WO2006043613A1 - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
WO2006043613A1
WO2006043613A1 PCT/JP2005/019267 JP2005019267W WO2006043613A1 WO 2006043613 A1 WO2006043613 A1 WO 2006043613A1 JP 2005019267 W JP2005019267 W JP 2005019267W WO 2006043613 A1 WO2006043613 A1 WO 2006043613A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
oil
refrigerator
suction pipe
shell
Prior art date
Application number
PCT/JP2005/019267
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshito Kimura
Syouhei Inamori
Shinichi Hashimoto
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2006043613A1 publication Critical patent/WO2006043613A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/003General constructional features for cooling refrigerating machinery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/16Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2323/00General constructional features not provided for in other groups of this subclass
    • F25D2323/002Details for cooling refrigerating machinery
    • F25D2323/0026Details for cooling refrigerating machinery characterised by the incoming air flow
    • F25D2323/00262Details for cooling refrigerating machinery characterised by the incoming air flow through the back top side
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2323/00General constructional features not provided for in other groups of this subclass
    • F25D2323/002Details for cooling refrigerating machinery
    • F25D2323/0027Details for cooling refrigerating machinery characterised by the out-flowing air
    • F25D2323/00272Details for cooling refrigerating machinery characterised by the out-flowing air from the back top
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/32Removal, transportation or shipping of refrigerating devices from one location to another

Definitions

  • the present invention relates to a refrigerator that improves the outflow prevention performance of oil that is a refrigerating machine oil in a compressor power refrigerating cycle.
  • a conventional refrigerator of this type uses a compressor or the like that forms a machine room, and is installed on the top of the refrigerator body or on the upper back of the refrigerator body. .
  • Such a conventional method is disclosed in, for example, Japanese Patent Application Laid-Open No. 11-183014.
  • FIG. 18 shows a configuration of a conventional refrigerator described in Japanese Patent Laid-Open No. 11 183014.
  • the refrigerator body 1 is composed of a refrigerator compartment 2, a vegetable compartment 3, and a freezer compartment 4 from the top.
  • the refrigerator compartment 2 has a revolving door 5, and the vegetable compartment 3 has a vegetable compartment drawer door 6.
  • the freezer compartment 4 has a freezer compartment drawer door 7.
  • the cooling unit 10 having the isolator fan 8 and the evaporator 9 isotherm is approximately the same height as the opening of the freezer compartment 4 that forms the storage section as the lowermost storage compartment. It is installed at the rear rear of the.
  • the compressor 11 is installed on the top surface of the refrigerator room 2 which is not easy to use, or on the recess 12 provided on the upper back of the refrigerator body 1.
  • the storage volume of the compressor 11 has moved from the lower side to the upper side of the partition wall that partitions the refrigerator compartment 2 and the vegetable compartment 3, so that if the internal volume of each storage compartment is constant, the refrigerator compartment 2 is inevitably required. And the position of the partition wall of the vegetable compartment 3 can be lowered downward, so that the contents stored in the vegetable compartment 3 can be easily taken out.
  • the compressor is disposed on the top surface of the refrigerator main body, and the evaporator is disposed near the bottom surface of the refrigerator main body, so that the suction pipe (not shown) connected to the compressor and the evaporator are evaporated. Will be placed below the compressor. Therefore, when transporting or moving the refrigerator, including the customer and delivery capacity to the storefront, carry the refrigerator on its side. When doing so, there is a problem that refrigeration oil (hereinafter referred to as oil) flows backward from the compressor and stays down after installation.
  • oil refrigeration oil
  • the suction pipe is designed to have a large outer diameter of 6.35mm to 7.94mm to reduce pressure loss. If the pipe wall thickness is 0.35mm and the length is 2000mm, the internal volume will be 50ml. About 80ml. Since the length of the suction pipe limits the length of heat exchange between the exhaust and the suction pipe, the length of the suction pipe cannot be shortened in order to achieve high efficiency. Furthermore, when the volume of the evaporator pipe is added, the volume becomes very large. Furthermore, if the suction pipe is increased in diameter to reduce pressure loss, the volume of the pipe will increase.
  • the compressor 11 supplies the oil stored in the lower part to the sliding part using differential pressure or centrifugal force, the oil to the sliding part is reduced by reducing the oil surface height.
  • the supply amount may decrease and the sliding part may wear out.
  • the refrigerator includes a heat insulation box, a compressor provided in the heat insulation box, a condenser, a decompressor, and an evaporator in order to form a series of refrigerant flow paths, and an interior of the compressor. Oil that is sealed in the space containing the components, and the suction pipe that connects the compressor and evaporator And an oil spill prevention trap that prevents oil from flowing out of the compressor to the evaporator side.
  • the compressor is an internal low pressure type and is disposed on the top surface of the heat insulating box. Is provided below the compressor.
  • the refrigerator has a heat insulating box provided with a recessed portion at the rear of the top surface, an internal high-pressure compressor disposed in the recessed portion, and a condenser provided on the top surface of the heat insulating box,
  • the compressor and the condenser are connected by a discharge pipe, and the condenser is arranged in front of and higher than the discharge pipe connection portion of the compressor.
  • FIG. 1 is a schematic cross-sectional view of a refrigerator according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic rear view of the refrigerator in the first embodiment of the present invention.
  • FIG. 3 is a schematic component development view of the refrigerator in the first embodiment of the present invention.
  • Fig. 4 is a schematic perspective view of the main part of the suction pipe of the refrigerator in the first embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view of a compressor mounted on the refrigerator in the first embodiment of the present invention.
  • Fig. 6 is a schematic cross-sectional view of the state of transport of the refrigerator in the first embodiment of the present invention.
  • FIG. 7 is a schematic cross-sectional view of the compressor when transporting the refrigerator in Embodiment 1 of the present invention.
  • FIG. 8 is a schematic cross-sectional view of a compressor mounted on a refrigerator in Embodiment 2 of the present invention.
  • Fig. 9 is a schematic perspective view of the main part of the suction pipe of the refrigerator in the third embodiment of the present invention.
  • FIG. 10 is a schematic perspective view of a main part of a suction pipe of a refrigerator in a fourth embodiment of the present invention.
  • FIG. 11 is a schematic perspective view of a main part of a suction pipe of a refrigerator in a fifth embodiment of the present invention.
  • Fig. 12 is a schematic perspective view of the main part of the suction pipe of the refrigerator in the fifth embodiment of the present invention. is there.
  • FIG. 13 is a schematic perspective view of the main part of the suction pipe of the refrigerator in the sixth embodiment of the present invention.
  • FIG. 14 is a schematic cross-sectional view of a compressor mounted on a refrigerator in Embodiment 7 of the present invention.
  • FIG. 15 is a schematic cross-sectional view of the compressor mounted on the refrigerator in the eighth embodiment of the present invention.
  • FIG. 16 is a plan sectional view of the compressor mounted on the refrigerator in the eighth embodiment of the present invention.
  • FIG. 17 is a schematic cross-sectional view of a compressor mounted on a refrigerator in Embodiment 9 of the present invention.
  • FIG. 18 is a schematic sectional view of a conventional refrigerator.
  • Oil spill prevention trap Piping U-bent part, 102, 201 Lower shenole, 101 Upper shenole
  • the present invention solves the above-described conventional problems, and an object thereof is to provide a refrigerator having a refrigeration cycle in which oil is prevented from flowing out of the compressor and the compressor is disposed above the evaporator. .
  • the refrigerator of the present invention has a compressor disposed on the top of the refrigerator, and prevents oil from flowing out when the refrigerator is laid down on the suction pipe and evaporator disposed below, so that the amount of oil in the compressor is reduced. It is possible to prevent the oil surface height from being significantly reduced and to secure the supply of oil to the compressor sliding part, further reducing damage to the compressor.
  • the refrigerator of the present invention includes a heat insulating box, a refrigeration cycle in which a compressor, a condenser, a decompressor, and an evaporator provided in the heat insulating box are sequentially provided to form a series of refrigerant flow paths, a compression Enclosed in machine Oil.
  • the compressor is an internal low-pressure type and is disposed on the top surface of the heat insulation box, and the evaporator is disposed below the compressor.
  • the suction pipe connecting the compressor and the evaporator is provided with an oil spill prevention trap that prevents the oil from flowing out of the compressor to the evaporator.
  • the heat insulating box has a recessed portion at the rear of the top surface, and the recessed portion includes a compressor and an oil outflow prevention trap.
  • the prevention trap can prevent oil from staying in the suction pipe and the evaporator below the compressor.
  • the oil spill prevention trap prevents the oil from flowing out to the evaporator side as well as the compressor inside when the front side of the heat insulation box is tilted up. .
  • the oil spill prevention trap has a U-bend portion obtained by bending a pipe into a U shape in the front-rear direction of the heat insulating box. At least a part of the U-bending part is arranged on the front side of the heat insulation box from the center line of the compressor, and at least a part of the suction pipe is arranged on the front side of the heat insulation box from the center line of the compressor.
  • the oil outflow prevention trap provided in the front-rear direction of the heat insulating box of the suction pipe becomes a vertical pipe trap. Therefore, even if oil flows into the open end of the suction pipe opened inside the compressor, at least the U-bending portion of the suction pipe provided above the center of the compressor prevents oil from flowing out.
  • the piping U-bending portion becomes an elastic portion, and vibrations can be mitigated.
  • the refrigerator of the present invention is provided with an oil spill prevention trap provided in the suction pipe inside the compressor shell.
  • an oil spill prevention trap provided in the suction pipe inside the compressor shell.
  • the suction pipe is connected directly to the muffler for silencing provided in the refrigerant suction path inside the compressor, and the muffler is configured as an oil spill prevention trap, it will warm up due to the thermal effects of the compressor components. The refrigerant gas is sucked directly from the suction pipe without sucking the refrigerant gas, so that efficiency is improved and energy saving is achieved.
  • the oil spill prevention trap provided in the suction pipe is a chamber in which the evaporator connection side protrudes from the upper side and the compressor connection side is connected from the lower side. It is. In this way, a pipe trap can be formed without requiring a space required for pipe bending, and oil return during normal operation is not hindered.
  • the oil spill prevention trap provided in the suction pipe is disposed at the front side of the heat insulating box with respect to the center line of the compressor, at the connecting portion between the compressor and the suction pipe. In this way, using the refrigerator handle provided on the back or bottom of the refrigerator, the refrigerator can be easily transported or moved so that the front door is on its side so that the front door is up. Oil spill can be prevented.
  • the internal low-pressure compressor includes an upper shell and a lower shell that are divided into upper and lower parts. After the components are housed inside, the upper shell and the lower shell are hermetically sealed at the shell joint, and the pipe riser is located above the shell joint in the suction pipe provided on the lower shell side. Is provided. In this way, it is possible to reduce the height of the compressor, and it is possible to eliminate the decrease in the tolerance to fluctuations in the oil level at the rise of the pipe, so that the recessed portion of the heat insulation box Can be reduced in size to increase the internal volume and downsize the refrigerator compartment.
  • the internal low-pressure compressor is provided with a means for preventing the inclination of the internal components.
  • the internal low-pressure compressor includes an upper shell and a lower shell that are divided into upper and lower parts, and after the components are stored inside, the upper shell and the lower shell are connected to the shell joint portion. It is hermetically sealed.
  • the suction pipe provided on the lower shell side opens into the compressor almost on the same plane as the inner wall of the lower shell. Even if the compressor is equipped with a suction pipe so that the oil is more likely to flow out of the suction pipe when the compressor is tilted, it can be placed below the compressor even if the refrigerator is raised after transportation. Oil can be prevented from staying in certain suction pipes and evaporators.
  • a refrigerant is enclosed in the refrigeration cycle.
  • the refrigerant is in a liquefied state In this state, the specific gravity is lighter than the oil sealed in the compressor. Even if the compressor uses a combination of refrigerant and oil that makes it easier for oil to flow out when the compressor is tilted, even if the refrigerator is raised and installed after transportation, it will be below the compressor. Oil can be prevented from staying in a certain suction pipe and evaporator.
  • the refrigerant enclosed in the refrigeration cycle is R600a
  • the oil enclosed in the compressor uses mineral oil. This increases the volumetric flow rate of the refrigerant per unit time, so it is approximately twice as high as the flow velocity in the pipe when the refrigerant passes through the refrigeration system, approximately 20 times that of CO. It increases to. Therefore, refrigeration system
  • the electric element is an inverter electric motor using a permanent magnet for the rotor, and the bearing portion of the compression element is fitted into the height range of the rotor of the electric element.
  • the size in the height direction can be reduced with the components other than the portion supporting the internal components composed of the electric element and the compression element.
  • the internal portion of the oil other than the support portion can be reduced by reducing the height by using the compression element and the electric element without incorporating the support portion supporting the compression element and the electric element as an element for reducing the height. It does not cushion with the parts, and oil level fluctuations are less likely to occur, and oil outflow from the suction pipe can be suppressed.
  • the refrigerator of the present invention includes a heat insulating box provided with a recess at the back of the top surface, an internal high-pressure compressor disposed in the recess, and a condenser provided on the top surface of the heat insulating box. And have.
  • the compressor and the condenser are connected by a discharge pipe, and the condenser is arranged on the front side and at a position higher than the discharge pipe connection portion of the compressor.
  • a compressor is disposed on the top of the refrigerator, and a suction pipe and steam disposed below. Prevents oil from flowing out when the refrigerator is laid down on the generator, etc., so that the amount of oil in the compressor can be secured and the oil surface height can be prevented from being greatly reduced, and the oil supply to the compressor sliding section can be secured. Further, damage to the compressor can be further reduced.
  • FIG. 1 is a schematic cross-sectional view of the refrigerator according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic rear view of the refrigerator according to the same embodiment
  • FIG. 3 is a schematic component development view of the refrigerator according to the same embodiment
  • 4 is a schematic perspective view of the main part of the suction pipe of the refrigerator in the same embodiment
  • FIG. 5 is a schematic sectional view of the compressor mounted on the refrigerator in the same embodiment
  • FIG. 7 has shown schematic sectional drawing of the compressor at the time of refrigerator conveyance in the embodiment.
  • the same components as those in the background art are denoted by the same reference numerals.
  • the heat insulating box 1 is foam-filled in a space formed by an inner box 13 formed by vacuum forming a resin body such as ABS and an outer box 14 using a metal material such as a pre-coated steel plate. Yes It has a heat insulation wall made by injecting heat insulation 15.
  • the heat insulator 15 is made of, for example, hard urethane foam, phenol foam, styrene foam, or the like. It is better to use high-mouth carbon cyclopentane as the foam material from the viewpoint of preventing global warming.
  • the heat insulation box 1 is divided into a plurality of heat insulation sections, and has a structure in which an upper part is a revolving door type and a lower part is a drawer type. From the top, there are a refrigerated room 2, a drawer-type switching room 16 and an ice making room 17 arranged side by side, a drawer-type vegetable room 3, and a drawer-type freezer room 4. Each heat insulation compartment is provided with a heat insulation door via a gasket 18. From the top, it is the refrigerating room rotary door 5, the switching room drawer door 19, the ice making room drawer door 20, the vegetable room drawer door 6, and the freezer compartment drawer door 7.
  • the refrigerating compartment rotary door 5 is provided with a door pocket 21 as a storage space, and a plurality of storage shelves 22 are provided in the refrigerator.
  • a storage case 23 is provided at the bottom of the refrigerator compartment 2.
  • the outer box 14 of the heat insulating box 1 is a shell 2 obtained by U-bending a steel plate whose top surface is cut off. 4, bottom panel 25, back panel 26, and machine room panel 28, which forms a recess 27 recessed in the rear of the top surface, are assembled and secured to ensure sealing performance!
  • the machine room panel 28 is formed by drawing a steel plate, and the corner portion has an R shape to improve workability. This R shape secures a flow path at the branching or joining portion of the heat insulating body 15 to be filled with foam, improving the fluidity, and preventing voids due to insufficient filling.
  • the machine room panel 28 is made by drawing, there are fewer sealing portions for foam filling, which is advantageous in terms of man-hours.
  • the cost of the drawing die can be reduced, and it is possible to improve the finish and dimensional accuracy without drawing wrinkles.
  • the machine room panel 28 is provided with a plurality of air vent holes (not shown) on each surface, and it is possible to prevent generation and deformation of voids due to residual air without impairing the appearance and the inside view. I'll do it.
  • the bottom panel 25 and the back panel 26 are provided with handles made of depressions that can be hooked with fingertips.
  • the bottom handle 29 is provided at two positions at a predetermined interval so that the front fingertip can be applied at a position from the front to the center of the bottom.
  • the rear handle 30 is provided at a predetermined interval at two positions so that the fingertip can be applied upward as high as possible at the top of the rear panel 26.
  • the inner box 13 has a configuration in which the rear back part, which is slightly smaller than the outer box 14, is recessed inward, and the heat insulator 15 is foam-filled by being incorporated in the outer box 14. Is formed in the heat insulation box 1. Therefore, the left and right parts of the machine room panel 28 are also filled with the heat insulator 15 to form a heat insulation wall, thereby ensuring strength. Furthermore, the bottom handle 29 and the back handle 30 are also secured by the foam-filled insulation 15.
  • the refrigeration cycle includes a compressor 11 elastically supported in the recess 27, a machine room fan 31 provided in the vicinity of the compressor 11, a top surface, a recess 27 and a bottom panel of the shell 24. 25 bottom Cooling on the back of the vegetable compartment 3 and freezer compartment 4, a condenser (not shown) provided on the side of the head and the shell 24, a chiller 32, a dryer for removing water (not shown)
  • the evaporator 9 provided with the fan 8 disposed in the vicinity thereof and the suction pipe 33 are connected in a ring shape.
  • the recess 27 is provided with a top cover 34 fixed with a screw or the like.
  • the capillary 32 and the suction pipe 33 are copper pipes of approximately the same length, and are soldered so that heat exchange is possible with the end portions remaining.
  • the Cabilari 32 uses a small-diameter copper tube with a large internal flow resistance for decompression, and its inside diameter is about 0.6 to 1. Omm, and the amount of decompression is designed by adjusting with the length.
  • the suction pipe 33 uses a large-diameter copper pipe to reduce pressure loss, and its inner diameter is designed with a 6.35mm force of about 7.94mm.
  • the heat exchange section 35 in order to secure the length of the heat exchange section 35, it is meandered to be compact and arranged in the middle of the inner box 13 and the rear panel 26 so that the meandering section comes to the back of the refrigerator compartment 2. It is buried in the heat 15.
  • One end of the carriage 32 and the suction pipe 33 is connected to the evaporator 9 protruding from the vegetable compartment 3 rear position of the inner box 13, and the other end is provided at the side of the machine room panel 28. It protrudes upward from a notch (not shown) and is connected to a dryer (not shown), a condenser and a compressor 11 respectively.
  • an oil outflow prevention trap 36 is provided in the vicinity of the connection portion with the compressor 11 in the suction pipe 33 and is accommodated in the recess 27.
  • the pipe connection part of the compressor 11 faces the rear side in order to reduce the density of the pipes and to make the rear force pipe connection visible. Thus, they are arranged on the left and right sides of the compressor.
  • the suction pipe 33 has a rear lower side force of the compressor 11 that is straight and has a slight upward slope on the side, and then is substantially higher in the vertical direction than the vertical center line of the compressor 11 and the compressor 11 11 high
  • the rising portion is provided to a position lower than the above.
  • it is necessary to reduce the size of the compressor 11 and the space between the compressor peripheral wall as much as possible. Setting the pipe height below the height of the compressor 11 can prevent the wall surface of the pipe from contacting.
  • the suction pipe 33 is provided with an oil spill prevention trap 36 composed of a pipe U-bending portion 37 provided in the front direction of the heat insulating box 1 after rising up in the vertical direction.
  • the tip of the portion 37 is located on the front side of the heat insulating box 1 with respect to the center line in the plane direction of the compressor 11. Since the compressor 11 has a shape with a curvature toward the top surface, if the pipe bending part 37 is configured above the compressor 11, there is a sufficient space and a small space does not take up the pipe storage space. Is possible.
  • the piping U-bending portion 37 the elasticity of the piping can be provided, and the vibration propagation of 11 forces of the compressor can be absorbed, stress concentration at the piping fixing portion can be prevented, and piping damage can be reduced.
  • the suction pipe 33 is bent in a substantially vertical direction and embedded in the heat insulator 15 such as the rear end of the machine room panel 28.
  • the compressor shell 40 is an overlapped part of a combination of a bowl-shaped lower shell 38 and a reverse bowl-shaped upper shell 39 formed by deep drawing a thick steel plate of 2 to 4 mm. It is a sealed structure in which the periphery of a shell joint 40a is welded.
  • the compressor shell 40 includes a rotation drive unit 42 and a compression unit 43 that are elastically supported by an elastic body 41 inside.
  • Compressor shell 40 is connected to other equipment that constitutes the refrigeration cycle with suction pipe 33 with its end open and discharge pipe 44, and contains a predetermined amount of oil 45 and refrigerant (not shown) It has been done.
  • a support portion 46 for elastically supporting the heat insulating box 1 is attached to the lower portion of the lower shell 38.
  • the support portion 46 is provided with a relief for securing the thickness of the elastic support member by one step.
  • the rotation drive unit 42 includes a motor 47 and a bearing unit 48.
  • the motor 47 has a stator 49 having a hollow cylindrical electromagnetic coil that generates a rotational force with a permanent magnet when a voltage is applied, and a permanent magnet that is located in a hollow portion inside the stator 49 and is opposed by a minute gap.
