by rectifying the same. Therefore, this primary side circuit does not require a DC auxiliary power supply.Therefore, the number of parts is reduced, it is economical, power consumption is small, and energy saving is achieved. Power outages and momentary power outages are detected in a short period of unit cycle. There is an effect that a power failure can be quickly notified to the electronic device to which power is supplied.
  • FIG. 10 is a circuit diagram in which an AD converter 74 is added to the voltage stabilization circuit shown in FIG.
  • the voltage stabilizing circuit shown in FIG. 10 has the same basic circuit configuration as that of the voltage stabilizing circuit of FIG. 2, and the same components are denoted by the same reference numerals and detailed description thereof is omitted.
  • the AD converter 74 is connected between both terminals of the voltage holding capacitor 6, measures the output voltage of the voltage holding capacitor 6, converts it to a digital voltage, and outputs it.
  • the output of the AD converter 74 is input to a computer device to which power is supplied, and the computer device calculates a supplyable time during which a power supply can be received from the voltage holding capacitor 6 in the event of a power failure.
  • the computer apparatus ends the shutdown operation within the supply available time.
  • the power supply for the AD converter 74 is supplied from the voltage conversion circuit 14.
  • the computer device When the internal processing program is activated and the computer device receives a power failure detection signal from the power failure detection circuit 12, the computer device changes the output voltage of the voltage holding capacitor 6 through the AD converter 74 for a certain period of time. Measure every time.
  • This voltage holding capacitor 6 holds a predetermined voltage (for example, 370 V) immediately before the power failure, and discharge starts at the same time as the power failure, and the terminal voltage decreases.
  • the terminal voltage (V) of the accompanying voltage holding capacitor 6 is expected to change with time as shown in Fig. 11.
  • the computer device when the terminal voltage is relatively high, the rate of voltage drop is relatively linear. Therefore, the computer device considers that the rate is constant and can be supplied with power. Predict. For this reason, the computer device checks the time (lm s to 100 ms (preferably 10 ms to 20 ms) when the terminal voltage (V) of the voltage holding capacitor 6 starts to decrease (P_1: detection level). )) Measure the voltage every time and assume that the rate of this voltage drop is constant thereafter.
  • the power supply available time (T) is calculated and determined. For example, when the power failure detection signal is received, the terminal voltage of the voltage holding capacitor 6 is measured, and thereafter, the terminal voltage is measured once to several times at the predetermined intervals, and then the average voltage drop is reduced. Find the percentage. In this embodiment, the rate of voltage drop was determined from the terminal voltage at two points, the point when the power failure detection signal was received and the point 10 ms later.
  • the computer apparatus performs a shutdown process as much as possible within the range of the power supply possible time (T). For this reason, the computer device can schedule the maximum possible processing within this time by predicting the available time for shutdown processing in the event of a power failure. Shutdown processing can be performed.
  • FIG. 12 is a circuit diagram in which a CPU circuit 76 is further added to the AD converter 74 of the voltage stabilization circuit shown in FIG.
  • the CPU circuit 76 includes a CPU, a memory, and a control circuit, and can perform predetermined arithmetic processing, etc., and calculates the supplyable time (T) for the shutdown operation based on the digital voltage output from the AD converter 74. And output this. Then, the computer device performs a shutdown process based on the supply available time.
  • the calculation contents for determining the supplyable time are the same as those performed by the computer device described above.
  • the power supply of the CPU circuit 76 is supplied from the voltage conversion circuit 14.
  • the computer device may not be able to guarantee that the calculation process of the supplyable time is appropriately performed.
  • the computer device may not be able to guarantee that the calculation process of the supplyable time is appropriately performed.
  • by providing a dedicated CPU circuit 76 in the voltage stabilization circuit it is possible to appropriately calculate the supplyable time, reduce the load on the computer device, and improve the reliability of the entire computer device. be able to.

Landscapes

  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Stand-By Power Supply Arrangements (AREA)
  • Rectifiers (AREA)
  • Power Sources (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Dc-Dc Converters (AREA)

Abstract

A power supply apparatus for supplying power to a computer device or the like, wherein in case of power failure, a sufficient amount of power can be supplied, the structure is simple and an excellent cost-effectiveness is achieved. The power supply apparatus comprises a rectifier (2) for rectifying an AC voltage supplied from an AC power supply source; a voltage stabilizing circuit in which a smoothing capacitor (4) connected to the rectifier is further connected in parallel to a voltage holding capacitor (6), which has a larger capacitance than the smoothing capacitor, via a resistor (8); a voltage converting circuit (14) DC/DC converts an output voltage from the voltage stabilizing circuit to a lower voltage; and a power failure detecting circuit (12) for detecting a power failure of the AC power supply source.

