WO2006050547A1 - Abgasreinigungsvorrichtung - Google Patents

Abgasreinigungsvorrichtung Download PDF

Info

Publication number
WO2006050547A1
WO2006050547A1 PCT/AT2005/000435 AT2005000435W WO2006050547A1 WO 2006050547 A1 WO2006050547 A1 WO 2006050547A1 AT 2005000435 W AT2005000435 W AT 2005000435W WO 2006050547 A1 WO2006050547 A1 WO 2006050547A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
valve
reducing agent
reaction chamber
urea
Prior art date
Application number
PCT/AT2005/000435
Other languages
English (en)
French (fr)
Inventor
Hanspeter Mayer
Original Assignee
Pankl Emission Control Systems Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pankl Emission Control Systems Gmbh filed Critical Pankl Emission Control Systems Gmbh
Publication of WO2006050547A1 publication Critical patent/WO2006050547A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/36Arrangements for supply of additional fuel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9431Processes characterised by a specific device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2067Urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2260/00Exhaust treating devices having provisions not otherwise provided for
    • F01N2260/02Exhaust treating devices having provisions not otherwise provided for for cooling the device
    • F01N2260/024Exhaust treating devices having provisions not otherwise provided for for cooling the device using a liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2390/00Arrangements for controlling or regulating exhaust apparatus
    • F01N2390/02Arrangements for controlling or regulating exhaust apparatus using electric components only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2530/00Selection of materials for tubes, chambers or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/14Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/11Adding substances to exhaust gases the substance or part of the dosing system being cooled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1453Sprayers or atomisers; Arrangement thereof in the exhaust apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to a device for converting or removing nitrogen oxides of an exhaust gas, comprising a storage container for a reducing agent, in particular a solution such as a urea-water solution or an ammonia solution, a subsequent to the storage container conveyor, a conveyor downstream of the dosing and a reaction chamber for purifying the exhaust gas, for example an exhaust tract of a motor vehicle, wherein reducing agent can be transported to the dosing means by the conveying means and introduced into the reaction chamber via the latter.
  • a storage container for a reducing agent in particular a solution such as a urea-water solution or an ammonia solution
  • a subsequent to the storage container conveyor a conveyor downstream of the dosing and a reaction chamber for purifying the exhaust gas, for example an exhaust tract of a motor vehicle, wherein reducing agent can be transported to the dosing means by the conveying means and introduced into the reaction chamber via the latter.
  • An elimination or at least reduction of NO x components in exhaust gases can be carried out by so-called SCR (Selective Catalytic Reduction).
  • SCR Selective Catalytic Reduction
  • harmful nitrogen oxides are reacted with ammonia to non-toxic nitrogen and water in the exhaust system of a motor vehicle, this reaction is facilitated by a catalyst, which is usually located in the exhaust system of a motor vehicle.
  • a catalyst which is usually located in the exhaust system of a motor vehicle.
  • corresponding devices for the conversion or removal of nitrogen oxides are equipped with a urea or ammonia metering device.
  • an exhaust gas purification device with a device for metering a reducing agent, for example a urea-water solution or an ammonia solution
  • a reducing agent for example a urea-water solution or an ammonia solution
  • the reducing agent should be precisely metered to allow a controlled conversion of the nitrogen oxides depending on their content in the exhaust gas.
  • Another criterion arises in particular when using a urea-water solution: Such a solution freezes at about -10 0 C, which is why especially in winter a urea injection system may be blocked at the beginning of the operation of a motor vehicle.
  • Reducing agent namely a urea-water solution
  • a metering valve In the mixing chamber, the solution is supplied with compressed air, so that an aerosol is formed, which is finally introduced directly into an exhaust tract via a further line and a subsequent thereto nozzle.
  • a metering valve In such a device, a metering valve is kept at a distance from the exhaust tract, which may be favorable in terms of thermal and mechanical loading of the metering valve.
  • a complex compressed air system is necessary in order to form an aerosol from a quantity of reducing agent released by the metering valve and to convey this into the exhaust gas tract.
  • Another disadvantage is that an intended nozzle can easily clog, especially at elevated temperatures, which can lead to the failure of an exhaust gas purification.
  • a reducing agent is conveyed from a storage container by means of a pump to a throttle located directly on the exhaust tract of a motor vehicle and admitted via this in the exhaust system.
  • a planned pump is mounted at a distance from the throttle, which is why an introduction of reducing agent in Dependence of a nitrogen oxide content of the exhaust gas in the exhaust system can take place only considerably delayed.
  • an exact dosage by means of a pump and downstream throttle does not seem possible.
  • the throttle region is a location of potentially high urea deposition since high temperatures are present during operation in this region and urea solution can accumulate at the difficultly passable throat of the throttle.
