WO2006051600A1 - Phosphor for display device, manufacturing method thereof and display device using the phosphor - Google Patents

Phosphor for display device, manufacturing method thereof and display device using the phosphor Download PDF

Info

Publication number
WO2006051600A1
WO2006051600A1 PCT/JP2004/016859 JP2004016859W WO2006051600A1 WO 2006051600 A1 WO2006051600 A1 WO 2006051600A1 JP 2004016859 W JP2004016859 W JP 2004016859W WO 2006051600 A1 WO2006051600 A1 WO 2006051600A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
display device
phosphor layer
emitting
emission
Prior art date
Application number
PCT/JP2004/016859
Other languages
French (fr)
Japanese (ja)
Inventor
Shuniti Kubota
Masahiko Shimada
Kenichi Yamaguchi
Takeo Ito
Susumu Matsuura
Original Assignee
Kabushiki Kaisha Toshiba
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Toshiba filed Critical Kabushiki Kaisha Toshiba
Priority to PCT/JP2004/016859 priority Critical patent/WO2006051600A1/en
Publication of WO2006051600A1 publication Critical patent/WO2006051600A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/58Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing copper, silver or gold
    • C09K11/582Chalcogenides
    • C09K11/584Chalcogenides with zinc or cadmium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/10Screens on or from which an image or pattern is formed, picked up, converted or stored
    • H01J29/18Luminescent screens
    • H01J29/20Luminescent screens characterised by the luminescent material

