WO2006049054A1 - Radiator shroud structure - Google Patents

Radiator shroud structure Download PDF

Info

Publication number
WO2006049054A1
WO2006049054A1 PCT/JP2005/019669 JP2005019669W WO2006049054A1 WO 2006049054 A1 WO2006049054 A1 WO 2006049054A1 JP 2005019669 W JP2005019669 W JP 2005019669W WO 2006049054 A1 WO2006049054 A1 WO 2006049054A1
Authority
WO
WIPO (PCT)
Prior art keywords
shroud
radiator
fan
rotary fan
cylindrical
Prior art date
Application number
PCT/JP2005/019669
Other languages
French (fr)
Japanese (ja)
Inventor
Naoya Kakishita
Itsuhei Kori
Tetsuzo Furuichi
Makoto Kameda
Yuji Inoue
Masayuki Ogasawara
Original Assignee
Mitsubishi Fuso Truck And Bus Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004320477A external-priority patent/JP2006132380A/en
Priority claimed from JP2004320478A external-priority patent/JP2006132381A/en
Application filed by Mitsubishi Fuso Truck And Bus Corporation filed Critical Mitsubishi Fuso Truck And Bus Corporation
Priority to AU2005301832A priority Critical patent/AU2005301832A1/en
Priority to DE112005002765T priority patent/DE112005002765T5/en
Priority to US11/666,993 priority patent/US20080193286A1/en
Publication of WO2006049054A1 publication Critical patent/WO2006049054A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/10Guiding or ducting cooling-air, to, or from, liquid-to-air heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2070/00Details
    • F01P2070/50Details mounting fans to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/02Pumping cooling-air; Arrangements of cooling-air pumps, e.g. fans or blowers
    • F01P5/06Guiding or ducting air to, or from, ducted fans

