WO2006046423A1 - Hydrogen sensor deterioration detecting system and deterioration detecting method - Google Patents

Hydrogen sensor deterioration detecting system and deterioration detecting method Download PDF

Info

Publication number
WO2006046423A1
WO2006046423A1 PCT/JP2005/019030 JP2005019030W WO2006046423A1 WO 2006046423 A1 WO2006046423 A1 WO 2006046423A1 JP 2005019030 W JP2005019030 W JP 2005019030W WO 2006046423 A1 WO2006046423 A1 WO 2006046423A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
deterioration
amount
hydrogen sensor
concentration
Prior art date
Application number
PCT/JP2005/019030
Other languages
French (fr)
Japanese (ja)
Inventor
Kenichi Toyoshima
Original Assignee
Nissan Motor Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co., Ltd. filed Critical Nissan Motor Co., Ltd.
Publication of WO2006046423A1 publication Critical patent/WO2006046423A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/007Arrangements to check the analyser
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Food Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

A hydrogen sensor deterioration detecting system comprising a storage device (2) for storing the history of hydrogen measured concentration and measured time measured by a hydrogen sensor (4), and the correlation between the exposure amount and the deterioration amount per specified time of the hydrogen sensor (4), and a control device (3) for determining the exposure amount per specified time of the hydrogen sensor (4) used in the measurement from the history of measured concentration and measured time to determine a deterioration amount from the correlation between the exposure amount and the deterioration amount.