Definitions

  • Fluorescent substance for display device manufacturing method thereof, and display device using the same
  • the present invention relates to a phosphor for a display device that emits light by electron beam excitation, a method for manufacturing the same, and a color display device using the same.
  • CTR cathode ray tubes
  • FED field emission display device
  • CRT field emission cold cathode
  • FED has the same basic display principle as CRT.
  • basic display performance such as brightness, contrast, and color reproducibility, it has a wide viewing angle, fast response speed, and low power consumption. It has the characteristics of.
  • Display devices such as CRT and FED described above have a phosphor layer containing phosphors of blue light emission, green light emission and red light emission in order to enable full color display.
  • phosphors based on zinc sulfide (ZnS) are used!
  • ZnS phosphor containing ZnS containing Ag as a first activator and A1 or C1 as a second activator For example, see Patent Document 1
  • ZnS contains Cu and Au as the first activator, and A1 as the second activator.
  • Zinc sulfate phosphor is used.
  • Patent Document 1 and Patent Document 2 are not sufficiently satisfactory in color purity (chromaticity) and luminance of light emission, and green light emission with particularly high visual sensitivity. There is a demand for enhancing the luminance while enhancing the color purity of the phosphor.
  • the phosphor is excited by an electron beam having a higher current density. As a result, the current characteristics of the phosphor are further improved. There is a need to improve and increase brightness at high current densities.
  • Patent Document 1 JP-A-62-95378 (Page 1-2)
  • Patent Document 2 JP-A-2002-226847 (Page 2-3)
  • the present invention has been made in order to cope with such a problem.
  • a green light emitting phosphor used in a power display device such as a CRT or FED
  • the emission chromaticity is improved and the current density is reduced.
  • the purpose is to improve luminance and color purity in It is another object of the present invention to provide a color display device with improved display characteristics by using such a phosphor for display device.
  • the present inventors have studied the firing atmosphere for the phosphor matrix (for example, zinc sulfite) in order to improve the current characteristics of the green light-emitting phosphor used in a display device such as a CRT.
  • the phosphor matrix for example, zinc sulfite
  • the present inventors have found that the luminance can be improved, and in particular, the current characteristics can be improved.
  • Display device for the phosphor of the present invention have the general formula: ZnS: Cua, Alb (where, a and b, with respect to zinc sulfide lg is a fluorescent substance matrix, 1 X 10- 5 ⁇ a ⁇ has a composition substantially represented 1 X 10- 3 g, 1 X 10- 5 ⁇ b ⁇ 5 X 10 one 3 g of a range of amounts, respectively shown), green which emits light by excitation by an electron beam It is a light emitting phosphor, and in the emission spectrum, when (O) is the area of the shorter wavelength portion than the wavelength 60 nm shorter than the wavelength at which the maximum emission intensity is obtained (hereinafter referred to as the emission peak wavelength), The ratio of the above (O) to the area (M) of the entire emission spectrum is 1.6% or less.
  • the method for producing a phosphor for a display device is a method for producing a green light-emitting phosphor containing zinc sulfide as a base and Cu and A1 as activators, respectively. And an element constituting the activator or a compound containing the element.
  • the step of firing the phosphor material can be performed in a sulfur atmosphere or a reducing atmosphere of 1 atm or higher.
  • the display device of the present invention includes a phosphor layer including a blue light-emitting phosphor layer, a green light-emitting phosphor layer, and a red light-emitting phosphor layer, and emitting light by irradiating the phosphor layer with an electron beam.
  • a display device comprising: an electron source to be emitted; and an envelope for vacuum-sealing the electron source and the phosphor layer, wherein the green light-emitting phosphor layer includes the phosphor for the display device described above.
  • the efficiency of green light emission can be increased by suppressing the light emission itself on the short wavelength side having a high transition probability at a high current density.
  • the green phosphor As a result, the color purity can be increased. Therefore, according to a color display device such as a CRT or FED using such a phosphor as a green light-emitting phosphor, high luminance can be obtained.
  • FIG. 1 is a cross-sectional view showing a configuration example of a field emission display (FED) according to an embodiment of the present invention.
  • FED field emission display
  • FIG. 2 is a graph showing emission spectra of the phosphor layers obtained in Examples and Comparative Examples of the present invention.
  • FIG. 3 is a graph showing the relationship between the X value and the y value of emission chromaticity in the phosphor layers obtained in the examples and comparative examples of the present invention.
  • FIG. 4 is a graph showing changes in luminance according to changes in current density in the phosphor layers obtained in Examples and Comparative Examples of the present invention.
  • ZnS is used as a base material, and Cu and A1 are used as activators.
  • Cu is a first activator which forms the luminescence center (main activator), with respect to lg of ZnS is a fluorescent substance matrix, 1 X 10- 5 - it is preferably contained in the range of 1 X 10- 3 g. Be less than 1 X 10 "5 g with respect to the content force 3 ⁇ 4nSlg of Cu, which is the first activator, and also beyond the 1 X 10- 3 g, emission luminance and emission chromaticity is reduced. the Cu content, 3 X 10- 5 relative ZnSlg - 8 X 10- 4 g, preferably in more preferred gestures et al in the range of 5 X 10- 5 - 5 X 10- 4 g range It is.
  • A1 is a second activator (co-activator) that is directly excited by an electron beam, and the first activator emits light with the excitation energy of the second activator.
  • ZnS zinc sulfide phosphor
  • the content of the second is an activator A1
  • relative to lg of ZnS is a fluorescent substance matrix, 1 X 10- 5 - to preferably contained in the range of 5 X 10- 3 g.
  • the content of A1 is less than 1 X 10- 5 g with respect ZnSlg, also exceed 5 X 10- 3 g, emission luminance is also emission chromaticity also deteriorates decreases.
  • the content of A1 is 3 X 10- 5 against ZnS lg - 3 X 10- 3 g more preferred gesture et al good Mashiku be in the range of 5 X 10- 5 - 1 X 10- 3 g of It is a range.
  • the green light emitting phosphor emits light having the following spectral characteristics by excitation with electron beams having different current densities. That is, in the emission spectrum obtained by exciting this green-emitting phosphor with an electron beam, the emission peak wavelength (denoted as Nnm) is 60 nm shorter than the wavelength (N-60) nm. When the area of the part is (O), the ratio of (O) to the area (M) of the entire emission spectrum is 1.6% or less. (0) Z (M) ⁇ 1.6%
  • the ratio power of the area (P) of the wavelength portion shorter than the wavelength (N—70) nm to the area (M) of the entire emission spectrum is 0.8% or less. . (P) / (M) ⁇ 0. 8%
  • the phosphor according to the embodiment of the present invention is manufactured as follows. First, a predetermined amount of activator raw material is added to the phosphor base material, which is the phosphor matrix, and flux (flux) such as salt potassium salt or salt magnesium is added as necessary. Add these in the wet Mix.
  • flux fluorescence
  • the zinc sulfate raw material is dispersed in ion-exchanged water to form a slurry, and the activator raw material and flux are added thereto and mixed by a stirrer in a conventional manner.
  • the mixing time is set so that the activator is uniformly dispersed.
  • the slurry containing the phosphor material and the activator is transferred to a drying container such as a pad and dried in a drier by a conventional method to obtain a phosphor material.
  • activator raw materials for example, copper sulfate is used for Cu, and aluminum nitrate is used for A1. It is also possible to use compounds other than these.
  • the phosphor raw material thus obtained is filled into a heat-resistant container equipped with a check valve together with appropriate amounts of sulfur and activated carbon.
  • sulfur is mixed with the dried phosphor raw material and blender, for example, for about 30 to 180 minutes, and after filling this mixed material in a heat-resistant container, the surface is covered with sulfur. It is preferable to do.
  • a sulfide atmosphere such as a hydrogen sulfide atmosphere or a sulfur vapor atmosphere.
  • a reducing atmosphere eg, 3-5% hydrogen balance nitrogen atmosphere.
  • Firing conditions are important in controlling the crystal structure of ZnS as a phosphor matrix.
  • the firing temperature in the range of 800–1, 250 ° C. If the firing temperature is less than 800 ° C, ZnS crystal grains cannot be grown sufficiently. On the other hand, when the firing temperature exceeds 1250 ° C, coarse particles increase, which is not suitable for use. Force depending on the set firing temperature
  • the firing time is preferably 30-360 minutes.
  • the obtained fired product is washed with ion-exchanged water or the like, dried, and further subjected to sieving to remove coarse particles, if necessary.
  • Photoconductor powder can be obtained.
  • the phosphor of the embodiment manufactured in this way has improved emission chromaticity, and in particular, the emission luminance and color purity under a high current density are high. Therefore, this phosphor is suitably used for a color display device using an electron beam having an acceleration voltage in the range of 5-35 kV as an excitation source, such as a color CRT or FED, so that high-definition and high-quality images can be achieved.
  • an electron beam having an acceleration voltage in the range of 5-35 kV as an excitation source such as a color CRT or FED, so that high-definition and high-quality images can be achieved.
  • FED field emission display
  • FIG. 1 is a cross-sectional view showing a main configuration of the FED.
  • reference numeral 1 denotes a face plate, which has a phosphor layer 3 formed on a transparent substrate such as a glass substrate 2.
  • This phosphor layer 3 has a blue light-emitting phosphor layer, a green light-emitting phosphor layer, and a red light-emitting phosphor layer formed corresponding to the pixels, and a light absorbing layer 4 ⁇ ⁇ made of a black conductive material is interposed between these layers. This is a separate structure.
  • the green light-emitting phosphor layer is composed of the green light-emitting phosphor of the above-described embodiment.
  • Each of the blue light emitting phosphor layer and the red light emitting phosphor layer can be composed of various known phosphors.
  • Each color phosphor layer can be formed by a known slurry method or printing method.
  • the blue light-emitting phosphor layer, the green light-emitting phosphor layer, the red light-emitting phosphor layer, and the light absorption layer 4 that separates them are sequentially and repeatedly formed in the horizontal direction.
  • a portion where the phosphor layer 3 and the light absorption layer 4 exist is an image display region.
  • Various patterns such as dots or stripes can be applied to the arrangement pattern of the phosphor layer 3 and the light absorption layer 4.
  • a metal back layer 5 is formed on the phosphor layer 3.
  • the metal back layer 5 is made of a metal film such as an A 1 film, and reflects the light traveling in the rear plate direction, which will be described later, among the light generated in the phosphor layer 3 to improve the luminance.
  • the metal back layer 5 has a function of imparting conductivity to the image display region of the face plate 1 to prevent electric charge from being accumulated, and serves as an anode electrode for the electron source of the rear plate. Fulfill.
  • the metal back layer 5 has a function of preventing the phosphor layer 3 from being damaged by ions generated by ionizing the gas remaining in the face plate 1 and the vacuum vessel (envelope) with an electron beam.
  • the gas generated from the phosphor layer 3 during use is prevented from being released into the vacuum container (envelope), and the vacuum degree is prevented from being lowered.
  • a getter film 6 made of an evaporable getter material having a force such as Ba is formed on the metal back layer 5.
  • the getter film 6 efficiently adsorbs gas generated during use.
  • the face plate 1 and the rear plate 7 are arranged to face each other, and the space between them is hermetically sealed via the support frame 8.
  • the support frame 8 is bonded to the face plate 1 and the rear plate 7 by a frit glass or a bonding material 9 having a force such as In or an alloy thereof, and the face plate 1, the rear plate 7 and the support frame 8
  • a vacuum vessel is constructed as an envelope.
  • the rear plate 7 includes an insulating substrate such as a glass substrate or a ceramic substrate, or a substrate 10 having a force such as a Si substrate, and a large number of electron-emitting devices 11 formed on the substrate 10.
  • These electron-emitting devices 11 include, for example, a field-emission cold cathode, a surface conduction electron-emitting device, and the like, and the surface of the rear plate 7 on which the electron-emitting devices 11 are formed is provided with wiring (not shown). That is, a large number of electron-emitting devices 11 are formed in a matrix according to the phosphor of each pixel, and wirings that cross each other (XY wiring) that drive the matrix-shaped electron-emitting devices 11 line by line. have.
  • the support frame 8 is provided with a signal input terminal and a row selection terminal (not shown). These terminals correspond to the cross wiring (X-Y wiring) of the rear plate 7 described above.
  • a reinforcing member (atmospheric pressure support member, spacer) 12 is appropriately disposed between the face plate 1 and the rear plate 7. May be.
  • the green light-emitting phosphor layer that emits light by electron beam irradiation is composed of the green light-emitting phosphor of the embodiment, display characteristics such as light emission luminance and color reproducibility are achieved. It becomes possible to improve.
  • the obtained fired product was sufficiently washed with water and dried, and further sieved to obtain a target green-emitting ZnS: Cu, A1 phosphor.
  • the obtained phosphor was subjected to the characteristic evaluation described later.
  • a ZnS: Cu, A1 phosphor was produced in the same manner as in Example 1 except that the firing temperature was 1050 ° C. The obtained phosphor was subjected to the characteristic evaluation described later.
  • a ZnS: Cu, A1 phosphor was produced in the same manner as in Example 1 except that the firing temperature was 1100 ° C. The obtained phosphor was subjected to the characteristic evaluation described later.
  • a ZnS: Cu, A1 phosphor was produced in the same manner as in Example 1 except that the firing temperature was 1150 ° C. The obtained phosphor was subjected to the characteristic evaluation described later.
  • Zinc sulfate (ZnS) lOOOg Zinc sulfate (ZnS) lOOOg, copper sulfate (CuSO ⁇ 5 ⁇ 0) 0.68g and aluminum nitrate (Al (
  • a ZnS: Cu, A1 phosphor was produced in the same manner as in Comparative Example 1 except that the firing temperature was 1050 ° C. The obtained phosphor was subjected to the characteristic evaluation described later.
  • a ZnS: Cu, A1 phosphor was produced in the same manner as in Comparative Example 1 except that the firing temperature was 1075 ° C. The obtained phosphor was subjected to the characteristic evaluation described later. [0047] Comparative Example 4
  • a ZnS: Cu, A1 phosphor was fabricated in the same manner as Comparative Example 1 except that the firing temperature was 1100 ° C. The obtained phosphor was subjected to the characteristic evaluation described later.
  • a ZnS: Cu, A1 phosphor was fabricated in the same manner as in Comparative Example 1 except that the firing temperature was 1150 ° C. The obtained phosphor was subjected to the characteristic evaluation described later.
  • phosphor layers were formed using the green light-emitting phosphors obtained in Examples 1 and 4 and Comparative Examples 1 and 5, respectively.
  • the phosphor layer was formed by dispersing each green light-emitting phosphor in an aqueous solution containing polyvinyl alcohol to form a slurry, and coating the slurry on a glass substrate with a spin coater.
  • the thickness of each phosphor layer was adjusted to 3 ⁇ 10 ” 3 mg / mm 3 (3 mg / cm 3 ) by adjusting the rotation speed of the spin coater and the slurry viscosity.
  • each phosphor film obtained were examined. Emission luminance, acceleration voltage 10kV to each phosphor film was measured by irradiating an electron beam current density 1 ⁇ AZmm 2. Each luminance was obtained as a relative value when the luminance of the phosphor film formed using the phosphor of Comparative Example 1 was 100. The emission luminance, emission chromaticity and emission spectrum were measured using SR-3 manufactured by Topcon as a measuring instrument.
  • the ratio of the emission area on the short wavelength side caused by defects or the like to the total area of the measured emission spectrum was obtained. That is, in the emission spectrum shown in Fig. 2, the area of the wavelength shorter than the wavelength (N-60) nm is (0) and the wavelength (N-70) nm is 60 nm shorter than the emission peak wavelength (Nnm)! When the area of the shorter wavelength portion is (P), the ratios (OZM and PZM) of (O) and (P) to the total area (M) of the emission spectrum were obtained. These measurement results are shown in Table 1.
  • the current density of the electron beam applied to the phosphor film was changed, and the change in the light emission characteristics was measured and evaluated. That is, the current density of the electron beam was changed from 1 ⁇ A / mm 2 to 50 ⁇ A / mm 2 for the phosphor films formed using the phosphors of Examples 1 and 4 and Comparative Examples 1 and 5.
  • the emission luminance and emission chromaticity were measured in the same manner.
  • the amount of change in chromaticity (X, y) before and after changing the current density was calculated as the color shift using the following formula.
  • Color misregistration amount (A x 2 + Ay 2 )
  • the phosphor film formed using the phosphor of Example 1-14 is compared with the phosphor film formed using the phosphor of Comparative Example 11-5.
  • the amount of color misregistration was small and the light emission characteristics were excellent.
  • the phosphor film formed in Example 11-14 shows a high value at a particularly high current density and the luminance is higher than that of the phosphor film formed in Comparative Example 11-15. I found it to be good.
  • the efficiency of green light emission can be improved by suppressing the light emission itself on the short wavelength side with a high transition probability at a high current density.
  • the color purity of the green phosphor can be increased. Therefore, by using such a phosphor as a green light emitting phosphor, it is possible to obtain a color display device such as a CRT or FED having high luminance and excellent display characteristics.

