WO2006045226A1 - Method and equipment adapted to 8psk equalization demodulation in edge system - Google Patents

Method and equipment adapted to 8psk equalization demodulation in edge system Download PDF

Info

Publication number
WO2006045226A1
WO2006045226A1 PCT/CN2004/001241 CN2004001241W WO2006045226A1 WO 2006045226 A1 WO2006045226 A1 WO 2006045226A1 CN 2004001241 W CN2004001241 W CN 2004001241W WO 2006045226 A1 WO2006045226 A1 WO 2006045226A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
signal
sequence
channel parameter
metric
Prior art date
Application number
PCT/CN2004/001241
Other languages
French (fr)
Chinese (zh)
Inventor
Gang Xiong
Original Assignee
Zte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zte Corporation filed Critical Zte Corporation
Priority to CNB2004800436674A priority Critical patent/CN100452890C/en
Priority to PCT/CN2004/001241 priority patent/WO2006045226A1/en
Publication of WO2006045226A1 publication Critical patent/WO2006045226A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03178Arrangements involving sequence estimation techniques
    • H04L25/03248Arrangements for operating in conjunction with other apparatus
    • H04L25/03292Arrangements for operating in conjunction with other apparatus with channel estimation circuitry
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/0335Arrangements for removing intersymbol interference characterised by the type of transmission
    • H04L2025/03375Passband transmission
    • H04L2025/03401PSK

Abstract

A method and equipment adapted to 8 PSK equalization demodulation in EDGE system, said method includes: reversing the received I,Q signal with e-j3hl I8 ; relating the reversed signal to obtain the evaluation value of channel parameter; according to the evaluation value of channel parameter, performing delay synchronization and determining the time advance and energy , as well as the biggest channel parameter evaluation value; matching-filtering the evaluation value of channel parameter with the reversed and synchronized signal; by using the channel parameter evaluation value and matching-filtered signal, searching the maximum likelihood sequence and outputting the maximum likelihood sequence as demodulation result; converting the output maximum likelihood sequence to bit value. The present invention also discloses an equipment adapted to 8PSK equalization demodulation in EDGE system. By reducing the state number, selecting the maximum likelihood sequence from all the possible sequence as the output sequence, under the premise of meeting the EDGE protocol specification, the present invention reduces the calculation complexity, and guarantees the performance of base band demodulation.