  • Rotor 50 The bearing part 48 has an eccentric shaft 51 at its end,
  • the shaft 52 is composed of an open hollow, a shaft 52 provided with a spiral groove (not shown) in the periphery thereof, and a jet hole that communicates with the inside, and a bearing 53 that rotatably holds the shaft 52.
  • the compression unit 43 is attached to a cylinder 55 provided with a cylinder head 54 provided with a valve mechanism (not shown) at the tip, a piston 56, a piston 56, and an eccentric shaft 51 so as to be swingable. It consists of a rod 57 that converts motion to linear reciprocating motion.
  • a discharge pipe 44 is connected to the cylinder head 54 via a valve mechanism so that the compressed refrigerant is discharged directly to the outside of the compressor shell 40.
  • the suction part is opened inside the compressor shell 40 via a valve mechanism.
  • a suction muffler (not shown) is disposed between the suction path of the cylinder head 54 and the compressor shell 40 for the suction path.
  • suction pipe 33 is arranged so that the opening end thereof is flush with the inner wall surface of the compressor shell 40, so that the compressor 11 is downsized.
  • Refrigeration room 2 is usually set at 1 ° C to 5 ° C, with the lower limit being the temperature at which it will not freeze for refrigerated storage.
  • the storage case 23 is set at a relatively low temperature, for example, 3 ° C. to 1 ° C. for improving the freshness of meat fish and the like.
  • the temperature setting of the switching chamber 16 can be changed by a user setting, and can be set to a predetermined temperature from the freezer compartment temperature zone to the refrigeration and vegetable compartment temperature zones.
  • the ice making chamber 17 is an independent ice storage chamber and is equipped with an automatic ice making device (not shown) to automatically produce and store ice. Although it is a freezing temperature zone for storing ice, it can be set at a freezing temperature that is relatively higher than the freezing temperature zone because it is intended to preserve ice. is there
  • the vegetable room 3 is often set to 2 ° C to 7 ° C, which is set at a temperature that is equal to or slightly higher than that of the refrigerator room 2. It is possible to maintain the freshness of leafy vegetables for a long time as the temperature is lowered so that it does not freeze.
  • the freezer compartment 4 is usually set at a temperature between -22 ° C and -18 ° C for freezing storage.
  • a low temperature of -30 ° C or -25 ° C can be used to improve the state of refrigeration. It may be set by.
  • Each chamber is partitioned by insulating walls to efficiently maintain different temperature settings Power
  • a method for improving heat insulation performance at low cost it is possible to perform foam filling with the heat insulator 15 integrally.
  • the heat insulation performance can be doubled, and the storage capacity can be increased by making the partition thinner.
  • the cooling operation is started and stopped by signals from a temperature sensor (not shown) and a control board according to the set temperature in the chamber.
  • a voltage is applied from the terminal (not shown) through the electric wire to the motor 47 of the rotary drive unit 42 in the compressor 11 in accordance with the instruction of the cooling operation.
  • the electromagnetic coil of the stator 49 is excited to generate a rotational force with the rotor 50 having a permanent magnet.
  • the rotation of the rotor 50 causes the shaft 52 fixed to the rotor 50 to rotate synchronously in the bearing portion 48, and the eccentric shaft 51 also rotates eccentrically.
  • the piston 56 reciprocates in the cylinder 55 through a rod 57 that is swingably provided by the rotation of the eccentric shaft 51.
  • the compression operation of the refrigerant gas is performed in the compression unit 43. That is, when the piston 56 moves to the position farthest from the cylinder head 54, the pressure in the cylinder 55 decreases, and the valve mechanism (not shown) of the suction portion provided in the cylinder head 54 is opened.
  • the refrigerant gas in the compressor shell 40 is sucked into the cylinder 55 via a muffler muffler (not shown).
  • the piston 56 moves to the position closest to the cylinder head 54, the sucked refrigerant gas is compressed to become high-temperature and high-pressure refrigerant gas via the valve mechanism in the discharge part of the cylinder head 54. Discharged.
  • the discharged refrigerant gas is sent out of the compressor shell 40 through a discharge pipe 44 directly connected to the cylinder head 54.
  • the compressor shell 40 has an internal low-pressure type configuration in which low-pressure refrigerant gas exists, and the refrigerant gas that returns to the suction pipe force is released into the compressor shell 40.
  • the sliding portion 58 existing in the bearing portion 48 and the compression portion 43 of the compressor 11 is secured with lubricity by the oil 45.
  • a compatible combination of oil 45 and refrigerant gas has been selected.
  • refrigerant HC600a and mineral oil There are combinations of refrigerant HC600a and mineral oil.
  • the oil 45 is sealed in the compressor shell 40, and the amount of the oil 45 is determined so as to be stored in the lower part and to secure a predetermined oil surface height.
  • Supply of the oil 45 to the sliding portion 58 is performed through the hollow interior of the shaft 52 by the centrifugal force generated by the rotation of the shaft 52.
  • the lower end of the shaft 52 is completely attached to the oil 45, and this force is also blown from an ejection hole (not shown) provided at a position corresponding to each part of the sliding portion 58. It is attached.
  • the supply of the oil 45 to the sliding portion 58 can be sufficiently spread by the spiral groove around the shaft 52.
  • the refrigerant that has left the evaporator 9 is sucked into the compressor 11 through the suction pipe 33.
  • the suction pipe 33 is soldered so as to be capable of exchanging heat with the capillaries 32 and is embedded in the heat insulator 15, so that heat is transferred from the low-temperature suction pipe 33 to the high-temperature capillaries 32 without escaping from the surroundings. . Since Cabilary 32 is cooled during the process of reducing the refrigerant pressure, the specificentalbi decreases and the refrigeration effect increases.
  • the refrigerant temperature rises and can be made to be approximately equal to or higher than the ambient temperature at the outlet.
  • the firefly 32 since the firefly 32 is relatively hot, if it is placed in a low temperature part, heat will be dissipated in addition to heat exchange with the suction pipe 33, resulting in heat loss in the refrigeration cycle and heat load in the cabinet, saving energy. Will be reduced.
  • the exhaust 32 and the suction pipe 33 are arranged on the back of the refrigerator compartment 2 where the internal temperature is high, it is possible to secure energy savings without greatly increasing heat loss and heat load on the internal storage.
  • the heat exchanger 35 has a sufficient length, and is meandering behind the refrigerator compartment 2 for compact storage. And sufficient temperature rise of the suction pipe 33 can be obtained. Since the meandering portion has an ascending slope and no trap, the liquid refrigerant does not cause refrigeration oil to stay and does not cause performance effects such as pressure loss.
  • the weight of the refrigerator has increased due to the increase in the number of additional parts accompanying the increase in the internal volume and the increase in functionality and the increase in density for energy saving! / And the increase in the amount of vacuum insulation used. It is increasing.
  • refrigerators with external dimensions of nearly 1800 mm are the mainstream, and the width and depth are about 600 mm and 750 mm, making it very important to devise transportation.
  • refrigerators When the refrigerator is delivered to the customer, it is necessary to carry it in a sideways manner! /, Tsuteyo! /, So there are handles on the bottom and upper back.
  • refrigerators are often laid down and transported just before the power is turned on, such as moving or changing the pattern just during delivery.
  • the refrigerator can be transported with the door surface facing upward, and the door is opened unexpectedly during transportation, making it unstable for the transporter, and the internal parts and stored items fall. It is possible to prevent problems such as
  • the inside of the compressor 11 provided in the recess 27 on the top surface has an open end of the suction pipe 33 opened in the compressor shell 40 in the oil 45.
  • the intake pipe 33 can be backflowed out.
  • the oil spill prevention trap 36 which also has the force of the pipe U-bend 37, rises upward from the staying surface of the oil 45 during transportation, the oil 45 flows into the suction pipe 33 and the evaporator 9 There is nothing to do.
  • the oil 45 in the oil spill prevention trap 36 returns to the compressor shell 40 by gravity and does not leave the suction pipe 33 closed with the oil 45.
  • the oil outflow prevention trap 36 is provided in the recess 27 on the top surface together with the compressor 11, and further, the oil flows into the open end of the suction pipe 33 opened in the compressor 11.
  • it When it is tilted at a slight angle, it prevents oil from flowing out of the compressor 11 and the evaporator 9 side. Therefore, even when the refrigerator is started after being tilted by transportation or the like, it hardly flows out into the suction pipe outside the recess 27 on the top surface. Further, it is possible to prevent the oil from flowing backward from the suction pipe 33 to the evaporator 9.
  • the oil spill prevention trap 36 causes the oil that has flowed into the oil spill prevention trap 36 to return to the compressor 11 even when the refrigerator is raised after being tilted by transportation or the like. It is possible to prevent oil from staying in the suction pipe and evaporator located below, to eliminate the shortage of oil in the compressor 11, and to ensure oil supply to the compressor sliding parts, etc. Damage and the like can be further reduced.
  • the condenser may be thin and disposed on the top surface.
  • the compressor 11 and the machine room may be placed in the recess 27 as a box-shaped configuration.
  • the fan 31 may be arranged in parallel in order to secure the internal volume in the vertical direction.
  • the condenser has a fin tube type, a wire tube type, a spiral fin tube type, etc., and the heat radiation capacity is increased by increasing the external surface area, it will be effective in reducing the size of the condenser and increasing energy consumption.
  • the condenser may be a natural air cooling type composed of copper piping adhered to the inner side of the outer box 23 with only a forced air cooling type with good heat transfer!
  • copper piping may be combined to prevent drip-proofing by arranging in the partition between the heat insulating door bodies in each room.
  • the flow path control means such as the electric three-way valve and the electric expansion valve are used to define the partition configuration and Use more than one evaporator according to the temperature setting configuration, switch between multiple cavities, control the amount of pressure reduction, cut the gas while the compressor 11 is stopped, etc. to further save energy Can do.
  • the flow path control means in the recess 27 on the top surface of the heat insulating box 1, the heat load on the inside of the cabinet can be reduced, and further energy saving effect is obtained.
  • the rear handle 30 for carrying the refrigerator is provided below the recess 27 where strength is easily secured, if the rear handle 30 is provided at both sides of the control board at the center, It can be arranged efficiently and has the effect of expanding the internal volume.
  • the rear handle 30 is provided by allocating it to the left and right above the top cover 34, the installation shape of the compressor 11 can be escaped and the shape of the handle can be configured. There is an effect that it is easy to hold because it will hold the part.
  • the bottom handle 29 at the front end of the bottom surface as well, the corner portion can be gripped and the ease of holding can be improved.
  • the side surface of the recess 27 of the heat insulating box 1 is composed of only the power shell 24 having the left and right wall surfaces made of the heat insulator 15, the heat dissipation of the compressor 11 is improved, and the recess 27 is disposed in the recess 27. It is possible to make a large part space.
  • the compressor 11 is provided in the recess 27 at the rear of the top surface of the heat insulating box 1.
  • the refrigerator 9 is located below the compressor 11 in a refrigerator of the type.
  • oil is prevented from flowing out to the suction pipe 33 and the evaporator 9 disposed below the compressor 11 when the container is laid down by transporting the refrigerator. Therefore, the amount of oil in the compressor 11 can be secured and the oil surface height can be prevented from being greatly reduced, the oil supply to the sliding portion of the compressor 11 can be secured, and damage to the compressor 11 can be reduced. it can.
  • FIG. 8 shows a schematic cross-sectional view of a compressor mounted on the refrigerator according to Embodiment 2 of the present invention.
  • symbol is attached
  • the suction pipe 33 is provided with a rising force S in the compressor shell 40 toward the upper part of the compressor, and the pipe end is bent in the lateral direction at the upper part so that the open end is in the center It is structured towards.
  • the oil spill prevention trap 36 provided by the configuration of the suction pipe 33 allows the refrigerator 11 to be carried around while the refrigerator 11 is laid down. The open end is not submerged in the oil 45 and backflow outflow can be prevented.
  • the suction pipe 33 connected to the compressor 11 can be directly embedded in the heat insulating body 15, and the piping storage space of the recess 27 of the heat insulating box 1 can be reduced. Energy saving can be achieved by increasing the internal volume of the cabinet and increasing the thickness of the heat insulating wall.
  • FIG. 9 shows a schematic perspective view of the main part of the suction pipe of the refrigerator in the third embodiment of the present invention.
  • symbol is attached
  • an oil spill prevention trap 36 provided in the recess 27 of the heat insulation box 1 is a first suction pipe 33 a connected from the evaporator 9 and a second suction connected to the compressor 11. It consists of piping 33b and chamber 59.
  • the chamber 59 has an outer shape of 20 mm to 4 Omm whose diameter is larger than each of the suction pipes 33a and 33b provided between the first suction pipe 33a and the second suction pipe 33b.
  • the first suction pipe 33a is also inserted with the upper force of the chamber 59, and the pipe protrudes inside to provide an open end.
  • the second suction pipe 33b is also inserted with the lower force of the chamber 59, and is arranged so that the open end of the pipe is flush with the wall surface inside the chamber 59.
  • the compressor 11 since the compressor 11 is arranged on the top surface of the refrigerator, the oil 45 is prevented from flowing out when the refrigerator is laid down on the first suction pipe 33a and the evaporator 9 arranged below, so that the compressor shell Oil 45 in 40 can be secured, and sufficient oil supply to the sliding portion 58 is possible, further reducing damage to the compressor and the like.
  • FIG. 10 shows a schematic perspective view of the main part of the suction pipe of the refrigerator according to the fourth embodiment of the present invention.
  • symbol is attached
  • the oil spill prevention trap 36 has a connecting portion 60 between the compressor 11 and the suction pipe 33 arranged on the front side of the heat insulating box 1 with respect to the center line of the compressor 11.
  • the suction pipe 33 is provided with a slight upward slope from the compressor connection part 60 and extends in the lateral direction to provide a force rising in the substantially vertical direction, and is then provided with a U-bend so as to be embedded in the heat insulator 15 on the back side. Yes.
  • FIG 11 and 12 show schematic perspective views of main portions of the suction pipe of the refrigerator in the fifth embodiment of the present invention.
  • symbol is attached
  • the suction pipe 33 is provided with a slight upward slope on the lower side of the rear side of the compressor 11 and is made to go straight, and then is substantially vertically higher than the vertical center line of the compressor 11.
  • the rising portion is provided to a position lower than the height of the compressor 11.
  • the suction pipe 33 is arranged so that it surrounds the periphery of the compressor 11, so that at least three sides are arranged so as to straddle the center line of the compressor 11 to form an oil spill prevention trap 36.
  • the pipe U-bend tip is located on the front side of the heat insulation box from the plane center line of the compressor 11. Since the compressor 11 has a shape with a curvature toward the top surface, if the pipe bending portion 37 is formed above the compressor 11, there is a space, and the pipe storage space is not taken up and the size is small. Is possible.
  • the length of the suction pipe 33 in the recess 27 can be secured, so the pipe can be made elastic, absorb vibration propagation from the compressor 11, prevent stress concentration at the pipe fixing part, and reduce pipe damage. it can.
  • the suction pipe 33 is bent in a substantially vertical direction after the oil spill prevention trap 36 and is embedded in the heat insulator 15 from the rear end of the machine room panel 28.
  • the refrigerator may be laid down in various directions. Since the pipe trap is provided so as to surround the compressor, the oil 45 can be prevented from flowing out in the same manner as when it is laid down in the rear direction, and there are few restrictions in carrying the refrigerator and the carrying performance is improved.
  • an oil outflow prevention trap can be configured to make a full circuit around the compressor 11, and it is difficult to reverse flow out. Can be configured.
  • FIG. 13 is a schematic perspective view of the main part of the suction pipe of the refrigerator in the sixth embodiment of the present invention.
  • symbol is attached
  • the compressor 62 is an internal high-pressure type such as a rotary type, and is disposed in a recess 27 provided at the rear of the top surface of the heat insulating box 1.
  • the discharge pipe 63 from the compressor 62 is open to the inside of the compressor 62, and the suction pipe 64 is directly connected to the suction portion of the compressor 62.
  • a thin condenser 65 is provided on the top surface of the heat insulation box 1 and is connected from the compressor 62 through the discharge pipe 63 with an ascending gradient. Further, the condenser 65 is disposed in front of and higher than the discharge pipe connection 66 of the compressor 62. Further, the downstream portion of the condenser 65 is connected by a connecting portion provided on the rear side of the cavity 32 and the recessed portion 27, so that workability and serviceability are improved.
  • a dryer (not shown) or the like may be disposed in the vicinity of the connecting portion.
  • the condenser 65 is forcibly air-cooled by the machine room fan 31, and the air passage is configured by a top duct cover 67 that also serves as a cover.
  • the top duct cover 67 has a suction opening 68 on the front and side surfaces, and a discharge opening 69 on the rear surface. Further, a partition 70 is provided between the arrangement portion of the condenser 65 and the recess 27. A provided air passage is constructed.
  • the discharge pipe 63 is arranged so as to surround the compressor 62 and straddle the center line of at least three compressors 62, the sideways direction of the refrigerator is either direction regardless of the handle. Even oil 45 can be prevented from flowing out.
  • FIG. 14 is a schematic cross-sectional view of a compressor mounted on the refrigerator according to Embodiment 7 of the present invention.
  • symbol is attached
  • the configuration of the compressor 100 is a hermetically sealed structure in which the upper shell 101 and the lower shell 102 are overlapped and welded together, and the rotary drive unit 104 elastically supported by the elastic body 103 inside is compressed. Internal components consisting of part 105 are provided.
  • the compressor 100 is connected to other devices constituting the refrigeration cycle by the suction pipe 106 and the discharge pipe 107, and contains a predetermined amount of oil 108 and a refrigerant (not shown).
  • the rotation drive unit 104 includes a motor 109 and a bearing unit 110.
  • the motor 109 includes a stator 111 having a hollow cylindrical electromagnetic coil that is applied with voltage and generates a rotational force between the permanent magnet and a permanent magnet that is located in a hollow portion inside the stator 111 and is opposed to each other with a minute gap. Power with the rotor 112 having.
  • the compressor 100 is arranged on the top surface, downsizing is advantageous in terms of freedom of arrangement, weight, and effective refrigerator capacity, but there are the following methods for downsizing.
  • the salient pole concentrated winding type is used for the electromagnetic coil constituting the stator 111, it is possible to concentrate the winding wire densely and reduce the size.
  • the permanent magnet housed in the rotor 112 is a rare earth permanent magnet such as Nd, so the magnetic flux density is about 4 times larger than that of a commonly used bright magnet, so the magnet height is high. Therefore, the compressor 100 can be miniaturized.
  • the compressor 100 thus miniaturized, the volume occupied by the internal components as a structure is increased in the compressor internal volume, and the space portion is reduced. When the space becomes smaller, the refrigerator oil surface height rises to compress the volume of the enclosed refrigerator oil, and the refrigerator oil tends to flow backward into the suction pipe with a slight inclination.
  • the shaft 134 includes a shaft main shaft portion 134a and a shaft eccentric portion 134b eccentric to the shaft main shaft portion 134a.
  • the bearing section 110 of the shaft main shaft section 134a includes an A bearing 131 that receives a load, and a B bearing 132 that is fixed to the upper shell 101 and acts as a tilt prevention means for internal components during transportation.
  • the compression unit 105 is swingably attached to a cylinder 136 provided with a cylinder head 135 having a valve mechanism (not shown) at the tip, a piston 137, a piston 137, and an eccentric shaft 133. It is composed of a rod 138 that converts a rotational motion into a linear reciprocating motion.
  • a discharge pipe 107 is connected to the cylinder head 135 via a valve mechanism so that the compressed refrigerant is discharged directly to the outside of the compressor 100.
  • the suction part is opened to the inside of the compressor 100 via a valve mechanism.
  • a muffler (not shown) is disposed between the cylinder head 135 and the suction pipe 106 in order to mute the sound.
  • the B bearing 132 realizes a bearing structure for preventing the inclination of the internal components.
  • the tilt prevention means is such that pins provided on the top surface of the upper shell 101 are fitted to the opening provided at the tip of the shaft 134 at a predetermined interval, or that the tip of the shaft 134 is not tilted.
  • a guide member provided on the outer peripheral side of the shaft 134 on the top surface of the upper shell 101 and a gap with a predetermined interval provided so that the rotation drive unit 104 does not incline more than a predetermined amount, and fixed to the upper shell 101 and the lower shell 102. The same effect can be achieved by using a guide member. Can play.
  • FIG. 15 is a schematic cross-sectional view of the compressor mounted on the refrigerator according to Embodiment 8 of the present invention
  • FIG. 16 is a diagram of the inside of the compressor mounted on the refrigerator according to Embodiment 8 of the present invention viewed from above. It is.
  • the suction pipe 200 inside the compressor 100 is installed on the same plane as the inside of the shell so as not to extend into the compressor of the lower shell 201, and is connected to the suction port 202a of the suction muffler 202. Arranged in close proximity to each other! /
  • the electric element 203 having the rotor 203a and the stator 203b is elastically supported by the lower shell 201 via a support portion 205 having an elastic member.
  • a compression element 204 is disposed above the electric element 203.
  • the refrigeration cycle that includes a compressor 100, a condenser (not shown), a decompressor (not shown), and an evaporator (not shown) in this order to form a series of refrigerant channels has a refrigerant R600a is enclosed. Inside the compressor 100, an oil 210 made of mineral oil having a high mutual solubility with respect to R600a is enclosed.