Abstract

In a phosphor for display device, an area of a shorter wavelength than a wavelength 60nm shorter than a peak wavelength in emission spectrum is permitted to be 1.6% of the entire area of the spectrum or less. The phosphor can be obtained by removing adsorbed water and oxygen from a phosphor material and heating and burning the material by maintaining such status. In the phosphor to be used in color display devices such as CRT and FED, especially a green light emitting zinc sulfide phosphor, unnecessary emission due to a defect under a high current density is suppressed, and current characteristics and color purity of the color display devices are improved.

Description

表示装置用蛍光体とその製造方法、およびそれを用いた表示装置 技術分野  Fluorescent substance for display device, manufacturing method thereof, and display device using the same
[0001] 本発明は、電子線励起により発光する表示装置用蛍光体とその製造方法、および それを用いたカラー表示装置に関する。  The present invention relates to a phosphor for a display device that emits light by electron beam excitation, a method for manufacturing the same, and a color display device using the same.
背景技術  Background art
[0002] マルチメディア時代の到来に伴って、デジタルネットワークのコア機器となるディス プレイ装置には、大画面化や高精細化、コンピュータ等の多様なソースへの対応性 などが求められており、陰極線管 (CRT)を使用した装置が広く使用されている。 CR Tに関しては、ハイビジョン用テレビや高精細ディスプレイ管などが開発されており、 画像の大画面 ·高品質ィ匕ゃ高精細化などが進められている。  [0002] With the advent of the multimedia era, display devices that are the core devices of digital networks are required to have larger screens, higher definition, and compatibility with various sources such as computers. Devices using cathode ray tubes (CRT) are widely used. Regarding CRT, high-definition televisions and high-definition display tubes have been developed, and large screens and high-quality images have been improved.
[0003] また、 CRTに代わる薄型のディスプレイ装置として、電界放出型冷陰極などの電子 放出素子を用いた電界放出型表示装置 (FED)の研究、開発が進められている。 FE Dは基本的な表示原理が CRTと同じであり、明るさ、コントラスト、色再現性などの基 本的な表示性能に加えて、視野角が広い、応答速度が速い、消費電力が小さいなど の特徴を有する。  [0003] Further, research and development of a field emission display device (FED) using an electron emission element such as a field emission cold cathode has been promoted as a thin display device replacing CRT. FED has the same basic display principle as CRT. In addition to basic display performance such as brightness, contrast, and color reproducibility, it has a wide viewing angle, fast response speed, and low power consumption. It has the characteristics of.
[0004] 上述した CRTや FEDなどのディスプレイ装置は、フルカラー表示を可能とするため に、青色発光、緑色発光および赤色発光の各蛍光体を含む蛍光体層を有している。 そして、これらのディスプレイ装置用の青色発光蛍光体や緑色発光蛍光体としては、 硫化亜鉛 (ZnS)を母体とする蛍光体が用いられて!/ヽる。  [0004] Display devices such as CRT and FED described above have a phosphor layer containing phosphors of blue light emission, green light emission and red light emission in order to enable full color display. As the blue light-emitting phosphor and the green light-emitting phosphor for these display devices, phosphors based on zinc sulfide (ZnS) are used!
[0005] 例えば、青色発光蛍光体としては、 ZnSに第 1の付活剤として Agを含有させるとと もに、第 2の付活剤として A1や C1を含有させた硫ィ匕亜鉛蛍光体 (例えば、特許文献 1 参照)が、また緑色発光蛍光体としては、 ZnSに第 1の付活剤として Cuや Auを含有 させるととも〖こ、第 2の付活剤として A1を含有させた硫ィ匕亜鉛蛍光体が使用されてい る。(例えば、特許文献 2参照)  [0005] For example, as a blue light emitting phosphor, ZnS phosphor containing ZnS containing Ag as a first activator and A1 or C1 as a second activator (For example, see Patent Document 1) However, as a green light emitting phosphor, ZnS contains Cu and Au as the first activator, and A1 as the second activator. Zinc sulfate phosphor is used. (For example, see Patent Document 2)
[0006] しかしながら、特許文献 1および特許文献 2に記載された蛍光体では、発光の色純 度 (色度)および輝度が十分に満足できるものではなぐ特に視感度の高い緑色発光 蛍光体の色純度を高めつつ輝度向上をは力ることが要望されている。 [0006] However, the phosphors described in Patent Document 1 and Patent Document 2 are not sufficiently satisfactory in color purity (chromaticity) and luminance of light emission, and green light emission with particularly high visual sensitivity. There is a demand for enhancing the luminance while enhancing the color purity of the phosphor.
[0007] また、ディスプレイ装置の高精細化や高品質ィ匕などに伴って、より高い電流密度の 電子線により蛍光体を励起することが行われて 、る結果、蛍光体の電流特性をより 、 つそう改善し、高電流密度での輝度を高めることが求められている。  [0007] In addition, as the display device becomes more precise and has higher quality, the phosphor is excited by an electron beam having a higher current density. As a result, the current characteristics of the phosphor are further improved. There is a need to improve and increase brightness at high current densities.
特許文献 1 :特開昭 62-95378号公報 (第 1-2頁)  Patent Document 1: JP-A-62-95378 (Page 1-2)
特許文献 2:特開 2002-226847公報 (第 2-3頁)  Patent Document 2: JP-A-2002-226847 (Page 2-3)
発明の開示  Disclosure of the invention
[0008] 本発明は、このような課題に対処するためになされたもので、 CRTや FEDなどの力 ラー表示装置に用いられる緑色発光蛍光体において、発光色度の改善と、高電流 密度下での輝度および色純度の向上を目的とする。また、そのような表示装置用蛍 光体を用いることによって、表示特性を向上させたカラー表示装置を提供することを 目的としている。  [0008] The present invention has been made in order to cope with such a problem. In a green light emitting phosphor used in a power display device such as a CRT or FED, the emission chromaticity is improved and the current density is reduced. The purpose is to improve luminance and color purity in It is another object of the present invention to provide a color display device with improved display characteristics by using such a phosphor for display device.
[0009] 本発明者等は、 CRTなどの表示装置に使用される緑色発光蛍光体の電流特性を 向上させるために、蛍光体母体 (例えば硫ィヒ亜鉛)に対する焼成雰囲気などについ て検討した結果、焼成材料および焼成材料を収容する耐熱性容器などの内部に残 存する酸素と水を除去し、かつそのような残存酸素および水のな 、状態を維持しな 力 焼成を行うことにより、色純度および輝度を向上させることができ、特に電流特性 の改善が可能であることを見出した。  [0009] The present inventors have studied the firing atmosphere for the phosphor matrix (for example, zinc sulfite) in order to improve the current characteristics of the green light-emitting phosphor used in a display device such as a CRT. By removing the oxygen and water remaining inside the firing material and the heat-resistant container containing the firing material, and by performing firing without maintaining the state of such residual oxygen and water, the color purity In addition, the present inventors have found that the luminance can be improved, and in particular, the current characteristics can be improved.
[0010] 本発明の表示装置用蛍光体は、一般式: ZnS : Cua, Alb (式中、 aおよび bは、蛍 光体母体である硫化亜鉛 lgに対して、 1 X 10— 5≤a≤ 1 X 10— 3g、 1 X 10— 5≤b≤5 X 10一3 gの範囲の量をそれぞれ示す)で実質的に表わされる組成を有し、電子線での 励起により発光する緑色発光蛍光体であり、発光のスペクトルにおいて、最大発光強 度が得られる波長(以下、発光ピーク波長と示す。)から 60nm短い波長よりさらに短 波長の部分の面積を (O)としたとき、前記発光スペクトル全体の面積 (M)に対する前 記 (O)の割合が 1. 6%以下であることを特徴とする。 [0010] Display device for the phosphor of the present invention have the general formula: ZnS: Cua, Alb (where, a and b, with respect to zinc sulfide lg is a fluorescent substance matrix, 1 X 10- 5 ≤a ≤ has a composition substantially represented 1 X 10- 3 g, 1 X 10- 5 ≤b≤5 X 10 one 3 g of a range of amounts, respectively shown), green which emits light by excitation by an electron beam It is a light emitting phosphor, and in the emission spectrum, when (O) is the area of the shorter wavelength portion than the wavelength 60 nm shorter than the wavelength at which the maximum emission intensity is obtained (hereinafter referred to as the emission peak wavelength), The ratio of the above (O) to the area (M) of the entire emission spectrum is 1.6% or less.
