WO2006051610A1 - Method for producing lithium tantalate crystal - Google Patents

Method for producing lithium tantalate crystal Download PDF

Info

Publication number
WO2006051610A1
WO2006051610A1 PCT/JP2004/016924 JP2004016924W WO2006051610A1 WO 2006051610 A1 WO2006051610 A1 WO 2006051610A1 JP 2004016924 W JP2004016924 W JP 2004016924W WO 2006051610 A1 WO2006051610 A1 WO 2006051610A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium tantalate
temperature
producing
crystal
tantalate crystal
Prior art date
Application number
PCT/JP2004/016924
Other languages
French (fr)
Japanese (ja)
Inventor
Shoji Akiyama
Yoshiyuki Shiono
Original Assignee
Shin-Etsu Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin-Etsu Chemical Co., Ltd. filed Critical Shin-Etsu Chemical Co., Ltd.
Priority to JP2006544714A priority Critical patent/JP4488249B2/en
Priority to PCT/JP2004/016924 priority patent/WO2006051610A1/en
Publication of WO2006051610A1 publication Critical patent/WO2006051610A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/30Niobates; Vanadates; Tantalates
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure

Definitions

  • the present invention relates to a method for producing a lithium tantalate crystal used for a purpose of processing an electric signal by forming a pattern with a metal electrode on a wafer such as a surface acoustic wave element.
  • Lithium tantalate is used for applications that utilize electrical characteristics in combination with surface acoustic wave (SAW) signal processing.
  • Lithium tantalate crystals suitable for this application show the piezoelectric response (piezoelectricity) required for SAW devices due to their crystal structure, but the lithium tantalate crystals available by conventional methods are in addition to piezoelectricity.
  • pyroelectricity causes a pyroelectric response (pyroelectricity).
  • the piezoelectricity of lithium tantalate crystals is an indispensable characteristic when using lithium tantalate crystals as SAW devices.
  • pyroelectricity is obtained by changing the temperature of lithium tantalate crystals. It is observed as a surface charge generated on the outer surface of the crystal and charges the crystal. This surface charge can cause a spark discharge between metal electrodes formed on a wafer made of lithium tantalate crystals when using lithium tantalate crystals as SAW devices, causing significant performance defects in SAW devices. It has been. For this reason, in designing SAW devices that use lithium tantalate crystals, it is necessary to devise measures that do not generate surface charges, evacuate generated surface charges, or widen the spacing between metal electrodes. There were disadvantages if the design of the SAW device itself was constrained to incorporate!
  • the SAW device manufacturing process using lithium tantalate crystals there are processes in which heat is applied to the lithium tantalate crystals in processes such as vapor deposition of the metal film and removal of the resist layer.
  • a temperature change is applied to the lithium tantalate crystal
  • a charge is generated on the outer surface due to the pyroelectric property of the lithium tantalate crystal.
  • This surface charge causes a spark discharge between the metal electrodes, resulting in destruction of the electrode pattern. Therefore, the SAW device manufacturing process should be devised so as not to change the temperature as much as possible.
  • the change is moderated, the device is devised at times, which causes disadvantages such as a decrease in the throughput of the manufacturing process or a narrow margin for guaranteeing the performance of the SAW device. .
  • JP-A-11 92147 Patent Document 1
  • a lithium tantalate crystal is reduced in a reducing atmosphere of 500 ° C or higher. Is disclosed.
  • Patent Document 1 Japanese Patent Laid-Open No. 11-92147
  • it is used for SAW devices when the treatment temperature in the reducing atmosphere is 610 ° C or higher, which is the Curie point.
  • the required single-domain structure is lost, and at a temperature of 610 ° C or lower, which is the Curie point, the speed of the reduction process becomes extremely slow.
  • JP-A-11 92147 Patent Document 1 It was found that the electrical conductivity of the lithium tantalate crystal cannot be industrially improved by the method disclosed in 1).
  • the present inventor previously made contact with a tantalum lithium crystal in a reducing atmosphere at a temperature lower than the temperature T1 by contacting the substance previously reduced at the temperature T1.
  • a method has been proposed in which the surface charge generated in the lithium tantalate crystal is eliminated without accumulating by improving the conductivity of the lithium oxalate (Patent Documents 2 and 3: JP 2004-26930 A, International Publication No. 2004Z079061) (See pamphlet), but further development of methods to improve the conductivity of lithium tantalate crystals is desired.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 11 92147
  • Patent Document 2 JP 2004-269300
  • Patent Document 3 International Publication No. 2004Z079061 Pamphlet
  • the present invention meets the above-mentioned demand, and a method for producing a lithium tantalate crystal capable of performing uniform conductivity improvement treatment, having uniform and high conductivity, and preventing accumulation of surface charges.
  • the purpose is to provide.
  • the present inventor has been subjected to reduction treatment at a temperature T1, as disclosed in Japanese Patent Application Laid-Open No. 2004-269300 and International Publication No. 2004Z079061.
  • Lithium tantalate crystals are placed in close contact with a substance that has been reduced at a temperature T1, which is not the case where the reduction treatment is performed while the lithium tantalate crystal to be treated is in contact with the substance (hereinafter referred to as the contact method).
  • the contact method a sufficient reduction treatment is possible, and the reduction heat treatment is performed in a non-contact state in this way, and compared with the above contact method, the contact of the substance reduced at temperature T1 with respect to the lithium tantalate crystal is achieved.
  • the uniform reduction is performed at the same time as high reduction. It has been found that a lithium tantalate crystal can be maintained, which has a uniform and high conductivity, and in which surface charge accumulation is reliably prevented, and has led to the present invention. It was.
  • the present invention provides a lithium tantalite crystal to be treated in proximity to a substance reduced at temperature T1 in a non-contact state, and reduces the lithium tantalate crystal at a temperature T2 lower than the temperature T1.
  • a method for producing a lithium tantalate crystal with increased conductivity characterized by being exposed to an atmosphere.
  • the reduction-treated substance and the lithium tantalate crystal to be treated are arranged at a distance (d) 0.1 to 20 mm apart.
  • the reduction treatment at the temperature T1 which is preferably 700 ° C or higher, is a reducing property containing one or more mixed gases selected from hydrogen, carbon monoxide, and dinitrogen monoxide.
  • the reducing gas is further selected from one or more kinds selected from a rare gas, nitrogen, diacid-carbon power. It may contain a mixed gas.
  • any one of inorganic crystals, ceramics, and metals, particularly composite oxides having a non-stoichiometric composition, particularly lithium tantalate, lithium niobate, and hydrogen storage alloys are used. It is preferable.
  • the wafer is pre-sliced before being sliced and Z or lapped as a single polarized crystal, particularly as a single polarized crystal. It is preferable to use a crystal of Furthermore, it is preferable to introduce the air at a temperature of 250 ° C or lower after the treatment at the temperature T2 where the temperature T2 is preferably in the range of 400-600 ° C.
  • the reduction treatment at temperature T2 is preferably performed in a reducing gas containing one or more mixed gases selected from hydrogen, carbon monoxide, and dinitrogen monoxide.
  • the gas may further contain a rare gas, nitrogen, one or more mixed gases selected from carbon dioxide and carbon dioxide.
  • a highly conductive lithium tantalate crystal having no unevenness can be easily and reliably produced by uniform reduction heat treatment.
  • FIG. 1 is a side view of a state in which substances treated at a temperature T1 and lithium tantalate crystals to be treated are arranged horizontally.
  • FIG. 2 is a side view showing a state where substances treated at temperature T1 and lithium tantalate crystals to be treated are arranged vertically.
  • FIG. 3 is a schematic diagram of the furnace used in Example 1.
  • a lithium tantalate crystal to be treated is placed close to the material reduced at temperature T1 in a non-contact state, and this treatment is performed in this state.
  • the lithium tantalate crystal to be heat-treated in a reducing atmosphere at a temperature T2 lower than the above temperature T1 can increase the conductivity of the lithium tantalate crystal, resulting in a temperature change in the lithium tantalate crystal. It is possible to suppress the pyroelectricity generated when applying
  • the surface charge generated by changing the temperature of the lithium tantalate crystal is eliminated without accumulating the generated surface charge by improving the conductivity of the lithium tantalate crystal. It is a life that can be done.
  • examples of the substance to be reduced at the temperature T1 include inorganic crystals, ceramics, and metals.
  • examples of the crystal include lithium tantalate crystal and lithium niobate crystal
  • examples of the ceramic include amorphous lithium tantalate and lithium niobate. It is preferable to use ceramics that have composite acidity and strength.
  • the composite oxide having this non-stoichiometric composition include ceramics having a lithium tantalate force or ceramics having a lithium niobate force.
  • lithium tantalate crystals or lithium niobate crystals can also be used.
  • the stoichiometric composition is low in cation deficiency. It is preferable to use crystals with a composition of V, which has a stoichiometric composition of V, which is called a congruent composition.
  • the metal treated at the temperature T1 is preferably a hydrogen storage (occlusion) alloy.
  • the temperature Tl for reducing the above-mentioned substance is preferably 700 ° C or higher, particularly 800 ° C or higher in order to perform the reduction reaction quickly.
  • the upper limit temperature is suitably selected at 1,200 ° C or less, particularly preferably 1,150 ° C or less.
  • the atmosphere in which the substance is reduced at a temperature T1 may be a generally known reducing gas atmosphere.
  • a reduction-treated substance can be obtained by carrying out in a reducing gas with a gas power.
  • the reducing treatment can be performed in an atmosphere in which a rare gas such as He, Ne, Ar, nitrogen, carbon dioxide, or an inert gas having a mixed gas force is added to the reducing gas.
  • a rare gas such as He, Ne, Ar, nitrogen, carbon dioxide, or an inert gas having a mixed gas force is added to the reducing gas.
  • These inert gases preferably have a content of 0 to 95% by volume, particularly 20 to 80% by volume, in the reducing gas for reducing the above substances.
  • the time for reducing the above-mentioned substance is appropriately selected, it is usually 0.5 to 40 hours, more preferably 0.5 to 20 hours, and the substance to be treated is reduced and treated.
  • the reduction process can be completed when the surface of the target substance is uniformly black.
  • the reducing gas atmosphere it is preferable to use a substance that can treat the substance to be reduced in as short a time as possible.
  • a substance that can treat the substance to be reduced in as short a time as possible For example, it is preferable to use hydrogen.
  • ceramics made of lithium tantalate can be cited as an example of the substance reduced at temperature T1, which includes lithium carbonate and tantalum pentoxide. Is weighed, mixed, and heated to 1,000 ° C or higher in an electric furnace. In addition, for ceramics that are capable of lithium niobate, they can be obtained by using pentoxide instead of tantalum pentoxide. The ceramics thus obtained are placed in a container such as stainless steel or quartz, placed in a sealed furnace, and the reducing gas is introduced at 0.1-20 liters per minute, especially 0.1-10.
  • Circulate in a sealed furnace at a rate of 1 liter raise the furnace temperature from room temperature to the above treatment temperature (above 700 ° C), hold for 0.5 to 40 hours, especially 0.5 to 20 hours, The temperature can be reduced at a rate of 20 ° C per minute, especially 10 ° C per minute, and the vessel can be taken out of the furnace to obtain a reduced material.
  • the force includes a lithium tantalate crystal.
  • This is a ceramic made of the above-described lithium tantalate before the reduction treatment. Is put into a crucible made of precious metal, heated and melted, and then rotated using a seed crystal. It is possible to grow lithium tantalate crystals by raising (so-called Chiyoklarsky method).