  • the rotor 203a of the electric element 203 that rotates in accordance with the operation of the compressor 100 interferes with the oil 210. In this way, it is arranged in consideration of the height of the support part 205 and the mounting position.
  • the compression element 204 is formed with a contact portion 220 having a certain clearance from the upper shell (not shown) or the lower shell 201.
  • the shaft 240 has a main shaft portion 241 to which the rotor 203a is fixed by press-fitting or shrink fitting, and an eccentric portion 242 formed eccentric to the main shaft portion 241.
  • the cylinder block 250 has a substantially cylindrical compression chamber 251 and a bearing portion 243 for supporting the main shaft portion 241 of the shaft 240, and is formed above the electric element 203.
  • the rotor recess 203c is formed on the compression element 204 side of the rotor 203a, and the bearing 243 extends into the rotor recess 203c so that the compression element 204 is electrically connected to the electric element.
  • the miniaturization is realized by inserting in the height range of 203 rotors.
  • the piston 260 is loosely fitted in the compression chamber 251 and is connected to the eccentric portion 241 of the shaft 240 by the connecting means 261.
  • the rotary motion of the shaft 240 is converted into the reciprocating motion of the piston 260, and the piston 260 expands and contracts the space of the compression chamber 251 so that the refrigerant in the shell is sucked by the suction muffler 202 of the suction muffler 202, and the cylinder head 252 Is discharged to a discharge pipe outside the shell through a discharge muffler 253, a discharge pipe 2 54, and a discharge tube 270 formed in the cylinder block 250 via a valve (not shown) provided inside the cylinder block 250.
  • the discharge pipe 254 which is a high-pressure pipe, is a steel pipe with an inner diameter of 1.5 mm to 3. Omm, and is formed to be flexible using L-shaped or U-shaped bending.
  • the discharge tube 270 is connected elastically.
  • an inverter motor using a permanent magnet for the rotor 203a is used as the electric element 203.
  • the torque required for the operation of the compressor 100 is not generated unless the stator 203b and the rotor 203a are thick.
  • the exciting current required for generating the rotating torque is no longer required, so the stator 203b thickness and the rotor 203a thickness are low.
  • the electric element 203 can be made compact.
  • the piston 260 sucks and discharges during one reciprocation in the compression chamber 251 is called a cylinder volume, and the cooling capacity changes depending on the size of the cylinder volume.
  • the compressor 100 If the compressor 100 is not operated for a long time, the R600a becomes liquid and becomes a liquid cooling medium 290, which is stored on top of the oil 210, which is a mineral oil having a higher specific gravity than the liquefied R600a. Is done.
  • a general-purpose refrigerant in which the liquid refrigerant is stored in the upper part of the oil in a state where the refrigerant is in a liquid state a combination of a CO refrigerant and ester oil or ether oil is the same.
  • the lower shell is tilted when the compressor 100 is tilted.
  • the oil 210 stored in the lower part reaches the suction pipe 200 that is open on the same plane as the inner wall surface of the 201, the oil 210 inside the shell decreases by easily flowing out of the shell. The oil level will decrease.
  • the present invention uses R600a, which is a refrigerant whose refrigerating capacity per unit volume is as small as about 1Z2 compared to R134a and about 1Z20 compared to CO.
  • the surplus amount also increases in proportion to the increase in cylinder volume.
  • the volume flow rate of the refrigerant per unit time increases, so that the flow velocity in the piping when the refrigerant passes through the refrigeration system is about twice as high as the flow rate 134a and about 20 times that of CO. So frozen
  • the compressor 100 of the present embodiment achieves downsizing in the height direction of the compressor, and the total height of the conventional general small compressor is 190mn! With respect to ⁇ 200 mm, the compressor 100 of the present embodiment is downsized in the height direction to about 145 mm.
  • the oil level enclosed in the compressor is generally About 30 mm, which is equivalent to a typical conventional small compressor, is secured. For this reason, the oil oil level with respect to the total height of the conventional compressor is about 12% to 13%, whereas in the small compressor of the present embodiment, the oil oil level with respect to the total height of the compressor.
  • the oil spill when the compressor is tilted has become a bigger problem.
  • the compressor 100 and the electric element 203 are reduced in height to reduce the size of the compressor! / ⁇
  • the mechanical part consisting of the compression element 204 and the electric element 203 is elastically supported, and the part of the support part 205 is not taken as an element for reducing the height, and the mechanical part of the compression element 204 and the electric element 203, ie, the inside
  • the oil 210 does not buffer with the electric element 203 of the machine part, and the oil level is less likely to fluctuate!
  • the oil 100 is particularly important among the elements and viewpoints for downsizing.
  • the present embodiment adopts a combination of the above-described miniaturization elements that are not intended to promote spillage, in other words, to maintain reliability related to oil spill suppression.
  • the height from the uppermost part of the oil surface of the oil 210 to the opening of the suction pipe 200 is ensured to have a dimensional relationship equal to or greater than that of the conventional compressor, so that the oil 210 flows out. Can be suppressed.
  • the opening position of the suction pipe 200 to the shell is located above the 1Z2 height with respect to the maximum height in the shell, so that the effect of preventing oil outflow when the compressor 100 is tilted is increased. be able to.
  • the compression element 204 is formed with the upper shell (not shown) or the lower shell 201 and the contact portion 220 having a certain gap, so that the compressor is inclined.
  • the contact portion 220 and the upper shell or the lower shell 201 come into contact with each other, so that the mechanical portion including the large compression element 204 and the electric element 203 is not greatly inclined. Therefore, it is possible to prevent the mechanical portion from pressing the volume of the oil moved to the inclined side and to secure a space portion, thereby preventing the oil 108 from easily flowing out from the suction pipe.
  • FIG. 17 shows a schematic cross-sectional view of a compressor mounted on the refrigerator in the ninth embodiment of the present invention.
  • symbol is attached
  • the suction pipe 106 extends into the shell and is a direct suction type joined to the suction muffler 139 via a spring 106a, which is an elastic member, and inside the suction muffler 139. It passes into the cylinder 136 through a spatial path. Further, the inside of the shell of the suction pipe 106 has a bent portion directed upward, and the shell is opened upward by force and is connected to a spring 106a which is an elastic member.
  • the suction muffler 139 is connected to the cylinder head 135, and the cylinder 136 is disposed in the same direction as the cylinder head 135. Further, the suction pipe 106 is arranged in the same direction so as to be connected to the suction muffler 139.
  • the discharge pipe 107 is attached to the lower shell on the side opposite to the cylinder head with a predetermined pipe length so as to increase the elasticity of the pipe to reduce pressure pulsation.
  • the suction pipe 106 and the suction muffler 139 are joined by a tightly wound spring.
  • the transmission of compression vibration is reduced, and the oil 108 can also reduce the outflow from the spring gap due to the viscosity, so that the back flow of the oil 108 can be reduced.
  • an elastic resin such as a rubber using a spring may be used.
  • the refrigerator according to the present invention has a refrigeration cycle in which the compressor is disposed above the evaporator, oil can be prevented from flowing out of the compressor. Therefore, it is possible to reduce the shortage of refrigeration equipment in the compressor, and it is useful as a refrigeration cycle configuration for storage refrigerators equipped with commercial refrigerators, vending machines, and other cooling devices as well as household refrigerators. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Compressor (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

A refrigerator capable of preventing a refrigerator oil from reversely flowing out of a compressor disposed on the top surface of an heat insulating box. The refrigerator comprises the internal low pressure type compressor disposed on the top surface of the heat insulating box, an evaporator installed under the compressor, a suction pipe connecting the compressor to the evaporator, and an oil outflow prevention trap in the suction pipe. Accordingly, though the compressor is also fallen sideways when the refrigerator is carried in the state of being fallen sideways in carrying and transferring the refrigerator, the refrigerator oil can be prevented from reversely flowing out of the compressor by the oil outflow prevention trap. Thus, the supply of the oil to the sliding parts of the compressor can be secured in the compressor to further reduce damage to the compressor.

Description

技術分野  Technical field
[0001] 本発明は、圧縮機力 冷凍サイクル内の冷凍機油であるオイルの流出防止性を向 上した冷蔵庫に関する。  TECHNICAL FIELD [0001] The present invention relates to a refrigerator that improves the outflow prevention performance of oil that is a refrigerating machine oil in a compressor power refrigerating cycle.
背景技術  Background art
[0002] 近年、冷蔵庫は地球環境保護の観点力 更なる省エネルギー化が進むとともに、 その使用性や収納性の向上が求められている。  [0002] In recent years, refrigerators are required to improve the usability and storage property as the power of the viewpoint of protecting the global environment further advances in energy saving.
[0003] 従来のこの種の冷蔵庫は、機械室を形成する圧縮機等を使 ヽ勝手の悪!、冷蔵庫 本体の天面や、もしくは冷蔵庫本体の背面上部に設置するという方法がとられている 。そのような従来の方法は、例えば、特開平 11— 183014号公報に開示されている。  [0003] A conventional refrigerator of this type uses a compressor or the like that forms a machine room, and is installed on the top of the refrigerator body or on the upper back of the refrigerator body. . Such a conventional method is disclosed in, for example, Japanese Patent Application Laid-Open No. 11-183014.
[0004] 図 18は、特開平 11 183014号公報に記載された従来の冷蔵庫の構成を示す。  FIG. 18 shows a configuration of a conventional refrigerator described in Japanese Patent Laid-Open No. 11 183014.
[0005] 冷蔵庫本体 1は、上から冷蔵室 2、野菜室 3、冷凍室 4という構成カゝらなり、冷蔵室 2 は回転扉 5を有し、野菜室 3は野菜室引出扉 6を有し、冷凍室 4は冷凍室引出扉 7を 有している。この構成において、庫内ファン 8と蒸発器 9等力もなる冷却ユニット 10は 、最下段の貯蔵室として収納部を形成する冷凍室 4の開口部の高さ寸法と概ね同じ 高さで冷凍室 4の背面後部に設置されている。圧縮機 11は、使い勝手の良くない冷 蔵室 2の天面、もしくは、冷蔵庫本体 1の背面上部に設けた凹み部 12に設置されて いる。  [0005] The refrigerator body 1 is composed of a refrigerator compartment 2, a vegetable compartment 3, and a freezer compartment 4 from the top. The refrigerator compartment 2 has a revolving door 5, and the vegetable compartment 3 has a vegetable compartment drawer door 6. The freezer compartment 4 has a freezer compartment drawer door 7. In this configuration, the cooling unit 10 having the isolator fan 8 and the evaporator 9 isotherm is approximately the same height as the opening of the freezer compartment 4 that forms the storage section as the lowermost storage compartment. It is installed at the rear rear of the. The compressor 11 is installed on the top surface of the refrigerator room 2 which is not easy to use, or on the recess 12 provided on the upper back of the refrigerator body 1.
[0006] 圧縮機 11の収納体積分が冷蔵室 2と野菜室 3を区画する区画壁の下側から上側 に移動したことにより、各貯蔵室の内容積を一定とすると必然的に冷蔵室 2と野菜室 3の区画壁の位置を下方に下げることができ、野菜室 3内の収納物の取り出しが容易 となる。  [0006] The storage volume of the compressor 11 has moved from the lower side to the upper side of the partition wall that partitions the refrigerator compartment 2 and the vegetable compartment 3, so that if the internal volume of each storage compartment is constant, the refrigerator compartment 2 is inevitably required. And the position of the partition wall of the vegetable compartment 3 can be lowered downward, so that the contents stored in the vegetable compartment 3 can be easily taken out.
[0007] しかし、従来の構成では、圧縮機を冷蔵庫本体の天面に、蒸発器を冷蔵庫本体の 底面近傍に配設することにより、圧縮機と接続される吸入配管(図示せず)と蒸発器 が圧縮機より下方に配置されることになる。したがって、客先はもとより配送力 店頭 までの物流を含めての冷蔵庫運搬や移設において、冷蔵庫を横倒しして持ち運びを 行う際に圧縮機から冷凍機油(以下オイルという)が逆流して、設置後もそのまま下方 に滞留するといつた問題がある。 However, in the conventional configuration, the compressor is disposed on the top surface of the refrigerator main body, and the evaporator is disposed near the bottom surface of the refrigerator main body, so that the suction pipe (not shown) connected to the compressor and the evaporator are evaporated. Will be placed below the compressor. Therefore, when transporting or moving the refrigerator, including the customer and delivery capacity to the storefront, carry the refrigerator on its side. When doing so, there is a problem that refrigeration oil (hereinafter referred to as oil) flows backward from the compressor and stays down after installation.
[0008] オイルが逆流して流出すると、圧縮機内部のオイル量が減少する。吸入配管は圧 力損失を低減するために 6. 35mmから 7. 94mm程度の外径が大きく設計されてお り、仮に管肉厚が 0. 35mmで長さを 2000mmとすると内容積は 50mlから 80ml程度 となる。吸入配管長さはキヤビラリと吸入配管との熱交換を行う長さを限定するので、 高効率ィ匕を行うためには、吸入配管の長さを短くすることはできない。さらに蒸発器 の配管内容積を加えると非常に大きな容積となる。さらに圧力損失を低減するために 吸入配管の大径ィ匕を行うとますます配管内容積は大きくなる。  [0008] When the oil flows backward and flows out, the amount of oil inside the compressor decreases. The suction pipe is designed to have a large outer diameter of 6.35mm to 7.94mm to reduce pressure loss. If the pipe wall thickness is 0.35mm and the length is 2000mm, the internal volume will be 50ml. About 80ml. Since the length of the suction pipe limits the length of heat exchange between the exhaust and the suction pipe, the length of the suction pipe cannot be shortened in order to achieve high efficiency. Furthermore, when the volume of the evaporator pipe is added, the volume becomes very large. Furthermore, if the suction pipe is increased in diameter to reduce pressure loss, the volume of the pipe will increase.
[0009] 一方で圧縮機のオイル貯留量に関しては、天面に配置するために小型の形状であ るほど冷蔵庫の天面の無効容積を小型化できるので効果的であるが、小型にすると オイル貯留量の変動がオイル面高さを変化させる影響が大きくなる。わかりやすくす るために圧縮機の底面を 140mmと 100mmの四角柱形状とし、内部収納部品の容 積を空とすると、 14mlのオイル量変動で lmmのオイル面高さが変化することになる 。先ほどの 50mlから 80mlの流出だけでも 3. 5mmから 5. 7mmのオイル面高さが減 少することとなる。実際には内部収納物の容積があり、オイル面高さが高いほど収納 物容積が大きくなることから、これ以上のオイル面高さの減少が生じてしまうこととなる  [0009] On the other hand, with regard to the amount of oil stored in the compressor, the smaller the size of the compressor, the more effective the volume of the refrigerator can be reduced. The influence that the fluctuation of the storage amount changes the oil surface height becomes large. To make it easier to understand, if the bottom surface of the compressor is 140mm and 100mm square pillars, and the capacity of the internal storage parts is emptied, the oil surface height of lmm will change due to the oil amount fluctuation of 14ml. The oil level height of 3.5mm to 5.7mm will be reduced even if the previous 50ml to 80ml spill is performed. Actually, there is a volume of internal storage, and the higher the oil level, the larger the storage volume, so there will be a further decrease in the oil level.
[0010] ところで、圧縮機 11は内部下方に貯留したオイルを差圧や遠心力を利用して摺動 部へと供給して ヽるので、オイル面高さの減少によって摺動部へのオイル供給量が 減少し、摺動部が磨耗したりすることがある。 [0010] By the way, since the compressor 11 supplies the oil stored in the lower part to the sliding part using differential pressure or centrifugal force, the oil to the sliding part is reduced by reducing the oil surface height. The supply amount may decrease and the sliding part may wear out.
[0011] また、配管中のオイルは冷却運転を行うと冷媒循環とともに徐々に圧縮機に戻され る力 粘度の高いオイルが大量に流出すると重力に抗して圧縮機へと戻ることは瞬時 には困難である。  [0011] In addition, when the oil in the pipe is cooled, the force gradually returns to the compressor as the refrigerant circulates. If a large amount of high-viscosity oil flows out, it immediately returns to the compressor against gravity. It is difficult.
発明の開示  Disclosure of the invention
[0012] 冷蔵庫は、断熱箱体と、断熱箱体に備えられた圧縮機と凝縮器と減圧器と蒸発器 とを順に備えて一連の冷媒流路を形成した冷凍サイクルと、圧縮機内の内部構成部 品を収めた空間内に封入されるオイルと、圧縮機と蒸発器とを接続する吸入配管に 配置され、圧縮機内部から蒸発器側へのオイルの流出を防止するオイル流出防止ト ラップとを有し、圧縮機は内部低圧型であるとともに断熱箱体の天面部に配設され、 蒸発器は圧縮機よりも下方に設けられる。 [0012] The refrigerator includes a heat insulation box, a compressor provided in the heat insulation box, a condenser, a decompressor, and an evaporator in order to form a series of refrigerant flow paths, and an interior of the compressor. Oil that is sealed in the space containing the components, and the suction pipe that connects the compressor and evaporator And an oil spill prevention trap that prevents oil from flowing out of the compressor to the evaporator side. The compressor is an internal low pressure type and is disposed on the top surface of the heat insulating box. Is provided below the compressor.
[0013] 冷蔵庫は、天面後方に凹み部を設けた断熱箱体と、凹み部に配設された内部高圧 型の圧縮機と、断熱箱体天面部に備えられた凝縮器と有し、圧縮機と凝縮器とは吐 出配管により接続されており、凝縮器は圧縮機の吐出配管接続部よりも断熱箱体の 前方側でかつ高 、位置に配置される。  [0013] The refrigerator has a heat insulating box provided with a recessed portion at the rear of the top surface, an internal high-pressure compressor disposed in the recessed portion, and a condenser provided on the top surface of the heat insulating box, The compressor and the condenser are connected by a discharge pipe, and the condenser is arranged in front of and higher than the discharge pipe connection portion of the compressor.
図面の簡単な説明  Brief Description of Drawings
[0014] [図 1]図 1は本発明の実施の形態 1における冷蔵庫の概略断面図である。 FIG. 1 is a schematic cross-sectional view of a refrigerator according to Embodiment 1 of the present invention.
[図 2]図 2は本発明の実施の形態 1における冷蔵庫の概略背面図である。  FIG. 2 is a schematic rear view of the refrigerator in the first embodiment of the present invention.
[図 3]図 3は本発明の実施の形態 1における冷蔵庫の概略部品展開図である。  FIG. 3 is a schematic component development view of the refrigerator in the first embodiment of the present invention.
[図 4]図 4は本発明の実施の形態 1における冷蔵庫の吸入配管要部概略斜視図であ る。  [Fig. 4] Fig. 4 is a schematic perspective view of the main part of the suction pipe of the refrigerator in the first embodiment of the present invention.
[図 5]図 5は本発明の実施の形態 1における冷蔵庫に搭載する圧縮機の概略断面図 である。  FIG. 5 is a schematic cross-sectional view of a compressor mounted on the refrigerator in the first embodiment of the present invention.
[図 6]図 6は本発明の実施の形態 1における冷蔵庫の運搬状態の概略断面図である  [Fig. 6] Fig. 6 is a schematic cross-sectional view of the state of transport of the refrigerator in the first embodiment of the present invention.
[図 7]図 7は本発明の実施の形態 1における冷蔵庫運搬時の圧縮機の概略断面図で ある。 FIG. 7 is a schematic cross-sectional view of the compressor when transporting the refrigerator in Embodiment 1 of the present invention.
[図 8]図 8は本発明の実施の形態 2における冷蔵庫に搭載する圧縮機の概略断面図 である。  FIG. 8 is a schematic cross-sectional view of a compressor mounted on a refrigerator in Embodiment 2 of the present invention.
[図 9]図 9は本発明の実施の形態 3における冷蔵庫の吸入配管要部概略斜視図であ る。  [Fig. 9] Fig. 9 is a schematic perspective view of the main part of the suction pipe of the refrigerator in the third embodiment of the present invention.
[図 10]図 10は本発明の実施の形態 4における冷蔵庫の吸入配管要部概略斜視図で ある。  FIG. 10 is a schematic perspective view of a main part of a suction pipe of a refrigerator in a fourth embodiment of the present invention.
[図 11]図 11は本発明の実施の形態 5における冷蔵庫の吸入配管要部概略斜視図で ある。  FIG. 11 is a schematic perspective view of a main part of a suction pipe of a refrigerator in a fifth embodiment of the present invention.
[図 12]図 12は本発明の実施の形態 5における冷蔵庫の吸入配管要部概略斜視図で ある。 [Fig. 12] Fig. 12 is a schematic perspective view of the main part of the suction pipe of the refrigerator in the fifth embodiment of the present invention. is there.
圆 13]図 13は本発明の実施の形態 6における冷蔵庫の吸入配管要部概略斜視図で ある。 13] FIG. 13 is a schematic perspective view of the main part of the suction pipe of the refrigerator in the sixth embodiment of the present invention.
[図 14]図 14は本発明の実施の形態 7における冷蔵庫に搭載する圧縮機の概略断面 図である。  FIG. 14 is a schematic cross-sectional view of a compressor mounted on a refrigerator in Embodiment 7 of the present invention.
圆 15]図 15は本発明の実施の形態 8における冷蔵庫に搭載する圧縮機の概略断面 図である。 15] FIG. 15 is a schematic cross-sectional view of the compressor mounted on the refrigerator in the eighth embodiment of the present invention.