Definitions

  • the present invention relates to a radiator for guiding air provided between a radiator and a fan of a vehicle, and more particularly, to rectify a flow of air discharged by a rotating fan force and improve a ventilation amount of the radiator. It is possible for Rajeta 's shroud structure.
  • FIG. 5 In a vehicle such as a cab-over type vehicle 1, as shown in FIG. 5, an engine unit 5 having a radiator 13 and a rotating fan 11 is mounted under the cab 3 and illustrated! Air (wind) is taken in the direction of arrow B from the air intake provided on the front panel to increase the cooling capacity of the radiator 13. A shroud 15 is provided between the radiator 13 and the rotary fan 11, and guides the air discharged from the radiator 13 to the rotary fan 11.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-38952
  • the shroud 15 is usually attached to the radiator 13 and has a shape surrounding the outer periphery of the rotary fan 11. That is, as shown in FIG. 6, since the radiator 13 has a generally rectangular structure, the shroud 15 is rectangular at the connecting portion with the radiator 13. In addition, since the radiator 13 is installed at an angle in order to efficiently use the space, the lower side of the shroud 15 has a shape that constricts against the rotating fan 11, and is formed on the outer periphery of the rotating fan 11. When it reaches, it has the surrounding part 17 which comprises the cylindrical shape which surrounds the rotation fan 11. FIG. On the other hand, the rotary fan 11 is attached to the engine unit 5 because the rotation fan 11 normally rotates when the rotation of the crankshaft of the engine unit 5 is transmitted in the carry-over type vehicle 1.
  • FIG. 8 shows a simulation result of the flow of air discharged from the rotary fan 11 when the conventional shroud 15 is used.
  • the part shown in black is the part of the turbulence. According to this, the blade tip force of the rotating fan 11
  • the flow force of the discharged air The turbulent direction of the radiator 13 direction, that is, the turbulence of the centrifugal flow 29 may flow while changing to the counter flow 2 5 toward the inside of the shroud. Recognize.
  • the counter-current backflow 25 upstream of the fan obstructs the flow of air discharged from the radiator 13, and changes the flow by directing the central portion of the rotary fan 11 as shown in FIG. Airflow from the motor 27).
  • the flow rate of the air flowing through the radiator 13 is reduced, resulting in a problem that the cooling capacity of the radiator 13 is lowered.
  • the present invention has been made in view of such a problem, and an object of the present invention is to rectify the flow of air exhausted by the rotating fan force and improve the ventilation rate of the radiator, thereby cooling the radiator 13. Rajeta's ability to improve the capacity is to provide a shroud structure.
  • the present invention for solving the above-described problems forms a rotating fan that generates a centrifugal flow, a radiator that is provided in the vicinity of the rotating fan, and an air guide path that is directed from the radiator to the rotating fan.
  • a radiator with a shroud that has a shroud structure, a shroud that surrounds the outer periphery of the rotating fan at one end of the shroud, a cylindrical portion having a smaller diameter than the surrounding portion, and one end of the cylindrical portion
  • a fixing portion that fixes the cylindrical portion to the inside of the surrounding portion so as to oppose the rotating fan, and the fixing portion is formed in the shroud so as to block the ventilation outside the cylindrical portion.
  • the cylindrical portion be installed so that the cylindrical portion approximately equal to the diameter of the rotating fan is in parallel with the outer peripheral portion of the rotating fan. It is preferable that the distance from the peripheral edge of the cylindrical portion to the rotating fan is as small as possible without contacting the ang. More preferably, it is provided with a guide part extending in the outer peripheral direction from the periphery of the surrounding part.
  • the shroud is attached to the radiator and the rotary fan is attached to the engine side, they vibrate in different systems when traveling, so there is a gap so that the rotary fan and the cylindrical portion do not contact each other. It is necessary to provide and design. In addition, it is inevitable to provide a certain gap in consideration of manufacturing errors and thermal deformation.
  • the smaller the distance between the cylindrical part and the rotating fan the more the rotating fan can prevent backflow to the shroud. Therefore, the distance between the cylindrical part and the rotating fan should be designed to be as small as possible.
  • the width of the cylindrical part should be designed so that the distance between the peripheral part of the cylindrical part and the rotary fan is about 20 mm.
  • the width of the guide portion is preferably about 6% of the diameter of the rotating fan.
  • the blade tip force of the rotary fan causes air directed in the centrifugal direction to flow along the guide portion, and the airflow is rectified.
  • a cylindrical portion having a smaller diameter than the surrounding portion is provided inside the surrounding portion of the shroud, and this is fixed by the fixing portion so as to face the rotating fan. Can be prevented.
  • the rotating fan can also prevent the inflow of air flowing back into the shroud and the flow rate of air passing through the radiator is improved, so that the cooling capacity of the radiator is improved. Is possible.
  • FIG. 1 is a cross-sectional view of a radiator 's shroud structure that is useful in an embodiment of the present invention.
  • FIG.2 Perspective view of rajta shroud structure
  • FIG.5 Illustration of the structure of a cab-over type vehicle
  • Fig. 1 is a cross-sectional view of a radiator 's shroud structure, which is useful for the embodiment of the present invention
  • Fig. 2 is a perspective view of the rajta' shroud structure
  • Fig. 3 is a perspective view of the air by the rajta 's shroud structure of this embodiment.
  • Fig. 4 shows the relationship between the various shroud structures and the air flow rate of the radiator.
  • the radiator 13 is attached to a frame extending below the cap 3 of the cap-over type vehicle 1.
  • the left side of the radiator 13 is the forward direction of the vehicle 1.
  • the radiator 13 is often installed at an angle as shown in the figure to improve surface efficiency.
  • the rotary fan 11 in the case of a freight vehicle, the rotary fan 11 often employs a system in which rotation is transmitted by a belt from a pulley provided on the crankshaft of the engine to a pulley provided on the rotary shaft of the rotary fan 11.
  • the rotary fan 11 is attached to the engine unit 5 existing on the right side of the rotary fan 11 in the figure.
  • the rotary fan 11 has an axial flow type and a centrifugal flow type. However, if an axial fan is mounted, the airflow is clogged at the gap between the fan tip and the shroud and the amount of air passing through the radiator 13 is reduced. The On the other hand, installing a fan with centrifugal flow can prevent leaks that cause a reduction in airflow. Accordingly, it is desirable to use the centrifugal fan 11.
  • the centrifugal flow type rotary fan 11 can be obtained by considering the mesh of the radiator 13 and the shape of the fan of the rotary fan 11.
  • a shroud 15 is provided to guide the air flow exiting through the radiator 13 to the rotating fan 11.
  • the shroud 15 is made of, for example, metal or resin, and is attached to the radiator 13. As shown in FIG. 2, since the radiator 13 has a rectangular shape, the mounting portion of the shroud 15 to the radiator 13 has a rectangular shape, narrows toward the rotating fan 11 and surrounds the rotating fan 11. Further, in the vicinity of the rotary fan 11, it is formed into a cylindrical shape.
  • the surrounding part 17 is provided in the part shape
  • the upper part of the shroud 15 also has a force that attaches to the upper part of the radiator 13 and extends upward from the radiator 13. To.
  • a guide force 23 is provided in the peripheral direction of the surrounding portion 17 in the centrifugal direction of the rotary fan 11 to prevent the centrifugal flow from being disturbed, and the cylindrical inside the shroud 15 A portion 19 and a fixed portion 21 are provided to prevent backflow of air from the rotary fan 11 into the shroud 15.
  • the guide portion 23 can be omitted.
  • the guide portion 23 has a disk shape whose inner diameter is equal to the diameter of the surrounding portion 17, and may be fixed to the peripheral portion of the surrounding portion 17 with a rivet or the like, or integrated with the surrounding portion 17 and other shroud portions. You may shape
  • the width of the guide part 23 may be about 6% of the diameter of the rotary fan 11. For example, when the diameter of the rotary fan 11 is 500 mm, the width of the guide part 23 may be 30 mm.
  • the cylindrical portion 19 is preferably concentric with the surrounding portion 17 and has a small diameter cylindrical shape, and is approximately equal to the diameter of the rotary fan 11.
  • the cylindrical portion 19 is attached to the shroud 15 so as to be in parallel with the rotary fan 11.
  • the cylindrical portion 19 is directly attached to the wall surface of the shroud 15 at the upper portion of the shroud 15 where the surrounding portion 17 protrudes from the upper portion of the radiator 13.
  • the cylindrical part 19 is fixed to the shroud 15 by the fixing part 21 .
  • the fixing part 21 has an outer diameter equal to the diameter of the cylindrical part 19 and the diameter of the surrounding part 17. It has a nearly equivalent crescent shape and is fixed to the peripheral portion of the go portion 17 on the side of the radiator 13. Then, the cylindrical portion 19 is fixed to the shroud 15 by fixing the cylindrical portion 19 to the inner diameter portion of the fixing portion 21.
  • the cylindrical portion 19 is fixed to the upper portion of the shroud 15 and the fixing portion 21 with a rivet or the like, and the fixing portion 21 is similarly fixed to the peripheral portion of the surrounding portion 17 on the side of the radiator 13 with a rivet or the like.
  • the width W of the cylindrical part 19 is longer. Good enough.
  • the shroud 15 is attached to the radiator and the rotary fan 11 is attached to the engine part 5.
  • the width W of the cylindrical part 19 is set so as to ensure a minimum gap where they do not come into contact with each other due to vibration during running. Set. For example, if the width W of the cylindrical portion 19 is set so that the gap G between the tip of the cylindrical portion 19 and the rotary fan 11 is about 20 mm, the air volume passing through the radiator 13 is sufficiently improved.
  • Fig. 3 (a) is a cross-sectional view of the upper portion of the radiator 13, shroud 15, and rotary fan 11 of the present embodiment, and shows the flow of air.
  • the counter-current backflow is generated inside the shroud from the cylindrical portion 19 of the shroud 15.
  • the rotary fan 11 is discharged in the centrifugal direction without entering the side. Even if a part of the backflow 25 flows into the cylindrical portion 19, the cylindrical portion 19 can suppress the flow rate to a small amount.
  • the backflow 25 flowing from the rotary fan 11 into the cylindrical portion 19 is prevented or reduced, so that the airflow 27 from the radiator flows into the rotary fan 11 without being blocked by the backflow 25. Is possible. As a result, the amount of air passing through the radiator 13 is increased and the cooling performance is improved.
  • the backflow 25 that is directed toward the inside of the shroud prevents the inflow of the fan 11 upstream by the fixed portion 21 and the cylindrical portion 19. Is possible.
  • the airflow 27 from the radiator 13 can travel straight to the rotating fan 11 without being blocked by the backflow 25, and the amount of air passing through the radiator 13 increases.
  • FIG. 4 is a diagram showing a comparison of the air flow rate of the radiator between the conventional shroud structure and the shroud structure of the present embodiment.
  • Each shroud structure is prototyped, and the results measured by bench tests are shown.
  • a portion where the cylindrical portion 19 and the fixed portion 21 are combined is called a partition wall.
  • the radiator air flow rate in the case where a partition wall made up of the cylindrical portion 19 and the fixed portion 21 is provided in the conventional shroud structure is 3.2% higher than the air flow rate in the case of the conventional shroud structure! This is the result when the width of the cylindrical part 19 is designed so that the gap G between the rotary fan 11 and the tip of the cylindrical part 19 is about 20 mm.
  • the air flow rate is increased by 7.8% as compared with the conventional shroud.
  • the guide portion 23 is provided on the peripheral portion of the surrounding portion 17 of the shroud 15, the cylindrical portion 19 is provided on the inner side of the shroud 15, and the fixing portion 21 is provided on the lower portion of the shroud 15.
  • the width of the guide portion 23 is about 6% of the diameter of the rotary fan 11 and the width of the cylindrical portion 19 is set so that the distance between the tip of the cylindrical portion 19 and the rotary fan 11 is about 20 mm.
  • Set force This can be set to a different width in consideration of the shape of the shroud 15 and the rotating fan 11 and the rate of change of the air volume.
  • the shroud may be fixed by an engine or a frame that is not a radiator. Further, the present invention can be applied not only to a cab type vehicle but also to a bonnet type vehicle.
  • the radiator of the present invention 's shroud structure rectifies the turbulence of the centrifugal flow coming out of the rotary fan 11 by the guide portion 23, and the internal force of the shroud 15 is reversed by the partition wall made up of the cylindrical portion 19 and the fixed portion 21.
  • the air volume of the air passing through the radiator 13 is increased, and the cooling capacity of the radiator 13 can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Abstract

A radiator shroud structure, wherein a shroud (15) fitted to a radiator (13) on the air discharge side is formed in a convergent cylindrical shape converged toward a centrifugal flow type rotary fan (11) and a surrounding part (17) is formed so as to surround the rotary fan (11). A guide part (23) extending in the centrifugal direction of the rotary fan (11) is formed at the peripheral edge part of the surrounding part (17), a cylindrically-shaped cylindrical part (19) with a diameter smaller than that of the surrounding part (17) is formed on the inside of the surrounding part (17), and the upper part of the cylindrical part is fixed to the wall surface of the shroud (15). Also, the lower part of the cylindrical part (19) is fixed to the shroud through a fixing part (21) having an inner diameter equal to the diameter of the cylindrical part and an outer diameter equal to the diameter of the surrounding part (17).