  • the invention is now based on the prior art, the task of specifying a generic emission control device, in which without compressed air support in a simple way an accurate dosage of
  • Reducing agent is given and the risk of clogging along a reducing agent supply is at least largely avoided.
  • the projecting attachment of the valve also proves to be favorable in terms of mechanical stress on the valve during operation, because mechanical stresses due to vibrations of the exhaust tract remain largely without effect on the valve. Furthermore, it is advantageous that by closing the valve in the inlet region of the same urea solution can be practically completely removed if necessary, whereby a blockage of the reducing agent inlet is minimized in this area.
  • the valve may be formed of any, at a temperature of more than 250 0 C resistant materials, such as a ceramic.
  • at least the projecting into the reaction chamber part of the valve consists essentially of steel. Especially with regard to vibrations occurring in the area of an exhaust tract, steel has a clearly superior property spectrum compared to alternative materials such as ceramics.
  • Exhaust gas may be provided around the protruding into the reaction chamber part of the valve.
  • a cooling circuit may be provided for cooling the valve.
  • Such a measure can also help to keep an operating temperature of the valve as low as possible and to avoid crystallization of urea and thus clogging of the valve.
  • FIG. 1 shows a schematic block diagram of a device according to the invention
  • Figure 2 An exhaust tract with an integrated valve for the passage of a urea-water solution.
  • the device comprises a storage container 1, in which a reducing agent 2 is located.
  • the Reducing agent 2 is usually a solution, in particular a urea-water solution.
  • the storage container 1 may also include a gaseous reducing agent 2, without which the operation of a device according to the invention would be impaired. If the storage container 1 is filled with a liquid, then a certain level is given and it is located above a
  • Reducing agent 2 in a range 3 air The level of the storage container 1 can be measured with a level sensor 7.
  • the conveying means comprises on the one hand lines 4, through which a mass transport takes place, and a pump 5, which causes the mass transport in the direction of a valve 12.
  • a filter 6 may be attached.
  • a filter may also be arranged along a line 4 between storage container 1 and pump 5.
  • heating elements 10 and 11 are heating elements 10 and 11, through which the line 4 is heated.
  • a temperature of the reducing agent in the conduit 4 can be controlled.
  • a pressure sensor 9 is provided for determining the pressure generated by the pump 5 is.
  • reducing agent 2 is conveyed directly from the storage container 1 to the valve 12, without the need for support by means of compressed air.
  • Via the valve 12 there is a direct injection of reducing agent 2 into a reaction space 14 of an exhaust gas tract, which comprises a catalytic converter 15.
  • an opening 16 is provided in the exhaust gas tract or the reaction chamber 13, at which connection takes place between the valve 12 and the exhaust gas tract.
  • Sensors 7, 8, 9 and 17 are connected electronically directly to a control unit 18. This also applies to other, not shown in Figure 1 sensors, in particular other sensors for controlling the temperature of the exhaust gas and sensors for controlling or determining the composition of the exhaust gas at the beginning and at the end of Exhaust tract or inlet and outlet of the reaction chamber 13, too.
  • the control unit 18 data transmitted by sensors are processed; Depending on the need or data obtained, the valve 12 can be switched directly by the control unit 18. If, therefore, an increased supply of urea-water solution is required due to a changed composition of exhaust gas flowing in the direction A, the valve 12 is opened further without delay and an exact injection of urea-water solution takes place without a time delay.
  • the valve 12 itself is preferably electromagnetically switchable 2/2-way valve. Available on the market valves from the category of gasoline direct injection valves are due to their temperature resistance and robustness for the purposes of the invention excellent.
  • the control unit 18 may be a control unit provided specifically for an exhaust gas purification device, which in turn is connected to a CAN bus (controlled area network bus) 19. However, it is preferred if an engine control unit simultaneously represents the control unit 18. In this case, a separate, used exclusively for a urea supply control device can be omitted and data from the engine control unit can also be used at the same time to set an optimal emission control, whereby a particularly optimized reducing agent supply is possible.
  • FIG. 2 shows in more detail an attachment of a valve 20 in an exhaust gas tract.
  • the valve 20 which is preferably formed without a blind hole in order to avoid urea precipitation in the form of crystals, is attached to the outer jacket of a reaction chamber 13 and protrudes into a reaction zone 14, in which exhaust gas flows in direction A, a.
  • the valve 20 is arranged downstream of a catalyst 15, wherein a longitudinal axis of the valve 20 is approximately perpendicular to an axis X of the exhaust gas tract or to the direction of the exhaust gas flow. If now a urea-water solution is introduced into the reaction zone 14 by opening the valve 20, it is detected by the exhaust gas stream and converted to the catalyst 15.
  • a longitudinal axis of the valve 20 is inclined relative to the axis X, and injection of urea-water solution takes place directly on the catalyst 15.
  • a shutter 21 is provided, which is fixed to the reaction chamber 13 and inflowing exhaust gas to the valve 20 directs or a direct flow of the Valve 20 with exhaust prevented.