圆 16]図 16は本発明の実施の形態 8における冷蔵庫に搭載する圧縮機の平面断面 図である。 圆 16] FIG. 16 is a plan sectional view of the compressor mounted on the refrigerator in the eighth embodiment of the present invention.
[図 17]図 17は本発明の実施の形態 9における冷蔵庫に搭載する圧縮機の概略断面 図である。  FIG. 17 is a schematic cross-sectional view of a compressor mounted on a refrigerator in Embodiment 9 of the present invention.
[図 18]図 18は従来の冷蔵庫の概略断面図である。  FIG. 18 is a schematic sectional view of a conventional refrigerator.
符号の説明 Explanation of symbols
1 断熱箱体  1 Insulated box
2 冷蔵室 (上段貯蔵室)  2 Refrigerated room (upper storage room)
3 野菜室 (下段貯蔵室)  3 Vegetable room (lower storage room)
4 冷凍室 (下段貯蔵室)  4 Freezer room (lower storage room)
5 冷蔵室回転扉  5 Refrigerating room revolving door
6 野菜室引出し扉  6 Vegetable room drawer door
7 冷凍室引出し扉  7 Freezer compartment door
8 冷却ファン  8 Cooling fan
9 蒸発器  9 Evaporator
11, 100 圧縮機  11, 100 Compressor
13 内箱  13 Inner box
14 外箱  14 Outer box
15 断熱体  15 insulation
25 底面パネノレ  25 Bottom panel
26 背面パネル 凹み部 26 Back panel Dent
機械室パネル 底面取っ手  Machine room panel Bottom handle
背面取っ手  Rear handle
機械室ファン キヤビラリ Machine room fan
, 106, 200 吸入配管 天面カバー , 106, 200 Suction piping Top cover
オイル流出防止トラップ 配管 U曲げ部 , 102, 201 下シェノレ, 101 上シェノレ  Oil spill prevention trap Piping U-bent part, 102, 201 Lower shenole, 101 Upper shenole
圧縮機シェルa シェル接合部 Compressor shell a Shell joint
, 63, 107 吐出配管, 108, 210 オイル, 109 モーター, 111 ステーター, 112 ローター , 63, 107 Discharge piping, 108, 210 Oil, 109 Motor, 111 Stator, 112 Rotor
偏芯シャフト シャフト  Eccentric shaft Shaft
軸受け bearing
, 135 シリンダヘッド, 136 シリンダ , 135 cylinder head, 136 cylinder
ピストン  Piston
ロッド、 摺動部  Rod, sliding part
チャンバ一 60 吸入配管圧縮機接続部 Chamber one 60 Suction piping compressor connection
61 吸入配管溶接接続部  61 Suction piping weld connection
62 圧縮機(内部高圧型の圧縮機)  62 Compressor (internal high-pressure compressor)
65 凝縮器  65 condenser
66 吐出配管接続部  66 Discharge piping connection
67 天面ダクトカバー  67 Top duct cover
68 吸入開口部  68 Suction opening
69 吐出開口部  69 Discharge opening
104 回転駆動部(内部構成部品)  104 Rotation drive (internal components)
105 圧縮部(内部構成部品)  105 Compression section (internal components)
132 B軸受け (傾斜防止手段)  132 B bearing (tilt prevention means)
134 A軸受け  134 A bearing
139 吸入マフラー  139 Inhalation muffler
203 電動要素(内部構成部品)  203 Electric elements (internal components)
203a 回転子  203a rotor
204 圧縮要素(内部構成部品)  204 Compression element (internal component)
205 支持部  205 Support
243 軸受部  243 Bearing
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 本発明は、上記従来の課題を解決するもので、圧縮機からオイルの流出を防止し 圧縮機を蒸発器より上方に配設した冷凍サイクルを有する冷蔵庫を提供することを 目的とする。  [0016] The present invention solves the above-described conventional problems, and an object thereof is to provide a refrigerator having a refrigeration cycle in which oil is prevented from flowing out of the compressor and the compressor is disposed above the evaporator. .
[0017] 本発明の冷蔵庫は、冷蔵庫天面に圧縮機を配置した上で、下方に配置された吸入 配管および蒸発器などに冷蔵庫横倒し時のオイル流出を防止するので、圧縮機内 のオイル量を確保しオイル面高さを大幅に減少させることを防止でき、圧縮機摺動部 へのオイル供給を確保し、圧縮機の損傷等をさらに低減できる。  [0017] The refrigerator of the present invention has a compressor disposed on the top of the refrigerator, and prevents oil from flowing out when the refrigerator is laid down on the suction pipe and evaporator disposed below, so that the amount of oil in the compressor is reduced. It is possible to prevent the oil surface height from being significantly reduced and to secure the supply of oil to the compressor sliding part, further reducing damage to the compressor.
[0018] 本発明の冷蔵庫は、断熱箱体と、断熱箱体に備えられた圧縮機と凝縮器と減圧器 と蒸発器とを順に備えて一連の冷媒流路を形成した冷凍サイクルと、圧縮機に封入 されるオイルとを有する。圧縮機は内部低圧型であるとともに断熱箱体の天面部に配 設され、蒸発器は圧縮機よりも下方に設けられる。圧縮機と蒸発器とを接続する吸入 配管には圧縮機内部から蒸発器側へのオイルの流出を防止するオイル流出防止トラ ップが設けられている。 [0018] The refrigerator of the present invention includes a heat insulating box, a refrigeration cycle in which a compressor, a condenser, a decompressor, and an evaporator provided in the heat insulating box are sequentially provided to form a series of refrigerant flow paths, a compression Enclosed in machine Oil. The compressor is an internal low-pressure type and is disposed on the top surface of the heat insulation box, and the evaporator is disposed below the compressor. The suction pipe connecting the compressor and the evaporator is provided with an oil spill prevention trap that prevents the oil from flowing out of the compressor to the evaporator.
[0019] 客先はもとより配送力 店頭までの物流を含めての冷蔵庫運搬や移設において、 冷蔵庫を横倒しにして持ち運びを行う際に、圧縮機も横倒しとなり、圧縮機内部に開 放された吸入配管の開口端にオイルが流入する。し力しながら、本発明での吸入配 管にはオイル流出防止トラップが設けられているので、吸入配管内奥部にオイルが 流出することがなぐさらに吸入配管から蒸発器へとオイルが逆流して流出することが ない。これにより運搬などの後、冷蔵庫を起こして設置してもオイル流出防止トラップ により、圧縮機より下方にある吸入配管および蒸発器にオイルが滞留することを防止 できる。  [0019] Delivery capacity as well as customer delivery When transporting or moving refrigerators including logistics to the storefront, when the refrigerator is laid on its side, the compressor also lies on its side, and the suction pipe opened inside the compressor Oil flows into the open end of the. However, since an oil outflow prevention trap is provided in the suction pipe in the present invention, the oil does not flow into the inner part of the suction pipe, and the oil flows back from the suction pipe to the evaporator. Will not flow out. As a result, the oil spill prevention trap can prevent oil from staying in the suction pipe and the evaporator below the compressor even if the refrigerator is raised and installed after transportation.
[0020] したがって、冷蔵庫天面に圧縮機を配置した上で、冷蔵庫横倒し時に、圧縮機下 方に配置された吸入配管および蒸発器などにオイル流出を防止するので、圧縮機 内のオイル量を確保しオイル面高さを大幅に減少させることを防止でき、圧縮機摺動 部へのオイル供給を確保し、圧縮機の損傷等をさらに低減できる。  [0020] Therefore, when the compressor is arranged on the top surface of the refrigerator and when the refrigerator is laid down, the oil is prevented from flowing out to the suction pipe and the evaporator disposed below the compressor, so the amount of oil in the compressor is reduced. It is possible to prevent the oil surface height from being significantly reduced and to secure the oil supply to the compressor sliding part, further reducing damage to the compressor.
[0021] また、吸入配管の内容積を大きくすることができるので、内径拡大による低圧力損 失化、および配管長さを延長しキヤビラリとの熱交換長さを増加させることによる冷凍 効果の拡大から省エネルギー化を図ることができる。  [0021] In addition, since the internal volume of the suction pipe can be increased, the pressure loss is reduced by expanding the inner diameter, and the refrigeration effect is increased by extending the pipe length and increasing the heat exchange length with the fly. Can save energy.
[0022] また、本発明の冷蔵庫は、断熱箱体は天面後方に凹み部を有し、凹み部に圧縮機 とオイル流出防止トラップとを備える。  [0022] Further, in the refrigerator of the present invention, the heat insulating box has a recessed portion at the rear of the top surface, and the recessed portion includes a compressor and an oil outflow prevention trap.
[0023] これにより、冷蔵庫の運搬や移設で冷蔵庫を横倒しにして持ち運びを行う際に、圧 縮機の傾きがより大きくなる天面後方部に圧縮機が備えられた場合においても、オイ ル流出防止トラップにより、圧縮機より下方にある吸入配管および蒸発器にオイルが 滞留することを防止できる。  [0023] Thus, when the refrigerator is laid down and carried by transporting or moving the refrigerator, even if the compressor is provided at the rear of the top where the inclination of the compressor becomes larger, the oil spills out. The prevention trap can prevent oil from staying in the suction pipe and the evaporator below the compressor.
[0024] また、本発明の冷蔵庫は、オイル流出防止トラップは、断熱箱体の前面側が上にな るように傾けた場合に圧縮機内部カゝら蒸発器側へのオイルの流出を防止する。  [0024] Further, in the refrigerator of the present invention, the oil spill prevention trap prevents the oil from flowing out to the evaporator side as well as the compressor inside when the front side of the heat insulation box is tilted up. .
[0025] これにより、冷蔵庫の前面の扉が上になるように横倒しにされての運搬時や移設時 においても、圧縮機力ものオイル流出を防止できる。 [0025] This makes it possible to carry or relocate the refrigerator so that the door on the front side of the refrigerator is turned upside down. In this case, oil outflow can be prevented even if the compressor power is used.
[0026] また、本発明の冷蔵庫は、オイル流出防止トラップは、断熱箱体の前後方向に配管 を U字形状に曲げた U曲げ部を有する。少なくとも U曲げ部の一部が圧縮機の中心 線よりも断熱箱体の前方側に配置されており、少なくとも吸入配管の一部が圧縮機の 中心線よりも断熱箱体の前方側に配置される。  [0026] Further, in the refrigerator of the present invention, the oil spill prevention trap has a U-bend portion obtained by bending a pipe into a U shape in the front-rear direction of the heat insulating box. At least a part of the U-bending part is arranged on the front side of the heat insulation box from the center line of the compressor, and at least a part of the suction pipe is arranged on the front side of the heat insulation box from the center line of the compressor. The
[0027] 冷蔵庫の前面の扉が横方向や下方向に面すると、扉が自然と開放されて運搬者に とって不安全となり、庫内部品や収納物が落下するなどの問題を防止するために、冷 蔵庫の背面と底面に設けられた冷蔵庫取っ手を用いての冷蔵庫運搬や移設がよくあ る。このような冷蔵庫運搬時や移設時に、冷蔵庫は前面の扉が上になるように横倒し にされる場合に圧縮機力ものオイル流出を防止できる。  [0027] If the front door of the refrigerator faces sideways or downward, the door will open naturally, making it unsafe for the transporter, and preventing problems such as falling of internal parts and stored items. In addition, refrigerators are often transported and relocated using refrigerator handles provided on the back and bottom of the refrigerator. When such refrigerators are transported or relocated, the refrigerator can prevent oil spillage when it is laid down with its front door facing up.
[0028] つまり、このように圧縮機が横倒しとなった際に、吸入配管の断熱箱体前後方向に 設けられたオイル流出防止トラップは上下方向の配管トラップとなる。したがって圧縮 機内部に開放された吸入配管の開口端にオイルが流入しても、少なくとも圧縮機の 中心より上方まで設けられた吸入配管の U曲げ部でオイル流出防止がなされる。  That is, when the compressor is laid down in this way, the oil outflow prevention trap provided in the front-rear direction of the heat insulating box of the suction pipe becomes a vertical pipe trap. Therefore, even if oil flows into the open end of the suction pipe opened inside the compressor, at least the U-bending portion of the suction pipe provided above the center of the compressor prevents oil from flowing out.
[0029] さらに、配管 U曲げ部が弾性部となり振動を緩和することができる。  [0029] Furthermore, the piping U-bending portion becomes an elastic portion, and vibrations can be mitigated.
[0030] また、本発明の冷蔵庫は、吸入配管に設けられたオイル流出防止トラップを圧縮機 シェル内部に設けている。こうすることで、冷蔵庫を横倒しにして持ち運びを行う際に 、オイルの逆流流出が防止できる上に、圧縮機を設けた断熱箱体の凹み部の配管 収納空間を削減し、庫内内容積の増加や断熱壁の厚み増による省エネルギー化が 可能となる。またさらに、圧縮機内部の冷媒吸入経路に設けられた消音化のための マフラーに吸入配管を直接接続して、マフラーでオイル流出防止トラップとなるように 構成すると圧縮機構成部品の熱影響により暖められた冷媒ガスを吸入することなぐ 直接吸入配管から冷媒ガスを吸入するために効率が向上し省エネルギー化が図れ る。  [0030] Further, the refrigerator of the present invention is provided with an oil spill prevention trap provided in the suction pipe inside the compressor shell. In this way, when the refrigerator is carried over on its side, it is possible to prevent backflow of oil and to reduce the piping storage space in the recessed portion of the heat insulating box provided with the compressor. Energy saving is possible by increasing the thickness of the insulation wall. Furthermore, if the suction pipe is connected directly to the muffler for silencing provided in the refrigerant suction path inside the compressor, and the muffler is configured as an oil spill prevention trap, it will warm up due to the thermal effects of the compressor components. The refrigerant gas is sucked directly from the suction pipe without sucking the refrigerant gas, so that efficiency is improved and energy saving is achieved.
[0031] また、本発明の冷蔵庫は、吸入配管に設けられたオイル流出防止トラップは、蒸発 器接続側を上方カゝら内部に突出させて圧縮機接続側を下方カゝら接続したチャンバ 一である。こうすることで、配管曲げに必要な空間を必要とせず配管トラップが形成で きる上、通常運転時のオイル戻りを阻害することもない。 [0032] また、本発明の冷蔵庫は、吸入配管に設けられたオイル流出防止トラップは、圧縮 機と吸入配管の接続部を圧縮機の中心線よりも断熱箱体の前方側に配置される。こ うすることで、冷蔵庫の背面もしくは底面に設けられた冷蔵庫取っ手を用いて、冷蔵 庫は前面の扉が上になるように横倒しにされての運搬時や移設時に、圧縮機力ゝらの オイル流出を防止できる。 [0031] Further, in the refrigerator of the present invention, the oil spill prevention trap provided in the suction pipe is a chamber in which the evaporator connection side protrudes from the upper side and the compressor connection side is connected from the lower side. It is. In this way, a pipe trap can be formed without requiring a space required for pipe bending, and oil return during normal operation is not hindered. [0032] Further, in the refrigerator of the present invention, the oil spill prevention trap provided in the suction pipe is disposed at the front side of the heat insulating box with respect to the center line of the compressor, at the connecting portion between the compressor and the suction pipe. In this way, using the refrigerator handle provided on the back or bottom of the refrigerator, the refrigerator can be easily transported or moved so that the front door is on its side so that the front door is up. Oil spill can be prevented.
[0033] つまり、このように圧縮機が横倒しとなった際に、吸入配管の接続部は圧縮機の中 心より上方となる。したがって圧縮機内部に開放された吸入配管の開口端はオイル 面の上方に位置するのでオイル流出防止が可能となる。  [0033] That is, when the compressor is laid down in this way, the connection portion of the suction pipe is above the center of the compressor. Accordingly, since the open end of the suction pipe opened inside the compressor is located above the oil surface, oil outflow can be prevented.
[0034] また、本発明の冷蔵庫は、内部低圧型の圧縮機は上下二分割の上シェルと下シェ ルを備える。内部に構成部品を収納した後、上シェルと下シェルとがシェル接合部に ぉ ヽて密閉接合されており、下シェル側に設けられた吸入配管にシェル接合部より 上方にまで配管立ち上がり部が設けられている。こうすることで、圧縮機高さの小型 化を可能とするとともに、オイル面高さの変動に対する裕度が低下するのを配管立ち 上がり部で解消することができるので、断熱箱体の凹み部を小容量化し、内容積の 拡大と冷蔵室庫内でっぱりの小型化を図ることができる。  [0034] Further, in the refrigerator of the present invention, the internal low-pressure compressor includes an upper shell and a lower shell that are divided into upper and lower parts. After the components are housed inside, the upper shell and the lower shell are hermetically sealed at the shell joint, and the pipe riser is located above the shell joint in the suction pipe provided on the lower shell side. Is provided. In this way, it is possible to reduce the height of the compressor, and it is possible to eliminate the decrease in the tolerance to fluctuations in the oil level at the rise of the pipe, so that the recessed portion of the heat insulation box Can be reduced in size to increase the internal volume and downsize the refrigerator compartment.
[0035] また、本発明の冷蔵庫は、内部低圧型の圧縮機は、内部構成部品の傾斜防止手 段を設けている。こうすることで、冷蔵庫の運搬移設時に横倒して圧縮機が傾斜して も、内部構成部品の傾斜が防止され、傾斜側に移動した冷凍機オイルの容積を圧迫 することを防ぎ、空間部を確保できるので、冷凍機オイルが吸入配管より流出しやす くなるのを防止できる。  [0035] In the refrigerator of the present invention, the internal low-pressure compressor is provided with a means for preventing the inclination of the internal components. By doing this, even if the compressor is tilted on its side when transporting the refrigerator, the internal components are prevented from tilting, and the volume of the refrigeration oil that has moved to the tilt side is prevented from being compressed, thus ensuring a space. As a result, it is possible to prevent the refrigeration oil from easily flowing out of the suction pipe.
[0036] また、本発明の冷蔵庫は、内部低圧型の圧縮機は上下二分割の上シェルと下シェ ルを備え、内部に構成部品を収納した後、上シェルと下シェルとがシェル接合部にお いて密閉接合されている。下シェル側に設けられた吸入配管は下シェル内壁面とほ ぼ同一面上で圧縮機内部に開口している。圧縮機が傾いた際に吸入配管からよりォ ィルがより流出しやすいような吸入配管を備えた圧縮機においても、運搬などの後、 冷蔵庫を起こして設置しても、圧縮機より下方にある吸入配管および蒸発器にオイル が滞留することを防止できる。  [0036] Further, in the refrigerator of the present invention, the internal low-pressure compressor includes an upper shell and a lower shell that are divided into upper and lower parts, and after the components are stored inside, the upper shell and the lower shell are connected to the shell joint portion. It is hermetically sealed. The suction pipe provided on the lower shell side opens into the compressor almost on the same plane as the inner wall of the lower shell. Even if the compressor is equipped with a suction pipe so that the oil is more likely to flow out of the suction pipe when the compressor is tilted, it can be placed below the compressor even if the refrigerator is raised after transportation. Oil can be prevented from staying in certain suction pipes and evaporators.
[0037] また、本発明の冷蔵庫は、冷凍サイクルには冷媒が封入される。冷媒は液化した状 態において、圧縮機に封入されるオイルよりも比重が軽いものである。圧縮機が傾い た際に吸入配管力 オイルが更に流出しやすいような冷媒とオイルの組み合わせを 用いた圧縮機においても、運搬などの後、冷蔵庫を起こして設置しても、圧縮機より 下方にある吸入配管および蒸発器にオイルが滞留することを防止できる。 [0037] In the refrigerator of the present invention, a refrigerant is enclosed in the refrigeration cycle. The refrigerant is in a liquefied state In this state, the specific gravity is lighter than the oil sealed in the compressor. Even if the compressor uses a combination of refrigerant and oil that makes it easier for oil to flow out when the compressor is tilted, even if the refrigerator is raised and installed after transportation, it will be below the compressor. Oil can be prevented from staying in a certain suction pipe and evaporator.
[0038] また、本発明の冷蔵庫は、冷凍サイクルに封入される冷媒は R600aであり、圧縮機 に封入されるオイルは鉱油を用いる。こうすることで、冷媒の単位時間当たりの体積 流量が増大するので、冷凍システム内を冷媒が通過する際の配管内の流速カ¾134 aに比べて約 2倍、 COに比べて約 20倍程度にまで増大する。そのため、冷凍システ  [0038] In the refrigerator of the present invention, the refrigerant enclosed in the refrigeration cycle is R600a, and the oil enclosed in the compressor uses mineral oil. This increases the volumetric flow rate of the refrigerant per unit time, so it is approximately twice as high as the flow velocity in the pipe when the refrigerant passes through the refrigeration system, approximately 20 times that of CO. It increases to. Therefore, refrigeration system
2  2
ム内に滞留しているオイルを圧縮機内部へ速やかに戻すことが可能となり、シェル内 のオイル量不足を防止することができる。  It is possible to quickly return the oil staying in the compressor to the inside of the compressor, and to prevent a shortage of oil in the shell.
[0039] また、本発明の冷蔵庫は、電動要素を回転子に永久磁石を用いたインバーター電 動機とし、かつ圧縮要素の軸受け部を電動要素の回転子の高さ範囲内に嵌挿するこ とにより、電動要素と圧縮要素とからなる内部構成部品を支持する部分以外の構成 要素で高さ方向の小型化を図って 、る。  [0039] In the refrigerator of the present invention, the electric element is an inverter electric motor using a permanent magnet for the rotor, and the bearing portion of the compression element is fitted into the height range of the rotor of the electric element. Thus, the size in the height direction can be reduced with the components other than the portion supporting the internal components composed of the electric element and the compression element.