Description

一种适用于 EDGE系统的 8PSK均衡解调的方法及装置  Method and device for 8PSK equalization demodulation for EDGE system
技术领域 Technical field
本发明涉及移动通讯领域中均衡解调的方法和装置, 尤其涉及一种适 用于 EDGE (Enhanced Da ta ra tes for GSM Evolut ion)系统的 8PSK均衡解 调的方法及装置。 背景技术  The present invention relates to a method and apparatus for equalization demodulation in the field of mobile communications, and more particularly to a method and apparatus for 8PSK equalization demodulation for an EDGE (Enhanced Da ta tes for GSM Evoluting) system. Background technique
作为第二代移动蜂窝通信系统的 GSM系统, 在全世界范围内已经得到 了广泛的应用。 但随着移动通信技术的发展和业务的多样化, 人们对数据 业务的需求不断增加。 为了满足人们的需求, 以支持语音业务为主的 GSM 系统在其 PHASE2和 PHASE2+规范中提出了两种高速数据业务的 莫型, 即基 于高速数据比特率和电路交换的 HSCSD (高速电路交换数据)和基于分组交 换数据的 GPRS (通用分组无线业务)。 虽然 HSCSD和 GPRS采用了多时隙的 操作模式, 已在一定程度上提高了数据传输速率, 不过其仍,然采用的是 GMSK (高斯最小频移键控)的调制方式, 与第三代移动逸信系统的 384kb i t/ s数据速率的广域覆盖和大约 2Mb i t/ s数据率的局域覆盖还想去 甚远,因此有必要采用更为先进的通信和信号处理技术,以进一步扩大 GSM 系统的容量。 ETSI (欧洲电信标准协会)已决定发展增强数据速專的 GSM演 进方案一 EDGE作为 GSM未来的演进方向。 于是 EDGE由此应运而生。  The GSM system, which is the second generation mobile cellular communication system, has been widely used worldwide. However, with the development of mobile communication technologies and the diversification of services, the demand for data services is increasing. In order to meet people's needs, the GSM system supporting voice services has proposed two types of high-speed data services in its PHASE2 and PHASE2+ specifications, namely HSCSD (High Speed Circuit Switched Data) based on high-speed data bit rate and circuit switching. And GPRS (General Packet Radio Service) based on packet switched data. Although HSCSD and GPRS adopt a multi-slot operation mode, the data transmission rate has been improved to some extent, but it still uses the modulation method of GMSK (Gaussian Minimum Shift Keying), and the third generation mobile The wide-area coverage of the 384 kb it/s data rate of the letter system and the local coverage of the data rate of approximately 2 Mb it/s are still far-reaching, so it is necessary to adopt more advanced communication and signal processing techniques to further expand the GSM system. Capacity. ETSI (European Telecommunications Standards Institute) has decided to develop a GSM implementation for enhanced data speed EDGE as an evolutionary direction for GSM in the future. So EDGE came into being.
图 是移动通信系统的信道模型基本示意图。 基带接收机接收经过无 线信道口传来的数据,该数据首先由解调模块对接收到的基带 I , Q信号进 行解调, 解调后的结果再送至信道译码模块进行信道的译码。 对于控制信 道来说, 至此可以直接得到系统的发送信息; 而对于业务信道则不同, 还 需要进行信源译码, 才能够得到系统所发送的语音和数据。 在 信系统的 信道模型中, 解调模块位于接收机的前端, 可以看出, 解调性能的好坏直 接决定了整个移动通信系统的性能的好坏。 The figure is a basic schematic diagram of a channel model of a mobile communication system. The baseband receiver receives the data transmitted through the wireless channel port. The data is first demodulated by the demodulation module for the received baseband I and Q signals, and the demodulated result is sent to the channel decoding module for channel decoding. For the control channel, the transmission information of the system can be obtained directly; and for the traffic channel, the source decoding is required to obtain the voice and data sent by the system. In the channel model of the signal system, the demodulation module is located at the front end of the receiver, and it can be seen that the demodulation performance is good or not. The connection determines the performance of the entire mobile communication system.
为了在现有蜂窝系统中提供更高的数据通信速率, EDGE引入了多电平 数字调制方式一一 8PSK调制。 由于 8PSK调制是一种线性调制, 3个连续比 特映射到 I/Q坐标的一个符号, 从而能提供更高的比特率和频谱效率, 且 实现复杂度属于中等。 GSM系统中使用的 GMSK的调制方式也是 EDGE调制 方式的一部分。 两种调制方式的符号速率都是 271kbi t/s , 每时隙的净比 特率分别为 22. 8kbi t/s (GMSK)和 69. 2kb i t /s (8PSI )。 8PSK调制用于用户 的数据通道, GMSK调制用于 GPRS的 200kHz载波上的所有控制信道。  In order to provide higher data communication rates in existing cellular systems, EDGE introduces a multi-level digital modulation scheme, 8PSK modulation. Since 8PSK modulation is a linear modulation, three consecutive bits are mapped to one symbol of the I/Q coordinates, thereby providing higher bit rate and spectral efficiency, and the implementation complexity is moderate. The modulation of GMSK used in the GSM system is also part of the EDGE modulation scheme. The symbol rates of both modulation modes are 271kbi t/s, and the net bit rate per time slot is 22. 8kbi t/s (GMSK) and 69. 2kb i t /s (8PSI ). 8PSK modulation is used for the user's data channel, and GMSK is used for all control channels on the GPRS 200kHz carrier.
在移动通信中, 无线信道的信道特性是非常恶劣的, 主要表现为多径 衰落和多普勒衰落。 多径衰落会使信号产生码间千扰, 接收端必须采用均 衡技术来消除信道的影响。 均衡通过在接收机内的均衡器对信道中幅度和 延迟进行补偿, 来达到消除码间干扰的目的。 解调器必须在收到的受干扰 的信号中最大可能地估计出原调制数据, 为使解调器完成此项工作, 在每 个突发脉冲序列中都含有一个接收机能识别的预定序列, 即训练序列, 以 便接收机能估计由传播引起的信号失真。  In mobile communications, the channel characteristics of the wireless channel are very poor, mainly manifested by multipath fading and Doppler fading. Multipath fading can cause inter-symbol interference between signals, and the receiving end must use equalization techniques to eliminate the effects of the channel. Equalization compensates for amplitude and delay in the channel by an equalizer in the receiver to eliminate inter-symbol interference. The demodulator must estimate the original modulated data to the greatest extent possible in the received interfered signal. In order for the demodulator to perform this work, each burst sequence contains a predetermined sequence that the receiver can recognize. That is, the training sequence is such that the receiver can estimate the signal distortion caused by the propagation.
均衡技术通常可分为线性均衡法、 非线性均衡法和最大似然序列均衡 法(MLSE)。 相对于一些次优的均衡技术来说, 最 似然序列均衡法作为一 种在具有码间干扰的信道中最优的序列估计方法, 常被用于移动无线信道 的均衡器中。 在 GSM系统中, 普遍采用基于 Vi ter bi算法的均衡器来实现 MLSE, 在采用最优的 MLSE算法时, 信道的总状态数为 M" , 其中 为信号 的调制符号表的大小, Z为信道的弥散长度。 换句话说, 基于 Vi terbi算 法的 MLSE算法的计算复杂度取决于 M和 L, 当 M比较大的时候, 即使在 L 比较小的情况下, 计算复杂度仍然非常高。  Equalization techniques are generally classified into linear equalization methods, nonlinear equalization methods, and maximum likelihood sequence equalization (MLSE). Compared with some suboptimal equalization techniques, the most likelihood sequence equalization method is used as an optimal sequence estimation method in a channel with intersymbol interference, and is often used in an equalizer of a mobile radio channel. In the GSM system, the equalizer based on the Vi ter bi algorithm is commonly used to implement the MLSE. When the optimal MLSE algorithm is adopted, the total number of states of the channel is M", where is the size of the modulation symbol table of the signal, and Z is the channel. In other words, the computational complexity of the MLSE algorithm based on the Vi terbi algorithm depends on M and L. When M is large, the computational complexity is still very high even when L is small.
在 GSM 系统中, 由于采用 GMSK 二进制调制, 一般可以使用最优的 Vi terbi 算法作解调, 而信道中的弥散长度在系统中一般取 = 6, 这样运 算复杂度不是很高。 而在 EDGE系统中, 如图 2所示, 图 2为 EDGE协议中 规定的 8PSK的星座图。 在 EDGE系统中信号的调制符号表的大小是 = 8 , 可以看出,如果沿用在 GMSK调制中实现的基于 Vi terbi的 MLSE方法, 8PSK 解调时的总状态数为 85 - 32768, 其复杂度将大大的增加。 对于基带解调系 统来说, 这是不可能采用软件无线电的方式来实现的。 所以需要找到一种 合适的方法来实现均衡解调, 不仅运算复杂度低, 同时还要保证解调的性 能。 In the GSM system, due to the use of GMSK binary modulation, the optimal Vi terbi algorithm can generally be used for demodulation, and the dispersion length in the channel is generally taken as 6 in the system, so the computational complexity is not very high. In the EDGE system, as shown in Figure 2, Figure 2 is in the EDGE protocol. The specified 8PSK constellation. In the EDGE system, the size of the modulation symbol table of the signal is = 8 . It can be seen that if the Vi terbi-based MLSE method implemented in GMSK modulation is used, the total state number of 8 PSK demodulation is 85 - 32768, which is complicated. The degree will increase greatly. For baseband demodulation systems, this is not possible with software radio. Therefore, it is necessary to find a suitable method to achieve equalization demodulation, which not only has low computational complexity, but also ensures demodulation performance.