[0011] また、本発明の表示装置用蛍光体の製造方法は、硫化亜鉛を母体とし付活剤とし て Cuおよび A1をそれぞれ含有する緑色発光蛍光体の製造方法であり、前記蛍光体 母体、および前記付活剤を構成する元素または該元素を含有する化合物をそれぞ れ含む蛍光体原料から、吸着した水分および酸素を除去する工程と、前記水分およ び酸素が除去された状態を維持しながら、前記蛍光体原料を加熱して焼成する工程 を具備することを特徴とする。 [0011] The method for producing a phosphor for a display device according to the present invention is a method for producing a green light-emitting phosphor containing zinc sulfide as a base and Cu and A1 as activators, respectively. And an element constituting the activator or a compound containing the element. A step of removing adsorbed moisture and oxygen from the contained phosphor material, and a step of heating and firing the phosphor material while maintaining the state where the moisture and oxygen are removed. Features.
[0012] 本発明の表示装置用蛍光体の製造方法において、蛍光体原料を焼成する工程は 、 1気圧以上の硫ィ匕性雰囲気あるいは還元性雰囲気で行うことができる。  In the method for producing a phosphor for a display device of the present invention, the step of firing the phosphor material can be performed in a sulfur atmosphere or a reducing atmosphere of 1 atm or higher.
[0013] さらに、本発明の表示装置は、青色発光蛍光体層と緑色発光蛍光体層と赤色発光 蛍光体層とをそれぞれ含む蛍光体層と、前記蛍光体層に電子線を照射して発光さ せる電子源と、前記電子源と前記蛍光体層を真空封止する外囲器とを具備する表示 装置であり、緑色発光蛍光体層は前記した表示装置用蛍光体を含むことを特徴とす る。  Furthermore, the display device of the present invention includes a phosphor layer including a blue light-emitting phosphor layer, a green light-emitting phosphor layer, and a red light-emitting phosphor layer, and emitting light by irradiating the phosphor layer with an electron beam. A display device comprising: an electron source to be emitted; and an envelope for vacuum-sealing the electron source and the phosphor layer, wherein the green light-emitting phosphor layer includes the phosphor for the display device described above. The
[0014] 本発明の表示装置用蛍光体によれば、高電流密度では遷移確率の高い短波長側 の発光そのものを抑制することにより、緑色発光の効率を上げることができ、その結果 緑色蛍光体としての色純度を上げることができる。したがって、このような蛍光体を緑 色発光蛍光体として用いた CRT、 FEDなどのカラー表示装置によれば、高輝度を得 ることが可能となる。  [0014] According to the phosphor for display device of the present invention, the efficiency of green light emission can be increased by suppressing the light emission itself on the short wavelength side having a high transition probability at a high current density. As a result, the green phosphor As a result, the color purity can be increased. Therefore, according to a color display device such as a CRT or FED using such a phosphor as a green light-emitting phosphor, high luminance can be obtained.
図面の簡単な説明  Brief Description of Drawings
[0015] [図 1]本発明の一実施形態である電界放出型表示装置 (FED)の一構成例を示す断 面図である。  FIG. 1 is a cross-sectional view showing a configuration example of a field emission display (FED) according to an embodiment of the present invention.
[図 2]本発明の実施例および比較例で得られた蛍光体層の発光スペクトルを示すグ ラフである。  FIG. 2 is a graph showing emission spectra of the phosphor layers obtained in Examples and Comparative Examples of the present invention.
[図 3]本発明の実施例および比較例で得られた蛍光体層にお ヽて、発光色度の X値 と y値との間の関係を表すグラフである。  FIG. 3 is a graph showing the relationship between the X value and the y value of emission chromaticity in the phosphor layers obtained in the examples and comparative examples of the present invention.
[図 4]本発明の実施例および比較例で得られた蛍光体層にお ヽて、電流密度の変化 に応じた輝度の変化を示すグラフである。  FIG. 4 is a graph showing changes in luminance according to changes in current density in the phosphor layers obtained in Examples and Comparative Examples of the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 次に、本発明の好適な実施の形態について説明する。なお、本発明は以下の実施 形態に限定されるものではな 、。 Next, a preferred embodiment of the present invention will be described. The present invention is not limited to the following embodiment.
[0017] 本発明の第 1の実施形態は、 ZnSを母体とし付活剤として Cuおよび A1をそれぞれ 含有する、一般式: ZnS : Cu, A1で実質的に表わされる組成を有する緑色発光蛍光 体である。 [0017] In the first embodiment of the present invention, ZnS is used as a base material, and Cu and A1 are used as activators. A green-emitting phosphor having a composition substantially represented by the general formula: ZnS: Cu, A1 is contained.
[0018] この緑色発光蛍光体において、 Cuは発光中心を形成する第 1の付活剤(主付活剤 )であり、蛍光体母体である ZnSの lgに対して、 1 X 10— 5— 1 X 10— 3gの範囲で含有 させることが好ましい。第 1の付活剤である Cuの含有量力 ¾nSlgに対して 1 X 10"5g 未満であっても、また 1 X 10— 3gを超えても、発光輝度や発光色度が低下する。 Cuの 含有量は、 ZnSlgに対して 3 X 10— 5— 8 X 10— 4gの範囲とすることがより好ましぐさら に好ましくは 5 X 10— 5— 5 X 10— 4gの範囲である。 [0018] In this green emitting phosphor, Cu is a first activator which forms the luminescence center (main activator), with respect to lg of ZnS is a fluorescent substance matrix, 1 X 10- 5 - it is preferably contained in the range of 1 X 10- 3 g. Be less than 1 X 10 "5 g with respect to the content force ¾nSlg of Cu, which is the first activator, and also beyond the 1 X 10- 3 g, emission luminance and emission chromaticity is reduced. the Cu content, 3 X 10- 5 relative ZnSlg - 8 X 10- 4 g, preferably in more preferred gestures et al in the range of 5 X 10- 5 - 5 X 10- 4 g range It is.
[0019] A1は電子線により直接的に励起される第 2の付活剤(共付活剤)であり、このような 第 2の付活剤の励起エネルギーで第 1の付活剤を発光させることによって、硫化亜鉛 蛍光体 (ZnS: Cu蛍光体)の発光輝度を高めることができる。第 2の付活剤である A1 の含有量は、蛍光体母体である ZnSの lgに対して、 1 X 10— 5— 5 X 10— 3gの範囲で 含有させることが好ましい。 A1の含有量が ZnSlgに対して 1 X 10— 5g未満であっても 、また 5 X 10— 3gを超えても、発光輝度が低下しまた発光色度も劣化する。 A1の含有 量は ZnS lgに対して 3 X 10— 5— 3 X 10— 3gの範囲とすることがより好ましぐさらに好 ましくは 5 X 10— 5— 1 X 10— 3gの範囲である。 [0019] A1 is a second activator (co-activator) that is directly excited by an electron beam, and the first activator emits light with the excitation energy of the second activator. As a result, the luminance of the zinc sulfide phosphor (ZnS: Cu phosphor) can be increased. The content of the second is an activator A1, relative to lg of ZnS is a fluorescent substance matrix, 1 X 10- 5 - to preferably contained in the range of 5 X 10- 3 g. Also the content of A1 is less than 1 X 10- 5 g with respect ZnSlg, also exceed 5 X 10- 3 g, emission luminance is also emission chromaticity also deteriorates decreases. The content of A1 is 3 X 10- 5 against ZnS lg - 3 X 10- 3 g more preferred gesture et al good Mashiku be in the range of 5 X 10- 5 - 1 X 10- 3 g of It is a range.
[0020] そして、この緑色発光蛍光体は、電流密度が異なる電子線での励起により、いずれ も、以下に示すようなスペクトル特性を有する発光を発する。すなわち、この緑色発光 蛍光体を電子線により励起して得られる発光のスペクトルにお 、て、発光ピーク波長 (Nnmと示す。 )から 60nm短!、波長(N— 60) nmよりさらに短波長の部分の面積を( O)としたとき、発光スペクトル全体の面積 (M)に対する(O)の割合が 1. 6%以下とな つている。(0)Z(M)≤1. 6%  [0020] The green light emitting phosphor emits light having the following spectral characteristics by excitation with electron beams having different current densities. That is, in the emission spectrum obtained by exciting this green-emitting phosphor with an electron beam, the emission peak wavelength (denoted as Nnm) is 60 nm shorter than the wavelength (N-60) nm. When the area of the part is (O), the ratio of (O) to the area (M) of the entire emission spectrum is 1.6% or less. (0) Z (M) ≤1.6%
[0021] なお、実施形態においては、波長 (N— 70) nmよりさらに短波長の部分の面積 (P) の発光スペクトル全体の面積 (M)に対する割合力 0. 8%以下であることが望ましい 。 (P) / (M)≤0. 8%  In the embodiment, it is desirable that the ratio power of the area (P) of the wavelength portion shorter than the wavelength (N—70) nm to the area (M) of the entire emission spectrum is 0.8% or less. . (P) / (M) ≤0. 8%
[0022] 本発明の実施形態の蛍光体は、以下に示すようにして製造される。まず、蛍光体母 体である硫ィ匕亜鉛原料に対して、所定量の付活剤原料を添加し、さらに塩ィ匕カリウム や塩ィ匕マグネシウムなどのフラックス (融剤)を必要に応じて添加し、これらを湿式で 混合する。 [0022] The phosphor according to the embodiment of the present invention is manufactured as follows. First, a predetermined amount of activator raw material is added to the phosphor base material, which is the phosphor matrix, and flux (flux) such as salt potassium salt or salt magnesium is added as necessary. Add these in the wet Mix.