[0040] これにより、圧縮要素および電動要素を支持する支持部を高さ低減の要素として取 り込まず、圧縮要素および電動要素で高さ低減を図ることで、オイルが支持部以外の 内部構成部品と緩衝せず、油面高さの変動が生じにくくなり吸入配管からのオイル流 出を抑制することができる。  [0040] Accordingly, the internal portion of the oil other than the support portion can be reduced by reducing the height by using the compression element and the electric element without incorporating the support portion supporting the compression element and the electric element as an element for reducing the height. It does not cushion with the parts, and oil level fluctuations are less likely to occur, and oil outflow from the suction pipe can be suppressed.
[0041] また、本発明の冷蔵庫は、天面後方に凹み部を設けた断熱箱体と凹み部に配設し た内部高圧型の圧縮機と、断熱箱体天面部に備えられた凝縮器とを有する。圧縮機 と凝縮器とは吐出配管により接続されており、凝縮器は圧縮機の吐出配管接続部よ り断熱箱体の前方側でかつ高 、位置に配置されて 、る。  [0041] Further, the refrigerator of the present invention includes a heat insulating box provided with a recess at the back of the top surface, an internal high-pressure compressor disposed in the recess, and a condenser provided on the top surface of the heat insulating box. And have. The compressor and the condenser are connected by a discharge pipe, and the condenser is arranged on the front side and at a position higher than the discharge pipe connection portion of the compressor.
[0042] これにより、冷蔵庫を横倒しにした際に、圧縮機も横倒しとなり、圧縮機内部に開放 された吐出配管の開口端にオイルが流入するが、直接接続された凝縮器に向かって 自重によりオイルが流出することがない。凝縮器にオイルが多量に流出すると凝縮配 管やその下流にあるキヤビラリがオイル閉塞し冷媒の循環を妨げるので著しい性能 低下や信頼性劣化に影響を与えることを防止できる。  [0042] Thereby, when the refrigerator is laid down, the compressor also lies down, and the oil flows into the open end of the discharge pipe opened inside the compressor. However, due to its own weight toward the directly connected condenser, Oil does not spill. If a large amount of oil flows into the condenser, the condensing pipe and the downstream girder will block the oil and hinder the circulation of the refrigerant, so that it is possible to prevent a significant drop in performance and reliability.
[0043] また、冷蔵庫天面に圧縮機を配置した上で、下方に配置された吸入配管および蒸 発器などに冷蔵庫横倒し時のオイル流出を防止するので、圧縮機内のオイル量を確 保しオイル面高さを大幅に減少させることを防止でき、圧縮機摺動部へのオイル供給 を確保し、圧縮機の損傷等をさらに低減できる。 [0043] In addition, a compressor is disposed on the top of the refrigerator, and a suction pipe and steam disposed below. Prevents oil from flowing out when the refrigerator is laid down on the generator, etc., so that the amount of oil in the compressor can be secured and the oil surface height can be prevented from being greatly reduced, and the oil supply to the compressor sliding section can be secured. Further, damage to the compressor can be further reduced.
[0044] 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、これら の実施の形態によってこの発明が限定されるものではない。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited by these embodiments.
[0045] (実施の形態 1)  [0045] (Embodiment 1)
図 1は、本発明の実施の形態 1における冷蔵庫の概略断面図を示し、図 2は同実施 の形態における冷蔵庫の概略背面図を示し、図 3は同実施の形態における冷蔵庫 の概略部品展開図を示し、図 4は同実施の形態における冷蔵庫の吸入配管要部概 略斜視図を示し、図 5は同実施の形態における冷蔵庫に搭載する圧縮機の概略断 面図を示し、図 6は同実施の形態における冷蔵庫の運搬状態の概略断面図を示し、 図 7は同実施の形態における冷蔵庫運搬時の圧縮機の概略断面図を示している。な お、背景技術と同一構成については同一符号を付す。  FIG. 1 is a schematic cross-sectional view of the refrigerator according to Embodiment 1 of the present invention, FIG. 2 is a schematic rear view of the refrigerator according to the same embodiment, and FIG. 3 is a schematic component development view of the refrigerator according to the same embodiment. 4 is a schematic perspective view of the main part of the suction pipe of the refrigerator in the same embodiment, FIG. 5 is a schematic sectional view of the compressor mounted on the refrigerator in the same embodiment, and FIG. The schematic sectional drawing of the conveyance state of the refrigerator in embodiment is shown, FIG. 7 has shown schematic sectional drawing of the compressor at the time of refrigerator conveyance in the embodiment. The same components as those in the background art are denoted by the same reference numerals.
[0046] 図 1から図 4において、断熱箱体 1は ABSなどの榭脂体を真空成型した内箱 13と プリコート鋼板などの金属材料を用いた外箱 14とで構成された空間に発泡充填する 断熱体 15を注入してなる断熱壁を備えている。断熱体 15はたとえば硬質ウレタンフ オームやフエノールフォームやスチレンフォームなどが用いられる。発泡材としてはハ イド口カーボン系のシクロペンタンを用いると、温暖化防止の観点でさらによい。  [0046] In FIGS. 1 to 4, the heat insulating box 1 is foam-filled in a space formed by an inner box 13 formed by vacuum forming a resin body such as ABS and an outer box 14 using a metal material such as a pre-coated steel plate. Yes It has a heat insulation wall made by injecting heat insulation 15. The heat insulator 15 is made of, for example, hard urethane foam, phenol foam, styrene foam, or the like. It is better to use high-mouth carbon cyclopentane as the foam material from the viewpoint of preventing global warming.
[0047] 断熱箱体 1は複数の断熱区画に区分されており上部を回転扉式、下部を引出し式 とする構成をとつている。上から冷蔵室 2、並べて設けた引出し式の切替室 16および 製氷室 17と、引出し式の野菜室 3と引出し式の冷凍室 4となっている。各断熱区画に はそれぞれ断熱扉がガスケット 18を介して設けられている。上から冷蔵室回転扉 5、 切替室引出し扉 19、製氷室引出し扉 20、野菜室引出し扉 6、冷凍室引出し扉 7であ る。  [0047] The heat insulation box 1 is divided into a plurality of heat insulation sections, and has a structure in which an upper part is a revolving door type and a lower part is a drawer type. From the top, there are a refrigerated room 2, a drawer-type switching room 16 and an ice making room 17 arranged side by side, a drawer-type vegetable room 3, and a drawer-type freezer room 4. Each heat insulation compartment is provided with a heat insulation door via a gasket 18. From the top, it is the refrigerating room rotary door 5, the switching room drawer door 19, the ice making room drawer door 20, the vegetable room drawer door 6, and the freezer compartment drawer door 7.
[0048] 冷蔵室回転扉 5には扉ポケット 21が収納スペースとして設けられており、庫内には 複数の収納棚 22が設けられている。また冷蔵室 2の最下部には貯蔵ケース 23が設 けている。  [0048] The refrigerating compartment rotary door 5 is provided with a door pocket 21 as a storage space, and a plurality of storage shelves 22 are provided in the refrigerator. A storage case 23 is provided at the bottom of the refrigerator compartment 2.
[0049] また、断熱箱体 1の外箱 14は、天面奥部が切りかかれた鋼板を U曲げしたシェル 2 4と底面パネル 25と背面パネル 26と天面後方を窪ませた凹み部 27を構成する機械 室パネル 28とをシール性を確保して組み付けられて構成されて!、る。機械室パネル 28は鋼板の絞り加工により成型されており、加工性の向上のためにコーナー部は R 形状がとられている。この R形状により発泡充填する断熱体 15の分岐もしくは合流部 の流路が確保されて流動性が良化され、充填不足によるボイドの発生などを防止で きる。 [0049] The outer box 14 of the heat insulating box 1 is a shell 2 obtained by U-bending a steel plate whose top surface is cut off. 4, bottom panel 25, back panel 26, and machine room panel 28, which forms a recess 27 recessed in the rear of the top surface, are assembled and secured to ensure sealing performance! The machine room panel 28 is formed by drawing a steel plate, and the corner portion has an R shape to improve workability. This R shape secures a flow path at the branching or joining portion of the heat insulating body 15 to be filled with foam, improving the fluidity, and preventing voids due to insufficient filling.
[0050] なお、機械室パネル 28は圧縮機 11の配置部が最も深ぐ左右端に向かうに従って 絞りが浅い形状とすることでも発泡充填する断熱体 15の分岐もしくは合流部の流路 が確保されて流動性が良化される。  [0050] It should be noted that the flow path of the branching or confluence portion of the heat insulating body 15 to be foam-filled is ensured even if the machine room panel 28 has a narrowed shape as it goes to the left and right ends where the arrangement portion of the compressor 11 is deepest. Fluidity is improved.
[0051] さらになお、機械室パネル 28は絞り加工としたので発泡充填のためのシール部が 少なくてすむので工数的に有利である。また、板金加工により同様の形状を構成する ならば絞り金型費用が少なくて済むうえに、絞りしわのない仕上げと寸法精度を上げ ることが可能である。  [0051] Furthermore, since the machine room panel 28 is made by drawing, there are fewer sealing portions for foam filling, which is advantageous in terms of man-hours. In addition, if a similar shape is formed by sheet metal processing, the cost of the drawing die can be reduced, and it is possible to improve the finish and dimensional accuracy without drawing wrinkles.
[0052] また、機械室パネル 28は複数の空気抜き穴(図示せず)が各面に設けられており、 外観および内観を阻害することなく残留空気によるボイドの発生や変形を防止するこ とがでさる。  [0052] Further, the machine room panel 28 is provided with a plurality of air vent holes (not shown) on each surface, and it is possible to prevent generation and deformation of voids due to residual air without impairing the appearance and the inside view. I'll do it.
[0053] また、底面パネル 25と背面パネル 26には指先を引っ掛けることが可能な窪みから なる取っ手が設けられている。底面取っ手 29は底面前方から中央にかけての位置で 、前方力 指先をかけられるよう二箇所に所定の間隔を置いて設けられている。背面 取っ手 30は背面パネル 26の最上部のなるべく高い場所で上向きに指先をかけられ るよう二箇所に所定の間隔を置 、て設けられて 、る。  [0053] Further, the bottom panel 25 and the back panel 26 are provided with handles made of depressions that can be hooked with fingertips. The bottom handle 29 is provided at two positions at a predetermined interval so that the front fingertip can be applied at a position from the front to the center of the bottom. The rear handle 30 is provided at a predetermined interval at two positions so that the fingertip can be applied upward as high as possible at the top of the rear panel 26.
[0054] また、内箱 13は外箱 14より一回り小さぐ背面奥部が内側に窪んだ構成となってお り、外箱 14の中に組み入れることで断熱体 15が発泡充填される空間が断熱箱体 1に 形成される。したがって、機械室パネル 28の左右部も断熱体 15が発泡充填されて断 熱壁が構成され、強度が確保される。さらに底面取っ手 29や背面取っ手 30も発泡充 填された断熱体 15により強度が確保される。  [0054] Further, the inner box 13 has a configuration in which the rear back part, which is slightly smaller than the outer box 14, is recessed inward, and the heat insulator 15 is foam-filled by being incorporated in the outer box 14. Is formed in the heat insulation box 1. Therefore, the left and right parts of the machine room panel 28 are also filled with the heat insulator 15 to form a heat insulation wall, thereby ensuring strength. Furthermore, the bottom handle 29 and the back handle 30 are also secured by the foam-filled insulation 15.
[0055] また、冷凍サイクルは凹み部 27に弾性支持して配設した圧縮機 11と、圧縮機 11の 近傍に設けた機械室ファン 31と、シェル 24の天面や凹み部 27や底面パネル 25下 部やシェル 24の側面などに設けた凝縮器(図示せず)と、減圧器であるキヤビラリ 32 と、水分除去を行うドライヤ(図示せず)と、野菜室 3と冷凍室 4の背面で冷却ファン 8 を近傍に配置して設けた蒸発器 9と、吸入配管 33とを環状に接続して構成されて ヽ る。 [0055] Further, the refrigeration cycle includes a compressor 11 elastically supported in the recess 27, a machine room fan 31 provided in the vicinity of the compressor 11, a top surface, a recess 27 and a bottom panel of the shell 24. 25 bottom Cooling on the back of the vegetable compartment 3 and freezer compartment 4, a condenser (not shown) provided on the side of the head and the shell 24, a chiller 32, a dryer for removing water (not shown) The evaporator 9 provided with the fan 8 disposed in the vicinity thereof and the suction pipe 33 are connected in a ring shape.
[0056] 凹み部 27はビスなどで固定された天面カバー 34が設けられており、凹み部 27に 設けられた圧縮機 11や凝縮器 (図示せず)や機械室ファンゃドライヤや配管などを 収納してある。  [0056] The recess 27 is provided with a top cover 34 fixed with a screw or the like. The compressor 11 and the condenser (not shown) provided in the recess 27, a machine room fan, dryer, piping, etc. Is stored.
[0057] キヤビラリ 32と吸入配管 33は、おおむね同等の長さの銅管であり、端部を残して熱 交換可能にはんだ付けされている。キヤビラリ 32は減圧のため内部流動抵抗が大き い細径の銅管が用いられており、その内径は 0. 6mmから 1. Omm程度で長さととも に調節して減圧量が設計される。吸入配管 33は圧力損失を低減するために大径の 銅管が用いられており、その内径は 6. 35mm力 7. 94mm程度で設計されている。 また熱交換部 35の長さを確保するために、蛇行させてコンパクトにまとめて、冷蔵室 2の背面に蛇行部がくるようにして、内箱 13と背面パネル 26との中間に配置され断 熱体 15に埋設される。キヤビラリ 32と吸入配管 33は、一方の端部を内箱 13の野菜 室 3後方位置カゝら突き出し蒸発器 9と接続されており、他方の端部を機械室パネル 2 8の淵に設けた切欠部(図示せず)から上方に突き出してドライヤ(図示せず)や凝縮 器および圧縮機 11と各々接続されて 、る。  [0057] The capillary 32 and the suction pipe 33 are copper pipes of approximately the same length, and are soldered so that heat exchange is possible with the end portions remaining. The Cabilari 32 uses a small-diameter copper tube with a large internal flow resistance for decompression, and its inside diameter is about 0.6 to 1. Omm, and the amount of decompression is designed by adjusting with the length. The suction pipe 33 uses a large-diameter copper pipe to reduce pressure loss, and its inner diameter is designed with a 6.35mm force of about 7.94mm. In addition, in order to secure the length of the heat exchange section 35, it is meandered to be compact and arranged in the middle of the inner box 13 and the rear panel 26 so that the meandering section comes to the back of the refrigerator compartment 2. It is buried in the heat 15. One end of the carriage 32 and the suction pipe 33 is connected to the evaporator 9 protruding from the vegetable compartment 3 rear position of the inner box 13, and the other end is provided at the side of the machine room panel 28. It protrudes upward from a notch (not shown) and is connected to a dryer (not shown), a condenser and a compressor 11 respectively.
[0058] なお、比較的温度の高い野菜室 3の後方力 配管を庫内に出し入れするので、配 管出し入れによる侵入する熱量の増加影響力 、さくて済み省エネルギーに効果があ る。  [0058] It should be noted that since the rear force piping of the vegetable room 3 having a relatively high temperature is taken in and out of the cabinet, the influence of increasing the amount of heat intruding due to the putting in and out of the piping is effective in saving energy.
[0059] また、吸入配管 33にはオイル流出防止トラップ 36が圧縮機 11との接続部近傍に 設けられており、凹み部 27に収納されている。組立て作業性やサービス作業性を向 上させることを狙いに、配管の密集度を軽減し、後方力 配管接続部を目視できるよ うにするために、圧縮機 11の配管接続部は背面側に面して圧縮機の左右に振り分 けて配置されている。  In addition, an oil outflow prevention trap 36 is provided in the vicinity of the connection portion with the compressor 11 in the suction pipe 33 and is accommodated in the recess 27. With the aim of improving the assembly workability and service workability, the pipe connection part of the compressor 11 faces the rear side in order to reduce the density of the pipes and to make the rear force pipe connection visible. Thus, they are arranged on the left and right sides of the compressor.
[0060] 吸入配管 33は、圧縮機 11の背面側下方部力も側方に若干の上り勾配を設けて直 進させた後、略垂直方向に圧縮機 11の垂直方向中心線より高くかつ圧縮機 11の高 さより低い位置まで立ち上がり部が設けられる。凹み部 27を最小とし、冷蔵室庫内へ のでっぱりを最小とするために圧縮機 11の小型化と圧縮機周辺壁面との空間はでき るだけ小さくすることが必要であり、上下方向に関しては圧縮機 11の高さ以下に配管 高さを設定することで配管の壁面接触防止を図ることができる。 [0060] The suction pipe 33 has a rear lower side force of the compressor 11 that is straight and has a slight upward slope on the side, and then is substantially higher in the vertical direction than the vertical center line of the compressor 11 and the compressor 11 11 high The rising portion is provided to a position lower than the above. In order to minimize the dent 27 and minimize the bulge into the refrigerator compartment, it is necessary to reduce the size of the compressor 11 and the space between the compressor peripheral wall as much as possible. Setting the pipe height below the height of the compressor 11 can prevent the wall surface of the pipe from contacting.
[0061] さらに吸入配管 33は垂直方向立ち上げ後、断熱箱体 1の前方向に向って設けられ た配管 U曲げ部 37で構成されたオイル流出防止トラップ 36が設けられており、配管 U曲げ部 37の先端は圧縮機 11の平面方向中心線よりも断熱箱体 1の前方側に位置 している。圧縮機 11は天面に向って曲率をもつ形状となっているために、圧縮機 11 の上方で配管曲げ部 37を構成するとスペース的に余裕があり、配管収納空間を余 分に取らず小型化が可能である。また、配管 U曲げ部 37を設けることで配管の弾性 を持たせることができ、圧縮機 11力もの振動伝播を吸収し、配管固定部における応 力集中を防ぎ配管破損を軽減できる。  [0061] Further, the suction pipe 33 is provided with an oil spill prevention trap 36 composed of a pipe U-bending portion 37 provided in the front direction of the heat insulating box 1 after rising up in the vertical direction. The tip of the portion 37 is located on the front side of the heat insulating box 1 with respect to the center line in the plane direction of the compressor 11. Since the compressor 11 has a shape with a curvature toward the top surface, if the pipe bending part 37 is configured above the compressor 11, there is a sufficient space and a small space does not take up the pipe storage space. Is possible. In addition, by providing piping U-bending portion 37, the elasticity of the piping can be provided, and the vibration propagation of 11 forces of the compressor can be absorbed, stress concentration at the piping fixing portion can be prevented, and piping damage can be reduced.
[0062] 吸入配管 33は U曲げ後、略垂直方向に曲げられて機械室パネル 28の背面端部 カゝら断熱体 15内に埋設されている。  [0062] After the U-bending, the suction pipe 33 is bent in a substantially vertical direction and embedded in the heat insulator 15 such as the rear end of the machine room panel 28.
[0063] 次に、圧縮機 11内部の構造について説明する。  Next, the internal structure of the compressor 11 will be described.
[0064] 図 5において、圧縮機シェル 40は、 2mmから 4mmの厚手の鋼板を深絞り成形して なる鉢形状の下シェル 38と逆鉢形状の上シェル 39を組み合わせて重なりあった部 分であるシェル接合部 40aの周囲を溶接接続した密閉構造である。圧縮機シェル 40 は内部に弾性体 41で弾性支持された回転駆動部 42と圧縮部 43とを備る。圧縮機シ エル 40内部に端部を開放した吸入配管 33と、吐出配管 44で冷凍サイクルを構成す る他の機器と接続されており、所定量のオイル 45と冷媒(図示せず)が封入されてい る。また、下シェル 38の下方部には断熱箱体 1との弾性支持するための支持部 46が 取り付けられている。なお、支持部 46は弾性支持部材の厚みを確保するための逃が しが一段の段差により設けられて 、る。  [0064] In FIG. 5, the compressor shell 40 is an overlapped part of a combination of a bowl-shaped lower shell 38 and a reverse bowl-shaped upper shell 39 formed by deep drawing a thick steel plate of 2 to 4 mm. It is a sealed structure in which the periphery of a shell joint 40a is welded. The compressor shell 40 includes a rotation drive unit 42 and a compression unit 43 that are elastically supported by an elastic body 41 inside. Compressor shell 40 is connected to other equipment that constitutes the refrigeration cycle with suction pipe 33 with its end open and discharge pipe 44, and contains a predetermined amount of oil 45 and refrigerant (not shown) It has been done. Further, a support portion 46 for elastically supporting the heat insulating box 1 is attached to the lower portion of the lower shell 38. The support portion 46 is provided with a relief for securing the thickness of the elastic support member by one step.
[0065] 回転駆動部 42はモーター 47と軸受け部 48からなる。モーター 47は電圧印加され て永久磁石との間に回転力を発生させる中空円柱状電磁コイルを有するステーター 49と、ステーター 49内部の中空部にあって微小隙間で相対させた永久磁石を有す るローター 50とからなる。軸受け部 48は端部に偏芯シャフト 51を備え、内部を両端 開放中空とし、周囲に螺旋状の溝 (図示せず)と内部連通する噴出穴を設けたシャフ ト 52と、シャフト 52を回転自在に保持する軸受け 53で構成される。 The rotation drive unit 42 includes a motor 47 and a bearing unit 48. The motor 47 has a stator 49 having a hollow cylindrical electromagnetic coil that generates a rotational force with a permanent magnet when a voltage is applied, and a permanent magnet that is located in a hollow portion inside the stator 49 and is opposed by a minute gap. Rotor 50. The bearing part 48 has an eccentric shaft 51 at its end, The shaft 52 is composed of an open hollow, a shaft 52 provided with a spiral groove (not shown) in the periphery thereof, and a jet hole that communicates with the inside, and a bearing 53 that rotatably holds the shaft 52.