Abstract

Die Erfindung hat eine Vorrichtung zur Umwandlung bzw. Entfernung von Stickoxiden eines Abgases, umfassend ein Vorratsbehältnis (1) für ein Reduktionsmittel (2), insbesondere eine Lösung wie eine Harnstoff-Wasser-Lösung oder eine Ammoniak-Lösung, ein an das Vorratsbehältnis (1) anschließendes Fördermittel (4, 5), ein dem Fördermittel (4, 5) nachgeschaltetes Dosiermittel (12) und eine Reaktionskammer (13) zur Reinigung des Abgases, beispielsweise ein Abgastrakt eines Kraftfahrzeuges, wobei durch das Fördermittel (4, 5) Reduktionsmittel (2) zum Dosiermittel (12) transportierbar und über dieses in die Reaktionskammer (13) einbringbar ist, zum Gegenstand. Um eine derartige Vorrichtung ohne Druckluftunterstützung bei einer genauen Dosierbarkeit von Reduktionsmittel betreiben zu können und eine Verstopfung entlang einer Reduktionsmittelzufuhr zumindest weitgehend vermeidbar zu machen, ist erfindungsgemäß vorgeschlagen, dass das Dosiermittel (12) ein unmittelbar mit der Reaktionskammer (14) verbundenes und in diese einragendes Ventil ist.