[0023] 具体的には、イオン交換水に硫ィ匕亜鉛原料を分散させてスラリー状とし、これに付 活剤原料およびフラックスを添加し、常法により撹拌機で混合する。混合時間は、付 活剤が均一に分散するように設定する。次いで、蛍光体原料と付活剤などを含むスラ リーを、パットなどの乾燥容器に移し、常法により乾燥機で乾燥させて蛍光体原料と する。付活剤原料としては、例えば Cuについては硫酸銅、 A1については硝酸アルミ -ゥムなどが用いられる。なお、これら以外の化合物を用いることも可能である。  [0023] Specifically, the zinc sulfate raw material is dispersed in ion-exchanged water to form a slurry, and the activator raw material and flux are added thereto and mixed by a stirrer in a conventional manner. The mixing time is set so that the activator is uniformly dispersed. Next, the slurry containing the phosphor material and the activator is transferred to a drying container such as a pad and dried in a drier by a conventional method to obtain a phosphor material. As activator raw materials, for example, copper sulfate is used for Cu, and aluminum nitrate is used for A1. It is also possible to use compounds other than these.
[0024] こうして得られた蛍光体原料を、適当量の硫黄および活性炭素とともに、逆止弁の ついた耐熱容器に充填する。このとき、硫黄については、乾燥された蛍光体原料とブ レンダなどを使用して例えば 30— 180分程度混合し、この混合材料を耐熱容器に充 填した後、その表面を硫黄で覆うようにすることが好ましい。さらに、容器全体を加熱 しながら吸引 '脱気し、容器内に残存する酸素や原料に吸着された水分を除去した 後、容器内を、硫化水素雰囲気、硫黄蒸気雰囲気などの硫化性雰囲気中、あるいは 還元性雰囲気 (例えば 3— 5%水素 残部窒素の雰囲気)に保持する。そして、これら の雰囲気中で、容器内の蛍光体原料を焼成する。  [0024] The phosphor raw material thus obtained is filled into a heat-resistant container equipped with a check valve together with appropriate amounts of sulfur and activated carbon. At this time, sulfur is mixed with the dried phosphor raw material and blender, for example, for about 30 to 180 minutes, and after filling this mixed material in a heat-resistant container, the surface is covered with sulfur. It is preferable to do. Furthermore, after the entire container is heated and sucked and degassed, oxygen remaining in the container and moisture adsorbed on the raw material are removed, and then the inside of the container is placed in a sulfide atmosphere such as a hydrogen sulfide atmosphere or a sulfur vapor atmosphere. Alternatively, maintain in a reducing atmosphere (eg, 3-5% hydrogen balance nitrogen atmosphere). Then, the phosphor material in the container is fired in these atmospheres.
[0025] 蛍光体母体である ZnSの結晶構造を制御する上で、焼成条件は重要である。目的 とする蛍光体を得るために、焼成温度を 800— 1, 250°Cの範囲とすることが望ましい 。焼成温度が 800°C未満であると、 ZnSの結晶粒を十分に成長させることができない 。反対に、焼成温度が 1250°Cを超えると、粗大粒子が増加し使用に適さない。設定 した焼成温度にもよる力 焼成時間は 30— 360分とすることが望ましい。  [0025] Firing conditions are important in controlling the crystal structure of ZnS as a phosphor matrix. In order to obtain the target phosphor, it is desirable to set the firing temperature in the range of 800–1, 250 ° C. If the firing temperature is less than 800 ° C, ZnS crystal grains cannot be grown sufficiently. On the other hand, when the firing temperature exceeds 1250 ° C, coarse particles increase, which is not suitable for use. Force depending on the set firing temperature The firing time is preferably 30-360 minutes.
[0026] 次に、得られた焼成物をイオン交換水などで水洗し、これを乾燥した後、さらに必要 に応じて粗大粒子を除去するための篩別などを実施することによって、硫化亜鉛蛍 光体粉末を得ることができる。  [0026] Next, the obtained fired product is washed with ion-exchanged water or the like, dried, and further subjected to sieving to remove coarse particles, if necessary. Photoconductor powder can be obtained.
[0027] こうして製造される実施形態の蛍光体は、発光色度が改善され、特に高電流密度 下での発光輝度および色純度が高くなつている。したがって、この蛍光体は、励起源 として加速電圧が 5— 35kVの範囲の電子線を用いるカラー表示装置、例えばカラー CRTや FEDなどに好適に用いられ、画像の高精細化や高品質ィ匕を図ることができる [0028] 次に、本発明の別の実施形態である電界放出型表示装置 (FED)について説明す る。 [0027] The phosphor of the embodiment manufactured in this way has improved emission chromaticity, and in particular, the emission luminance and color purity under a high current density are high. Therefore, this phosphor is suitably used for a color display device using an electron beam having an acceleration voltage in the range of 5-35 kV as an excitation source, such as a color CRT or FED, so that high-definition and high-quality images can be achieved. Can be planned [0028] Next, a field emission display (FED) which is another embodiment of the present invention will be described.
[0029] 図 1は、 FEDの要部構成を示す断面図である。図にお 、て、符号 1はフェイスプレ ートであり、ガラス基板 2などの透明基板上に形成された蛍光体層 3を有している。こ の蛍光体層 3は、画素に対応させて形成した青色発光蛍光体層、緑色発光蛍光体 層および赤色発光蛍光体層を有し、これらの間を黒色導電材から成る光吸収層 4〖こ より分離した構造となっている。蛍光体層 3を構成する各色の蛍光体層のうちで、緑 色発光蛍光体層が、前記した実施形態の緑色発光蛍光体から構成されている。青 色発光蛍光体層および赤色発光蛍光体層は、それぞれ公知の各種の蛍光体により 構成することができる。なお、各色の蛍光体層は、公知のスラリー法あるいは印刷法 により形成することができる。  [0029] FIG. 1 is a cross-sectional view showing a main configuration of the FED. In the figure, reference numeral 1 denotes a face plate, which has a phosphor layer 3 formed on a transparent substrate such as a glass substrate 2. This phosphor layer 3 has a blue light-emitting phosphor layer, a green light-emitting phosphor layer, and a red light-emitting phosphor layer formed corresponding to the pixels, and a light absorbing layer 4 成 る made of a black conductive material is interposed between these layers. This is a separate structure. Of the phosphor layers of each color constituting the phosphor layer 3, the green light-emitting phosphor layer is composed of the green light-emitting phosphor of the above-described embodiment. Each of the blue light emitting phosphor layer and the red light emitting phosphor layer can be composed of various known phosphors. Each color phosphor layer can be formed by a known slurry method or printing method.
[0030] 上述した青色発光蛍光体層、緑色発光蛍光体層、赤色発光蛍光体層、およびそ れらの間を分離する光吸収層 4は、それぞれ水平方向に順次繰り返し形成されてお り、これらの蛍光体層 3および光吸収層 4が存在する部分が画像表示領域となる。こ の蛍光体層 3と光吸収層 4との配置パターンには、ドット状またはストライプ状など、種 々のパターンが適用可能である。  [0030] The blue light-emitting phosphor layer, the green light-emitting phosphor layer, the red light-emitting phosphor layer, and the light absorption layer 4 that separates them are sequentially and repeatedly formed in the horizontal direction. A portion where the phosphor layer 3 and the light absorption layer 4 exist is an image display region. Various patterns such as dots or stripes can be applied to the arrangement pattern of the phosphor layer 3 and the light absorption layer 4.
[0031] そして、蛍光体層 3上にはメタルバック層 5が形成されている。メタルバック層 5は、 A 1膜などの金属膜からなり、蛍光体層 3で発生した光のうち、後述するリアプレート方向 に進む光を反射して輝度を向上させるものである。  A metal back layer 5 is formed on the phosphor layer 3. The metal back layer 5 is made of a metal film such as an A 1 film, and reflects the light traveling in the rear plate direction, which will be described later, among the light generated in the phosphor layer 3 to improve the luminance.
[0032] また、メタルバック層 5は、フェイスプレート 1の画像表示領域に導電性を与えて電 荷が蓄積されるのを防ぐ機能を有し、リアプレートの電子源に対してアノード電極の 役割を果たす。また、メタルバック層 5は、フェイスプレート 1や真空容器 (外囲器)内 に残留したガスが電子線で電離して生成するイオンにより蛍光体層 3が損傷すること を防ぐ機能を有し、さらに、使用時に蛍光体層 3から発生したガスが真空容器 (外囲 器)内に放出されることを防ぎ、真空度の低下を防止するなどの効果も有している。  In addition, the metal back layer 5 has a function of imparting conductivity to the image display region of the face plate 1 to prevent electric charge from being accumulated, and serves as an anode electrode for the electron source of the rear plate. Fulfill. In addition, the metal back layer 5 has a function of preventing the phosphor layer 3 from being damaged by ions generated by ionizing the gas remaining in the face plate 1 and the vacuum vessel (envelope) with an electron beam. In addition, the gas generated from the phosphor layer 3 during use is prevented from being released into the vacuum container (envelope), and the vacuum degree is prevented from being lowered.