Description

明 細 書  Specification
水素センサの劣化検知システム及び劣化検知方法  Hydrogen sensor degradation detection system and degradation detection method
技術分野  Technical field
[0001] 本発明は水素センサの劣化検知システム及び劣化検知方法に関し、特に、燃料電 池システムに備えられた水素センサの劣化検知技術に関する。  The present invention relates to a hydrogen sensor deterioration detection system and a deterioration detection method, and more particularly to a hydrogen sensor deterioration detection technique provided in a fuel cell system.
背景技術  Background art
[0002] 従来から、燃料電池システムに備えられたガスセンサの故障又は劣化を検知する 技術が盛んに研究されている。特開 2004— 022299号公報は、燃料電池の作動状 態に応じて設定した水素濃度の判定閾値を制御装置に記憶させ、この判定閾値と水 素センサの検出値とを比較して劣化の有無を検知する方法を開示している。特開 20 03— 344331号公報は、検出素子と直列でダミー素子を設けてこの 2つの素子の電 圧降下を比較して劣化の有無を検知する方法を開示している。  [0002] Conventionally, techniques for detecting a failure or deterioration of a gas sensor provided in a fuel cell system have been actively studied. In Japanese Patent Laid-Open No. 2004-022299, a control device stores a determination threshold value of hydrogen concentration that is set according to the operating state of a fuel cell, and compares this determination threshold value with a detection value of a hydrogen sensor to determine whether or not deterioration has occurred. Is disclosed. Japanese Laid-Open Patent Publication No. 20 03-344331 discloses a method of detecting the presence or absence of deterioration by providing a dummy element in series with a detection element and comparing the voltage drop of the two elements.
発明の開示  Disclosure of the invention
[0003] 触媒燃焼式等の水素センサの検出素子は、水素濃度を測定している間に水素含 有ガスに長時間または短時間さらされて劣化する。検出素子が劣化すると、水素セン サで測定して 、る雰囲気の水素濃度 (真値)と水素センサの測定値とが乖離する。し かし、検出素子の劣化を検知するためには、測定値を所定の閾値と比較する以外に 方法がなぐ検出素子の劣化の程度を精度よく求めることが出来な力つた。  [0003] The detection element of a catalytic combustion type hydrogen sensor or the like is deteriorated by exposure to a hydrogen-containing gas for a long or short time while measuring the hydrogen concentration. When the detection element deteriorates, the hydrogen concentration (true value) of the atmosphere measured by the hydrogen sensor deviates from the measured value of the hydrogen sensor. However, in order to detect the deterioration of the detection element, it was not possible to accurately determine the degree of deterioration of the detection element that the method had in addition to comparing the measured value with a predetermined threshold value.
[0004] また、水素センサの検出素子が劣化した場合、その劣化した水素センサの測定値 力も測定雰囲気の水素濃度を正確に知る方法がな力つた。測定雰囲気の水素濃度 の真値を得るためには、検出素子もしくは水素センサを頻繁に交換する必要があり、 このため測定精度を維持することが困難となり、かつコストが増大するという問題があ つた o  [0004] Further, when the detection element of the hydrogen sensor is deteriorated, the measured value force of the deteriorated hydrogen sensor is also a method for accurately knowing the hydrogen concentration in the measurement atmosphere. In order to obtain the true value of the hydrogen concentration in the measurement atmosphere, it is necessary to frequently replace the detection element or hydrogen sensor, which makes it difficult to maintain measurement accuracy and increases costs. o
[0005] 本発明の第 1の態様は、水素の濃度を測定する水素センサが測定した水素の測定 濃度と測定時間の履歴、及び所定時間当りの水素センサの暴露量と劣化量との相関 関係を記憶する記憶装置と、測定濃度と測定時間の履歴から測定に使用された水 素センサの所定時間当りの暴露量を求め、暴露量と劣化量との相関関係から劣化量 を求める制御装置とを備える水素センサの劣化検知システムである。 [0005] In the first aspect of the present invention, the hydrogen concentration measured by the hydrogen sensor for measuring the hydrogen concentration and the history of the measurement time, and the correlation between the exposure amount and the deterioration amount of the hydrogen sensor per predetermined time. The amount of exposure per unit time of the hydrogen sensor used for measurement is determined from the measured concentration and measurement time history, and the amount of deterioration is determined from the correlation between the amount of exposure and the amount of deterioration. And a hydrogen sensor deterioration detection system.
[0006] 本発明の第 2の態様は、劣化検知の対象となる水素センサを用いて水素の濃度を 測定し始め、水素センサが測定した水素濃度と測定時間の履歴を記憶し、測定濃度 と測定時間の履歴から測定に使用された水素センサの所定時間当りの暴露量を求 め、予め用意された所定時間当りの水素センサの暴露量と劣化量との相関関係から 水素センサの劣化量を求める水素センサの劣化検知方法である。  [0006] The second aspect of the present invention starts to measure the concentration of hydrogen using a hydrogen sensor that is subject to deterioration detection, stores the history of hydrogen concentration and measurement time measured by the hydrogen sensor, The amount of exposure per unit time of the hydrogen sensor used for measurement is obtained from the history of measurement time, and the amount of deterioration of the hydrogen sensor is calculated from the correlation between the amount of exposure of the hydrogen sensor per unit time prepared in advance and the amount of deterioration. This is a method for detecting deterioration of a hydrogen sensor.
図面の簡単な説明  Brief Description of Drawings
[0007] [図 1]図 1は、本発明の第 1実施形態に係る水素センサの劣化検知システムを示すブ ロック図である。  [0007] FIG. 1 is a block diagram showing a hydrogen sensor deterioration detection system according to a first embodiment of the present invention.
[図 2]図 2は、水素センサが測定に使用された期間および測定濃度と水素センサの劣 化量との関係を示すグラフである。  [FIG. 2] FIG. 2 is a graph showing the relationship between the period during which the hydrogen sensor was used for measurement, the measured concentration, and the deterioration amount of the hydrogen sensor.
[図 3]図 3は、記憶装置に記憶された補正後の測定濃度と測定時間の履歴から所定 時間当りの暴露量の演算値 (積分値)を示すグラフである。  [FIG. 3] FIG. 3 is a graph showing the calculated value (integrated value) of the exposure amount per predetermined time from the corrected measured concentration and measurement time history stored in the storage device.
[図 4]図 4は、水素センサの所定時間あたりの暴露量と劣化量との関係を示すグラフ である。  [FIG. 4] FIG. 4 is a graph showing the relationship between the amount of exposure and the amount of deterioration per predetermined time of the hydrogen sensor.
[図 5]図 5は、水素センサの検出素子の劣化を判断する際の所定の閾値を説明する グラフである。  [FIG. 5] FIG. 5 is a graph for explaining a predetermined threshold value when judging the deterioration of the detection element of the hydrogen sensor.
[図 6]図 6は、本発明の第 2実施形態に係る水素センサの劣化検知システムを示すブ ロック図である。  FIG. 6 is a block diagram showing a deterioration detection system for a hydrogen sensor according to a second embodiment of the present invention.
[図 7]図 7は、本発明の第 3実施形態に係る水素センサの劣化検知システムを示すブ ロック図である。  FIG. 7 is a block diagram showing a hydrogen sensor deterioration detection system according to a third embodiment of the present invention.