Description

明 細 書  Specification
電源装置  Power supply
技術分野  Technical field
[0001] 本発明は、コンピュータ装置等の電子機器に電源を供給する電源装置に関する。  The present invention relates to a power supply device that supplies power to an electronic device such as a computer device.
背景技術  Background art
[0002] コンピュータ装置等に不慮の電源事故、即ち停電、瞬間的な停電、電圧降下など が発生した場合、コンピュータ装置は適切なシャットダウン処理をしないと、ファイル の破損、損失、甚だしい場合はハードディスクの破損等が起きる可能性がある。これ に対して、上記電源事故を防止するために、図 13に示す無停電電源装置が開発さ れている。  [0002] In the event of an unexpected power failure, such as a power outage, momentary power outage, voltage drop, etc. on a computer device, etc., the computer device must be properly shut down, causing file corruption, loss, Damage may occur. On the other hand, the uninterruptible power supply shown in Fig. 13 has been developed to prevent the above power accident.
[0003] この電源装置は、直流電源を供給するための全波整流器 82、平滑コンデンサ 84、 及び直流の電圧変換回路 86を有する一方、停電時に対処するための停電検出回 路 88、充電回路 90、蓄電池 91、電圧変換回路 92及び切り替え回路 94を有してい る。この電源装置はコンピュータ装置に直流電源を供給する一方、停電時には上記 蓄電池 91から電源を供給し、停電検出回路 88から停電状態の通知を受けたコンビ ユータ装置は適切なシャットダウン処理を行う。  This power supply device has a full-wave rectifier 82 for supplying DC power, a smoothing capacitor 84, and a DC voltage conversion circuit 86, while a power failure detection circuit 88 and a charging circuit 90 for coping with a power failure. And a storage battery 91, a voltage conversion circuit 92, and a switching circuit 94. While this power supply device supplies DC power to the computer device, it supplies power from the storage battery 91 in the event of a power failure, and the computer device that has received the power failure status notification from the power failure detection circuit 88 performs an appropriate shutdown process.
[0004] また、特許文献 1に示すように、上記蓄電池を使わない電源装置の開発も行われ、 この電源装置は電源回路における平滑コンデンサの容量を大きくし、停電時にはこ の平滑コンデンサに蓄積された電荷だけでコンピュータ装置がシャットダウンに要す る時間の間、電源を供給する試みである。  [0004] Further, as shown in Patent Document 1, a power supply device that does not use the above storage battery has also been developed. This power supply device increases the capacity of the smoothing capacitor in the power supply circuit, and is stored in this smoothing capacitor during a power failure. It is an attempt to supply power for the time it takes for the computer device to shut down using only the charge.
[0005] 一方、停電を検出する停電検出回路についても開発が行われており、例えば図 14 に示す停電検出回路が一般に知られている。この回路は、フォト力ブラ 100を用いて 一次側回路と二次側回路とを絶縁したものである。この一次側回路は、全波整流器 1 01、抵抗器 102とコンデンサ 103の時定数回路、及びスイッチング素子としてのトラ ンジスタ 104等を有している。そして、トランジスタ 104を駆動し、このトランジスタ 104 がオン時に、フォト力ブラ 100の発光ダイオードに電流を供給するため、補助電源 10 5がフォトカプラ 100に直列に配置されている。 [0006] 上記停電検出回路では、交流電源が正常に供給されている間はコンデンサ 103が 充電され、この充電電圧によりトランジスタ 104が導通する。トランジスタ 104の導通に より、フォト力ブラ 100の発光ダイオードが発光し受光トランジスタがオン状態となる。 このときフォトカプラ 100の受光トランジスタのコレクタの電圧は低下しており、このコレ クタに接続されたコンパレータ 106の端子( + )に印加される比較電圧は、端子(―) の基準電圧より低くなりコンパレータ 106の出力はオフ状態となる。 [0005] On the other hand, a power failure detection circuit for detecting a power failure has also been developed. For example, a power failure detection circuit shown in FIG. 14 is generally known. In this circuit, the primary side circuit and the secondary side circuit are insulated by using a photo force bra 100. This primary circuit includes a full wave rectifier 101, a time constant circuit of a resistor 102 and a capacitor 103, a transistor 104 as a switching element, and the like. An auxiliary power source 105 is arranged in series with the photocoupler 100 to drive the transistor 104 and supply current to the light emitting diode of the photopower bra 100 when the transistor 104 is turned on. [0006] In the power failure detection circuit, the capacitor 103 is charged while the AC power is normally supplied, and the transistor 104 is turned on by this charging voltage. When the transistor 104 is turned on, the light emitting diode of the photopower bra 100 emits light and the light receiving transistor is turned on. At this time, the collector voltage of the light receiving transistor of the photocoupler 100 has dropped, and the comparison voltage applied to the terminal (+) of the comparator 106 connected to this collector is lower than the reference voltage of the terminal (-). The output of the comparator 106 is turned off.
[0007] ここで、交流電源に停電が発生すると、上記コンデンサ 103が放電して電圧が低下 しトランジスタ 104はオフとなり、フォトカプラ 100もオフ状態となる。このとき、フォト力 プラ 100のコレクタの電圧が高くなつてコンパレータ 106の出力がオン状態となり、停 電の検出信号が出力される。このような停電検出回路では、一次側回路において交 流電源の停電を確認する回路を形成するために上記補助電源 105が不可欠であつ た。また、特許文献 2の電源回路にはフォト力ブラを用レ、た信号検出手段の記載が、 特許文献 3の電源装置には副電源回路の出力をフォト力ブラで検出する回路の記載 力 sある。 Here, when a power failure occurs in the AC power supply, the capacitor 103 is discharged, the voltage is lowered, the transistor 104 is turned off, and the photocoupler 100 is also turned off. At this time, the output of the comparator 106 is turned on when the collector voltage of the photopower plug 100 becomes high, and a detection signal for power failure is output. In such a power failure detection circuit, the auxiliary power source 105 is indispensable for forming a circuit for confirming a power failure of the AC power source in the primary side circuit. Also, the description of the signal detecting means Yore was the photo force bra to the power supply circuit of Patent Document 2, wherein power s of the circuit to the power supply apparatus of Patent Document 3 for detecting the output of the secondary power supply circuit in the photo force bra is there.
[0008] 特許文献 1 :特開昭 62— 277034号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 62-277034
特許文献 2 :特開平 9 56159号公報  Patent Document 2: JP-A-9 56159
特許文献 3 :特開 2000— 333385  Patent Document 3: JP 2000-333385
特許文献 4:実開平 6— 9346号公報  Patent Document 4: Japanese Utility Model Publication No. 6-9346
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] さて、上記無停電電源装置に使用される蓄電池 91の寿命は通常 2〜3年と短ぐ定 期的なメンテナンスと監視が必要である。そして、短時間に数回の停電事故が発生し た場合には、蓄電池に十分な充電ができないまま放電を繰り返すことから、電源装置 が十分に機能しなくなる等の欠点がある。更に蓄電池は、充電するため及び自己放 電を保証するための電流が必要であり、このため不要な電力損失が発生し、また充 電のための充電回路が必要となり、併せて停電時と通常時の切り替えが必要であり その回路と切り換え時間等の損失が問題であった。特許文献 4には、停電時には補 助コンデンサを備えたバックアップ電源部から給電を行う回路の記載があるが、この 回路についても切り換え時間の損失が問題となる。 [0009] Now, the life of the storage battery 91 used in the uninterruptible power supply is usually 2 to 3 years, which requires regular maintenance and monitoring. In the case of several power outage accidents in a short time, the battery is repeatedly discharged without being fully charged, so that the power supply device does not function sufficiently. In addition, the storage battery needs current to charge and to guarantee self-discharge, which causes unnecessary power loss and a charging circuit for charging. Switching between times was necessary, and the loss of the circuit and switching time was a problem. Patent Document 4 describes a circuit that supplies power from a backup power supply unit equipped with an auxiliary capacitor in the event of a power failure. The loss of switching time is also a problem for the circuit.
[0010] また、上記平滑コンデンサ 84を用いた電源装置を通常のコンピュータ装置の電源 に使用した場合、この平滑コンデンサが電源を供給出来る時間は 20ms〜40ms程度 と非常に短い。このため、コンピュータ装置がシャットダウンする間電源を供給する為 には平滑コンデンサの容量を相当大きくする必要がある。しかし、この平滑コンデン サの容量を大きくした場合には、電源投入時に非常に大きな突入電流が流れるため 、特殊な突入電流防止回路等を必要とする。また、動作時の電源の入力側から見た 平滑回路のインピーダンスが非常に低い為、電源電圧が変動した場合に非常に大き な電流が流れ、電源のブレーカが落ちたり、或いは整流ダイオードが破壊する等が 考えられ、大きな容量の平滑コンデンサは簡単には使用出来ないという問題があつ た。  [0010] Further, when the power supply device using the smoothing capacitor 84 is used as a power supply for a normal computer device, the time during which the smoothing capacitor can supply power is as short as about 20 ms to 40 ms. For this reason, in order to supply power while the computer device is shut down, the capacity of the smoothing capacitor needs to be considerably increased. However, when the capacity of this smoothing capacitor is increased, a very large inrush current flows when the power is turned on, so a special inrush current prevention circuit is required. Also, since the impedance of the smoothing circuit seen from the input side of the power supply during operation is very low, a very large current flows when the power supply voltage fluctuates, causing the power supply breaker to drop or the rectifier diode to be destroyed. For example, a smoothing capacitor with a large capacity cannot be used easily.
[0011] 一方、上記従来の停電検出回路は、一次側回路の停電確認の機能を発揮させる ためには補助電源 105が不可欠である。この停電検出回路は、一次側回路と二次側 回路のアース回路を独立させているため、上記補助電源 105として二次側回路から 電源の供給を受けることができず、別途、補助電源用の直流電源回路が必要となり、 更に補助電源は効率が悪いため消費電力が無視できないという問題がある。また、 交流電源に停電が発生すると、上記コンデンサ 103が放電して電圧が低下しないと 停電が検出できない構成であるため、停電検出にまでに時間がかかり、また瞬断など の停電の検出が困難であるという問題があった。  On the other hand, in the conventional power failure detection circuit, the auxiliary power source 105 is indispensable for exerting the power failure confirmation function of the primary circuit. In this power failure detection circuit, the ground circuit of the primary side circuit and the secondary side circuit are independent from each other. Therefore, the auxiliary power source 105 cannot receive power from the secondary side circuit. A DC power supply circuit is required, and the auxiliary power supply has a problem that power consumption cannot be ignored due to poor efficiency. In addition, when a power failure occurs in the AC power supply, it is impossible to detect a power failure unless the capacitor 103 is discharged and the voltage drops, so it takes time to detect the power failure and it is difficult to detect a power failure such as a momentary power failure. There was a problem of being.
[0012] 本発明は上記問題点を解決するためになされたものであり、停電時に十分な量の 電源供給が行えるとともに構成が簡易で経済性にも優れた電源装置を提供すること を目的とする。  The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a power supply apparatus that can supply a sufficient amount of power during a power failure, has a simple structure, and is economical. To do.
課題を解決するための手段  Means for solving the problem
[0013] 以上の技術的課題を解決するため、本発明に係る電源装置は、図 1に示すように、 交流電源から供給される交流電圧を整流する整流器 2と、この整流器に接続される 平滑コンデンサ 4及びこの平滑コンデンサとは抵抗器 8を介して並列に接続され、上 記平滑コンデンサより容量が大きい電圧保持コンデンサ 6が設けられた電圧安定化 回路と、この電圧安定化回路からの出力電圧を DC— DC変換して降圧する電圧変 換回路 14と、上記交流電源の停電を検出する停電検出回路 12と、を有する構成で ある。 In order to solve the above technical problems, a power supply device according to the present invention includes a rectifier 2 that rectifies an AC voltage supplied from an AC power supply, and a smoothing connected to the rectifier, as shown in FIG. Capacitor 4 and this smoothing capacitor are connected in parallel via resistor 8, and a voltage stabilization circuit provided with voltage holding capacitor 6 having a larger capacity than the smoothing capacitor, and an output voltage from this voltage stabilization circuit Voltage is stepped down by DC to DC conversion This is a configuration having a conversion circuit 14 and a power failure detection circuit 12 for detecting a power failure of the AC power source.
[0014] 本発明に係る電源装置は、上記電圧保持コンデンサ 6の容量を、上記平滑コンデ ンサ 4の容量より 10倍〜 100倍程度大きく形成した構成である。  The power supply device according to the present invention has a configuration in which the capacity of the voltage holding capacitor 6 is formed about 10 to 100 times larger than the capacity of the smoothing capacitor 4.
[0015] 本発明に係る電源装置は、上記整流器 2に力率改善回路 13を接続し、このカ率改 善回路の出力を上記平滑コンデンサ 4及び上記電圧保持コンデンサ 6に接続した構 成である。  The power supply device according to the present invention has a configuration in which a power factor correction circuit 13 is connected to the rectifier 2 and an output of the power factor improvement circuit is connected to the smoothing capacitor 4 and the voltage holding capacitor 6. .
[0016] 本発明に係る電源装置の上記停電検出回路は、上記交流電源を直接用いて回路 を駆動する一次側回路と、上記電圧変換回路から電源の供給を受けて稼動する二 次側回路とからなる構成である。  [0016] The power failure detection circuit of the power supply device according to the present invention includes a primary side circuit that directly drives the circuit using the AC power supply, and a secondary side circuit that operates by receiving power supply from the voltage conversion circuit. It is the composition which consists of.
[0017] 本発明に係る電源装置の上記停電検出回路は、上記交流電圧から所定電圧以上 の部分を抽出してパルス化するとともに整流し、これをフォトカプラ 24の発光ダイォー ドに印加する一次側回路と、上記フォト力ブラを介して接続され、このフォト力ブラの 受光トランジスタのオンオフの周期の変化に基づき上記交流電源の停電を検出する 二次側回路とからなる構成である。  [0017] The power failure detection circuit of the power supply device according to the present invention extracts a portion of a predetermined voltage or more from the AC voltage and pulsates and rectifies it, and applies this to the light emitting diode of the photocoupler 24. And a secondary circuit that detects a power failure of the AC power supply based on a change in the ON / OFF cycle of a light receiving transistor of the photopower bra.
