WO2006050560A1 - Parallel micromanipulator and control method - Google Patents

Parallel micromanipulator and control method Download PDF

Info

Publication number
WO2006050560A1
WO2006050560A1 PCT/AU2005/001712 AU2005001712W WO2006050560A1 WO 2006050560 A1 WO2006050560 A1 WO 2006050560A1 AU 2005001712 W AU2005001712 W AU 2005001712W WO 2006050560 A1 WO2006050560 A1 WO 2006050560A1
Authority
WO
WIPO (PCT)
Prior art keywords
model
end effector
hinge
compliant mechanism
actuators
Prior art date
Application number
PCT/AU2005/001712
Other languages
French (fr)
Inventor
Tien-Fu Lu
Daniel C. Handley
Yuen Kuan Yong
Original Assignee
Adelaide Research And Innovation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2004906451A external-priority patent/AU2004906451A0/en
Application filed by Adelaide Research And Innovation filed Critical Adelaide Research And Innovation
Publication of WO2006050560A1 publication Critical patent/WO2006050560A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J7/00Micromanipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0009Constructional details, e.g. manipulator supports, bases
    • B25J9/0015Flexure members, i.e. parts of manipulators having a narrowed section allowing articulation by flexion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1615Programme controls characterised by special kind of manipulator, e.g. planar, scara, gantry, cantilever, space, closed chain, passive/active joints and tendon driven manipulators
    • B25J9/1623Parallel manipulator, Stewart platform, links are attached to a common base and to a common platform, plate which is moved parallel to the base

Definitions

  • J is a 3x3 constant matrix whose values may be determined from the geometry of a particular micromanipulation device.
  • ANSYS provides the tools to construct simple models using beam, joint and spring elements.
  • the flexure hinge is modelled using two coincident nodes joined by two elements - COMBIN7 and COMBIN14.
  • a schematic is shown in Figure 9.
  • COMBIN7 provides a three-dimensional revolute joint with joint flexibility.
  • the nodes (Ij) are defined to have six degrees of freedom.
  • the DOF are defined by a local coordinate system which is affixed to each node. In this model the coordinate systems of the two coincident nodes have the same orientation. All of these DOF are intended to be constrained with a certain level of flexibility.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Manipulator (AREA)

Abstract

A micromanipulation device and a method of control thereof incorporating a compliant mechanism (10, 11, 12), a plurality of movement actuators (13, 14, 15) and at least one end effector (21), including the steps of modelling the compliant mechanism, deriving linear equations describing the motion of the end effector from said model and solving said equations in real time to provide control of the position and orientation of the end effector.