[図 8]図 8は、図 7の劣化検知システムの制御手順を示すフローチャートである。  FIG. 8 is a flowchart showing a control procedure of the deterioration detection system of FIG.
[図 9]図 9は、水素センサが水素濃度 X%を測定している時の水素濃度出力値を、劣 化量で補正した場合と補正しな 、場合とにつ 、て示すグラフである。  [Fig. 9] Fig. 9 is a graph showing the hydrogen concentration output value when the hydrogen sensor measures the hydrogen concentration X%, with and without correction by the deterioration amount. .
[図 10]図 10は、水素濃度出力値に対する補正処理の有無と換気装置の換気量 (消 費電力)との関係を示す。  [FIG. 10] FIG. 10 shows the relationship between the presence or absence of correction processing for the hydrogen concentration output value and the ventilation volume (consumption power) of the ventilator.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0008] 上記図面を参照して、以下に本発明の実施の形態を説明する。図面において同一 あるいは類似の部分には同一あるいは類似な符号を付して 、る。 Embodiments of the present invention will be described below with reference to the drawings. Same in drawing Similar parts are given the same or similar reference numerals.
[0009] (第 1実施形態)  [0009] (First embodiment)
図 1に示すように、本発明の第 1実施形態に係る水素センサ (水素濃度測定手段) 4 の劣化検知システム 1は、記憶装置 2と制御装置 3と警報装置 6とを備える。記憶装置 2は、水素センサ 4が測定した水素濃度 (具体的には、水素センサ 4の出力値 1Aを制 御装置 3が後述する水素センサ 4の劣化量に基づいて補正した水素濃度 1A'を指す 。以下、単に測定濃度、または補正された測定濃度と呼ぶ)の時間的変動、即ち測 定濃度及び測定時間の履歴、および制御装置 3により求められた水素センサ 4の劣 化量を記憶するとともに、後述する水素センサ 4の暴露量と劣化量との相関関係を記 憶する。制御装置 3は、記憶装置 2に記憶された測定濃度と測定時間の履歴から測 定に使用された水素センサ 4の所定時間当りの暴露量を求め、該暴露量と上記相関 関係とから測定に使用されている水素センサ 4の劣化量を求めるとともに、求めた劣 化量を記憶装置 2に記憶させる。警報装置 6は、制御装置 3が求めた劣化量が所定 の閾値を上回る場合に警報を発する。ここで、「劣化量」とは、水素センサ 4に備えら れた検出素子の劣化の程度を示す量であり、水素センサ 4の使用開始時力 検出素 子に蓄積された劣化量の総和 (累積劣化量)のみならず、単位時間あたりの劣化量、 即ち劣化率 (劣化速度)をも含むものである。  As shown in FIG. 1, a deterioration detection system 1 for a hydrogen sensor (hydrogen concentration measuring means) 4 according to a first embodiment of the present invention includes a storage device 2, a control device 3, and an alarm device 6. The storage device 2 uses the hydrogen concentration measured by the hydrogen sensor 4 (specifically, the hydrogen concentration 1A ′ obtained by correcting the output value 1A of the hydrogen sensor 4 based on the deterioration amount of the hydrogen sensor 4 described later by the control device 3). (Hereinafter referred to simply as “measured concentration” or “corrected measured concentration”), that is, the history of measured concentration and measurement time, and the deterioration amount of the hydrogen sensor 4 obtained by the control device 3 are stored. At the same time, the correlation between the exposure amount and deterioration amount of the hydrogen sensor 4 described later is recorded. The control device 3 obtains the exposure amount per predetermined time of the hydrogen sensor 4 used for the measurement from the measured concentration stored in the storage device 2 and the history of the measurement time, and performs the measurement from the exposure amount and the above correlation. The amount of deterioration of the hydrogen sensor 4 being used is obtained and the obtained amount of deterioration is stored in the storage device 2. The alarm device 6 issues an alarm when the deterioration amount obtained by the control device 3 exceeds a predetermined threshold value. Here, the “deterioration amount” is an amount indicating the degree of deterioration of the detection element provided in the hydrogen sensor 4, and is the sum of the deterioration amounts accumulated in the force detection element at the start of use of the hydrogen sensor 4 ( This includes not only the cumulative amount of deterioration) but also the amount of deterioration per unit time, that is, the deterioration rate (deterioration rate).
[0010] 水素センサ 4は、所望の雰囲気の水素濃度を測定し、その測定値 1Aを制御装置 3 へ出力する。制御装置 3は、直前に求めて記憶装置 2に記憶させておいた水素セン サ 4の劣化量 (例えば累積劣化量)に基づいてこの測定値 1Aを補正し、測定濃度 1 A'を求める。さらに、制御装置 3は、その濃度 1A'および濃度 1A'を測定した時間( 測定時間) 1Bを記憶装置 2に記憶させる。また、記憶装置 2は、水素センサ 4の劣化 量 1Cと水素センサ 4の暴露量との相関関係を記憶している。この劣化量 1Cと暴露量 との相関関係は、予め実験等により求めておくことができる。図 2に示すように、一般 に水素濃度一定の環境下では、水素センサ 4の測定濃度は、水素センサ 4が測定に 使用された期間 (測定期間)が長くなるに従って、初期の測定濃度 (基準濃度 bO、 bl 、 b2、 b3)から徐々に低下していく。また、その低下幅 δ 1、 δ 2、 δ 3は、測定期間が 一定の場合には、測定雰囲気の水素濃度が高いほど大きくなるという傾向を有する。 この基準濃度 bl、 b2、 b3からの測定濃度の低下幅 δ 1、 δ 2、 δ 3が、各濃度条件 下での水素センサ 4の劣化量 1Cに該当する。 The hydrogen sensor 4 measures the hydrogen concentration in a desired atmosphere and outputs the measured value 1A to the control device 3. The control device 3 corrects this measured value 1A based on the deterioration amount (for example, cumulative deterioration amount) of the hydrogen sensor 4 that was obtained immediately before and stored in the storage device 2, and obtains the measured concentration 1A ′. Further, the control device 3 causes the storage device 2 to store the concentration 1A ′ and the time (measurement time) 1B when the concentration 1A ′ is measured. The storage device 2 stores the correlation between the deterioration amount 1C of the hydrogen sensor 4 and the exposure amount of the hydrogen sensor 4. The correlation between the amount of deterioration 1C and the amount of exposure can be obtained in advance through experiments. As shown in Fig. 2, in general, in an environment where the hydrogen concentration is constant, the measured concentration of the hydrogen sensor 4 increases as the initial measured concentration (reference value) increases as the period during which the hydrogen sensor 4 is used for measurement (measurement period) increases. The concentration gradually decreases from bO, bl, b2, b3). In addition, the decrease widths δ 1, δ 2, and δ 3 tend to increase as the hydrogen concentration in the measurement atmosphere increases when the measurement period is constant. The decrease ranges δ 1, δ 2, and δ 3 of the measured concentration from the reference concentrations bl, b2, and b3 correspond to the deterioration amount 1C of the hydrogen sensor 4 under each concentration condition.
[0011] 一方、水素センサ 4の暴露量は、記憶装置 2により記憶された、補正した測定濃度 1 A'と測定時間 1Bの履歴力 所定の演算をして求められる。具体的には、制御装置 3 力 (1)式にしたがって補正した測定濃度 1A'を所定の測定時間 Τについて積分す ることにより、図 3に斜線部で示したような水素センサ 4の所定時間当りの暴露量 1Eを 求める。 On the other hand, the exposure amount of the hydrogen sensor 4 is obtained by performing a predetermined calculation of the history power of the corrected measurement concentration 1 A ′ and measurement time 1 B stored in the storage device 2. Specifically, the measured concentration 1A ′ corrected according to the control device 3 force (1) equation is integrated over a predetermined measurement time 、 so that the predetermined time of the hydrogen sensor 4 as shown by the hatched portion in FIG. Determine the amount of exposure per unit of 1E.