Description

Abgasreinigungsvorrichtung
Die Erfindung betrifft eine Vorrichtung zur Umwandlung bzw. Entfernung von Stickoxiden eines Abgases, umfassend ein Vorratsbehältnis für ein Reduktionsmittel, insbesondere eine Lösung wie eine Harnstoff-Wasser-Lösung oder eine Ammoniak- Lösung, ein an das Vorratsbehältnis anschließendes Fördermittel, ein dem Fördermittel nachgeschaltetes Dosiermittel und eine Reaktionskammer zur Reinigung des Abgases, beispielsweise ein Abgastrakt eines Kraftfahrzeuges, wobei durch das Fördermittel Reduktionsmittel zum Dosiermittel transportierbar und über dieses in die Reaktionskammer einbringbar ist.
In Folge eines in den letzten Jahrzehnten stetig gestiegenen Umweltbewusstseins herrscht allgemein ein großes Interesse daran, die beim Betrieb von Kraftfahrzeugen anfallenden Abgase möglichst umfassend zu reinigen. Dieses allgemeine Interesse bzw. gestiegene Umweltbewusstsein hat auch dazu geführt, dass durch gesetzgeberische Maßnahmen Schadstoffhöchstwerte für Abgase von Kraftfahrzeugen eingeführt wurden, was eine Entwicklung verschiedenster Verfahren und Vorrichtungen zur Eliminierung von Schadstoffen aus Abgasen von Kraftfahrzeugen hervorrief.
Eine Eliminierung bzw. zumindest Reduktion von NOx-Anteilen in Abgasen kann durch so genannte SCR (Selective Catalytic Reduction) erfolgen. Bei einem solchen Verfahren werden im Abgastrakt eines Kraftfahrzeuges schädliche Stickstoffoxide mit Ammoniak zu ungiftigem Stickstoff und Wasser umgesetzt, wobei diese Reaktion durch einen Katalysator, welcher sich in der Regel im Abgastrakt eines Kraftfahrzeuges befindet, erleichtert wird. Um den für die Reaktion notwendigen Ammoniak in den Abgastrakt einzubringen, sind entsprechende Vorrichtungen zur Umwandlung bzw. Entfernung von Stickoxiden mit einer Harnstoff- bzw. Ammoniak-Dosiereinrichtung ausgestattet.
In Hinblick auf die Realisierung einer Abgasreinigungsvorrichtung mit einer Einrichtung zur Dosierung eines Reduktionsmittels, beispielsweise einer Harnstoff-Wasser-Lösung oder einer Ammoniak-Lösung, sind mehrere Kriterien zu beachten. Zum einen soll das Reduktionsmittel exakt dosierbar sein, um eine kontrollierte Umsetzung der Stickoxide je nach ihrem Gehalt im Abgas zu ermöglichen. Zum anderen ist es aufgrund eines Massenstroms und einer Temperatur des Abgases wünschenswert, ein Reduktionsmittel möglichst in der Mitte eines Abgastraktes einzubringen. Ein weiteres Kriterium ergibt sich insbesondere bei Verwendung einer Harnstoff-Wasser-Lösung: Eine derartige Lösung gefriert bereits bei etwa -10 0C, weshalb besonders im Winter ein Harnstoffeinspritzsystem zu Beginn des Betriebes eines Kraftfahrzeuges blockiert sein kann. Andererseits kann es bei hohen Temperaturen während eines Betriebes dazu kommen, dass aus der Lösung Wasser verdampft und sich Harnstoffkristalle ausscheiden, was ebenfalls zu einer Blockade einer Dosiereinrichtung führen kann. Wünschenswert sind daher Dosiereinrichtungen für Abgasreinigungsvorrichtungen, welche sowohl bei niedrigen als auch hohen Betriebstemperaturen einwandfrei arbeiten können.
Aus dem Stand der Technik sind bereits diverse Abgasreinigungsvorrichtungen zur Umwandlung/Entfernung von Stickoxiden aus Kraftfahrzeugabgasen bekannt geworden. In DE 100 47 516 A1 ist beispielsweise eine Vorrichtung zur Entfernung von Stickoxiden aus Abgasen eines Kraftfahrzeuges beschrieben, bei welcher ein
Reduktionsmittel, nämlich eine Harnstoff-Wasser-Lösung, aus einem Vorratsbehältnis mittels einer Pumpe zu einem Dosierventil gefördert wird und über dieses in eine Mischkammer eingespritzt wird. In der Mischkammer wird die Lösung mit Druckluft beaufschlagt, so dass sich ein Aerosol bildet, welches über eine weitere Leitung und eine an diese anschließende Düse schließlich direkt in einen Abgastrakt einbringbar ist. Bei einer derartigen Vorrichtung ist ein Dosierventil beabstandet zum Abgastrakt gehalten, was im Hinblick auf eine thermische und eine mechanische Belastung des Dosierventils günstig sein kann. Allerdings ist ein aufwändiges Druckluftsystem notwendig, um aus einer vom Dosierventil freigegebenen Menge an Reduktionsmittel ein Aerosol zu bilden und dieses in den Abgastrakt zu fördern. Nachteilig ist überdies, dass eine vorgesehene Düse leicht verstopfen kann, insbesondere bei erhöhten Temperaturen, was zum Ausfallen einer Abgasreinigung führen kann.