[0018] 上記停電検出回路の一次側回路は、上記交流電圧をトリガーダイオード 18によつ て所定電圧以上の正及び負のパルス状の信号に変換し、これを整流回路を介して 上記フォト力ブラ 24に入力してこのフォト力ブラを周期的にオンオフし、上記交流電 源が停電又は降圧により上記所定電圧より低下した際には、上記トリガーダイオード を非導通に維持して上記フォト力ブラの受光トランジスタのオンオフの周期を変化さ せる構成である。  [0018] The primary side circuit of the power failure detection circuit converts the alternating voltage into positive and negative pulse signals having a predetermined voltage or higher by the trigger diode 18, and converts the signal to the photo force via the rectifier circuit. The photo power bra is periodically turned on / off by inputting it into the bra 24, and when the AC power source falls below the predetermined voltage due to a power failure or step-down, the trigger diode is kept non-conductive and the photo power bra is turned off. In this configuration, the on / off cycle of the light receiving transistor is changed.
[0019] 上記停電検出回路の一次側回路は、上記交流電圧を整流した電流を定電圧ダイ オード 50に印加させる一方、上記定電圧ダイオードの力ソード端子に双方向サイリス タ 54のゲート端子を接続し、降伏電圧による上記定電圧ダイオードの導通により、上 記双方向サイリスタを導通させ、これにより上記フォト力ブラ 24をオンし、上記交流電 圧の変化時に上記双方向サイリスタを非導通にして上記フォト力ブラをオフして上記 フォト力ブラを周期的にオンオフし、上記交流電源の停電の際には、上記双方向サイ リスタを非導通に維持することで上記フォト力ブラの受光トランジスタのオンオフの周 期を変化させる構成である。 [0019] The primary side circuit of the power failure detection circuit applies a current obtained by rectifying the AC voltage to the constant voltage diode 50, and connects the gate terminal of the bidirectional thyristor 54 to the force sword terminal of the constant voltage diode. Then, the bidirectional voltage thyristor is made conductive by the conduction of the constant voltage diode by the breakdown voltage, thereby turning on the photo force bra 24, and the bidirectional thyristor is made non-conductive when the AC voltage is changed. The photobra is turned on and off periodically by turning off the power bra, and in the event of a power failure of the AC power supply, the bidirectional thyristor is kept non-conductive to turn on and off the light receiving transistor of the photopower bra. Zhou It is a configuration that changes the period.
[0020] 本発明に係る電源装置の上記停電検出回路は、上記交流電圧から所定電圧以上 の部分を抽出して正及び負にパルス化した交流信号を、双方向フォト力ブラ 40の発 光ダイオードに印加する一次側回路と、上記双方向フォト力ブラを介して接続され、こ の双方向フォト力ブラの受光トランジスタのオンオフの周期の変化に基づき上記交流 電源の停電を検出する二次側回路とからなる構成である。  [0020] The power failure detection circuit of the power supply device according to the present invention includes: And a secondary side circuit that is connected to the primary side circuit to be applied to the AC power source and detects a power failure of the AC power source based on a change in the ON / OFF cycle of the light receiving transistor of the bidirectional photo force bra. It is the composition which consists of.
[0021] 上記停電検出回路の一次側回路は、上記交流電圧をトリガーダイオード 18によつ て所定電圧以上の正及び負のパルス状の信号に変換し、これを上記双方向フォト力 ブラ 40に入力してこの双方向フォト力ブラを周期的にオンオフさせ、上記交流電源が 停電又は降圧により上記所定電圧以下に低下した際には、上記トリガーダイオードを 非導通に維持して上記双方向フォト力ブラの受光トランジスタのオンオフの周期を変 化させる構成である。  [0021] The primary side circuit of the power failure detection circuit converts the alternating voltage into positive and negative pulsed signals of a predetermined voltage or higher by the trigger diode 18 and converts it into the bidirectional photopower block 40. The bidirectional photo power bra is periodically turned on and off, and when the AC power supply drops below the predetermined voltage due to a power failure or step-down, the trigger diode is kept non-conductive to maintain the bidirectional photo power bra. In this configuration, the ON / OFF cycle of the light receiving transistor of the bra is changed.
[0022] 上記停電検出回路の二次側回路は、上記受光トランジスタと並列に接続され、この 受光トランジスタの周期的なオンオフに基づき放電充電を繰り返すコンデンサ 28と、 このコンデンサの電圧と基準電圧との差を比較するコンパレータ 34とを有し、上記受 光トランジスタのオンオフの周期が変化した場合に、上記コンデンサの充電電圧が上 記基準電圧を越えることで、上記コンパレータが上記交流電源の停電を検出する構 成である。  [0022] The secondary circuit of the power failure detection circuit is connected in parallel with the light receiving transistor, and repeats discharging and charging based on the periodic on / off of the light receiving transistor, and the voltage of the capacitor and the reference voltage Comparator 34 for comparing the difference, and when the ON / OFF cycle of the light receiving transistor changes, the comparator detects a power failure of the AC power supply when the charging voltage of the capacitor exceeds the reference voltage. It is a structure to do.
[0023] 上記電圧安定化回路に、停電の際に上記電圧保持コンデンサの端子電圧の変化 に基づいて電源供給が可能な時間を演算するため、上記電圧保持コンデンサの端 子電圧をデジタルの電圧に変換する ADコンバータを設けた構成である。  [0023] In order to calculate the time during which power can be supplied to the voltage stabilization circuit based on a change in the terminal voltage of the voltage holding capacitor in the event of a power failure, the terminal voltage of the voltage holding capacitor is changed to a digital voltage. This is a configuration provided with an AD converter for conversion.
発明の効果  The invention's effect
[0024] 本発明に係る電源装置によれば、整流器に接続される平滑コンデンサ及びこの平 滑コンデンサとは抵抗器を介して並列に接続され、平滑コンデンサより容量が大きい 電圧保持コンデンサが設けられた電圧安定化回路、電圧変換回路及び停電検出回 路を有する構成を採用したから、簡易な構成で耐久性に優れるとともに、停電時には 電圧保持コンデンサから電源供給先の電子装置の保護に十分な電源が供給され、 併せて停電の検出により上記電子装置の停電時の処理が迅速かつ正確に行なえる という効果がある。 According to the power supply device of the present invention, the smoothing capacitor connected to the rectifier and the smoothing capacitor are connected in parallel via the resistor, and the voltage holding capacitor having a larger capacity than the smoothing capacitor is provided. A configuration with a voltage stabilization circuit, a voltage conversion circuit, and a power failure detection circuit has been adopted, so that it has excellent durability with a simple configuration, and in the event of a power failure, a power supply sufficient to protect the electronic device to which power is supplied from the voltage holding capacitor. In addition, the power failure can be detected quickly and accurately by detecting the power failure. There is an effect.
[0025] 本発明に係る電源装置によれば、電圧保持コンデンサの容量を、平滑コンデンサ 4 の容量より 10倍〜 100倍程度大きく形成した構成としたから、停電時には電源供給 先の電子装置の停電処理に実用上十分な量の電源の供給が行なえるという効果が ある。  [0025] According to the power supply device of the present invention, the voltage holding capacitor has a capacity that is 10 to 100 times larger than that of the smoothing capacitor 4. There is an effect that a sufficient amount of power can be supplied for the treatment.
[0026] 本発明に係る電源装置によれば、整流器に力率改善回路を接続し、この力率改善 回路の出力を平滑コンデンサ及び電圧保持コンデンサに接続した構成としたから、 電圧が上昇して高レ、電圧でコンデンサの充電が行なえることから、コンデンサの容量 に対して多くの電荷が保持でき、また電圧保持コンデンサの充電電圧が高いため、こ の電圧が低下して変換可能な低い電圧となる直前までの間、必要な電圧の電源が 電圧変換回路から供給できて効率が良ぐさらに電流が低く抑えられるので回路の電 力消費が低減されるという効果がある。  [0026] According to the power supply device of the present invention, since the power factor correction circuit is connected to the rectifier and the output of the power factor correction circuit is connected to the smoothing capacitor and the voltage holding capacitor, the voltage rises. Capacitor can be charged at a high voltage with a high voltage, so that a large amount of charge can be held relative to the capacity of the capacitor. The power supply of the necessary voltage can be supplied from the voltage conversion circuit until just before the time is reached, and the efficiency is further improved. Further, the current is kept low, so that the power consumption of the circuit is reduced.
[0027] 本発明によれば、停電検出回路は、交流電源を直接用いて回路を駆動する一次 側回路と、電圧変換回路から電源の供給を受けて稼動する二次側回路とからなる構 成を採用したから、一次側回路では回路構成が簡単でかつ電源のロスが少ない省ェ ネルギー回路が構成でき、また二次側回路は電圧安定化回路から電源の供給が受 けられるので回路の効率化が図れるという効果がある。  [0027] According to the present invention, the power failure detection circuit includes a primary side circuit that drives a circuit by directly using an AC power supply, and a secondary side circuit that operates by receiving power supply from the voltage conversion circuit. Therefore, an energy-saving circuit with a simple circuit configuration and low power loss can be configured on the primary side circuit, and the secondary side circuit can receive power supply from the voltage stabilization circuit. There is an effect that can be achieved.
[0028] 本発明によれば、停電検出回路は、交流電圧から所定電圧以上の部分を抽出して フォト力ブラに印加する一次側回路と、フォト力ブラのオンオフの周期の変化に基づき 交流電源の停電を検出する二次側回路とからなる構成を採用したから、この一次側 回路は交流電源を直接用いて回路を駆動するので、一次側回路に別途補助電源を 投入する必要がなく回路が簡単に構成され、また消費電力も少なくて省エネルギー 化が図れ、加えて交流電源の単位周期の短時間で停電及び瞬間的な停電が検出 力^れ、電源供給先の電子装置に迅速に停電の通知が行えるという効果がある。  [0028] According to the present invention, the power failure detection circuit includes a primary circuit that extracts a portion of a predetermined voltage or more from an AC voltage and applies the extracted portion to the photopower bra, and an AC power The primary side circuit uses an AC power supply directly to drive the circuit, so there is no need to supply additional auxiliary power to the primary side circuit. It is easy to configure and saves energy with low power consumption. In addition, a power failure and momentary power failure can be detected in a short period of the AC power supply unit cycle. There is an effect that notification can be performed.
[0029] 本発明によれば、停電検出回路の一次側回路は、交流電圧をトリガーダイオードに よってパルス状の信号に変換し、フォト力ブラを周期的にオンオフし、停電の際には 上記周期を変化させる構成を採用したから、部品点数が少なくまた簡単に回路が構 成でき経済的であるとレ、う効果がある。 [0030] 本発明によれば、停電検出回路の一次側回路は、定電圧ダイオード及び双方向サ イリスタによりフォト力プラをオンオフし、停電の際にはフォト力ブラのオンオフの周期 を変化させる構成としたから、簡単な部品で回路が構成でき経済的であるという効果 力 Sある。 [0029] According to the present invention, the primary side circuit of the power failure detection circuit converts the AC voltage into a pulsed signal by the trigger diode, periodically turns on and off the photo power bra, and the above-mentioned cycle is detected in the event of a power failure. Since the configuration is changed, the number of parts is small and the circuit can be easily configured, which is economical. [0030] According to the present invention, the primary circuit of the power failure detection circuit is configured to turn on and off the photo power plastic by the constant voltage diode and the bidirectional thyristor, and to change the on / off cycle of the photo power bra in the event of a power failure. Therefore, it has the effect of being economical because a circuit can be configured with simple parts.
[0031] 本発明によれば、停電検出回路は、所定電圧以上の部分を抽出してパルス化した 交流信号を双方向フォト力ブラに印加する一次側回路と、双方向フォト力ブラのオン オフの周期の変化に基づき交流電源の停電を検出する二次側回路とからなる構成と したから、この一次側回路は交流電源を回路の駆動電源として用いるので一次側回 路に別途補助電源を投入する必要がなくかつ消費電力が少なくて省エネルギー化 が図れ、また交流信号を整流しないで利用するので、回路の部品点数が削減され経 済的であり、加えて交流電源の単位周期の短時間で停電及び瞬間的な停電が検出 され、電源供給先の電子装置に迅速に停電の通知が行えるという効果がある。  [0031] According to the present invention, the power failure detection circuit includes a primary circuit that applies a pulsed AC signal extracted from a portion having a predetermined voltage or more to the bidirectional photo power bra, and an on / off of the bi-directional photo power bra. Because the primary side circuit uses an AC power source as the drive power for the circuit, a separate auxiliary power source is supplied to the primary side circuit. It is not necessary to reduce power consumption and save energy, and since AC signals are used without being rectified, the number of circuit parts is reduced and the economy is reduced. Power outages and momentary power outages are detected, and the power supply destination electronic device can be notified of power outages quickly.
[0032] 本発明によれば、停電検出回路の一次側回路は、トリガーダイオードによって双方 向フォト力ブラを周期的にオンオフさせ、停電の際には上記周期を変化させる構成と したから、部品点数が大幅に削減された簡単な回路構成でなし得るので経済性に優 れるという効果がある。 [0032] According to the present invention, the primary side circuit of the power failure detection circuit is configured to periodically turn on and off the bidirectional photo power bra by the trigger diode, and to change the above cycle in the event of a power failure. Can be achieved with a simple circuit configuration that is greatly reduced, so that it is advantageous in terms of economy.
[0033] 本発明によれば、停電検出回路の二次側回路は、受光トランジスタのオンオフの周 期が変化した場合に、コンパレータが交流電源の停電を検出する構成を採用したか ら、交流電源の単位周期の短時間で停電及び瞬間的な停電が検出され、電源供給 先の電子装置に迅速に停電の通知が行えるという効果がある。  [0033] According to the present invention, the secondary side circuit of the power failure detection circuit employs a configuration in which the comparator detects a power failure of the AC power source when the ON / OFF period of the light receiving transistor changes. Power outages and momentary power outages are detected within a short period of the unit cycle, and the power outage electronic device can be notified of power outages quickly.
[0034] 本発明によれば、電圧安定化回路に、電圧保持コンデンサの端子電圧をデジタル に変換する ADコンバータを設けた構成を採用したから、電源供給を受けるコンビュ ータ装置等は、停電時にシャットダウン処理が行える電源供給時間の予測が可能と なり、この時間内に最大限可能な処理の予定が立てられて効率的なシャットダウン処 理が行えるという効果がある。  [0034] According to the present invention, the AD converter that converts the terminal voltage of the voltage holding capacitor to digital is employed in the voltage stabilization circuit. It is possible to predict the power supply time during which the shutdown process can be performed, and it is possible to schedule the maximum possible process within this time and perform an efficient shutdown process.
図面の簡単な説明  Brief Description of Drawings
[0035] [図 1]本発明の実施の形態に係る電源装置の回路図である。  FIG. 1 is a circuit diagram of a power supply device according to an embodiment of the present invention.