Description

ラジェ一タ.シユラウド構造  Rajeta shroud structure
技術分野  Technical field
[0001] 本発明は、車両のラジェータとファンの間に設けられた導風用のラジェータ 'シユラ ウド構造に関し、特に回転ファン力 排出される空気の流れを整流し、ラジェータの 通風量を向上することが可能なラジェータ 'シユラウド構造に関する。  TECHNICAL FIELD [0001] The present invention relates to a radiator for guiding air provided between a radiator and a fan of a vehicle, and more particularly, to rectify a flow of air discharged by a rotating fan force and improve a ventilation amount of the radiator. It is possible for Rajeta 's shroud structure.
背景技術  Background art
[0002] キヤブオーバ型車両 1のような車両では、図 5に示すように、ラジェータ 13や回転フ アン 11を有するエンジン部 5をキヤブ 3下に塔載し、図示して!/ヽな!、フロントパネルに 設けられた空気取り入れ口から矢印 B方向へ空気 (風)を取り込み、ラジェータ 13の 冷却能力を高めている。ラジェータ 13と回転ファン 11の間にはシユラウド 15が設けら れ、ラジェータ 13から排出される空気を回転ファン 11に導く。  [0002] In a vehicle such as a cab-over type vehicle 1, as shown in FIG. 5, an engine unit 5 having a radiator 13 and a rotating fan 11 is mounted under the cab 3 and illustrated! Air (wind) is taken in the direction of arrow B from the air intake provided on the front panel to increase the cooling capacity of the radiator 13. A shroud 15 is provided between the radiator 13 and the rotary fan 11, and guides the air discharged from the radiator 13 to the rotary fan 11.
冷却能力を向上させるためには、ラジェータ 13を通過する風量をより多く確保する ことが重要であり、そのためにシュラウドの形状に工夫を施す提案がなされている (特 許文献 1参照)。  In order to improve the cooling capacity, it is important to secure a larger amount of air passing through the radiator 13, and for this purpose, a proposal has been made to devise the shape of the shroud (see Patent Document 1).
特許文献 1:特開 2002— 38952号公報  Patent Document 1: Japanese Patent Laid-Open No. 2002-38952
[0003] 図 6、図 7に示すように、通常、シュラウド 15は、ラジェータ 13に取り付けられ、回転 ファン 11の外周を囲繞する形状をとる。すなわち、図 6に示すように、ラジェータ 13は 通常矩形構造であるため、シュラウド 15はラジェータ 13との接続部では矩形である。 また、ラジェータ 13は空間を効率的に使用するために傾けて設置されているため、 シュラウド 15の下側は、回転ファン 11に向力つて窄む形状を成し、回転ファン 11の 外周部分に至ると、回転ファン 11を囲繞する円筒形を成す囲繞部 17を有する。一方 、回転ファン 11は、キヤブオーバ型車両 1では、通常、エンジン部 5のクランクシャフト の回転が伝達されることにより回転するため、エンジン部 5に取り付けられる。  As shown in FIGS. 6 and 7, the shroud 15 is usually attached to the radiator 13 and has a shape surrounding the outer periphery of the rotary fan 11. That is, as shown in FIG. 6, since the radiator 13 has a generally rectangular structure, the shroud 15 is rectangular at the connecting portion with the radiator 13. In addition, since the radiator 13 is installed at an angle in order to efficiently use the space, the lower side of the shroud 15 has a shape that constricts against the rotating fan 11, and is formed on the outer periphery of the rotating fan 11. When it reaches, it has the surrounding part 17 which comprises the cylindrical shape which surrounds the rotation fan 11. FIG. On the other hand, the rotary fan 11 is attached to the engine unit 5 because the rotation fan 11 normally rotates when the rotation of the crankshaft of the engine unit 5 is transmitted in the carry-over type vehicle 1.
[0004] ラジェータ 13を通過した空気は、シュラウド 15を通って回転ファン 11を通り排出さ れる。車両設計上、ファン先端とシュラウドとの隙間を大きくせざるを得ない場合があ る。このとき、軸流となるファンを搭載すると、ファン先端とシュラウドの隙間で気流力^ ークし、ラジェータ 13を通過する風量が減少する。そこで、遠心流となるファンを塔載 すると、風量減少の要因となるリークを防止できる。 [0004] The air that has passed through the radiator 13 passes through the shroud 15 and is discharged through the rotary fan 11. Due to vehicle design, the gap between the fan tip and the shroud must be increased. At this time, if an axial fan is installed, the air flow force between the fan tip and the shroud ^ The air volume passing through the radiator 13 is reduced. Therefore, installing a fan that generates a centrifugal flow can prevent leaks that cause a reduction in airflow.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] し力しながら、遠心流を生じる回転ファン 11を設けた場合、遠心流 23の方向だけで なぐ回転ファン 11から排出された空気の気流は、ラジェータ 13の側(車両 1の前方 )に方向を変化させながら乱れたり(遠心流の乱れ 29)、シュラウド内部へ向力う逆流 25が生じるという問題が起こる。  [0005] When the rotating fan 11 that generates a centrifugal flow while providing a force is provided, the airflow exhausted from the rotating fan 11 only in the direction of the centrifugal flow 23 is on the side of the radiator 13 (in front of the vehicle 1). However, there is a problem that the turbulence is changed while the direction is changed (turbulent flow turbulence 29), or a counter flow 25 is generated in the shroud.
[0006] 図 8は、従来のシュラウド 15を使用した場合の、回転ファン 11から排出される空気 の流れのシミュレーション結果である。黒く表されて 、る部分が乱れの大き 、部分で ある。これによると、回転ファン 11の翼先端力 排出される空気の流れ力 ラジェータ 13方向の複数の方向、すなわち、遠心流の乱れ 29ゃシユラウド内部へ向力う逆流 2 5に変化しながら流れることがわかる。  FIG. 8 shows a simulation result of the flow of air discharged from the rotary fan 11 when the conventional shroud 15 is used. The part shown in black is the part of the turbulence. According to this, the blade tip force of the rotating fan 11 The flow force of the discharged air The turbulent direction of the radiator 13 direction, that is, the turbulence of the centrifugal flow 29 may flow while changing to the counter flow 2 5 toward the inside of the shroud. Recognize.
遠心流の乱れ 29が起こると、囲繞部 17の先端で空気の乱れが生じ、ラジェータ 13 力も排出された気流が囲繞部 17近辺を通過しに《なり、その結果、ラジェータ 13の 通風量が減少するという問題が生じる。これはラジェータの冷却能力の低下を招く。  When the turbulence of the centrifugal flow 29 occurs, the turbulence of the air is generated at the tip of the surrounding portion 17, and the air flow from which the radiator 13 force is also discharged passes through the vicinity of the surrounding portion 17, so that the ventilation amount of the radiator 13 is reduced. Problem arises. This leads to a decrease in the cooling capacity of the radiator.
[0007] また、ファン上流へ向力 逆流 25は、ラジェータ 13から排出される空気の流れを阻 害し、図 7に示すように、回転ファン 11の中央部に向力つて流れを変えさせる(ラジェ ータからの気流 27)。これにより、ラジェータ 13を流れる空気の流量は減少し、ラジェ ータ 13の冷却能力が低下するという問題が生じる。  [0007] Further, the counter-current backflow 25 upstream of the fan obstructs the flow of air discharged from the radiator 13, and changes the flow by directing the central portion of the rotary fan 11 as shown in FIG. Airflow from the motor 27). As a result, the flow rate of the air flowing through the radiator 13 is reduced, resulting in a problem that the cooling capacity of the radiator 13 is lowered.
[0008] 本発明は、このような問題を鑑みてなされたもので、その目的は、回転ファン力 排 出される空気の流れを整流し、ラジェータの通風量を向上することにより、ラジェータ 13の冷却能力を向上するラジェータ 'シユラウド構造を提供することである。  [0008] The present invention has been made in view of such a problem, and an object of the present invention is to rectify the flow of air exhausted by the rotating fan force and improve the ventilation rate of the radiator, thereby cooling the radiator 13. Rajeta's ability to improve the capacity is to provide a shroud structure.
課題を解決するための手段  Means for solving the problem