  • the lithium tantalate crystal thus obtained is placed on a quartz stage, placed in a sealed furnace, subjected to reduction heat treatment under the same conditions as described above, and then subjected to reduction treatment by lowering the temperature. It can be obtained as a material. When the temperature falls, the atmosphere can be introduced into the furnace at 250 ° C or below, and the treated material can be taken out when the temperature falls below 30 ° C.
  • a noble metal electrode is placed on a lithium tantalate crystal having a diameter of, for example, 4 inches before the reduction treatment obtained by the above-mentioned Tjokralski method, and the voltage is applied at a temperature above the Curie point, for example, 650 ° C.
  • a single-domain process can be performed by applying this, and a wafer that has been subjected to a slicing process with a diameter of 4 inches and a thickness of 0.5 mm by slicing the crystal subjected to the single-domain process using, for example, a wire saw. Further, this wafer is processed with a lapping machine to obtain a lapped wafer with a diameter of 4 inches and a thickness of 0.4 mm.
  • the force includes a lapped wafer that also has a lithium tantalate crystal.
  • the lithium tantalate crystal obtained in the above step is used. It can be obtained by reducing and heat-treating the lap wafer under the above conditions, lowering the temperature, introducing air if necessary, and removing the wafer from the furnace when the temperature falls below 30 ° C.
  • This treatment changes the color of the lithium tantalate wafer from white before processing to black, so that it has the ability to absorb light.
  • the temperature T1 is higher than the Curie point of the lithium tantalate crystal, the resulting lithium tantalate has a multi-domain structure that is unsuitable for SAW devices.
  • the lithium tantalate crystal to be treated is placed in close contact with the substance treated at the temperature T1 in a non-contact state, and the temperature T2, lower than the temperature T1, preferably 400 or higher.
  • 1 600 o C special 500 1 600 o C [trowel reduction heat treatment.
  • the lithium tantalate crystal to be treated at the temperature T2 a single-polarized crystal obtained as described above can be used.
  • the lithium tantalate crystals obtained in the present invention do not require a single domain treatment after the reduction treatment at temperature T2.
  • the form of the single polarized crystal was the crystal before the slicing or the slicing process was performed.
  • a wafer or a lapped wafer can be used.
  • the normal single domain treatment is performed in the atmosphere at a temperature higher than the Curie point (about 610 ° C) of the lithium tantalate crystal.
  • the lithium tantalate crystal with improved conductivity obtained in the present invention loses the improved conductivity when the temperature is set to 400 ° C or higher in the atmosphere.
  • the present invention The lithium tantalate crystal that has been subjected to the treatment by the above has a property of returning to the state before the reduction heat treatment when the single domain treatment is performed thereafter.
  • the temperature T2 for reducing heat treatment of lithium tantalate is set to a temperature lower than the Curie point (610 ° C.) of the lithium tantalate crystal, and the processing atmosphere is in a reducing atmosphere. If the conductivity is lost, the problem does not arise.
  • the distance d (see Figs. 1 and 2) for bringing the lithium tantalate crystal to be treated in close contact with the substance treated at the temperature T1 is 0.1-20 mm, especially It is preferably about 0.2 to 3 mm.
  • FIGS. 1 and 2 show the arrangement of the substance 1 treated at temperature T1 and the lithium tantalate crystal 2 to be treated.
  • FIG. 1 shows a wafer made of lithium tantalate crystal 2 placed horizontally.
  • Fig. 2 shows an example of vertical installation, in which substance 1 treated at temperature T1 and lithium tantalate crystal 2 to be treated are alternately arranged at a distance d.
  • the atmosphere in which the lithium tantalate crystal is subjected to a reduction heat treatment at a temperature T2 may be a generally known reducing gas atmosphere.
  • a reducing gas such as dinitrogen or a mixed gas of these
  • the reduction treatment can be performed in an atmosphere in which a rare gas such as He, Ne, Ar, nitrogen, carbon dioxide, or an inert gas such as a mixed gas thereof is added to the reducing gas.
  • a rare gas such as He, Ne, Ar, nitrogen, carbon dioxide, or an inert gas such as a mixed gas thereof is added to the reducing gas.
  • these inert gases have a content of 0 to 95% by volume, particularly 20 to 80% by volume, in the reducing gas for reducing the above substances.
  • the temperature at which the lithium tantalate crystal is treated is preferably 400-600 ° C, as described above, and the reduction treatment time is appropriately selected, but is usually 0.5-20 hours, more preferably 0.
  • the reduction treatment can be completed when the lithium tantalate crystal to be treated is in a state of uniformly black or light black in the surface for 5 to 10 hours.
  • the temperature may be lowered. In this case, when the temperature falls below 250 ° C, introduction of air prevents cracking due to heat shrinkage or the like at the time of removal. Or point to prevent reaction with atmospheric components recommended.
  • reduction heat treatment should be performed at the temperature T2 of the present invention.
  • Lithium tantalate crystal lapped wafers that have undergone single-domain treatment and lithium tantalate wafers that have turned black by treatment at temperature T1 are placed in close proximity (0.1-2 Omm) in a non-contact state. Installed in the furnace, flowing reducing gas such as hydrogen gas at a rate of 0.1-20 liters per minute, especially 0.1-10 liters per minute.
  • the temperature is raised at a rate of 10 ° C and the furnace is kept at the required temperature T2 for 0.5–20 hours, especially 0.5–10 hours, then the furnace is 400–600 ° C per minute, especially 500–600 °.
  • the temperature is lowered at a rate of C, the air is introduced into the furnace at 250 ° C or below, and the wafer is taken out of the furnace when it reaches 30 ° C or below. Masui.
  • the reducing gas is spread over the entire surface of the lithium tantalate crystal to achieve a uniform in-plane distribution. It is possible to maximize the influence of the substance reduced at the temperature T1 on the crystal of lithium tantalate to be processed.
  • the lithium tantalate crystal obtained in the present invention has a feature that the surface charge accumulation caused by the temperature change is substantially not observed due to the improved conductivity of the crystal. This indicates that the lithium tantalate crystal obtained in the present invention does not accumulate charges on the outer surface of the crystal while maintaining the piezoelectricity, and is an extremely advantageous material for SAW device manufacturing. is there. Further, in the method of the present invention, the above-described lithium tantalate crystal can be obtained in a very short time, which is an industrially advantageous production method.
  • the measurement of the conductivity for lithium tantalate crystal is as described in Example
  • the conductivity of the lithium-tantalate crystal before thermal reduction according to the present invention is usually 10 14 one 10 15 whereas a omega 1 ⁇ cm 1
  • the conductivity of the tantalate lithium ⁇ beam crystals after the reduction heat treatment of the present invention is usually 10- 9 - 10- 13 ⁇ - 1 ⁇ cm , especially 10- omega - the 10- 12 ⁇ - 1 ⁇ cm 1
  • the conductivity of the tantalate lithium ⁇ beam crystals after the reduction heat treatment of the present invention is usually 10- 9 - 10- 13 ⁇ - 1 ⁇ cm , especially 10- omega - the 10- 12 ⁇ - 1 ⁇ cm 1
  • LT wafer fabrication was performed as follows.
  • a lithium tantalate crystal with a diameter of 100 mm and a length of 50 mm oriented by rotating 36 ° in the y direction with respect to the surface normal was obtained by using the Tyoklalsky method and the conventional secondary processing method ( Hereinafter referred to as LT crystal).
  • This LT crystal was cut and subjected to lapping force to obtain a double-sided lapped wafer having a thickness of 0.4 mm (hereinafter, this wafer is referred to as “LT lapped wafer”).
  • One side of the LT wrap wafer was polished to obtain a wafer having a thickness of 0.35 mm (hereinafter, this wafer is referred to as an LT polished wafer).
  • This wafer is colorless and translucent.
  • the LT wrap wafer was placed in a sealed furnace where each gas in Table 1 circulated at a rate of about 1.5 liters per minute.
  • Figure 3 shows an overview of the furnace.
  • an alumina treatment tube 11 having a diameter of 200 mm is disposed along the horizontal direction, and three zones A, B, and C are formed in the treatment tube 11, and Are provided with thermocouples a, b, and c corresponding to these bands A, B, and C, respectively.
  • Both ends of the alumina treatment tube 11 are extended to the outside from the furnace 10, and one extended end face is hermetically closed, and a gas supply port 12 is formed on the closed face, and the other end face is closed.
  • a cap 14 is detachably attached to the extended end face, and a gas discharge port 13 is formed in the vicinity of the other extended end face.
  • both extended base ends of the alumina processing tube 11 serving as a wafer outlet are hermetically sealed by O-rings.
  • the means for heating the inside of the furnace is based on resistance heating.
  • the cap 14 is removed, the alumina carrier 15 supporting the LT wrap wafer 16 is placed in the alumina treatment tube 11, and a gas flow is introduced into the alumina treatment tube 11 from the gas supply port 12, Heating of the furnace was started with the gas discharged from the gas outlet 13.
  • the furnace temperature was raised from room temperature to the temperature T1 in Table 1 at a rate of about 6.7 ° C per minute.
  • the furnace was cooled at a rate of about 6.7 ° C per minute. Introduce air into the furnace at 250 ° C or below The wafer was removed from the furnace when the temperature dropped below 30 ° C (hereinafter referred to as T1-treated LT wafer).
  • the LT wrap wafer and the T1 processed LT wafer are alternately arranged close to each other as shown in FIG. 1 so that the distance (d) between the LT wrap wafer and the T1 processed LT wafer is 0.25 mm.
  • this furnace is the same as the temperature T1 reduction treatment.
  • the furnace temperature was raised from room temperature at a rate of about 6.7 ° C per minute.
  • the furnace was cooled at a rate of about 6.7 ° C per minute. Air was introduced into the furnace at 250 ° C or lower, and the wafer was removed from the furnace when the temperature dropped to 30 ° C or lower (hereinafter referred to as T2-treated LT wafer).
  • the conductivity was measured as follows.
  • the conductivity is the reciprocal of the volume resistivity, and the volume resistivity was measured using 4329A High Resistance Meter and 16008A Resistivity manufactured by Hewlett Packard.
  • the volume resistivity can be obtained by the following formula.
  • the resistance was measured by applying a voltage of 500 volts to the sample and measuring the resistance one minute after the voltage was applied.
  • the surface potential was measured as follows. Pyroelectricity is the amount of charge that accumulates on the surface when a temperature difference occurs. This is similar to static electricity, and surface potential measurement is known as a quantitative measurement. T2 treatment LT wafer was heated from 30 ° C to 70 ° C on a hot plate in 1 minute, and Ion Systems' SFM775 was used, and the difference in surface potential during that time was taken as the measured value. .
  • Table 1 shows the conductivity and surface potential.
  • conductivity such as “9. 3E-14” according as that is the sense of "9. 3 X 10- 14".
  • the interval between the wafers is set to 0.1 mm or more because if it is shorter than this, it is difficult to fill the wafer.
  • T2 600 ° C
  • the furnace was cooled down at a rate of about 6.7 ° C per minute. Atmosphere was introduced into the furnace at 250 ° C or below, and when the temperature was below 30 ° C, the wafer was taken out from the furnace to obtain a T2 treated LT wafer.
  • Figure 4 shows the dependence of the conductivity on the spacing d. It can be seen that the conductivity increases as the distance d decreases, and that there is almost no effect above 20 mm. In addition, it does not interfere with wafer filling, and the viewpoint power of increasing conductivity.
  • the preferable interval is in the range of about 0.2-3.Omm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

Disclosed is a method for producing a lithium tantalate crystal having improved conductivity which is characterized in that a lithium tantalate crystal to be processed is arranged close to but not in contact with a material which has been reduced at a temperature (T1) and then the lithium tantalate crystal is exposed to a reducing atmosphere at a temperature (T2) which is lower than the temperature (T1).