[図 2]実施の形態に係る他の電圧安定化回路の回路図である。 [図 3]実施の形態に係る第一の停電検出回路の回路図である。 FIG. 2 is a circuit diagram of another voltage stabilization circuit according to the embodiment. FIG. 3 is a circuit diagram of a first power failure detection circuit according to the embodiment.
[図 4]実施の形態に係り、停電検出回路における二次側回路の動作説明図である。  FIG. 4 is an operation explanatory diagram of the secondary circuit in the power failure detection circuit according to the embodiment.
[図 5]実施の形態に係る第二の停電検出回路の回路図である。  FIG. 5 is a circuit diagram of a second power failure detection circuit according to the embodiment.
[図 6]実施の形態に係る第三の停電検出回路の回路図である。  FIG. 6 is a circuit diagram of a third power failure detection circuit according to the embodiment.
[図 7]実施の形態に係る第四の停電検出回路の回路図である。  FIG. 7 is a circuit diagram of a fourth power failure detection circuit according to the embodiment.
[図 8]実施の形態に係る第五の停電検出回路の回路図である。  FIG. 8 is a circuit diagram of a fifth power failure detection circuit according to the embodiment.
[図 9]実施の形態に係る第六の停電検出回路の回路図である。  FIG. 9 is a circuit diagram of a sixth power failure detection circuit according to the embodiment.
[図 10]実施の形態に係る ADコンバータを用いた電圧安定化回路の回路図である。  FIG. 10 is a circuit diagram of a voltage stabilization circuit using the AD converter according to the embodiment.
[図 11]停電時における電圧保持コンデンサの端子電圧の変化を示す図である。  FIG. 11 is a diagram showing changes in the terminal voltage of the voltage holding capacitor during a power failure.
[図 12]実施の形態に係る ADコンバータを用いた他の電圧安定化回路の回路図であ る。  FIG. 12 is a circuit diagram of another voltage stabilization circuit using the AD converter according to the embodiment.
[図 13]従来例に係る電源装置の回路図である。  FIG. 13 is a circuit diagram of a power supply device according to a conventional example.
[図 14]従来例に係る停電検出回路の回路図である。  FIG. 14 is a circuit diagram of a power failure detection circuit according to a conventional example.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0036] 以下、本発明に係る電源装置の実施の形態を図面に基づいて説明する。 Hereinafter, embodiments of a power supply device according to the present invention will be described with reference to the drawings.
図 1は、実施の形態に係る電源装置を示したものである。この電源装置は、電圧安 定化回路 1、電圧変換回路 14及び停電検出回路 12 (第一の停電検出回路)を有し 、無停電装置として供給先の電子装置 (コンピュータ装置等)に安定的に直流電源を 供給する。  FIG. 1 shows a power supply device according to an embodiment. This power supply device has a voltage stabilization circuit 1, a voltage conversion circuit 14 and a power failure detection circuit 12 (first power failure detection circuit), and is stable as an uninterruptible power supply to electronic devices (computer devices, etc.) to be supplied. Supply DC power to
[0037] 上記電圧安定化回路 1は、ブリッジ型の全波整流用の整流器 2、平滑コンデンサ 4 、電荷を蓄電保持する電圧保持コンデンサ 6、抵抗器 8及びダイオード 10を有する。 上記平滑コンデンサ 4は、主に平滑の目的で用いられるものであり、通常の平滑回路 で用いられる平滑コンデンサと同程度の容量である。この平滑コンデンサ 4は、整流 器 2とは並列に接続されている。上記電圧保持コンデンサ 6は、平滑コンデンサ 4とは 抵抗器 8を介して並列に接続され、またこの電圧保持コンデンサ 6に蓄積された電荷 はダイオード 10を介して出力される。  [0037] The voltage stabilizing circuit 1 includes a bridge-type rectifier 2 for full-wave rectification, a smoothing capacitor 4, a voltage holding capacitor 6 that stores and holds charges, a resistor 8, and a diode 10. The smoothing capacitor 4 is mainly used for the purpose of smoothing, and has a capacity comparable to that of a smoothing capacitor used in a normal smoothing circuit. The smoothing capacitor 4 is connected to the rectifier 2 in parallel. The voltage holding capacitor 6 is connected in parallel to the smoothing capacitor 4 via a resistor 8, and the electric charge accumulated in the voltage holding capacitor 6 is output via a diode 10.
[0038] このように、上記電圧安定化回路 1では、平滑コンデンサ 4と電圧保持コンデンサ 6 とにコンデンサを分離し、これにより平滑コンデンサ 4を小容量に形成して主に平滑 のための機能を持たせる一方、電圧保持コンデンサ 6を大容量に形成して停電時に 十分な蓄積電荷を供給する。上記電圧保持コンデンサ 6は抵抗器 8を介してゆっくり 充電され、これにより電荷が蓄積されてない起動時に、電圧保持コンデンサ 6に対し て過大な突入電流が発生するのを防止する。 [0038] As described above, in the voltage stabilization circuit 1, the capacitors are separated into the smoothing capacitor 4 and the voltage holding capacitor 6, and thereby the smoothing capacitor 4 is formed in a small capacity to be mainly smoothed. In addition, the voltage holding capacitor 6 is formed with a large capacity to supply sufficient stored charge during a power failure. The voltage holding capacitor 6 is slowly charged through the resistor 8, thereby preventing an excessive inrush current from being generated in the voltage holding capacitor 6 at the start-up when no charge is accumulated.
[0039] この実施の形態では、上記平滑コンデンサ 4の容量は 100 μ F〜300 μ F、また上 記電圧保持コンデンサ6の容量は1000 μ F〜30000 μ Fとしてぃる。この容量はさら に高くすることが可能である力 この場合には、安全確保のための放電処理の問題が 発生する。このように、上記電圧保持コンデンサ 6の容量は、上記平滑コンデンサ 4の 容量より相当大きく(可能性として 10倍〜 1000倍)形成することができるが、実用的 には 10倍〜 100倍程度、十分な電圧保持時間を確保するためには 20倍〜 100倍 程度が適当である。 In this embodiment, the capacity of the smoothing capacitor 4 is 100 μF to 300 μF, and the capacity of the voltage holding capacitor 6 is 1000 μF to 30000 μF. This capacity can be further increased. In this case, the problem of discharge treatment for ensuring safety occurs. In this way, the capacity of the voltage holding capacitor 6 can be formed to be considerably larger than the capacity of the smoothing capacitor 4 (possibly 10 to 1000 times), but practically about 10 to 100 times. In order to secure a sufficient voltage holding time, 20 times to 100 times is appropriate.
[0040] また、上記電圧保持コンデンサ 6の充電時間は、抵抗器 8の抵抗値の加減で調節 することが可能である。この抵抗器 8の抵抗値は、電源供給先のコンピュータ装置に おいて、起動オペレーションシステムが起動処理を完了する時間内に充電を完了す るように設定しておけば差し支えない。ここでは、上記抵抗器 8の抵抗値を lk Ωとし ている。  [0040] The charging time of the voltage holding capacitor 6 can be adjusted by adjusting the resistance value of the resistor 8. The resistance value of the resistor 8 may be set so that charging is completed within the time when the startup operation system completes the startup process in the computer device to which power is supplied. Here, the resistance value of the resistor 8 is lk Ω.
[0041] 停電時には、平滑コンデンサ 4の電荷は直ぐに放電してしまうが、電圧保持コンデ ンサ 6の電荷はダイオード 10を介して十分な時間出力されるために、電源供給先の コンピュータ装置は、停電時において安全にシャットダウン動作ができる。上記電圧 変換回路 14は、直流電圧を DC— DC変換により所定の直流電圧に降圧する回路で ある。この電圧変換回路 14は、一次側電圧を降圧して二次側電圧を発生させるが、 一次側電圧の変動に対しても常に一定した二次側電圧を発生させることができる。  [0041] At the time of a power failure, the charge of the smoothing capacitor 4 is immediately discharged. However, the charge of the voltage holding capacitor 6 is output through the diode 10 for a sufficient time. It can be safely shut down at any time. The voltage conversion circuit 14 is a circuit that steps down a DC voltage to a predetermined DC voltage by DC-DC conversion. The voltage conversion circuit 14 steps down the primary side voltage to generate a secondary side voltage, but can always generate a constant secondary side voltage with respect to fluctuations in the primary side voltage.
[0042] 図 2は、上記電圧安定化回路 1に力率改善回路 13 (PFC回路: Power Factor Cont roller)を加えた回路図である。上記力率改善回路 13は力率を改善し高調波を規制 する回路であり、コンデンサ 3、コイル 5、トランジスタによるスイッチング回路 7、抵抗 器 9、 ICからなる電圧制限回路 19及びダイオード 11を有する。  FIG. 2 is a circuit diagram in which a power factor correction circuit 13 (PFC circuit: Power Factor Cont roller) is added to the voltage stabilization circuit 1. The power factor correction circuit 13 is a circuit that improves the power factor and regulates harmonics, and includes a capacitor 3, a coil 5, a switching circuit 7 using a transistor, a resistor 9, a voltage limiting circuit 19 including an IC, and a diode 11.
[0043] この力率改善回路 13は、交流電源 (AC)を整流器 2で整流し、コイル 5を通過して スイッチング回路 7でオン一オフされ、これによりコイル 5の逆起電力がダイオード 11 を通して平滑コンデンサ 4に蓄えられる。また、この平滑コンデンサ 4の電圧が所定電 圧(例えば 370V)を超えないように電圧制限回路 19で制限され、出力される。 The power factor correction circuit 13 rectifies an AC power supply (AC) by a rectifier 2, passes through a coil 5, is turned on / off by a switching circuit 7, and thereby the back electromotive force of the coil 5 is converted to a diode 11 And stored in the smoothing capacitor 4. Further, the voltage of the smoothing capacitor 4 is limited by the voltage limiting circuit 19 so that it does not exceed a predetermined voltage (for example, 370 V), and is output.
[0044] この力率改善回路 13を、上記整流器 2と平滑コンデンサ 4との間に介在させること で、電圧波形と近似する電流波形を人工的に作り、また高調波電流を抑制して力率 を改善する。力率改善回路を用いた場合には、電圧が上昇する反面、電流が低く抑 えられて回路の電力消費が低減され、さらに平滑コンデンサ 4及び電圧保持コンデン サ 6の電圧が高くなつて電荷の蓄積効率も良くなる。また、電圧保持コンデンサ 6の充 電電圧が高いため、この電圧が低下して変換可能な低い電圧となる直前までの長い 間、必要な電圧の電源が電圧変換回路 14から供給できて効率が良い。  [0044] By interposing the power factor correction circuit 13 between the rectifier 2 and the smoothing capacitor 4, a current waveform that approximates the voltage waveform is artificially created, and the harmonic current is suppressed to suppress the power factor. To improve. When a power factor correction circuit is used, the voltage rises, but the current is suppressed to a low level to reduce the power consumption of the circuit.Furthermore, the voltage of the smoothing capacitor 4 and the voltage holding capacitor 6 is increased to increase the charge. Accumulation efficiency is also improved. In addition, since the charging voltage of the voltage holding capacitor 6 is high, the power of the required voltage can be supplied from the voltage conversion circuit 14 for a long period of time until this voltage drops and becomes a low voltage that can be converted, which is efficient. .
[0045] 図 3は上記第一の停電検出回路 12を示したものである。この停電検出回路 12は、 検出対象の交流電源が入力される一次側回路と、この一次側回路とはフォト力ブラ 2 4を介して接続され、上記一次側回路とは電気的に絶縁された二次側回路とを有す る。上記一次側回路は、回路を駆動する電源は上記交流電源そのものを用いる構成 であり、このため一次側回路と二次側回路とはフォト力ブラを用いて両者のアース接 地を隔離させている。また、上記二次側回路は、上記電圧変換回路 14からの直流電 源を補助電源として用いる。上記フォト力ブラ 24は、発光ダイオードとこれを受光して 作動する受光トランジスタが内蔵されている。  FIG. 3 shows the first power failure detection circuit 12. The power failure detection circuit 12 is connected to the primary side circuit to which the AC power to be detected is input, and the primary side circuit is connected to the primary side circuit via the photopower bra 24, and is electrically insulated from the primary side circuit. With secondary circuit. In the primary side circuit, the AC power source itself is used as the power source for driving the circuit. For this reason, the primary side circuit and the secondary side circuit are separated from each other by using a photo power bra. . Further, the secondary side circuit uses the DC power source from the voltage conversion circuit 14 as an auxiliary power source. The photo power bra 24 includes a light emitting diode and a light receiving transistor that operates by receiving the light emitting diode.
[0046] 上記一次側回路は、 CR回路を形成する抵抗器 15及びコンデンサ 16、トリガーダイ オード(DIAC) 18、全波整流用のダイオード 22、抵抗器 20及びフォトカプラ 24を有 する。上記トリガーダイオード 18は、所定以上の電圧が印加された場合に急激に導 通状態となり、このトリガーダイオード 18の導通によりフォト力ブラ 24をオンする。  The primary circuit includes a resistor 15 and a capacitor 16 that form a CR circuit, a trigger diode (DIAC) 18, a full-wave rectifier diode 22, a resistor 20, and a photocoupler 24. The trigger diode 18 suddenly becomes conductive when a voltage of a predetermined level or higher is applied, and the photo-power bra 24 is turned on by the conduction of the trigger diode 18.
[0047] また、上記フォト力ブラ 24を介して接続される二次側回路は、抵抗器 26、コンデン サ 28、電圧分割用の抵抗器 30, 32及びコンパレータ 34を有する。このコンパレータ 34は、 2つの入力端子(+端子、—端子)からの入力を比較する。上記コンデンサ 28 はフォトカプラ 24の受光トランジスタと並列に接続され、またこのコンデンサ 28は上記 コンパレータ 34の入力端子(+端子)に接続される。一方、このコンパレータ 34の入 力端子(一端子)には基準電圧が入力される。この二次側回路を駆動する電源 36は 、上記電圧変換回路 14から供給を受ける。 [0048] 上記第一の停電検出回路の一次側回路は、交流電源 (AC)に接続される抵抗器 1 5及びコンデンサ 16からなる時定数回路において、上記交流電源によりコンデンサ 1 6が充電され、この充電電圧がトリガーダイオード 18のオン電圧に達するとこのトリガ 一ダイオード 18が導通する。そして、コンデンサ 16に充電された電荷がトリガーダイ オード 18を通過し、さらにダイオード 22を通して整流され、これがフォトカプラ 24を通 過するときに発光ダイオードが発光し、これを受光トランジスタが受光することでフォト 力ブラ 24がオン状態となる。 The secondary side circuit connected via the photo force bra 24 includes a resistor 26, a capacitor 28, voltage dividing resistors 30 and 32, and a comparator 34. The comparator 34 compares the inputs from the two input terminals (+ terminal, − terminal). The capacitor 28 is connected in parallel with the light receiving transistor of the photocoupler 24, and the capacitor 28 is connected to the input terminal (+ terminal) of the comparator 34. On the other hand, the reference voltage is input to the input terminal (one terminal) of the comparator 34. A power source 36 for driving the secondary circuit is supplied from the voltage conversion circuit 14. [0048] The primary side circuit of the first power failure detection circuit is a time constant circuit composed of a resistor 15 and a capacitor 16 connected to an AC power source (AC), and the capacitor 16 is charged by the AC power source, When this charging voltage reaches the on-voltage of the trigger diode 18, the trigger diode 18 becomes conductive. Then, the electric charge charged in the capacitor 16 passes through the trigger diode 18 and is further rectified through the diode 22, and when this passes through the photocoupler 24, the light emitting diode emits light, and this is received by the light receiving transistor. Photo Power Bra 24 is turned on.