[0033] メタルバック層 5上には、 Baなど力もなる蒸発形ゲッタ材により形成されたゲッタ膜 6 が形成されている。このゲッタ膜 6によって、使用時に発生したガスが効率的に吸着さ れる。 [0034] そして、このようなフェイスプレート 1とリアプレート 7とが対向配置され、これらの間の 空間が支持枠 8を介して気密に封止されている。支持枠 8は、フェイスプレート 1およ びリアプレート 7に対して、フリットガラス、あるいは Inやその合金など力もなる接合材 9 により接合され、これらフェイスプレート 1、リアプレート 7および支持枠 8によって、外 囲器としての真空容器が構成されて 、る。 [0033] On the metal back layer 5, a getter film 6 made of an evaporable getter material having a force such as Ba is formed. The getter film 6 efficiently adsorbs gas generated during use. [0034] The face plate 1 and the rear plate 7 are arranged to face each other, and the space between them is hermetically sealed via the support frame 8. The support frame 8 is bonded to the face plate 1 and the rear plate 7 by a frit glass or a bonding material 9 having a force such as In or an alloy thereof, and the face plate 1, the rear plate 7 and the support frame 8 A vacuum vessel is constructed as an envelope.
[0035] リアプレート 7は、ガラス基板やセラミックス基板などの絶縁性基板、あるいは Si基板 など力もなる基板 10と、この基板 10上に形成された多数の電子放出素子 11とを有し ている。これら電子放出素子 11は、例えば電界放出型冷陰極や表面伝導型電子放 出素子などを備え、リアプレート 7の電子放出素子 11の形成面には、図示を省略した 配線が施されている。すなわち、多数の電子放出素子 11は、各画素の蛍光体に応じ てマトリックス状に形成されており、このマトリックス状の電子放出素子 11を一行ずつ 駆動する、互いに交差する配線 (X— Y配線)を有している。なお、支持枠 8には図示 を省略した信号入力端子および行選択用端子が設けられて!/ヽる。これらの端子は前 記したリアプレート 7の交差配線 (X-Y配線)に対応する。  The rear plate 7 includes an insulating substrate such as a glass substrate or a ceramic substrate, or a substrate 10 having a force such as a Si substrate, and a large number of electron-emitting devices 11 formed on the substrate 10. These electron-emitting devices 11 include, for example, a field-emission cold cathode, a surface conduction electron-emitting device, and the like, and the surface of the rear plate 7 on which the electron-emitting devices 11 are formed is provided with wiring (not shown). That is, a large number of electron-emitting devices 11 are formed in a matrix according to the phosphor of each pixel, and wirings that cross each other (XY wiring) that drive the matrix-shaped electron-emitting devices 11 line by line. have. The support frame 8 is provided with a signal input terminal and a row selection terminal (not shown). These terminals correspond to the cross wiring (X-Y wiring) of the rear plate 7 described above.
[0036] また、平板型の FEDを大型化させる場合、薄 、平板状であるためにたわみなどが 生じるおそれがある。このようなたわみを防止し、また大気圧に対して強度を付与する ために、フェイスプレート 1とリアプレート 7との間に、補強部材 (大気圧支持部材、ス ぺーサ) 12を適宜配置してもよい。  [0036] When a flat plate type FED is increased in size, there is a risk of bending due to the thin and flat plate shape. In order to prevent such deflection and to provide strength against atmospheric pressure, a reinforcing member (atmospheric pressure support member, spacer) 12 is appropriately disposed between the face plate 1 and the rear plate 7. May be.
[0037] このカラー FEDにおいては、電子線照射により発光する緑色発光蛍光体層が、実 施形態の緑色発光蛍光体から構成されて ヽるので、発光輝度や色再現性などの表 示特性を向上させることが可能となる。  [0037] In this color FED, since the green light-emitting phosphor layer that emits light by electron beam irradiation is composed of the green light-emitting phosphor of the embodiment, display characteristics such as light emission luminance and color reproducibility are achieved. It becomes possible to improve.
実施例 1  Example 1
[0038] 次に、本発明の具体的な実施例について説明する。  Next, specific examples of the present invention will be described.
[0039] 実施例 1 [0039] Example 1
まず、硫ィ匕亜鉛 (ZnS) lOOOgに、硝酸アルミニウム (Α1(ΝΟ ) · 9Η 0) 6. 5gと硫酸  First, zinc sulphate (ZnS) lOOOg, 6.5 g of aluminum nitrate (Α1 (ΝΟ) · 9Η0) and sulfuric acid
3 3 2  3 3 2
銅 (CuSO · 5Η 0) 0. 68gを適当量の水とともに添加し、十分に混合した後乾燥し  Add copper (CuSO · 5Η 0) 0.6g with appropriate amount of water, mix well and dry.
4 2  4 2
た。得られた蛍光体原料に、硫黄および活性炭素を適当量添加し、逆止弁のついた 耐熱容器に充填した。さらに容器全体を 150°Cまで加熱して脱気し、これを還元性雰 囲気(3— 5%水素 -残部窒素の雰囲気)で焼成した。焼成条件は 950°C X 90分とし た。 It was. Appropriate amounts of sulfur and activated carbon were added to the obtained phosphor material and filled into a heat-resistant container with a check valve. Further, the entire container is heated to 150 ° C for deaeration, and this is reduced to a reducing atmosphere. Baking in an atmosphere (3-5% hydrogen-balance nitrogen atmosphere). The firing conditions were 950 ° CX 90 minutes.
[0040] その後、得られた焼成物を十分に水洗および乾燥し、さらに篩別することにより、目 的とする緑色発光の ZnS:Cu, A1蛍光体を得た。得られた蛍光体を後述する特性評 価に供した。  [0040] Thereafter, the obtained fired product was sufficiently washed with water and dried, and further sieved to obtain a target green-emitting ZnS: Cu, A1 phosphor. The obtained phosphor was subjected to the characteristic evaluation described later.
[0041] 実施例 2  [0041] Example 2
焼成温度を 1050°Cとする以外は実施例 1と同様にして、 ZnS:Cu, A1蛍光体を作製 した。得られた蛍光体を後述する特性評価に供した。  A ZnS: Cu, A1 phosphor was produced in the same manner as in Example 1 except that the firing temperature was 1050 ° C. The obtained phosphor was subjected to the characteristic evaluation described later.
[0042] 実施例 3 [0042] Example 3
焼成温度を 1100°Cとする以外は実施例 1と同様にして、 ZnS:Cu, A1蛍光体を作製 した。得られた蛍光体を後述する特性評価に供した。  A ZnS: Cu, A1 phosphor was produced in the same manner as in Example 1 except that the firing temperature was 1100 ° C. The obtained phosphor was subjected to the characteristic evaluation described later.
[0043] 実施例 4 [0043] Example 4
焼成温度を 1150°Cとする以外は実施例 1と同様にして、 ZnS:Cu, A1蛍光体を作製 した。得られた蛍光体を後述する特性評価に供した。  A ZnS: Cu, A1 phosphor was produced in the same manner as in Example 1 except that the firing temperature was 1150 ° C. The obtained phosphor was subjected to the characteristic evaluation described later.
[0044] 比較例 1 [0044] Comparative Example 1
硫ィ匕亜鉛 (ZnS)lOOOgに、硫酸銅(CuSO ·5Η 0)0.68gと硝酸アルミニウム(Al(  Zinc sulfate (ZnS) lOOOg, copper sulfate (CuSO · 5Η 0) 0.68g and aluminum nitrate (Al (
4 2  4 2
NO ) ·9Η 0)6.5gを適当量の水とともに添加し、十分に混合した後乾燥した。得ら NO) · 9Η 0) 6.5g was added with an appropriate amount of water, mixed well and dried. Obtained
33 2 33 2
れた蛍光体原料に、硫黄および活性炭素を適当量添加して石英るつぼに充填し、こ れを還元性雰囲気(3— 5%水素 -残部窒素の雰囲気)で焼成した。焼成条件は 970 °CX60分とした。その後、得られた焼成物を十分に水洗および乾燥し、さらに篩別 することによって、緑色発光の ZnS:Cu, A1蛍光体を得た。こうして得られた蛍光体を 後述する特性評価に供した。  Appropriate amounts of sulfur and activated carbon were added to the phosphor material, and the mixture was filled in a quartz crucible, which was fired in a reducing atmosphere (3-5% hydrogen-balance nitrogen atmosphere). The firing condition was 970 ° CX60 minutes. Thereafter, the obtained fired product was sufficiently washed with water and dried, and further sieved to obtain a ZnS: Cu, A1 phosphor emitting green light. The phosphor thus obtained was subjected to the characteristic evaluation described later.
[0045] 比較例 2 [0045] Comparative Example 2
焼成温度を 1050°Cとする以外は比較例 1と同様にして、 ZnS:Cu, A1蛍光体を作製 した。得られた蛍光体を後述する特性評価に供した。  A ZnS: Cu, A1 phosphor was produced in the same manner as in Comparative Example 1 except that the firing temperature was 1050 ° C. The obtained phosphor was subjected to the characteristic evaluation described later.
[0046] 比較例 3 [0046] Comparative Example 3
焼成温度を 1075°Cとする以外は比較例 1と同様にして、 ZnS:Cu, A1蛍光体を作製 した。得られた蛍光体を後述する特性評価に供した。 [0047] 比較例 4 A ZnS: Cu, A1 phosphor was produced in the same manner as in Comparative Example 1 except that the firing temperature was 1075 ° C. The obtained phosphor was subjected to the characteristic evaluation described later. [0047] Comparative Example 4
焼成温度を 1100°Cとする以外は比較例 1と同様にして、 ZnS : Cu, A1蛍光体を作製 した。得られた蛍光体を後述する特性評価に供した。  A ZnS: Cu, A1 phosphor was fabricated in the same manner as Comparative Example 1 except that the firing temperature was 1100 ° C. The obtained phosphor was subjected to the characteristic evaluation described later.
[0048] 比較例 5 [0048] Comparative Example 5