Description

明 細 書  Specification
タンタル酸リチウム結晶の製造方法  Method for producing lithium tantalate crystals
技術分野  Technical field
[0001] 本発明は、弾性表面波素子などのウェハ上に金属電極でパターンを形成して電気 信号を処理する用途等に使用されるタンタル酸リチウム結晶の製造方法に関する。 背景技術  TECHNICAL FIELD [0001] The present invention relates to a method for producing a lithium tantalate crystal used for a purpose of processing an electric signal by forming a pattern with a metal electrode on a wafer such as a surface acoustic wave element. Background art
[0002] タンタル酸リチウムは、弾性表面波(SAW)の信号処理と ヽつた電気的特性を利用 する用途に使用されている。この用途に適したタンタル酸リチウム結晶は、その結晶 構造に起因する SAWデバイスに必要とされる圧電気応答 (圧電性)を示すが、通常 の方法で入手できるタンタル酸リチウム結晶は圧電性に加えて焦電気応答 (焦電性) を生じる。  [0002] Lithium tantalate is used for applications that utilize electrical characteristics in combination with surface acoustic wave (SAW) signal processing. Lithium tantalate crystals suitable for this application show the piezoelectric response (piezoelectricity) required for SAW devices due to their crystal structure, but the lithium tantalate crystals available by conventional methods are in addition to piezoelectricity. Cause a pyroelectric response (pyroelectricity).
[0003] タンタル酸リチウム結晶の圧電性は、タンタル酸リチウム結晶を SAWデバイスとして 利用する時に、不可欠となる特性であるが、一方、焦電性はタンタル酸リチウム結晶 に温度変化を与えることで結晶の外側表面に発生する表面電荷として観察され、結 晶を帯電させるものである。この表面電荷は、タンタル酸リチウム結晶を SAWデバイ スとして使用するときに、タンタル酸リチウム結晶からなるウェハ上に形成された金属 電極間で火花放電を起こし、 SAWデバイスの著しい性能の欠陥を引き起こすとされ ている。このため、タンタル酸リチウム結晶を用いる SAWデバイスの設計では、表面 電荷を発生させない工夫、発生した表面電荷を逃がす工夫、あるいは金属電極同士 の間隔を広くするなどの工夫が必要とされ、これら工夫を取り入れるために、 SAWデ バイス自体の設計に制約が加わると!、つた不利益があった。  [0003] The piezoelectricity of lithium tantalate crystals is an indispensable characteristic when using lithium tantalate crystals as SAW devices. On the other hand, pyroelectricity is obtained by changing the temperature of lithium tantalate crystals. It is observed as a surface charge generated on the outer surface of the crystal and charges the crystal. This surface charge can cause a spark discharge between metal electrodes formed on a wafer made of lithium tantalate crystals when using lithium tantalate crystals as SAW devices, causing significant performance defects in SAW devices. It has been. For this reason, in designing SAW devices that use lithium tantalate crystals, it is necessary to devise measures that do not generate surface charges, evacuate generated surface charges, or widen the spacing between metal electrodes. There were disadvantages if the design of the SAW device itself was constrained to incorporate!
[0004] また、タンタル酸リチウム結晶を用いた SAWデバイスの製造工程では、金属膜の蒸 着、レジスト層の除去といった工程でタンタル酸リチウム結晶に熱が加わる工程があり 、これら工程で加熱あるいは降温といった温度変化がタンタル酸リチウム結晶に与え られると、タンタル酸リチウム結晶の焦電性により外側表面に電荷が発生する。この表 面電荷により、金属電極間に火花放電が生じ、電極パターンの破壊となるため、 SA Wデバイスの製造工程ではできるだけ温度変化を与えな 、ように工夫をしたり、温度 変化を緩やかにするといつた工夫をしており、これら工夫のために製造工程のスルー プットが低下したり、ある 、は SAWデバイスの性能を保証するマージンが狭くなると いった不利益が生じている。 [0004] Further, in the SAW device manufacturing process using lithium tantalate crystals, there are processes in which heat is applied to the lithium tantalate crystals in processes such as vapor deposition of the metal film and removal of the resist layer. When such a temperature change is applied to the lithium tantalate crystal, a charge is generated on the outer surface due to the pyroelectric property of the lithium tantalate crystal. This surface charge causes a spark discharge between the metal electrodes, resulting in destruction of the electrode pattern. Therefore, the SAW device manufacturing process should be devised so as not to change the temperature as much as possible. When the change is moderated, the device is devised at times, which causes disadvantages such as a decrease in the throughput of the manufacturing process or a narrow margin for guaranteeing the performance of the SAW device. .
[0005] 通常の方法で製造されたタンタル酸リチウム結晶では、焦電性により発生した外側 表面の電荷は周囲環境からの遊離電荷により中和され、時間の経過とともに消失す る力 この消失時間は数時間以上と長ぐ SAWデバイスの製造工程では、この自発 的な焦電性の消失を期待できな ヽ。  [0005] In the lithium tantalate crystal produced by the usual method, the charge on the outer surface generated by pyroelectricity is neutralized by the free charge from the surrounding environment, and the power disappears over time. In the SAW device manufacturing process, which lasts several hours or more, this spontaneous pyroelectricity loss cannot be expected.
[0006] 弾性表面波(SAW)デバイスのような用途に対しては、デバイス特性を発揮するた めに必要とされる圧電性を維持した上で、上記背景により、結晶外側表面に電荷の 発生が見られない圧電性結晶の要求が増大しており、このような用途に対して表面 電荷の蓄積が見られな 、タンタル酸リチウム結晶が必要とされて 、る。  [0006] For applications such as surface acoustic wave (SAW) devices, electric charges are generated on the outer surface of the crystal due to the above background while maintaining the piezoelectricity required to exhibit device characteristics. There is an increasing demand for piezoelectric crystals that do not show any of these, and there is a need for lithium tantalate crystals without surface charge accumulation for such applications.
[0007] この導電率を向上させたタンタル酸リチウム結晶の製造方法としては、特開平 11 92147号公報 (特許文献 1)がある力 ここでは、タンタル酸リチウム結晶を 500°C以 上の還元雰囲気にさらすという方法が開示されている。しかし、特開平 11-92147号 公報 (特許文献 1)で開示された方法でタンタル酸リチウム結晶を還元処理すると、還 元雰囲気での処理温度がキュリー点である 610°C以上では SAWデバイス用途で必 要とされる単分域化構造が失われ、また、キュリー点である 610°C以下の温度では還 元処理の速度が極めて遅くなり、結果として特開平 11 92147号公報 (特許文献 1) で開示された方法では工業的にタンタル酸リチウム結晶の導電率の向上はできない ことが分力つた。  [0007] As a method for producing a lithium tantalate crystal with improved conductivity, there is a force disclosed in JP-A-11 92147 (Patent Document 1). Here, a lithium tantalate crystal is reduced in a reducing atmosphere of 500 ° C or higher. Is disclosed. However, when the lithium tantalate crystal is reduced by the method disclosed in Japanese Patent Laid-Open No. 11-92147 (Patent Document 1), it is used for SAW devices when the treatment temperature in the reducing atmosphere is 610 ° C or higher, which is the Curie point. The required single-domain structure is lost, and at a temperature of 610 ° C or lower, which is the Curie point, the speed of the reduction process becomes extremely slow. As a result, JP-A-11 92147 (Patent Document 1) It was found that the electrical conductivity of the lithium tantalate crystal cannot be industrially improved by the method disclosed in 1).
[0008] このような点から、本発明者は、先に、温度 T1で還元処理した物質を、温度 T1より 低い温度で、かつ還元雰囲気中でタンタル酸リチウム結晶に接触することにより、タ ンタル酸リチウムの導電性を向上させてタンタル酸リチウム結晶に発生した表面電荷 を蓄積させることなく消失させる方法を提案した (特許文献 2, 3 :特開 2004-26930 0号公報、国際公開第 2004Z079061号パンフレット参照)が、タンタル酸リチウム 結晶の導電率を向上させるための更なる方法の開発が望まれる。  [0008] In view of the above, the present inventor previously made contact with a tantalum lithium crystal in a reducing atmosphere at a temperature lower than the temperature T1 by contacting the substance previously reduced at the temperature T1. A method has been proposed in which the surface charge generated in the lithium tantalate crystal is eliminated without accumulating by improving the conductivity of the lithium oxalate (Patent Documents 2 and 3: JP 2004-26930 A, International Publication No. 2004Z079061) (See pamphlet), but further development of methods to improve the conductivity of lithium tantalate crystals is desired.
[0009] 特許文献 1 :特開平 11 92147号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 11 92147
特許文献 2:特開 2004-269300号公報 特許文献 3:国際公開第 2004Z079061号パンフレット Patent Document 2: JP 2004-269300 A Patent Document 3: International Publication No. 2004Z079061 Pamphlet
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0010] 本発明は上記要望に応えたもので、均一な導電性向上処理を行うことができ、均一 で高い導電性を有し、表面電荷の蓄積が防止されたタンタル酸リチウム結晶の製造 方法を提供することを目的とする。 [0010] The present invention meets the above-mentioned demand, and a method for producing a lithium tantalate crystal capable of performing uniform conductivity improvement treatment, having uniform and high conductivity, and preventing accumulation of surface charges. The purpose is to provide.
課題を解決するための手段  Means for solving the problem
[0011] 本発明者は、上記目的を達成するため鋭意検討を行った結果、特開 2004— 2693 00号公報、国際公開第 2004Z079061号パンフレットに示されたような、温度 T1で 還元処理された物質に処理すべきタンタル酸リチウム結晶を接触させた状態で還元 処理を行う方法 (以下、接触法という)ではなぐ温度 T1で還元処理された物質にタ ンタル酸リチウム結晶を非接触状態で近接配置するだけでも十分な還元処理が可能 である上、むしろこのように非接触状態で還元熱処理することにより、上記接触法と比 較し、タンタル酸リチウム結晶に対する温度 T1で還元処理された物質の接触度合 ヽ のばらつきに依存することがなぐ力えって還元性ガスが処理すべきタンタル酸リチウ ム結晶表面に均一にいきわたるため、均一な還元が行われると同時に、高い還元能 力を維持することができ、これによつて均一で高い導電性を有し、表面電荷の蓄積が 確実に防止されたタンタル酸リチウム結晶が得られることを知見し、本発明をなすに 至った。 [0011] As a result of intensive investigations to achieve the above object, the present inventor has been subjected to reduction treatment at a temperature T1, as disclosed in Japanese Patent Application Laid-Open No. 2004-269300 and International Publication No. 2004Z079061. Lithium tantalate crystals are placed in close contact with a substance that has been reduced at a temperature T1, which is not the case where the reduction treatment is performed while the lithium tantalate crystal to be treated is in contact with the substance (hereinafter referred to as the contact method). In addition, a sufficient reduction treatment is possible, and the reduction heat treatment is performed in a non-contact state in this way, and compared with the above contact method, the contact of the substance reduced at temperature T1 with respect to the lithium tantalate crystal is achieved. Because the reducing gas spreads uniformly on the surface of the lithium tantalate crystal to be treated without being dependent on the degree of variation, the uniform reduction is performed at the same time as high reduction. It has been found that a lithium tantalate crystal can be maintained, which has a uniform and high conductivity, and in which surface charge accumulation is reliably prevented, and has led to the present invention. It was.