[0049] 一方、二次側回路では、図 4の電圧波形図に示すように、上記フォト力ブラ 24のォ ン状態によりフォトカプラ 24の受光トランジスタを通してコンデンサ 28の放電が行わ れ、コンデンサ 28の電圧が急激に低下する(図 4の電圧波形の内、右下がりに低下 する部分)。この現象は、一次側回路において、トリガーダイオード 18を介してコンデ ンサ 16が放電する間(ブレークオーバ電圧まで)続き、この短期間にコンデンサ 28は 放電され殆どゼロ電圧となる。  On the other hand, in the secondary circuit, as shown in the voltage waveform diagram of FIG. 4, the discharge of the capacitor 28 is performed through the light receiving transistor of the photocoupler 24 according to the ON state of the photopower bra 24, and the capacitor 28 The voltage drops abruptly (the part of the voltage waveform in Figure 4 that falls to the right). This phenomenon continues in the primary circuit while the capacitor 16 is discharged through the trigger diode 18 (until the breakover voltage), and in this short period the capacitor 28 is discharged to almost zero voltage.
[0050] 交流電源の交流電圧波形の周期的変化により、一次側回路のコンデンサ 16の電 圧が低下すると、トリガーダイオード 18は非導通状態となりフォト力ブラ 24もオフ状態 となる。フォトカプラ 24がオフすると、二次側回路のコンデンサ 28が充電され電圧が 上昇する(図 4の電圧波形の内、右上がりに上昇する部分)。図 4の電圧波形におい て、時間軸は交流電源が 50Hz (10ms毎の半波波形)の場合を表している。この電 圧波形は、 10msおきにトリガーダイオード 18が導通、非導通の周期を繰り返し、これ によりフォトカプラ 24のオンオフ状態が繰り返されてレ、ることを示してレ、る。このように コンデンサ 28の電圧は、ノコギリ状に繰り返される電圧波形となる。  [0050] When the voltage of the capacitor 16 in the primary circuit decreases due to the periodic change in the AC voltage waveform of the AC power supply, the trigger diode 18 becomes non-conductive and the photopower bra 24 also turns off. When the photocoupler 24 is turned off, the capacitor 28 in the secondary circuit is charged and the voltage rises (the portion of the voltage waveform in FIG. 4 that rises to the right). In the voltage waveform in Fig. 4, the time axis represents the case where the AC power supply is 50 Hz (half-wave waveform every 10 ms). This voltage waveform indicates that the trigger diode 18 repeats the conduction / non-conduction cycle every 10 ms, thereby repeating the on / off state of the photocoupler 24. Thus, the voltage of the capacitor 28 has a voltage waveform that is repeated in a sawtooth manner.
[0051] このように上記一次側回路では、整流しパルス化した交流電源をそのまま上記フォ トカブラ 24の駆動に用いる構成であるため、この回路には補助電源は不要である。ま た、この一次側回路における CR回路は、例えば抵抗器 15は 500k Ω或いはこれ以 上に、コンデンサ 16は 0. 01 z F程度に設定できる。このため、一次側回路に流れる 電流は、数十 μ Αから数百 μ Α以下(従来の補助用電源を用いた回路では数百 mA 程度)と非常に低く抑えることができ、ほとんど電力を必要としない。  [0051] As described above, the primary side circuit has a configuration in which the rectified and pulsed AC power source is used as it is for driving the photocabler 24, and therefore, this circuit does not require an auxiliary power source. In the CR circuit in the primary circuit, for example, the resistor 15 can be set to 500 kΩ or more, and the capacitor 16 can be set to about 0.01 zF. For this reason, the current flowing in the primary circuit can be kept very low, from several tens of μ 百 to several hundred μΑ or less (about several hundred mA in a circuit using a conventional auxiliary power supply), and almost all power is required. And not.
[0052] ここで、交流電源の停電、瞬間的な(数十 ms〜数百 ms)停電或いは電圧の低下が 発生した場合、一次側回路のコンデンサ 16への充電電圧が低下し或いは無くなる。 このため、トリガーダイオード 18に印加される電圧がブレークオーバ電圧に達せず、 10msおきの導通が停止する。これにより、フォトカプラ 24のオフ状態が継続して二次 側回路のコンデンサ 28は継続的に充電が行われ、このコンデンサ 28の充電電圧は 二次側回路の電源 36の電圧 (VI)まで上昇し、この間にたちまちスレツショールドレ ベル Lをオーバーする(図 4の電圧波形の右上がりの点線部分)。 [0052] Here, there is a power outage of AC power supply, an instantaneous (several tens of ms to several hundred ms) power outage or a voltage drop If it occurs, the charging voltage to the capacitor 16 in the primary circuit is reduced or eliminated. For this reason, the voltage applied to the trigger diode 18 does not reach the breakover voltage, and conduction every 10 ms stops. As a result, the off-state of the photocoupler 24 continues and the secondary circuit capacitor 28 is continuously charged, and the charging voltage of the capacitor 28 rises to the voltage (VI) of the power supply 36 of the secondary circuit. During this time, the threshold level L is immediately exceeded (the dotted line portion of the voltage waveform in Fig. 4 rising to the right).
[0053] 上記スレツショールドレベル Lは、コンパレータ 34の基準電圧に対応するものであり 、このレベル Lをオーバーしたときに停電が検出される。このレベル Lを適切に設定す ることにより、 50Hzの半波、即ち 10msの停電でも検出することができる。ここでは、 上記スレツショールドレベル Lを、図 4の電圧波形におけるノコギリ波形のピーク値の 略 2倍としている。 [0053] The threshold level L corresponds to the reference voltage of the comparator 34, and when this level L is exceeded, a power failure is detected. By setting this level L appropriately, it is possible to detect even 50Hz half-wave, that is, 10ms power failure. Here, the threshold level L is approximately twice the peak value of the sawtooth waveform in the voltage waveform of FIG.
[0054] すると、コンパレータ 34の入力端子(+端子)には、入力端子(一端子)の基準電圧 を越えた電圧が加わり、コンパレータ 34から検知信号(OUT)が出力される。この検 知信号は、停電によりトリガーダイオード 18が非導通になったことにより発せられる停 電の検知信号である。  Then, a voltage exceeding the reference voltage of the input terminal (one terminal) is applied to the input terminal (+ terminal) of the comparator 34, and a detection signal (OUT) is output from the comparator 34. This detection signal is a power failure detection signal generated when the trigger diode 18 is turned off due to a power failure.
[0055] したがって上記停電検出回路は、交流電源(50Hz)に停電が発生してから、 50Hz の半波、即ち 10msの間に発生した瞬間的な停電を検出することが可能である。また 、この停電を検出するのに要する時間は、上記スレツショールドレベル Lに設定した 場合には、最大で 20ms (図 4の右上がりに上昇する部分の電圧が 0から Lに達する まで)後に、最小で 10ms (図 4の右上がりの点線部分の電圧が L/2から Lに達する まで)後に検出可能となる。  [0055] Therefore, the power failure detection circuit can detect a momentary power failure that occurs during a half-wave of 50 Hz, that is, 10 ms after a power failure occurs in the AC power supply (50 Hz). In addition, the time required to detect this power failure is 20 ms at maximum when the threshold level is set to L (until the voltage at the part rising to the right in Fig. 4 reaches 0 to L). Later, detection becomes possible after a minimum of 10 ms (until the voltage in the dotted line on the right in Fig. 4 reaches L / 2 to L).
[0056] 次に、上記電源装置の動作について説明する。  Next, the operation of the power supply device will be described.
交流電源 (AC)を投入すると、整流器 2を通過して平滑コンデンサ 4の充電が開始 され、続いて電圧保持コンデンサ 6の充電が行なわれる。このとき、電圧保持コンデン サ 6は抵抗器 8が直列に接続されていることから、数十 mA〜百 mA程度の少ない電 流で充電が行われる。また、平滑コンデンサ 4によって平滑された電圧は、電圧変換 回路 14に入力される。通常、平滑コンデンサ 4の方が電圧保持コンデンサ 6より電圧 が高いため、平滑の作用は平滑コンデンサ 4によって行なわれる。電圧変換回路 14 は、 DC— DC変換により直流電圧を所定の電圧まで降下し、この DC電源を供給先 のコンピュータ装置等へ出力する。 When the AC power supply (AC) is turned on, charging of the smoothing capacitor 4 is started after passing through the rectifier 2, and then the voltage holding capacitor 6 is charged. At this time, the voltage holding capacitor 6 is charged with a small current of about several tens of mA to one hundred mA because the resistor 8 is connected in series. The voltage smoothed by the smoothing capacitor 4 is input to the voltage conversion circuit 14. Since the smoothing capacitor 4 normally has a higher voltage than the voltage holding capacitor 6, the smoothing action is performed by the smoothing capacitor 4. Voltage conversion circuit 14 Drops the DC voltage to a predetermined voltage by DC-DC conversion, and outputs this DC power to the computer equipment to which it is supplied.
[0057] 一般的にコンピュータ装置は、電源投入時からオペレーションシステムが起動を完 了するまでは数十秒〜数分程度を必要とする。このため、上記起動の間に電圧保持 コンデンサ 6に充電が出来れば、起動後の電源供給に問題はなレ、。なお、この電圧 保持コンデンサ 6の容量によっては 10mA以下の電流によっても十分に充電できるも のと考えられる。 [0057] In general, a computer device requires several tens of seconds to several minutes from when the power is turned on until the operation system completes startup. Therefore, if the voltage holding capacitor 6 can be charged during the startup, there will be no problem with the power supply after startup. Depending on the capacity of the voltage holding capacitor 6, it can be considered that it can be sufficiently charged with a current of 10 mA or less.
[0058] ここで、交流電源の停電或いは瞬間的な(数十 ms〜数百 ms)停電等が発生した場 合、上記停電検出回路 12は 10ms〜20ms後にはこの停電を検出し、停電の検出信 号をコンピュータ装置に通知する。そしてコンピュータ装置は、直ちにシャットダウン 処理を開始する。一方、上記電圧安定化回路 1は、平滑コンデンサ 4に続いて電圧 保持コンデンサ 6からの放電が開始され、ダイオード 10を介して DC電源が直接にコ ンピュータ装置に供給され、シャットダウン処理が継続される。  [0058] Here, when an AC power failure or a momentary (several tens to hundreds of ms) power failure occurs, the power failure detection circuit 12 detects this power failure after 10 ms to 20 ms. Notify the computer of the detection signal. The computer device immediately starts the shutdown process. On the other hand, the voltage stabilizing circuit 1 starts discharging from the voltage holding capacitor 6 following the smoothing capacitor 4, DC power is directly supplied to the computer device via the diode 10, and the shutdown process is continued. .
[0059] このように上記電源装置では、上記電圧保持コンデンサ 6を非常に大きな容量に形 成することができ、これにより停電時には十分な時間電源をコンピュータ装置に供給 できる。このため、従来の蓄電池を使用したバックアップシステムは不要となる。また 蓄電池と比較して、上記電圧保持コンデンサ 6として用いられる電解コンデンサは大 変寿命が長いため、メンテナンスが不要となり運用コストも低減できる。  [0059] Thus, in the power supply device, the voltage holding capacitor 6 can be formed with a very large capacity, so that a sufficient amount of power can be supplied to the computer device during a power failure. For this reason, the backup system using the conventional storage battery becomes unnecessary. In addition, compared with a storage battery, the electrolytic capacitor used as the voltage holding capacitor 6 has a long life, so that maintenance is not required and the operation cost can be reduced.
[0060] 更に蓄電池は、充電するため及び自己放電を保証するための充電回路が必要とな る力 上記電源装置ではこれらの回路は不要であり、極めて安全にし力も効率良く電 源装置を構成でき、電源供給先のコンピュータ装置等にとって理想的な電源装置と なる。また平滑コンデンサ 4は、電圧保持コンデンサ 6が存在するため、単に平滑用 のコンデンサとしての役割を果たすのみで良く容量は小さくて済む。  [0060] Further, the storage battery is required to have a charging circuit for charging and guaranteeing self-discharge. In the above power supply device, these circuits are unnecessary, and the power supply device can be configured extremely safely and efficiently. Therefore, it is an ideal power supply for a computer device to which power is supplied. In addition, since the voltage holding capacitor 6 exists, the smoothing capacitor 4 only needs to serve as a smoothing capacitor and has a small capacity.
[0061] 一方、上記停電検出回路 12は、交流電源及びこれを整流した信号を直接用いて フォト力ブラを駆動する構成であるため、この一次側回路には直流の補助電源は不 要であり、このため部品点数が削減されて経済性にも優れ、また電力消費も僅かであ り省エネルギー化が図れる。また、現在問題となっている瞬間的(数十 ms〜数百 ms) な停電の検出は従来の検出回路では困難であつたが、上記停電検出回路 12では 短時間で上記瞬間的な停電の検出が可能である。 [0061] On the other hand, the power failure detection circuit 12 is configured to directly drive the photo power bra using an AC power source and a signal obtained by rectifying the AC power source, and therefore, a DC auxiliary power source is not required for the primary side circuit. For this reason, the number of parts is reduced, the economy is excellent, and the power consumption is small, so that energy can be saved. In addition, it is difficult to detect a momentary power failure (several tens of ms to several hundred ms) that is currently a problem with the conventional detection circuit. The instantaneous power failure can be detected in a short time.
[0062] 図 5は第二の停電検出回路 17を示したものである。この停電検出回路は、一次側 回路に抵抗器 15、コンデンサ 16、トリガーダイオード 18、双方向フォト力ブラ 40及び 抵抗器 20を有する。この双方向フォト力ブラ 40は、入力側に逆並列に発光ダイォー ドが接続された AC入力対応のフォト力ブラである。この停電検出回路 17では、トリガ 一ダイオード 18から直接双方向フォト力ブラ 40に接続できるので、整流用のダイォ ードが削減できコストダウンが図れる。また、上記双方向フォト力ブラ 40を介して接続 される二次側回路は、上記第一の停電検出回路 12の二次側回路と同様である。  FIG. 5 shows the second power failure detection circuit 17. This power failure detection circuit has a resistor 15, a capacitor 16, a trigger diode 18, a bidirectional photopower bra 40 and a resistor 20 in the primary side circuit. The bidirectional photo power bra 40 is a photo power bra corresponding to an AC input in which a light emitting diode is connected in antiparallel to the input side. In the power failure detection circuit 17, since the trigger diode 18 can be directly connected to the bidirectional photo power bra 40, the rectifying diode can be reduced and the cost can be reduced. The secondary side circuit connected via the bidirectional photo power bra 40 is the same as the secondary side circuit of the first power failure detection circuit 12.
[0063] 上記一次側回路は、交流電源 (AC)によりコンデンサ 16が充電され、このコンデン サ 16の電圧が一定電圧以上になるとトリガーダイオード 18が導通し、このトリガーダ ィオード 18と直列に接続された双方向フォト力ブラ 40を駆動する。そして、この双方 向フォト力ブラ 40内の発光ダイオードが発光して受光トランジスタが導通し、双方向フ オトカプラ 40がオン状態となる。やがて、コンデンサ 16の充電電圧が低下すると、トリ ガーダイオード 18は非導通となり双方向フォト力ブラ 40はオフ状態となる。  [0063] In the primary circuit, the capacitor 16 is charged by an AC power supply (AC), and when the voltage of the capacitor 16 exceeds a predetermined voltage, the trigger diode 18 is turned on and connected to the trigger diode 18 in series. Drive bidirectional photo power bra 40. Then, the light emitting diode in the bidirectional photo force bra 40 emits light, the light receiving transistor becomes conductive, and the bidirectional photocoupler 40 is turned on. Eventually, when the charging voltage of the capacitor 16 decreases, the trigger diode 18 becomes non-conductive, and the bidirectional photo power bra 40 is turned off.