[0066] 圧縮部 43は、先端にバルブ機構(図示せず)を備えたシリンダヘッド 54を設けたシ リンダ 55と、ピストン 56と、ピストン 56と偏芯シャフト 51とに揺動自在に取り付け回転 動作を直線往復動作に変換するロッド 57とで構成されて ヽる。圧縮された冷媒が直 接圧縮機シェル 40外部へと吐出されるようにシリンダヘッド 54には吐出配管 44がバ ルブ機構を介して接続されて ヽる。また吸入部はバルブ機構を介して圧縮機シェル 4 0内部に開放されている。特に消音のために、吸入経路はシリンダヘッド 54と圧縮機 シェル 40の吸入ガス経路間に消音マフラー(図示せず)が配設されている。 [0066] The compression unit 43 is attached to a cylinder 55 provided with a cylinder head 54 provided with a valve mechanism (not shown) at the tip, a piston 56, a piston 56, and an eccentric shaft 51 so as to be swingable. It consists of a rod 57 that converts motion to linear reciprocating motion. A discharge pipe 44 is connected to the cylinder head 54 via a valve mechanism so that the compressed refrigerant is discharged directly to the outside of the compressor shell 40. The suction part is opened inside the compressor shell 40 via a valve mechanism. In order to mute the sound, a suction muffler (not shown) is disposed between the suction path of the cylinder head 54 and the compressor shell 40 for the suction path.
[0067] なお、吸入配管 33は圧縮機シェル 40の内壁面に対して開口端が面一となるように 配置されており、圧縮機 11の小型化が図られている。 [0067] Note that the suction pipe 33 is arranged so that the opening end thereof is flush with the inner wall surface of the compressor shell 40, so that the compressor 11 is downsized.
[0068] 以上のように構成された冷蔵庫について、以下その動作、作用を説明する。 The operation and action of the refrigerator configured as described above will be described below.
[0069] まず各断熱区画の温度設定と冷却方式について説明する。冷蔵室 2は冷蔵保存の ために凍らない温度を下限に通常 1°C〜5°Cで設定されている。また、貯蔵ケース 23 は肉魚などの保鮮性向上のため比較的低めの温度、たとえば 3°C〜1°Cで設定さ れる。 [0069] First, the temperature setting and cooling method of each heat insulation section will be described. Refrigeration room 2 is usually set at 1 ° C to 5 ° C, with the lower limit being the temperature at which it will not freeze for refrigerated storage. The storage case 23 is set at a relatively low temperature, for example, 3 ° C. to 1 ° C. for improving the freshness of meat fish and the like.
[0070] 切替室 16はユーザーの設定により温度設定を変更可能であり、冷凍室温度帯から 冷蔵、野菜室温度帯まで所定の温度設定にすることができる。また、製氷室 17は独 立の氷保存室であり、自動製氷装置(図示せず)を備えて、氷を自動的に作製、貯留 する。氷を保存するための冷凍温度帯であるが、氷の保存が目的であるために冷凍 温度帯よりも比較的高い— 18°C〜― 10°Cの冷凍温度で設定されることも可能である  [0070] The temperature setting of the switching chamber 16 can be changed by a user setting, and can be set to a predetermined temperature from the freezer compartment temperature zone to the refrigeration and vegetable compartment temperature zones. In addition, the ice making chamber 17 is an independent ice storage chamber and is equipped with an automatic ice making device (not shown) to automatically produce and store ice. Although it is a freezing temperature zone for storing ice, it can be set at a freezing temperature that is relatively higher than the freezing temperature zone because it is intended to preserve ice. is there
[0071] 野菜室 3は冷蔵室 2と同等もしくは若干高い温度設定の 2°C〜7°Cとすることが多い 。凍らない程度で低温にするほど葉野菜の鮮度を長期間維持することが可能である [0071] The vegetable room 3 is often set to 2 ° C to 7 ° C, which is set at a temperature that is equal to or slightly higher than that of the refrigerator room 2. It is possible to maintain the freshness of leafy vegetables for a long time as the temperature is lowered so that it does not freeze.
[0072] 冷凍室 4は冷凍保存のために通常— 22°C〜― 18°Cで設定されている力 冷凍保 存状態の向上のために、たとえば— 30°Cや— 25°Cの低温で設定されることもある。 [0072] The freezer compartment 4 is usually set at a temperature between -22 ° C and -18 ° C for freezing storage. For example, a low temperature of -30 ° C or -25 ° C can be used to improve the state of refrigeration. It may be set by.
[0073] 各室は異なる温度設定を効率的に維持するために断熱壁によって区分されている 力 低コストでかつ断熱性能を向上させる方法として断熱体 15で一体に発泡充填す ることが可能である。発泡スチロールのような断熱部材を用いるのに比べて約 2倍の 断熱性能とすることができ、仕切りの薄型化による収納容積の拡大などができる。 [0073] Each chamber is partitioned by insulating walls to efficiently maintain different temperature settings Power As a method for improving heat insulation performance at low cost, it is possible to perform foam filling with the heat insulator 15 integrally. Compared to using a heat insulation member such as polystyrene foam, the heat insulation performance can be doubled, and the storage capacity can be increased by making the partition thinner.
[0074] 次に冷凍サイクルの動作について説明する。庫内の設定された温度に応じて温度 センサ(図示せず)および制御基板からの信号により冷却運転が開始および停止さ れる。冷却運転の指示により圧縮機 11内部では回転駆動部 42のモーター 47にター ミナル(図示せず)から電線を通して電圧印加される。  [0074] Next, the operation of the refrigeration cycle will be described. The cooling operation is started and stopped by signals from a temperature sensor (not shown) and a control board according to the set temperature in the chamber. A voltage is applied from the terminal (not shown) through the electric wire to the motor 47 of the rotary drive unit 42 in the compressor 11 in accordance with the instruction of the cooling operation.
[0075] モーター 47が動作するとステーター 49の電磁コイルが励磁して永久磁石を有する ローター 50との間に回転力を発生させる。ローター 50の回転により、軸受部 48では ローター 50に固定されたシャフト 52が同期回転し、偏芯シャフト 51も偏芯回転する。 偏芯シャフト 51の回転により揺動自在に設けられたロッド 57を通して、ピストン 56は シリンダ 55内を往復動作する。  [0075] When the motor 47 is operated, the electromagnetic coil of the stator 49 is excited to generate a rotational force with the rotor 50 having a permanent magnet. The rotation of the rotor 50 causes the shaft 52 fixed to the rotor 50 to rotate synchronously in the bearing portion 48, and the eccentric shaft 51 also rotates eccentrically. The piston 56 reciprocates in the cylinder 55 through a rod 57 that is swingably provided by the rotation of the eccentric shaft 51.
[0076] これにより圧縮部 43で冷媒ガスの圧縮動作が行われる。つまり、ピストン 56がシリン ダヘッド 54から最も離れた位置に移動するときに、シリンダ 55内の圧力が低下し、シ リンダヘッド 54に設けられた吸入部のバルブ機構(図示せず)が開放となり、圧縮機 シェル 40内の冷媒ガスが消音マフラー(図示せず)を経由してシリンダ 55内に吸入さ れる。次にピストン 56がシリンダヘッド 54と最も近づく位置に移動するときに、吸入さ れた冷媒ガスが圧縮されて高温高圧の冷媒ガスとなってシリンダヘッド 54の吐出部 カゝらバルブ機構を介して吐出される。吐出された冷媒ガスはシリンダヘッド 54に直接 接続された吐出配管 44を通して圧縮機シェル 40外へと送られる。  Thereby, the compression operation of the refrigerant gas is performed in the compression unit 43. That is, when the piston 56 moves to the position farthest from the cylinder head 54, the pressure in the cylinder 55 decreases, and the valve mechanism (not shown) of the suction portion provided in the cylinder head 54 is opened. The refrigerant gas in the compressor shell 40 is sucked into the cylinder 55 via a muffler muffler (not shown). Next, when the piston 56 moves to the position closest to the cylinder head 54, the sucked refrigerant gas is compressed to become high-temperature and high-pressure refrigerant gas via the valve mechanism in the discharge part of the cylinder head 54. Discharged. The discharged refrigerant gas is sent out of the compressor shell 40 through a discharge pipe 44 directly connected to the cylinder head 54.
[0077] このように圧縮機シェル 40内は低圧の冷媒ガスが存在する内部低圧型の構成とな つており、吸入配管力も戻ってくる冷媒ガスは圧縮機シェル 40内へと放出されている  [0077] As described above, the compressor shell 40 has an internal low-pressure type configuration in which low-pressure refrigerant gas exists, and the refrigerant gas that returns to the suction pipe force is released into the compressor shell 40.
[0078] 圧縮機 11の軸受部 48や圧縮部 43に存在する摺動部 58はオイル 45により潤滑性 を確保されて ヽる。さらにオイル 45と冷媒ガスは相溶性のある組合せが選定されてお り、オゾン破壊係数の低い Rl 34aとエステルオイルの組合せや、特に地球温暖化係 数も低く環境保護に良いハイド口カーボン系の冷媒である HC600aと鉱油の組合せ などがある。 [0079] また、オイル 45は圧縮機シェル 40内に封入されており、下部に貯留されて所定の オイル面高さを確保するように封入量が決められて ヽる。摺動部 58へのオイル 45の 供給はシャフト 52の回転による遠心力でシャフト 52の中空内部を伝わり行われる。シ ャフト 52の下端がオイル 45に完全につけられており、ここ力もシャフト 52内部をさか のぼるオイル 45が摺動部 58の各部位に相対する位置に設けられた噴出穴(図示せ ず)から吹付けられている。さらに、シャフト 52周囲の螺旋溝により摺動部 58へのオイ ル 45の供給を十分に ヽきわたらせることができる。 [0078] The sliding portion 58 existing in the bearing portion 48 and the compression portion 43 of the compressor 11 is secured with lubricity by the oil 45. In addition, a compatible combination of oil 45 and refrigerant gas has been selected. A combination of Rl 34a and ester oil, which has a low ozone depletion potential, and a high-mouth carbon system that has a low global warming coefficient and good environmental protection. There are combinations of refrigerant HC600a and mineral oil. [0079] In addition, the oil 45 is sealed in the compressor shell 40, and the amount of the oil 45 is determined so as to be stored in the lower part and to secure a predetermined oil surface height. Supply of the oil 45 to the sliding portion 58 is performed through the hollow interior of the shaft 52 by the centrifugal force generated by the rotation of the shaft 52. The lower end of the shaft 52 is completely attached to the oil 45, and this force is also blown from an ejection hole (not shown) provided at a position corresponding to each part of the sliding portion 58. It is attached. Furthermore, the supply of the oil 45 to the sliding portion 58 can be sufficiently spread by the spiral groove around the shaft 52.
[0080] 以上のような圧縮機 11の動作により吐出された高温高圧の冷媒は、凝縮器(図示 せず)にて放熱して凝縮液化し、キヤビラリ 32で減圧されて低温低圧の液冷媒となり 蒸発器 9に至る。  [0080] The high-temperature and high-pressure refrigerant discharged by the operation of the compressor 11 as described above dissipates heat in the condenser (not shown), condenses and liquefies, and is depressurized by the cavity 32 to become a low-temperature and low-pressure liquid refrigerant. To evaporator 9.
[0081] 冷却ファン 8の動作により、庫内の空気と熱交換されて蒸発器 9内の冷媒は蒸発気 化され、熱交換された低温の冷気をダンバ(図示せず)などで分配することで各室の 冷却が行われる。  [0081] By the operation of the cooling fan 8, heat is exchanged with the air in the cabinet, the refrigerant in the evaporator 9 is evaporated, and the low-temperature cold air that has been heat-exchanged is distributed by a damper (not shown) or the like. Each room is cooled.
[0082] 蒸発器 9を出た冷媒は吸入配管 33を経て圧縮機 11へと吸い込まれる。このとき吸 入配管 33はキヤビラリ 32と熱交換可能にはんだ付けされて断熱体 15に埋設されて いるので、周囲に熱が逃げることなく低温の吸入配管 33から高温のキヤビラリ 32へと 伝熱する。キヤビラリ 32は冷媒の減圧過程において冷却されるので比ェンタルビが 低下し冷凍効果が増加する。吸入配管 33は冷媒温度が上昇し出口部で周囲温度と ほぼ同等以上とすることができる。吸入配管 33の冷媒温度が上昇するので圧縮機 1 1に吸入される過程における熱損失は小さくて済み効率が向上する。冷凍温度を生 成する冷凍サイクルは蒸発器 9での冷媒温度が 20°C以下の非常に低温であるた めに、特に熱損失を低減する効果は大きいものとなる。  The refrigerant that has left the evaporator 9 is sucked into the compressor 11 through the suction pipe 33. At this time, the suction pipe 33 is soldered so as to be capable of exchanging heat with the capillaries 32 and is embedded in the heat insulator 15, so that heat is transferred from the low-temperature suction pipe 33 to the high-temperature capillaries 32 without escaping from the surroundings. . Since Cabilary 32 is cooled during the process of reducing the refrigerant pressure, the specificentalbi decreases and the refrigeration effect increases. In the suction pipe 33, the refrigerant temperature rises and can be made to be approximately equal to or higher than the ambient temperature at the outlet. Since the refrigerant temperature in the suction pipe 33 rises, the heat loss in the process of being sucked into the compressor 11 is small, and the efficiency is improved. The refrigeration cycle that generates the refrigeration temperature is extremely low, with the refrigerant temperature in the evaporator 9 being 20 ° C or less, so the effect of reducing heat loss is particularly great.
[0083] また、キヤビラリ 32は比較的高温であるために低温部位に配置すると吸入配管 33 との熱交換以外に放熱が生じ、冷凍サイクルの熱損失が生じるとともに庫内への熱 負荷となり省エネルギー性を低下させてしまう。しかし、庫内温度の高い冷蔵室 2の 背面にキヤビラリ 32と吸入配管 33を配置したので熱損失や庫内への熱負荷が大きく 増加することなぐ省エネルギー性の確保が可能である。特に熱交換部 35の長さを 十分に確保し、かつ冷蔵室 2の背面で蛇行させてコンパクトに収納するので省エネル ギー化と吸入配管 33の十分な温度上昇が得られる。カロえて、蛇行部は昇り勾配を設 けトラップのない構成としてあるので、液冷媒ゃ冷凍機オイルが滞留することがなぐ 圧力損失などの性能影響を引き起こすことがない。 [0083] In addition, since the firefly 32 is relatively hot, if it is placed in a low temperature part, heat will be dissipated in addition to heat exchange with the suction pipe 33, resulting in heat loss in the refrigeration cycle and heat load in the cabinet, saving energy. Will be reduced. However, because the exhaust 32 and the suction pipe 33 are arranged on the back of the refrigerator compartment 2 where the internal temperature is high, it is possible to secure energy savings without greatly increasing heat loss and heat load on the internal storage. In particular, the heat exchanger 35 has a sufficient length, and is meandering behind the refrigerator compartment 2 for compact storage. And sufficient temperature rise of the suction pipe 33 can be obtained. Since the meandering portion has an ascending slope and no trap, the liquid refrigerant does not cause refrigeration oil to stay and does not cause performance effects such as pressure loss.
[0084] 以上のような動作を行う冷蔵庫の運搬や移設時においては、図 6に示すように底面 パネル 25及び背面パネル 26に設けた底面取っ手 29と背面取っ手 30を使って 4人 など複数人数で運搬するようにしてある。  [0084] When transporting or relocating a refrigerator that operates as described above, as shown in Fig. 6, multiple people such as four people can use the bottom handle 29 and the back handle 30 provided on the bottom panel 25 and the back panel 26. It is supposed to be transported by.
[0085] 冷蔵庫の重量は内容積の大型化や高機能化に伴う付加部品の増加や省エネルギ 一化のための密度の大き!/、真空断熱材使用量の増加などに伴 、ず 、ぶんと増加し てきている。また、冷蔵庫の外寸も高さは 1800mm近くあるものが主流となり、幅や奥 行も 600mm力 750mm程あり、運搬の工夫は非常に重要なものとなってきている。  [0085] The weight of the refrigerator has increased due to the increase in the number of additional parts accompanying the increase in the internal volume and the increase in functionality and the increase in density for energy saving! / And the increase in the amount of vacuum insulation used. It is increasing. In addition, refrigerators with external dimensions of nearly 1800 mm are the mainstream, and the width and depth are about 600 mm and 750 mm, making it very important to devise transportation.
[0086] 客先までの冷蔵庫配送時には必ずと!/、つてよ!/、ほど横倒しでの運搬形態が必要と なっており、そのため底面と背面上部に取っ手が設けられている。また、配送時だけ でなぐ引越しや模様替えなど、冷蔵庫は電源投入直前に横倒しして運搬されること が多い。  [0086] When the refrigerator is delivered to the customer, it is necessary to carry it in a sideways manner! /, Tsuteyo! /, So there are handles on the bottom and upper back. In addition, refrigerators are often laid down and transported just before the power is turned on, such as moving or changing the pattern just during delivery.
[0087] これらの取っ手構成により、冷蔵庫は扉面を上方に向けての運搬可能となり、運搬 中に扉が不意に開放されて運搬者にとって不安定なものとなり、庫内部品や収納物 が落下するなどの問題を防止することができる。  [0087] With these handle configurations, the refrigerator can be transported with the door surface facing upward, and the door is opened unexpectedly during transportation, making it unstable for the transporter, and the internal parts and stored items fall. It is possible to prevent problems such as
[0088] このとき天面の凹み部 27に設けられている圧縮機 11の内部は、図 7に示すように、 圧縮機シェル 40内に開放された吸入配管 33の開口端がオイル 45中に没してしまう こととなり、吸入配管 33から逆流流出が可能な状態となる。しかし、配管 U曲げ部 37 力もなるオイル流出防止トラップ 36が、運搬時のオイル 45の滞留面に対して、上方 に立ち上がり構成されているのでオイル 45が吸入配管 33内と蒸発器 9内に流出する ことがない。運搬後の再設置時にはオイル流出防止トラップ 36内のオイル 45は圧縮 機シェル 40内へと重力で戻り、吸入配管 33内をオイル 45で閉塞した状態のままに することがない。  At this time, as shown in FIG. 7, the inside of the compressor 11 provided in the recess 27 on the top surface has an open end of the suction pipe 33 opened in the compressor shell 40 in the oil 45. As a result, the intake pipe 33 can be backflowed out. However, since the oil spill prevention trap 36, which also has the force of the pipe U-bend 37, rises upward from the staying surface of the oil 45 during transportation, the oil 45 flows into the suction pipe 33 and the evaporator 9 There is nothing to do. At the time of re-installation after transportation, the oil 45 in the oil spill prevention trap 36 returns to the compressor shell 40 by gravity and does not leave the suction pipe 33 closed with the oil 45.
[0089] このように、オイル流出防止トラップ 36が圧縮機 11と共に天面の凹み部 27に備え られており、さらに圧縮機 11内に開放された吸入配管 33の開口端にオイルが流入 するような傾きで傾けた場合に圧縮機 11の内部カゝら蒸発器 9側へオイルの流出を防 止するような傾きで備えられて 、ることから、運搬などによって傾 、た後に冷蔵庫を起 こした場合でも、天面の凹み部 27外の吸入配管内へ流出することがほとんどない。ま た、吸入配管 33から蒸発器 9へとオイルが逆流して流出することを防止することがで きる。 In this way, the oil outflow prevention trap 36 is provided in the recess 27 on the top surface together with the compressor 11, and further, the oil flows into the open end of the suction pipe 33 opened in the compressor 11. When it is tilted at a slight angle, it prevents oil from flowing out of the compressor 11 and the evaporator 9 side. Therefore, even when the refrigerator is started after being tilted by transportation or the like, it hardly flows out into the suction pipe outside the recess 27 on the top surface. Further, it is possible to prevent the oil from flowing backward from the suction pipe 33 to the evaporator 9.
[0090] 上記のようにオイル流出防止トラップ 36により、運搬などによって傾いた後に冷蔵 庫を起こした場合でも、オイル流出防止トラップ 36内に流出したオイルは圧縮機 11 内部へと戻る為、圧縮機より下方にある吸入配管および蒸発器にオイルが滞留する ことを防止でき、圧縮機 11内のオイル不足を解消することができ、圧縮機摺動部等 へのオイル供給を確保し、圧縮機の損傷等をさらに低減できる。  [0090] As described above, the oil spill prevention trap 36 causes the oil that has flowed into the oil spill prevention trap 36 to return to the compressor 11 even when the refrigerator is raised after being tilted by transportation or the like. It is possible to prevent oil from staying in the suction pipe and evaporator located below, to eliminate the shortage of oil in the compressor 11, and to ensure oil supply to the compressor sliding parts, etc. Damage and the like can be further reduced.