[0012] 従って、本発明は、温度 T1で還元処理された物質に処理すべきタンタル酸リチウ ム結晶を非接触状態で近接配置し、このタンタル酸リチウム結晶を上記温度 T1より 低い温度 T2で還元雰囲気中にさらすことを特徴とする導電率が増加したタンタル酸 リチウム結晶の製造方法を提供する。  [0012] Therefore, the present invention provides a lithium tantalite crystal to be treated in proximity to a substance reduced at temperature T1 in a non-contact state, and reduces the lithium tantalate crystal at a temperature T2 lower than the temperature T1. Provided is a method for producing a lithium tantalate crystal with increased conductivity, characterized by being exposed to an atmosphere.
[0013] この場合、還元処理された物質と処理すべきタンタル酸リチウム結晶とを距離 (d) 0 . 1一 20mmを隔てて配置することが好ましい。また、温度 T1は 700°C以上であるこ とが好ましぐ温度 T1での還元処理を、水素、一酸化炭素、一酸化二窒素から選ば れる 1種又は 2種以上の混合ガスを含む還元性ガス中で行うことが好ましぐこの場合 、この還元ガスは、更に希ガス、窒素、二酸ィ匕炭素力 選ばれる 1種又は 2種以上の 混合ガスを含んだものであってもよい。温度 T1で還元処理された物質としては、無機 物結晶、セラミックス、金属のいずれか、特には、非化学量論組成をもつ複合酸化物 、とりわけタンタル酸リチウム又はニオブ酸リチウムや水素貯蔵合金を用いることが好 ましい。 [0013] In this case, it is preferable that the reduction-treated substance and the lithium tantalate crystal to be treated are arranged at a distance (d) 0.1 to 20 mm apart. In addition, the reduction treatment at the temperature T1, which is preferably 700 ° C or higher, is a reducing property containing one or more mixed gases selected from hydrogen, carbon monoxide, and dinitrogen monoxide. In this case, it is preferable to carry out in a gas, the reducing gas is further selected from one or more kinds selected from a rare gas, nitrogen, diacid-carbon power. It may contain a mixed gas. As the substance reduced at the temperature T1, any one of inorganic crystals, ceramics, and metals, particularly composite oxides having a non-stoichiometric composition, particularly lithium tantalate, lithium niobate, and hydrogen storage alloys are used. It is preferable.
[0014] また、処理すべきタンタル酸リチウム結晶としては、単一分極化された結晶、特に単 一分極ィ匕された結晶としてスライス処理及び Z又はラップ処理が行われたウェハゃス ライス前段階の結晶を用いることが好ましい。更に、温度 T2は 400— 600°Cの範囲 であることが好ましぐ温度 T2で処理した後に、温度が 250°C以下で大気を導入する ことが好ましい。温度 T2での還元処理は、水素、一酸化炭素、一酸化二窒素から選 ばれる 1種又は 2種以上の混合ガスを含む還元性ガス中で行うことが好ましぐこの場 合、この還元性ガスは、更に希ガス、窒素、二酸ィ匕炭素力 選ばれる 1種又は 2種以 上の混合ガスを含むことができる。  [0014] Further, as the lithium tantalate crystal to be treated, the wafer is pre-sliced before being sliced and Z or lapped as a single polarized crystal, particularly as a single polarized crystal. It is preferable to use a crystal of Furthermore, it is preferable to introduce the air at a temperature of 250 ° C or lower after the treatment at the temperature T2 where the temperature T2 is preferably in the range of 400-600 ° C. The reduction treatment at temperature T2 is preferably performed in a reducing gas containing one or more mixed gases selected from hydrogen, carbon monoxide, and dinitrogen monoxide. The gas may further contain a rare gas, nitrogen, one or more mixed gases selected from carbon dioxide and carbon dioxide.
発明の効果  The invention's effect
[0015] 本発明によれば、均一に還元熱処理してむらのない高導電性のタンタル酸リチウム 結晶を簡単かつ確実に製造することができる。  [0015] According to the present invention, a highly conductive lithium tantalate crystal having no unevenness can be easily and reliably produced by uniform reduction heat treatment.
図面の簡単な説明  Brief Description of Drawings
[0016] [図 1]温度 T1で処理された物質と処理すべきタンタル酸リチウム結晶を横置きに配列 させた状態の側面図である。  FIG. 1 is a side view of a state in which substances treated at a temperature T1 and lithium tantalate crystals to be treated are arranged horizontally.
[図 2]温度 T1で処理された物質と処理すべきタンタル酸リチウム結晶を縦置きに配列 させた状態の側面図である。  FIG. 2 is a side view showing a state where substances treated at temperature T1 and lithium tantalate crystals to be treated are arranged vertically.
[図 3]実施例 1で用いた炉の概要図である。  FIG. 3 is a schematic diagram of the furnace used in Example 1.
[図 4]温度 T1で処理された物質と処理すべきタンタル酸リチウム結晶を距離 dmmで 近接配置して還元熱処理した場合のタンタル酸リチウム結晶の導電率( Ω 1 · cm"1)の 結果を示すグラフである。 [Fig.4] Conductivity (Ω 1 · cm " 1 ) of lithium tantalate crystals when a substance treated at temperature T1 and a lithium tantalate crystal to be treated are placed close to each other at a distance of dmm and subjected to a reduction heat treatment. It is a graph to show.
符号の説明  Explanation of symbols
[0017] 1 温度 T1で処理された物質 [0017] 1 Substance treated at temperature T1
2 処理すべきタンタル酸リチウム結晶  2 Lithium tantalate crystals to be treated
11 アルミナ処理管 12 ガス供給口 11 Alumina treatment tube 12 Gas supply port
13 ガス排出口  13 Gas outlet
14 キャップ  14 cap
15 アルミナ担体  15 Alumina carrier
16 LTラップウエノヽ  16 LT Wrap Ueno
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 本発明の導電率が増加したタンタル酸リチウム結晶の製造方法は、温度 T1で還元 処理された物質に処理すべきタンタル酸リチウム結晶を非接触状態で近接配置し、 この状態でこの処理すべきタンタル酸リチウム結晶を還元雰囲気中において上記温 度 T1より低い温度 T2にて熱処理するもので、これにより該タンタル酸リチウム結晶の 導電率を高くでき、この結果、タンタル酸リチウム結晶に温度変化を与えた時に発生 する焦電気を抑えることができる。  [0018] According to the method for producing a lithium tantalate crystal with increased conductivity according to the present invention, a lithium tantalate crystal to be treated is placed close to the material reduced at temperature T1 in a non-contact state, and this treatment is performed in this state. The lithium tantalate crystal to be heat-treated in a reducing atmosphere at a temperature T2 lower than the above temperature T1 can increase the conductivity of the lithium tantalate crystal, resulting in a temperature change in the lithium tantalate crystal. It is possible to suppress the pyroelectricity generated when applying
[0019] このように、タンタル酸リチウム結晶に温度変化を与えることで発生する表面電荷を 、タンタル酸リチウム結晶の導電性を向上することにより、上記発生した表面電荷を蓄 積させることなく消失させることができるちのである。  Thus, the surface charge generated by changing the temperature of the lithium tantalate crystal is eliminated without accumulating the generated surface charge by improving the conductivity of the lithium tantalate crystal. It is a life that can be done.
[0020] ここで、温度 T1で還元処理される物質としては、無機物結晶、セラミックス、金属が 挙げられる。この場合、該結晶としては、タンタル酸リチウム結晶、ニオブ酸リチウム結 晶等が挙げられ、セラミックスとしては、非結晶のタンタル酸リチウム、ニオブ酸リチウ ム等が挙げられるが、特に、非化学量論組成をもつ複合酸ィ匕物力もなるセラミックス を用いることが好まし 、。この非化学量論組成をもつ複合酸ィ匕物では陽イオンの欠 損があり、この欠損が還元処理と深く関係していると考えられる。この非化学量論組 成をもつ複合酸化物としては、タンタル酸リチウム力もなるセラミックスあるいはニオブ 酸リチウム力もなるセラミックスが例示される。更には、タンタル酸リチウム結晶あるい はニオブ酸リチウム結晶を用いることもでき、この場合、タンタル酸リチウム結晶あるい はニオブ酸リチウム結晶を用いる時は、陽イオンの欠損が少な 、化学量論組成の結 晶よりは例えばコングルーェント組成といわれているような化学量論組成力も外れて V、る組成の結晶を用いることが好まし!/、。  [0020] Here, examples of the substance to be reduced at the temperature T1 include inorganic crystals, ceramics, and metals. In this case, examples of the crystal include lithium tantalate crystal and lithium niobate crystal, and examples of the ceramic include amorphous lithium tantalate and lithium niobate. It is preferable to use ceramics that have composite acidity and strength. In the complex oxides with this non-stoichiometric composition, there is a cation deficiency, and this deficiency is thought to be closely related to the reduction treatment. Examples of the composite oxide having this non-stoichiometric composition include ceramics having a lithium tantalate force or ceramics having a lithium niobate force. Furthermore, lithium tantalate crystals or lithium niobate crystals can also be used. In this case, when lithium tantalate crystals or lithium niobate crystals are used, the stoichiometric composition is low in cation deficiency. It is preferable to use crystals with a composition of V, which has a stoichiometric composition of V, which is called a congruent composition.
[0021] また、温度 T1で処理される金属としては、水素貯蔵(吸蔵)合金が好ましい。 [0022] 上記物質を還元処理する温度 Tlは、還元反応を速やかに行うために 700°C以上 、特に 800°C以上とすることが好ましい。その上限温度は適宜選定される力 1, 200 °C以下、特に 1, 150°C以下が好ましい。 [0021] The metal treated at the temperature T1 is preferably a hydrogen storage (occlusion) alloy. [0022] The temperature Tl for reducing the above-mentioned substance is preferably 700 ° C or higher, particularly 800 ° C or higher in order to perform the reduction reaction quickly. The upper limit temperature is suitably selected at 1,200 ° C or less, particularly preferably 1,150 ° C or less.