[0064] そして、交流電源 (先とは正弦波の正負が反転)により再度コンデンサ 16が充電さ れ、トリガーダイオード 18のオン電圧に達するとこれが導通し、双方向フォト力ブラ 40 がオン状態となる。この双方向フォト力ブラ 40は、交流電源のサイクル(50Hz)に合 わせてオンオフ状態(100回/ sec)を繰り返す。双方向フォトカプラ 40がオンオフを 定期的に繰り返している間は、上記二次側回路のコンデンサ 28は一定電圧以上に 上昇することができず、コンパレータ 34からの検知信号は出力されない。  [0064] Then, the capacitor 16 is charged again by the AC power source (the sign of the sine wave is inverted), and when the on-voltage of the trigger diode 18 is reached, the capacitor 16 becomes conductive, and the bidirectional photo force bra 40 is turned on. Become. This bidirectional photo power bra 40 repeats the on / off state (100 times / sec) in accordance with the cycle of the AC power supply (50 Hz). While the bidirectional photocoupler 40 is periodically turned on and off, the capacitor 28 of the secondary side circuit cannot rise above a certain voltage, and the detection signal from the comparator 34 is not output.
[0065] ここで、交流電源に停電或いは電圧降下が発生すると、コンデンサ 16の電圧が低 下してトリガーダイオード 18が非導通のままとなり、双方向フォト力ブラ 40もオフ状態 を維持する。そして、二次側回路ではコンデンサ 28への充電が継続し、コンパレータ 34の入力端子(+端子)には基準電圧を越えた電圧が加わり、コンパレータ 34から 停電検知信号が出力される。上記双方向フォト力ブラ 40は交流に対して動作し、ま た上記一次側回路では、交流電源をそのまま上記双方向フォト力ブラ 40の駆動に用 いる構成であるため、この回路には補助電源は不要である。  [0065] Here, when a power failure or voltage drop occurs in the AC power supply, the voltage of the capacitor 16 decreases, the trigger diode 18 remains non-conductive, and the bidirectional photo power bra 40 also remains off. In the secondary circuit, the capacitor 28 continues to be charged, a voltage exceeding the reference voltage is applied to the input terminal (+ terminal) of the comparator 34, and a power failure detection signal is output from the comparator 34. The bidirectional photo force bra 40 operates with respect to alternating current, and the primary side circuit is configured to use an alternating current power source for driving the bidirectional photo force bra 40 as it is. Is unnecessary.
[0066] 図 6は第三の停電検出回路 45を示したものである。この停電検出回路は、一次側 回路に全波整流用の整流器 42、コンデンサ 44、抵抗器 43, 46, 48、定電圧ダイォ ード 50、 NPNのトランジスタ 52と PNPのトランジスタ 53からなるサイリスタ接続回路、 及びフォト力ブラ 24を有する。上記フォト力ブラ 24を介して接続される二次側回路は 、上記第一の停電検出回路 12の二次側回路と同様である。この停電検出回路 45は トリガーダイオード或いはサイリスタを使用せずに、トランジスタ及び定電圧ダイオード 用いることで回路素子の IC化を可能としている。 FIG. 6 shows a third power failure detection circuit 45. This power failure detection circuit is The circuit has rectifier 42 for full-wave rectification, capacitor 44, resistors 43, 46, 48, constant voltage diode 50, thyristor connection circuit consisting of NPN transistor 52 and PNP transistor 53, and photopower bra 24 . The secondary side circuit connected via the photo force bra 24 is the same as the secondary side circuit of the first power failure detection circuit 12. This power failure detection circuit 45 can use a transistor and a constant voltage diode without using a trigger diode or thyristor, and can make the circuit element an IC.
[0067] 上記一次側回路は、交流電源を整流器 42で整流し、これを蓄積したコンデンサ 44 の電圧が定電圧ダイオード 50の降伏電圧を越えると、トランジスタ 53のベースを通じ て定電圧ダイオード 50に電流が流れ、トランジスタ 53のコレクタからもトランジスタ 52 のベースに電流が流れる。トランジスタ 52のコレクタはトランジスタ 53のベースに接続 されていることから、更にトランジスタ 53のベース電流が増えて直ちにトランジスタ 52 , 53とも完全に才ン状態となる。このトランジスタ 52, 53のオンにより、このトランジス タ 52, 53とは直列に接続されたフォト力ブラ 24がオン状態となる。  [0067] The primary side circuit rectifies the AC power source with the rectifier 42, and when the voltage of the capacitor 44 storing the AC power exceeds the breakdown voltage of the constant voltage diode 50, the current flows to the constant voltage diode 50 through the base of the transistor 53. Current flows from the collector of the transistor 53 to the base of the transistor 52. Since the collector of the transistor 52 is connected to the base of the transistor 53, the base current of the transistor 53 further increases, and both the transistors 52 and 53 are completely turned on immediately. When the transistors 52 and 53 are turned on, the photopower bra 24 connected in series with the transistors 52 and 53 is turned on.
[0068] 上記トランジスタ 52, 53のオンにより、コンデンサ 44が抵抗器 46を通して放電し、 コンデンサ 44の充電電圧が無くなり、トランジスタ 52, 53の正帰還を維持できなくな つた時にトランジスタ 52, 53はオフ状態となる。このため抵抗器 43は、常にトランジス タ 52, 53の正帰還を維持できなレ、ような電流でコンデンサ 44を充電する必要がある 。このようにフォトカプラ 24がオンオフを定期的(100回 /50Hz)に繰り返している間 は、上記二次側回路のコンデンサ 28は一定電圧以上に上昇することができず、コン パレータ 34からの検知信号は出力されない。  [0068] When the transistors 52 and 53 are turned on, the capacitor 44 is discharged through the resistor 46. When the charging voltage of the capacitor 44 is lost and the positive feedback of the transistors 52 and 53 cannot be maintained, the transistors 52 and 53 are turned off. It becomes a state. Therefore, the resistor 43 must always charge the capacitor 44 with such a current that the positive feedback of the transistors 52 and 53 cannot be maintained. As described above, while the photocoupler 24 is periodically turned on and off (100 times / 50 Hz), the capacitor 28 of the secondary side circuit cannot rise above a certain voltage, and the detection from the comparator 34 occurs. No signal is output.
[0069] ここで、交流電源に停電或いは電圧降下が発生すると、コンデンサ 44の電圧が定 電圧ダイオード 50の降伏電圧を越えることができないため、トランジスタ 52, 53がォ ンに移行できず、フォト力ブラ 24はオフ状態を維持する。そして、二次側回路ではコ ンデンサ 28への充電が継続し、コンパレータ 34の入力端子(+端子)には基準電圧 を越えた電圧が加わり、コンパレータ 34から停電の検知信号が出力される。また上記 一次側回路では、交流電源を整流してこれを上記フォト力ブラ 24の駆動に用いる構 成であるため、この回路には補助電源は不要である。  [0069] Here, when a power failure or voltage drop occurs in the AC power supply, the voltage of the capacitor 44 cannot exceed the breakdown voltage of the constant voltage diode 50, so that the transistors 52 and 53 cannot be turned on, and the photopower Bra 24 remains off. In the secondary circuit, the capacitor 28 continues to be charged, a voltage exceeding the reference voltage is applied to the input terminal (+ terminal) of the comparator 34, and a power failure detection signal is output from the comparator 34. Further, since the primary side circuit is configured to rectify an AC power source and use it for driving the photopower bra 24, an auxiliary power source is not required for this circuit.
[0070] 図 7は第四の停電検出回路 47を示したものである。この停電検出回路は、トリガ素 子に双方向サイリスタ 54を用いたものである。この双方向サイリスタ 54は、基本的な 動作が上記トランジスタ 52, 53と同様であり、両者は等価である。この双方向サイリス タ 54は、双方向サイリスタ 54から定電圧ダイオード 50へ向けてゲート電流を流すこと で、この双方向サイリスタ 54を導通させる目的で用いたものであり、通常のサイリスタ はゲート電流の方向が異なるのでこの回路には使用できない。 FIG. 7 shows a fourth power failure detection circuit 47. This power failure detection circuit is a trigger element. A bidirectional thyristor 54 is used as a child. The bidirectional thyristor 54 is basically the same in operation as the transistors 52 and 53, and both are equivalent. The bidirectional thyristor 54 is used for the purpose of conducting the bidirectional thyristor 54 by flowing a gate current from the bidirectional thyristor 54 toward the constant voltage diode 50. Because the direction is different, it cannot be used for this circuit.
[0071] この停電検出回路 47は、一次側回路に整流器 42、コンデンサ 44、抵抗器 43, 46 , 48、定電圧ダイオード 50、双方向サイリスタ 54及びフォトカプラ 24を有する。上記 フォト力ブラ 24を介して接続される二次側回路は、上記第一の停電検出回路 12の二 次側回路と同様である。  The power failure detection circuit 47 includes a rectifier 42, a capacitor 44, resistors 43, 46, and 48, a constant voltage diode 50, a bidirectional thyristor 54, and a photocoupler 24 on a primary side circuit. The secondary side circuit connected via the photo force bra 24 is the same as the secondary side circuit of the first power failure detection circuit 12.
[0072] この一次側回路は、交流電源を整流器 42で整流し、これを蓄積したコンデンサ 44 の電圧が定電圧ダイオード 50の降伏電圧を越えると、双方向サイリスタ 54のゲートを 通じて定電圧ダイオード 50に電流が流れ、このゲート電流により双方向サイリスタ 54 が導通状態となる。そして、この双方向サイリスタ 54に直列に接続されたフォト力ブラ 24がオン状態となる。  [0072] This primary side circuit rectifies the AC power supply by the rectifier 42, and when the voltage of the capacitor 44 storing the AC power exceeds the breakdown voltage of the constant voltage diode 50, the constant voltage diode is passed through the gate of the bidirectional thyristor 54. A current flows through 50, and the bidirectional thyristor 54 becomes conductive by this gate current. Then, the photo force bra 24 connected in series to the bidirectional thyristor 54 is turned on.
[0073] 上記双方向サイリスタ 54のオンにより、コンデンサ 44が抵抗器 46を通して放電し、 コンデンサ 44の充電電圧が無くなり、双方向サイリスタ 54に電流が流れなくなるとゲ ート機能が復活して双方向サイリスタ 54は非導通となり、フォト力ブラ 24はオフ状態と なる。このように、交流電源からの交流電圧波形が正常に周期的に変化して、フォト カプラ 24のオンオフが定期的に繰り返されている間は、上記二次側回路のコンパレ ータ 34からは検出信号は出力されない。  [0073] When the bidirectional thyristor 54 is turned on, the capacitor 44 is discharged through the resistor 46, the charging voltage of the capacitor 44 is lost, and when the current does not flow to the bidirectional thyristor 54, the gate function is restored and the bidirectional function is restored. The thyristor 54 becomes non-conductive, and the photo force bra 24 is turned off. In this way, while the AC voltage waveform from the AC power supply changes normally and periodically and the photocoupler 24 is periodically turned on and off, it is detected from the comparator 34 of the secondary side circuit. No signal is output.
[0074] ここで、交流電源に停電或いは電圧降下が発生すると、コンデンサ 44の電圧が定 電圧ダイオード 50の降伏電圧を越えることができない。このため、双方向サイリスタ 5 4にはゲート電流が流れず、双方向サイリスタ 54は導通状態に移行することができな いため、フォト力ブラ 24はオフ状態を維持する。そして、二次側回路ではコンデンサ 2 8への充電が継続し、コンパレータ 34から停電の検知信号が出力される。また上記 一次側回路では、交流電源を整流してそのまま上記フォト力ブラ 24の駆動に用いる 構成であるため、この回路には補助電源は不要である。  Here, when a power failure or voltage drop occurs in the AC power supply, the voltage of the capacitor 44 cannot exceed the breakdown voltage of the constant voltage diode 50. For this reason, the gate current does not flow through the bidirectional thyristor 54, and the bidirectional thyristor 54 cannot shift to the conductive state, so that the photo force bra 24 is maintained in the OFF state. In the secondary circuit, the capacitor 28 continues to be charged, and a power failure detection signal is output from the comparator 34. Further, since the primary side circuit is configured to rectify an AC power source and directly use it for driving the photopower bra 24, an auxiliary power source is not necessary for this circuit.
[0075] 図 8は第五の停電検出回路 55を示したものである。この停電検出回路は、トリガ素 子にサイリスタ 60を用いたものである。なお、このサイリスタ 60に代えて、上記 NPN のトランジスタ 52と PNPのトランジスタ 53からなるサイリスタ接続回路を採用すること ができる。この停電検出回路 55は、一次側回路に整流器 42、コンデンサ 44、抵抗器 43, 46, 58、定電圧ダイオード 56、フォトカプラ 24及びサイリスタ 60を有する。上記 フォト力ブラ 24を介して接続される二次側回路は、上記第一の停電検出回路 12の二 次側回路と同様である。 FIG. 8 shows a fifth power failure detection circuit 55. This power failure detection circuit is a trigger element. The thyristor 60 is used for the child. Instead of the thyristor 60, a thyristor connection circuit including the NPN transistor 52 and the PNP transistor 53 can be employed. The power failure detection circuit 55 includes a rectifier 42, a capacitor 44, resistors 43, 46, 58, a constant voltage diode 56, a photocoupler 24, and a thyristor 60 on a primary side circuit. The secondary side circuit connected via the photo force bra 24 is the same as the secondary side circuit of the first power failure detection circuit 12.
[0076] この一次側回路は、交流電源 (AC)を整流器 42で整流し、これを蓄積したコンデン サ 44の電圧が定電圧ダイオード 50の降伏電圧を越えると、この定電圧ダイオード 56 が導通する。この定電圧ダイオード 56の導通により、サイリスタ 60にゲート電流が流 れてサイリスタ 60が導通し、このサイリスタ 60に直列に接続されたフォトカプラ 24がォ ン状態となる。  [0076] This primary side circuit rectifies the AC power supply (AC) by the rectifier 42, and when the voltage of the capacitor 44 storing the rectifier exceeds the breakdown voltage of the constant voltage diode 50, the constant voltage diode 56 becomes conductive. . Due to the conduction of the constant voltage diode 56, a gate current flows through the thyristor 60 and the thyristor 60 becomes conductive, and the photocoupler 24 connected in series to the thyristor 60 is turned on.
[0077] 上記コンデンサ 44が放電すると、サイリスタ 60に電流が流れなくなってゲート機能 が復活し、サイリスタ 60は非導通状態となりフォト力ブラ 24もオフ状態となる。コンデ ンサ 44の電圧が上昇すると、再度定電圧ダイオード 56の導通によりサイリスタ 60及 びフォトカプラ 24はオン状態となり、交流電源のサイクルに合わせてフォトカプラ 24 はオンオフ状態を繰り返す。  [0077] When the capacitor 44 is discharged, no current flows through the thyristor 60, the gate function is restored, the thyristor 60 is turned off, and the photo power bra 24 is also turned off. When the voltage of the capacitor 44 rises, the thyristor 60 and the photocoupler 24 are turned on again by the conduction of the constant voltage diode 56, and the photocoupler 24 repeats the on / off state according to the cycle of the AC power supply.