[0091] このことから圧縮機シェル 40内のオイル 45が所定量確保されて摺動部 58への給 油不足や、特に圧縮機 11のイニシャル始動となる電源投入時において摺動部 58へ の給油不足を防止できるので、圧縮機 11の損傷等をさらに低減できる信頼性の高い 冷蔵庫を提供できる。  [0091] From this, a predetermined amount of oil 45 in the compressor shell 40 is secured, and there is a shortage of oil supply to the sliding portion 58, especially when the power is turned on for the initial start of the compressor 11, Since insufficient oil supply can be prevented, a highly reliable refrigerator that can further reduce damage to the compressor 11 and the like can be provided.
[0092] なお、凹み部 27の庫内でっぱりを最小限とするために、凝縮器を薄型とし天面に 配置してもよいし、箱型の構成として凹み部 27に圧縮機 11と機械室ファン 31とを順 番に並列配置して、上下方向の内容積を確保してもよい。また、凝縮器はフィンチュ ーブタイプやワイヤーチューブタイプやスパイラルフィンチューブタイプなど外表面積 を拡大させ放熱能力を増加させると、凝縮器の小型化や能力増加による省エネルギ 一化などで効果がある。  [0092] In order to minimize the inside of the recess 27, the condenser may be thin and disposed on the top surface. Alternatively, the compressor 11 and the machine room may be placed in the recess 27 as a box-shaped configuration. The fan 31 may be arranged in parallel in order to secure the internal volume in the vertical direction. In addition, if the condenser has a fin tube type, a wire tube type, a spiral fin tube type, etc., and the heat radiation capacity is increased by increasing the external surface area, it will be effective in reducing the size of the condenser and increasing energy consumption.
[0093] また凝縮器は強制空冷タイプだけでなぐ外箱 23の内側に熱伝達よく貼り付けられ た銅配管で構成される自然空冷タイプであってもよ!、し、各室断熱扉体間の仕切りに 配設して防滴防止を行うための銅配管を組み合わせてもよい。  [0093] Further, the condenser may be a natural air cooling type composed of copper piping adhered to the inner side of the outer box 23 with only a forced air cooling type with good heat transfer! In addition, copper piping may be combined to prevent drip-proofing by arranging in the partition between the heat insulating door bodies in each room.
[0094] なお、冷媒には HC600aを用いると、さらに冷媒ガスの比容積が大きぐ体積流量 が増加するので熱交換部の流速も増加し、伝熱促進となり吸入配管 33の温度上昇と キヤビラリ 32の冷却による冷凍効果の増加に対し効果が向上するとともに、冷媒との 相溶性が大きぐガス流速も大き!ヽのでオイル 45の循環性が良好となり信頼性確保 の面で有利である。  [0094] When HC600a is used as the refrigerant, the volume of the refrigerant gas increases and the volume flow rate increases, so the flow rate of the heat exchange section also increases, which promotes heat transfer and increases the temperature of the suction pipe 33 and staggers 32 The effect of improving the refrigeration effect due to the cooling of the oil is improved, and the compatibility with the refrigerant is large, and the gas flow rate is also large. Therefore, the circulation of the oil 45 is good, which is advantageous in terms of ensuring reliability.
[0095] またなお、電動三方弁や電動膨張弁などの流路制御手段を用いて、区画構成や 温度設定の構成に応じた複数の蒸発器を使い分けたり、複数のキヤビラリを切り替え たり、減圧量を制御したり、圧縮機 11の停止中にガスカットなどして更なる省エネル ギー化を図ることができる。特に流路制御手段を断熱箱体 1の天面にある凹み部 27 に設けることで庫内への熱負荷を低減することができ、さらに省エネルギー効果があ る。 [0095] It should be noted that the flow path control means such as the electric three-way valve and the electric expansion valve are used to define the partition configuration and Use more than one evaporator according to the temperature setting configuration, switch between multiple cavities, control the amount of pressure reduction, cut the gas while the compressor 11 is stopped, etc. to further save energy Can do. In particular, by providing the flow path control means in the recess 27 on the top surface of the heat insulating box 1, the heat load on the inside of the cabinet can be reduced, and further energy saving effect is obtained.
[0096] また、冷蔵庫運搬用の背面取っ手 30は強度が確保しやすい凹み部 27の下方に設 けたが、同位置で制御基板を中央にその両側に背面取っ手 30を設けるならば、スぺ ース効率よく配置でき内容積拡大の効果がある。また天面カバー 34の上方左右に振 り分けて背面取っ手 30を設けると圧縮機 11の設置空間を逃げて取っ手形状が構成 できるのでスペース効率がよぐさらに持ち運びにおいても、断熱箱体 1のコーナー 部を握ることとなるので持ちやすい効果がある。底面取っ手 29においても底面前方 端に設けることで、コーナー部を握ることとなり持ちやすさを向上させることができる。  [0096] Although the rear handle 30 for carrying the refrigerator is provided below the recess 27 where strength is easily secured, if the rear handle 30 is provided at both sides of the control board at the center, It can be arranged efficiently and has the effect of expanding the internal volume. In addition, if the rear handle 30 is provided by allocating it to the left and right above the top cover 34, the installation shape of the compressor 11 can be escaped and the shape of the handle can be configured. There is an effect that it is easy to hold because it will hold the part. By providing the bottom handle 29 at the front end of the bottom surface as well, the corner portion can be gripped and the ease of holding can be improved.
[0097] なお、断熱箱体 1の凹み部 27は左右壁面を断熱体 15で構成した力 シェル 24だ けで側面を構成すると、圧縮機 11の放熱性が向上し、さらに凹み部 27に配置する部 品スペースを大きくとることができる。  [0097] If the side surface of the recess 27 of the heat insulating box 1 is composed of only the power shell 24 having the left and right wall surfaces made of the heat insulator 15, the heat dissipation of the compressor 11 is improved, and the recess 27 is disposed in the recess 27. It is possible to make a large part space.
[0098] また、本実施の形態では、圧縮機 11は断熱箱体 1の天面後方にある凹み部 27に 備えることとした。しかし、断熱箱体 1の天面部に凹部等を設けずにほぼ平面状の天 面部に圧縮機 11を備えた場合でも、蒸発器 9が圧縮機 11より下方にあるタイプの冷 蔵庫においては同様に、冷蔵庫の運搬等によって横倒しをした時に、圧縮機 11下 方に配置された吸入配管 33および蒸発器 9などにオイルが流出するのを防止する。 従って、圧縮機 11内のオイル量を確保しオイル面高さを大幅に減少させることを防 止でき、圧縮機 11の摺動部へのオイル供給を確保し、圧縮機 11の損傷等を低減で きる。  Further, in the present embodiment, the compressor 11 is provided in the recess 27 at the rear of the top surface of the heat insulating box 1. However, even if the top surface of the heat insulation box 1 is not provided with a recess or the like and the compressor 11 is provided on the substantially flat top surface, the refrigerator 9 is located below the compressor 11 in a refrigerator of the type. Similarly, oil is prevented from flowing out to the suction pipe 33 and the evaporator 9 disposed below the compressor 11 when the container is laid down by transporting the refrigerator. Therefore, the amount of oil in the compressor 11 can be secured and the oil surface height can be prevented from being greatly reduced, the oil supply to the sliding portion of the compressor 11 can be secured, and damage to the compressor 11 can be reduced. it can.
[0099] (実施の形態 2)  [0099] (Embodiment 2)
図 8は、本発明の実施の形態 2における冷蔵庫に搭載する圧縮機の概略断面図を 示している。なお、背景技術と同一構成については同一符号を付す。  FIG. 8 shows a schematic cross-sectional view of a compressor mounted on the refrigerator according to Embodiment 2 of the present invention. In addition, the same code | symbol is attached | subjected about the same structure as background art.
[0100] 図 8において、圧縮機シェル 40内で吸入配管 33は圧縮機上部に向力つて立ち上 力 Sりを設けてあり、さらに上部で横方向への配管曲げが設けられて開口端が中央に 向かって構成されている。このように吸入配管 33の構成によって設けられたオイル流 出防止トラップ 36により、冷蔵庫を横倒しにして持ち運びを行う際に、圧縮機 11の横 倒しによりオイル 45が移動しても、吸入配管 33の開口端がオイル 45内に没すること が無く逆流流出が防止できる。 [0100] In FIG. 8, the suction pipe 33 is provided with a rising force S in the compressor shell 40 toward the upper part of the compressor, and the pipe end is bent in the lateral direction at the upper part so that the open end is in the center It is structured towards. In this way, the oil spill prevention trap 36 provided by the configuration of the suction pipe 33 allows the refrigerator 11 to be carried around while the refrigerator 11 is laid down. The open end is not submerged in the oil 45 and backflow outflow can be prevented.
[0101] したがって冷蔵庫天面に圧縮機 11を配置した上で、下方に配置された吸入配管 3 3および蒸発器 9などに冷蔵庫横倒し時のオイル 45の流出を防止するので、圧縮機 シェル 40内のオイル 45が確保でき、摺動部 58への十分なオイル供給が可能であり 、圧縮機の損傷等をさらに低減できる。  [0101] Therefore, since the compressor 11 is arranged on the top of the refrigerator, the oil pipe 45 is prevented from flowing out when the refrigerator is laid down on the suction pipe 3 3 and the evaporator 9 arranged below, so that the compressor shell 40 Oil 45 can be secured, and sufficient oil supply to the sliding portion 58 is possible, further reducing damage to the compressor and the like.
[0102] さらにオイル 45を逆流流出させないので、圧縮機 11に接続される吸入配管 33を直 接断熱体 15に埋設することができ、断熱箱体 1の凹み部 27の配管収納空間を削減 し、庫内内容積の増加や断熱壁の厚み増による省エネルギー化が可能となる。  [0102] Further, since the oil 45 does not flow backward, the suction pipe 33 connected to the compressor 11 can be directly embedded in the heat insulating body 15, and the piping storage space of the recess 27 of the heat insulating box 1 can be reduced. Energy saving can be achieved by increasing the internal volume of the cabinet and increasing the thickness of the heat insulating wall.
[0103] なお、圧縮機シェル 40内部の吸入ガス経路に設けられた消音化のためのマフラー に吸入配管を直接接続して、マフラー内部経路でオイル流出防止トラップとなるよう に構成すると圧縮機構成部品の熱影響により暖められた冷媒ガスを吸入することなく 、直接吸入配管力 冷媒ガスを吸入するために効率が向上しさらに省エネルギー化 が図れる。  [0103] Note that if the suction pipe is directly connected to the muffler for silencing provided in the suction gas path inside the compressor shell 40, and the oil flow prevention trap is configured in the muffler internal path, the compressor configuration Since the refrigerant gas is directly sucked without sucking the refrigerant gas heated by the heat effect of the parts, the efficiency is improved and further energy saving can be achieved.
[0104] (実施の形態 3)  [Embodiment 3]
図 9は、本発明の実施の形態 3における冷蔵庫の吸入配管要部概略斜視図を示し ている。なお、背景技術と同一構成については同一符号を付す。  FIG. 9 shows a schematic perspective view of the main part of the suction pipe of the refrigerator in the third embodiment of the present invention. In addition, the same code | symbol is attached | subjected about the same structure as background art.
[0105] 図 9において、断熱箱体 1の凹み部 27に設けたオイル流出防止トラップ 36は蒸発 器 9から接続される第一の吸入配管 33aと、圧縮機 11と接続される第二の吸入配管 33bと、チャンバ一 59で構成される。チャンバ一 59は、第一の吸入配管 33aと第二 の吸入配管 33bの間に設けた各吸入配管 33a、 33bより管径が大きぐ 20mmから 4 Ommの外形を有する。第一の吸入配管 33aはチャンバ一 59上方力も差し込まれて おり、内部に配管が突出して開口端が設けている。第二の吸入配管 33bはチャンバ 一 59下方力も差し込まれており、配管開口端がチャンバ一 59内部の壁面と面一とな るように配置されている。  In FIG. 9, an oil spill prevention trap 36 provided in the recess 27 of the heat insulation box 1 is a first suction pipe 33 a connected from the evaporator 9 and a second suction connected to the compressor 11. It consists of piping 33b and chamber 59. The chamber 59 has an outer shape of 20 mm to 4 Omm whose diameter is larger than each of the suction pipes 33a and 33b provided between the first suction pipe 33a and the second suction pipe 33b. The first suction pipe 33a is also inserted with the upper force of the chamber 59, and the pipe protrudes inside to provide an open end. The second suction pipe 33b is also inserted with the lower force of the chamber 59, and is arranged so that the open end of the pipe is flush with the wall surface inside the chamber 59.
[0106] これにより、冷蔵庫を横倒しにして持ち運びを行う際に、圧縮機 11の横倒しにより オイル 45が移動し、第二の吸入配管 33bの開口端がオイル 45内に没するとオイル 4 5はー且チャンバ一 59内へと流出する。しかし、第一の吸入配管 33aへの流出はチ ヤンバー 59内の配管構成により防止されるので、再度冷蔵庫の設置時には圧縮機 シェノレ 40内へとオイノレ 45力 S戻り、必要量が確保される。 [0106] Thus, when carrying the refrigerator with the refrigerator lying down, When the oil 45 moves and the open end of the second suction pipe 33b is submerged in the oil 45, the oil 45 flows out into the chamber 59. However, since the outflow to the first suction pipe 33a is prevented by the pipe structure in the chamber 59, when the refrigerator is installed again, the oil is returned to the compressor 40 and the necessary amount is secured.
[0107] したがって冷蔵庫天面に圧縮機 11を配置した上で、下方に配置された第一の吸入 配管 33aおよび蒸発器 9などに冷蔵庫横倒し時のオイル 45の流出を防止するので、 圧縮機シェル 40内のオイル 45が確保でき、摺動部 58への十分なオイル供給が可能 であり、圧縮機の損傷等をさらに低減できる。  Therefore, since the compressor 11 is arranged on the top surface of the refrigerator, the oil 45 is prevented from flowing out when the refrigerator is laid down on the first suction pipe 33a and the evaporator 9 arranged below, so that the compressor shell Oil 45 in 40 can be secured, and sufficient oil supply to the sliding portion 58 is possible, further reducing damage to the compressor and the like.
[0108] なお、下部力 差し込まれた配管は内部に突出させて、チャンバ一 59の内面下端 部近傍にオイル戻し穴を設けると、チャンバ一 59内へのオイル滞留を防止するととも に、液冷媒の過渡的な戻りに対して、一且貯留し、圧縮機 11への直接吸入を防止す る緩衝機構とすることができ、圧縮機の液圧縮などを防止し、圧縮機の損傷等をさら に低減できる。  [0108] It should be noted that if the pipe into which the lower force is inserted protrudes inside and an oil return hole is provided in the vicinity of the lower end of the inner surface of the chamber 159, oil stays in the chamber 159 and liquid refrigerant is prevented. It is possible to provide a buffering mechanism that can be stored temporarily and prevented from being directly sucked into the compressor 11 in response to a transient return of the compressor 11, preventing liquid compression of the compressor, and further damaging the compressor. Can be reduced.
[0109] (実施の形態 4)  [Embodiment 4]
図 10は、本発明の実施の形態 4における冷蔵庫の吸入配管要部概略斜視図を示 している。なお、背景技術と同一構成については同一符号を付す。  FIG. 10 shows a schematic perspective view of the main part of the suction pipe of the refrigerator according to the fourth embodiment of the present invention. In addition, the same code | symbol is attached | subjected about the same structure as background art.
[0110] 図 10において、オイル流出防止トラップ 36は、圧縮機 11と吸入配管 33の接続部 6 0を圧縮機 11の中心線よりも断熱箱体 1の前方側に配置されて 、る。吸入配管 33は 圧縮機接続部 60から若干の上り勾配を設けて横方向に伸ばして力 略垂直方向に 立ち上がりを設けたのち、背面側で断熱体 15に埋設するように U曲げを設けられて いる。  In FIG. 10, the oil spill prevention trap 36 has a connecting portion 60 between the compressor 11 and the suction pipe 33 arranged on the front side of the heat insulating box 1 with respect to the center line of the compressor 11. The suction pipe 33 is provided with a slight upward slope from the compressor connection part 60 and extends in the lateral direction to provide a force rising in the substantially vertical direction, and is then provided with a U-bend so as to be embedded in the heat insulator 15 on the back side. Yes.
[0111] これにより、冷蔵庫を横倒しにして持ち運びを行う際に、圧縮機 11の横倒しにより オイル 45が移動しても、吸入配管 33の開口端が圧縮機 11の天面側にありオイル 45 内に没することが無く逆流流出が防止できる。  [0111] Thus, when carrying the refrigerator with the refrigerator lying down, even if the oil 45 moves due to the compressor 11 lying down, the inlet end of the suction pipe 33 is on the top side of the compressor 11 and the oil 45 Backflow outflow can be prevented without being submerged.
[0112] したがって冷蔵庫天面に圧縮機 11を配置した上で、下方に配置された吸入配管 3 3および蒸発器 9などに冷蔵庫横倒し時のオイル 45の流出を防止するので、圧縮機 シェル 40内のオイル 45が確保でき、摺動部 58への十分なオイル供給が可能であり 、圧縮機の損傷等をさらに低減できる。 [0113] また、吸入配管 33との溶接接続部 61を吸入配管 33の背面垂直部に設けたので、 配管溶接作業が容易に行える。 [0112] Accordingly, since the compressor 11 is arranged on the top surface of the refrigerator and the oil 45 is prevented from flowing out when the refrigerator is laid down on the suction pipe 33, the evaporator 9, etc. arranged below, the compressor shell 40 Oil 45 can be secured, and sufficient oil supply to the sliding portion 58 is possible, further reducing damage to the compressor and the like. [0113] Further, since the welding connection portion 61 with the suction pipe 33 is provided in the back vertical portion of the suction pipe 33, the pipe welding work can be easily performed.
[0114] (実施の形態 5)  [0114] (Embodiment 5)
図 11と図 12は、本発明の実施の形態 5における冷蔵庫の吸入配管要部概略斜視 図を示している。なお、背景技術と同一構成については同一符号を付す。  11 and 12 show schematic perspective views of main portions of the suction pipe of the refrigerator in the fifth embodiment of the present invention. In addition, the same code | symbol is attached | subjected about the same structure as background art.
[0115] 図 11において、吸入配管 33は、圧縮機 11の背面側下方部力 側方に若干の上り 勾配を設けて直進させた後、略垂直方向に圧縮機 11の垂直方向中心線より高くか つ圧縮機 11の高さより低い位置まで立ち上がり部を設けられている。凹み部 27を最 小とし、冷蔵室庫内へのでっぱりを最小とするために圧縮機 11の小型化と圧縮機周 辺壁面との空間はできるだけ小さくすることが必要であり、上下方向に関しては圧縮 機 11の高さ以下に配管高さを設定することで配管の壁面接触防止を図ることができ る。  [0115] In FIG. 11, the suction pipe 33 is provided with a slight upward slope on the lower side of the rear side of the compressor 11 and is made to go straight, and then is substantially vertically higher than the vertical center line of the compressor 11. In addition, the rising portion is provided to a position lower than the height of the compressor 11. In order to minimize the recess 27 and minimize the protrusion into the refrigerator compartment, it is necessary to reduce the size of the compressor 11 and make the space between the compressor peripheral wall as small as possible. By setting the pipe height below the height of the compressor 11, it is possible to prevent the wall contact of the pipe.
[0116] さらに吸入配管 33は垂直方向立ち上げ後、圧縮機 11の周囲を取り巻くように、少 なくとも三面は圧縮機 11中心線をまたぐように配置されてオイル流出防止トラップ 36 を構成している。配管 U曲げ先端は圧縮機 11の平面方向中心線よりも断熱箱体の 前方側に位置して 、る。圧縮機 11は天面に向って曲率をもつ形状となって 、るため に、圧縮機 11の上方で配管曲げ部 37を構成するとスペース的に余裕があり、配管 収納空間を余分に取らず小型化が可能である。また、凹み部 27内での吸入配管 33 長さを確保できるので配管に弾性を持たせることができ、圧縮機 11からの振動伝播 を吸収し、配管固定部における応力集中を防ぎ配管破損を軽減できる。  [0116] Further, after the vertical startup, the suction pipe 33 is arranged so that it surrounds the periphery of the compressor 11, so that at least three sides are arranged so as to straddle the center line of the compressor 11 to form an oil spill prevention trap 36. Yes. The pipe U-bend tip is located on the front side of the heat insulation box from the plane center line of the compressor 11. Since the compressor 11 has a shape with a curvature toward the top surface, if the pipe bending portion 37 is formed above the compressor 11, there is a space, and the pipe storage space is not taken up and the size is small. Is possible. In addition, the length of the suction pipe 33 in the recess 27 can be secured, so the pipe can be made elastic, absorb vibration propagation from the compressor 11, prevent stress concentration at the pipe fixing part, and reduce pipe damage. it can.
[0117] 吸入配管 33はオイル流出防止トラップ 36の後、略垂直方向に曲げられて機械室 パネル 28の背面端部から断熱体 15内に埋設されている。  [0117] The suction pipe 33 is bent in a substantially vertical direction after the oil spill prevention trap 36 and is embedded in the heat insulator 15 from the rear end of the machine room panel 28.