Description

TITLE
PARALLEL MICROMANIPULATOR AND CONTROL METHOD
TECHNICAL FIELD
The present invention relates to a parallel micromanipulator and a method of control thereof.
BACKGROUND ART
There is emerging a growing need for micromanipulation, that is, the need to manipulate micro objects of several microns or less in size and to perform very small motions, on the order of 100 μm or less, with good positioning accuracy. This need is felt in fields such as micro-surgery, biological cell manipulation and micro-assembly.
In micro-surgery, hand tremor is a common problem that reduces the performance of surgeons. It causes unnecessary cell damage during surgical operations. The introduction of micromanipulation devices provides a tremor- free surgical environment for surgeons. Therefore, the success rate of surgical operations may be increased.
Advances in microbiology, such as male infertility treatment and cloning technology, have increased the need to manipulate a single cell. This manipulation process is normally referred as biological cell manipulation. Methods, such as embryo pronuclei DNA injection and intracytoplasmic injection (cell injection), are used to introduce genetic material into cells. The conventional cell injection methods, which are conducted manually, require professional training and skills. The manual injection techniques have very low success rates. Micromanipulation based systems, which have high positioning accuracies and resolutions, are capable of performing the injection tasks precisely with minimum cell damage and high success rates. Such techniques are capable of faster, more controllable penetrating speeds than manual techniques. In micro-assembly, the sizes of electronics chips have been reduced drastically to micrometers. The integration of all the micro-components into microsystems would be impossible if it was done manually. Therefore, micromanipulation systems are needed to extend human capabilities in the micro-assembly industries.
Conventional technologies based on servomotors, ball screws, and rigid linkages have difficulties when applied to micromanipulation systems due to inherent problems, such as clearance, friction and backlash.
Therefore micromanipulation systems are known which are based on the compliant mechanism concept. Compliant mechanisms achieve their motions through elastic deformations as opposed to conventional rigid-link mechanisms which achieve their motions via movable joints (e.g. revolute joints). Compliant mechanisms replace most of the joints in rigid mechanisms with flexure hinges. These mechanisms are advantageous over the rigid-link designs in applications requiring micro-motion. Problems such as friction, wear, backlash and lubrications are eliminated. Furthermore, compliant mechanisms have fewer components compared to rigid mechanisms, thus allowing for savings in weight and improving maintainability.
Piezoelectric (PZT) actuators are the most common driving elements used for compliant mechanism micromanipulation systems due to their high resolution displacements and fast responses.
However, the behaviour of a compliant mechanism in response to the movement of the actuators is not simple. This behaviour, the forward or direct kinematics of the mechanism is complex and non-linear, due to unknown relative motions of the unactuated flexure hinges. Yet if the mechanism is to be useful the forward kinematics must be known with a high degree of accuracy in real time.
It is an object of the present invention to provide a micromanipulator and method of control that overcomes or at least substantially ameliorates the problems associated with the control of compliant mechanism based micromanipulators of the prior art. Other objects and advantages of the present invention will become apparent from the following description, taken in connection with the accompanying drawings, wherein, by way of illustration and example, an embodiment of the present invention is disclosed.
DISCLOSURE OF THE INVENTION
In one form of this invention there is proposed a method of control of a micromanipulation device incorporating a compliant mechanism, a plurality of movement actuators and at least one end effector, including the steps of modelling the compliant mechanism, deriving linear equations describing the motion of the end effector from said model and solving said equations in real time to provide control of the position and orientation of the end effector.
Preferably, the model is a pseudo-rigid-body model.
Preferably, the model is a modified pseudo-rigid-body model, including translational compliances.
In preference, the equations are derived using loop-closure theory.
In preference, the models are derived by incorporating rotational and translation stiffness of flexure hinges
In preference, the motion of the end effector is related to the movement of the actuators by a Jacobian matrix.
In another form of the invention it may be said to reside in a micromanipulation device including a compliant mechanism, a plurality of movement actuators and at least one end effector, wherein movement of the end effector is controlled by movements of the actuators, further including a control system adapted to determine the signal to be applied to the actuators to achieve a desired movement of the end effector, characterized in that the control system makes such determinations using linear equations.
In preference, the movement actuators are piezoelectric. BRIEF DESCRIPTION OF THE DRAWINGS
For a better understanding of this invention it will now be described with respect to the preferred embodiment which shall be described herein with the assistance of drawings wherein;