[0078] ここで、交流電源に停電或いは電圧降下が発生すると、コンデンサ 44の電圧が定 電圧ダイオード 56の降伏電圧を越えることができない。このため、サイリスタ 60には ゲート電流が流れず導通状態に移行できなくなり、フォト力ブラ 24はオフ状態を維持 する。これにより、二次側回路ではコンデンサ 28への充電が継続し、コンパレータ 34 力 停電の検知信号が出力される。また、上記一次側回路には補助電源は不要であ る。  Here, when a power failure or voltage drop occurs in the AC power supply, the voltage of the capacitor 44 cannot exceed the breakdown voltage of the constant voltage diode 56. For this reason, the gate current does not flow through the thyristor 60, and the thyristor 60 cannot shift to the conductive state, and the photopower bra 24 is maintained in the off state. As a result, the capacitor 28 continues to be charged in the secondary circuit, and the comparator 34 power failure detection signal is output. The primary circuit does not require an auxiliary power supply.
[0079] 図 9は第六の停電検出回路 69を示したものである。この停電検出回路は、トリガ素 子に双方向サイリスタ 54を用レ、、かつ 2個の定電圧ダイオード 70, 71を用いて、交 流電源を整流しなレ、で直接に双方向フォト力ブラ 40を駆動したものである。この停電 検出回路 69についても、双方向サイリスタ 54を上記第三の停電検出回路のように、 トランジスタのサイリスタ接続回路に置き換えることが可能である。なお、この場合には 双方向に電流を流す必要があるため、トランジスタによるサイリスタ接続回路を 2回路 必要とし、更にその回路に対して一方向にのみ電流を流す回路構成が必要となり、 回路は複雑化する。 FIG. 9 shows a sixth power failure detection circuit 69. This power failure detection circuit uses a bidirectional thyristor 54 as a trigger element, and two constant voltage diodes 70 and 71, and does not rectify the AC power supply. 40 is driven. In this power failure detection circuit 69, the bidirectional thyristor 54 can be replaced with a transistor thyristor connection circuit as in the third power failure detection circuit. In this case, since current must flow in both directions, two thyristor connection circuits using transistors are used. In addition, it requires a circuit configuration that allows current to flow only in one direction to the circuit, which complicates the circuit.
[0080] この停電検出回路 69は、一次側回路にコンデンサ 64、抵抗器 62, 66, 68、定電 圧ダイオード 70, 71、双方向サイリスタ 54、双方向フォトカプラ 40を有する。上記双 方向フォト力ブラ 40を介して接続される二次側回路は、上記第一の停電検出回路 12 の二次側回路と同様である。上記定電圧ダイオード 70, 71は互いに極性を逆にして 直列に接続し、正負の両電圧に対して動作するようにしている。  This power failure detection circuit 69 has a capacitor 64, resistors 62, 66, 68, constant voltage diodes 70, 71, a bidirectional thyristor 54, and a bidirectional photocoupler 40 on the primary side circuit. The secondary circuit connected via the bidirectional photo force bra 40 is the same as the secondary circuit of the first power failure detection circuit 12. The constant voltage diodes 70 and 71 are connected in series with opposite polarities so as to operate with respect to both positive and negative voltages.
[0081] この一次側回路は、交流電源 (AC)によりコンデンサ 64が充電され、このコンデン サ 64の電圧が定電圧ダイオード 70 (又は 71)の降伏電圧を超えると、定電圧ダイォ ード 70 (又は 71)が導通する。この定電圧ダイオード 70 (又は 71)の導通により、双 方向サイリスタ 54にゲート電流が流れて双方向サイリスタ 54が導通し、この双方向サ イリスタ 54に直列に接続された双方向フォト力ブラ 40がオン状態となる。  [0081] In this primary side circuit, when the capacitor 64 is charged by an AC power supply (AC) and the voltage of the capacitor 64 exceeds the breakdown voltage of the constant voltage diode 70 (or 71), the constant voltage diode 70 ( Or 71) conducts. Due to the conduction of the constant voltage diode 70 (or 71), a gate current flows through the bidirectional thyristor 54 to cause the bidirectional thyristor 54 to conduct, and the bidirectional photopower bra 40 connected in series to the bidirectional thyristor 54 is provided. Turns on.
[0082] コンデンサ 64の放電により、双方向サイリスタ 54には電流が流れなくなってゲート 機能が復活し、非導通状態のままとなり双方向フォト力ブラ 40もオフ状態となる。やが て、コンデンサ 64の電圧が上昇すると、再度定電圧ダイオード 70 (又は 71)の導通 により双方向サイリスタ 54及び双方向フォト力ブラ 40はオン状態となり、交流電源の サイクルに合わせて双方向フォト力ブラ 40はオンオフ状態を繰り返す。  Due to the discharge of the capacitor 64, no current flows through the bidirectional thyristor 54, the gate function is restored, the non-conducting state remains, and the bidirectional photopower bra 40 is also turned off. Eventually, when the voltage of the capacitor 64 rises, the bidirectional voltage thyristor 54 and the bidirectional photo power bra 40 are turned on again by the conduction of the constant voltage diode 70 (or 71), and the bidirectional photo diode 40 is turned on according to the cycle of the AC power supply. The force bra 40 is repeatedly turned on and off.
[0083] ここで、交流電源に停電或いは電圧降下が発生すると、コンデンサ 64の電圧が定 電圧ダイオード 70 (又は 71)の降伏電圧を越えることができなレ、。このため、双方向 サイリスタ 54にはゲート電流が流れないので導通状態に移行できず、双方向フォト力 プラ 40はオフ状態を維持する。これにより、二次側回路ではコンデンサ 28の充電が 継続し、コンパレータ 34から停電の検知信号が出力される。また上記一次側回路に は補助電源は不要である。  [0083] Here, when a power failure or voltage drop occurs in the AC power supply, the voltage of the capacitor 64 cannot exceed the breakdown voltage of the constant voltage diode 70 (or 71). For this reason, since no gate current flows through the bidirectional thyristor 54, the bidirectional thyristor 54 cannot enter the conductive state, and the bidirectional photopower plug 40 maintains the OFF state. As a result, the capacitor 28 continues to be charged in the secondary circuit, and a power failure detection signal is output from the comparator 34. The primary circuit does not require an auxiliary power supply.
[0084] 上記第二から第六の停電検出回路についても、第一の停電検出回路と同様な効 果が得られ、交流電源及びこれを整流した信号を直接用いてフォト力ブラを駆動する 構成であるため、この一次側回路には直流の補助電源は不要であり、このため部品 点数が削減されて経済性にも優れ、また電力消費も僅かであり省エネルギー化が図 れ、加えて交流電源の単位周期の短時間で停電及び瞬間的な停電が検出がされ、 電源供給先の電子装置に迅速に停電の通知が行えるという効果がある。 [0084] Regarding the second to sixth power failure detection circuits, the same effect as that of the first power failure detection circuit is obtained, and the photo power bra is driven by directly using the AC power supply and a signal obtained by rectifying the same. Therefore, this primary side circuit does not require a DC auxiliary power supply.Therefore, the number of parts is reduced, it is economical, power consumption is small, and energy saving is achieved. Power outages and momentary power outages are detected in a short period of unit cycle. There is an effect that a power failure can be quickly notified to the electronic device to which power is supplied.
[0085] 図 10は、上記図 2に記載の電圧安定化回路に ADコンバータ 74を加えた回路図で ある。この図 10記載の電圧安定化回路は、図 2の電圧安定化回路と基本的な回路 構成は同様であり、同様な部品については同一の符号を付して詳細な説明は省略 する。  FIG. 10 is a circuit diagram in which an AD converter 74 is added to the voltage stabilization circuit shown in FIG. The voltage stabilizing circuit shown in FIG. 10 has the same basic circuit configuration as that of the voltage stabilizing circuit of FIG. 2, and the same components are denoted by the same reference numerals and detailed description thereof is omitted.
[0086] 上記 ADコンバータ 74は、電圧保持コンデンサ 6の両端子間に接続され、この電圧 保持コンデンサ 6の出力電圧を測定してこれをデジタル電圧に変換し出力する。この ADコンバータ 74の出力は、電源供給先のコンピュータ装置に入力され、そこで停電 の際にコンピュータ装置が電圧保持コンデンサ 6から電源の供給を受けることができ る供給可能時間を演算により割出す。この供給可能時間内に、コンピュータ装置は、 シャットダウン動作を終了させる。なお、この ADコンバータ 74の電源は、上記電圧変 換回路 14から供給を受ける。  The AD converter 74 is connected between both terminals of the voltage holding capacitor 6, measures the output voltage of the voltage holding capacitor 6, converts it to a digital voltage, and outputs it. The output of the AD converter 74 is input to a computer device to which power is supplied, and the computer device calculates a supplyable time during which a power supply can be received from the voltage holding capacitor 6 in the event of a power failure. The computer apparatus ends the shutdown operation within the supply available time. The power supply for the AD converter 74 is supplied from the voltage conversion circuit 14.
[0087] コンピュータ装置は、内部の処理プログラムが稼動し、上記停電検出回路 12から停 電の検出信号を受けると、上記 ADコンバータ 74を介して電圧保持コンデンサ 6の出 力電圧の変化を一定時間毎に測定する。この電圧保持コンデンサ 6は、停電直前に は所定の電圧(例えば 370V)を保持しており、停電と同時に放電が開始され端子電 圧が低下する。この電圧保持コンデンサ 6の容量 (C)、蓄積エネルギー (W)及びコン デンサの端子電圧 (V)との間には、 W=CV2/2の関係が成立し、コンピュータ装置 への電源供給に伴う電圧保持コンデンサ 6の端子電圧 (V)は、図 11に示すような時 間対電圧の変化が予想される。 [0087] When the internal processing program is activated and the computer device receives a power failure detection signal from the power failure detection circuit 12, the computer device changes the output voltage of the voltage holding capacitor 6 through the AD converter 74 for a certain period of time. Measure every time. This voltage holding capacitor 6 holds a predetermined voltage (for example, 370 V) immediately before the power failure, and discharge starts at the same time as the power failure, and the terminal voltage decreases. Capacitance of the voltage holding capacitor 6 (C), between a stored energy (W) and capacitor terminal voltage (V) is, W = CV 2/2 relationship is satisfied, the power supply to the computer system The terminal voltage (V) of the accompanying voltage holding capacitor 6 is expected to change with time as shown in Fig. 11.
[0088] ここで、上記端子電圧が比較的高い場合には、電圧低下の割合が比較的直線的 であるため、コンピュータ装置では、この割合が一定であるとみなして電源の供給を 受け得る時間を予測する。このため、コンピュータ装置は、電圧保持コンデンサ 6の 端子電圧 (V)が低下を始めた時点(P_ 1:検出用レベル)におレ、て、所定時間(lm s〜 100ms (好ましくは 10ms〜20ms) )毎に電圧を測定し、この電圧低下の割合が それ以降も一定であるとみなして、コンピュータ装置がシャットダウンを開始する時点 (P— 3 :シャットダウン開始時間、電圧は例えば 200V)から、コンピュータ装置が稼動 可能な最低の電圧の時点(P— 2 :最低動作電圧,例えば 120V)の電圧になるまで の給電可能時間(T)を演算し決定する。例えば、上記停電の検出信号を受けた時点 で、電圧保持コンデンサ 6の端子電圧を測定し、これ以降は上記所定間隔毎に端子 電圧を 1回から数回測定した後、平均的な電圧低下の割合を求める。この実施の形 態では、停電の検出信号を受けた時点とこれから 10ms後の時点の 2点における端 子電圧から電圧低下の割合を求めた。 [0088] Here, when the terminal voltage is relatively high, the rate of voltage drop is relatively linear. Therefore, the computer device considers that the rate is constant and can be supplied with power. Predict. For this reason, the computer device checks the time (lm s to 100 ms (preferably 10 ms to 20 ms) when the terminal voltage (V) of the voltage holding capacitor 6 starts to decrease (P_1: detection level). )) Measure the voltage every time and assume that the rate of this voltage drop is constant thereafter. From the time when the computer device starts to shut down (P-3: Shutdown start time, voltage is 200V, for example) Until the voltage reaches the minimum voltage at which the device can operate (P-2: minimum operating voltage, eg 120V) The power supply available time (T) is calculated and determined. For example, when the power failure detection signal is received, the terminal voltage of the voltage holding capacitor 6 is measured, and thereafter, the terminal voltage is measured once to several times at the predetermined intervals, and then the average voltage drop is reduced. Find the percentage. In this embodiment, the rate of voltage drop was determined from the terminal voltage at two points, the point when the power failure detection signal was received and the point 10 ms later.
[0089] そして、コンピュータ装置は、上記給電可能時間(T)の範囲内で可能な限りのシャ ットダウンの処理を行う。このため、コンピュータ装置は停電時において、シャットダウ ンの処理に使える可能時間を予測することで、この時間内に最大限可能な処理を行 うことの予定を立てることができ、停電時に効果的なシャットダウン処理が行える。 Then, the computer apparatus performs a shutdown process as much as possible within the range of the power supply possible time (T). For this reason, the computer device can schedule the maximum possible processing within this time by predicting the available time for shutdown processing in the event of a power failure. Shutdown processing can be performed.
[0090] 図 12は、上記図 10に記載の電圧安定化回路の ADコンバータ 74にさらに CPU回 路 76を加えた回路図である。この CPU回路 76は、 CPU,メモリ及び制御回路からな り所定の演算処理等が行え、上記 ADコンバータ 74からのデジタル電圧の出力に基 づきシャットダウン動作のための上記供給可能時間 (T)を演算により割出し、これを 出力する。そして、コンピュータ装置はこの供給可能時間に基づいてシャットダウン処 理を行う。この CPU回路 76において、上記供給可能時間を割出す演算内容につい ては、上述したコンピュータ装置で行う内容と同様である。なお、この CPU回路 76の 電源は、上記電圧変換回路 14から供給を受ける。 FIG. 12 is a circuit diagram in which a CPU circuit 76 is further added to the AD converter 74 of the voltage stabilization circuit shown in FIG. The CPU circuit 76 includes a CPU, a memory, and a control circuit, and can perform predetermined arithmetic processing, etc., and calculates the supplyable time (T) for the shutdown operation based on the digital voltage output from the AD converter 74. And output this. Then, the computer device performs a shutdown process based on the supply available time. In the CPU circuit 76, the calculation contents for determining the supplyable time are the same as those performed by the computer device described above. The power supply of the CPU circuit 76 is supplied from the voltage conversion circuit 14.
[0091] 通常、コンピュータ装置に多くのプロセスが稼動していた場合など、コンピュータ装 置では上記供給可能時間の演算処理を適切に行うことの保証ができないおそれがあ る。このような場合、電圧安定化回路に専用の CPU回路 76を設けることにより、適切 に供給可能時間の演算が行えるとともにコンピュータ装置の負荷を軽減させることが でき、またコンピュータ装置全体の信頼性を高めることができる。 [0091] Usually, when many processes are running on the computer device, the computer device may not be able to guarantee that the calculation process of the supplyable time is appropriately performed. In such a case, by providing a dedicated CPU circuit 76 in the voltage stabilization circuit, it is possible to appropriately calculate the supplyable time, reduce the load on the computer device, and improve the reliability of the entire computer device. be able to.
符号の説明  Explanation of symbols
[0092] 2 整流器 [0092] 2 Rectifier
4 平滑コンデンサ  4 Smoothing capacitor
6 電圧保持コンデンサ  6 Voltage holding capacitor
12 停電検出回路  12 Power failure detection circuit
13 力率改善回路 電圧変換回路 トリガーダイオード フォトカプラ コンデンサ コン /、°レータ 双方向フォトカプラ 定電圧ダイオード 双方向サイリスタ ADコンノ ータ 13 Power factor correction circuit Voltage conversion circuit Trigger diode Photocoupler Capacitor capacitor /, ° C Bidirectional photocoupler Constant voltage diode Bidirectional thyristor AD converter