[0012] Σ (1Α' X IB) = IE · · · (1)  [0012] Σ (1Α 'X IB) = IE · · · (1)
このようにして求められた暴露量 IEと上記の劣化量 1Cとからそれらの相関関係(例 えば図 4に示すような関係)が定められ、記憶装置 2に記憶されている。  The correlation (for example, the relationship shown in FIG. 4) of the exposure amount IE thus obtained and the above-mentioned deterioration amount 1C is determined and stored in the storage device 2.
[0013] 水素濃度の測定に使用されている水素センサ 4の劣化量 1Cは、上記所定の演算 により求められた当該水素センサ 4の暴露量 1Eと、予め記憶装置 2に記憶されている 上記劣化量 1Cと暴露量 1Eとの相関関係とから求められる。そして、求められた劣化 量 1Cが、所定の閾値 1Fより大きくなつたとき (例えば、図 4中の暴露量 1E、劣化量 1 Cの点)、水素センサ 4の検出素子が劣化したと判断して、警報装置 6が警報を発す る。所定の閾値 1Fについて、一般的に水素センサ 4の測定濃度は、図 5に示すよう に、一定期間は初期の測定濃度 (基準濃度)から一次関数的に低下する (領域 T1) 力 ある時点力 水素センサ 4の劣化が加速度的に進む (領域 T2)ため、その時点か ら略二次関数的に低下していく。そして所定の閾値 1Fは、例えば図 5に示すように、 水素センサ 4の測定濃度が一次関数的に低下していぐ言い換えれば、水素センサ 4の劣化量が測定時間に略比例して増加していく範囲内に設定される。  [0013] The deterioration amount 1C of the hydrogen sensor 4 used for measuring the hydrogen concentration is the exposure amount 1E of the hydrogen sensor 4 obtained by the predetermined calculation and the deterioration amount stored in the storage device 2 in advance. Calculated from the correlation between 1C and 1E. When the obtained deterioration amount 1C becomes larger than the predetermined threshold 1F (for example, the exposure amount 1E and the deterioration amount 1C in FIG. 4), it is determined that the detection element of the hydrogen sensor 4 has deteriorated. Alarm device 6 issues an alarm. As shown in Fig. 5, the measured concentration of the hydrogen sensor 4 generally decreases linearly from the initial measured concentration (reference concentration) for a certain period of time (region T1). Since the deterioration of the hydrogen sensor 4 proceeds at an accelerating rate (region T2), it decreases in a substantially quadratic function from that point. The predetermined threshold value 1F is, for example, as shown in FIG. 5, in which the measured concentration of the hydrogen sensor 4 decreases linearly, in other words, the amount of deterioration of the hydrogen sensor 4 increases approximately in proportion to the measurement time. It is set within a certain range.
[0014] 劣化量と暴露量との相関関係については、水素センサ 4の単位時間あたりの暴露 量と単位時間あたりの劣化量との相関関係、しいては測定雰囲気の水素濃度と水素 センサ 4の劣化速度との相関関係もまた、図 2に示すように、予め実験等により求めて おくことができる。特に、後者の相関関係と水素センサ 4の測定濃度 1A' (測定時の 水素センサの累積劣化量で補正された測定濃度)とから、測定に使用されている水 素センサ 4の劣化率を求め、これをもとに検出素子の劣化を判断することも可能であ る。 [0015] 次に、図 1の劣化検知システム 1を用いた劣化検知方法を説明する。劣化検知の対 象となる水素センサ 4を用いて所望の雰囲気の水素濃度を測定し始め、これと同時 に、記憶装置 2は水素センサ 4が測定した水素濃度 1A' (測定値 1Aを制御装置 3が 劣化量に基づいて補正した測定濃度 1A' )と測定時間 1Bの履歴を記憶する。そして 、制御装置 3は、測定濃度 1A'と測定時間 1Bの履歴力も測定に使用された水素セン サ 4の所定時間当りの暴露量 1Eを求める。さらに制御装置 3は、予め用意された所 定時間当りの水素センサ 4の暴露量 1Eと劣化量 1Cとの相関関係力も水素センサ 4 の劣化量を求める。即ち、制御装置 3は、記憶装置 2が記憶する水素センサ 4の測定 濃度 1A'と測定時間 1Bの履歴力も所定の演算により所定時間当りの水素センサ 4の 暴露量 1Eを求め、記憶装置 2に記憶されている所定時間当りの水素センサ 4の暴露 量 1Eと劣化量 1Cとの相関関係と上述の演算により求めた暴露量 1Eとから、所定時 間当りの水素センサ 4の劣化量 1Cを求め、求められた劣化量 1Cと所定の閾値を比 較して、水素センサ 4の劣化を検知する。 [0014] Regarding the correlation between the deterioration amount and the exposure amount, the correlation between the exposure amount per unit time of the hydrogen sensor 4 and the deterioration amount per unit time, and the hydrogen concentration in the measurement atmosphere and the hydrogen sensor 4 As shown in Fig. 2, the correlation with the deterioration rate can also be obtained in advance by experiments. In particular, the deterioration rate of the hydrogen sensor 4 used in the measurement is obtained from the correlation between the latter and the measured concentration 1A 'of the hydrogen sensor 4 (measured concentration corrected by the cumulative deterioration amount of the hydrogen sensor at the time of measurement). Based on this, it is also possible to determine the deterioration of the detection element. Next, a deterioration detection method using the deterioration detection system 1 of FIG. 1 will be described. At the same time, the storage device 2 uses the hydrogen sensor 4 that is subject to deterioration detection to measure the hydrogen concentration in the desired atmosphere. 3 memorizes the history of measured concentration 1A ') and measurement time 1B corrected based on the amount of deterioration. Then, the control device 3 obtains the exposure amount 1E per predetermined time of the hydrogen sensor 4 used for the measurement as well as the history power of the measurement concentration 1A ′ and the measurement time 1B. Further, the control device 3 obtains the deterioration amount of the hydrogen sensor 4 based on the correlation force between the exposure amount 1E and the deterioration amount 1C of the hydrogen sensor 4 per predetermined time prepared in advance. That is, the control device 3 obtains the exposure amount 1E of the hydrogen sensor 4 per predetermined time by a predetermined calculation for the measurement concentration 1A ′ of the hydrogen sensor 4 stored in the storage device 2 and the history power of the measurement time 1B, and stores it in the storage device 2. From the stored correlation between the exposure amount 1E and deterioration amount 1C of the hydrogen sensor 4 per predetermined time and the exposure amount 1E obtained by the above calculation, obtain the deterioration amount 1C of the hydrogen sensor 4 per predetermined time. Then, the deterioration amount of the hydrogen sensor 4 is detected by comparing the obtained deterioration amount 1C with a predetermined threshold value.
[0016] 以上説明したように、水素センサ 4の測定濃度 1A'と測定時間 1Bの履歴を記憶装 置 2に記憶させ、この履歴に基づいて制御装置 3にて所定時間当りの暴露量 1Eを求 める。記憶装置 2には、予め実験等で求めた水素センサ 4の所定時間当りの暴露量 と劣化量との相関関係が記憶されている。制御装置 3が、測定に使用された水素セ ンサ 4の所定時間当りの暴露量 1Eと予め実験等で求めた水素センサ 4の所定時間 当りの暴露量とを比較することにより、予め実験等で求めた上記の相関関係から使用 された水素センサ 4の劣化量が求められる。このように予め実験等で求めた相関関係 から、測定に使用された水素センサ 4の劣化量を求めるので、水素センサ 4の劣化量 を精度良く知ることができる。  [0016] As described above, the history of the measured concentration 1A 'and measurement time 1B of the hydrogen sensor 4 is stored in the storage device 2, and the exposure amount 1E per predetermined time is calculated by the control device 3 based on this history. Ask. The storage device 2 stores the correlation between the exposure amount per predetermined time and the deterioration amount of the hydrogen sensor 4 obtained in advance by experiments or the like. The control device 3 compares the exposure amount 1E per predetermined time of the hydrogen sensor 4 used for measurement with the exposure amount per predetermined time of the hydrogen sensor 4 obtained in advance through experiments, etc. The amount of deterioration of the hydrogen sensor 4 used is determined from the above correlation. As described above, since the deterioration amount of the hydrogen sensor 4 used for the measurement is obtained from the correlation obtained in advance through experiments or the like, the deterioration amount of the hydrogen sensor 4 can be accurately known.
[0017] (第 2実施形態)  [0017] (Second Embodiment)
図 6に示すように、本発明の第 2実施形態に係る水素センサ 4の劣化検知システム 1は、水素センサ 4が測定した水素の測定濃度と測定時間の履歴、及び所定時間当 りの水素センサ 4の暴露量と劣化量 1Cとの相関関係を記憶する記憶装置 2と、測定 濃度と測定時間の履歴力 測定に使用された水素センサ 4の所定時間当りの暴露量 を求め、該暴露量と上記相関関係とから水素センサ 4の劣化量を求める制御装置 3と 、制御装置 3が求めた劣化量が所定の閾値を上回る場合に警報を発する警報装置 6 と、水素センサ 4が測定した測定濃度を外部に出力する水素濃度出力装置 7とを備 える。第 2実施形態に係る劣化検知システム 1は、図 1のそれに比べて、水素濃度出 力装置 7を更に備える。 As shown in FIG. 6, the deterioration detection system 1 of the hydrogen sensor 4 according to the second embodiment of the present invention includes a hydrogen concentration measured by the hydrogen sensor 4 and a history of measurement time, and a hydrogen sensor per predetermined time. The amount of exposure per unit time of the storage device 2 that stores the correlation between the exposure amount of 4 and the deterioration amount 1C, and the historical power of the measurement concentration and measurement time 4 was determined. From the above correlation, the control device 3 for determining the deterioration amount of the hydrogen sensor 4 An alarm device 6 that issues an alarm when the deterioration amount obtained by the control device 3 exceeds a predetermined threshold value and a hydrogen concentration output device 7 that outputs the measured concentration measured by the hydrogen sensor 4 to the outside are provided. The deterioration detection system 1 according to the second embodiment further includes a hydrogen concentration output device 7 as compared with that in FIG.
[0018] 制御装置 3は、 (1)式にしたがって記憶装置 2が記憶する測定濃度 1A'と測定時間 1Bを演算 (積分)し、水素センサ 4の所定時間当りの暴露量 1Eを求め、求めた暴露 量 1Eに基づいて記憶装置 2が記憶する暴露量と劣化量との相関関係とから劣化量 1 Cを求める。具体的には、制御装置 3は、水素センサ 4の測定濃度に直前に求めた劣 化量 1Cをもとに加算又は乗算等の演算の補正を行い、補正後の水素濃度 1A'を記 憶装置 2に記憶し、加えて水素濃度出力装置 7に対しても出力する。水素濃度出力 装置 7は、入力された補正後の水素濃度 1A'を外部に出力する。したがって、水素 濃度出力装置 7が出力する水素濃度は、水素センサ 4の劣化による測定濃度の低下 の影響を受けない。また、警報装置 6は、補正値が所定の閾値より大きい場合、水素 センサ 4の検出素子が劣化していると判断して警報を発する。  [0018] The control device 3 calculates (integrates) the measurement concentration 1A 'stored in the storage device 2 and the measurement time 1B according to the equation (1) to obtain the exposure amount 1E of the hydrogen sensor 4 per predetermined time. Based on the exposure amount 1E, the deterioration amount 1 C is obtained from the correlation between the exposure amount stored in the storage device 2 and the deterioration amount. Specifically, the control device 3 corrects an operation such as addition or multiplication based on the deterioration amount 1C obtained immediately before the measured concentration of the hydrogen sensor 4, and stores the corrected hydrogen concentration 1A ′. The data is stored in the device 2 and output to the hydrogen concentration output device 7 in addition. Hydrogen concentration output device 7 outputs the input corrected hydrogen concentration 1A ′ to the outside. Therefore, the hydrogen concentration output from the hydrogen concentration output device 7 is not affected by the decrease in the measured concentration due to the deterioration of the hydrogen sensor 4. Further, when the correction value is larger than a predetermined threshold, the alarm device 6 determines that the detection element of the hydrogen sensor 4 has deteriorated and issues an alarm.
[0019] 次に、図 6の劣化検知システム 1を用いた劣化制御方法を説明する。劣化検知の対 象となる水素センサ 4を用いて所望の雰囲気の水素濃度を測定し始め、これと同時 に、記憶装置 2は水素センサ 4が検出した水素濃度 1Aを直前に求めた劣化量で補 正した測定濃度 1A'と測定時間 1Bの履歴を記憶する。そして、制御装置 3は、測定 濃度 1A'と測定時間 1Bの履歴力も測定に使用された水素センサ 4の所定時間当り の暴露量 1Eを求める。そして、制御装置 3は、暴露量 1Eに基づいて最新の劣化量 を求め、この劣化量に基づいて測定濃度の補正値を演算し、水素濃度出力装置 7は 、補正後の水素濃度 1A'を出力する。  Next, a deterioration control method using the deterioration detection system 1 in FIG. 6 will be described. At the same time, the storage device 2 uses the hydrogen sensor 4 that is the target of deterioration detection to measure the hydrogen concentration in the desired atmosphere. Store the history of corrected measurement concentration 1A 'and measurement time 1B. Then, the control device 3 obtains the exposure amount 1E per predetermined time of the hydrogen sensor 4 used for the measurement as well as the history power of the measurement concentration 1A ′ and the measurement time 1B. Then, the control device 3 calculates the latest deterioration amount based on the exposure amount 1E, calculates the correction value of the measured concentration based on this deterioration amount, and the hydrogen concentration output device 7 calculates the corrected hydrogen concentration 1A ′. Output.
[0020] 以上説明したように、記憶装置 2に記憶された相関関係から求めた劣化量が水素 センサ 4の劣化量となるので、水素センサ 4の出力値 (測定値 1A)に上記の相関関係 力 求めた劣化量で補正を掛けることにより、水素センサ 4の検出素子が劣化をして いても測定雰囲気の水素濃度の真値を精度良く得ることができる。  [0020] As described above, since the deterioration amount obtained from the correlation stored in the storage device 2 is the deterioration amount of the hydrogen sensor 4, the above correlation is applied to the output value (measured value 1A) of the hydrogen sensor 4. By applying correction with the calculated deterioration amount, the true value of the hydrogen concentration in the measurement atmosphere can be obtained with high accuracy even if the detection element of the hydrogen sensor 4 is deteriorated.
[0021] (第 3実施形態)  [0021] (Third embodiment)
図 7に示すように、本発明の第 3実施形態に係る水素センサ 4の劣化検知システム 1は、図 6と同様に、水素センサ 4が測定した水素の測定濃度と測定時間の履歴、及 び所定時間当りの水素センサ 4の暴露量と劣化量との相関関係を記憶する記憶装置 2と、測定濃度と測定時間の履歴力 測定に使用された水素センサ 4の所定時間当り の暴露量を求め、該暴露量と上記相関関係とから水素センサ 4の劣化量を求める制 御装置 3と、制御装置 3が求めた劣化量が所定の閾値を上回る場合に警報を発する 警報装置 6と、水素センサ 4の劣化量で補正した水素濃度を外部に出力する水素濃 度出力装置 7とを備える。 As shown in FIG. 7, the deterioration detection system for the hydrogen sensor 4 according to the third embodiment of the present invention. As in FIG. 6, 1 is a storage device 2 that stores the measured concentration of hydrogen measured by the hydrogen sensor 4 and the history of the measurement time, and the correlation between the exposure amount and the deterioration amount of the hydrogen sensor 4 per predetermined time. And a control device 3 for determining the amount of exposure per unit time of the hydrogen sensor 4 used for measurement concentration and measurement time and measuring the amount of deterioration of the hydrogen sensor 4 based on the exposure amount and the above correlation. The alarm device 6 that issues an alarm when the deterioration amount obtained by the control device 3 exceeds a predetermined threshold, and the hydrogen concentration output device 7 that outputs the hydrogen concentration corrected by the deterioration amount of the hydrogen sensor 4 to the outside. .
[0022] 第 3実施形態において、水素センサ 4は、水素と酸素とを電気化学的に反応させて 発電する燃料電池システム 8に隣接して配置されている。また、燃料電池システム 8 に隣接して、燃料電池システム 8、燃料電池システム 8を囲むケース、又は燃料電池 システム 8を搭載した車両の少なくとも何れかを換気する換気装置 5が配置されて ヽ る。なお、水素センサ 4は、燃料電池システム 8、燃料電池システム 8を含むケース、 あるいは燃料電池システム 8を搭載した車両に取り付けても構わな 、。  In the third embodiment, the hydrogen sensor 4 is disposed adjacent to the fuel cell system 8 that generates electricity by electrochemically reacting hydrogen and oxygen. Further, adjacent to the fuel cell system 8, a ventilator 5 for ventilating at least one of the fuel cell system 8, a case surrounding the fuel cell system 8, and a vehicle equipped with the fuel cell system 8 is disposed. The hydrogen sensor 4 may be attached to a fuel cell system 8, a case including the fuel cell system 8, or a vehicle equipped with the fuel cell system 8.
[0023] 制御装置 3は、記憶装置 2に記憶された測定濃度 1A'と測定時間 1Bを演算し、図 3のように水素センサ 4の所定時間当りの暴露量 1Eを求め、この場合の劣化量 1Cで 水素センサ 4の測定濃度に加算または乗算等の演算を施して補正を行い、この補正 後の水素濃度 1A'を水素濃度出力装置 7に出力する。したがって、水素濃度出力装 置 7が出力する水素濃度は、水素センサ 4の劣化による測定濃度の低下の影響を受 けない。  [0023] The control device 3 calculates the measurement concentration 1A 'and the measurement time 1B stored in the storage device 2, and obtains the exposure amount 1E per predetermined time of the hydrogen sensor 4 as shown in FIG. The amount of 1C is corrected by adding or multiplying the measured concentration of the hydrogen sensor 4 and the corrected hydrogen concentration 1A 'is output to the hydrogen concentration output device 7. Therefore, the hydrogen concentration output from the hydrogen concentration output device 7 is not affected by the decrease in the measured concentration due to the deterioration of the hydrogen sensor 4.
[0024] ある水素濃度 1A'に対して安全を確保できる換気装置 5の換気量の大きさは、予め 実験等で求められている。この換気量の大きさと水素濃度 1A'の関係は、記憶装置 2に記憶されている。換気装置 5の換気量は、この関係に基づき、水素濃度 1A'に応 じて制御装置 3により制御される。また、水素濃度出力装置 7の水素濃度 1Gが、所定 の水素濃度の閾値よりも大きい場合は、換気装置の故障と判断し、補正量が所定の 閾値よりも大きい場合は、検出素子の劣化と判断して警報装置 6より警報を発する。  [0024] The magnitude of the ventilation amount of the ventilator 5 that can ensure safety against a certain hydrogen concentration 1A 'is obtained in advance through experiments or the like. The relationship between the magnitude of the ventilation volume and the hydrogen concentration 1A ′ is stored in the storage device 2. Based on this relationship, the ventilation volume of the ventilation device 5 is controlled by the control device 3 according to the hydrogen concentration 1A ′. Also, if the hydrogen concentration 1G of the hydrogen concentration output device 7 is larger than the predetermined hydrogen concentration threshold, it is determined that the ventilator is out of order, and if the correction amount is larger than the predetermined threshold, the detection element is deteriorated. Judgment and alarm device 6 issues an alarm.
[0025] 図 8を参照して図 7の劣化検知システム 1を用いた劣化検知方法を説明する。 A deterioration detection method using the deterioration detection system 1 of FIG. 7 will be described with reference to FIG.
[0026] (i)先ず S01段階において、水素センサ 4が水素濃度の測定を開始する。これと同 時に、 S02段階において、制御装置 3は測定濃度 1Aと測定時間 1Bを取得する。 [0027] (ii) S03段階において、制御装置 3は取得した測定濃度 1Aを直前の劣化量 1Cに 基づき演算処理をして補正し、補正した測定濃度 1A'と測定時間 1Bを記憶装置 2に 記憶させる。 S04段階において制御装置 3は水素濃度出力装置 7へ補正処理を行つ た水素濃度 1A'を出力する。 S05段階において補正した測定濃度 1A'と測定時間 1 Bを演算して暴露量 1Eを求める。 (I) First, in step S01, the hydrogen sensor 4 starts measuring the hydrogen concentration. At the same time, in step S02, the control device 3 acquires the measured concentration 1A and the measured time 1B. [0027] (ii) In step S03, the control device 3 corrects the acquired measured concentration 1A by performing arithmetic processing based on the immediately preceding deterioration amount 1C, and stores the corrected measured concentration 1A 'and the measured time 1B in the storage device 2. Remember. In step S04, the control device 3 outputs the hydrogen concentration 1A ′ subjected to the correction process to the hydrogen concentration output device 7. Calculate the exposure concentration 1E by calculating the measured concentration 1A 'corrected in step S05 and the measurement time 1B.
[0028] (iii) S06段階において、制御装置 3は、補正処理を行った水素濃度 1A'に適合し た換気を換気装置 5へ指示し、換気装置 5は指示に応じて換気を実施する。 S07段 階において、制御装置 3は、補正値および Zまたは水素濃度の大きさをそれぞれの 閾値と比較する。補正値および Zまたは水素濃度の大きさがそれらの閾値より小さい 場合 (S07段階において NO)、処理は S02段階に戻り、水素濃度の大きさがこれら 閾値より大きい場合 (S07段階において YES)、処理は S08段階に進み、制御装置 3 は警報装置 6へ警報の指示を与え、警報装置 6は警報を発する。  [0028] (iii) In step S06, the control device 3 instructs the ventilator 5 to ventilate the corrected hydrogen concentration 1A ′, and the ventilator 5 performs ventilation according to the instruction. In step S07, the control device 3 compares the correction value and the magnitude of Z or hydrogen concentration with the respective threshold values. If the correction value and the magnitude of Z or hydrogen concentration are smaller than those threshold values (NO in step S07), the process returns to step S02, and if the hydrogen concentration is greater than these threshold values (YES in step S07), the process Goes to step S08, the control device 3 gives an alarm instruction to the alarm device 6, and the alarm device 6 issues an alarm.
[0029] 図 9は、水素センサ 4が水素濃度 X%の雰囲気内で濃度測定に使用されている場 合に、水素濃度出力装置 7が出力する水素濃度出力値 1Gを、劣化量での補正があ る場合と無い場合について示す。補正を行わない場合は、図中破線で表されるよう に、雰囲気の水素濃度力 %であるにもかかわらず、水素センサ 4の検出素子が劣 化するため、水素濃度出力装置 7への水素濃度出力が水素濃度 X%力 乖離してい く。しかし、補正を行う場合は、図中実線で表されるように、適正な水素濃度出力 X% が測定時間 tに係わらず安定して得られる。  [0029] Figure 9 shows that when the hydrogen sensor 4 is used for concentration measurement in an atmosphere with a hydrogen concentration of X%, the hydrogen concentration output value 1G output by the hydrogen concentration output device 7 is corrected by the deterioration amount. The cases with and without are shown. When correction is not performed, as indicated by the broken line in the figure, the detection element of the hydrogen sensor 4 deteriorates despite the fact that the hydrogen concentration power of the atmosphere is%. The concentration output deviates from the hydrogen concentration X% force. However, when correction is performed, an appropriate hydrogen concentration output X% can be stably obtained regardless of the measurement time t, as indicated by the solid line in the figure.