[0023] また、上記物質を温度 T1で還元処理する雰囲気としては、通常知られている還元 性のガス雰囲気とすればよぐ例えば、水素、一酸化炭素、一酸化二窒素、あるいは これらの混合ガス力 なる還元性のガス中で行うことで還元処理された物質を得るこ とができる。この場合、この還元性ガス中に、 He, Ne, Arなどの希ガス、窒素、二酸 化炭素、あるいはこれらの混合ガス力もなる不活性ガスを添加した雰囲気中で還元 処理を行うことができる。なお、これら不活性ガスは、上記物質を還元処理する還元 性ガス中、 0— 95容量%、特に 20— 80容量%の含有量とすることが好ましい。  [0023] In addition, the atmosphere in which the substance is reduced at a temperature T1 may be a generally known reducing gas atmosphere. For example, hydrogen, carbon monoxide, dinitrogen monoxide, or a mixture thereof A reduction-treated substance can be obtained by carrying out in a reducing gas with a gas power. In this case, the reducing treatment can be performed in an atmosphere in which a rare gas such as He, Ne, Ar, nitrogen, carbon dioxide, or an inert gas having a mixed gas force is added to the reducing gas. . These inert gases preferably have a content of 0 to 95% by volume, particularly 20 to 80% by volume, in the reducing gas for reducing the above substances.
[0024] 上記物質を還元処理する時間は、適宜選定されるが、通常 0. 5— 40時間、より好 ましくは 0. 5— 20時間であり、処理される物質が還元され、処理される物質の面内が 均一に黒色の状態になった場合、還元処理を終了することができる。  [0024] Although the time for reducing the above-mentioned substance is appropriately selected, it is usually 0.5 to 40 hours, more preferably 0.5 to 20 hours, and the substance to be treated is reduced and treated. The reduction process can be completed when the surface of the target substance is uniformly black.
[0025] なお、還元ガス雰囲気としてはできるだけ還元処理の対象となる物質を短時間で処 理できるものが好ましぐ例えば水素を用いることが好ま 、。  [0025] In addition, as the reducing gas atmosphere, it is preferable to use a substance that can treat the substance to be reduced in as short a time as possible. For example, it is preferable to use hydrogen.
[0026] ここで、本発明にお 、て、温度 T1で還元処理された物質の例として、タンタル酸リ チウムからなるセラミックスが挙げられるが、このものは、炭酸リチウムと五酸ィ匕タンタ ルとを秤量し、混合し、電気炉で 1, 000°C以上に加熱することで得られる。また、二 ォブ酸リチウム力 なるセラミックスにつ 、ては、五酸化タンタルの代わりに五酸化- ォブを使うことで得られる。このようにして得られたセラミックスをステンレススチール、 石英等の容器中に入れ、封止された炉内に置き、上記還元性ガスを毎分 0. 1— 20リ ットル、特に 0. 1— 10リットルの速度で封止炉に流通させ、炉温を室温から上記処理 温度(700°C以上)まで昇温し、 0. 5— 40時間、特に 0. 5— 20時間保持後、炉を毎 分 1一 20°C、特に 1一 10°Cの速度で降温し、容器を炉カも取り出すことで還元処理 された物質として得ることができる。  [0026] Here, in the present invention, ceramics made of lithium tantalate can be cited as an example of the substance reduced at temperature T1, which includes lithium carbonate and tantalum pentoxide. Is weighed, mixed, and heated to 1,000 ° C or higher in an electric furnace. In addition, for ceramics that are capable of lithium niobate, they can be obtained by using pentoxide instead of tantalum pentoxide. The ceramics thus obtained are placed in a container such as stainless steel or quartz, placed in a sealed furnace, and the reducing gas is introduced at 0.1-20 liters per minute, especially 0.1-10. Circulate in a sealed furnace at a rate of 1 liter, raise the furnace temperature from room temperature to the above treatment temperature (above 700 ° C), hold for 0.5 to 40 hours, especially 0.5 to 20 hours, The temperature can be reduced at a rate of 20 ° C per minute, especially 10 ° C per minute, and the vessel can be taken out of the furnace to obtain a reduced material.
[0027] また、本発明にお 、て、温度 T1で還元処理された物質の例として、タンタル酸リチ ゥム結晶が挙げられる力 このものは、上記した還元処理前のタンタル酸リチウムから なるセラミックスを貴金属製のルツボに入れ、加熱、溶融後に種結晶を用いて回転引 上げ (いわゆるチヨクラルスキー法)を行うことにより、タンタル酸リチウム結晶を育成す ることがでさる。 [0027] Further, in the present invention, as an example of the substance reduced at the temperature T1, the force includes a lithium tantalate crystal. This is a ceramic made of the above-described lithium tantalate before the reduction treatment. Is put into a crucible made of precious metal, heated and melted, and then rotated using a seed crystal. It is possible to grow lithium tantalate crystals by raising (so-called Chiyoklarsky method).
[0028] このようにして得られたタンタル酸リチウム結晶を石英台に載せ、封止された炉内に 置いて上記と同様の条件で還元熱処理を行った後、降温することで、還元処理され た物質として得ることができる。なお、この降温の際、 250°C以下で炉内に大気を導 入し、 30°C以下となったところで処理された物質を取り出すことができる。  [0028] The lithium tantalate crystal thus obtained is placed on a quartz stage, placed in a sealed furnace, subjected to reduction heat treatment under the same conditions as described above, and then subjected to reduction treatment by lowering the temperature. It can be obtained as a material. When the temperature falls, the atmosphere can be introduced into the furnace at 250 ° C or below, and the treated material can be taken out when the temperature falls below 30 ° C.
[0029] ここで、上記チヨクラルスキー法で得られた還元処理前の例えば直径 4インチのタン タル酸リチウム結晶に貴金属電極を設置し、キュリー点以上の温度、例えば 650°Cに て電圧を印加することで単分域化処理ができ、この単分域化処理がなされた結晶を 、例えばワイヤソーを用いてスライスすることで直径 4インチ、厚さ 0. 5mmのスライス 処理が行われたウェハが得られ、更にこのウェハをラップ機で処理することで直径 4ィ ンチ、厚さ 0. 4mmラップウェハが得られる。  [0029] Here, a noble metal electrode is placed on a lithium tantalate crystal having a diameter of, for example, 4 inches before the reduction treatment obtained by the above-mentioned Tjokralski method, and the voltage is applied at a temperature above the Curie point, for example, 650 ° C. A single-domain process can be performed by applying this, and a wafer that has been subjected to a slicing process with a diameter of 4 inches and a thickness of 0.5 mm by slicing the crystal subjected to the single-domain process using, for example, a wire saw. Further, this wafer is processed with a lapping machine to obtain a lapped wafer with a diameter of 4 inches and a thickness of 0.4 mm.
[0030] 本発明にお 、て、温度 T1で還元処理された物質の例として、タンタル酸リチウム結 晶カもなるラップウェハが挙げられる力 このものは、上記の工程で得られたタンタル 酸リチウム結晶ラップウェハを上記した条件で還元熱処理し、降温し、必要により大 気を導入し、 30°C以下となったところでウェハを炉カも取り出すことで得られる。この 処理によりタンタル酸リチウムウェハの色は処理前の白色から黒く変色し、光吸収能 を持つようになる。しかし、温度 T1はタンタル酸リチウム結晶のキュリー点より高いた め、この処理で得られるタンタル酸リチウムは SAWデバイス用としては不適な多分域 構造をもつものである。  [0030] In the present invention, as an example of the substance subjected to the reduction treatment at the temperature T1, the force includes a lapped wafer that also has a lithium tantalate crystal. This is because the lithium tantalate crystal obtained in the above step is used. It can be obtained by reducing and heat-treating the lap wafer under the above conditions, lowering the temperature, introducing air if necessary, and removing the wafer from the furnace when the temperature falls below 30 ° C. This treatment changes the color of the lithium tantalate wafer from white before processing to black, so that it has the ability to absorb light. However, since the temperature T1 is higher than the Curie point of the lithium tantalate crystal, the resulting lithium tantalate has a multi-domain structure that is unsuitable for SAW devices.
[0031] 次に、本発明においては、処理すべきタンタル酸リチウム結晶を上記温度 T1で処 理された物質に非接触状態で近接配置し、上記温度 T1よりも低い温度 T2、好ましく ίま 400一 600oC、特【こ 500一 600oC【こて還元熱処理を行うちのである。 [0031] Next, in the present invention, the lithium tantalate crystal to be treated is placed in close contact with the substance treated at the temperature T1 in a non-contact state, and the temperature T2, lower than the temperature T1, preferably 400 or higher. 1 600 o C, special 500 1 600 o C [trowel reduction heat treatment.
[0032] ここで、温度 T2で処理されるべきタンタル酸リチウム結晶としては、上記したようにし て得られる単一分極ィ匕された結晶を用いることができ、このように単一分極ィ匕された タンタル酸リチウム結晶を用いる場合、本発明で得られるタンタル酸リチウム結晶は、 温度 T2での還元処理の後、単分域化処理を必要としない。この場合、単一分極化さ れた結晶の形態としては、スライス前段階の結晶、あるいはスライス処理が行われた ウェハもしくはラップ処理が行われたウェハを用いることができる。 [0032] Here, as the lithium tantalate crystal to be treated at the temperature T2, a single-polarized crystal obtained as described above can be used. When lithium tantalate crystals are used, the lithium tantalate crystals obtained in the present invention do not require a single domain treatment after the reduction treatment at temperature T2. In this case, the form of the single polarized crystal was the crystal before the slicing or the slicing process was performed. A wafer or a lapped wafer can be used.
[0033] なお、通常の単分域化処理は、タンタル酸リチウム結晶のキュリー点 (約 610°C)以 上の高温でかつ、大気中で行う。一方、本発明で得られた導電率を向上させたタンタ ル酸リチウム結晶は、大気中で 400°C以上の温度にすることで、向上した導電率が 失われてしまい、この結果、本発明による処理を行ったタンタル酸リチウム結晶は、そ の後に単分域化処理を行うと、還元熱処理前の状態に戻るという性質がある。しかし 、本発明では、タンタル酸リチウムを還元熱処理する温度 T2をタンタル酸リチウム結 晶のキュリー点(610°C)より低い温度とすることにより、また処理雰囲気が還元雰囲 気中であるため、導電率が失われると 、つた問題は生じな 、。  [0033] It should be noted that the normal single domain treatment is performed in the atmosphere at a temperature higher than the Curie point (about 610 ° C) of the lithium tantalate crystal. On the other hand, the lithium tantalate crystal with improved conductivity obtained in the present invention loses the improved conductivity when the temperature is set to 400 ° C or higher in the atmosphere. As a result, the present invention The lithium tantalate crystal that has been subjected to the treatment by the above has a property of returning to the state before the reduction heat treatment when the single domain treatment is performed thereafter. However, in the present invention, the temperature T2 for reducing heat treatment of lithium tantalate is set to a temperature lower than the Curie point (610 ° C.) of the lithium tantalate crystal, and the processing atmosphere is in a reducing atmosphere. If the conductivity is lost, the problem does not arise.