Figure 1 is a perspective view of a micromanipulator according to a preferred embodiment of the present invention; and
Figure 2 is a plan view of a micromanipulator according to a preferred embodiment of the present invention; and
Figure 3 is view of a single actuator assembly of the embodiment of Figure 2; and
Figure 4 shows the equivalent structure of one joint of a compliant mechanism, as used by the pseudo-rigid-body model; and
Figure 5 shows the equivalent structure of one joint of a compliant mechanism, as used by the modified pseudo-rigid-body model; and
Figure 6 shows the physical structure of one joint of a compliant mechanism; and
Figure 7 shows the pseudo-rigid-body model of the embodiment of Figure 2; and
Figure 8 shows the SCHM model of one joint as in figure 6; and
Figure 9 shows a 3-DOF model of a flexure hinge using ANSYS elements; and
Figure 10 shows schematic of a flexure hinge under load; and
Figure 11 shows the closed loops implied by the model of the embodiment of figure 7.
BEST MODE FOR CARRYING OUT THE INVENTION
Now referring to the illustrations, in particular to Figure 1 , there is a three degree-of-freedom (DOF) parallel micro-motion device (also known as a 3RRR compliant mechanism). There are three driving elements 10,11 ,12 including piezoelectric stack actuators 13,14,15 which move the end effector (not shown).
The overall structure of this can be seen most clearly in plan view in Figure2, where the position of the end effector 21 is shown as a triangle.
Figure 3 shows a single driving element with piezoelectric stack actuator 30 and flexure hinges 31 ,32,33,34. The hinge 32 upon which the actuator 30 bears is an actuated joint, the others are unactuated.
It is the movement of these actuators which moves the end effector. In order for the movement of the end effector to be useful, it is necessary to be able to calculate the resultant movement of the end effector from movement of the actuators. It is necessary to know what movement of the actuators is necessary to produce a desired movement of the end effector.
The compliant mechanism uses flexure hinges. The behaviour of such hinges may be modelled by a static model.
The static model of the 3RRR compliant mechanism can be derived as:
F = K(Al)
where F is a 3x1 force vector, Δ/ is a 3x1 actuator displacement vector and K(AI) is a 3x3 stiffness matrix which depends on Al. The stiffness matrix can be obtained by finding the potential energy of the 3RRR compliant mechanism, and by performing the partial derivative to the potential energy. The potential energy of the compliant mechanism is the elastic energy stored in the nine flexure hinges, labelled as A1, B1 and C, (/= 1 , 2, 3). The potential energy is:
Figure imgf000007_0001
ΔΘAI, ΔΘBI and Δθa represent the small angular displacement increments of the flexure hinges
Kb is the spring stiffness of the flexure hinges20,
Figure imgf000007_0002
where E is the Young's Modulus
b, r and t are the dimensions of the flexure hinge, shown in Fig. 4a.
By using the above equations:
Figure imgf000008_0002
By taking the partial derivative of this equation, the static model is obtained:
Figure imgf000008_0001
The pseudo-rigid-body (PRB) model is used to model the deflections of the flexible members using conventional rigid link mechanism theory. The pseudo- rigid-body model assumes that the flexure hinges in the structure act like revolute joints with torsional springs attached to it. Figure 4 shows a flexure hinge 40 and the equivalent structure used in the pseudo-rigid-body model of a revolute joint 41 and a torsional spring 42, with a rigid link 43. The other parts of the structure are also assumed to be rigid. Therefore, the pseudo-rigid-body model is referred as a bridge connecting the rigid-link mechanisms and the compliant mechanisms.
The pseudo-rigid-body model may be extended to account for the fact that the hinge is not perfectly rigid in the x- and y- directions. Two additional linear springs are incorporated into pseudo-rigid-body model to model the compliances in the x- and y-direction. This improves the accuracy of the kinematic and dynamic models compared with those derived using a standard pseudo-rigid-body model, which assumes flexure hinges are purely revolute with only rotational compliance. Figure 5 illustrates the schematic of undeformed and deformed states of a flexure hinge. A torsional and a linear spring which represents the x and y compliance components of the hinge are illustrated to represent the deformed flexure hinge.
This is a simpler model than a solid body FEM (finite-element-model) and is far more computationally efficient. Therefore it is very useful for parametric studies and optimisation of micro-motion stages using compliant mechanisms.
The compliance equations for such a model are known in the art and may be found in Yingfei Wu, and Zhaoying Zhou, "Design calculations for flexure hinges", Review of Scientific Instruments, vol. 73, no. 8, pp. 3101-3106, 2002.
The equations are:
Figure imgf000009_0001
where S = R/t and R is the dimension shown as rAand t is the dimension shown as t in the diagram of a flexure hinge as shown in Figure 6.
We have discovered by empirical methods that the accuracy of the three above equations can be improved.
Empirically derived equations for stiffness (reciprocal of compliance), K* , K and Kx are:
Figure imgf000009_0002
Figure imgf000010_0001
where ck are the coefficients of polynomial functions, and n is the order of a polynomial function. The values of the coefficients are given in the table below.
Figure imgf000010_0002
Table I: Coefficients of polynomial functions for Kθ, Kx and Ky
The empirical equations are now incorporated in deriving kinematic and static models to describe the translational movements of hinges other than pure bending.
The static model of a RRR and 3RRR are now derived by incorporating flexure hinge stiffness, .K^ , Ky and Kx into the model. An output compliance (reciprocal of stiffness) matrices of a RRR compliant mechanism is firstly obtained. An output compliance matrix of a 3RRR micro-motion stage is then calculated by integrating three compliance matrices of RRR structures.
The resultant kinematics are therefore far much more accurate than the kinematics derived using conventional pseudo rigid body model that only has torsional spring but not the linear spring attached to the joint.
The pseudo-rigid-body model of the 3RRR compliant mechanism is illustrated in Fig. 7. It consists of flexure hinges (labelled as A, Bi, and C1 where / = 1, 2, 3), modelled as a joint-spring combination, connected by rigid links 51-59. ΘΛ/, ΘB/ and Qa are the initial angular displacements of the flexure hinges, measured from x-axis. Δθ/y, ΔΘB/ and Δθc/ represent the small angular displacement increments of the flexure hinges.
Thus the angular displacement of each flexure hinge can be represented by an expression of the form ΘX+ΔΘX.
Loop-closure theory incorporates the complex number method to model a mechanism. Since the body of the compliant mechanism is fixed, it is possible to develop closed loops wherein the position vectors of each of the hinges within the loop must sum to zero.
For each closed-loop in the mechanism, a loop equation is generated. This equation can be expressed in terms of its real and imaginary parts, resulting in two equations per loop. Unknowns can be found by solving these equations simultaneously.
Complex numbers are used to represent vectors in each closed-loop. The complex number is written as:
Z=re=r(cosθ +isinθ)
where r is the link length and θ is the angular displacement describing the initial orientations of the link as shown in Figure 7.
In Fig. 7, all the flexure hinges labelled Aare actuated (active joints). Flexure hinges Eand Care unactuated (passive joints). Therefore, ΔθB/and Δθc/(/ = 1,2,3j are unknowns. The displacements of the actuated hinges are of course known, being given by the expression:
ΔΘA= Δ/ΛrΛ
where AIA is the displacement of the fh actuator and fy is the "lever arm" as indicated in Fig 6.
In order to solve these unknowns, three closed-loops are generated as shown in Fig. 8. Using loop-closure theory, four equations are obtained. From loop one:
Figure imgf000012_0007
Which has a real component: (equationi )
+AΘC3)
Figure imgf000012_0001
and an imaginary component: (equation 2)
+AΘC3)
Figure imgf000012_0002
Since the micromanipulation device moves in micro scales, and
Figure imgf000012_0004
Figure imgf000012_0003
Equations (1) and (2) can be simplified as:
ΘB3 ) (3)
Figure imgf000012_0005
and
) cos ΘB3 ) (4)
Figure imgf000012_0006
Equations (3) and (4) are the two equations obtained from the first loop. Two more equations can be obtained from the second or the third loop using the similar procedures. Therefore, there are four equations to solve for four unknowns.
The resulting kinematics is described by a 3x3 matrix of constants, which is multiplied by the input PZT displacement to give the end-effector motion.
Mathematically, forward kinematics is derived to find the positions and orientations ( ΔX, Ay, Δλ)of the end-effector when the actuated joint variables (Ah, Ah, Ah) are given. That is the translation in two planar dimensions and the change in orientation of the end effector.
A Jacobian matrix is normally used to relate the velocity of an end-effector to the velocity of actuators. However, for the case of micromanipulation systems, the Jacobian matrix can be defined as a matrix to relate ( Ah, Ah, Ah) with ( Δx, Ay, AX). The displacements of the PZT actuators are substantially small compared to the link lengths. The motions of the overall mechanism are very small. Therefore, the micromanipulation device is almost configurationally invariant and its Jacobian matrix J, is assumed to be constant:
Figure imgf000013_0001
Where J is a 3x3 constant matrix whose values may be determined from the geometry of a particular micromanipulation device.
This expression is linear and may be solved directly without recourse to numerical techniques.
In a further embodiment, the selected model is the simple compliant hinge model (SCHM). In this model, the flexure hinge of figure 6 is modelled as a superposition of three elements, as shown in Figure 8.
The model includes beam elements 71 and 72. There is a revolute spring 73 with stiffness Kb and a linear spring 74 translatable in the x direction with stiffness Kx and a linear spring 75 translatable in the y direction with stiffness
Ky.
This model is particularly suited to use in computer modelling software such as ANSYS. ANSYS provides the tools to construct simple models using beam, joint and spring elements. The flexure hinge is modelled using two coincident nodes joined by two elements - COMBIN7 and COMBIN14. A schematic is shown in Figure 9. COMBIN7 provides a three-dimensional revolute joint with joint flexibility. The nodes (Ij) are defined to have six degrees of freedom. The DOF are defined by a local coordinate system which is affixed to each node. In this model the coordinate systems of the two coincident nodes have the same orientation. All of these DOF are intended to be constrained with a certain level of flexibility. This level of flexibility is defined by four input stiffness values: K1 for translational stiffness in the x-y plane, K2 for stiffness in the z-direction; K3 for rotational stiffness about the x and y axes; and K4 for the rotational stiffness in the primary degree of freedom, rotation about the z-axis, (ROTZ). The dynamic behaviour of ROTZ can also be controlled using other input values, but this is unnecessary for our model. If the link is designed to have no compliance in one of these axes then the stiffness is set to 1*1018. Theoretically, to ensure no compliance the stiffness should be infinite, but this is impossible to compute and therefore a value of stiffness is chosen large enough to ensure any compliance is insignificant. For the 3-DOF flexure hinge model K2 and K3 are set to 1*1018. COMBIN7 provides the same translational stiffness in both the x and y axis of the x-y plane. However the real flexure hinge has different stiffness in the x and y axes. Therefore the COMBIN7 element by itself cannot adequately model the flexure hinge. To provide a more accurate model a , COMBIN14 element has been added. This element is used to describe a linear spring that can be used to give an extra stiffness, K14, in the x-direction. The x- axis and y-axis stiffness can now be set individually to accurately represent the translational compliance of the flexure hinge. The 3-DOF hinge stiffness are given by Kx=KI +K14, Ky=K1 and Kb=K4. The flexure hinges are joined by links that are represented using beam elements (BEAM3). The material and geometric properties of the links can be described using this element so that the link compliance behaviour can also be modelled.
Figure 10 shows a schematic of a flexure hinge under load, showing translational displacement of the hinge centre 91.
Appropriate equations known in the art are used to define the stiffness terms. The empirical equations given above may also be used. Wu's equations are used directly to give the stiffness terms kb and kx, in the SCHM.
Figure imgf000015_0001
where s = R/t as shown in Figure 6.
However, ky must be carefully determined so that it is suitable for the SCHM. A modification of the Paros-Weisbord equation gives an appropriate compliance value for the model. It should be noted from Figure 6 that Fy is applied at the edge of the hinge, a distance of R from the centre of rotation of the hinge.
Therefore the compliance term refers to a point R from the centre of
Figure imgf000015_0003
rotation. The Δy of this point will consist of a pure y-direction translation, Δyt and a rotational term aJR as shown in Figure 10.
Δy is given by
Ay = ΔytzR
For the SCHM only the compliance term that defines the y-direction translation,
, is needed, as the compliance is between two coincident nodes located at
Figure imgf000015_0005
the centre of rotation of the hinge. The Paros-Weisbord equation for in
Figure imgf000015_0004
bending for a right-circular hinge is:
The rotation compliance due to Fy is 9'ven by:
Figure imgf000016_0001
Therefore the Δy due to rotation, O2, at the point R distance from the centre of rotation is given by:
Figure imgf000016_0002
Therefore subtracting this term gives the y-direction translation of the centre of the hinge.
The shear compliance of the hinge is also included when
Figure imgf000016_0003
calculating Ky. The equation derived by Paros-Weisbord was:
Figure imgf000016_0004
Where G = Shear Modulus
Ky is given by:
Figure imgf000016_0005
As for the pseudo-rigid-body model a Jacobian is employed to give an expression which is linear and may be solved directly without recourse to numerical techniques.
This ease of calculation has an additional benefit. Previously micromanipulation stages have been made according to general principles and then tested in order to discover their movement range and control parameters. Modeling of the micromanipulators has been of insufficient accuracy to ensure that, when built, the device will have the movement range and speed response necessary for it to perform a specified function. If the micromanipulator as built could not achieve its design requirements, a modified one must be built and tested.
With the discovery of this modelling method, it is now feasible to design a compliant mechanism micromanipulator to specific performance parameters.
The system to be designed is modelled as in Figure 11. The required displacement range is specified as Δx, Δy and AX- that is movement in the x and y directions, and rotation. Physical size constraints on the end effector are specified, along with the load capacity required.
A database of PZT capabilities and characteristics is available from published sources. These may be pre-chosen or specified by the results of the analysis in order to achieve the required outcomes.
A dynamic model is used to approximate the inertia of the end effector. This, combined with the natural frequency desired is used to calculate the stiffness of the compliant mechanism required. This, combined with the chosen characteristics of the PZT is used to calculate ΔLPZT-Load
It is now possible to use the analysis method of the present invention to determine LAB and in combination with the rotation requirement to determine LBc and φc-
The static model of the flexure hinge can now be used to select the R and t values required for the flexure hinge. The compliant mechanism is now fully specified, and its performance can be predicted with useful accuracy.
Although the invention has been herein shown and described in what is conceived to be the most practical and preferred embodiment, it is recognised that departures can be made within the scope of the invention, which is not to be limited to the details described herein but is to be accorded the full scope of the appended claims so as to embrace any and all equivalent devices and apparatus.

Claims

1216CLAIMS:
1. A method of control of a micromanipulation device incorporating a compliant mechanism, a plurality of movement actuators and at least one end effector, including the steps of modelling the compliant mechanism, deriving linear equations describing the motion of the end effector from said model and solving said equations in real time to provide control of the position and orientation of the end effector.
2. The method of claim 1 wherein the model is a pseudo-rigid-body model.
3. The method of claim 1 wherein the model is a modified pseudo-rigid-body model, including translational compliances.
4. The method of claim 1 wherein the model is the simple compliant hinge model.
5. The method of any one of the preceding claims wherein the equations are derived using loop-closure theory.
6. The method of any one of the preceding claims wherein the model includes a flexure hinge model with rotational and translation stiffness factors.
7. The method of claim 6 wherein the flexure hinge model includes a rotational spring and two translational springs with translation orthogonal to each other.
8. The method of claim 1 wherein the model is the simple compliant hinge model.
9. The method of any one of the preceding claims wherein the motion of the end effector is related to the movement of the actuators by a Jacobian matrix.
10. A micromanipulation device including a compliant mechanism, a plurality of movement actuators and at least one end effector, wherein movement of the end effector is controlled by movements of the actuators, further including a control system adapted to determine the signal to be applied to the actuators to achieve a desired movement of the end effector, characterized in that the control system makes such determinations using linear equations.
11.The device of claim 10 wherein the control system includes a model of the flexure hinges of the compliant mechanism, said model being a pseudo- rigid-body model.
12. The device of claim 10 wherein the control system includes a model of the flexure hinges of the compliant mechanism, said model being a modified pseudo-rigid-body model, said model including translational compliances.
13. The device of claim 10 wherein the control system includes a model of the flexure hinges of the compliant mechanism, said model being the simple compliant hinge model.
14. The device of claim 10 wherein the movement actuators are piezoelectric.
15. A computer when programmed to control a micromanipulation device by use of the method of any one of the preceding method claims.
16. A method for computer modelling a flexure hinge of a compliant mechanism including two coincident nodes joined by a first and a second element, the first element having a parameter for stiffness in orthogonal directions in a plane and a parameter for rotational stiffness about an axis orthogonal to that plane, and the second element having a parameter for stiffness in one of the orthogonal directions in the plane.
17. A micromanipulation device substantially as described with respect to any one of the embodiments in the specification with reference to and as illustrated by the accompanying illustrations with respect to that embodiment.
18. A method for control of a micromanipulation device substantially as described with respect to any one of the embodiments in the specification with reference to and as illustrated by the accompanying illustrations with respect to that embodiment.
PCT/AU2005/001712 2004-11-11 2005-11-10 Parallel micromanipulator and control method WO2006050560A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AU2004906451A AU2004906451A0 (en) 2004-11-11 Parallel micromanipulator and control method
AU2004906451 2004-11-11

Publications (1)

Publication Number Publication Date
WO2006050560A1 true WO2006050560A1 (en) 2006-05-18

Family

ID=36336154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AU2005/001712 WO2006050560A1 (en) 2004-11-11 2005-11-10 Parallel micromanipulator and control method

Country Status (1)

Country Link
WO (1) WO2006050560A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008052581A1 (en) 2006-10-31 2008-05-08 Force Dimension S.A.R.L. Parallel kinematic structure
CN103395059A (en) * 2013-07-05 2013-11-20 上海工程技术大学 Three-freedom-degree flexible topology decoupling parallel-connection micro displacement platform
CN103568005A (en) * 2013-11-18 2014-02-12 山东理工大学 Dual-translation orthogonal decoupling parallel micro-positioning platform
CN103736617A (en) * 2013-12-07 2014-04-23 广西大学 Coating machine with five-degree-of-freedom controllable mechanisms
CN105174210A (en) * 2015-09-23 2015-12-23 佛山科学技术学院 Three-degree-of-freedom micro-positioning platform based on symmetrical double compliant hinge
US10520339B2 (en) * 2017-09-13 2019-12-31 Nanjing Univ. Of Aeronautics And Astronautics Two-dimensional three-degree-of-freedom micro-motion platform structure for high-precision positioning and measurement
CN113158529A (en) * 2021-05-14 2021-07-23 湖北工业大学 Spatial three-translation parallel micro-operation mechanism dynamics modeling method based on flexible spherical hinge
CN113246102A (en) * 2021-05-27 2021-08-13 华南理工大学 Rigid-flexible coupling device with variable flexibility direction and mechanical arm
CN114722531A (en) * 2022-04-08 2022-07-08 湖北工业大学 Progressive optimization design method, system and mechanism for flexible parallel micro-operation mechanism

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5511931A (en) * 1993-07-15 1996-04-30 Agency Of Industrial Science & Technology Micromotion stage

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5511931A (en) * 1993-07-15 1996-04-30 Agency Of Industrial Science & Technology Micromotion stage

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JINGJUN Y ET AL: "Kinematics Feature Analysis of a 3-DOF Compliant Mechanism for Micro Manipulation.", CHINESE JOURNAL OF MECHANICAL ENGINEERING., vol. 17, no. 1, March 2004 (2004-03-01), pages 127 - 131 *
LU T ET AL: "A Three-DOF Compliant Micromotion Stage with Flexure Hinges.", INDUSTRIAL ROBOT: AN INTERNATIONAL JOURNAL., vol. 31, no. 4, April 2004 (2004-04-01), pages 355 - 361 *
YI B ET AL: "Design and Experiment of a 3 DOF Parallel Micro-mechanism Utilizing Flexure Hinges.", PROCEEDINGS OF THE 2002 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATIZATION, OCRA 2002., 11 May 2002 (2002-05-11) - 15 May 2002 (2002-05-15), pages 1167 - 1172 *
YONG Y K ET AL: "Loop Closure Theory in Deriving a Linear and Simple Kinematic Model for a 3 DOF Parallel mi Micromanipulator.", DEVICE AND PROCESS TECHNOLOGIES FOR MEMS, MICROELECTRONICS, AND PHOTONICS III., vol. 5276, April 2004 (2004-04-01), pages 57 - 66 *
ZHANG W J ET AL: "The Constant-Jacobian Method for Kinematics of a Three-DOF Planar Micro-Motion Stage.", JOURNAL OF ROBOTIC SYSTEMS., vol. 19, no. 2, 2002, pages 63 - 72 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008052581A1 (en) 2006-10-31 2008-05-08 Force Dimension S.A.R.L. Parallel kinematic structure
US8984982B2 (en) 2006-10-31 2015-03-24 Force Dimension S.A.R.L. Parallel kinematic structure
CN103395059A (en) * 2013-07-05 2013-11-20 上海工程技术大学 Three-freedom-degree flexible topology decoupling parallel-connection micro displacement platform
CN103568005A (en) * 2013-11-18 2014-02-12 山东理工大学 Dual-translation orthogonal decoupling parallel micro-positioning platform
CN103736617A (en) * 2013-12-07 2014-04-23 广西大学 Coating machine with five-degree-of-freedom controllable mechanisms
CN105174210A (en) * 2015-09-23 2015-12-23 佛山科学技术学院 Three-degree-of-freedom micro-positioning platform based on symmetrical double compliant hinge
US10520339B2 (en) * 2017-09-13 2019-12-31 Nanjing Univ. Of Aeronautics And Astronautics Two-dimensional three-degree-of-freedom micro-motion platform structure for high-precision positioning and measurement
CN113158529A (en) * 2021-05-14 2021-07-23 湖北工业大学 Spatial three-translation parallel micro-operation mechanism dynamics modeling method based on flexible spherical hinge
CN113158529B (en) * 2021-05-14 2022-04-29 湖北工业大学 Spatial three-translation parallel micro-operation mechanism dynamics modeling method based on flexible spherical hinge
CN113246102A (en) * 2021-05-27 2021-08-13 华南理工大学 Rigid-flexible coupling device with variable flexibility direction and mechanical arm
CN113246102B (en) * 2021-05-27 2024-04-30 华南理工大学 Rigid-flexible coupling device with variable flexibility direction and mechanical arm
CN114722531A (en) * 2022-04-08 2022-07-08 湖北工业大学 Progressive optimization design method, system and mechanism for flexible parallel micro-operation mechanism
CN114722531B (en) * 2022-04-08 2024-06-07 湖北工业大学 Progressive optimization design method, system and mechanism for flexible parallel micro-operation mechanism