在专矛 J号为 6, 707, 849 的美国专^' J " Met hods, Rece ivers and Equa l i zers Having Increased Computat ional Ef f i c iency" 中, 采用了 联合最大似然序列估计法 (MLSE)和判决反馈法 (DFS E)的技术, 提出了一种 有效的减少复杂度的方法。 此专利将信道弥散长度分为两个部分, 一部分 用于 MLSE算法, 另一部分用于 DFSE算法, 网格图中的状态数可以根据用 于 MLSE算法的弥散长度而定, 这样就减少了 MLSE算法的状态数目。 同时 在计 分支度量的时候, 将所有状态移入的不同的部分与相同的部分分开 计算, 这样可以进一步减少计算复杂度。但是当用于 MLSE算法的弥散长度': 比较^的时候,整个系统的计算复杂度仍然很高。另外采用 DFSE技术在觯: 调均餘的时候会造成误差累积。  In the US-specific J' M "Met hods, Receivers and Equa li zers Having Increased Computate ional Ef fic iency" with the special spear J number 6, 707, 849, the Joint Maximum Likelihood Sequence Estimation (MLSE) and The technique of decision feedback method (DFS E) proposes an effective method to reduce complexity. This patent divides the channel dispersion length into two parts, one for the MLSE algorithm and the other for the DFSE algorithm. The number of states in the grid map can be determined according to the dispersion length used for the MLSE algorithm, thus reducing the MLSE algorithm. The number of states. At the same time, when calculating the branch metric, the different parts moved into all the states are calculated separately from the same part, which can further reduce the computational complexity. But when used for the MLSE algorithm's dispersion length ': compare ^, the computational complexity of the entire system is still high. In addition, the use of DFSE technology will cause errors to accumulate when adjusting the balance.
在专利号为 5, 644, 603 的美国专利 "Maximum Like l ihood Sequence Es t ima tor wi th Var iable Number of States" 中, 采用训练序列估计信 道参数, 并根据所估计的信道参数来确定 Vi terbi 算法的状态数目, 得到 均衡 调的输出结果。 此专利需要对不同的状态数目进行不同的处理, 那 么相应的程序空间需要增加, 资源的消耗比较大。 另外当信号的调制符号 表比 大的时候, 系统的复杂度呈指数上升, 不 合在 EDGE系统中采用。  In the US patent "Maximum Like l ihood Sequence Es t ima tor wi th Var iable Number of States", the training sequence is used to estimate channel parameters, and Vi terbi is determined based on the estimated channel parameters. The number of states of the algorithm is the result of the balanced adjustment. This patent requires different processing of different state numbers, so the corresponding program space needs to be increased, and the resource consumption is relatively large. In addition, when the modulation symbol of the signal is large, the complexity of the system increases exponentially and is not used in the EDGE system.
中国专利 01112664. 7针对第三代移动通信系统中的 EDGE技术, 提出 了一种与之相适应的 8PSK调制的均衡解调实现方法,首先将翻转后的信号 进行 E£配滤波, 将输出的结果再进行相干解调, 务判断解调后的符号, 然 后根梧相干解调后的数据, 进行 N次迭代路径搜索(Nrf为迭代次数, 一般 为 1或者 2) , 从所有可能的序列中选出具有最大似然函数值的序列作为输 出序列。 采用此种方法, 使得计算复杂度降为
Figure imgf000006_0001
。 此发明虽然计算 量小, 系统可实现性强, 但是经过仿真验证, 其沟衡解调的算法性能并不 能满 EDGE协议中的规定, 不适合在实际 EDGE系、统中实现。 发明内容
Chinese patent 01112664. 7 proposes an adaptive 8PSK modulation equalization demodulation implementation method for EDGE technology in the third generation mobile communication system. First, the inverted signal is E-filtered and the output will be output. As a result, coherent demodulation is performed to determine the demodulated symbols, and then the coherent demodulated data is used to perform N iterative path searches (N rf is the number of iterations, generally For 1 or 2), the sequence with the largest likelihood function value is selected from all possible sequences as the output sequence. Using this method, the computational complexity is reduced to
Figure imgf000006_0001
. Although the invention has a small amount of calculation and a high system achievability, the performance of the algorithm for the decentralized demodulation is not fully stipulated in the EDGE protocol, and is not suitable for implementation in the actual EDGE system. Summary of the invention
本发明的目的是, 针对现有技术的不足, 提 it!一种适用于 EDGE系统 的 8PSK均衡解调的方法及装置,通过减少状态数目 ,从所有可能的序列中 选出最大似然序列作为输出的序列,在满足 EDGE†办议规范的前提下,可以 大大降低计算复杂度, 并同时保证基带解调系統的性能。  The object of the present invention is to provide a method and apparatus for 8PSK equalization demodulation for an EDGE system by reducing the number of states and selecting a maximum likelihood sequence from all possible sequences. The output sequence can greatly reduce the computational complexity and ensure the performance of the baseband demodulation system while satisfying the EDGE† specification.
为了实现上述目的, 本发明提供了一种适用 f EDGE系统的 8PSK均衡 解调的方法, 包括以下步驟:  In order to achieve the above object, the present invention provides a method for 8PSK equalization demodulation for an f EDGE system, comprising the following steps:
步骤 1、 对接收到的 I , Q信号采用^ 3 '8进行翁 3转; Step 1, using the ^ 3 ' 8 for the received I and Q signals;
步骤 2、 对翻转后的信号进行相关获得信道参数的估计值;  Step 2: Perform correlation on the inverted signal to obtain an estimated channel parameter;
步骤 3、 根据信道参数的估计值, 确定时间提前量及能量和最大的信, 道参教估计值;  Step 3. Determine the time advance amount and the energy and the maximum signal according to the estimated value of the channel parameter, and estimate the value of the channel;
步骤 4、 根据能量和最大的信道参数的估计值对翻转后的信号进行匹 配滤波;  Step 4. Match and filter the inverted signal according to the estimated value of the energy and the maximum channel parameter;
步骤 5、 利用能量和最大的信道参数的估计喪和匹配滤波后的信号, 寻找最大似然序列, 并作将该最大似然序列输出;  Step 5. Using the estimated energy and the maximum channel parameter to estimate the singularity and matching the filtered signal, find the maximum likelihood sequence, and output the maximum likelihood sequence;
步骤 6、 将输出的最大似然序列符号值转换为比特值。  Step 6. Convert the output maximum likelihood sequence symbol value into a bit value.
所述的步骤 5中用于寻找最大似然序列的算法为采用次优的寻找最大 似然序列的算法, 所述的次优的寻找最大似然序列的算法包括如下步骤: 步骤 51、 从时间单位 k=L开始, 计算匹配滤波后输出的信号的各个状 态对应长为 L段分支的序列的度量, 存储各个状态对应的幸存序列和幸存 的序列度量; 步聚 52、 k=k+l,把此节点进入每个状态的分支和这些分支相连的前一 节点相连, 得到 ^条路径; 在状态转移时, 计算每一转移路径的次分支度 量; The algorithm for finding the maximum likelihood sequence in step 5 is an algorithm for finding a maximum likelihood sequence using suboptimal, and the suboptimal algorithm for finding the maximum likelihood sequence includes the following steps: Step 51: From time The unit k=L starts, and each state of the signal outputted by the matched filter is calculated corresponding to the metric of the sequence of the L segment branch, and the surviving sequence corresponding to each state and the surviving sequence metric are stored; Step 52, k=k+l, connect the branch of this node into each state and the previous node connected to these branches to obtain a path; in the state transition, calculate the secondary branch metric of each transfer path;
步骤 53、 从计算出的次分支度量中选择最大妁次分支度量, 保存这个最 大次分支度量作为状态转移的分支度量, 同时保存该分支度量的符号值; 步骤 54、将每条路径中的分支度量与其对 的前一级状态中存储的以 前路径的幸存度量值相加得到四条路径的累积度量值;  Step 53: Select a maximum sub-branch metric from the calculated sub-branch metrics, save the maximum sub-branch metric as a branch metric of the state transition, and save the symbol value of the branch metric; Step 54: Branches in each path The metric is added to the surviving metric of the previous path stored in the previous state of the pair to obtain the cumulative metric of the four paths;
步暴 55、从 2条进入该状态的路径中选取并存储一条具有最大累积度 量的路径作为新的幸存路径, 最大度量作为该求态的幸存度量, 同时删除 其他所有的非幸存路径;  Step storm 55. Select and store a path with the largest cumulative amount from the two paths entering the state as the new surviving path, and the maximum metric is used as the surviving metric of the determinate, and all other non-surviving paths are deleted at the same time;
步骤 56、 若 k〈待解调序列的长度, 则转向步骤 52; 否则, 比较各个 状态的幸存度量, 得到最大幸存度量, 所述的最大幸存度量所对应的幸存 序列即为最大似然序列。  Step 56: If k <the length of the sequence to be demodulated, go to step 52; otherwise, compare the surviving metrics of the respective states to obtain a maximum surviving metric, and the surviving sequence corresponding to the largest surviving metric is the maximum likelihood sequence.
本发明还提供了一种适用于 EDGE系统的 8PSK均衡解调的装置,包括: 信号翻转模块, 信道估计模块, 时延同步模块 Φ匹配滤波模块, 还包括均 衡解调模块, 符号转换模块, 其中所述的信号 3转模块, 其输入端与接收 机端的信号采样输出端连接, 用于将采样得到的 8PSK信号采用 进行 翻转, 并将翻转后的信号同时输出到信道估计模块和匹配滤波模块;  The invention also provides an 8PSK equalization demodulation device suitable for an EDGE system, comprising: a signal inversion module, a channel estimation module, a delay synchronization module Φ matching filtering module, and a balanced demodulation module and a symbol conversion module, wherein The signal 3 conversion module has an input end connected to the signal sampling output end of the receiver end, configured to invert the sampled 8PSK signal, and simultaneously output the inverted signal to the channel estimation module and the matched filtering module;
所述的信道估计模块, 用于将输入的训练序列与翻转后的信号进行相 关来获得信道参数的估计值, 并将得到的信道参数的估计值输出到时延同 步模块;  The channel estimation module is configured to correlate the input training sequence with the inverted signal to obtain an estimated value of the channel parameter, and output the estimated value of the obtained channel parameter to the delay synchronization module;
所述的时延同步模块, 用于根据输入的信道参数的估计值获得时间的 提前量, 同时确定能量最大的信道参数估计值, 并将该能量最大的信道参 数估计值同时输入到匹配滤波模块和均衡解调模块;  The delay synchronization module is configured to obtain a timing advance according to an estimated value of the input channel parameter, determine an estimated channel parameter with the largest energy, and simultaneously input the channel parameter estimated value with the largest energy to the matched filtering module. And equalization demodulation module;