[0034] また、この場合、処理すべきタンタル酸リチウム結晶を上記温度 T1で処理された物 質に対して非接触で近接させる距離 d (図 1, 2参照)は 0. 1— 20mm、特に 0. 2— 3 mm程度とすることが好ましい。なお、図 1, 2は、温度 T1で処理された物質 1と処理 すべきタンタル酸リチウム結晶 2との配置状態を示すもので、図 1はタンタル酸リチウ ム結晶 2からなるウェハを横置きした例、図 2は縦置きした例であり、温度 T1で処理さ れた物質 1と処理すべきタンタル酸リチウム結晶 2をそれぞれ距離 dを隔てて交互に 配列させたものである。  [0034] In this case, the distance d (see Figs. 1 and 2) for bringing the lithium tantalate crystal to be treated in close contact with the substance treated at the temperature T1 is 0.1-20 mm, especially It is preferably about 0.2 to 3 mm. FIGS. 1 and 2 show the arrangement of the substance 1 treated at temperature T1 and the lithium tantalate crystal 2 to be treated. FIG. 1 shows a wafer made of lithium tantalate crystal 2 placed horizontally. For example, Fig. 2 shows an example of vertical installation, in which substance 1 treated at temperature T1 and lithium tantalate crystal 2 to be treated are alternately arranged at a distance d.
[0035] 本発明において、上記タンタル酸リチウム結晶を温度 T2で還元熱処理する場合の 雰囲気としては、通常知られている還元性のガス雰囲気とすればよぐ例えば、水素 、一酸化炭素、一酸化二窒素、あるいはこれらの混合ガスカゝらなる還元性のガス中で 行うことで還元処理された物質を得ることができる。この場合、還元性ガス中に、 He, Ne, Arなどの希ガス、窒素、二酸化炭素、あるいはこれらの混合ガスカゝらなる不活性 ガスを添加した雰囲気中で還元処理を行うことができる。なお、これら不活性ガスは、 上記物質を還元処理する還元性ガス中、 0— 95容量%、特に 20— 80容量%の含 有量とすることが好ましい。  [0035] In the present invention, the atmosphere in which the lithium tantalate crystal is subjected to a reduction heat treatment at a temperature T2 may be a generally known reducing gas atmosphere. For example, hydrogen, carbon monoxide, or monoxide By carrying out in a reducing gas such as dinitrogen or a mixed gas of these, a reduced material can be obtained. In this case, the reduction treatment can be performed in an atmosphere in which a rare gas such as He, Ne, Ar, nitrogen, carbon dioxide, or an inert gas such as a mixed gas thereof is added to the reducing gas. It is preferable that these inert gases have a content of 0 to 95% by volume, particularly 20 to 80% by volume, in the reducing gas for reducing the above substances.
[0036] 上記タンタル酸リチウム結晶を処理する温度は上述した通り 400— 600°Cが好まし ぐ還元処理する時間は、適宜選定されるが、通常 0. 5— 20時間、より好ましくは 0. 5— 10時間であり、処理されるタンタル酸リチウム結晶が面内均一に黒色もしくは薄 黒色を示す状態になった場合、還元処理を終了することができる。 [0037] このように、還元熱処理した後は、降温すればよいが、この場合、温度が 250°C以 下に下った場合に大気を導入することが取り出し時の熱収縮等による割れを予防、 又は大気中の成分との反応を防ぐという点力 推奨される。 [0036] The temperature at which the lithium tantalate crystal is treated is preferably 400-600 ° C, as described above, and the reduction treatment time is appropriately selected, but is usually 0.5-20 hours, more preferably 0. The reduction treatment can be completed when the lithium tantalate crystal to be treated is in a state of uniformly black or light black in the surface for 5 to 10 hours. [0037] As described above, after the reduction heat treatment, the temperature may be lowered. In this case, when the temperature falls below 250 ° C, introduction of air prevents cracking due to heat shrinkage or the like at the time of removal. Or point to prevent reaction with atmospheric components recommended.
[0038] 本発明で目的とする単分域化構造をもち、かつ、導電率を向上させたタンタル酸リ チウム結晶を得る好適な方法としては、例えば、本発明の温度 T2で還元熱処理す べき単分域化処理が行われたタンタル酸リチウム結晶ラップウェハと温度 T1で処理 を行うことにより黒く変色したタンタル酸リチウムウェハを非接触状態で近接 (0. 1— 2 Omm)させて交互に配置し、炉中に設置し、水素ガス等の還元性ガスを毎分 0. 1— 20リットル、特に 0. 1— 10リットルの速度で流し、炉の温度を室温から毎分 1一 20°C 、特に 1一 10°Cの速度で昇温させ、所用の温度 T2に 0. 5— 20時間、特に 0. 5— 10 時間保持後、炉を毎分 400— 600°C、特に 500— 600°Cの速度で降温し、 250°C以 下で炉内に大気を導入し、 30°C以下となったところでウェハを炉から取り出すことが 好ましい。  [0038] As a preferred method for obtaining a lithium tantalate crystal having a single domain structure and improved conductivity, which is the object of the present invention, for example, reduction heat treatment should be performed at the temperature T2 of the present invention. Lithium tantalate crystal lapped wafers that have undergone single-domain treatment and lithium tantalate wafers that have turned black by treatment at temperature T1 are placed in close proximity (0.1-2 Omm) in a non-contact state. Installed in the furnace, flowing reducing gas such as hydrogen gas at a rate of 0.1-20 liters per minute, especially 0.1-10 liters per minute. In particular, the temperature is raised at a rate of 10 ° C and the furnace is kept at the required temperature T2 for 0.5–20 hours, especially 0.5–10 hours, then the furnace is 400–600 ° C per minute, especially 500–600 °. The temperature is lowered at a rate of C, the air is introduced into the furnace at 250 ° C or below, and the wafer is taken out of the furnace when it reaches 30 ° C or below. Masui.
[0039] ここで、処理すべきタンタル酸リチウム結晶を温度 T1で処理された物質と接触させ ないことで、還元性ガスをタンタル酸リチウム結晶全面に行き渡らせ、均一な面内分 布を達成することができ、温度 T1で還元処理された物質の処理すべきタンタル酸リ チウム結晶に対する影響を最大限に生かすことが可能になる。  [0039] Here, by preventing the lithium tantalate crystal to be treated from coming into contact with the substance treated at the temperature T1, the reducing gas is spread over the entire surface of the lithium tantalate crystal to achieve a uniform in-plane distribution. It is possible to maximize the influence of the substance reduced at the temperature T1 on the crystal of lithium tantalate to be processed.
[0040] 本発明で得られたタンタル酸リチウム結晶は、結晶の導電率が向上していることに より、温度変化で生じる表面電荷の蓄積が実質的に見られないという特徴を持ってい る。このこと〖こより、本発明で得られるタンタル酸リチウム結晶は圧電性を維持した上 で結晶外表面に電荷の蓄積が見られないものとなっており、 SAWデバイス製造上極 めて有利な材料である。また、本発明の方法では上記したタンタル酸リチウム結晶は 極めて短時間の処理で得ることができ、工業的に有利な製造方法となっている。  [0040] The lithium tantalate crystal obtained in the present invention has a feature that the surface charge accumulation caused by the temperature change is substantially not observed due to the improved conductivity of the crystal. This indicates that the lithium tantalate crystal obtained in the present invention does not accumulate charges on the outer surface of the crystal while maintaining the piezoelectricity, and is an extremely advantageous material for SAW device manufacturing. is there. Further, in the method of the present invention, the above-described lithium tantalate crystal can be obtained in a very short time, which is an industrially advantageous production method.
[0041] ここで、タンタル酸リチウム結晶に対する導電率の測定は、実施例に記載の通りで あるが、本発明による還元熱処理前のタンタル酸リチウム結晶の導電率が通常 10— 14 一 10— 15 Ω 1 · cm 1であるのに対し、本発明の還元熱処理を行った後のタンタル酸リチ ゥム結晶の導電率は、通常 10— 9— 10— 13 Ω—1 · cm 特に 10— ω— 10— 12 Ω—1 · cm 1となる 実施例 [0041] Here, the measurement of the conductivity for lithium tantalate crystal is as described in Example, the conductivity of the lithium-tantalate crystal before thermal reduction according to the present invention is usually 10 14 one 10 15 whereas a omega 1 · cm 1, the conductivity of the tantalate lithium © beam crystals after the reduction heat treatment of the present invention is usually 10- 9 - 10- 13 Ω- 1 · cm , especially 10- omega - the 10- 12 Ω- 1 · cm 1 Example
[0042] 以下、実施例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制 限されるものではない。  [0042] Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to the following examples.
[0043] [LTウェハの作製例]  [0043] [Production example of LT wafer]
LTウェハ作製を次の通り行った。表面法線に対して y方向に 36°回転して配向され た直径 100mm、長さ 50mmのタンタル酸リチウム結晶を、チヨクラルスキー法及び常 用の二次加工法を使用することにより得た (以後、 LT結晶と記す)。この LT結晶を切 断し、ラップ力卩ェを行い、厚さ 0. 4mmの両面ラップウェハを得た(以後、このウェハを LTラップウェハと記す)。 LTラップウェハの片面を研磨し、厚さ 0. 35mmのウェハを 得た(以後、このウェハを LTポリッシュウェハと記す)。このウェハは、無色で半透明で めつに。  LT wafer fabrication was performed as follows. A lithium tantalate crystal with a diameter of 100 mm and a length of 50 mm oriented by rotating 36 ° in the y direction with respect to the surface normal was obtained by using the Tyoklalsky method and the conventional secondary processing method ( Hereinafter referred to as LT crystal). This LT crystal was cut and subjected to lapping force to obtain a double-sided lapped wafer having a thickness of 0.4 mm (hereinafter, this wafer is referred to as “LT lapped wafer”). One side of the LT wrap wafer was polished to obtain a wafer having a thickness of 0.35 mm (hereinafter, this wafer is referred to as an LT polished wafer). This wafer is colorless and translucent.
[0044] [実施例 1]  [0044] [Example 1]
上記 LTラップウェハを、表 1の各ガスが毎分約 1. 5リットルの速度で流通する封止 された炉中に置いた。炉の概要を図 3に示す。  The LT wrap wafer was placed in a sealed furnace where each gas in Table 1 circulated at a rate of about 1.5 liters per minute. Figure 3 shows an overview of the furnace.