焼成温度を 1150°Cとする以外は比較例 1と同様にして、 ZnS : Cu, A1蛍光体を作製 した。得られた蛍光体を後述する特性評価に供した。  A ZnS: Cu, A1 phosphor was fabricated in the same manner as in Comparative Example 1 except that the firing temperature was 1150 ° C. The obtained phosphor was subjected to the characteristic evaluation described later.
[0049] 次に、実施例 1一 4および比較例 1一 5でそれぞれ得られた緑色発光蛍光体を用い て、それぞれ蛍光体層を形成した。蛍光体層は、ポリビニルアルコールを含む水溶 液中に各緑色発光蛍光体を分散させてスラリーとし、これらのスラリーを回転塗布機 でガラス基板上に塗布することにより形成した。回転塗布機の回転数とスラリー粘度 を調整することによって、各蛍光体層の厚さを 3 X 10"3mg/mm3 (3mg/cm3)とし た。 Next, phosphor layers were formed using the green light-emitting phosphors obtained in Examples 1 and 4 and Comparative Examples 1 and 5, respectively. The phosphor layer was formed by dispersing each green light-emitting phosphor in an aqueous solution containing polyvinyl alcohol to form a slurry, and coating the slurry on a glass substrate with a spin coater. The thickness of each phosphor layer was adjusted to 3 × 10 ” 3 mg / mm 3 (3 mg / cm 3 ) by adjusting the rotation speed of the spin coater and the slurry viscosity.
[0050] そして、得られた各蛍光体膜の発光輝度と発光色度をそれぞれ調べた。発光輝度 は、各蛍光体膜に加速電圧 10kV、電流密度 1 μ AZmm2の電子線を照射して測定 した。各輝度は、比較例 1の蛍光体を用いて形成された蛍光体膜の輝度を 100とした ときの相対値として求めた。発光輝度、発光色度および発光スペクトルは、測定機器 としてトプコン社製 SR— 3を使用して測定した。 [0050] Then, the emission luminance and emission chromaticity of each phosphor film obtained were examined. Emission luminance, acceleration voltage 10kV to each phosphor film was measured by irradiating an electron beam current density 1 μ AZmm 2. Each luminance was obtained as a relative value when the luminance of the phosphor film formed using the phosphor of Comparative Example 1 was 100. The emission luminance, emission chromaticity and emission spectrum were measured using SR-3 manufactured by Topcon as a measuring instrument.
[0051] また、測定された発光スペクトルの全面積に対する、欠陥などに起因する短波長側 の発光面積の割合を求めた。すなわち、図 2に示す発光スペクトルにおいて、発光ピ ーク波長(Nnm)から 60nm短!、波長(N— 60) nmよりさらに短波長の部分の面積を( 0)、波長 (N— 70) nmよりさらに短波長の部分の面積を (P)としたとき、発光スぺタト ル全体の面積 (M)に対する(O)および (P)の割合 (OZMおよび PZM)をそれぞれ 求めた。これらの測定結果を表 1に示す。  [0051] Further, the ratio of the emission area on the short wavelength side caused by defects or the like to the total area of the measured emission spectrum was obtained. That is, in the emission spectrum shown in Fig. 2, the area of the wavelength shorter than the wavelength (N-60) nm is (0) and the wavelength (N-70) nm is 60 nm shorter than the emission peak wavelength (Nnm)! When the area of the shorter wavelength portion is (P), the ratios (OZM and PZM) of (O) and (P) to the total area (M) of the emission spectrum were obtained. These measurement results are shown in Table 1.
[0052] [表 1] 発光輝度 X値 y値 発光面積 発光面積 [0052] [Table 1] Luminance X value y value Luminous area Luminous area
(%) の割合 (%) の割合 0  Percentage of (%) Percentage of (%) 0
(N-60) nm (N-70) nm 実施例 1 108. 1 0. 291 0. 620 1. 36 0. 72 実施例 2 106. 3 0. 257 0. 602 1. 56 0. 84 実施例 3 98. 3 0. 232 0. 589 1. 59 0. 81 実施例 4 95. 4 0. 201 0. 571 1. 54 0. 76 比較例 1 100. 0 0. 292 0. 614 2. 1 0. 72 比較例 2 94. 8 0. 277 0. 605 2. 83 1. 72 比較例 3 90. 7 0. 256 0. 585 2. 80 1. 70 比較例 4 90. 2 0. 238 0. 577 2. 36 1. 41 比較例 5 85. 3 0. 198 0. 559 2. 60 1. 71  (N-60) nm (N-70) nm Example 1 108. 1 0. 291 0. 620 1. 36 0. 72 Example 2 106. 3 0. 257 0. 602 1. 56 0. 84 Example 3 98. 3 0. 232 0. 589 1. 59 0. 81 Example 4 95. 4 0. 201 0. 571 1. 54 0. 76 Comparative Example 1 100. 0 0. 292 0. 614 2. 1 0 72 Comparative Example 2 94. 8 0. 277 0. 605 2. 83 1. 72 Comparative Example 3 90. 7 0. 256 0. 585 2. 80 1. 70 Comparative Example 4 90. 2 0. 238 0. 577 2. 36 1. 41 Comparative Example 5 85. 3 0. 198 0. 559 2. 60 1. 71
[0053] 表 1に示す結果から、図 3に示すグラフが得られた。そして、実施例 1一 4の蛍光体 を用いて形成された蛍光体膜の発光色度の X値と y値との間には、 y=0. 520x+0. 468の関係が成り立ち、比較例 1一 5の蛍光体を用いて形成された蛍光体膜の発光 色度の X値と y値との間には、 y=0. 585x+0. 443の関係が成り立つていることがわ かった。そして、実施例 1一 4の緑色蛍光体が比較例 1一 5の緑色蛍光体に比べて色 純度に優れていることがわ力 た。 [0053] From the results shown in Table 1, the graph shown in FIG. 3 was obtained. The relationship of y = 0.520x + 0.468 holds between the X value and the y value of the emission chromaticity of the phosphor film formed using the phosphor of Example 1-14. Example 1 The relationship of y = 0.585x + 0.443 is established between the X value and the y value of the light emission chromaticity of the phosphor film formed using the phosphor of No. 5. won. In addition, it was proved that the green phosphor of Example 1-14 was superior in color purity to the green phosphor of Comparative Example 1-15.
[0054] 次に、蛍光体膜に照射する電子線の電流密度を変化させ、発光特性の変化を測 定、評価した。すなわち、実施例 1一 4および比較例 1一 5の蛍光体を用いて形成さ れた蛍光体膜について、電子線の電流密度を 1 μ A/mm2から 50 μ A/mm2に変 えた場合の発光輝度および発光色度を同様にして測定した。そして、電流密度を変 化させた前後での色度 (X, y)の変化量を、色ずれとして、以下の式を用いて計算し た。 [0054] Next, the current density of the electron beam applied to the phosphor film was changed, and the change in the light emission characteristics was measured and evaluated. That is, the current density of the electron beam was changed from 1 μA / mm 2 to 50 μA / mm 2 for the phosphor films formed using the phosphors of Examples 1 and 4 and Comparative Examples 1 and 5. The emission luminance and emission chromaticity were measured in the same manner. The amount of change in chromaticity (X, y) before and after changing the current density was calculated as the color shift using the following formula.
[0055] 色ずれ量 = ( A x2+ Ay2) [0055] Color misregistration amount = (A x 2 + Ay 2 )
[0056] さらに、電流輝度特性である γ特性 (値)を求めた。すなわち、図 4に示すように、電 流密度の変化に応じた輝度変化のグラフを、輝度 =Α (電流密度) Βの式で近似し、 Β の値を γ特性として計算した。これらの結果を表 2に示す。 [0057] [表 2] [0056] Further, a γ characteristic (value) which is a current luminance characteristic was obtained. That is, as shown in FIG. 4, a graph of the luminance change according to the change in the current density was approximated by the equation luminance = Α (current density) 、, and the value of Β was calculated as the γ characteristic. These results are shown in Table 2. [0057] [Table 2]
Figure imgf000013_0001
Figure imgf000013_0001
[0058] 表 2に示す結果から、実施例 1一 4の蛍光体を用いて形成された蛍光体膜は、比較 例 1一 5の蛍光体を用 1、て形成された蛍光体膜に比べて色ずれ量が小さく、発光特 性に優れていることがわ力つた。また、 γ特性についても、実施例 1一 4で形成された 蛍光体膜は、比較例 1一 5で形成された蛍光体膜に比べて、特に高い電流密度で高 い値を示し、輝度が良好であることがわ力つた。 [0058] From the results shown in Table 2, the phosphor film formed using the phosphor of Example 1-14 is compared with the phosphor film formed using the phosphor of Comparative Example 11-5. As a result, the amount of color misregistration was small and the light emission characteristics were excellent. Also, with respect to the γ characteristics, the phosphor film formed in Example 11-14 shows a high value at a particularly high current density and the luminance is higher than that of the phosphor film formed in Comparative Example 11-15. I found it to be good.
産業上の利用可能性  Industrial applicability
[0059] 以上説明したように、本発明の表示装置用蛍光体によれば、高電流密度では遷移 確率の高い短波長側の発光そのものを抑制することにより、緑色発光の効率を上げ ることができ、その結果緑色蛍光体としての色純度を上げることができる。したがって 、このような蛍光体を緑色発光蛍光体として用いることにより、高輝度で表示特性に 優れた CRT、 FEDなどのカラー表示装置を得ることができる。 [0059] As described above, according to the phosphor for display device of the present invention, the efficiency of green light emission can be improved by suppressing the light emission itself on the short wavelength side with a high transition probability at a high current density. As a result, the color purity of the green phosphor can be increased. Therefore, by using such a phosphor as a green light emitting phosphor, it is possible to obtain a color display device such as a CRT or FED having high luminance and excellent display characteristics.