所述的匹配滤波模块, 用于将从时延同步模块输出的能量最大的信道 参数估计值与从信号翻转模块输出的翻转后的倌号进行匹配滤波, 并将匹 配滤波后的信号输出到均衡解调模块; The matched filtering module is configured to match and filter the channel parameter estimation value with the largest energy output from the delay synchronization module and the inverted nickname output from the signal inversion module, and The filtered signal is output to the equalization demodulation module;
所述的均衡解调模块, 用于根据输入的匹酉己滤波后的信号及能量最大 的信道参数估计值寻找最大似然序列 , 将得到釣符号值输出到符号转换模 块;  The equalization demodulation module is configured to search for a maximum likelihood sequence according to the input filtered signal and the channel parameter estimated value with the largest energy, and output the obtained fishing symbol value to the symbol conversion module;
所述的符号转换模块,用于将输入的符号值转换成与之对应的比特值。 本发明采用了减少状态的 Vi terb i算法对输入的基带数字 I , Q信号进 行均衡解调, 从所有可能的序列中选出最大似然序列作为输出的序列, 在 满足 EDGE协议规范的前提下, 可以大大降低 i十算复杂度, 解决了 EDGE系 统中信号在无线信道中的各种畸变, 如信道特' I"生出现零点等, 尤其是由于 多径效应而产生的码间干扰。 附图说明  The symbol conversion module is configured to convert the input symbol value into a bit value corresponding thereto. The invention adopts the reduced state Vi terb i algorithm to perform equalization demodulation on the input baseband digital I and Q signals, and selects the maximum likelihood sequence as the output sequence from all possible sequences, under the premise of meeting the EDGE protocol specification. It can greatly reduce the complexity of i-time calculation, and solve various distortions of signals in the wireless channel in the EDGE system, such as the occurrence of zeros in the channel special 'I', especially the inter-symbol interference caused by the multipath effect. Illustration
图 1为现有移动通信系统的信道模型基本示意图;  1 is a basic schematic diagram of a channel model of an existing mobile communication system;
图 2为现有 EDGE协议中的 8PSK的星座图;  Figure 2 is a constellation diagram of 8PSK in the existing EDGE protocol;
图 3为本发明所述方法的流程图;  Figure 3 is a flow chart of the method of the present invention;
图 4为本发明中网格转移的碟形运算图;  4 is a disk diagram of a mesh transfer in the present invention;
图 5为本发明中的 8PSK子集分割的示意图;  Figure 5 is a schematic diagram of 8PSK subset splitting in the present invention;
图 6为本发明所述装置的结构图。 具体实施方式  Figure 6 is a structural view of the apparatus of the present invention. detailed description
本发明所述的方法适用于 EDGE系统的 8PSK均衡解调, 通过减少状态 数目, 从所有可能的序列中选出最大似然序列作为输出的序列, 在满足 EDGE协议规范的前提下, 可以大大降低计算复杂度, 具体的, 该方法的流 程如图 3所示, 包括如下步驟:  The method of the present invention is applicable to 8PSK equalization demodulation of an EDGE system. By reducing the number of states, the maximum likelihood sequence is selected from all possible sequences as an output sequence, which can be greatly reduced under the premise of satisfying the EDGE protocol specification. The computational complexity, specifically, the flow of the method is as shown in FIG. 3, and includes the following steps:
步驟 1、 对接收到的 I , Q信号采用^ Λ/8进行翻转; Step 1. Invert the received I and Q signals by using ^ Λ / 8 ;
步驟 2、 对翻转后的信号进行相关获得信道参数的估计值; 步骤 3、 根据信道参数的估计值, 获得时间提前量及能量和最大的信 道参数估计值, 以此来进行时延同步; 由于在空间信号传输有一定的时间 迟, 需要将发送信号和接收信号在时间上同步起来, 获取时间提前量就 是为了实现这个同步, 保证解调的正确性。 Step 2: Perform correlation on the inverted signal to obtain an estimated channel parameter; Step 3: Obtain time advance quantity and energy and maximum channel parameter estimation value according to the estimated value of the channel parameter, thereby performing delay synchronization; since the space signal transmission has a certain time delay, the transmission signal and the reception signal are required. Synchronizing in time, the timing advance is to achieve this synchronization, to ensure the correctness of the demodulation.
步骤 4、 将信道参数的估计值与翻转反同步后的信号进行匹配滤波; 步骤 5、 利用信道参数的估计值和匹配滤波后的信号, 寻找最大似然 列, 并作将该最大似然序列作为解调结果输出;  Step 4: matching and filtering the estimated value of the channel parameter and the inverse-synchronized signal; Step 5: using the estimated value of the channel parameter and the matched filtered signal, finding the maximum likelihood column, and making the maximum likelihood sequence Output as a demodulation result;
步骤 6、 将输出的最大似然序列符号值转换为比特值。  Step 6. Convert the output maximum likelihood sequence symbol value into a bit value.
对于上述每一步骤具体详述如下,  For each of the above steps, the details are as follows,
在步骤 1中, 由于根据 EDGE的协议见定, 8PSK的基带调制需要进行 符号旋转, 即 其中 k 表示调制符号的索引, 每一次调制的旋转角度为 3^/8In step 1, because of the protocol according to EDGE, the baseband modulation of 8PSK requires symbol rotation, that is, where k represents the index of the modulation symbol, and the rotation angle of each modulation is 3 ^/ 8 .
在解调 8PSK时, 需要进行相位反旋转的运算,按下面公式进行相位反 旋转的运算:  When demodulating 8PSK, the phase anti-rotation operation is required, and the phase anti-rotation operation is performed according to the following formula:
yj{k) = yj{k) -
Figure imgf000009_0001
Figure imgf000009_0003
Yj{k) = yj {k) -
Figure imgf000009_0001
Figure imgf000009_0003
公式展开后:  After the formula is expanded:
3k  3k
Ij(k) = Jj(k) cos ■Q ,(k)sin  Ij(k) = Jj(k) cos ■Q ,(k)sin
、丁」
Figure imgf000009_0002
,Ding"
Figure imgf000009_0002
其中, 为第 k个符号上第 j个采样点位置上接收信号, 和2^ ^ 分别为接收信号 )的实部和虚部; 为翻转后的信号, »和2 )分别 为翻转后的信号 y»的实部和虚部。 Wherein, the received signal is received at the position of the jth sample point on the kth symbol, and 2 ^^ is the real part and the imaginary part of the received signal respectively; for the inverted signal, » and 2 ) are respectively inverted signals y » The real and imaginary parts.
3ht  3ht
本发明采用查表的方法来获得了的正弦和余弦值。因为它是以 2 为周 ( 2>k7v The present invention uses a look-up table method to obtain sine and cosine values. Because it is 2 weeks ( 2>k7v
cos I 、 . ( >k \  Cos I , . ( >k \
sin  Sin
期, 所以, 在一个变化周期里 (k = 0, 1...15 ) , 8 和 8」的值可 以分为 16对, 计算出这 16对的数据, 建立两张表, 完成相位反旋转的运 Period, so, in a change cycle (k = 0, 1...15), the values of 8 and 8" can be divided into 16 pairs, calculate the 16 pairs of data, create two tables, complete the phase anti-rotation Transport
( 3Κπλ . ( ^πλ cos sin  ( 3Κπλ . ( ^πλ cos sin
算。 其中, 这两张表中, 一张表存 ^ 8 )的值, 另外一张存 8 的值。 所述的式( 9 )中的实部和虚部通过对这两个 进行查询来获得, 这样得到 各个翻转后的信号 t)。 Count. Among them, in the two tables, one table stores the value of ^ 8 ), and the other one stores the value of 8 . The real and imaginary parts in the equation (9) are obtained by querying the two, thus obtaining the respective inverted signals t).
所述步骤 2中, 通过训练序列与翻转后的信号进行相关来获得信道参数的 估计值。 EDGE系统中, 每一突发脉冲 156. 25符号, 占一个时隙, 约 5ΊΊ s , 与信道衰落周期相比很小, 因此可以认为一时隙内信道时变影响不大。 因为 在无线通讯中, 信号在空中传播, 会有信道来影响它。 如果移动台在运动的 话, 这个信道将会发生变化, 但是由于一个时隙的时间非常短, 那么就可以 认为这个信道的变化可以忽略不计。 训练序列^ 26符号(约 96. 2 μ δ) , 放在 突发脉冲中间, 这样更可认为信道参数在一个时隙内不变。 这里采用滑动相 关白々方法, 利用训练序列的正交特性来获取信 的参数。 In the step 2, an estimated value of the channel parameter is obtained by correlating the training sequence with the inverted signal. In the EDGE system, each burst has 156.2 symbols, which occupies one time slot, about 5 s s, which is small compared with the channel fading period. Therefore, it can be considered that the channel time variation in a time slot has little effect. Because in wireless communication, the signal propagates through the air, there is a channel to influence it. If the mobile station is moving, the channel will change, but since the time slot of a time slot is very short, then the change of this channel can be considered negligible. The training sequence ^ 26 symbols (about 96.2 μ δ ) is placed in the middle of the burst so that the channel parameters are considered to be constant in one time slot. Here, the sliding correlation method is used to obtain the parameters of the signal by using the orthogonal characteristics of the training sequence.
通过训练序列与翻转后的信号滑动相关 到的信道参数的估计值可以. 表示为:
Figure imgf000010_0001
The estimated value of the channel parameter associated with the slipping of the signal after the training sequence can be expressed as:
Figure imgf000010_0001
其中 t = 0,l,...,N , 取决于搜索的范围, α )是训练序列的符号值, ) 表示第 个符号上笫 J'个采样点位置上的信^参数估计值, )表示为翻 转后的信号。  Where t = 0,l,...,N , depending on the scope of the search, α ) is the symbolic value of the training sequence, ) represents the estimated value of the signal at the position of the 'J' sample points on the first symbol, ) Expressed as a signal after flipping.
在步骤 3中, 根据上一步骤中得到的信 参数估计值找到时间的提前 量, 同时确定能量和最大的信道参数估计值, 作为均衡、 解调的基本信道 参教和匹配滤波器的系数。 时延同步的过程 是信道参数估计值中寻找最 大能量和的过程。 时间提前量的计算公式为:  In step 3, the advance of the time is found based on the estimated value of the signal obtained in the previous step, and the energy and the maximum estimated channel parameter are determined as the coefficients of the equalized, demodulated basic channel and matched filter. The process of delay synchronization is the process of finding the maximum energy sum in the channel parameter estimates. The formula for calculating the timing advance is:
∑4 = argmax ^ n(k)\ >  ∑4 = argmax ^ n(k)\ >
δ 04 241 最终(即能量和最大) 的信道参数估计值可以通过时间提前量获得:
Figure imgf000011_0001
δ 04 241 The final (ie energy and maximum) channel parameter estimates can be obtained by time advance:
Figure imgf000011_0001
其中 为第 个符号上第 J '个采样点位置上的最终的信道参数估计 值。  Where is the final channel parameter estimate at the J'th sample point position on the first symbol.
其中, 时间提前量是通过寻找氣大能量和的方式得到的, 例如, 参数 估计值为 a,b,c,d,e, 那么不同位置丄的能量和为  Among them, the timing advance is obtained by finding the sum of the energy of the gas, for example, the parameter estimates are a, b, c, d, e, then the energy sum of the different positions is
(laT+lbl2), ( |b|2+|c|2), ( |c|2+|d| ( |d|2+|e|2), 从中找到最大的值, 比如第二个值最大。 即为最大的能量和, 这样 TA=2。 得到的时间提前量, 即可通过公式 g ) = ^. t+7¾) = ο,ι,.··,ζ- 1得到能量和最大的信道参数估 计值 g )。 (laT+lbl 2 ), ( |b| 2 +|c| 2 ), ( |c| 2 +|d| ( |d| 2 +|e| 2 ), find the largest value, such as the second The value is the largest. That is the maximum energy sum, so TA = 2. The obtained time advance, you can get the energy and maximum by the formula g ) = ^. t+73⁄4) = ο, ι,.··,ζ-1 Channel parameter estimate g).
在步骤 4中, 步骤 3中输出的信道参数估计值作为匹配滤波模块的输 入, 与翻转后的信号进行匹配滤波。 外需要注意的是匹配滤波器的系数, 也就是说, 对信号进行滤波的时候所需要的系数(FIR滤波器) , 其与能 量和最大的信道参数估计值为共轭关系。  In step 4, the estimated channel parameter output in step 3 is used as the input of the matched filter module, and matched and filtered with the inverted signal. What needs to be noted is the coefficient of the matched filter, that is, the coefficient (FIR filter) required to filter the signal, which is conjugated with the energy and the estimated value of the largest channel parameter.
在步骤 5中, 根据步骤 3中输 ώ的信道参数估计值和匹配滤波后输出 的信号来寻找最大似然序列, 同时愉出解调的结果。  In step 5, the maximum likelihood sequence is searched for based on the channel parameter estimate of the input in step 3 and the matched filtered output signal, and the demodulated result is found.
在这一步中, 用于寻找最大似然序列的算法为采用次优的寻找最大似 然序列的算法, 本发明主要侧重于咸少解调均衡实现的复杂度, 基本原理 基于 Viterbi算法。 具体地, 所述 ά 次优的寻找最大似然序列的算法包括 如下步骤:  In this step, the algorithm for finding the maximum likelihood sequence is a suboptimal algorithm for finding the maximum likelihood sequence. The present invention mainly focuses on the complexity of the implementation of the salty demodulation equalization, and the basic principle is based on the Viterbi algorithm. Specifically, the algorithm for finding the maximum likelihood sequence of the sub-optimal includes the following steps:
步骤 51、 首先需要初始化, 从日 间单位 k=L开始, 计算匹配滤波后输 出的信号的各个状态对应长为 L段分支的序列的度量, 存储各个状态对应 的幸存序列和幸存的序列度量;  Step 51: First, initialization is required. Starting from the daytime unit k=L, each state of the signal outputted by the matched filter is calculated as a metric corresponding to the sequence of the L segment branch, and the surviving sequence corresponding to each state and the surviving sequence metric are stored;
步骤 52、 k=k+l,把此节点进入每个状态的分支和这些分支相连的前一 节点相连, 得到 ^条路径; 在状态转移时, 计算每一转移路径的次分支度 量, 所述的次分支度量的计算公式为: Sub _ Branch _ Metric = Re^ i\ Zk - ^S^ > 其中, ^为幸存路径中的符号估计值; Step 52, k=k+l, connecting the branch of the node into each state and the previous node connected to the branches to obtain a path; in the state transition, calculating a secondary branch metric of each transfer path, The calculation formula for the sub-branch metric is: Sub _ Branch _ Metric = Re^ i\ Z k - ^S^ > where ^ is the estimated value of the symbol in the surviving path;
S I为合成信道的自相关函数;  S I is an autocorrelation function of the synthesized channel;
为发送信号的符号的共轭值;  The conjugate value of the symbol of the transmitted signal;
步驟 53、 从计算出的次分支度量寸选择最大的次分支度量, 保存这个 最大次分支度量作为状态转移的分支度量, 同时保存该最大次分支度量的 符号值;  Step 53: Select a maximum secondary branch metric from the calculated secondary branch metric, save the maximum secondary branch metric as a branch metric of the state transition, and save the symbol value of the maximum secondary branch metric;
步骤 54、将每条路径中的分支度量与其对应的前一级状态中存储的以 前路径的幸存度量值相加得到四条路径的累积度量值;在所述步骤 54之前 或之后, 还可以保存每个状态幸存符号路径历史表, 所述的幸存符号路径 历史表为一个长度为 5的数组, 保存的为过去 5个时刻的幸存路径上的符 号估计值 ^ Step 54: Add the branch metric in each path to the surviving metric value of the previous path stored in the corresponding previous level state to obtain the cumulative metric value of the four paths; before or after the step 54 a state surviving symbol path history table, wherein the surviving symbol path history table is an array of length 5, and the symbol estimates stored on the surviving paths of the past 5 moments are saved ^
步驟 55、 从 2条进入该状态的路径中选取并存储一条具有最大累积度 量的路径作为新的幸存路径, 最大度量作为该状态的幸存度量, 同时删除 其他所有的非幸存路径;  Step 55: Select and store a path with the largest cumulative amount from the two paths entering the state as a new surviving path, and the maximum metric is used as a surviving metric of the state, and all other non-surviving paths are deleted at the same time;
步骤 56、 若 k〈待解调序列的长复, 则转向步骤 52; 否则, 停止迭代, 比较各个状态的幸存度量, 最大幸存度量所对应的幸存序列即为最大似然 序列。  Step 56: If k<the long sequence of the sequence to be demodulated, go to step 52; otherwise, stop the iteration and compare the surviving metrics of each state, and the surviving sequence corresponding to the largest surviving metric is the maximum likelihood sequence.
上述步骤 52-55的过程可由图 4表示,图 4为本发明所涉及到的网格转 移的碟形运算图。 其中, 箭头表示分支, 状态 2 /和 2. +1为转移前的两个 状态, 状态 和 /+16为转移后的两个状态。 对前一级的两个相邻状态 2 / 和 2 /+1 , —共有四条支路, 在每个 t路中, 都需要计算 4个次分支度量, 并从次分支度量中选择最大的一个做为分支度量, 每一分支度量再与其前 一级状态 2 i 或 2i+l 中存储的以前路径的累计度量值相加得到四条路径 Branch-UpO, Branch— Upl , BranctuDownO与 Branch-Downl的累积度量值。 (需要注意的是, 这四条路径中的 支度量为 4 条次分支度量中的: ^大 值。 )然后在对应的两个当前状态 禾口 /+16下两两比较, 每个当前状态都 留下累积度量值较大的一条路径作为幸存路径, 同时将当前状态的度 t值 做为幸存度量值以及与幸存路径对应的输入比特存入相应的緩冲区, 备 下一级计算。 The process of the above steps 52-55 can be represented by FIG. 4, which is a disk shape operation diagram of the mesh transfer according to the present invention. Among them, the arrow indicates the branch, the state 2 / and 2. +1 are the two states before the transition, and the state and /+16 are the two states after the transition. For the two adjacent states 2 / and 2 / +1 of the previous stage, there are four branches. In each of the roads, four sub-branch metrics need to be calculated, and the largest one is selected from the sub-branch metrics. As a branch metric, each branch metric is added to the cumulative metric of the previous path stored in state 2 i or 2i+l of the previous level to obtain the accumulation of four paths Branch-UpO, Branch-Upl, BranctuDownO, and Branch-Downl. metric. (It should be noted that the branch metrics in these four paths are in the 4 sub-branch metrics: ^ large value.) Then compare the two current states and +16 under the corresponding two current states, each current state is left A path with a larger cumulative metric is used as the surviving path. At the same time, the value t of the current state is used as the surviving metric and the input bit corresponding to the surviving path is stored in the corresponding buffer, and the next level of calculation is prepared.
如图所示,对于下一个时刻的状态(/)来说,输入的是图 5中所示 ^子 集 0中的符号值。 幸存度量的值是比较 Branch— UpO与 Branch_Upl中 累 计度量的最大的值。 同样, 对于下一个时刻的状态(/+16)来说, 输入^是 图 5 中所示的子集 1 中的符号值。 幸存度量的值是比较 Branch— DownO 与 Branch— Downl中的累计度量的最大的值。  As shown in the figure, for the state (/) at the next moment, the symbol value in the subset 0 shown in Fig. 5 is input. The value of the survivor metric is the largest value that compares the cumulative metrics in Branch-UpO and Branch_Upl. Similarly, for the state of the next moment (/+16), the input ^ is the symbol value in subset 1 shown in Figure 5. The value of the survivor metric is the largest value that compares the cumulative metrics in Branch-DownO and Branch-Down.
图 5为本发明中 8PSK子集分割的示意图, 将 8PSK信号分割为数目较 少的状态, 并根据此状态来创建如图 4所示的网格转移的碟形运算图 0。 如图所示, 将 8PSK分成两个子集, 分别表示为子集 0和子集 1。 子集 0 包 含了符号 1, 3 , 5 , 7; 而子集 1包舍了符号 0 , 2 , 4 , 6。 于是在 Vi teirbi : 算法中的网格图中的状态转移可以肴作是子集 0和子集 1的转移, 而不是 每个符号的转移。 在图 4 中可以看出, 每个状态中 -""^"^"^"*— 5}代表 的是每个子集 0或者 1, 而不是符 值。 但是其对应的符号值需要存储在 幸存符号路径历史表, 在计算次分 度量时需要利用到它。 所以, 整个状 态的个数为 25 = 32而不是 85 = 32768 , 这样, 计算复杂度大大降低了。 FIG. 5 is a schematic diagram of 8PSK subset splitting according to the present invention, dividing the 8PSK signal into a state with a small number, and according to this state, creating a disk map 0 of the mesh transfer as shown in FIG. 4. As shown, 8PSK is divided into two subsets, denoted as subset 0 and subset 1, respectively. Subset 0 contains the symbols 1, 3, 5, 7; and subset 1 encloses the symbols 0, 2, 4, 6. Thus the state transition in the grid diagram in the Vi teirbi: algorithm can be categorized as a transition of subset 0 and subset 1, rather than a shift of each symbol. As can be seen in Figure 4, each state - ""^"^"^"*- 5 } represents each subset 0 or 1, rather than a value, but its corresponding symbol value needs to be stored in the survivor. The symbol path history table needs to be used in the calculation of subdivision metrics. Therefore, the number of whole states is 2 5 = 32 instead of 8 5 = 32768, so the computational complexity is greatly reduced.