[0045] この炉 10には、直径 200mmのアルミナ処理管 11が水平方向に沿って配置され、 この処理管 11内に 3つの帯域 A, B, Cが形成されていると共に、処理管 11には、こ れら帯域 A, B, Cに対応して熱電対 a, b, cが設けられている。上記アルミナ処理管 1 1の両端部はそれぞれ炉 10から外部に延出されており、一方の延出端面は気密に 閉塞されていると共に、この閉塞面にガス供給口 12が形成され、他方の延出端面に はキャップ 14が着脱可能に取り付けられていると共に、この他方の延出端面近傍に は、ガス排出口 13が形成されている。なお、図示していないが、上記アルミナ処理管 11のウェハ取り出し口となる片側両延出基端部は Oリングにより気密にシールされて いる。また炉内を加熱する手段は、抵抗加熱によるものとされている。  In the furnace 10, an alumina treatment tube 11 having a diameter of 200 mm is disposed along the horizontal direction, and three zones A, B, and C are formed in the treatment tube 11, and Are provided with thermocouples a, b, and c corresponding to these bands A, B, and C, respectively. Both ends of the alumina treatment tube 11 are extended to the outside from the furnace 10, and one extended end face is hermetically closed, and a gas supply port 12 is formed on the closed face, and the other end face is closed. A cap 14 is detachably attached to the extended end face, and a gas discharge port 13 is formed in the vicinity of the other extended end face. Although not shown in the drawing, both extended base ends of the alumina processing tube 11 serving as a wafer outlet are hermetically sealed by O-rings. The means for heating the inside of the furnace is based on resistance heating.
[0046] まず、キャップ 14を取り外し、アルミナ担体 15に上記 LTラップウェハ 16を支持させ たものをアルミナ処理管 11内に置き、ガス供給口 12からガス流をアルミナ処理管 11 内に導入すると共に、ガス排出口 13から排出させた状態で炉の加熱を開始した。炉 の温度を室温から毎分約 6. 7°Cの速度で表 1の温度 T1まで昇温した。温度 T1にて 1時間保持後、炉を毎分約 6. 7°Cの速度で降温した。 250°C以下で炉内に大気を導 入し、 30°C以下となったところでウェハを炉カも取り出した(以後、 T1処理 LTウェハと 記す)。 First, the cap 14 is removed, the alumina carrier 15 supporting the LT wrap wafer 16 is placed in the alumina treatment tube 11, and a gas flow is introduced into the alumina treatment tube 11 from the gas supply port 12, Heating of the furnace was started with the gas discharged from the gas outlet 13. The furnace temperature was raised from room temperature to the temperature T1 in Table 1 at a rate of about 6.7 ° C per minute. After holding for 1 hour at temperature T1, the furnace was cooled at a rate of about 6.7 ° C per minute. Introduce air into the furnace at 250 ° C or below The wafer was removed from the furnace when the temperature dropped below 30 ° C (hereinafter referred to as T1-treated LT wafer).
[0047] 次に、 LTラップウェハと T1処理 LTウェハを図 1に示すように互いに近接して交互 に配置し、 LTラップウェハと T1処理 LTウェハとの間隔(d)が 0. 25mmとなるようにし 、水素ガス等の還元性ガスが毎分約 1. 5リットルの速度で流通する封止された炉中 に置いた。本実施例では、この炉は、温度 T1還元処理と同一のものである。炉の温 度を室温から毎分約 6. 7°Cの速度で昇温した。表 1の温度 T2に 1時間保持後、炉を 毎分約 6. 7°Cの速度で降温した。 250°C以下で炉内に大気を導入し、 30°C以下と なったところでウェハを炉力 取り出した (以後、 T2処理 LTウェハと記す)。  Next, the LT wrap wafer and the T1 processed LT wafer are alternately arranged close to each other as shown in FIG. 1 so that the distance (d) between the LT wrap wafer and the T1 processed LT wafer is 0.25 mm. Then, it was placed in a sealed furnace in which reducing gas such as hydrogen gas circulated at a rate of about 1.5 liters per minute. In this embodiment, this furnace is the same as the temperature T1 reduction treatment. The furnace temperature was raised from room temperature at a rate of about 6.7 ° C per minute. After holding at the temperature T2 in Table 1 for 1 hour, the furnace was cooled at a rate of about 6.7 ° C per minute. Air was introduced into the furnace at 250 ° C or lower, and the wafer was removed from the furnace when the temperature dropped to 30 ° C or lower (hereinafter referred to as T2-treated LT wafer).
[0048] 導電率は次のように測定した。導電率は体積抵抗率の逆数であり、体積抵抗率は Hewlett Packard社製、 4329A High Resistance Meter及び 16008A Re sistivityを用いて測定した。体積抵抗率は下記式により得ることができる。  [0048] The conductivity was measured as follows. The conductivity is the reciprocal of the volume resistivity, and the volume resistivity was measured using 4329A High Resistance Meter and 16008A Resistivity manufactured by Hewlett Packard. The volume resistivity can be obtained by the following formula.
Ρ:体積抵抗率(Ω -cm) Ρ: Volume resistivity (Ω -cm)
π:円周率  π: Pi ratio
d:中心電極直径(cm)  d: Center electrode diameter (cm)
t: T2処理 LTウェハ厚さ(cm)  t: T2 treatment LT wafer thickness (cm)
R:抵抗値(Ω )  R: Resistance value (Ω)
抵抗値は、試料に 500ボルトの電圧を印加し、電圧を印加してから 1分後の抵抗値 を測定した。  The resistance was measured by applying a voltage of 500 volts to the sample and measuring the resistance one minute after the voltage was applied.
[0049] 表面電位は次のように測定した。焦電気は温度差が発生したときに表面に蓄積さ れる電荷量である。これは静電気と同様であり、定量的な測定として表面電位測定が 知られている。 T2処理 LTウェハをホットプレート上で 30°C— 70°Cまで 1分で昇温し 、 Ion Systems社製、 SFM775を使用すること〖こより、その間に変化する表面電位 の差を測定値とした。  [0049] The surface potential was measured as follows. Pyroelectricity is the amount of charge that accumulates on the surface when a temperature difference occurs. This is similar to static electricity, and surface potential measurement is known as a quantitative measurement. T2 treatment LT wafer was heated from 30 ° C to 70 ° C on a hot plate in 1 minute, and Ion Systems' SFM775 was used, and the difference in surface potential during that time was taken as the measured value. .
[0050] 導電率、表面電位を表 1に示す。なお、すべての表及び図面において、導電率の、 例えば「9. 3E— 14」というような記載は、「9. 3 X 10— 14」という意味である。 [0050] Table 1 shows the conductivity and surface potential. In all the tables and figures, conductivity, such as "9. 3E-14" according as that is the sense of "9. 3 X 10- 14".
[0051] [表 1] 温度 T2 温度 Tl 温度 T2 表面電位 間隔 d 混合ガス (。c) CO (Ω- cm- " (V) (mm) (容積%) [0051] [Table 1] Temperature T2 Temperature Tl Temperature T2 Surface potential Spacing d Mixed gas (.c) CO (Ω-cm- "(V) (mm) (Volume%)
100% Η2 1,100 600 2.9E-11 く 0.1 0.25100% Η 2 1,100 600 2.9E-11 0.1 0.25
100% Η2 1,100 550 7. IE- 12 く 0.1 0.25100% Η 2 1,100 550 7.IE-12 0.1 0.25
100% Η2 1,100 500 4.8E-12 く 0.1 0.25100% Η 2 1,100 500 4.8E-12 0.1 0.25
100% Η2 1,100 400 2.6E-12 く 0.1 0.25100% Η 2 1,100 400 2.6E-12 0 0.1 0.25
100% Η2 1,100 350 1.7E-13 123 0.25100% Η 2 1,100 350 1.7E-13 123 0.25
100% Η2 700 600 2.9E-12 く 0.1 0.25100% Η 2 700 600 2.9E-12 0 0.1 0.25
100% Η2 650 600 1.4E-13 138 0.25100% Η 2 650 600 1.4E-13 138 0.25
100% CO 700 600 2.2E-12 く 0.1 0.25 100% CO 700 600 2.2E-12 <0.1 0.25
100% Ν20 700 600 1.3E-12 く 0.1 0.25 100% Ν 2 0 700 600 1.3E-12 0 0.1 0.25
90% Η2 700 600 1.5E-12 く 0.1 0.25 10% Ν2 90% Η 2 700 600 1.5E-12 0 0.1 0.25 10% Ν 2
10% Η2 700 600 2.6E-12 く 0.1 0.25 90% He 10% Η 2 700 600 2.6E-12 0.1 0.25 90% He
10% Η2 700 600 1.8E-12 く 0.1 0.25 90% Ar 10% Η 2 700 600 1.8E-12 0 0.1 0.25 90% Ar
[0052] [実施例 2] [0052] [Example 2]
温度 T2還元処理 -タンタル酸リチウム結晶  Temperature T2 reduction treatment-Lithium tantalate crystal
LTラップウェハを、水素ガスが毎分約 1.5リットルの速度で流通する封止された炉 中に置いた。温度 Tl(l, 100°C)に 1時間保持して Tl処理 LTウェハを得た。図 1の ように、 LTラップウェハと T1処理 LTウェハを非接触状態に近接 (d=0.1— 50mm) して交互に配置し、 90vol%N +10vol%Hの混合ガスが毎分約 1.5リットルの速  The LT wrap wafer was placed in a sealed furnace with hydrogen gas flowing at a rate of about 1.5 liters per minute. The temperature was maintained at Tl (l, 100 ° C) for 1 hour to obtain a Tl-treated LT wafer. As shown in Figure 1, the LT wrap wafer and the T1 treated LT wafer are alternately placed close to each other in a non-contact state (d = 0.1–50mm), and a mixed gas of 90vol% N + 10vol% H is about 1.5 liters per minute. Speed
2 2  twenty two
度で流通する封止された炉中に置いた。ここで、ウェハ間の間隔を 0.1mm以上とし たのは、これより短いとウェハの充填が困難であるためである。温度 T2(600°C)に 1 時間保持後、炉を毎分約 6.7°Cの速度で降温した。 250°C以下で炉内に大気を導 入し、 30°C以下となったところでウェハを炉カも取り出し、 T2処理 LTウェハを得た。 導電率の間隔 dへの依存性を図 4に示す。導電率は間隔 dが少ないほど増加し、 20 mm以上ではほとんど効果がないことがわかる。また、ウェハ充填に支障をきたさず、 導電率増加という観点力 好ましい間隔は 0.2-3. Omm程度の範囲内といえる。  Placed in a sealed oven circulating at a temperature. Here, the interval between the wafers is set to 0.1 mm or more because if it is shorter than this, it is difficult to fill the wafer. After holding at temperature T2 (600 ° C) for 1 hour, the furnace was cooled down at a rate of about 6.7 ° C per minute. Atmosphere was introduced into the furnace at 250 ° C or below, and when the temperature was below 30 ° C, the wafer was taken out from the furnace to obtain a T2 treated LT wafer. Figure 4 shows the dependence of the conductivity on the spacing d. It can be seen that the conductivity increases as the distance d decreases, and that there is almost no effect above 20 mm. In addition, it does not interfere with wafer filling, and the viewpoint power of increasing conductivity. The preferable interval is in the range of about 0.2-3.Omm.
[0053] また、接触法 (特開 2004-269300号公報)で得られたウェハと本実施例で得られ たウェハを目視検査したところ、本実施例で作製されたウェハはいずれも、接触法で 得られたものよりも、ウェハ面内均一に変色していることが確認できた。 Further, when the wafer obtained by the contact method (Japanese Patent Laid-Open No. 2004-269300) and the wafer obtained by this example were visually inspected, both of the wafers produced by this example were contacted. It was confirmed that the discoloration was more uniform in the wafer surface than that obtained in the above.

Claims

請求の範囲  The scope of the claims
[I] 温度 Tlで還元処理された物質に処理すべきタンタル酸リチウム結晶を非接触状態 で近接配置し、このタンタル酸リチウム結晶を上記温度 T1より低 、温度 T2で還元雰 囲気中にさらすことを特徴とする導電率が増カロしたタンタル酸リチウム結晶の製造方 法。  [I] Lithium tantalate crystals to be treated are placed in close contact with the substance reduced at temperature Tl in a non-contact state, and the lithium tantalate crystals are exposed to the reducing atmosphere at a temperature T2 lower than temperature T1. A process for producing lithium tantalate crystals with increased conductivity characterized by
[2] 還元処理された物質と処理すべきタンタル酸リチウム結晶とを距離 (d) O. 1— 20mm を隔てて配置した請求項 1記載のタンタル酸リチウム結晶の製造方法。  [2] The method for producing a lithium tantalate crystal according to claim 1, wherein the reduction-treated substance and the lithium tantalate crystal to be treated are arranged at a distance (d) O. 1—20 mm apart.
[3] 温度 T1が 700°C以上であることを特徴とする請求項 1又は 2記載のタンタル酸リチウ ム結晶の製造方法。  [3] The method for producing a lithium tantalate crystal according to claim 1 or 2, wherein the temperature T1 is 700 ° C or higher.
[4] 温度 T1での還元処理を、水素、一酸化炭素、一酸ィ匕ニ窒素から選ばれる 1種又は 2 種以上の混合ガスを含む還元性ガス中で行うことを特徴とする請求項 1, 2又は 3記 載のタンタル酸リチウム結晶の製造方法。  [4] The reduction treatment at a temperature T1 is performed in a reducing gas containing one or more mixed gases selected from hydrogen, carbon monoxide, and nitrogen monoxide. The method for producing a lithium tantalate crystal as described in 1, 2 or 3.
[5] 前記還元性ガスが、更に希ガス、窒素、二酸ィ匕炭素力も選ばれる 1種又は 2種以上 の混合ガスを含む請求項 4記載のタンタル酸リチウム結晶の製造方法。 5. The method for producing a lithium tantalate crystal according to claim 4, wherein the reducing gas further contains one kind or two or more kinds of mixed gases in which a rare gas, nitrogen, and diacid-carbon power are also selected.
[6] 温度 T1で還元処理された物質として、無機物結晶、セラミックス、金属の ヽずれかを 用いることを特徴とする請求項 1乃至 5のいずれ力 1項記載のタンタル酸リチウム結晶 の製造方法。 6. The method for producing a lithium tantalate crystal according to any one of claims 1 to 5, wherein any one of inorganic crystals, ceramics, and metals is used as the substance reduced at temperature T1.
[7] 前記無機物結晶又は前記セラミックスとして、非化学量論組成をもつ複合酸化物から なるものを用いることを特徴とする請求項 6記載のタンタル酸リチウム結晶の製造方 法。  7. The method for producing a lithium tantalate crystal according to claim 6, wherein the inorganic crystal or the ceramic is a composite oxide having a non-stoichiometric composition.
[8] 前記無機物結晶又は前記セラミックスとして、タンタル酸リチウム又はニオブ酸リチウ ムを用いることを特徴とする請求項 6又は 7記載のタンタル酸リチウム結晶の製造方 法。  8. The method for producing a lithium tantalate crystal according to claim 6 or 7, wherein lithium tantalate or lithium niobate is used as the inorganic crystal or the ceramic.
[9] 前記金属として水素貯蔵合金を用いることを特徴とする請求項 6記載のタンタル酸リ チウム結晶の製造方法。  9. The method for producing a lithium tantalate crystal according to claim 6, wherein a hydrogen storage alloy is used as the metal.
[10] 処理すべきタンタル酸リチウム結晶として、単一分極ィ匕された結晶を用いることを特 徴とする請求項 1乃至 9のいずれ力 1項記載のタンタル酸リチウム結晶の製造方法。 10. The method for producing a lithium tantalate crystal according to any one of claims 1 to 9, wherein a single-polarized crystal is used as the lithium tantalate crystal to be treated.
[II] 前記単一分極化された結晶として、スライス処理及び Z又はラップ処理が行われたゥ ェハを用いることを特徴とする請求項 10記載のタンタル酸リチウム結晶の製造方法。 [II] Slice processing and Z or lapping processing were performed as the single polarized crystal. 11. The method for producing a lithium tantalate crystal according to claim 10, wherein:
[12] 前記単一分極化された結晶として、スライス前段階の結晶を用いることを特徴とする 請求項 10記載のタンタル酸リチウム結晶の製造方法。 12. The method for producing a lithium tantalate crystal according to claim 10, wherein a crystal before slicing is used as the single polarized crystal.
[13] 温度 T2が 400— 600°Cの範囲であることを特徴とする請求項 1乃至 12のいずれか 1 項記載のタンタル酸リチウム結晶の製造方法。 [13] The method for producing a lithium tantalate crystal according to any one of [1] to [12], wherein the temperature T2 is in a range of 400 to 600 ° C.
[14] 温度 T2で処理した後に、温度が 250°C以下で大気を導入することを特徴とする請求 項 13記載のタンタル酸リチウム結晶の製造方法。 14. The method for producing a lithium tantalate crystal according to claim 13, wherein the atmosphere is introduced at a temperature of 250 ° C. or lower after the treatment at the temperature T2.
[15] 温度 T2での還元処理を、水素、一酸化炭素、一酸化二窒素から選ばれる 1種又は 2 種以上の混合ガスを含む還元性のガス中で行うことを特徴とする請求項 1乃至 14の いずれか 1項記載のタンタル酸リチウム結晶の製造方法。 [15] The reduction treatment at temperature T2 is performed in a reducing gas containing one or more mixed gases selected from hydrogen, carbon monoxide, and dinitrogen monoxide. 15. The method for producing a lithium tantalate crystal according to any one of items 14 to 14.
[16] 前記還元性ガスが、更に希ガス、窒素、二酸ィ匕炭素力 選ばれる 1種又は 2種以上 の混合ガスを含む請求項 15記載のタンタル酸リチウム結晶の製造方法。 16. The method for producing a lithium tantalate crystal according to claim 15, wherein the reducing gas further contains one kind or two or more kinds of mixed gases selected from rare gas, nitrogen and diacid-carbon power.
PCT/JP2004/016924 2004-11-15 2004-11-15 Method for producing lithium tantalate crystal WO2006051610A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006544714A JP4488249B2 (en) 2004-11-15 2004-11-15 Method for producing lithium tantalate crystals
PCT/JP2004/016924 WO2006051610A1 (en) 2004-11-15 2004-11-15 Method for producing lithium tantalate crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/016924 WO2006051610A1 (en) 2004-11-15 2004-11-15 Method for producing lithium tantalate crystal

Publications (1)

Publication Number Publication Date
WO2006051610A1 true WO2006051610A1 (en) 2006-05-18

Family

ID=36336296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/016924 WO2006051610A1 (en) 2004-11-15 2004-11-15 Method for producing lithium tantalate crystal

Country Status (2)

Country Link
JP (1) JP4488249B2 (en)
WO (1) WO2006051610A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019135198A (en) * 2018-02-05 2019-08-15 京セラ株式会社 Method for manufacturing crystal
JP2019178016A (en) * 2018-03-30 2019-10-17 京セラ株式会社 Method for manufacturing crystal

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS573800A (en) * 1980-06-05 1982-01-09 Toshiba Corp Heat-treating method of single crystal
JPS58151399A (en) * 1982-03-01 1983-09-08 Shin Etsu Chem Co Ltd Formation of ferrodielectric into single domain
JPH1192147A (en) * 1997-07-25 1999-04-06 Crystal Technol Inc Lithium niobate crystal or lithium tantalate crystal having enhanced performance to decrease charge on crystal surface and method to preliminarily control that kind of crystal
WO2004079061A1 (en) * 2003-03-06 2004-09-16 Shin-Etsu Chemical Co., Ltd. Process for producing lithium tantalate crystal
JP2004269300A (en) * 2003-03-06 2004-09-30 Shin Etsu Chem Co Ltd Method for manufacturing lithium tantalate crystal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS573800A (en) * 1980-06-05 1982-01-09 Toshiba Corp Heat-treating method of single crystal
JPS58151399A (en) * 1982-03-01 1983-09-08 Shin Etsu Chem Co Ltd Formation of ferrodielectric into single domain
JPH1192147A (en) * 1997-07-25 1999-04-06 Crystal Technol Inc Lithium niobate crystal or lithium tantalate crystal having enhanced performance to decrease charge on crystal surface and method to preliminarily control that kind of crystal
WO2004079061A1 (en) * 2003-03-06 2004-09-16 Shin-Etsu Chemical Co., Ltd. Process for producing lithium tantalate crystal
JP2004269300A (en) * 2003-03-06 2004-09-30 Shin Etsu Chem Co Ltd Method for manufacturing lithium tantalate crystal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019135198A (en) * 2018-02-05 2019-08-15 京セラ株式会社 Method for manufacturing crystal
JP2019178016A (en) * 2018-03-30 2019-10-17 京セラ株式会社 Method for manufacturing crystal

Also Published As

Publication number Publication date
JP4488249B2 (en) 2010-06-23
JPWO2006051610A1 (en) 2008-05-29

Similar Documents

Publication Publication Date Title
EP1600531B1 (en) Process for producing lithium tantalate crystal
KR100573664B1 (en) Lithium tantalate substrate and method of manufacturing same
KR101144258B1 (en) Lithium niobate substrate and method of producing the same
US7374612B2 (en) Method of producing single-polarized lithium tantalate crystal and single-polarized lithium tantalate crystal
JP2009249254A (en) Method for producing lithium tantalate crystal and lithium tantalate crystal
JP2004269300A (en) Method for manufacturing lithium tantalate crystal
JP4482761B2 (en) Method for producing lithium tantalate crystals
JP4596149B2 (en) Method for producing lithium tantalate crystals
WO2006051610A1 (en) Method for producing lithium tantalate crystal
EP3366816B1 (en) Method for producing lithium niobate single crystal substrate
JP2005317822A (en) Manufacturing method of singly polarized lithium tantalate
JP4071670B2 (en) Method for producing single-domain lithium tantalate crystals
KR102581209B1 (en) Lithium niobate single crystal substrate and manufacturing method thereof
KR20180019550A (en) Lithium niobate single crystal substrate and manufacturing method thereof
KR20180019541A (en) Lithium niobate single crystal substrate and manufacturing method thereof
JP2005119950A (en) Method for manufacturing monopolarized lithium tantalate crystal and monopolarized lithium tantalate crystal
KR20180019542A (en) Lithium niobate single crystal substrate and manufacturing method thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006544714

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 04822402

Country of ref document: EP

Kind code of ref document: A1