Eine weitere Vorrichtung zur Abgasreinigung ist aus DE 100 47 512 A1 bekannt geworden. Bei einer Vorrichtung gemäß dieser Druckschrift wird ein Reduktionsmittel aus einem Vorratsbehältnis mittels einer Pumpe zu einer unmittelbar am Abgastrakt eines Kraftfahrzeuges befindlichen Drossel befördert und über diese in den Abgastrakt eingelassen. Eine derartige Vorrichtung kommt zwar grundsätzlich ohne Druckluftunterstützung aus, allerdings ist eine vorgesehene Pumpe von der Drossel beabstandet angebracht, weshalb eine Einbringung von Reduktionsmittel in Abhängigkeit eines Stickstoffoxidgehalts des Abgases im Abgastrakt nur erheblich zeitverzögert erfolgen kann. Auch scheint eine exakte Dosierung mittels einer Pumpe und nachgeschalteter Drossel nicht möglich. Ferner ist der Drosselbereich ein Ort potentiell hoher Harnstoffabscheidung, da beim Betrieb in diesem Bereich hohe Temperaturen gegeben sind und sich Harnstofflösung an der schwer passierbaren Verjüngungsstelle der Drossel ansammeln kann.
Die Erfindung stellt sich nun ausgehend vom Stand der Technik die Aufgabe, eine gattungsgemäße Abgasreinigungsvorrichtung anzugeben, bei welcher ohne Druckluftunterstützung auf einfache Weise eine genaue Dosierung von
Reduktionsmittel gegeben ist und die Gefahr einer Verstopfung entlang einer Reduktionsmittelzufuhr zumindest weitgehend vermeiden ist.
Die gestellte Aufgabe löst eine Vorrichtung mit den Merkmalen gemäß Anspruch 1. Bevorzugte Weiterbildungen einer erfindungsgemäßen Vorrichtung sind Gegenstand der Ansprüche 2 bis 4.
Die mit der Erfindung erzielten Vorteile sind insbesondere darin zu sehen, dass aufgrund einer unmittelbaren Verbindung des Ventils mit der Reaktionskammer keine Druckluftunterstützung erforderlich ist und ein Reduktionsmittel direkt in eine zentrale Reaktionszone eingespritzt werden kann. Gleichzeitig kann eine Leitung von einem Dosierventil zu einer Reaktionskammer entfallen und ist aufgrund des Ventils und seiner Positionierung nicht nur eine genaue, sondern auch eine quantitätsmäßig schnell einstellbare Dosierung von Reduktionsmittel möglich. Somit kann je nach NOx- Gehalt des Abgases eine optimale Zufuhr von Reduktionsmittel ohne Zeitverzögerung erfolgen. Da das Ventil in die Reaktionskammer einragt, kann das Reduktionsmittel direkt in die heißeste Abgaszone befördert werden, was die Wirksamkeit einer Abgasreinigung erhöht. Die einragende Anbringung des Ventils erweist sich nebenbei als günstig im Bezug auf eine mechanische Beanspruchung des Ventils beim Betrieb, weil mechanische Belastungen durch Schwingungen des Abgastraktes weitgehend ohne Auswirkungen auf das Ventil bleiben. Ferner ist von Vorteil, dass durch Schließen des Ventils im Einlassbereichs desselben Harnstofflösung bei Bedarf praktisch vollständig entfernt werden kann, wodurch eine Verstopfung des Reduktionsmittelzulaufes in diesem Bereich minimiert ist. Das Ventil kann an sich aus beliebigen, bei einer Temperatur von mehr als 2500C beständigen Werkstoffen gebildet sein, beispielsweise aus einer Keramik. In Hinblick auf hohe thermische Beständigkeit bei hoher mechanischer Beanspruchbarkeit und einer hohen Inertheit gegenüber einem Reduktionsmittel bei vergleichsweise geringen Kosten ist es von Vorteil, wenn zumindest der in die Reaktionskammer einragende Teil des Ventils im Wesentlichen aus Stahl besteht. Vor allem im Bezug auf im Bereich eines Abgastraktes auftretende Schwingungen weist Stahl gegenüber alternativen Werkstoffen wie Keramiken ein deutlich überlegenes Eigenschaftsspektrum auf.
In einer weiteren Variante der Erfindung kann eine Einrichtung zur Umlenkung von
Abgas um den in die Reaktionskammer einragenden Teil des Ventils vorgesehen sein. Durch eine solche Ausgestaltung kann ein direktes Anströmen des einragenden Teiles des Ventils mit Abgas vermieden werden. Dies hat zum Vorteil, dass eine thermische Belastung des einragenden Teil des Ventils verrindert ist. Zum anderen kann ein Auskristallisieren von Harnstoff und damit eine Verstopfung des Ventils effektvoll vermieden werden.
In einer weiteren Ausgestaltung der Erfindung kann ein Kühlkreislauf zur Kühlung des Ventils vorgesehen sein. Eine solche Maßnahme kann ebenfalls dazu beitragen, eine Betriebstemperatur des Ventils möglichst gering zu halten und ein Auskristallisieren von Harnstoff und damit eine Verstopfung des Ventils zu vermeiden.
Weitere Vorteile der Erfindung ergeben sich aus dem Zusammenhang der Beschreibung sowie dem nachfolgenden Ausführungsbeispiel.
Die Erfindung und ihre Vorteile sind im Folgenden anhand eines Ausführungsbeispieles noch weitergehend beschrieben.
Es zeigen Figur 1 : Ein schematisches Blockschaltbild einer erfindungsgemäßen Vorrichtung;
Figur 2: Einen Abgastrakt mit einem integrierten Ventil zur Zurführung einer Harnstoff- Wasser-Lösung.
Eine erfindungsgemäße Vorrichtung ist in Figur 1 dargestellt. Die Vorrichtung umfasst ein Vorratsbehältnis 1, in welchem sich ein Reduktionsmittel 2 befindet. Das Reduktionsmittel 2 ist üblicherweise eine Lösung, insbesondere eine Harnstoff- Wasser-Lösung. Das Vorratsbehältnis 1 kann jedoch auch ein gasförmiges Reduktionsmittel 2 beinhalten, ohne das die Funktionweise einer erfindungsgemäßen Vorrichtung beeinträchtigt wäre. Ist das Vorratsbehältnis 1 mit einer Flüssigkeit gefüllt, so ist ein bestimmter Füllstand gegeben und es befindet sich über einem