Similar Documents

Publication Publication Date Title
Yue et al. Relationship among input-force, payload, stiffness and displacement of a 3-DOF perpendicular parallel micro-manipulator
WO2006050560A1 (en) Parallel micromanipulator and control method
Bryson et al. Toward parallel continuum manipulators
Ramadan et al. Developmental process of a chopstick-like hybrid-structure two-fingered micromanipulator hand for 3-D manipulation of microscopic objects
Zhang et al. The constant‐Jacobian method for kinematics of a three‐DOF planar micro‐motion stage
Mukhopadhyay et al. A SOI-MEMS-based 3-DOF planar parallel-kinematics nanopositioning stage
Merlet et al. Parallel mechanisms
Cammarata et al. On the elastostatics of spherical parallel machines with curved links
Mannam et al. Characterization of compliant parallelogram links for 3D-printed delta manipulators
Hao Creative design and modelling of large-range translation compliant parallel manipulators
Arai et al. Calibration and basic motion of a micro hand module
Pham et al. Micromanipulation system design based on selective actuation mechanisms
Ramadan et al. New architecture of a hybrid two-fingered micro–nano manipulator hand: Optimization and design
Yong et al. Loop closure theory in deriving linear and simple kinematic model for a 3 DOF parallel micromanipulator
Yue et al. Modeling and experiment of a planar 3-DOF parallel micromanipulator
Chen et al. Soft robotic joints with anisotropic stiffness by multiobjective topology optimization
Istriţeanu et al. Research Work and Study on Ultraprecise High-Tech Robotic Micro-Nano-Systems for Measurement, Positioning and Alignment Used in the Fields of Mechatronics and Integronics
Ogbobe et al. Formulation and evaluation of coupling effects between dof motions of hydraulically driven 6 dof parallel manipulator
Giuseppe Experimental characterization of a binary actuated parallel manipulator
Wang et al. On the design of a 3-PRRR spatial parallel compliant mechanism
Zubair et al. An Experimental Setup to Study the Performance of Flexure Mechanism
van den Doel et al. Constructing performance measures for robot manipulators
Hernandez Compliance modeling for general manipulator structures
Cheng et al. Stiffness analysis of the 3SPS+ 1PS bionic parallel test platform for a hip joint simulator
Ramadan et al. New hybrid two-fingered micro-nano manipulator hand: Optimization and design

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase

Ref document number: 05800898

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5800898

Country of ref document: EP