本发明还提供了适用于 EDGE系统的 8PSK均衡解调的装置, 该装置的 结构图如图 5所示, 该装置包括: 像号翻转模块 301, 信道估计模块 3 02 , 时延同步模块 303 , 匹配滤波模块 304、均衡解调模块 305和符号转换模块 306。信号翻转模块 301的输入端与接收机端的信号采样输出端连接, 用于 将采样得到的 8PSK信号采用 进行翻转, 并将翻转后的信号同时 出 到信道估计模块 302和匹配滤波模:^ 304;  The present invention also provides an apparatus for 8PSK equalization demodulation for an EDGE system. The structure of the apparatus is shown in FIG. 5. The apparatus includes: a picture number inversion module 301, a channel estimation module 302, and a delay synchronization module 303. The matched filtering module 304, the equalization demodulation module 305, and the symbol conversion module 306. The input end of the signal inversion module 301 is connected to the signal sampling output end of the receiver, and is used for inverting the sampled 8PSK signal, and simultaneously outputting the inverted signal to the channel estimation module 302 and the matched filtering mode: ^304;
信道估计模块 302用于将输入的训练序列与翻转后的信号进行相关来 获得信道参数的估计值, 并将得到的信道参数的估计值输出到时延同步模 块 303; The channel estimation module 302 is configured to correlate the input training sequence with the inverted signal. Obtaining an estimated value of the channel parameter, and outputting the estimated value of the obtained channel parameter to the delay synchronization module 303;
时延同步模块 303用于根据输入的信道参数的估计值获得时间的提前 量, 同时确定能量最大的信道参数估计值, 并将该能量最大的信道参数估 计值同时输入到匹配滤波模块 304和均衡解调模块 305;  The delay synchronization module 303 is configured to obtain an advance amount of time according to the estimated value of the input channel parameter, determine the channel parameter estimation value with the largest energy, and simultaneously input the channel parameter estimation value with the largest energy to the matched filtering module 304 and the equalization. Demodulation module 305;
匹配滤波模块 304用于将从时延同步模块 303输出的能量最大的^ ί言道 参数估计值与从信号翻转模块 301输出的翻转后的信号进行匹配滤波, 并 将匹配滤波后的信号输出到均衡解调模块 305;  The matching filtering module 304 is configured to perform matched filtering on the estimated value of the energy output from the delay synchronization module 303 and the inverted signal output from the signal inversion module 301, and output the matched filtered signal to the signal. Equalization demodulation module 305;
均衡解调模块 305用于根据输入的匹配滤波后的信号及能量最大妁信 道参数估计值寻找最大似然序列, 将得到的符号值输出到符号转换模块 306;  The equalization demodulation module 305 is configured to find the maximum likelihood sequence according to the input matched filtered signal and the energy maximum channel parameter estimation value, and output the obtained symbol value to the symbol conversion module 306;
符号转换模块 306用于将输入的符号值转换成与之对应的比特值。 其中, 均衡解调模块 305是该装置的核心,其用于寻找最大似然序列, 均衡解调模块 305将估计的信道参数值, 以及匹配滤波器的输出作为均衡 解调的输入, 来寻找最大似然序列, 同时输出解调的结果。 另外需要注意 的是当采用定点 DSP来实现均衡解调时, DSP中数值的取值范围有 P 。 当 实现 Vi terbi算法中的度量更新时, 保存的度量值极有可能溢出, 而超 出 DSP的表示范围。 所以在采月 DSP实现时需要保证运算过程中不 生溢 出, 另外能够适应较大的动态范围。  The symbol conversion module 306 is operative to convert the input symbol values into corresponding bit values. The equalization demodulation module 305 is the core of the apparatus for finding the maximum likelihood sequence, and the equalization demodulation module 305 uses the estimated channel parameter value and the output of the matched filter as the input of the equalization demodulation to find the maximum. The likelihood sequence, while outputting the result of the demodulation. In addition, it should be noted that when using fixed-point DSP to achieve equalization demodulation, the value range of the DSP has a value of P. When implementing metric updates in the Vi terbi algorithm, the saved metrics are most likely to overflow, beyond the representation range of the DSP. Therefore, in the implementation of the DSP, it is necessary to ensure that there is no overflow during the operation, and it can adapt to a large dynamic range.
均衡解调模块 305的实现方法在图 4和图 5中进一步说明。图 5是 8PSK 子集分割的示意图。将 8PSK信号分割为数目较少的状态,并根据此 态来 创建网格图。 如图所示, 将 8PSK分成两个子集, 分别表示为子集 0和子集 1。 子集 0包含了符号 1 , 3, 5 , 7; 而子集 1包含了符号 0, 2 , 4, 6。 于 是在 Vi terbi算法中的网格图中的状态转移可以看作是子集 0和子 1的 转移, 而不是每个符号的转移。 另外, 其对应的符号值需要存储在拿存符 号路径历史表, 在计算次分支度量时需要利用到符号值。 图 4为本发明所涉及到的网格转移的碟形运算图。 对前一级的两个相 邻状态 2 i和 2 i+l, 一共有四条支路, 在碟形运算中, 需要计算出四条支 路与接收信号的分支度量 (请先说明次分支度量是如何计算的, 从次分支 度量中选择最大的一个做为分支度量) , 每一分支度量再与其前一及状态 2 i或 2 i+l中存储的以前洛径的累计度量值相加得到四条路径 Branch— UpO, Branch— Upl , Branch— Do 0与 Branch— Downl的累积度量值。 (需要注意 的是, 这四条路径中的分支度量为 4条次分支度量中的最大值。 ) 然后在 对应的两个当前状态 i和 i+16下两两比较,每个当前状态都留下累 只度量 值较大的一条路径作为幸存路径, 同时将当前状态的度量值做为幸存度量 值以及与幸存路径对应的输入比特存入相应的緩冲区, 准备下一级计算。 The implementation of the equalization demodulation module 305 is further illustrated in Figures 4 and 5. Figure 5 is a schematic diagram of 8PSK subset splitting. The 8PSK signal is segmented into a smaller number of states, and a mesh map is created based on this state. As shown, 8PSK is divided into two subsets, denoted as subset 0 and subset 1, respectively. Subset 0 contains the symbols 1, 3, 5, 7; and subset 1 contains the symbols 0, 2, 4, 6. The state transition in the trellis diagram in the Vi terbi algorithm can then be seen as a transition of subset 0 and sub-1, rather than a shift of each symbol. In addition, its corresponding symbol value needs to be stored in the storage symbol path history table, and the symbol value needs to be utilized in calculating the secondary branch metric. FIG. 4 is a disk diagram of the mesh transfer according to the present invention. For the two adjacent states 2 i and 2 i+l of the previous stage, there are four branches. In the dish operation, the branch metrics of the four branches and the received signal need to be calculated (please specify that the secondary branch metric is How to calculate, select the largest one from the sub-branch metric as the branch metric), and each branch metric is added to the previous metric and the cumulative metric of the previous Luoyang stored in state 2 i or 2 i+l to obtain four Path Branch—UpO, Branch—Upl, Branch—Dou and Branch—Lengl cumulative metrics. (It should be noted that the branch metrics in the four paths are the maximum of the four sub-branch metrics.) Then, in the corresponding two current states i and i+16, the current state is left tired. Only one path with a larger metric value is used as the surviving path. At the same time, the metric of the current state is stored as a surviving metric and the input bit corresponding to the surviving path is stored in the corresponding buffer, and the next level of calculation is prepared.
另外, 为了得到训练序列, 所述的装置还包括训练序列模块, 所述的 训练序列模块用于向所述的信道估计模块输出用于与翻转后的信号进行相 关的训练序列。  In addition, in order to obtain a training sequence, the apparatus further includes a training sequence module, and the training sequence module is configured to output, to the channel estimation module, a training sequence for correlating with the inverted signal.
本发明所述方法综合考虑了均衡解调方法的性能、 复杂度、 稳定性和 运算速度,采用了减少状态的 Vi terbi算法对输入的基带数字 I, Q信号进 行均衡解调,来解决 EDGE 系统中信号在无线信道中的各种畸变,如信道特 性出现零点等, 尤其是由于多径效应而产生的码间干扰。  The method of the invention comprehensively considers the performance, complexity, stability and operation speed of the equalization demodulation method, and adopts the reduced state Vi terbi algorithm to perform equalization demodulation on the input baseband digital I and Q signals to solve the EDGE system. Various distortions of the medium signal in the wireless channel, such as zero occurrence of channel characteristics, especially inter-symbol interference due to multipath effects.
最后所应说明的是, 以上实施例仅用以说明本发明的技术方案而非限 制, 尽管参照较佳实施例对本发明进行了详细说明, 本领域的普通技术人 员应当理解, 可以对本发明的技术方案进行修改或者等同替换, 而不脱离 本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。  It should be noted that the above embodiments are only intended to illustrate the technical solutions of the present invention and are not intended to be limiting, and the present invention will be described in detail with reference to the preferred embodiments. The modifications and equivalents of the present invention are intended to be included within the scope of the appended claims.

Claims

权利要求书 Claim
1、一种适用于 EDGE系统的 8PSK均衡解调的方法, 其特征在于, 包括 以下步骤: A method for 8PSK equalization demodulation for an EDGE system, comprising the steps of:
步驟 1、 对接收到的 I , Q信号采用^ 进行翻转;  Step 1. Use the ^ to flip the received I and Q signals;
步骤 2、 对翻转后的信号进行相关获得信道参数的估计值;  Step 2: Perform correlation on the inverted signal to obtain an estimated channel parameter;
步骤 3、 根据信道参数的估计值, 确定时间提前量及能量和最大的信 道参数估计值;  Step 3. Determine the time advance amount and the energy and the maximum channel parameter estimation value according to the estimated value of the channel parameter;
步骤 4、 根据能量和最大的信道参数的估计值对翻转后的信号进行匹 配滤波;  Step 4. Match and filter the inverted signal according to the estimated value of the energy and the maximum channel parameter;
步骤 5、 利用能量和最大的信道参数的估计值和匹配滤波后韵信号, 寻找最大似然序列, 并 ^!夺该最大似然序列输出;  Step 5. Use the energy and the estimated value of the largest channel parameter and the matched filtered rhythm signal to find the maximum likelihood sequence, and ^! Taking the maximum likelihood sequence output;
步骤 6、 将输出的最大似然序列符号值转换为比特值。  Step 6. Convert the output maximum likelihood sequence symbol value into a bit value.
2、 根据权利要求 1所述的适用于 EDGE系统的 8PSK均衡解调的方法, 其特征在于, 所述步骤 2中, 对翻转后的信号进行相关的过程为: 利用训 练序列对翻转后的信号进行滑动相关。  2. The method for 8PSK equalization demodulation applied to an EDGE system according to claim 1, wherein in the step 2, the process of correlating the inverted signal is: using the training sequence to reverse the signal Make a sliding correlation.
3、 根据权利要求 1所述的适用于 EDGE系统的 8PSK均衡解调的方法, 其特征在于, 所述步厥 3的所述的时间提前量通过以下公式确
Figure imgf000016_0001
3. The method for 8PSK equalization demodulation for an EDGE system according to claim 1, wherein said time advance of said step 3 is determined by the following formula
Figure imgf000016_0001
其中, 表示第 个符号上第 J'个采样点位置上的信道参数估计值; 所述的能量和最大的信道参数估计值通过以下公式获得:  Wherein, the channel parameter estimation value at the J'th sampling point position on the first symbol is represented; the energy and the maximum channel parameter estimation value are obtained by the following formula:
gj(k) = hj(k + TA) k = 0,l, - -,L - \  Gj(k) = hj(k + TA) k = 0,l, - -,L - \
4、 根据权利要求 1所述的适用于 EDGE系统的 8PSK均衡解调的方法, 其特征在于, 所述步 5中用于寻找最大似然序列的算法为采 J¾次优的寻 找最大似然序列的算法。 The method for 8PSK equalization demodulation applied to the EDGE system according to claim 1, wherein the algorithm for finding the maximum likelihood sequence in the step 5 is to find the maximum likelihood sequence by using the J3⁄4 suboptimal sequence. Algorithm.
5、 根据权利要求 4所述的适用于 EDGE系统的 8PSK均餘解调的方法, 其特征在于, 所述的次优的寻找最大似然序列的算法包括以下步骤: 5. The method for 8PSK residual demodulation for an EDGE system according to claim 4, wherein the suboptimal algorithm for finding a maximum likelihood sequence comprises the following steps:
步骤 51、 从时间单位 k=L开始, 计算匹配滤波后输出信号的各个状态 对应长为 L段分支的序列的度量, 存储各个状态对应的幸存序列和幸存的 序列度量;  Step 51: Starting from a time unit k=L, calculating, for each state of the matched filtered output signal, a metric corresponding to the sequence of the L segment branch, storing the surviving sequence corresponding to each state and the surviving sequence metric;
步骤 52、 k=k+l,把此节点进入每个状态的分支和这些分主相连的前一 节点相连, 得到 2条路径; 计算每一转移路径的次分支度量; Step 52, k=k+l, connecting the branch of the node into each state and the previous node connected to the sub-masters to obtain two paths; calculating a sub-branch metric of each transfer path;
步骤 53、 从计算出的次分支度量中选择最大的次分支度量, 保存这个最 大次分支度量作为状态转移的分支度量, 同时保存该分支度量的符号值; 步骤 54、将每条路径中的分支度量与其对应的前一级状态中存储的以 前路径的幸存度量值相加得到四奈路径的累积度量值。  Step 53: Select a largest sub-branch metric from the calculated sub-branch metrics, save the maximum sub-branch metric as a branch metric of the state transition, and save the symbol value of the branch metric; Step 54: Branches in each path The metric is added to the surviving metric of the previous path stored in its corresponding previous state to get the cumulative metric of the four-way path.
步骤 55、从 1条进入待进入状态的路径中选取并存储一夺具有最大累 积度量的路径作为新的幸存路径, 最大度量作为该状态的幸 度量, 同时 删除其他所有的非幸存路径。  Step 55: Select and store a path with the largest cumulative metric as a new surviving path from the path that enters the state to be entered, and the maximum metric is used as a fortunate measure of the state, and all other non-surviving paths are deleted.
步驟 56、 若 k〈待解调序列的长度, 则转向步骤 52 ; 否则, 比较各个 状态的幸存度量, 得到最大幸存度量, 所述的最大幸存度量所对应的幸存 序列即为最大似然序列。  Step 56: If k <the length of the sequence to be demodulated, go to step 52; otherwise, compare the surviving metrics of the respective states to obtain a maximum surviving metric, and the surviving sequence corresponding to the largest surviving metric is the maximum likelihood sequence.
6、 根据权利要求 5所述的适用于 EDGE系统的 8PSK均衡解调的方法, 其特征在于, 所逸步骤 52中的次分支度量通过以下的公式疾得:
Figure imgf000017_0001
6. The method for 8PSK equalization demodulation for an EDGE system according to claim 5, wherein the sub-branch metric in the escape step 52 is obtained by the following formula:
Figure imgf000017_0001
其中, -'为幸存路径中的符号估计值;  Where -' is the estimated value of the symbol in the surviving path;
S 1为合成信道的自相关函数;  S 1 is an autocorrelation function of the synthesized channel;
r:为发送信号的符号的共轭值。  r: is the conjugate value of the symbol of the transmitted signal.
7、 根据权利要求 5所述的适用于 EDGE系统的 8PSK均衡解调的方法, 其特征在于,在所述步骤 54之前或之后,保存每个所述状态的幸存符号路 径历史表, 所述的幸存符号路径历史表为一个长度为 5的数组, 所述数组 用于保存过去 5个时刻的幸存路径上的符号估计值。 7. The method of 8PSK equalization demodulation for an EDGE system according to claim 5, wherein a surviving symbol path for each of said states is saved before or after said step 54 The path history table, the surviving symbol path history table is an array of length 5, and the array is used to store symbol estimation values on surviving paths of the past 5 moments.
8、 一种适用于 EDGE系统的 8PSK均衡解调的装置, 包括: 信号翻转模 块, 信道估计模块, 时延同步模块和匹配滤波模块, 其特征在于, 还包括 均衡解调模块, 符号转换模块, 其中所述的信号翻转模块, 其输入端与接 收机端的信号采样输出端连接, 用于将采样得到的 SPSK信号采用 3 /8进 行翻转, 并将翻转后的信号同时输出到信道估计模块和匹配滤波模块; 所述的信道估计模块, 用于将输入的训练序列与翻转后的信号进行相 关来获得信道参数的估计值, 并将得到的信道参数的估计值输出到时延同 步模块; 8. An apparatus for 8PSK equalization demodulation for an EDGE system, comprising: a signal inversion module, a channel estimation module, a delay synchronization module, and a matched filtering module, and characterized in that: a balanced demodulation module, a symbol conversion module, The signal inversion module is connected to the signal sampling output end of the receiver end, and is used for inverting the sampled SPSK signal by 3/8 , and simultaneously outputting the inverted signal to the channel estimation module and matching. a filtering module, configured to: correlate the input training sequence with the inverted signal to obtain an estimated value of the channel parameter, and output the estimated value of the obtained channel parameter to the delay synchronization module;
所述的时延同步模块, 用于根据输入的信道参数的估计值获得时间的 提前量, 同时确定能量最大的信道参数估计值, 并^ 1该能量最大的信道参 数估计值同时输入到匹配滤波模块和均衡解调模块; The delay synchronization module, according to advance estimates channel parameter inputs obtained time, while determining the maximum energy of channel parameter estimates, and ^ 1 the highest energy channel parameter estimates simultaneously input to the matched filter Module and equalization demodulation module;
所述的匹配滤波模块, 用于将从时延同步模块输出的能量最大的信道 参数估计值与从信号翻转模块输出的翻转后的信号进行匹配滤波, 并将匹 配滤波后的信号输出到均衡解调模块;  The matching filtering module is configured to perform matched filtering on the channel parameter estimation value that outputs the maximum energy output from the delay synchronization module and the inverted signal output from the signal inversion module, and output the matched filtered signal to the equalization solution. Tuning module
所述的均衡解调模块, 用于根据输入的匹配滤波后的信号及能量最大 的信道参数估计值寻找最大似然序列, 将得到的符号值输出到符号转换模 块;  The equalization demodulation module is configured to search for a maximum likelihood sequence according to the input matched filtered signal and the channel parameter estimate with the largest energy, and output the obtained symbol value to the symbol conversion module;
所述的符号转换模块,用于将输入的符号值转 成与之对应的比特值。 The symbol conversion module is configured to convert the input symbol value into a bit value corresponding thereto.
9、 根据权利要求 8所述的适用于 EDGE系统的 8PSK均衡解调的装置, 其特征在于, 还包括训练序列模块, 所述的训练序列模块用于向所述的信 道估计模块输出用于与翻转后的信号进行相关的训 东序列。 9. The apparatus for 8PSK equalization demodulation of an EDGE system according to claim 8, further comprising a training sequence module, wherein said training sequence module is configured to output to said channel estimation module for use with The inverted signal is used to perform the relevant training sequence.
PCT/CN2004/001241 2004-10-29 2004-10-29 Method and equipment adapted to 8psk equalization demodulation in edge system WO2006045226A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CNB2004800436674A CN100452890C (en) 2004-10-29 2004-10-29 Method and equipment adapted to 8PSK equalization demodulation in EDGE system
PCT/CN2004/001241 WO2006045226A1 (en) 2004-10-29 2004-10-29 Method and equipment adapted to 8psk equalization demodulation in edge system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2004/001241 WO2006045226A1 (en) 2004-10-29 2004-10-29 Method and equipment adapted to 8psk equalization demodulation in edge system