Reduktionsmittel 2 in einem Bereich 3 Luft. Der Füllstand des Vorratsbehältnisses 1 ist mit einem Füllstandsensor 7 messbar.
Vom Vorratsbehältnis 1 wird Reduktionsmittel 2 mittels Fördermittel zum Ventil 12 gefördert. Das Fördermittel umfasst dabei einerseits Leitungen 4, durch welche ein Massentransport erfolgt, sowie eine Pumpe 5, welche den Massentransport in Richtung eines Ventils 12 bewirkt. Zwischen Pumpe 5 und Ventil 12 kann ein Filter 6 angebracht sein. Alternativ oder wahlweise zusätzlich kann ein Filter auch entlang einer Leitung 4 zwischen Vorratsbehältnis 1 und Pumpe 5 angeordnet sein. Entlang einer Leitung 4 befinden sich Heizelemente 10 und 11, durch welche die Leitung 4 beheizbar ist. Dadurch kann im Winter die Gefahr eines Gefrierens von Harnstoff- Wasser-Lösung in einer Leitung 4 zusätzlich verringert werden. Mittels eines Temperatursensors 8 kann eine Temperatur des Reduktionsmittel in der Leitung 4 kontrolliert werden. Ein Drucksensor 9 ist zur Bestimmung des durch die Pumpe 5 erzeugten Druckes ist vorgesehen.
Mittels einer Pumpe 5 wird Reduktionsmittel 2 direkt vom Vorratsbehältnis 1 zum Ventil 12 gefördert, ohne dass eine Unterstützung mittels Druckluft erforderlich ist. Dies bedeutet einen wesentlichen Vorteil gegenüber druckluftunterstützten Vorrichtungen, weil die gesamten Komponenten für eine Druckluftunterstützung sowie deren Kontrolle entfallen können. Über das Ventil 12 erfolgt eine direkte Einspritzung von Reduktionsmittel 2 in einen Reaktionsraum 14 eines Abgastraktes, welcher einen Katalysator 15 umfasst. Wie in Figur 1 schematisch angedeutet, ist im Abgastrakt bzw. der Reaktionskammer 13 eine Öffnung 16 vorgesehen, an welcher eine Verbindung von Ventil 12 und Abgastrakt erfolgt.
Sensoren 7, 8, 9 und 17 sind direkt mit einer Steuereinheit 18 elektronisch verbunden. Dies trifft ebenso auf weitere, in Figur 1 nicht gezeigte Sensoren, insbesondere weitere Sensoren zur Kontrolle der Temperatur des Abgases sowie Sensoren zur Kontrolle bzw. Bestimmung der Zusammensetzung des Abgases am Beginn und am Ende des Abgastraktes bzw. Einlass- und Auslassbereich der Reaktionskammer 13, zu. In der Steuereinheit 18 werden von Sensoren übermittelte Daten verarbeitet; je nach Bedarf bzw. erhaltenen Daten kann das Ventil 12 unmittelbar durch die Steuereinheit 18 geschalten werden. Ist also aufgrund einer geänderten Zusammensetzung von in Richtung A einströmendem Abgas beispielsweise eine erhöhte Zufuhr von Harnstoff- Wasser-Lösung erforderlich, so wird ohne Verzögerung das Ventil 12 weiter geöffnet und es erfolgt eine exakte Einspritzung von Harnstoff-Wasser-Lösung ohne Zeitverzögerung. Das Ventil 12 selbst ist vorzugsweise elektromagnetisch schaltbares 2/2-Wegeventil. Am Markt erhältliche Ventile aus der Kategorie der Benzindirekteinspritzventile eignen sich aufgrund Ihrer Temperaturbeständigkeit und Robustheit für die Zwecke der Erfindung vorzüglich.
Das Steuergerät 18 kann ein eigens für eine Abgasreinigungsvorrichtung vorgesehenes Steuergerät darstellen, welches seinerseits mit einem CAN-Bus (Controlled Area Network-Bus) 19 verbunden ist. Bevorzugt ist es allerdings, wenn ein Motorsteuergerät gleichzeitig das Steuergerät 18 darstellt. In diesem Fall kann ein eigenes, ausschließlich für eine Harnstoffzufuhr verwendetes Steuergerät entfallen und können Daten des Motorsteuergerätes zugleich auch zur Einstellung einer optimalen Abgasreinigung verwendet werden, wodurch eine besonders optimierte Reduktionsmittelzufuhr ermöglicht ist.
In Figur 2 ist eine Anbringung eines Ventils 20 in einem Abgastrakt näher dargestellt. Das Ventil 20, welches vorzugsweise ohne Sackloch ausgebildet ist, um eine Harnstoffabscheidung in Form von Kristallen zu vermeiden, ist am äußeren Mantel einer Reaktionskammer 13 angebracht und ragt in eine Reaktionszone 14, in welche Abgas entlang Richtung A einströmt, ein. Das Ventil 20 ist stromabwärts vor einem Katalysator 15 angeordnet, wobei eine Längsachse des Ventils 20 in etwa senkrecht zu einer Achse X des Abgastraktes bzw. zur Richtung des Abgasstromes verläuft. Wird nun eine Harnstoff-Wasser-Lösung durch Öffnen des Ventils 20 in die Reaktionszone 14 eingebracht, so wird diese vom Abgasstrom erfasst und am Katalysator 15 umgesetzt. In einer alternativen Anordnung kann es auch vorgesehen sein, dass eine Längsachse des Ventils 20 gegenüber Achse X geneigt ist, und ein Einspritzen von Harnstoff-Wasser-Lösung direkt auf den Katalysator 15 erfolgt. Wie in Figur 2 weiter gezeigt, ist eine Blende 21 vorgesehen, welche an der Reaktionskammer 13 befestigt ist und anströmendes Abgas um das Ventil 20 lenkt bzw. ein direktes Anströmen des Ventils 20 mit Abgas verhindert. Dadurch kann eine maximale thermische Belastung des Ventils 20 reduziert und eine Harnstoffabscheidung durch Auskristallisieren vermieden werden.

Claims

Patentansprüche
1. Vorrichtung zur Umwandlung bzw. Entfernung von Stickoxiden eines Abgases, umfassend ein Vorratsbehältnis (1 ) für ein Reduktionsmittel (2), insbesondere eine Lösung wie eine Harnstoff-Wasser-Lösung oder eine Ammoniak-Lösung, ein an das Vorratsbehältnis (1) anschließendes Fördermittel (4, 5), ein dem Fördermittel (4, 5) nachgeschaltetes Dosiermittel (12) und eine Reaktionskammer (13) zur Reinigung von Abgas, beispielsweise ein Abgastrakt eines Kraftfahrzeuges, wobei durch das Fördermittel (4, 5) Reduktionsmittel (2) zum Dosiermittel (12) transportierbar und über dieses in die Reaktionskammer (13) einbringbar ist, dadurch gekennzeichnet, dass das Dosiermittel (12) ein unmittelbar mit der Reaktionskammer (14) verbundenes und in diese einragendes Ventil ist.
2. Vorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass zumindest der in die Reaktionskammer (13) einragende Teil des Ventils im Wesentlichen aus Stahl besteht.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass eine Einrichtung (21) zur Umlenkung von Abgas um den in die Reaktionskammer (13) einragenden Teil des Ventils vorgesehen ist.
4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass ein Kühlkreislauf zur Kühlung des Ventils vorgesehen ist.
PCT/AT2005/000435 2004-11-15 2005-11-04 Abgasreinigungsvorrichtung WO2006050547A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA1900/2004 2004-11-15
AT0190004A AT501091B1 (de) 2004-11-15 2004-11-15 Abgasreinigungsvorrichtung

Publications (1)

Publication Number Publication Date
WO2006050547A1 true WO2006050547A1 (de) 2006-05-18

Family

ID=35610246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT2005/000435 WO2006050547A1 (de) 2004-11-15 2005-11-04 Abgasreinigungsvorrichtung

Country Status (2)

Country Link
AT (1) AT501091B1 (de)
WO (1) WO2006050547A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054865A1 (en) * 2007-10-25 2009-04-30 Continental Automotive Systems Us, Inc. Fluid supply connection for reductant delivery unit for selective catalytic reduction systems
WO2009071088A1 (en) * 2007-12-05 2009-06-11 Grundfos Nonox A/S A nozzle arrangement
EP2131020A2 (de) 2008-06-06 2009-12-09 Delphi Technologies, Inc. Verfahren zur Dosierung des Reagens
WO2012022690A1 (de) * 2010-08-18 2012-02-23 Emitec Gesellschaft Für Emissionstechnologie Mbh Dosiereinheit für ein reduktionsmittel

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4436397A1 (de) * 1994-10-12 1996-04-18 Bosch Gmbh Robert Einrichtung zum Nachbehandeln von Abgasen
DE19806265C1 (de) * 1998-02-16 1999-07-22 Siemens Ag Dosiersystem
DE19856366C1 (de) * 1998-12-07 2000-04-20 Siemens Ag Vorrichtung und Verfahren zum Nachbehandeln von Abgasen einer mit Luftüberschuß arbeitenden Brennkraftmaschine
DE10127834A1 (de) * 2001-06-08 2002-12-12 Bosch Gmbh Robert Vorrichtung und Verfahren zur Dosierung eines Reduktionsmittels zur Entfernung von Stickoxiden aus Abgasen
DE10228643A1 (de) * 2002-06-26 2004-01-22 Siemens Ag Verfahren zur Reinigung von Abgas einer Verbrennungsanlage
DE10324482A1 (de) * 2003-05-30 2004-12-16 Robert Bosch Gmbh Vorrichtung zur Dosierung eines Reduktionsmittels zum Abgas eines Verbrennungsmotors

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6176078B1 (en) * 1998-11-13 2001-01-23 Engelhard Corporation Plasma fuel processing for NOx control of lean burn engines
DE19947197A1 (de) * 1999-10-01 2001-04-12 Bosch Gmbh Robert Vorrichtung und Verfahren zur Dosierung eines Reduktionsmittels
DE10047516A1 (de) * 2000-09-22 2002-04-18 Bosch Gmbh Robert Verfahren und Vorrichtung zur Dosierung eines Reduktionsmittels zur Entfernung von Stickoxiden aus Abgasen
DE10047512A1 (de) * 2000-09-22 2002-08-22 Bosch Gmbh Robert Vorrichtung zur Dosierung eines Reduktionsmittels
DE10316184A1 (de) * 2003-04-09 2004-10-28 Robert Bosch Gmbh Verfahren zur Dosierung eines Reagenzmittels in den Abgasstrom einer Brennkraftmaschine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4436397A1 (de) * 1994-10-12 1996-04-18 Bosch Gmbh Robert Einrichtung zum Nachbehandeln von Abgasen
DE19806265C1 (de) * 1998-02-16 1999-07-22 Siemens Ag Dosiersystem
DE19856366C1 (de) * 1998-12-07 2000-04-20 Siemens Ag Vorrichtung und Verfahren zum Nachbehandeln von Abgasen einer mit Luftüberschuß arbeitenden Brennkraftmaschine
DE10127834A1 (de) * 2001-06-08 2002-12-12 Bosch Gmbh Robert Vorrichtung und Verfahren zur Dosierung eines Reduktionsmittels zur Entfernung von Stickoxiden aus Abgasen
DE10228643A1 (de) * 2002-06-26 2004-01-22 Siemens Ag Verfahren zur Reinigung von Abgas einer Verbrennungsanlage
DE10324482A1 (de) * 2003-05-30 2004-12-16 Robert Bosch Gmbh Vorrichtung zur Dosierung eines Reduktionsmittels zum Abgas eines Verbrennungsmotors

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8087239B2 (en) 2007-10-25 2012-01-03 Continental Automotive Systems Us, Inc. Fluid supply connection for reductant delivery unit for selective catalytic reduction systems
WO2009054865A1 (en) * 2007-10-25 2009-04-30 Continental Automotive Systems Us, Inc. Fluid supply connection for reductant delivery unit for selective catalytic reduction systems
WO2009071088A1 (en) * 2007-12-05 2009-06-11 Grundfos Nonox A/S A nozzle arrangement
US9249708B2 (en) 2007-12-05 2016-02-02 Grundfos Nonox A/S Nozzle arrangement
EP2295747A1 (de) 2008-06-06 2011-03-16 Delphi Technologies Holding S.à.r.l. Verfahren zur Dosierung der Reagenz
EP2360359A2 (de) 2008-06-06 2011-08-24 Delphi Technologies Holding S.à.r.l. Verfahren zur Dosierung des Reagens
EP2295748A1 (de) 2008-06-06 2011-03-16 Delphi Technologies Holding S.à.r.l. Verfahren zur Dosierung der Reagenz
US8899021B2 (en) 2008-06-06 2014-12-02 Delphi International Operations Luxembourg S.A.R.L. Reagent dosing system and method of dosing reagent
EP2131020A2 (de) 2008-06-06 2009-12-09 Delphi Technologies, Inc. Verfahren zur Dosierung des Reagens
US9279351B2 (en) 2008-06-06 2016-03-08 Delphi International Operations Luxembourg S.A.R.L. Reagent dosing system and method of dosing reagent
US10107164B2 (en) 2008-06-06 2018-10-23 Delphi Technologies Ip Limited Reagent dosing system and method of dosing reagent
WO2012022690A1 (de) * 2010-08-18 2012-02-23 Emitec Gesellschaft Für Emissionstechnologie Mbh Dosiereinheit für ein reduktionsmittel
US9249705B2 (en) 2010-08-18 2016-02-02 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Metering unit for a reducing agent, method for metering reducing agent and motor vehicle having a metering unit

Also Published As

Publication number Publication date
AT501091B1 (de) 2006-12-15
AT501091A1 (de) 2006-06-15

Similar Documents

Publication Publication Date Title
DE19827678B4 (de) Abgasreinigungssystem zum Entsticken von Abgasen von Verbrennungsaggregaten
EP1892394B1 (de) Abgasnachbehandlungssystem
EP1892395B1 (de) Abgasnachbehandlungssystem
EP1728984B2 (de) Abgasanlage
EP1656986A1 (de) Harnstoffdosiervorrichtung
DE102007000375B4 (de) Abgasreinigungsgerät
DE102009023325B4 (de) Verfahren zur Adaption der Injektionsmittelzufuhr in einem Injektionssystem
DE102008010071A1 (de) Kompaktes Abgasnachbehandlungssystem
EP1316688A2 (de) Reduktionsmitteldosiereinrichtung
DE102004036036A1 (de) Abgassystem, insbesondere für eine Brennkraftmaschine eines Kraftfahrzeugs
DE102008063488A1 (de) Verfahren und Vorrichtung zur tropfenförmigen Zugabe eines flüssigen Reduktionsmittels in eine Abgasleitung
EP1985819A2 (de) Abgasnachbehandlungssystem
EP1047488B1 (de) Einrichtung zum einbringen eines flüssigen reduktionsmittels in eine abgas-reinigungsanlage
EP3181847B1 (de) Hitzeresistente reduktionsmitteleinspritzdüse
DE202019100256U1 (de) Einrichtung zum Zuführen eines chemischen Reaktionsmittels in den Abgasstrang einer Brennkraftmaschine
WO2006050547A1 (de) Abgasreinigungsvorrichtung
EP2685060B1 (de) Reduktionsmitteldosiersystem mit Entleerung der Reduktionsmittelleitung nach Beendigung der Dosierung
WO2009065555A1 (de) Abgasnachbehandlungseinrichtung für eine brennkraftmaschine und verfahren zur nachbehandlung von abgasen einer brennkraftmaschine
DE102007049850B4 (de) Abgasnachbehandlungssystem für eine Verbrennungskraftmaschine
EP3332104B1 (de) Reduktionsmitteldosiersystem mit modularem aufbau
EP1984606A1 (de) Dosiervorrichtung und verfahren zum betrieb derselben
EP3324015A1 (de) Reduktionsmitteldosiersystem mit leitungsbeheizung
DE102006030175A1 (de) Abgasnachbehandlungsvorrichtung einer Brennkraftmaschine mit einer Vorrichtung zu Erzeugung von Ammoniak
DE102006027499A1 (de) Abgasnachbehandlungseinrichtung einer Brennkraftmaschine
DE102006032292A1 (de) Reduktionsmittelaufbereitungssystem für SCR-Katalysatoren

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05799599

Country of ref document: EP

Kind code of ref document: A1