[0009] 前述する課題を解決するための本発明は、遠心流を起こす回転ファンと、回転ファ ンに近接して設けられたラジェータと、ラジェータから回転ファンへ向力う導風路を形 成するシユラウドとを備えたラジェータ 'シユラウド構造において、シュラウドの一端で 回転ファンの外周を囲繞する囲繞部と、囲繞部より小径の円筒部と、円筒部の一端 が回転ファンに対抗するように、円筒部を囲繞部の内側に固定する固定部とを備え、 固定部は、シュラウド内において、円筒部の外側の通風を塞ぐように形成されることを 特徴とするラジェータ ·シュラウド構造である。 [0009] The present invention for solving the above-described problems forms a rotating fan that generates a centrifugal flow, a radiator that is provided in the vicinity of the rotating fan, and an air guide path that is directed from the radiator to the rotating fan. A radiator with a shroud that has a shroud structure, a shroud that surrounds the outer periphery of the rotating fan at one end of the shroud, a cylindrical portion having a smaller diameter than the surrounding portion, and one end of the cylindrical portion And a fixing portion that fixes the cylindrical portion to the inside of the surrounding portion so as to oppose the rotating fan, and the fixing portion is formed in the shroud so as to block the ventilation outside the cylindrical portion. Rajeta shroud structure.
円筒部の直径は、回転ファンの直径と略等しぐ円筒部が回転ファンの外周部分と 並列するように設置されることが好ましぐ円筒部の幅は、円筒部の周縁部が回転フ アンと接触することなぐかつ、円筒部の周縁部から回転ファンまでの距離が可能な 力ぎり小さくなるようにするとよい。さらに好ましくは、前記囲繞部周縁から外周方向に 伸びるガイド部を備えるとよ 、。  It is preferable that the cylindrical portion be installed so that the cylindrical portion approximately equal to the diameter of the rotating fan is in parallel with the outer peripheral portion of the rotating fan. It is preferable that the distance from the peripheral edge of the cylindrical portion to the rotating fan is as small as possible without contacting the ang. More preferably, it is provided with a guide part extending in the outer peripheral direction from the periphery of the surrounding part.
[0010] すなわち、シュラウドはラジェータに、回転ファンはエンジン側に取り付けられている ため、走行時はこれらがそれぞれ別の系で振動するため、回転ファンと円筒部とが接 触しないように間隙を設けて設計する必要がある。また、製造誤差や熱による変形等 も考慮すると、一定の間隙を設けることは不可避である。一方、円筒部と回転ファンと の距離が小さいほど、回転ファンカもシユラウドへの逆流を防止できるため、円筒部と 回転ファンの距離はできるだけ小さくなるように設計するとよい。  [0010] That is, since the shroud is attached to the radiator and the rotary fan is attached to the engine side, they vibrate in different systems when traveling, so there is a gap so that the rotary fan and the cylindrical portion do not contact each other. It is necessary to provide and design. In addition, it is inevitable to provide a certain gap in consideration of manufacturing errors and thermal deformation. On the other hand, the smaller the distance between the cylindrical part and the rotating fan, the more the rotating fan can prevent backflow to the shroud. Therefore, the distance between the cylindrical part and the rotating fan should be designed to be as small as possible.
よって、これらの条件から、円筒部の幅は、円筒部の周縁部と回転ファンとの距離 が約 20mmになるように設計するとよい。また、ガイド部の幅は、前記回転ファンの直 径の約 6%とするとよい。  Therefore, from these conditions, the width of the cylindrical part should be designed so that the distance between the peripheral part of the cylindrical part and the rotary fan is about 20 mm. The width of the guide portion is preferably about 6% of the diameter of the rotating fan.
[0011] 以上のように、シュラウドの囲繞部の周縁部にガイド部を設けることにより回転ファン の翼先端力 遠心方向に向力う空気がガイド部に沿って流れるようになり、気流が整 流されるとともに、シュラウドの囲繞部の内側に囲繞部よりも小径の円筒部を設け、こ れを固定部により回転ファンと対向するように固定することにより、回転ファン力 シュ ラウドへ逆流する空気の流入を防止することが可能になる。 [0011] As described above, by providing the guide portion at the peripheral portion of the shroud enclosure, the blade tip force of the rotary fan causes air directed in the centrifugal direction to flow along the guide portion, and the airflow is rectified. In addition, a cylindrical portion having a smaller diameter than the surrounding portion is provided inside the surrounding portion of the shroud, and this is fixed by the fixing portion so as to face the rotating fan. Can be prevented.
発明の効果  The invention's effect
[0012] 本発明のラジェータ 'シユラウド構造により、回転ファンカもシユラウド内部へ逆流す る空気の流入を防止でき、ラジェータを通過する空気の流量が向上するので、ラジェ ータの冷却能力を向上することが可能になる。  [0012] With the radiator of the present invention 's shroud structure, the rotating fan can also prevent the inflow of air flowing back into the shroud and the flow rate of air passing through the radiator is improved, so that the cooling capacity of the radiator is improved. Is possible.
図面の簡単な説明  Brief Description of Drawings
[0013] [図 1]本発明の実施の形態に力かるラジェータ 'シユラウド構造の断面図 [図 2]ラジェータ ·シュラウド構造の斜視図 [0013] FIG. 1 is a cross-sectional view of a radiator 's shroud structure that is useful in an embodiment of the present invention. [Fig.2] Perspective view of rajta shroud structure
[図 3(a)]空気の流れを説明する図  [Fig. 3 (a)] Diagram explaining air flow
[図 3(b)]空気の流れを説明する図  [Fig. 3 (b)] Diagram explaining air flow
[図 4]各シユラウド構造とラジェータ通風量の関係  [Figure 4] Relationship between each shroud structure and radiator air flow
[図 5]キヤブオーバ型車両の構造の説明図  [Fig.5] Illustration of the structure of a cab-over type vehicle
[図 6]従来のラジェータ ·シュラウド構造の斜視図  [Figure 6] Perspective view of conventional radiator / shroud structure
[図 7]従来のラジェータ 'シユラウド構造の断面図  [Fig.7] Cross-sectional view of conventional radiator
[図 8]従来のラジェータ ·シュラウド構造の場合の空気の流れのシミュレーション結果 符号の説明  [Fig.8] Simulation result of air flow in case of conventional radiator / shroud structure
[0014] 1 キヤブオーバ型車両 [0014] 1 Cabover type vehicle
3 キヤブ  3 Cap
5 エンジン部  5 Engine part
11 回転ファン  11 Rotating fan
13 ラジェータ  13 Rajeta
15 シュラウド  15 Shroud
17 囲繞部  17 Go Club
19 円筒部  19 Cylindrical part
21 固定部  21 Fixed part
23 ガイド部  23 Guide section
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0015] 以下、図面に基づいて本発明の形態を詳細に説明する。図 1は、本発明の実施の 形態に力かるラジェータ 'シユラウド構造の断面図、図 2は、ラジェータ 'シユラウド構 造の斜視図、図 3は、本実施の形態のラジェータ 'シユラウド構造による空気の流れ の説明図、図 4は、シュラウドの各種構造とラジェータの通風量の関係を示す図であ る。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Fig. 1 is a cross-sectional view of a radiator 's shroud structure, which is useful for the embodiment of the present invention, Fig. 2 is a perspective view of the rajta' shroud structure, and Fig. 3 is a perspective view of the air by the rajta 's shroud structure of this embodiment. Fig. 4 shows the relationship between the various shroud structures and the air flow rate of the radiator.
[0016] 図 1において、ラジェータ 13は、キヤブオーバ型車両 1のキヤブ 3下に伸びているフ レームに取り付けられている。図中、ラジェータ 13の左側が車両 1の前方方向である 。ラジェータ 13は、多くの場合、面効率を高めるために、図のように斜めに設置され る。 In FIG. 1, the radiator 13 is attached to a frame extending below the cap 3 of the cap-over type vehicle 1. In the figure, the left side of the radiator 13 is the forward direction of the vehicle 1. The radiator 13 is often installed at an angle as shown in the figure to improve surface efficiency. The
[0017] 一方、回転ファン 11は、貨物車両の場合、エンジンのクランクシャフトに備えられた プーリーから、回転ファン 11の回転軸に備えられたプーリーにベルトで回転を伝える 方式を採ることが多い。この場合、回転ファン 11は、図中、回転ファン 11の右側に存 在するエンジン部 5に取り付けられている。  On the other hand, in the case of a freight vehicle, the rotary fan 11 often employs a system in which rotation is transmitted by a belt from a pulley provided on the crankshaft of the engine to a pulley provided on the rotary shaft of the rotary fan 11. In this case, the rotary fan 11 is attached to the engine unit 5 existing on the right side of the rotary fan 11 in the figure.
回転ファン 11には軸流型と遠心流型があるが、軸流となるファンを塔載すると、ファ ン先端とシュラウドの隙間で気流カ^ークし、ラジェータ 13を通過する風量が減少す る。これに対して、遠心流となるファンを塔載すると、風量減少の要因となるリークを防 止できる。そこで、遠心流型の回転ファン 11を用いることが望ましい。ラジェータ 13の 網目の粗さ、回転ファン 11のファンの形状等を考慮することにより、遠心流型の回転 ファン 11を得ることが可能である。  The rotary fan 11 has an axial flow type and a centrifugal flow type. However, if an axial fan is mounted, the airflow is clogged at the gap between the fan tip and the shroud and the amount of air passing through the radiator 13 is reduced. The On the other hand, installing a fan with centrifugal flow can prevent leaks that cause a reduction in airflow. Accordingly, it is desirable to use the centrifugal fan 11. The centrifugal flow type rotary fan 11 can be obtained by considering the mesh of the radiator 13 and the shape of the fan of the rotary fan 11.
遠心流型の回転ファン 11では、ラジェータ 13から回転ファン 11を介して流れ出る 空気の多くは、回転ファン 11の遠心方向に出るため、エンジン部 5を避けて、ェンジ ン部後方に排出することが可能である。  In the centrifugal flow type rotary fan 11, since most of the air flowing out from the radiator 13 through the rotary fan 11 goes out in the centrifugal direction of the rotary fan 11, it can be discharged to the rear of the engine part, avoiding the engine part 5. Is possible.
[0018] ラジェータ 13を通って出てくる空気流を回転ファン 11に導くためにシュラウド 15が 設けられる。  A shroud 15 is provided to guide the air flow exiting through the radiator 13 to the rotating fan 11.
シュラウド 15は、例えば、金属製、または榭脂製であり、ラジェータ 13に取り付けら れる。図 2に示すように、ラジェータ 13は矩形形状であるため、シュラウド 15のラジェ ータ 13への取り付け部は矩形形状であり、回転ファン 11方向に向かうに従い窄まり、 回転ファン 11を囲い込むように、回転ファン 11付近では円筒状に成形される。円筒 状に成形された部分に囲繞部 17が設けられる。  The shroud 15 is made of, for example, metal or resin, and is attached to the radiator 13. As shown in FIG. 2, since the radiator 13 has a rectangular shape, the mounting portion of the shroud 15 to the radiator 13 has a rectangular shape, narrows toward the rotating fan 11 and surrounds the rotating fan 11. Further, in the vicinity of the rotary fan 11, it is formed into a cylindrical shape. The surrounding part 17 is provided in the part shape | molded by the cylindrical shape.
また、ラジェータ 13が傾けて設置され、回転ファン 11がラジェータ 13より高い位置 に設置されているため、シュラウド 15の上部は、ラジェータ 13上部との取り付け部分 力もラジェータ 13の上方に伸び、囲繞部 17に至る。  In addition, since the radiator 13 is installed at an angle and the rotary fan 11 is installed at a position higher than the radiator 13, the upper part of the shroud 15 also has a force that attaches to the upper part of the radiator 13 and extends upward from the radiator 13. To.
[0019] 本実施の形態のラジェータ 'シユラウド構造では、囲繞部 17の周縁部に回転ファン 11の遠心方向へ向力 ガイド部 23を設けて遠心流の乱れを防ぐとともに、シュラウド 15の内部に円筒部 19および固定部 21が設けられ、回転ファン 11からシュラウド 15 内部への空気の逆流を防止する。ただし、ガイド部 23を省略することも可能である。 [0020] ガイド部 23は、内径が囲繞部 17の直径に等しい円盤状であり、囲繞部 17の周縁 部にリベット等で固定してもよいし、囲繞部 17および他のシュラウド部分とともに一体 型として成形してもよい。ガイド部 23の幅は、回転ファン 11の直径の約 6%程度にす ればよぐ例えば、回転ファン 11の直径が 500mmの場合、ガイド部 23の幅を 30mm にすればよい。 [0019] In the radiator 'shroud structure of the present embodiment, a guide force 23 is provided in the peripheral direction of the surrounding portion 17 in the centrifugal direction of the rotary fan 11 to prevent the centrifugal flow from being disturbed, and the cylindrical inside the shroud 15 A portion 19 and a fixed portion 21 are provided to prevent backflow of air from the rotary fan 11 into the shroud 15. However, the guide portion 23 can be omitted. [0020] The guide portion 23 has a disk shape whose inner diameter is equal to the diameter of the surrounding portion 17, and may be fixed to the peripheral portion of the surrounding portion 17 with a rivet or the like, or integrated with the surrounding portion 17 and other shroud portions. You may shape | mold as. The width of the guide part 23 may be about 6% of the diameter of the rotary fan 11. For example, when the diameter of the rotary fan 11 is 500 mm, the width of the guide part 23 may be 30 mm.
[0021] 一方、円筒部 19は好ましくは囲繞部 17と同芯で且つ小径の円筒形状で、回転ファ ン 11の直径と略等しい。円筒部 19は、回転ファン 11と並列するようにシユラウド 15に 取り付けられる。  On the other hand, the cylindrical portion 19 is preferably concentric with the surrounding portion 17 and has a small diameter cylindrical shape, and is approximately equal to the diameter of the rotary fan 11. The cylindrical portion 19 is attached to the shroud 15 so as to be in parallel with the rotary fan 11.
すなわち、図 1に示すように、囲繞部 17がラジェータ 13の上部より突出しているシ ユラウド 15の上部では、円筒部 19は、シュラウド 15の壁面に直接取り付けられる。一 方、それよりも下方部分は、円筒部 19は、固定部 21によりシュラウド 15に固定される 固定部 21は、内径が円筒部 19の直径に等しぐ外径が囲繞部 17の直径と略同等 の三日月形状をなし、囲繞部 17のラジェータ 13側の周縁部に固定される。そして、 固定部 21の内径部分に円筒部 19を固定することにより、円筒部 19はシユラウド 15に 固定される。  That is, as shown in FIG. 1, the cylindrical portion 19 is directly attached to the wall surface of the shroud 15 at the upper portion of the shroud 15 where the surrounding portion 17 protrudes from the upper portion of the radiator 13. On the other hand, in the lower part, the cylindrical part 19 is fixed to the shroud 15 by the fixing part 21 .The fixing part 21 has an outer diameter equal to the diameter of the cylindrical part 19 and the diameter of the surrounding part 17. It has a nearly equivalent crescent shape and is fixed to the peripheral portion of the go portion 17 on the side of the radiator 13. Then, the cylindrical portion 19 is fixed to the shroud 15 by fixing the cylindrical portion 19 to the inner diameter portion of the fixing portion 21.
[0022] 円筒部 19はシユラウド 15の上部および固定部 21とリベット等で固定され、固定部 2 1も同様に囲繞部 17のラジェータ 13側の周縁部にリベット等で固定される。  The cylindrical portion 19 is fixed to the upper portion of the shroud 15 and the fixing portion 21 with a rivet or the like, and the fixing portion 21 is similarly fixed to the peripheral portion of the surrounding portion 17 on the side of the radiator 13 with a rivet or the like.
また、円筒部 19の先端と回転ファン 11との間隙 Gが短いほど、シュラウド 15の内部 へ入り込む逆流 25は減少し、風量の変化率は高くなるので、円筒部 19の幅 Wは、長 いほど良い。しかし、実際には、シュラウド 15がラジェータ、回転ファン 11がエンジン 部 5に取り付けられているため、走行時の振動によって両者が接触しない最低限の 間隙は確保するよう、円筒部 19の幅 Wを設定する。例えば、円筒部 19の先端と、回 転ファン 11との間隙 Gが約 20mmになるように円筒部 19の幅 Wを設定すれば、ラジ エータ 13を通過する風量は十分に改善される。  Also, the shorter the gap G between the tip of the cylindrical part 19 and the rotary fan 11, the smaller the backflow 25 entering the shroud 15 and the higher the rate of change of the air volume, so the width W of the cylindrical part 19 is longer. Good enough. In reality, however, the shroud 15 is attached to the radiator and the rotary fan 11 is attached to the engine part 5.Therefore, the width W of the cylindrical part 19 is set so as to ensure a minimum gap where they do not come into contact with each other due to vibration during running. Set. For example, if the width W of the cylindrical portion 19 is set so that the gap G between the tip of the cylindrical portion 19 and the rotary fan 11 is about 20 mm, the air volume passing through the radiator 13 is sufficiently improved.
[0023] 図 3(a)は、本実施の形態のラジェータ 13、シュラウド 15、および回転ファン 11の上 側部分の断面図であり、空気の流れを示している。囲繞部 17の内側に円筒部 19を 固定することにより、シュラウド内部に向力 逆流は、シュラウド 15の円筒部 19より内 側に入り込むことなぐ回転ファン 11の遠心方向に排出される。円筒部 19の内部に 逆流 25の一部が流入したとしても、円筒部 19により、その流量を少量に抑えることが 可能である。 [0023] Fig. 3 (a) is a cross-sectional view of the upper portion of the radiator 13, shroud 15, and rotary fan 11 of the present embodiment, and shows the flow of air. By fixing the cylindrical portion 19 to the inside of the surrounding portion 17, the counter-current backflow is generated inside the shroud from the cylindrical portion 19 of the shroud 15. The rotary fan 11 is discharged in the centrifugal direction without entering the side. Even if a part of the backflow 25 flows into the cylindrical portion 19, the cylindrical portion 19 can suppress the flow rate to a small amount.
[0024] 以上のように、円筒部 19の内部に回転ファン 11から流れ込む逆流 25が防止され、 あるいは減少するので、ラジェータからの気流 27は、逆流 25に妨げられることなぐ 回転ファン 11に流れ込むことが可能になる。これにより、ラジェータ 13を通過する風 量が増加し、冷却性能が向上する。  [0024] As described above, the backflow 25 flowing from the rotary fan 11 into the cylindrical portion 19 is prevented or reduced, so that the airflow 27 from the radiator flows into the rotary fan 11 without being blocked by the backflow 25. Is possible. As a result, the amount of air passing through the radiator 13 is increased and the cooling performance is improved.
一方、図 3(b)に図示するように、シュラウド 15の下部においては、シュラウド内部へ 向力う逆流 25は、固定部 21および円筒部 19により、ファン 11の上流への流入を防 ぐことが可能になる。これにより、ラジェータ 13からの気流 27は、逆流 25によってそ の流れを妨げられることなく回転ファン 11へ直進することが可能となり、ラジェータ 13 を通過する風量は増加する。  On the other hand, as shown in FIG. 3 (b), in the lower portion of the shroud 15, the backflow 25 that is directed toward the inside of the shroud prevents the inflow of the fan 11 upstream by the fixed portion 21 and the cylindrical portion 19. Is possible. As a result, the airflow 27 from the radiator 13 can travel straight to the rotating fan 11 without being blocked by the backflow 25, and the amount of air passing through the radiator 13 increases.
[0025] 図 4は、従来のシュラウド構造と、本実施の形態のシュラウド構造の、ラジェータ通 風量の比較を示す図である。各シユラウド構造を試作し、台上実験により測定した結 果を示している。同図では、円筒部 19と固定部 21を合わせた部分を隔壁と呼ぶもの とする。  [0025] FIG. 4 is a diagram showing a comparison of the air flow rate of the radiator between the conventional shroud structure and the shroud structure of the present embodiment. Each shroud structure is prototyped, and the results measured by bench tests are shown. In the figure, a portion where the cylindrical portion 19 and the fixed portion 21 are combined is called a partition wall.
[0026] まず、従来のシュラウド構造に円筒部 19と固定部 21よりなる隔壁を設けた場合のラ ジエータ通風量は、従来のシュラウド構造の場合の通風量よりも 3.2%増力!]した。円筒 部 19の幅を、回転ファン 11と円筒部 19の先端との間隙 Gが約 20mmになるように設 計した場合の結果である。  [0026] First, the radiator air flow rate in the case where a partition wall made up of the cylindrical portion 19 and the fixed portion 21 is provided in the conventional shroud structure is 3.2% higher than the air flow rate in the case of the conventional shroud structure! This is the result when the width of the cylindrical part 19 is designed so that the gap G between the rotary fan 11 and the tip of the cylindrical part 19 is about 20 mm.
一方、従来のシュラウド構造にガイド部 23 (幅は回転ファン 11の直径の約 6%に当 る 30mmにした場合)のみを設けた場合には、従来のシュラウドよりも通風量が 2.9%増 加した。  On the other hand, if only the guide part 23 (when the width is 30 mm, which is about 6% of the diameter of the rotary fan 11) is provided in the conventional shroud structure, the air flow rate is increased by 2.9% compared to the conventional shroud. did.
さらに、隔壁とガイド部 23の両方を設けた本実施の形態によるシュラウド構造の場 合には、従来のシュラウドよりも通風量が 7.8%増加した。  Further, in the case of the shroud structure according to the present embodiment in which both the partition wall and the guide portion 23 are provided, the air flow rate is increased by 7.8% as compared with the conventional shroud.
[0027] この実験の結果、隔壁もしくはガイド部 23の一方のみを設けても通風量は増加する 力 隔壁とガイド部 23の両方を設けると、隔壁のみを設けた場合の効果と、ガイド部 2 3のみを設けた場合の効果を足し合わせた以上の効果が得られることが分かり、隔壁 およびガイド部 23の両方を設けることが望ましいことが示された。 [0027] As a result of this experiment, even if only one of the partition wall or the guide part 23 is provided, the air flow rate increases. If both the partition wall and the guide part 23 are provided, the effect of providing only the partition wall and the guide part 2 It can be seen that the effect obtained by adding only the effects of 3 is obtained. It has been shown that it is desirable to provide both the guide part 23 and the guide part 23.
[0028] 以上のように、シュラウド 15の囲繞部 17の周縁部にガイド部 23を設けるとともに、シ ユラウド 15の内側に円筒部 19を設け、シュラウド 15の下側部分では固定部 21を設け て円筒部 19を固定することにより、遠心流の回転ファン 11から排出される空気の流 れを整流し、ラジェータ 13を通過する空気の風量を増加させ、ラジェータ 13の冷却 能力を向上させることが可能になる。 [0028] As described above, the guide portion 23 is provided on the peripheral portion of the surrounding portion 17 of the shroud 15, the cylindrical portion 19 is provided on the inner side of the shroud 15, and the fixing portion 21 is provided on the lower portion of the shroud 15. By fixing the cylindrical part 19, it is possible to rectify the flow of air discharged from the rotating fan 11 in the centrifugal flow, increase the air volume of the air passing through the radiator 13, and improve the cooling capacity of the radiator 13. become.
[0029] 尚、本発明は、前述した実施の形態に限定されるものではなぐ種々の改変が可能 であり、それらも、本発明の技術範囲に含まれる。例えば、本実施の形態では、ガイド 部 23の幅を回転ファン 11の直径の約 6%、円筒部 19の幅を、円筒部 19の先端と回 転ファン 11との距離が約 20mmになるよう設定した力 これは、シュラウド 15や回転フ アン 11の形状、風量の変化率を考慮して異なる幅に設定可能である。また、シュラウ ドの固定はラジェータではなぐエンジンないしフレームにしてもよい。また、キヤブォ ーバ型車両に限らず、ボンネット型の車両にも本発明を適用することができる。 [0029] It should be noted that the present invention is not limited to the above-described embodiment, and various modifications are possible, and these are also included in the technical scope of the present invention. For example, in the present embodiment, the width of the guide portion 23 is about 6% of the diameter of the rotary fan 11 and the width of the cylindrical portion 19 is set so that the distance between the tip of the cylindrical portion 19 and the rotary fan 11 is about 20 mm. Set force This can be set to a different width in consideration of the shape of the shroud 15 and the rotating fan 11 and the rate of change of the air volume. The shroud may be fixed by an engine or a frame that is not a radiator. Further, the present invention can be applied not only to a cab type vehicle but also to a bonnet type vehicle.
産業上の利用可能性  Industrial applicability
[0030] 本発明のラジェータ 'シユラウド構造により、回転ファン 11から出る遠心流の乱れを ガイド部 23により整流するとともに、円筒部 19および固定部 21からなる隔壁により、 シュラウド 15の内部へ向力 逆流を防止することが可能になり、ラジェータ 13を通過 する空気の風量が増加し、ラジェータ 13の冷却能力を向上することが可能になる。 [0030] The radiator of the present invention 's shroud structure rectifies the turbulence of the centrifugal flow coming out of the rotary fan 11 by the guide portion 23, and the internal force of the shroud 15 is reversed by the partition wall made up of the cylindrical portion 19 and the fixed portion 21. Thus, the air volume of the air passing through the radiator 13 is increased, and the cooling capacity of the radiator 13 can be improved.

Claims

請求の範囲 The scope of the claims
[1] 遠心流を起こす回転ファンと、  [1] A rotating fan that generates centrifugal flow;
前記回転ファンに近接して設けられたラジェータと、  A radiator provided close to the rotating fan;
前記ラジェ一タカ 前記回転ファンへ向力う導風路を形成するシユラウドとを備えた ラジェータ ·シュラウド構造にぉ 、て、  A rajta shroud structure comprising a shroud that forms a wind guide path directed to the rotary fan, and
前記シュラウドの一端で前記回転ファンの外周を囲繞する囲繞部と、  A surrounding portion that surrounds the outer periphery of the rotary fan at one end of the shroud;
前記囲繞部より小径の円筒部と、  A cylindrical portion having a smaller diameter than the surrounding portion;
前記円筒部の一端が前記回転ファンに対向するように、前記円筒部を前記囲繞部 の内側に固定する固定部とを備え、  A fixing portion that fixes the cylindrical portion to the inside of the surrounding portion so that one end of the cylindrical portion faces the rotary fan;
前記固定部は、前記シュラウド内において、前記円筒部の外側の通風を塞ぐように 形成される  The fixed portion is formed in the shroud so as to block the ventilation outside the cylindrical portion.
ことを特徴とするラジェータ ·シュラウド構造。  Rajta shroud structure characterized by that.
[2] 前記円筒部の直径は、前記回転ファンの直径と略等しぐ前記円筒部が、前記回 転ファンの外周部分と並列するように設置されることを特徴とする請求項 1記載のラジ エータ ユラウド構造。  2. The diameter of the cylindrical part is set so that the cylindrical part, which is substantially equal to the diameter of the rotating fan, is arranged in parallel with an outer peripheral part of the rotating fan. Radiator Euloud structure.
[3] 前記円筒部の幅は、前記円筒部の周縁部が回転ファンと接触することなぐかつ、 前記円筒部の周縁部力も前記回転ファンまでの距離が可能な力ぎり小さくなる長さと することを特徴とする請求項 1記載のラジェータ 'シユラウド構造。 [3] The width of the cylindrical portion is such that the peripheral edge portion of the cylindrical portion does not contact the rotary fan, and the peripheral edge force of the cylindrical portion is also a length that is small enough to allow the distance to the rotary fan. The radiator according to claim 1, wherein the structure is a shroud.
[4] 前記円筒部の幅は、前記円筒部の周縁部と前記回転ファンとの距離が約 20mmに なるように設計することを特徴とする請求項 1記載のラジェータ 'シユラウド構造。  [4] The radiator 's shroud structure according to claim 1, wherein the width of the cylindrical portion is designed so that a distance between a peripheral portion of the cylindrical portion and the rotary fan is about 20 mm.
[5] 前記囲繞部周縁から外周方向に伸びるガイド部を備える  [5] A guide portion extending in the outer peripheral direction from the periphery of the surrounding portion is provided.
ことを特徴とする請求項 1記載のラジェータ 'シユラウド構造。  The radiator according to claim 1, wherein the structure is a shroud.
[6] 前記ガイド部の幅は、前記回転ファンの直径の約 6%とすることを特徴とする請求項 5記載のラジェータ ·シュラウド構造。  6. The radiator / shroud structure according to claim 5, wherein a width of the guide portion is about 6% of a diameter of the rotary fan.
[7] 前記円筒部の直径は、前記回転ファンの直径と略等しぐ前記円筒部が、前記回 転ファンの外周部分と並列するように設置されることを特徴とする請求項 5記載のラジ エータ ユラウド構造。  7. The diameter of the cylindrical part is set so that the cylindrical part, which is substantially equal to the diameter of the rotary fan, is arranged in parallel with the outer peripheral part of the rotary fan. Radiator Euloud structure.
PCT/JP2005/019669 2004-11-04 2005-10-26 Radiator shroud structure WO2006049054A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2005301832A AU2005301832A1 (en) 2004-11-04 2005-10-26 Radiator shroud structure
DE112005002765T DE112005002765T5 (en) 2004-11-04 2005-10-26 Radiator cover structure
US11/666,993 US20080193286A1 (en) 2004-11-04 2005-10-26 Radiator-Shroud Structure

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-320478 2004-11-04
JP2004-320477 2004-11-04
JP2004320477A JP2006132380A (en) 2004-11-04 2004-11-04 Structure of radiator shroud
JP2004320478A JP2006132381A (en) 2004-11-04 2004-11-04 Structure of radiator shroud

Publications (1)

Publication Number Publication Date
WO2006049054A1 true WO2006049054A1 (en) 2006-05-11

Family

ID=36319066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/019669 WO2006049054A1 (en) 2004-11-04 2005-10-26 Radiator shroud structure

Country Status (5)

Country Link
US (1) US20080193286A1 (en)
KR (1) KR100850624B1 (en)
AU (1) AU2005301832A1 (en)
DE (1) DE112005002765T5 (en)
WO (1) WO2006049054A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006132379A (en) * 2004-11-04 2006-05-25 Mitsubishi Fuso Truck & Bus Corp Structure of radiator shroud
JP5132415B2 (en) * 2007-08-31 2013-01-30 株式会社小松製作所 COOLING DEVICE AND CONSTRUCTION MACHINE OR WORKING MACHINE HAVING THE SAME
JP5349835B2 (en) * 2007-08-31 2013-11-20 株式会社小松製作所 COOLING DEVICE AND CONSTRUCTION MACHINE OR WORKING MACHINE HAVING THE SAME
JP5349834B2 (en) * 2007-08-31 2013-11-20 株式会社小松製作所 COOLING DEVICE AND CONSTRUCTION MACHINE OR WORKING MACHINE HAVING THE SAME
JP5374068B2 (en) 2007-08-31 2013-12-25 株式会社小松製作所 COOLING DEVICE AND CONSTRUCTION MACHINE OR WORKING MACHINE HAVING THE SAME
DE102012222258B4 (en) 2012-12-04 2017-12-28 Magna Powertrain Bad Homburg GmbH Air duct with guide surfaces in a fan cowl
US9580137B2 (en) 2014-04-17 2017-02-28 Thomas S. Felker Dual powered propulsion system
US10569827B2 (en) 2014-04-17 2020-02-25 Thomas S. Felker Bicycle dual power turning track, rack, pinion, and one-way bearing propulsion system
US10569129B2 (en) 2016-04-15 2020-02-25 Thomas S. Felker Tri-power exercising device
CN106194847A (en) * 2016-08-05 2016-12-07 广西联邦农业科技有限公司 A kind of method manufacturing water conservancy diversion noise reduction wind scooper
CN106050745A (en) * 2016-08-05 2016-10-26 广西联邦农业科技有限公司 Air guiding hood capable of flow guiding and noise reduction
US20230280100A1 (en) * 2022-03-07 2023-09-07 L & M Radiator, Inc. Radiator Assembly with Multiple Fans

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07238832A (en) * 1994-02-25 1995-09-12 Toyo Radiator Co Ltd Heat exchanger with fan shroud

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4927328A (en) * 1989-03-02 1990-05-22 Scoates William D Shroud assembly for axial flow fans
JPH112127A (en) 1997-06-11 1999-01-06 Aisin Chem Co Ltd Cooling fan shroud device
US6599088B2 (en) * 2001-09-27 2003-07-29 Borgwarner, Inc. Dynamically sealing ring fan shroud assembly
KR100858695B1 (en) * 2002-07-15 2008-09-17 한라공조주식회사 Assembly of fan and shroud
KR100912526B1 (en) * 2002-12-26 2009-08-17 한라공조주식회사 Assembly of fan and shroud
KR20040082086A (en) * 2003-03-18 2004-09-24 한라공조주식회사 Fan shroud

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07238832A (en) * 1994-02-25 1995-09-12 Toyo Radiator Co Ltd Heat exchanger with fan shroud

Also Published As

Publication number Publication date
KR20070062594A (en) 2007-06-15
DE112005002765T5 (en) 2007-09-06
KR100850624B1 (en) 2008-08-05
US20080193286A1 (en) 2008-08-14
AU2005301832A1 (en) 2006-05-11

Similar Documents

Publication Publication Date Title
WO2006049054A1 (en) Radiator shroud structure
JP3601807B2 (en) Radiator cooling system for motorcycles
KR100548036B1 (en) Axial fan shroud assembly with guide vane for axial fan and its guide vane
JP6394409B2 (en) Blower
KR101848717B1 (en) Blower
JP2003120589A (en) Radiator fan and engine cooling device using it
JP2008309121A (en) Fan shroud structure
JP2010124534A (en) Mixed flow fan for electric motors and motor equipped with this mixed flow fan
WO2006049053A1 (en) Radiator shroud structure
JP2010133297A (en) Centrifugal blower
JP5024349B2 (en) Blower, air conditioner using the same, and air purifier
JP2006132380A (en) Structure of radiator shroud
JP2006132381A (en) Structure of radiator shroud
JP4492743B2 (en) Centrifugal blower
JP6550909B2 (en) Air blower
KR100748141B1 (en) Assembly of fan and shroud
KR20100041127A (en) Fan and shroud assemble
JP5879203B2 (en) Blower for vehicle
JP4024228B2 (en) Radiator cooling device for motorcycles
KR101156413B1 (en) Complex of fan and shroud
JP2007247603A (en) Blower
JP4592906B2 (en) Fan sealing device
JP4026381B2 (en) Cooling water supply device
JP2006029164A (en) Centrifugal blower and air conditioning device having the same
JP3575557B2 (en) Blower

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020077010066

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580038141.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2005301832

Country of ref document: AU

Ref document number: 1120050027651

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 2005301832

Country of ref document: AU

Date of ref document: 20051026

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005301832

Country of ref document: AU

RET De translation (de og part 6b)

Ref document number: 112005002765

Country of ref document: DE

Date of ref document: 20070906

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 05799420

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 11666993

Country of ref document: US