Publications (1)

Publication Number Publication Date
WO2006045226A1 true WO2006045226A1 (en) 2006-05-04

Family

ID=36227087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2004/001241 WO2006045226A1 (en) 2004-10-29 2004-10-29 Method and equipment adapted to 8psk equalization demodulation in edge system

Country Status (2)

Country Link
CN (1) CN100452890C (en)
WO (1) WO2006045226A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008151254A1 (en) * 2007-06-04 2008-12-11 The Regents Of The University Of California Methods of tissue generation and tissue engineered compositions
CN103001899A (en) * 2011-09-15 2013-03-27 京信通信系统(中国)有限公司 Self-adaptive balanced demodulation method and device for GSM (global system of mobile communications)
CN105024962A (en) * 2015-05-25 2015-11-04 中国电子科技集团公司第十研究所 GMSK signal low-complexity coherent demodulation method
CN114401174A (en) * 2022-01-21 2022-04-26 中国电子科技集团公司第五十四研究所 Joint phase tracking detection method based on SOQPSK and PSP

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102739582B (en) * 2012-06-27 2015-08-12 京信通信系统(广州)有限公司 Be applicable to equilibrium acceptance method and the system of wireless channel
CN117792836A (en) * 2022-09-21 2024-03-29 深圳市中兴微电子技术有限公司 Maximum likelihood sequence detection circuit, detection method and device and electronic equipment
CN117792837A (en) * 2022-09-22 2024-03-29 中兴通讯股份有限公司 Implementation method and chip of MLSE equalizer, electronic equipment and computer readable medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1381995A (en) * 2001-04-18 2002-11-27 上海大唐移动通信设备有限公司 Method for implementing 8PSK equalizing demodulation in EDGE system
CN1389994A (en) * 2001-06-01 2003-01-08 上海大唐移动通信设备有限公司 8PSX digital modulation method suitable for EDGE system
CN1394048A (en) * 2001-07-04 2003-01-29 华为技术有限公司 Eight-phase PSK modulation method and device
CN1443011A (en) * 2002-03-05 2003-09-17 深圳市中兴通讯股份有限公司上海第二研究所 Equilized demodulation method used in mobile communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1381995A (en) * 2001-04-18 2002-11-27 上海大唐移动通信设备有限公司 Method for implementing 8PSK equalizing demodulation in EDGE system
CN1389994A (en) * 2001-06-01 2003-01-08 上海大唐移动通信设备有限公司 8PSX digital modulation method suitable for EDGE system
CN1394048A (en) * 2001-07-04 2003-01-29 华为技术有限公司 Eight-phase PSK modulation method and device
CN1443011A (en) * 2002-03-05 2003-09-17 深圳市中兴通讯股份有限公司上海第二研究所 Equilized demodulation method used in mobile communication system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008151254A1 (en) * 2007-06-04 2008-12-11 The Regents Of The University Of California Methods of tissue generation and tissue engineered compositions
CN103001899A (en) * 2011-09-15 2013-03-27 京信通信系统(中国)有限公司 Self-adaptive balanced demodulation method and device for GSM (global system of mobile communications)
CN105024962A (en) * 2015-05-25 2015-11-04 中国电子科技集团公司第十研究所 GMSK signal low-complexity coherent demodulation method
CN105024962B (en) * 2015-05-25 2018-02-23 中国电子科技集团公司第十研究所 The low complex degree coherent demodulation method of GMSK signals
CN114401174A (en) * 2022-01-21 2022-04-26 中国电子科技集团公司第五十四研究所 Joint phase tracking detection method based on SOQPSK and PSP
CN114401174B (en) * 2022-01-21 2023-12-29 中国电子科技集团公司第五十四研究所 Combined phase tracking detection method based on SOQPSK and PSP

Also Published As

Publication number Publication date
CN100452890C (en) 2009-01-14
CN1994003A (en) 2007-07-04

Similar Documents

Publication Publication Date Title
US5499272A (en) Diversity receiver for signals with multipath time dispersion
US8064549B2 (en) Joint demodulation using a Viterbi equalizer having an adaptive total number of states
US6907092B1 (en) Method of channel order selection and channel estimation in a wireless communication system
WO2008115702A1 (en) Adaptive equalizer for communication channels
WO1994009582A1 (en) Bidirectional demodulation method and apparatus
JPH05344008A (en) Equalization and decoding for digital communication channel
JPH06508244A (en) Method and apparatus for carrier frequency offset compensation in a TDMA communication system
WO2002082668A2 (en) Equalizer for communication over noisy channels
JP2008530906A (en) Wireless communication apparatus and associated method for performing block equalization based on predicted values of past, present and / or future autocorrelation matrices
WO1994007311A1 (en) Adaptative equalizing receiver and maximum likelihood sequence estimation receiver
NO163120B (en) PROCEDURE FOR DEMODULATION IN DIGITAL COMMUNICATION SYSTEMS WITH MULTIPLE PROPAGATION.
TW200417142A (en) Communication receiver with virtual parallel equalizers
CN111600823B (en) Parallel OQPSK offset quadriphase shift keying demodulator
WO1995015034A1 (en) Device for estimating soft judgement value and device for estimating maximum likelihood system
US20030115061A1 (en) MPSK equalizer
CN110753011B (en) Single carrier equalization method for GMSK signal
WO2000044108A1 (en) Adaptive equalizer and adaptive equalizing method
EP1147641A1 (en) Mlse using look up tables for multiplication
CN113904898B (en) Equalization and carrier synchronization method based on equivalent time sampling
WO2006045226A1 (en) Method and equipment adapted to 8psk equalization demodulation in edge system
CN109818894B (en) GMSK signal detection method and detection device under multipath channel
CN100358324C (en) Data equalization method for burst communication
CN101292485B (en) Adaptive 8PSK demodulating method suitable for EDGE system
CN100502372C (en) Method and system of adaptive demodulation suitable for GSM/EDGE system
US7248849B1 (en) Frequency domain training of prefilters for receivers

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS JP KE KG KP KZ LC LK LR LS LT LU LV MA MD MK MN MW MX MZ NA NI NO NZ PG PH PL PT RO RU SC SD SE SG SK SY TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IT MC NL PL PT RO SE SI SK TR BF CF CG CI CM GA GN GQ GW ML MR SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200480043667.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 04789900

Country of ref document: EP

Kind code of ref document: A1