Claims

請求の範囲 The scope of the claims
[1] 交流電源から供給される交流電圧を整流する整流器と、  [1] a rectifier for rectifying an AC voltage supplied from an AC power source;
この整流器に接続される平滑コンデンサ及びこの平滑コンデンサとは抵抗器を介し て並列に接続され、上記平滑コンデンサより容量が大きい電圧保持コンデンサが設 けられた電圧安定化回路と、  A smoothing capacitor connected to the rectifier and a voltage stabilizing circuit connected in parallel to the smoothing capacitor via a resistor, and having a voltage holding capacitor having a larger capacity than the smoothing capacitor;
この電圧安定化回路からの出力電圧を DC— DC変換して降圧する電圧変換回路 と、  A voltage conversion circuit that steps down the output voltage from this voltage stabilization circuit by DC-DC conversion;
上記交流電源の停電を検出する停電検出回路と、を有することを特徴とする電源 装置。  And a power failure detection circuit for detecting a power failure of the AC power source.
[2] 上記電圧保持コンデンサの容量を、上記平滑コンデンサの容量より 10倍〜 100倍程 度大きく形成したことを特徴とする請求の範囲第 1項記載の電源装置。  [2] The power supply device according to [1], wherein a capacity of the voltage holding capacitor is about 10 to 100 times larger than a capacity of the smoothing capacitor.
[3] 上記整流器に力率改善回路を接続し、この力率改善回路の出力を上記平滑コンデ ンサ及び上記電圧保持コンデンサに接続したことを特徴とする請求の範囲第 1項又 は請求の範囲第 2項記載の電源装置。  [3] A power factor correction circuit is connected to the rectifier, and an output of the power factor correction circuit is connected to the smoothing capacitor and the voltage holding capacitor. The power supply device according to item 2.
[4] 上記停電検出回路は、上記交流電源を直接用いて回路を駆動する一次側回路と、 上記電圧変換回路から電源の供給を受けて稼動する二次側回路とからなることを特 徴とする請求の範囲第 1項乃至請求の範囲第 3項の何れかに記載の電源装置。  [4] The power failure detection circuit includes a primary side circuit that drives the circuit by directly using the AC power source, and a secondary side circuit that operates by receiving power supply from the voltage conversion circuit. The power supply device according to any one of claims 1 to 3.
[5] 上記停電検出回路は、上記交流電源から所定電圧以上の部分を抽出してパルス化 するとともに整流し、これをフォト力ブラの発光ダイオードに印加する一次側回路と、 上記フォト力プラを介して接続され、このフォト力ブラの受光トランジスタのオンオフの 周期の変化に基づき上記交流電源の停電を検出する二次側回路とからなることを特 徴とする請求の範囲第 1項乃至請求の範囲第 4項の何れかに記載の電源装置。  [5] The power failure detection circuit extracts a portion of a predetermined voltage or more from the AC power source and pulsates and rectifies it, and applies this to a light emitting diode of a photo power bra. And a secondary side circuit for detecting a power failure of the AC power supply based on a change in the ON / OFF cycle of the light receiving transistor of the photopower bra. The power supply device according to any one of the items in the range 4.
[6] 上記停電検出回路の一次側回路は、上記交流電圧をトリガーダイオードによって所 定電圧以上の正及び負のパルス状の信号に変換し、これを整流回路を介して上記 フォト力ブラに入力してこのフォト力プラを周期的にオンオフし、  [6] The primary side circuit of the power failure detection circuit converts the alternating voltage into positive and negative pulsed signals exceeding a predetermined voltage by a trigger diode, and inputs this to the photo power bra through a rectifier circuit. And this photo power plastic is turned on and off periodically,
上記交流電源が停電又は降圧により上記所定電圧より低下した際には、上記トリガ 一ダイオードを非導通に維持して上記フォト力ブラの受光トランジスタのオンオフの周 期を変化させることを特徴とする請求の範囲第 5項記載の電源装置。 When the AC power supply drops below the predetermined voltage due to a power failure or step-down, the trigger diode is kept non-conductive to change the on / off period of the phototransistor light receiving transistor. The power supply device according to claim 5 in the range.
[7] 上記停電検出回路の一次側回路は、上記交流電圧を整流した電流を定電圧ダイォ 一ドに印加させる一方、上記定電圧ダイオードの力ソード端子に双方向サイリスタの ゲート端子を接続し、 [7] The primary side circuit of the power failure detection circuit applies a current rectified from the AC voltage to a constant voltage diode, and connects a gate terminal of a bidirectional thyristor to a power sword terminal of the constant voltage diode,
降伏電圧による上記定電圧ダイオードの導通により、上記双方向サイリスタを導通 させ、これにより上記フォト力ブラをオンし、上記交流電圧の変化時に上記双方向サ イリスタを非導通にして上記フォト力ブラをオフして上記フォト力ブラを周期的にオン オフし、  The bi-directional thyristor is made conductive by the conduction of the constant voltage diode by a breakdown voltage, thereby turning on the photo force bra, and when the AC voltage changes, the bi-directional thyristor is made non-conductive and the photo force bra is turned on. Turn the photo power bra on and off periodically,
上記交流電源の停電の際には、上記双方向サイリスタを非導通に維持することで 上記フォト力ブラの受光トランジスタのオンオフの周期を変化させることを特徴とする 請求の範囲第 5項記載の電源装置。  6. The power supply according to claim 5, wherein, in the event of a power failure of the AC power supply, the on / off cycle of the light receiving transistor of the photopower bra is changed by maintaining the bidirectional thyristor in a non-conductive state. apparatus.
[8] 上記停電検出回路は、上記交流電圧から所定電圧以上の部分を抽出して正及び負 にパルス化した交流信号を、双方向フォト力ブラの発光ダイオードに印加する一次側 回路と、上記双方向フォト力ブラを介して接続され、この双方向フォト力ブラの受光ト ランジスタのオンオフの周期の変化に基づき上記交流電源の停電を検出する二次側 回路とからなることを特徴とする請求の範囲第 1項乃至請求の範囲第 4項の何れかに 記載の電源装置。 [8] The power failure detection circuit includes a primary side circuit that applies an AC signal obtained by extracting a portion of a predetermined voltage or more from the AC voltage and pulsing positively and negatively to a light emitting diode of a bidirectional photopower bra; A secondary circuit connected via a bidirectional photo force bra and detecting a power failure of the AC power source based on a change in the on / off period of a light receiving transistor of the bidirectional photo force bra. The power supply device according to any one of claims 1 to 4.
[9] 上記停電検出回路の一次側回路は、上記交流電圧をトリガーダイオードによって所 定電圧以上の正及び負のパルス状の信号に変換し、これを上記双方向フォト力ブラ に入力してこの双方向フォト力ブラを周期的にオンオフさせ、  [9] The primary side circuit of the power failure detection circuit converts the AC voltage into positive and negative pulse signals exceeding a predetermined voltage by a trigger diode, and inputs the signal to the bidirectional photopower bracket. The bidirectional photo power bra is turned on and off periodically,
上記交流電源が停電又は降圧により上記所定電圧以下に低下した際には、上記ト リガ一ダイオードを非導通に維持して上記双方向フォト力ブラの受光トランジスタのォ ンオフの周期を変化させることを特徴とする請求の範囲第 8項記載の電源装置。  When the AC power supply drops below the predetermined voltage due to a power failure or step-down, the trigger diode is kept non-conductive to change the ON / OFF cycle of the light receiving transistor of the bidirectional photopower bra. The power supply device according to claim 8, wherein the power supply device is characterized.
[10] 上記停電検出回路の二次側回路は、上記受光トランジスタと並列に接続され、この 受光トランジスタの周期的なオンオフに基づき放電充電を繰り返すコンデンサと、この コンデンサの電圧と基準電圧との差を比較するコンパレータとを有し、  [10] The secondary circuit of the power failure detection circuit is connected in parallel with the light receiving transistor, and a capacitor that repeatedly discharges and discharges based on periodic on / off of the light receiving transistor, and the difference between the voltage of the capacitor and the reference voltage. A comparator for comparing
上記受光トランジスタのオンオフの周期が変化した場合に、上記コンデンサの充電 電圧が上記基準電圧を越えることで、上記コンパレータが上記交流電源の停電を検 出することを特徴とする請求の範囲第 5項乃至請求の範囲第 9項の何れかに記載の 電源装置。 6. The range according to claim 5, wherein the comparator detects a power failure of the AC power supply when the charging voltage of the capacitor exceeds the reference voltage when the ON / OFF cycle of the light receiving transistor changes. To any one of claims 9 Power supply.
上記電圧安定化回路に、停電の際に上記電圧保持コンデンサの端子電圧の変化に 基づいて電源供給が可能な時間を演算するため、上記電圧保持コンデンサの端子 電圧をデジタルの電圧に変換する ADコンバータを設けたことを特徴とする請求の範 囲第 1項乃至請求の範囲第 10項の何れかに記載の電源装置。 AD converter that converts the terminal voltage of the voltage holding capacitor to a digital voltage in order to calculate the time during which power can be supplied to the voltage stabilization circuit based on the change in the terminal voltage of the voltage holding capacitor in the event of a power failure The power supply device according to any one of claims 1 to 10, wherein a power supply device is provided.
PCT/JP2005/020591 2004-11-12 2005-11-10 Power supply apparatus WO2006051843A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006544937A JPWO2006051843A1 (en) 2004-11-12 2005-11-10 Power supply

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004328797 2004-11-12
JP2004-328797 2004-11-12

Publications (1)

Publication Number Publication Date
WO2006051843A1 true WO2006051843A1 (en) 2006-05-18

Family

ID=36336520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/020591 WO2006051843A1 (en) 2004-11-12 2005-11-10 Power supply apparatus

Country Status (3)

Country Link
JP (1) JPWO2006051843A1 (en)
TW (1) TW200627751A (en)
WO (1) WO2006051843A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012019680A (en) * 2011-01-27 2012-01-26 Soung Chun Jho Ipl apparatus with explosion prevention function of electrolytic capacitor
KR101163739B1 (en) 2010-09-06 2012-07-09 서창덕 Apparatus for driving led light
JP5478762B1 (en) * 2013-09-12 2014-04-23 サンエー電機株式会社 LED lighting power supply
JP2015018493A (en) * 2013-07-12 2015-01-29 キヤノン株式会社 Information processing apparatus and image forming apparatus
JP2016194878A (en) * 2015-04-01 2016-11-17 富士電機株式会社 Power supply control device
JP2017040095A (en) * 2015-08-19 2017-02-23 株式会社東芝 Gate door operation device and gate door operation method
WO2017149702A1 (en) * 2016-03-02 2017-09-08 株式会社東芝 Power conversion device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI415510B (en) * 2010-02-25 2013-11-11 Ultrachip Inc Power source driving circuit without employing electrolytic capacitor
TWI659218B (en) 2018-05-23 2019-05-11 車王電子股份有限公司 Leakage detection device and battery pack

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH039144U (en) * 1989-06-10 1991-01-29
JPH09145751A (en) * 1995-11-17 1997-06-06 Fuji Elelctrochem Co Ltd Power failure detection circuit
JPH09318680A (en) * 1996-05-31 1997-12-12 Ricoh Co Ltd Power supply cut detecting circuit
JPH1014134A (en) * 1996-06-20 1998-01-16 Sony Corp Stabilizing power circuit
JPH1169662A (en) * 1997-08-27 1999-03-09 Nec Corp Short break signal transmission circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH039144U (en) * 1989-06-10 1991-01-29
JPH09145751A (en) * 1995-11-17 1997-06-06 Fuji Elelctrochem Co Ltd Power failure detection circuit
JPH09318680A (en) * 1996-05-31 1997-12-12 Ricoh Co Ltd Power supply cut detecting circuit
JPH1014134A (en) * 1996-06-20 1998-01-16 Sony Corp Stabilizing power circuit
JPH1169662A (en) * 1997-08-27 1999-03-09 Nec Corp Short break signal transmission circuit

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101163739B1 (en) 2010-09-06 2012-07-09 서창덕 Apparatus for driving led light
JP2012019680A (en) * 2011-01-27 2012-01-26 Soung Chun Jho Ipl apparatus with explosion prevention function of electrolytic capacitor
JP2015018493A (en) * 2013-07-12 2015-01-29 キヤノン株式会社 Information processing apparatus and image forming apparatus
JP5478762B1 (en) * 2013-09-12 2014-04-23 サンエー電機株式会社 LED lighting power supply
JP2016194878A (en) * 2015-04-01 2016-11-17 富士電機株式会社 Power supply control device
JP2017040095A (en) * 2015-08-19 2017-02-23 株式会社東芝 Gate door operation device and gate door operation method
WO2017149702A1 (en) * 2016-03-02 2017-09-08 株式会社東芝 Power conversion device
CN108141138A (en) * 2016-03-02 2018-06-08 株式会社东芝 Power inverter
JPWO2017149702A1 (en) * 2016-03-02 2018-06-14 株式会社東芝 Power converter
EP3425785A4 (en) * 2016-03-02 2019-10-30 Kabushiki Kaisha Toshiba Power conversion device

Also Published As

Publication number Publication date
TW200627751A (en) 2006-08-01
JPWO2006051843A1 (en) 2008-08-07

Similar Documents

Publication Publication Date Title
WO2006051843A1 (en) Power supply apparatus
KR101308783B1 (en) Uninterruptible power-supply system
KR100806774B1 (en) Ac-to-dc converter and method for converting ac to dc using the same
EP3076537A1 (en) Power source apparatus and electric device
JP2011514137A5 (en) Environmentally friendly power supply for converting AC to regulated DC output current
US9634512B1 (en) Battery backup with bi-directional converter
US10560035B2 (en) Discharge device, power supply apparatus, and discharge method with power supply cut-off detection and capacitor discharge
CA2610566A1 (en) Input current or voltage limited power supply
JP5080424B2 (en) Power supply
JP6025404B2 (en) Power supply device and lighting device
US20100188052A1 (en) Charge Device
JP2001178146A (en) Portable generator
US7974110B2 (en) Switching power supply unit and method for setting switching frequency
JP2008054468A (en) Instantaneous voltage drop compensator
JP5008465B2 (en) Uninterruptible power system
KR102620032B1 (en) power supply
JP2012151918A (en) Inverter device and power tool having the same
KR20220070323A (en) power converter
KR100339540B1 (en) Drive control circuit and method of step-up active filter for power factor control
JP2007020256A (en) Charging apparatus and method for controlling the apparatus
WO2017195370A1 (en) Electrical power converter
CN219268735U (en) Input voltage regulating circuit
JPH08331862A (en) Uninterruptible power supply
JP5772278B2 (en) Switching power supply
KR100208060B1 (en) Power supply apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006544937

Country of ref document: JP

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OGF RIGHTS PURSUANT TO RULE 69(1) EPC. EPO FORM 1205A DATED 04-09-2007

122 Ep: pct application non-entry in european phase

Ref document number: 05806005

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5806005

Country of ref document: EP