Claims

請求の範囲 The scope of the claims
[1] 一般式: ZnS : Cua, Alb (式中、 aおよび bは、蛍光体母体である硫化亜鉛 lgに対し て、 1 X 10— 5≤a≤ 1 X 10— 3g、 1 X 10— 5≤b≤ 5 X 10— 3gの範囲の量をそれぞれ示す )で実質的に表わされる組成を有し、電子線での励起により発光する緑色発光蛍光 体であり、発光のスペクトルにおいて、最大発光強度が得られる波長(以下、発光ピ ーク波長と示す。 )から 60nm短 、波長よりさらに短波長の部分の面積を (O)としたと き、前記発光スペクトル全体の面積 (M)に対する前記 (O)の割合が 1. 6%以下であ ることを特徴とする表示装置用蛍光体。 [1] general formula: ZnS: Cua, Alb (where, a and b are to zinc sulfide lg is a fluorescent substance matrix, 1 X 10- 5 ≤a≤ 1 X 10- 3 g, 1 X 10 — 5 ≤b≤ 5 X 10—indicating an amount in the range of 3 g, each of which is a green-emitting phosphor that has a composition substantially represented by) and emits light when excited by an electron beam. The area of the entire emission spectrum (M), where (O) is 60 nm shorter than the wavelength at which the maximum emission intensity is obtained (hereinafter referred to as the emission peak wavelength), The phosphor for a display device, wherein the ratio of (O) to is 1.6% or less.
[2] 前記一般式: ZnS: Cua, Albにお 、て、 aおよび bは、蛍光体母体である硫化亜鉛 1 gに対して、 3 X 10— 5≤a≤ 8 X 10— 4g、 3 X 10— 5≤b≤3 X 10— 3gの範囲の量をそれぞ れ示すことを特徴とする請求項 1記載の表示装置用蛍光体。 [2] the general formula: ZnS: Cua, us in Alb, Te, a and b, with respect to zinc sulfide 1 g is a fluorescent substance matrix, 3 X 10- 5 ≤a≤ 8 X 10- 4 g, 3 X 10- 5 ≤b≤3 X 10- 3 g display device phosphor according to claim 1, wherein the amount ranging characterized by exhibiting, respectively it.
[3] 硫化亜鉛を母体とし付活剤として Cuおよび A1をそれぞれ含有する緑色発光蛍光 体の製造方法であり、  [3] A method for producing a green light-emitting phosphor containing zinc sulfide as a base and Cu and A1 as activators,
前記蛍光体母体、および前記付活剤を構成する元素または該元素を含有するィ匕 合物をそれぞれ含む蛍光体原料から、吸着した水分および酸素を除去する工程と、 前記水分および酸素が除去された状態を維持しながら、前記蛍光体原料を加熱して 焼成する工程を具備することを特徴とする表示装置用蛍光体の製造方法。  A step of removing adsorbed moisture and oxygen from phosphor materials each including the phosphor matrix and an element constituting the activator or a compound containing the element; and the moisture and oxygen are removed. A method for producing a phosphor for a display device, comprising a step of heating and firing the phosphor material while maintaining the state.
[4] 前記蛍光体原料を焼成する工程は、 1気圧以上の硫化性雰囲気あるいは還元性 雰囲気で行うことを特徴とする請求項 3記載の表示装置用蛍光体の製造方法。  4. The method for producing a phosphor for a display device according to claim 3, wherein the step of firing the phosphor material is performed in a sulfide atmosphere or a reducing atmosphere of 1 atm or more.
[5] 青色発光蛍光体層と緑色発光蛍光体層と赤色発光蛍光体層とをそれぞれ含む蛍 光体層と、前記蛍光体層に電子線を照射して発光させる電子源と、前記電子源と前 記蛍光体層を真空封止する外囲器とを具備する表示装置であり、  [5] A phosphor layer that includes a blue-emitting phosphor layer, a green-emitting phosphor layer, and a red-emitting phosphor layer, an electron source that emits light by irradiating the phosphor layer with an electron beam, and the electron source And an envelope for vacuum-sealing the phosphor layer,
前記緑色発光蛍光体層は請求項 1または 2記載の表示装置用蛍光体を含むことを 特徴とする表示装置。  The display device according to claim 1, wherein the green light emitting phosphor layer includes the phosphor for display device according to claim 1.
PCT/JP2004/016859 2004-11-12 2004-11-12 Phosphor for display device, manufacturing method thereof and display device using the phosphor WO2006051600A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/016859 WO2006051600A1 (en) 2004-11-12 2004-11-12 Phosphor for display device, manufacturing method thereof and display device using the phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/016859 WO2006051600A1 (en) 2004-11-12 2004-11-12 Phosphor for display device, manufacturing method thereof and display device using the phosphor

Publications (1)

Publication Number Publication Date
WO2006051600A1 true WO2006051600A1 (en) 2006-05-18

Family

ID=36336286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/016859 WO2006051600A1 (en) 2004-11-12 2004-11-12 Phosphor for display device, manufacturing method thereof and display device using the phosphor

Country Status (1)

Country Link
WO (1) WO2006051600A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03143986A (en) * 1989-10-30 1991-06-19 Sony Corp Synthesis of zns phosphor
JPH05230445A (en) * 1992-02-25 1993-09-07 Nec Kansai Ltd Production of phosphor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03143986A (en) * 1989-10-30 1991-06-19 Sony Corp Synthesis of zns phosphor
JPH05230445A (en) * 1992-02-25 1993-09-07 Nec Kansai Ltd Production of phosphor

Similar Documents

Publication Publication Date Title
WO2007105370A1 (en) Phosphor for display and field emission display
TWI290952B (en) Blue fluorescent substance for display device and method for producing the same and field emission type display device
JP5121167B2 (en) Blue phosphor and its use
JP2006335967A (en) Phosphor for displaying device and electric field-emission type displaying device
KR100676352B1 (en) Fluorescent material for display unit, process for producing the same and color display unit including the same
JP2006312695A (en) Blue light-emitting phosphor for display device, and field emission type display device
JP2004123786A (en) Phosphor for display device, its production method, and color display device using the same
KR20050109512A (en) Green light emitting phosphor for low voltage / high current density and field emission type display including the same
WO2006051600A1 (en) Phosphor for display device, manufacturing method thereof and display device using the phosphor
JP2004339293A (en) Blue light-emitting fluorescent substance for low voltage and high current density and field emission display device using the same
JP2005036032A (en) Phosphor for display device and method for producing the same and display device using the same
WO2005080528A1 (en) Green light-emitting phosphor for displays and field-emission display using same
JP2008156580A (en) Light-emitting element and field emission display
JP2007177078A (en) Fluorophor for display device and field emission-type display device
JP2008140617A (en) Red light-emitting element and field emission display device
JP2005036111A (en) Phosphor for display device and method for producing the same, and field emission display device using the same
JP2007329027A (en) Field emission display
WO2006051601A1 (en) Phosphor for display apparatus, process for producing the same and field emission display apparatus utilizing the same
JP2008184528A (en) Phosphor for displaying device and field emission type displaying device
JP2006316105A (en) Green color-emitting fluorophor for display device and field emission-type display device
JP2006335968A (en) Phosphor for displaying device and electric field emission type displaying device
JP2008179748A (en) Red light emitting device and field emission type display device
JP2004123787A (en) Phosphor for display device and color display device using the same
JP2008156581A (en) Phosphor for display apparatus and field emission display
JP2008130305A (en) Green light-emitting element, and field emission display device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase

Ref document number: 04822397

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP