WO2006050704A1 - Spectrum analyzer and frequency level measurement method - Google Patents

Spectrum analyzer and frequency level measurement method Download PDF

Info

Publication number
WO2006050704A1
WO2006050704A1 PCT/DE2005/002010 DE2005002010W WO2006050704A1 WO 2006050704 A1 WO2006050704 A1 WO 2006050704A1 DE 2005002010 W DE2005002010 W DE 2005002010W WO 2006050704 A1 WO2006050704 A1 WO 2006050704A1
Authority
WO
WIPO (PCT)
Prior art keywords
spectrum analyzer
frequency
yig
coil
analyzer according
Prior art date
Application number
PCT/DE2005/002010
Other languages
German (de)
French (fr)
Inventor
Sascha Kunisch
Original Assignee
Hameg Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hameg Gmbh filed Critical Hameg Gmbh
Priority to DE112005003392T priority Critical patent/DE112005003392A5/en
Publication of WO2006050704A1 publication Critical patent/WO2006050704A1/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/099Details of the phase-locked loop concerning mainly the controlled oscillator of the loop
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/16Spectrum analysis; Fourier analysis
    • G01R23/173Wobbulating devices similar to swept panoramic receivers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • H03L7/093Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal using special filtering or amplification characteristics in the loop

Definitions

  • the invention relates to a spectrum analyzer, comprising a YIG oscillator whose output frequency is to be determined in response to a nominal frequency requirement by means of a magnetic field acting on a YIG sphere, and to a method for measuring frequency levels.
  • Spectrum analyzers generally have an oscillator whose output frequency signal is mixed into a mixing stage to form a previously filtered measurement signal.
  • the mixing stage transforms the signal component at the currently measured frequency to a fixed intermediate frequency at which filtering takes place.
  • the oscillator frequency of the mixer is varied over time so that the entire frequency range to be examined is traversed.
  • the filtered signal is amplified and its amplitude is measured.
  • the spectrum analyzer thus measures the signal level over the frequency.
  • the high input sensitivity and the wide dynamic range of spectrum analyzers enable the analysis of signals that can not be displayed with an oscilloscope.
  • the oscillator used is a YIG oscillator (YTO-YIG Tuned Oscillator for short), which can be tuned exactly over a wide frequency range.
  • the YIG oscillator consists essentially of two blocks, a high-frequency oscillator circuit and a tuning unit, a coil system.
  • the high-frequency Oszil ⁇ lator circuit is an LC generator whose frequency-determining component is a YIG ball (yttrium iron garnet).
  • the gain element in this circuit is a transistor, wherein the YIG ball is seated within a conductor loop inserted in the emitter circuit of the transistor. It has special magnetic properties. By means of an external magnetic field, which flows through the ball, the resonance frequency of the high-frequency oscillator circuit can be tuned without, for example, to generate phase noise.
  • the disadvantage is that to generate the exact magnetic field to be set either a permanent magnet or a large coil and at least one other coil must be used.
  • the YTOs are also heated to a constant temperature, preferably between 8O 0 C and 125 0 C. This can cause temperature problems in the circuit and there are consuming circuits for the required elements to make.
  • the object of the present invention is to provide a simple control of the magnetic field, whereby the disadvantages of the prior art are avoided.
  • a spectrum analyzer according to the preamble of claim 1, wherein only one, the magnetic field generating tuning coil is provided, the output frequency signal of the YIG oscillator as the actual value and the instantaneous frequency requirement of the spectrum analyzer is supplied as the setpoint of a PLL control circuit by which the coil current of the tuning coil is to be regulated by means of a downstream voltage / current converter.
  • the coil current of the tuning coil is adjusted so that a minimum field strength is achieved to achieve saturation of the sphere, for example 500 Gauss, because the oscillator is operated in saturation.
  • the fine adjustment of the magnetic field to achieve the desired frequency in accordance with the frequency requirement of the spectrum analyzer is then achieved loop loop by means of a single coil and a single coil. This simplification of the circuit simplifies the Circuit design and makes the control safer and faster.
  • the control has a high frequency stability.
  • the PLL control thus provides a control to a reference frequency, preferably according to the reference of a DDS, a high-precision quartz oscillator, for example in a frequency range of 10-20 MHz.
  • a possibly existing delay is canceled because of the phase specification by the reference frequency.
  • Frequencies in a wide frequency range may be generated based on the supplied reference frequency if the output frequency signal of the YIG oscillator is to be passed through a frequency divider before being applied to the PLL control circuit.
  • the signal of the YIG oscillator which is in the Ghz range, can be controlled by a signal of a DDS in the range of 10-20 MHz.
  • the frequencies can thus have very different sizes by a respective upstream frequency divider.
  • a doubling of the frequency of the reference signal is achieved if the output frequency signal of the YIG oscillator is to be passed through a frequency bisector before being fed to the PLL control circuit.
  • High-frequency additions in the signal can easily be filtered out if the output signal is to be fed to a low-pass filter.
  • a filter which can be set to different frequency modes is present if the output signal of the PLL is to be fed to a loop filter.
  • a heater holding the YIG in a certain temperature range can be dispensed with if the PLL control circuit also detects a frequency deviation of the YIG oscillator due to temperature fluctuations by means of a change in the YIG oscillator
  • Coil current of the tuning coil is to be corrected.
  • a changed frequency on Temperature changes can be reset by the PLL circuit.
  • the range is bandwidth to about 3 GHz, in particular for measurements on satellite-TV systems, it is advantageous if the YIG oscillator to an output frequency of approximately 8 GHz 1 in particular zwi ⁇ rule about 3.5 GHz and about 6.5 GHz is planted vetn is.
  • the core material of the tuning coil is ferrite. As a result, eddy current losses are avoided with advantageous material properties.
  • the output signal of the PLL control circuit is to be supplied to a YIG driver circuit for voltage / current conversion and / or constant maintenance of the power supply of the spectrum analyzer in the case of the alternating coil currents.
  • An easily transportable spectrum analyzer is present when the energy supply of the spectrum analyzer is a battery. By eliminating a heater and the use of only one coil, the power consumption of the device is greatly reduced and can be sufficiently ensured by a battery.
  • FIG. 1 shows a schematic circuit diagram of a YIG oscillator with a tuning coil
  • FIG. 2 shows a circuit diagram of a YIG oscillator with a tuning coil with functional elements
  • 1 shows a schematic circuit diagram of a YIG oscillator 3 with a tuning coil 2 to be controlled according to the invention.
  • the arrangement of the YIG sphere 1 is set to an external magnetic field which is built up by the tuning coil 2, then magnetic dipoles caused in the YIG sphere 1 due to electron spin are aligned parallel to the external magnetic field.
  • a small alternating magnetic field is irradiated orthogonally thereto, so that the dipoles precess around the magnetic field generated by the tuning coil 2.
  • the YIG order absorbs a majority of the injected coupling field. This resonant frequency is almost linearly dependent on the magnetic field of the tuning coil 2, which in turn is almost linearly dependent on the coil current, so that a very precise regulation of the frequency of the YIG oscillator 3 can take place.
  • the frequency of the YIG oscillator 3 is achieved according to the invention via the control of an output signal coupled out of the YIG oscillator 3 with a réellesig ⁇ nalfrequenz to a predetermined frequency.
  • the regulation takes place via the regulation of the magnetic field of the tuning coil 2 by means of a PLL control circuit 4. There, it is used to tune an oscillator so that it exactly follows the reference frequency, in particular the phase of the signal.
  • the output frequency signal of the YIG oscillator 3, in particular after passing through a frequency divider 6, is compared in the PLL control circuit 4 with a reference frequency signal 11 of the spectrum analyzer.
  • a reference frequency signal 11 of the spectrum analyzer For this purpose, only one tuning coil 2 is provided, the output frequency signal of the YIG oscillator 3 being supplied as the actual value and the instantaneous frequency requirement of the spectrum analyzer as the desired value of a PLL control circuit 4, which uses a nachge switched voltage / current transformer 5, the coil current of the tuning coil. 2 ruled.
  • the output frequency signal of the YIG oscillator is regularly a Hochfrequenz ⁇ signal, about 3.5 to 6.5 GHz.
  • the output frequency signal is supplied to the PLL control IC.
  • the output frequency signal, the actual signal is divided down into the range of the DDS reference frequency, the desired signal, by the frequency divider 6 within the PLL control IC. There, the setpoint is compared with the actual value.
  • the phase-frequency discriminator 9 is the actual regulating element of the PLL control IC. It compares two alternating voltages with each other and generates a DC voltage at the output, which is a measure of the softening of the two frequencies or of the phase positions in front of each other. It behaves as a frequency comparator that automatically transitions to phase comparison as it approaches the synchronicity of the two signals.
  • the control deviation of the two signals is fed as an output signal to the Schleifenfil ⁇ ter 7.
  • the filter constants can be switched over between two values in accordance with the use of the YIG high-frequency signal as a sweep sweep of a wide frequency range or as a fixed frequency setting.
  • the filter constants influence the control speed and the phase noise of the PLL control loop.
  • the output signal of the loop filter 7 (Utun-OUT) is supplied to the YIG driver circuit 10. This converts the voltage of the output signal of the loop filter 7 in the time required for the tuning coil 2 regulated coil current.
  • the YIG driver circuit 10 keeps the load on the power supply of the entire device constant with the changing YIG control currents. According to the change of the coil current of the tuning coil 2, the YIG oscillator output frequency changes.
  • the YIG PLL control loop consists of several modules, the YIG oscillator, a PLL module, a loop filter and a YIG driver circuit 10. LIST OF REFERENCE NUMBERS

Abstract

Disclosed is a spectrum analyzer comprising a YIG oscillator whose output frequency is to be defined in response to a setpoint frequency request by means of a magnetic field that acts upon a YIG ball, only one tuning coil being provided that generates the magnetic field. The output frequency signal of the YIG oscillator is to be fed as a real value while the momentary frequency request of the spectrum analyzer is to be fed as a setpoint value of a PLL control circuit (4), with the aid of which the coil current of the tuning coil (2) is to be regulated by means of a voltage/power converter (5) that is connected downstream therefrom.

Description

Spektrumanalysator und Verfahren zum Messen von Frequenzpegeln Spectrum analyzer and method for measuring frequency levels
Die Erfindung betrifft einen Spektrumanalysator, mit einem YIG-Oszillator, dessen Ausgangsfrequenz in Antwort auf eine Sollfrequenzanforderung mittels eines Magnetfeldes, das auf eine YIG-Kugel einwirkt, festzulegen ist, sowie ein Verfahren zur Messung von Frequenzpegeln.The invention relates to a spectrum analyzer, comprising a YIG oscillator whose output frequency is to be determined in response to a nominal frequency requirement by means of a magnetic field acting on a YIG sphere, and to a method for measuring frequency levels.
Spektrumanalysatoren weisen in der Regel einen Oszillator auf, dessen Aus¬ gangsfrequenzsignal in eine Mischstufe zu einem zuvor gefilterten Messsignal ge¬ mischt wird. Die Mischstufe transformiert den Signalanteil bei der momentan gemes¬ senen Frequenz auf eine feste Zwischenfrequenz, bei der eine Filterung stattfindet. Die Oszillatorfrequenz der Mischstufe wird dabei so über die Zeit variiert, dass der gesamte zu untersuchende Frequenzbereich abgefahren wird. Das gefilterte Signal wird verstärkt und seine Amplitude wird gemessen.Spectrum analyzers generally have an oscillator whose output frequency signal is mixed into a mixing stage to form a previously filtered measurement signal. The mixing stage transforms the signal component at the currently measured frequency to a fixed intermediate frequency at which filtering takes place. The oscillator frequency of the mixer is varied over time so that the entire frequency range to be examined is traversed. The filtered signal is amplified and its amplitude is measured.
Der Spektrumanalysator misst somit den Signalpegel über der Frequenz. Die hohe Eingangsempfindlichkeit und der weite Dynamikbereich von Spektrumanalysatoren ermöglichen die Analyse von Signalen, die mit einem Oszilloskop nicht darstellbar sind.The spectrum analyzer thus measures the signal level over the frequency. The high input sensitivity and the wide dynamic range of spectrum analyzers enable the analysis of signals that can not be displayed with an oscilloscope.
Vorteilhaft wird als Oszillator ein YIG-Oszillator (kurz YTO -YIG Tuned Oscillator) ein- gesetzt, der in einem weiten Frequenzbereich exakt durchstimmbar ist. Der YIG-Os¬ zillator besteht im wesentlichen aus zwei Blöcken, einer Hochfrequenz-Oszillator- Schaltung und einer Abstimmeinheit, einem Spulensystem. Die Hochfrequenz-Oszil¬ lator-Schaltung ist ein LC-Generator, dessen frequenzbestimmendes Bauteil eine YIG-Kugel (Yttrium-Eisen-Granat) ist. Das Verstärkungselement in dieser Schaltung ist ein Transistor, wobei die YIG-Kugel sitzt innerhalb einer Leiterschleife im Emitterkreis des Transistors eingesetzt ist. Sie hat besondere magnetische Eigenschaften. Mit Hilfe eines äußeren magnetischen Feldes, das die Kugel durchflutet, kann die Resonanzfrequenz der Hochfrequenz- Oszillatorschaltung durchgestimmt werden, ohne beispielsweise ein Phasenrauschen zu erzeugen.Advantageously, the oscillator used is a YIG oscillator (YTO-YIG Tuned Oscillator for short), which can be tuned exactly over a wide frequency range. The YIG oscillator consists essentially of two blocks, a high-frequency oscillator circuit and a tuning unit, a coil system. The high-frequency Oszil¬ lator circuit is an LC generator whose frequency-determining component is a YIG ball (yttrium iron garnet). The gain element in this circuit is a transistor, wherein the YIG ball is seated within a conductor loop inserted in the emitter circuit of the transistor. It has special magnetic properties. By means of an external magnetic field, which flows through the ball, the resonance frequency of the high-frequency oscillator circuit can be tuned without, for example, to generate phase noise.
Nachteilig ist, dass zur Erzeugung des exakt einzustellenden Magnetfeldes entweder ein Permanentmagnet oder eine große Spule sowie mindestens eine weitere Spule verwendet werden müssen. Um Temperatureinflüsse zu vermeiden, werden die YTOs zudem auf eine konstante Temperatur geheizt, vorzugsweise zwischen 8O0C und 125 0C. Hierdurch können Temperaturprobleme in dem Schaltkreis entstehen und es sind aufwendige Schaltungen für die benötigten Elemente vorzunehmen.The disadvantage is that to generate the exact magnetic field to be set either a permanent magnet or a large coil and at least one other coil must be used. To avoid temperature effects, the YTOs are also heated to a constant temperature, preferably between 8O 0 C and 125 0 C. This can cause temperature problems in the circuit and there are consuming circuits for the required elements to make.
Aufgabe der vorliegenden Erfindung ist es, eine einfache Regelung des Magnetfeldes bereitzustellen, wobei die Nachteile des Stands der Technik vermieden werden.The object of the present invention is to provide a simple control of the magnetic field, whereby the disadvantages of the prior art are avoided.
Die Aufgabe wird gelöst durch einen Spektrumanalysator nach dem Oberbegriff des Anspruchs 1, wobei lediglich eine, das Magnetfeld erzeugende Abstimmspule vorge- sehen ist, wobei das Ausgangsfrequenzsignal des YIG-Oszillators als Istwert und die momentane Frequenzanforderung des Spektrumanalysators als Sollwert einer PLL- Regelschaltung zuzuführen ist, durch welche mittels eines nachgeschalteten Spannungs-/Stromwandlers der Spulenstrom der Abstimmspule zu regeln ist.The object is achieved by a spectrum analyzer according to the preamble of claim 1, wherein only one, the magnetic field generating tuning coil is provided, the output frequency signal of the YIG oscillator as the actual value and the instantaneous frequency requirement of the spectrum analyzer is supplied as the setpoint of a PLL control circuit by which the coil current of the tuning coil is to be regulated by means of a downstream voltage / current converter.
Der Spulenstrom der Abstimmspule wird so eingestellt, dass eine Mindestfeldstärke zur Erreichung der Sättigung der Kugel, beispielsweise 500 Gauß erreicht wird, weil der Oszillator in der Sättigung betrieben wird. Die Feineinstellung des Magnetfeldes zur Erreichung der gewünschten Frequenz nach Maßgabe der Frequenzanforderung des Spektrumanalysators wird dann mittels einer einzigen Spule und eines einzigen Spulen regelkreises erreicht. Diese Vereinfachung der Schaltung vereinfacht den Schaltungsaufbau und macht die Regelung sicherer und schneller. Die Regelung weist eine hohe Frequenzstabilität auf.The coil current of the tuning coil is adjusted so that a minimum field strength is achieved to achieve saturation of the sphere, for example 500 Gauss, because the oscillator is operated in saturation. The fine adjustment of the magnetic field to achieve the desired frequency in accordance with the frequency requirement of the spectrum analyzer is then achieved loop loop by means of a single coil and a single coil. This simplification of the circuit simplifies the Circuit design and makes the control safer and faster. The control has a high frequency stability.
Die PLL-Regelung liefert somit eine Regelung auf eine Referenzfrequenz vorzugsweise nach Referenz eines DDS, eines hochgenauen Quarz-Oszillators, beispielsweise in einem Frequenzbereich von 10-20 MHz.The PLL control thus provides a control to a reference frequency, preferably according to the reference of a DDS, a high-precision quartz oscillator, for example in a frequency range of 10-20 MHz.
Ein eventuell vorhandener Delay entfälllt wegen der Phasenvorgabe durch die Re¬ ferenzfrequenz.A possibly existing delay is canceled because of the phase specification by the reference frequency.
Frequenzen in einem großen Frequenzbereich können auf der Basis der zugeführten Referenzfrequenz erzeugt werden, wenn das Ausgangsfrequenzsignal des YIG- Oszillators vor Zuführung zu der PLL-Regelschaltung durch einen Frequenzteiler zu leiten ist. Insbesondere wird somit das Signal des YIG-Oszillators, das im Ghz- Bereich liegt, durch ein Signal eines DDS im Bereich von 10-20 MHz regelbar. Die Frequenzen können somit durch je einen vorgeschalteten Frequenzteiler sehr unterschiedliche Größe aufweisen.Frequencies in a wide frequency range may be generated based on the supplied reference frequency if the output frequency signal of the YIG oscillator is to be passed through a frequency divider before being applied to the PLL control circuit. In particular, thus the signal of the YIG oscillator, which is in the Ghz range, can be controlled by a signal of a DDS in the range of 10-20 MHz. The frequencies can thus have very different sizes by a respective upstream frequency divider.
Eine Verdopplung der Frequenz des Referenzsignals wird erreicht, wenn das Aus¬ gangsfrequenzsignal des YIG-Oszillators vor Zuführung zu der PLL-Regelschaltung durch einen Frequenzhalbierer zu leiten ist.A doubling of the frequency of the reference signal is achieved if the output frequency signal of the YIG oscillator is to be passed through a frequency bisector before being fed to the PLL control circuit.
Hochfrequente Zusätze im Signal können leicht herausgefiltert werden, wenn das Ausgangssignal einem Tiefpassfilter zuzuführen ist.High-frequency additions in the signal can easily be filtered out if the output signal is to be fed to a low-pass filter.
Ein auf verschiedene Frequenzmodi einstellbarer Filter liegt vor, wenn das Aus¬ gangssignal des PLL einem Schleifenfilter zuzuführen ist.A filter which can be set to different frequency modes is present if the output signal of the PLL is to be fed to a loop filter.
Eine den YIG in einem bestimmten Temperaturbereich haltende Heizung kann entfallen, wenn durch die PLL-Regelschaltung auch eine Frequenzabweichung des YIG-Oszillators aufgrund von Temperaturschwankungen mittels einer Änderung desA heater holding the YIG in a certain temperature range can be dispensed with if the PLL control circuit also detects a frequency deviation of the YIG oscillator due to temperature fluctuations by means of a change in the YIG oscillator
Spulenstroms der Abstimmspule auszuregeln ist. Eine geänderte Frequenz, die auf Temperaturveränderungen zurückzuführen ist, kann durch die PLL-Schaltung wieder eingestellt werden.Coil current of the tuning coil is to be corrected. A changed frequency on Temperature changes can be reset by the PLL circuit.
Insbesondere bei einer Messbereichsbandbreite bis etwa 3 GHz, insbesondere für Messungen an Satelliten-TV und Radioanlagen ist es vorteilhaft, wenn der YIG- Oszillator bis zu einer Ausgangssignalfrequenz von etwa 8 GHz1 insbesondere zwi¬ schen etwa 3,5 GHz und etwa 6,5 GHz auszusteuern ist.In particular, when the range is bandwidth to about 3 GHz, in particular for measurements on satellite-TV systems, it is advantageous if the YIG oscillator to an output frequency of approximately 8 GHz 1 in particular zwi¬ rule about 3.5 GHz and about 6.5 GHz is auszusteuern is.
Vorteilhaft ist es, wenn das Kernmaterial der Abstimmspule Ferrit ist. Hierdurch werden bei vorteilhaften Materialeigenschaften Wirbelstromverluste vermieden.It is advantageous if the core material of the tuning coil is ferrite. As a result, eddy current losses are avoided with advantageous material properties.
Vorteilhaft ist es, wenn das Ausgangssignal der PLL-Regelschaltung einer YIG-Trei- berschaltung zur Spannungs-/Stromumwandlung und/oder Konstanthaltung der Stromversorgung des Spektrumanalysators bei den wechselnden Spulenströmen zu¬ zuführen ist.It is advantageous if the output signal of the PLL control circuit is to be supplied to a YIG driver circuit for voltage / current conversion and / or constant maintenance of the power supply of the spectrum analyzer in the case of the alternating coil currents.
Ein leicht zu transportierender Spektrumanalysator liegt vor, wenn die Energieversor¬ gung des Spektrumanalysators eine Batterie ist. Durch einen Wegfall einer Heizung und die Verwendung lediglich einer Spule ist der Energieverbrauch der Vorrichtung stark herabgesetzt und kann auch durch eine Batterie ausreichend gewährleistet werden.An easily transportable spectrum analyzer is present when the energy supply of the spectrum analyzer is a battery. By eliminating a heater and the use of only one coil, the power consumption of the device is greatly reduced and can be sufficiently ensured by a battery.
Weitere Merkmale und Vorteile der Erfindung ergeben sich aus den Ansprüchen und der nachstehenden Beschreibung, in der Ausführungsbeispiele des Gegenstands der Erfindung in Verbindung mit den Zeichnungen näher erläutert sind.Further features and advantages of the invention will become apparent from the claims and the following description in which embodiments of the subject invention in conjunction with the drawings are explained in more detail.
Es zeigt:It shows:
Fig. 1 ein schematisches Schaltbild eines YIG-Oszillators mit einer Abstimm¬ spule und Fig. 2 ein Schaltbild eines YIG-Oszillators mit einer Abstimmspule mit Funk¬ tionselementen. Fig. 1 zeigt ein schematisches Schaltbild eines YIG-Oszillators 3 mit einer erfin¬ dungsgemäß zu regelnden Abstimmspule 2.1 shows a schematic circuit diagram of a YIG oscillator with a tuning coil, and FIG. 2 shows a circuit diagram of a YIG oscillator with a tuning coil with functional elements. 1 shows a schematic circuit diagram of a YIG oscillator 3 with a tuning coil 2 to be controlled according to the invention.
Setzt man die Anordnung der YIG-Kugel 1 einem externen Magnetfeld, das durch die Abstimmspule 2 aufgebaut wird, aus, so richten sich in der YIG-Kugel 1 aufgrund von Elektronenspins hervorgerufene magnetische Dipole parallel zum externen Magnet¬ feld aus. Über die Koppelspule 8 wird ein kleines magnetische Wechselfeld ortho¬ gonal dazu eingestrahlt., so dass die Dipole um das durch die Abstimmspule 2 er¬ zeugte Magnetfeld präzedieren. Bei einer Resonanzfrequenz absorbiert die YIG-An- Ordnung einen Großteil des eingestrahlten Koppelfeldes. Diese Resonanzfrequenz ist nahezu linear abhängig vom Magnetfeld der Abstimmspule 2, welches wiederum nahezu linear vom Spulenstrom abhängig ist, so dass eine sehr exakte Regelung der Frequenz des YIG-Oszillators 3 stattfinden kann.If the arrangement of the YIG sphere 1 is set to an external magnetic field which is built up by the tuning coil 2, then magnetic dipoles caused in the YIG sphere 1 due to electron spin are aligned parallel to the external magnetic field. Via the coupling coil 8, a small alternating magnetic field is irradiated orthogonally thereto, so that the dipoles precess around the magnetic field generated by the tuning coil 2. At a resonant frequency, the YIG order absorbs a majority of the injected coupling field. This resonant frequency is almost linearly dependent on the magnetic field of the tuning coil 2, which in turn is almost linearly dependent on the coil current, so that a very precise regulation of the frequency of the YIG oscillator 3 can take place.
Die Frequenz des YIG-Oszillators 3 wird erfindungsgemäß über die Regelung eines aus dem YIG-Oszillator 3 ausgekoppelten Ausgangssignals mit einer Ausgangssig¬ nalfrequenz auf eine vorgegebene Frequenz erreicht. Die Regelung erfolgt über die Regelung des Magnetfelds der Abstimmspule 2 mittels einer PLL-Regelschaltung 4. Dort wird sie benutzt um einen Oszillator so nachzustimmen, dass er der Refe- renzfrequenz , insbesondere der Phase des Signals exakt folgt.The frequency of the YIG oscillator 3 is achieved according to the invention via the control of an output signal coupled out of the YIG oscillator 3 with a Ausgangssig¬ nalfrequenz to a predetermined frequency. The regulation takes place via the regulation of the magnetic field of the tuning coil 2 by means of a PLL control circuit 4. There, it is used to tune an oscillator so that it exactly follows the reference frequency, in particular the phase of the signal.
Hierzu wird das Ausgangsfrequenzsignal des YIG-Oszillators 3, insbesondere nach Durchlaufen eines Frequenzteilers 6, in der PLL-Regelschaltung 4 mit einem Refe¬ renzfrequenzsignal 11 des Spektrumanalysators verglichen. Dazu ist lediglich eine Abstimmspule 2 vorgesehen, wobei das Ausgangsfrequenzsignal des YIG-Oszillators 3 als Istwert und die momentane Frequenzanforderung des Spektrumanalysators als Sollwert einer PLL-Regelschaltung 4 zuzuführen ist, welche mittels eines nachge¬ schalteten Spannungs-/Stromwandlers 5 den Spulenstrom der Abstimmspule 2 re¬ gelt. Das Ausgangsfrequenzsignal des YIG-Oszillators ist regelmäßig ein Hochfrequenz¬ signal, etwa 3.5 bis 6.5GHz. Das Ausgangsfrequenzsignal wird dem PLL-Regel-IC zugeführt. Das Ausgangsfrequenzsignal, das Istsignal, wird mit dem Frequenzteiler 6 innerhalb des PLL-Regel-ICs in den Bereich der DDS- Referenzfrequenz, das Sollsignal, heruntergeteilt. Dort wird der Sollwert mit dem Istwert verglichen.For this purpose, the output frequency signal of the YIG oscillator 3, in particular after passing through a frequency divider 6, is compared in the PLL control circuit 4 with a reference frequency signal 11 of the spectrum analyzer. For this purpose, only one tuning coil 2 is provided, the output frequency signal of the YIG oscillator 3 being supplied as the actual value and the instantaneous frequency requirement of the spectrum analyzer as the desired value of a PLL control circuit 4, which uses a nachge switched voltage / current transformer 5, the coil current of the tuning coil. 2 ruled. The output frequency signal of the YIG oscillator is regularly a Hochfrequenz¬ signal, about 3.5 to 6.5 GHz. The output frequency signal is supplied to the PLL control IC. The output frequency signal, the actual signal, is divided down into the range of the DDS reference frequency, the desired signal, by the frequency divider 6 within the PLL control IC. There, the setpoint is compared with the actual value.
Der Phasen-Frequenz-Diskriminator 9 ist das eigentlichregelnde Element des des PLL-Regel-ICs. Er vergleicht zwei Wechselspannungen miteinander und erzeugt am Ausgang eine Gleichspannung, die ein Maß für die Anweichung der beiden Frequenzen bzw. der Phasnelagen vorneinander ist. Er verhält sich als Frequenzver- gleicher, der bei Annäherung an die Synchronität der beiden Signale automatisch auf Phasenvergleich übergeht.The phase-frequency discriminator 9 is the actual regulating element of the PLL control IC. It compares two alternating voltages with each other and generates a DC voltage at the output, which is a measure of the softening of the two frequencies or of the phase positions in front of each other. It behaves as a frequency comparator that automatically transitions to phase comparison as it approaches the synchronicity of the two signals.
Die Regelabweichung der beiden Signale wird als Ausgangssignal dem Schleifenfil¬ ter 7 zugeführt. Jm Schleifenfilter 7 werden aus dem Regelabweichungssignal dann höherfrequente, eventuell schaltungsbedingt erzeugte Anteile herausgefiltert. Die Filterkonstanten können entsprechend der Verwendung des YIG-Hochfrequenzsig- nals als Sweep-Überstreichung eines weiten Frequenzbereichs oder als Festfre¬ quenzeinstellung zwischen zwei Werten umgeschaltet werden. Die Filterkonstanten beeinflussen die Regelgeschwindigkeit und das Phasenrauschen der PLL-Regel- schleife. Das Ausgangssignal des Schleifenfilters 7 (Utun-OUT) wird der YIG-Trei- berschaltung 10 zugeführt. Diese wandelt die Spannung des Ausgangssignals des Schleifenfilters 7 in den für die Abstimmspule 2 notwendigen geregelten Spulenstrom um. Zugleich hält die YIG-Treiberschaltung 10 die Belastung der Stromversorgung des Gesamtgerätes bei den wechselnden YIG-Regelungsströmen konstant. Entsprechend der Änderung des Spulenstroms der Abstimmspule 2 verändert sich die YIG-Oszillator Ausgangsfrequenz.The control deviation of the two signals is fed as an output signal to the Schleifenfil¬ ter 7. In the loop filter 7, higher-frequency components which may have been generated as a result of the control deviation signal are then filtered out. The filter constants can be switched over between two values in accordance with the use of the YIG high-frequency signal as a sweep sweep of a wide frequency range or as a fixed frequency setting. The filter constants influence the control speed and the phase noise of the PLL control loop. The output signal of the loop filter 7 (Utun-OUT) is supplied to the YIG driver circuit 10. This converts the voltage of the output signal of the loop filter 7 in the time required for the tuning coil 2 regulated coil current. At the same time, the YIG driver circuit 10 keeps the load on the power supply of the entire device constant with the changing YIG control currents. According to the change of the coil current of the tuning coil 2, the YIG oscillator output frequency changes.
Fig. 2 zeigt ein Schaltbild eines YIG-Oszillators 3 mit einer Abstimmspule 2 mit Funk- tionselementen. Die YIG-PLL-Regelschleife besteht aus mehreren Modulen, dem YIG-Oszillator, einem PLL-Modul, einem Schleifenfilter und einer YIG-Treiberschal¬ tung 10. BEZUGSZEICHENLISTE2 shows a circuit diagram of a YIG oscillator 3 with a tuning coil 2 with functional elements. The YIG PLL control loop consists of several modules, the YIG oscillator, a PLL module, a loop filter and a YIG driver circuit 10. LIST OF REFERENCE NUMBERS
1 YIG-Kugel1 YIG ball
2 Abstimmspule2 tuning coil
3 YIG-Oszillator3 YIG oscillator
4 PLL-Regelschaltung4 PLL control circuit
5 Spannungs-/Stromwandler5 voltage / current transformers
6 Frequenzteiler6 frequency divider
7 Schleifenfilter7 loop filter
8 Koppelspule8 coupling coil
9 Phasen-Frequenz-Diskriminator9 phase frequency discriminator
10 YIG-Treiberschaltung10 YIG driver circuit
11 Referenzfrequenzsignal 11 reference frequency signal

Claims

ANSPRÜCHE
1. Spektrumanalysator, mit einem YIG-Oszillator, dessen Ausgangsfrequenz in Antwort auf eine Sollfrequenzanforderung mittels eines Magnetfeldes, das auf eine YIG-Kugel (1) einwirkt, festzulegen ist, dadurch gekennzeichnet, dass lediglich eine, das Magnetfeld erzeugende Abstimmspule (2) vorgesehen ist, wobei das Ausgangsfrequenzsignal des YIG-Oszillators (3) als Istwert und die momentane Frequenzanforderung des Spektrumanalysators als Sollwert einer PLL-Regelschaltung (4) zuzuführen ist, durch welche mittels eines nachge¬ schalteten Spannungs-/Stromwandlers (5) der Spulenstrom der Abstimmspule (2) zu regeln ist.A spectrum analyzer comprising a YIG oscillator whose output frequency is to be set in response to a desired frequency demand by means of a magnetic field acting on a YIG sphere (1), characterized in that only one tuning coil (2) generating the magnetic field is provided in which the output frequency signal of the YIG oscillator (3) is supplied as the actual value and the instantaneous frequency requirement of the spectrum analyzer as the setpoint of a PLL control circuit (4), by means of which the coil current of the tuning coil is connected by means of a subsequently connected voltage / current transformer (5) (2) is to be regulated.
2. Spektrumanalysator nach Anspruch 1 , dadurch gekennzeichnet, dass das Ausgangsfrequenzsignal des YIG-Oszillators (3) vor Zuführung zu der PLL- Regelschaltung (4) durch einen Frequenzteiler (6) zu leiten ist.2. Spectrum analyzer according to claim 1, characterized in that the output frequency signal of the YIG oscillator (3) before being fed to the PLL control circuit (4) by a frequency divider (6) is to be passed.
3. Spektrumanalysator nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Ausgangsfrequenzsignal des YIG-Oszillators (3) vor Zuführung zu der PLL-Regelschaltung (4) durch einen Frequenzhalbierer zu leiten ist.3. Spectrum analyzer according to claim 1 or 2, characterized in that the output frequency signal of the YIG oscillator (3) before being fed to the PLL control circuit (4) is to be passed through a frequency bisector.
4. Spektrumanalysator nach einem der Ansprüche 1 bis 3, dadurch gekenn¬ zeichnet, dass das Ausgangssignal einem Tiefpassfilter zuzuführen ist.4. spectrum analyzer according to one of claims 1 to 3, characterized gekenn¬ characterized in that the output signal is to be fed to a low-pass filter.
5. Spektrumanalysator nach einem der Ansprüche 1 bis 4, dadurch gekenn¬ zeichnet, dass das Ausgangssignal des PLL einem Schleifenfilter (7) zuzu- führen ist. 5. spectrum analyzer according to one of claims 1 to 4, characterized gekenn¬ characterized in that the output signal of the PLL is a loop filter (7) zu- lead.
6. Spektrumanalysator nach einem der Ansprüche 1 bis 5, dadurch gekenn¬ zeichnet, dass durch die PLL-Regelschaltung (4) auch eine Frequenzabwei¬ chung des YIG-Oszillators (3) aufgrund von Temperaturschwankungen mittels einer Änderung des Spulenstroms der Abstimmspule (2) auszuregeln ist.6. Spectrum analyzer according to one of claims 1 to 5, characterized gekenn¬ characterized in that by the PLL control circuit (4) and a Frequenzabwei¬ monitoring of the YIG oscillator (3) due to temperature fluctuations by means of a change of the coil current of the tuning coil (2) is to be corrected.
7. Spektrumanalysator nach einem der Ansprüche 1 bis 6, dadurch gekenn¬ zeichnet, dass der YIG-Oszillator (3) bis zu einer Ausgangssignalfrequenz von etwa 8 GHz, insbesondere zwischen etwa 3,5 GHz und etwa 6,5 GHz auszusteuern ist.7. Spectrum analyzer according to one of claims 1 to 6, characterized gekenn¬ characterized in that the YIG oscillator (3) is auszusteuern up to an output signal frequency of about 8 GHz, in particular between about 3.5 GHz and about 6.5 GHz.
8. Spektrumanalysator nach einem der Ansprüche 1 bis 7, dadurch gekenn¬ zeichnet, dass das Kernmaterial der Abstimmspule (2) Ferrit ist.8. spectrum analyzer according to one of claims 1 to 7, characterized gekenn¬ characterized in that the core material of the tuning coil (2) is ferrite.
9. Spektrumanalysator nach einem der Ansprüche 1 bis 8, dadurch gekenn- zeichnet, dass das Ausgangssignal der PLL-Regelschaltung (4) einer YIG-9. Spectrum analyzer according to one of claims 1 to 8, characterized in that the output signal of the PLL control circuit (4) of a YIG
Treiberschaltung (10) zur Spannungs-/Stromumwandlung und/oder Konstant¬ haltung der Stromversorgung des Spektrumanalysators bei den wechselnden Spulenströmen zuzuführen ist.Driver circuit (10) for voltage / current conversion and / or Konstant¬ maintenance of the power supply of the spectrum analyzer in the changing coil currents is supplied.
10. Spektrumanalysator nach einem der Ansprüche 1 bis 9, dadurch gekenn¬ zeichnet, dass die Energieversorgung des Spektrumanalysators eine Batterie ist.10. Spectrum analyzer according to one of claims 1 to 9, characterized gekenn¬ characterized in that the power supply of the spectrum analyzer is a battery.
11. Verfahren zur Messung von Frequenzpegeln mit einem Spektrumanalysator nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass ein11. A method for measuring frequency levels with a spectrum analyzer according to one of claims 1 to 10, characterized in that a
Ausgangsfrequenzsignal eines YIG-Oszillators (3) als Istwert und die mo¬ mentane Frequenzanforderung des Spektrumanalysators als Sollwert einer PLL-Regelschaltung (4) zugeführt wird, durch welche mittels eines nachge¬ schalteten Spannungs-/Stromwandlers (5) der Spulenstrom der Abstimmspule (2) geregelt wird, wobei die Regelung durch lediglich eine Abstimmspule (2) erfolgt. Output frequency signal of a YIG oscillator (3) as an actual value and the mo¬ mentane frequency requirement of the spectrum analyzer as the setpoint of a PLL control circuit (4) is supplied, by means of which nachge¬ switched voltage / current converter (5) of the coil current of the tuning coil (2 ), wherein the regulation is effected by only one tuning coil (2).
PCT/DE2005/002010 2004-11-09 2005-11-09 Spectrum analyzer and frequency level measurement method WO2006050704A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112005003392T DE112005003392A5 (en) 2004-11-09 2005-11-09 Spectrum analyzer and method for measuring frequency levels

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200410054261 DE102004054261A1 (en) 2004-11-09 2004-11-09 Spectrum analyzer and method for measuring frequency levels
DE102004054261.9 2004-11-09

Publications (1)

Publication Number Publication Date
WO2006050704A1 true WO2006050704A1 (en) 2006-05-18

Family

ID=35825347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2005/002010 WO2006050704A1 (en) 2004-11-09 2005-11-09 Spectrum analyzer and frequency level measurement method

Country Status (2)

Country Link
DE (2) DE102004054261A1 (en)
WO (1) WO2006050704A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4581594A (en) * 1984-03-27 1986-04-08 Systron Donner Corporation Drive circuit for YIG tuned devices
DE19680092C2 (en) * 1995-01-27 2000-10-26 Advantest Corp Spectrum analyzer
US6201449B1 (en) * 1999-07-24 2001-03-13 Stellex Microwave Systems, Inc. Ferromagnetic tuning ring for YIG oscillators
US6233288B1 (en) * 1995-01-24 2001-05-15 Advantest Corp. Spectrum analyzer
US20050104667A1 (en) * 2003-11-14 2005-05-19 Williams Anthony D. Frequency synthesizer having PLL with an analog phase detector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4581594A (en) * 1984-03-27 1986-04-08 Systron Donner Corporation Drive circuit for YIG tuned devices
US6233288B1 (en) * 1995-01-24 2001-05-15 Advantest Corp. Spectrum analyzer
DE19680092C2 (en) * 1995-01-27 2000-10-26 Advantest Corp Spectrum analyzer
US6201449B1 (en) * 1999-07-24 2001-03-13 Stellex Microwave Systems, Inc. Ferromagnetic tuning ring for YIG oscillators
US20050104667A1 (en) * 2003-11-14 2005-05-19 Williams Anthony D. Frequency synthesizer having PLL with an analog phase detector

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANONYMUS: "Kommunikationselektronik", 23 March 2001 (2001-03-23), pages INHALTSVERZEICHNIS, 1.1 - 2.11, XP002369477, Retrieved from the Internet <URL:http://www.e-technik.fh-kiel.de/regiue/dldaten/k1-kt.pdf> [retrieved on 20060222] *

Also Published As

Publication number Publication date
DE112005003392A5 (en) 2007-10-25
DE102004054261A1 (en) 2006-05-11

Similar Documents

Publication Publication Date Title
Beckmann et al. Precision measurements of the nuclear magnetic dipole moments of 6 Li, 7 Li, 23 Na, 39 K and 41 K
DE19536390A1 (en) Fundamental field measurement appts. for controlling fundamental field of NMR tomography magnet
DE4419061C2 (en) Arrangement for measuring and controlling the basic field of a magnet of a magnetic resonance imaging device
DE1928454A1 (en) Resonance spectrometer with pulse modulation
DE102011003690A1 (en) Method for determining ohmic internal resistance of battery, involves subjecting battery to alternating current, where measuring voltage is detected as reaction of battery
DE1673247A1 (en) Spectrometer for gyromagnetic resonance with selectable internal and external resonance control groups
WO2006050704A1 (en) Spectrum analyzer and frequency level measurement method
CN101204006A (en) Wideband RF pseudo-sine signal generator
DE1952235C2 (en) Frequency meter for measuring the difference between two unknown input frequencies
DE19527325A1 (en) Linearization of wobble systems
Jurga Pulse NMR spectrometer for local dipolar field measurements in solids
DE10025284C2 (en) Control loop device for a gradient system of a magnetic resonance device
DE602005006054T2 (en) Stabilizer for NMR magnetic field and method of use
Büttgenbach et al. Hyperfine structure investigations in the 4 F 9/2 atomic ground state of 191 Ir and 193 Ir
DE2902572A1 (en) Magnetic field measurement and stabilisation - using ferromagnetic resonance of ferromagnetic body determined by frequency-modulated microwave oscillator
Arpaia et al. Enhanced analogue front-end for the measurement of the high state of wide-band voltage pulses with 87 db common-mode rejection ratio and±0.65 ppm 1-day offset stability
Kispert et al. Electron-electron double resonance of irradiated monofluoroacel amide single crystals: The role of fluorine p-orbital anisotropy
DE102009002676B4 (en) Device for the high-precision synchronization of the NMR transmission frequency to the resonance frequency of an NMR line, taking into account a non-constant HF phase
ANDERSON Magnetic Field Modulation for High-Resolution NMR
EP1818678B1 (en) Assembly for measuring magnetic signals
Bloembergen et al. The Experimental Method
Jurga et al. Measurement and interpretation of far off-resonance T1 rho in solids
DE904780C (en) Device for automatic resonance tuning of an electrical oscillating circuit
Freeman et al. Automated nonselective measurement of T 1ρ by Fourier transform NMR
Hirata et al. Decoupling of automatic control systems in a continuous‐wave electron paramagnetic resonance spectrometer for biomedical applications

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1120050033929

Country of ref document: DE

REF Corresponds to

Ref document number: 112005003392

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05810758

Country of ref document: EP

Kind code of ref document: A1