[0030] 図 10は、水素濃度出力装置 7への水素濃度出力値に対する補正処理の有無と換 気装置 5の換気量 (消費電力)との関係を示す。図中の破線は、水素濃度出力値に 対して劣化量での補正を行わな 、場合の換気量を示し、実線は補正を行った場合 の換気量を示す。換気量 (消費電力)は、換気対象となる空間内の水素濃度が上昇 し、水素濃度出力値が大きくなると、当該雰囲気の水素濃度を所定値まで下げるた めに増力!]させる必要がある。水素センサ 4の検出素子が劣化した場合は、水素の測 定濃度 1Aが測定雰囲気の水素濃度 (真値)と乖離する。補正を行わない場合は、こ の水素センサ 4の劣化による水素の測定濃度 1Aの低下を考慮して、低く設定した閾 値に対して、換気装置 5の容量を大きくし、余裕のある換気量 (消費電力)を確保する 必要が生じる。換気装置 5による換気は、換気対象の空間内のガスを十分に希釈す るため、予め水素センサ 4の劣化を考慮して求められた閾値に合わせた換気量でな ければならず、水素センサ 4が劣化していない場合でも、上記閾値に合わせて余裕 を持った大きい換気量が必要であり、電力消費量が大き力つた。 FIG. 10 shows the relationship between the presence / absence of correction processing for the hydrogen concentration output value to the hydrogen concentration output device 7 and the ventilation volume (power consumption) of the ventilation device 5. The broken line in the figure indicates the ventilation volume when the hydrogen concentration output value is not corrected by the deterioration amount, and the solid line indicates the ventilation volume when the correction is performed. Ventilation volume (power consumption) increases when the hydrogen concentration in the space to be ventilated increases and the hydrogen concentration output value increases, to reduce the hydrogen concentration in the atmosphere to the specified value! It is necessary to let them. When the detection element of the hydrogen sensor 4 deteriorates, the measured hydrogen concentration 1A deviates from the hydrogen concentration (true value) in the measurement atmosphere. If correction is not performed, taking into account the decrease in the measured hydrogen concentration 1A due to the deterioration of the hydrogen sensor 4, the capacity of the ventilator 5 is increased with respect to the threshold value set low, and there is a sufficient ventilation volume Ensure (power consumption) Need arises. Ventilation with Ventilation Device 5 must be at a ventilation volume that matches the threshold value determined in advance in consideration of deterioration of Hydrogen Sensor 4 in order to sufficiently dilute the gas in the space to be ventilated. Even if 4 is not degraded, a large ventilation with a margin according to the above threshold is required, and the power consumption is large.
[0031] 本発明の第 3実施形態によれば、補正後の水素濃度出力 1A'に合わせた換気を 行うことにより、劣化を考慮した低い閾値を設定する必要がなくなり、水素センサ 4の 劣化分に対応した不必要な余裕を換気量に与える必要がな 、ので、換気装置 5の消 費電力を削減できる。よって、本実施形態の劣化検知システム 1を燃料電池システム に適用した場合には、燃料ガス (水素ガス)消費量を削減できる。即ち、換気に過剰 な電力消費を発生させることなぐ燃料電池を用いた発電手段やこれを収容するケー ス、燃料電池車両の換気装置に余分な消費電力を発生させることもなぐ発電に必 要な燃料ガス等を過剰に消費して燃費に悪影響を与えることもなくなる。  [0031] According to the third embodiment of the present invention, by performing ventilation in accordance with the corrected hydrogen concentration output 1A ', it is not necessary to set a low threshold value considering deterioration, and the deterioration amount of the hydrogen sensor 4 is reduced. Since it is not necessary to give the ventilation volume an unnecessary margin corresponding to the power consumption, the power consumption of the ventilator 5 can be reduced. Therefore, when the deterioration detection system 1 of the present embodiment is applied to a fuel cell system, the fuel gas (hydrogen gas) consumption can be reduced. In other words, power generation means using a fuel cell that does not generate excessive power consumption for ventilation, a case that accommodates the power generation means, and a ventilation device for a fuel cell vehicle are necessary for power generation that does not generate excessive power consumption. There will be no adverse effects on fuel consumption due to excessive consumption of fuel gas or the like.
[0032] また、補正後の水素濃度出力 1Gを利用して、適正な水素濃度を運転者等に認知 させることができる。さらに、劣化量や補正量が所定値より大きいときに警報装置 6が 警報を発することにより、水素センサ 4またはその検出素子の交換時期を的確に運転 者等〖こ知らせることができる。  [0032] Further, an appropriate hydrogen concentration can be recognized by a driver or the like using the corrected hydrogen concentration output 1G. Furthermore, when the alarm device 6 issues an alarm when the deterioration amount or the correction amount is larger than a predetermined value, it is possible to accurately notify the driver of the replacement timing of the hydrogen sensor 4 or its detection element.
[0033] なお、水素センサ 4は、その内部に記憶装置 2、制御装置 3、警報装置 6、または水 素濃度出力装置 7のうち少なくとも何れ力 1つを備えるものでも構わない。この場合、 劣化検知システムを簡素化できる。  [0033] Note that the hydrogen sensor 4 may include at least one of the storage device 2, the control device 3, the alarm device 6, and the hydrogen concentration output device 7 in the inside thereof. In this case, the deterioration detection system can be simplified.
[0034] 上記のように、本発明は、 3つの実施形態によって記載した力 この開示の一部を なす論述及び図面はこの発明を限定するものであると理解すべきではない。この開 示力 当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。 即ち、本発明はここでは記載して 、な 、様々な実施形態等を包含すると 、うことを理 解すべきである。したがって、本発明はこの開示から妥当な特許請求の範隨こ係る 発明特定事項によってのみ限定されるものである。  [0034] As noted above, the invention is described in terms of three embodiments. It should not be understood that the discussion and drawings that form part of this disclosure limit the invention. This ability to reveal various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art. That is, it should be understood that the present invention includes various embodiments and the like as described herein. Accordingly, the present invention is limited only by the specific matters of the invention within the scope of claims reasonable from this disclosure.
産業上の利用の可能性  Industrial applicability
[0035] 本発明によれば、水素センサの測定濃度と測定時間の履歴力 水素センサの所定 時間当りの暴露量を求め、該暴露量と予め求められた所定時間当りの水素センサの 暴露量と劣化量との相関関係とから、使用されている水素センサの劣化量を高精度 で求めることができる。 [0035] According to the present invention, the concentration of the hydrogen sensor measured and the historical power of the measurement time, the amount of exposure of the hydrogen sensor per predetermined time is obtained, Based on the correlation between the amount of exposure and the amount of deterioration, the amount of deterioration of the hydrogen sensor used can be determined with high accuracy.

Claims

請求の範囲 The scope of the claims
[1] 水素センサが測定した水素の測定濃度と測定時間の履歴、及び所定時間当りの前 記水素センサの暴露量と劣化量との相関関係を記憶する記憶装置と、  [1] A storage device that stores a history of measurement concentration and measurement time of hydrogen measured by the hydrogen sensor, and a correlation between the exposure amount and deterioration amount of the hydrogen sensor per predetermined time;
前記測定濃度と前記測定時間の履歴から前記測定に使用された水素センサの所 定時間当りの暴露量を求め、該暴露量と前記相関関係から前記測定に使用された 水素センサの劣化量を求める制御装置と  The amount of exposure per unit time of the hydrogen sensor used for the measurement is obtained from the measured concentration and the history of the measurement time, and the amount of deterioration of the hydrogen sensor used for the measurement is obtained from the amount of exposure and the correlation. With control device
を備えた水素センサの劣化検知システム。  Hydrogen sensor deterioration detection system equipped with
[2] 前記制御装置は、直前に求めた劣化量に基づいて測定濃度の補正値を演算した 後、前記相関関係力 現在の前記劣化量を求める請求項 1記載の水素センサの劣 化検知システム。  [2] The deterioration detection system for a hydrogen sensor according to claim 1, wherein the control device calculates the correction value of the measured concentration based on the deterioration amount obtained immediately before, and obtains the current deterioration amount of the correlation force. .
[3] 前記水素センサは、水素と酸素とを電気化学的に反応させて発電する燃料電池シ ステムに隣接して配置され、  [3] The hydrogen sensor is disposed adjacent to a fuel cell system that generates electricity by electrochemically reacting hydrogen and oxygen,
前記制御装置は、前記補正値の大きさにより、前記燃料電池システム、前記燃料 電池システムを囲むケース、又は前記燃料電池システムを搭載した車両の少なくとも 何れかを換気する換気装置の換気量を変更する請求項 2記載の水素センサの劣化 検知システム。  The control device changes a ventilation amount of a ventilation device that ventilates at least one of the fuel cell system, a case surrounding the fuel cell system, or a vehicle equipped with the fuel cell system according to the magnitude of the correction value. The deterioration detection system for a hydrogen sensor according to claim 2.
[4] 前記水素センサは、水素と酸素とを電気化学的に反応させて発電する燃料電池シ ステムに隣接して配置され、  [4] The hydrogen sensor is disposed adjacent to a fuel cell system that generates electricity by electrochemically reacting hydrogen and oxygen,
前記制御装置は、補正後の水素濃度の大きさにより、前記燃料電池システム、前記 燃料電池システムを囲むケース、又は前記燃料電池システムを搭載した車両の少な くとも何れかを換気する換気装置の換気量を変更する請求項 2記載の水素センサの 劣化検知システム。  The control device is configured to ventilate at least one of the fuel cell system, a case surrounding the fuel cell system, or a vehicle equipped with the fuel cell system, depending on the corrected hydrogen concentration. The deterioration detection system for a hydrogen sensor according to claim 2, wherein the amount is changed.
[5] 前記制御装置が求めた前記劣化量が所定の閾値を上回る場合に警報を発する警 報装置、前記水素センサが求めた前記測定濃度を出力する水素濃度出力装置の少 なくとも一方を備えた請求項 1記載の水素センサの劣化検知システム。  [5] At least one of a warning device that issues an alarm when the deterioration amount obtained by the control device exceeds a predetermined threshold and a hydrogen concentration output device that outputs the measured concentration obtained by the hydrogen sensor is provided. The hydrogen sensor deterioration detection system according to claim 1.
[6] 前記水素センサが、前記記憶装置、前記制御装置、前記警報装置及び前記水素 濃度出力装置の少なくともいずれか 1つを備える請求項 5記載の水素センサの劣化 検知システム。 6. The hydrogen sensor deterioration detection system according to claim 5, wherein the hydrogen sensor includes at least one of the storage device, the control device, the alarm device, and the hydrogen concentration output device.
[7] 劣化検知の対象となる水素センサを用いて水素の濃度を測定し始め、 前記水素センサが測定した水素の測定濃度と測定時間の履歴を記憶し、 前記測定濃度と前記測定時間の履歴から前記測定に使用された水素センサの所 定時間当りの暴露量を求め、 [7] Start measuring hydrogen concentration using a hydrogen sensor that is subject to deterioration detection, store the measured hydrogen concentration and measurement time history measured by the hydrogen sensor, and store the measured concentration and measurement time history. To obtain the amount of exposure per unit time of the hydrogen sensor used in the measurement,
予め用意された所定時間当りの前記水素センサの暴露量と劣化量との相関関係か ら前記水素センサの前記劣化量を求める水素センサの劣化検知方法。  A method for detecting deterioration of a hydrogen sensor, wherein the deterioration amount of the hydrogen sensor is obtained from a correlation between an exposure amount and the deterioration amount of the hydrogen sensor per predetermined time prepared in advance.
[8] 前記劣化量を求める前に、直前の劣化量に基づいて測定濃度の補正値を演算し、 補正後の水素濃度を用いて前記相関関係から現在の前記劣化量を求める請求項 7 記載の水素センサの劣化検知方法。 [8] The calculated deterioration value of the measured concentration is calculated based on the immediately preceding deterioration amount before the deterioration amount is obtained, and the current deterioration amount is obtained from the correlation using the corrected hydrogen concentration. Of hydrogen sensor deterioration detection.
[9] 水素の濃度を測定する水素濃度測定手段が測定した水素の測定濃度と測定時間 の履歴、及び所定時間当りの前記水素濃度測定手段の暴露量と劣化量との相関関 係を記憶する記憶装置と、 [9] Stores the measured hydrogen concentration and measurement time history measured by the hydrogen concentration measuring means for measuring the hydrogen concentration, and the correlation between the exposure amount and the deterioration amount of the hydrogen concentration measuring means per predetermined time. A storage device;
前記測定濃度と前記測定時間の履歴から前記測定に使用された水素濃度測定手 段の所定時間当りの暴露量を求め、前記相関関係から前記劣化量を求める制御装 置と、  A control device for obtaining an exposure amount per predetermined time of the hydrogen concentration measurement means used for the measurement from the measurement concentration and the history of the measurement time, and obtaining the deterioration amount from the correlation;
を備える水素濃度測定手段の劣化検知システム。  A deterioration detection system for hydrogen concentration measuring means.
PCT/JP2005/019030 2004-10-26 2005-10-17 Hydrogen sensor deterioration detecting system and deterioration detecting method WO2006046423A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-310940 2004-10-26
JP2004310940 2004-10-26

Publications (1)

Publication Number Publication Date
WO2006046423A1 true WO2006046423A1 (en) 2006-05-04

Family

ID=36227666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/019030 WO2006046423A1 (en) 2004-10-26 2005-10-17 Hydrogen sensor deterioration detecting system and deterioration detecting method

Country Status (1)

Country Link
WO (1) WO2006046423A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0915186A (en) * 1995-06-26 1997-01-17 Ngk Insulators Ltd Combustible gas sensor and detection of deterioration of catalyst
JPH11142360A (en) * 1997-11-07 1999-05-28 Harman Co Ltd Unburnt-gas-concentration detecting sensor and burning apparatus provided with the sensor
JP2001165890A (en) * 1999-12-07 2001-06-22 Yazaki Corp Gas leak alarm
JP2004022299A (en) * 2002-06-14 2004-01-22 Honda Motor Co Ltd Method for detecting degradation of hydrogen sensor used in fuel cell system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0915186A (en) * 1995-06-26 1997-01-17 Ngk Insulators Ltd Combustible gas sensor and detection of deterioration of catalyst
JPH11142360A (en) * 1997-11-07 1999-05-28 Harman Co Ltd Unburnt-gas-concentration detecting sensor and burning apparatus provided with the sensor
JP2001165890A (en) * 1999-12-07 2001-06-22 Yazaki Corp Gas leak alarm
JP2004022299A (en) * 2002-06-14 2004-01-22 Honda Motor Co Ltd Method for detecting degradation of hydrogen sensor used in fuel cell system

Similar Documents

Publication Publication Date Title
JP2006153857A (en) Deterioration detection system of hydrogen sensor, deterioration detection method, and deterioration detection system of hydrogen concentration measuring means
CN104143647B (en) For estimating the system and method for fuel cell condition
JP5273244B2 (en) Fuel cell system
JP4623075B2 (en) Remaining gas display control device, remaining gas display device, and remaining gas display control method
US20070196709A1 (en) Fuel cell system and control method of same
JP2008010420A (en) Battery management system, estimating method of state of charging of battery and driving method of battery management system
JP2007292648A (en) Device for estimating charged state of secondary battery
CA2964187C (en) Control of an electrochemical device with integrated diagnostics, prognostics and lifetime management
JP6904226B2 (en) Power control system and method
US20080094054A1 (en) Fuel Cell State Monitor Apparatus and Method
CN109216737B (en) Detection and remediation of impure fuel
JP2005037286A (en) Battery charge/discharge current detection device
JP7079351B2 (en) Methods and systems for detecting leaks in fuel cell thin films
JP5367320B2 (en) Secondary battery state detection method, state detection device, and secondary battery power supply system
JP2007227058A (en) Fuel cell system, and method of controlling fuel cell system
CN107576695B (en) Electrochemical gas sensor, calibration method thereof and air conditioner
WO2006046423A1 (en) Hydrogen sensor deterioration detecting system and deterioration detecting method
JP5621423B2 (en) Fuel cell system
WO2019159584A1 (en) Device for determining abnormality in secondary battery
US8097382B2 (en) Fuel cell system and control method thereof
JP2010238476A (en) Fuel battery deterioration determination device
CN112635800B (en) System and method for estimating hydrogen concentration of fuel cell
JP2006134806A (en) Fuel cell system
JP4744188B2 (en) Control device for fuel cell vehicle
JP3733791B2 (en) Output correction control device for vehicle fuel cell system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS KE KG KM KP KZ LC LK LR LS LT LU LV LY MA MG MK MN MW MX MZ NA NG NI NZ OM PG PH PL PT RO RU SC SD SE SK SL SM SY TJ TM TN TR TT TZ UA US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IS IT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05793462

Country of ref document: EP

Kind code of ref document: A1