[0118] これにより、冷蔵庫を横倒しにして持ち運びを行う際に、圧縮機 11の横倒しにより オイル 45が移動しても、オイル流出防止トラップ 36により下方に配置された吸入配管 33および蒸発器 9などにオイル 45の流出を防止するので、圧縮機シェル 40内のォ ィル 45が確保でき、摺動部 58への十分なオイル供給が可能であり、圧縮機の損傷 等をさらに低減できる。  [0118] Thus, when carrying the refrigerator with the refrigerator lying down, even if the oil 45 moves due to the compressor 11 lying down, the suction pipe 33 and the evaporator 9 disposed below by the oil spill prevention trap 36, etc. In addition, since oil 45 is prevented from flowing out, oil 45 in compressor shell 40 can be secured, sufficient oil can be supplied to sliding portion 58, and damage to the compressor can be further reduced.
[0119] また、冷蔵庫取っ手方向にかかわらず、冷蔵庫がさまざまな方向に横倒しされても 、圧縮機周囲を取り囲むように配管トラップが設けられているので、背面方向に横倒 したときと同様にオイル 45の流出を防止することができ、冷蔵庫運搬における制限が 少なく搬送性が向上する。 [0119] Regardless of the direction of the refrigerator handle, the refrigerator may be laid down in various directions. Since the pipe trap is provided so as to surround the compressor, the oil 45 can be prevented from flowing out in the same manner as when it is laid down in the rear direction, and there are few restrictions in carrying the refrigerator and the carrying performance is improved.
[0120] なお、図 12に示すように吸入配管 33を圧縮機 11からの接続部と同じ方向に配置 すると圧縮機 11を一周するようにオイル流出防止トラップが構成でき、さらに逆流流 出しにく 、構成とすることができる。  [0120] If the suction pipe 33 is arranged in the same direction as the connecting portion from the compressor 11 as shown in Fig. 12, an oil outflow prevention trap can be configured to make a full circuit around the compressor 11, and it is difficult to reverse flow out. Can be configured.
[0121] (実施の形態 6)  [0121] (Embodiment 6)
図 13は、本発明の実施の形態 6における冷蔵庫の吸入配管要部概略斜視図を示 している。なお、背景技術と同一構成については同一符号を付す。  FIG. 13 is a schematic perspective view of the main part of the suction pipe of the refrigerator in the sixth embodiment of the present invention. In addition, the same code | symbol is attached | subjected about the same structure as background art.
[0122] 図 13において、圧縮機 62はたとえばロータリータイプのように内部高圧型であり、 断熱箱体 1の天面後方に設けた凹み部 27に配設されている。圧縮機 62からの吐出 配管 63は圧縮機 62内部に開放されており、吸入配管 64は圧縮機 62の吸入部へと 直接接続されている。また、断熱箱体 1の天面部には薄型の凝縮器 65が設けられて おり、圧縮機 62から吐出配管 63により昇り勾配を持って接続されている。さらに凝縮 器 65は圧縮機 62の吐出配管接続部 66より前方でかつ高い位置に配置されている。 また凝縮器 65の下流部ではキヤビラリ 32と凹み部 27の背面側に設けた接続部で接 続されており作業性とサービス性の向上が図られて 、る。  In FIG. 13, the compressor 62 is an internal high-pressure type such as a rotary type, and is disposed in a recess 27 provided at the rear of the top surface of the heat insulating box 1. The discharge pipe 63 from the compressor 62 is open to the inside of the compressor 62, and the suction pipe 64 is directly connected to the suction portion of the compressor 62. A thin condenser 65 is provided on the top surface of the heat insulation box 1 and is connected from the compressor 62 through the discharge pipe 63 with an ascending gradient. Further, the condenser 65 is disposed in front of and higher than the discharge pipe connection 66 of the compressor 62. Further, the downstream portion of the condenser 65 is connected by a connecting portion provided on the rear side of the cavity 32 and the recessed portion 27, so that workability and serviceability are improved.
[0123] なお、この接続部近傍にドライヤ(図示せず)などを配置することもある。  Note that a dryer (not shown) or the like may be disposed in the vicinity of the connecting portion.
[0124] 凝縮器 65は機械室ファン 31により強制空冷されており、風路は天面ダクトカバー 6 7でカバーと兼用して構成されている。天面ダクトカバー 67には前面および側面に吸 入開口部 68が、背面部に吐出開口部 69が設けられており、さらに凝縮器 65の配置 部と凹み部 27との間には仕切り 70を設け風路が構成されている。  [0124] The condenser 65 is forcibly air-cooled by the machine room fan 31, and the air passage is configured by a top duct cover 67 that also serves as a cover. The top duct cover 67 has a suction opening 68 on the front and side surfaces, and a discharge opening 69 on the rear surface. Further, a partition 70 is provided between the arrangement portion of the condenser 65 and the recess 27. A provided air passage is constructed.
[0125] これにより、冷蔵庫の取っ手を用いての運搬や移設において、冷蔵庫を横倒しにし た際に、圧縮機も横倒しとなり、圧縮機内部に開放された吐出配管 63の開口端にォ ィル 45が流入する。しかし、凝縮器 65は上方に配置されており、凝縮機 65内に向か つて自重によりオイル 45が流出することがない。  [0125] Thus, when transporting or moving the refrigerator using the handle of the refrigerator, when the refrigerator is turned on its side, the compressor also lies on its side, and the oil pipe 45 opens at the open end of the discharge pipe 63 opened inside the compressor. Flows in. However, the condenser 65 is disposed above, and the oil 45 does not flow out into the condenser 65 due to its own weight.
[0126] これにより凝縮器 65にオイル 45が多量に流出すると凝縮器 65の配管やその下流 にあるキヤビラリ 32がオイル閉塞し冷媒の循環を妨げることで生じる性能低下に影響 を与えることを防止できる。 [0126] If a large amount of oil 45 flows into the condenser 65, this will affect the performance degradation caused by blocking the oil in the condenser 65 piping and the downstream 32 of the capillaries, thus preventing refrigerant circulation. Can be prevented.
[0127] なお、圧縮機 62の周囲を取り巻くようにして、少なくとも三面の圧縮機 62中心線を またいで吐出配管 63を配置すると、取っ手にかかわらず冷蔵庫の横倒し方向がいず れの方向であってもオイル 45の流出を防止することができる。  [0127] If the discharge pipe 63 is arranged so as to surround the compressor 62 and straddle the center line of at least three compressors 62, the sideways direction of the refrigerator is either direction regardless of the handle. Even oil 45 can be prevented from flowing out.
[0128] なお、凝縮器 65の下流側で別に配置した凝縮器を接続しても凝縮器 65が配管トラ ップとなるので問題はな 、。 [0128] It should be noted that there is no problem because the condenser 65 becomes a pipe trap even if a condenser arranged separately on the downstream side of the condenser 65 is connected.
[0129] なお、ロータリータイプの圧縮機を用いれば、構成部品が少なく小型化に有効であ り、冷蔵室庫内のでっぱりの小型化や無効容積の削減において有効である。 [0129] Note that the use of a rotary type compressor reduces the number of components and is effective for downsizing, and is effective in reducing the size of the inside of the refrigerator compartment and reducing the ineffective volume.
[0130] (実施の形態 7) [0130] (Embodiment 7)
図 14は、本発明の実施の形態 7における冷蔵庫に搭載する圧縮機の概略断面図 を示している。なお、背景技術と同一構成については同一符号を付す。  FIG. 14 is a schematic cross-sectional view of a compressor mounted on the refrigerator according to Embodiment 7 of the present invention. In addition, the same code | symbol is attached | subjected about the same structure as background art.
[0131] 圧縮機 100内部の構造について説明する。 [0131] The internal structure of the compressor 100 will be described.
[0132] 図 14において、圧縮機 100の構成は上シェル 101と下シェル 102とを重ね合わせ て溶接接続した密閉構造であり、内部に弾性体 103で弾性支持された回転駆動部 1 04と圧縮部 105とからなる内部構成部品を備えている。また圧縮機 100は、吸入配 管 106と吐出配管 107で冷凍サイクルを構成する他の機器と接続されており、所定 量のオイル 108と冷媒(図示せず)が封入されて 、る。  In FIG. 14, the configuration of the compressor 100 is a hermetically sealed structure in which the upper shell 101 and the lower shell 102 are overlapped and welded together, and the rotary drive unit 104 elastically supported by the elastic body 103 inside is compressed. Internal components consisting of part 105 are provided. The compressor 100 is connected to other devices constituting the refrigeration cycle by the suction pipe 106 and the discharge pipe 107, and contains a predetermined amount of oil 108 and a refrigerant (not shown).
[0133] 回転駆動部 104はモーター 109と軸受け部 110からなる。モーター 109は電圧印 加されて永久磁石との間に回転力を発生させる中空円柱状電磁コイルを有するステ 一ター 111と、ステーター 111内部の中空部にあって微小隙間で相対させた永久磁 石を有するローター 112と力 なる。  [0133] The rotation drive unit 104 includes a motor 109 and a bearing unit 110. The motor 109 includes a stator 111 having a hollow cylindrical electromagnetic coil that is applied with voltage and generates a rotational force between the permanent magnet and a permanent magnet that is located in a hollow portion inside the stator 111 and is opposed to each other with a minute gap. Power with the rotor 112 having.
[0134] なお、圧縮機 100は天面に配置するために、小型化すると、配置の自由度、重量、 冷蔵庫有効容積の面で有利となるが、小型化の方法として以下の方法がある。ステ 一ター 111を構成する電磁コイルに突極集中巻きタイプを用いると、卷線を集中して 密に巻き込むことが可能であり、小型化することができる。また、ローター 112に収納 されている永久磁石は、たとえば Ndなどの希土類の永久磁石としたので、一般的に 用いられているフ ライト磁石より、磁束密度が約 4倍程度大きいため、磁石の高さを 低くでき、圧縮機 100を小型化することができる。 [0135] このように小型化された圧縮機 100では圧縮機内容積の内、構造物である内部構 成部品の占める容積が大きくなり、空間部が小さくなる。空間部が小さくなると、封入 した冷凍機オイルの容積を圧迫するために冷凍機オイル面高さが上昇し、少しの傾 きで吸入配管に冷凍機オイルが逆流し易くなる。 [0134] Note that, since the compressor 100 is arranged on the top surface, downsizing is advantageous in terms of freedom of arrangement, weight, and effective refrigerator capacity, but there are the following methods for downsizing. When the salient pole concentrated winding type is used for the electromagnetic coil constituting the stator 111, it is possible to concentrate the winding wire densely and reduce the size. Further, the permanent magnet housed in the rotor 112 is a rare earth permanent magnet such as Nd, so the magnetic flux density is about 4 times larger than that of a commonly used bright magnet, so the magnet height is high. Therefore, the compressor 100 can be miniaturized. [0135] In the compressor 100 thus miniaturized, the volume occupied by the internal components as a structure is increased in the compressor internal volume, and the space portion is reduced. When the space becomes smaller, the refrigerator oil surface height rises to compress the volume of the enclosed refrigerator oil, and the refrigerator oil tends to flow backward into the suction pipe with a slight inclination.
[0136] また、シャフト 134はシャフト主軸部 134aとシャフト主軸部 134aに対して偏芯させ たシャフト偏芯部 134bとを備える。シャフト主軸部 134aの軸受け部 110として、荷重 を受ける A軸受け 131と、上シェル 101に固定され、運搬時等に内部構成部品の傾 斜防止手段として作用する B軸受け 132とを有している。  [0136] Further, the shaft 134 includes a shaft main shaft portion 134a and a shaft eccentric portion 134b eccentric to the shaft main shaft portion 134a. The bearing section 110 of the shaft main shaft section 134a includes an A bearing 131 that receives a load, and a B bearing 132 that is fixed to the upper shell 101 and acts as a tilt prevention means for internal components during transportation.
[0137] 圧縮部 105は、先端にバルブ機構(図示せず)を備えたシリンダヘッド 135を設けた シリンダ 136と、ピストン 137と、ピストン 137と偏芯シャフト 133とに揺動自在に取り付 け回転動作を直線往復動作に変換するロッド 138とで構成されている。  [0137] The compression unit 105 is swingably attached to a cylinder 136 provided with a cylinder head 135 having a valve mechanism (not shown) at the tip, a piston 137, a piston 137, and an eccentric shaft 133. It is composed of a rod 138 that converts a rotational motion into a linear reciprocating motion.
[0138] 圧縮された冷媒が直接圧縮機 100の外部へ吐出されるようにシリンダヘッド 135に は吐出配管 107がバルブ機構を介して接続されている。また吸入部はバルブ機構を 介して圧縮機 100の内部に開放されている。特に消音のために、吸入経路はシリン ダヘッド 135と吸入配管 106との経路間に消音マフラー(図示せず)が配設されてい る。  [0138] A discharge pipe 107 is connected to the cylinder head 135 via a valve mechanism so that the compressed refrigerant is discharged directly to the outside of the compressor 100. The suction part is opened to the inside of the compressor 100 via a valve mechanism. In particular, a muffler (not shown) is disposed between the cylinder head 135 and the suction pipe 106 in order to mute the sound.
[0139] 以上のように構成された圧縮機を有する冷蔵庫では、冷蔵庫の運搬移設時に横倒 しした場合、圧縮機 100が傾斜しても、上シェル 101に設けられた B軸受け 132で支 えられているので、弾性支持された回転駆動部 104や圧縮部 105等の内部構成部 品が下シェル 102壁面に向力つて大きく傾斜することがない。したがって、傾斜側に 移動した冷凍機オイルの容積を圧迫することを防ぎ、空間部を確保できるので、オイ ル 108が吸入配管より流出しやすくなるのを防止できる。  [0139] In the refrigerator having the compressor configured as described above, when it is laid down when the refrigerator is transported, even if the compressor 100 is inclined, it is supported by the B bearing 132 provided in the upper shell 101. Therefore, the internal components such as the rotational drive unit 104 and the compression unit 105 that are elastically supported are not greatly inclined due to the direction toward the wall surface of the lower shell 102. Accordingly, it is possible to prevent the volume of the refrigeration oil that has moved to the inclined side from being pressed and to secure a space, and thus it is possible to prevent the oil 108 from easily flowing out from the suction pipe.
[0140] なお、本実施例では B軸受け 132で内部構成部品の傾斜防止用の軸受け構造を 実現している。しかし、傾斜防止手段はシャフト 134の先端部に設けた開口部に所定 の間隔で嵌合させるピンを上シェル 101の天面に設けたものや、シャフト 134の先端 部が傾斜しな 、ように上シェル 101の天面のシャフト 134外周側に設けたガイド部材 や、回転駆動部 104が所定量以上傾斜しないように所定間隔の隙間を設けて、上シ エル 101や下シェル 102に固定されたガイド部材などを用いることでも同様の効果を 奏することができる。 [0140] In this embodiment, the B bearing 132 realizes a bearing structure for preventing the inclination of the internal components. However, the tilt prevention means is such that pins provided on the top surface of the upper shell 101 are fitted to the opening provided at the tip of the shaft 134 at a predetermined interval, or that the tip of the shaft 134 is not tilted. A guide member provided on the outer peripheral side of the shaft 134 on the top surface of the upper shell 101 and a gap with a predetermined interval provided so that the rotation drive unit 104 does not incline more than a predetermined amount, and fixed to the upper shell 101 and the lower shell 102. The same effect can be achieved by using a guide member. Can play.
[0141] (実施の形態 8)  [0141] (Embodiment 8)
図 15は本発明の実施の形態 8における冷蔵庫に搭載する圧縮機の概略断面図で あり、図 16は本発明の実施の形態 8における冷蔵庫に搭載する圧縮機の内部を上 部から見た図である。  FIG. 15 is a schematic cross-sectional view of the compressor mounted on the refrigerator according to Embodiment 8 of the present invention, and FIG. 16 is a diagram of the inside of the compressor mounted on the refrigerator according to Embodiment 8 of the present invention viewed from above. It is.
[0142] 図において、圧縮機 100内部で吸入配管 200は下シェル 201の圧縮機内部に延 出しないようにシェル内部とほぼ同一面に酉己設されており、吸入マフラー 202の吸入 口 202aと近接して対向するように配設されて!/、る。  [0142] In the figure, the suction pipe 200 inside the compressor 100 is installed on the same plane as the inside of the shell so as not to extend into the compressor of the lower shell 201, and is connected to the suction port 202a of the suction muffler 202. Arranged in close proximity to each other! /
[0143] 吸入配管 200のシェル内開口部がシェル内面とほぼ同一面に配設されている理由 は、構造面に関してはシェル内の内部構成部品に対しての吸入配管 200の物理的 緩衝を防 、で小型化を図るためである。 [0143] The reason why the opening in the shell of the suction pipe 200 is arranged almost on the same plane as the inner surface of the shell is to prevent physical buffering of the suction pipe 200 with respect to the internal components in the shell. This is to reduce the size.
[0144] また、回転子 203aと固定子 203bとを有している電動要素 203は、下シェル 201に 弾性部材を有した支持部 205を介して弾性支持されて 、る。電動要素 203の上部に は圧縮要素 204が配置されて 、る。 [0144] The electric element 203 having the rotor 203a and the stator 203b is elastically supported by the lower shell 201 via a support portion 205 having an elastic member. A compression element 204 is disposed above the electric element 203.
[0145] また、圧縮機 100と凝縮器 (図示せず)と減圧器 (図示せず)と蒸発器 (図示せず)と を順に備えて一連の冷媒流路を形成した冷凍サイクルには冷媒として R600aが封入 されている。圧縮機 100内部には R600aに対して相互溶解性の大きい鉱油を原料と したオイル 210が封入されている。 [0145] The refrigeration cycle that includes a compressor 100, a condenser (not shown), a decompressor (not shown), and an evaporator (not shown) in this order to form a series of refrigerant channels has a refrigerant R600a is enclosed. Inside the compressor 100, an oil 210 made of mineral oil having a high mutual solubility with respect to R600a is enclosed.
[0146] このように、電動要素 203が下部に配置されるタイプの圧縮機 100においては、圧 縮機 100の運転に伴って回転を行う電動要素 203の回転子 203aがオイル 210と緩 衝しな 、ように支持部 205の高さや取り付け位置を配慮した上で配置をされて 、る。 As described above, in the compressor 100 of the type in which the electric element 203 is disposed below, the rotor 203a of the electric element 203 that rotates in accordance with the operation of the compressor 100 interferes with the oil 210. In this way, it is arranged in consideration of the height of the support part 205 and the mounting position.
[0147] また、圧縮要素 204には上シェル(図示せず)または下シェル 201と一定の隙間を 有した当たり部 220が形成されている。 [0147] Further, the compression element 204 is formed with a contact portion 220 having a certain clearance from the upper shell (not shown) or the lower shell 201.
[0148] 次に、圧縮機 100の詳細を以下に説明する。 Next, details of the compressor 100 will be described below.
[0149] シャフト 240は、回転子 203aを圧入や焼嵌めにより固定した主軸部 241と、主軸部 241に対して偏芯して形成された偏芯部 242を有する。シリンダブロック 250は、略 円筒形の圧縮室 251を有するとともに、シャフト 240の主軸部 241を軸支する為の軸 受部 243を有し、電動要素 203の上方に形成されて 、る。 [0150] この時、回転子 203aの圧縮要素 204側には回転子凹部 203cが形成されており、 この回転子凹部 203c内に軸受部 243が延出していることで圧縮要素 204を電動要 素 203の回転子の高さ範囲内に嵌挿することで小型化を実現している。 [0149] The shaft 240 has a main shaft portion 241 to which the rotor 203a is fixed by press-fitting or shrink fitting, and an eccentric portion 242 formed eccentric to the main shaft portion 241. The cylinder block 250 has a substantially cylindrical compression chamber 251 and a bearing portion 243 for supporting the main shaft portion 241 of the shaft 240, and is formed above the electric element 203. [0150] At this time, the rotor recess 203c is formed on the compression element 204 side of the rotor 203a, and the bearing 243 extends into the rotor recess 203c so that the compression element 204 is electrically connected to the electric element. The miniaturization is realized by inserting in the height range of 203 rotors.
[0151] ピストン 260は、圧縮室 251に遊嵌され、連結手段 261でシャフト 240の偏芯部 24 1に連結されている。シャフト 240の回転運動をピストン 260の往復運動に変換し、ピ ストン 260が圧縮室 251の空間を拡大縮小することでシェル内の冷媒を吸入マフラ 一 202の吸入口 202a力ら吸込み、シリンダヘッド 252の内部に設けられたバルブ( 図示せず)を介して、シリンダブロック 250に形成された吐出マフラー 253と吐出管 2 54、吐出チューブ 270を通ってシェルの外部の吐出配管に吐出する。  The piston 260 is loosely fitted in the compression chamber 251 and is connected to the eccentric portion 241 of the shaft 240 by the connecting means 261. The rotary motion of the shaft 240 is converted into the reciprocating motion of the piston 260, and the piston 260 expands and contracts the space of the compression chamber 251 so that the refrigerant in the shell is sucked by the suction muffler 202 of the suction muffler 202, and the cylinder head 252 Is discharged to a discharge pipe outside the shell through a discharge muffler 253, a discharge pipe 2 54, and a discharge tube 270 formed in the cylinder block 250 via a valve (not shown) provided inside the cylinder block 250.
[0152] 高圧配管である吐出管 254は、内径 1. 5mmから 3. Ommの鋼管で、 L字や U字曲 げを使って柔軟性を持つように形成されており、圧縮要素 204とシェルの吐出チュー ブ 270とは弾性をもって接続されて 、る。  [0152] The discharge pipe 254, which is a high-pressure pipe, is a steel pipe with an inner diameter of 1.5 mm to 3. Omm, and is formed to be flexible using L-shaped or U-shaped bending. The discharge tube 270 is connected elastically.
[0153] また、電動要素 203は回転子 203aに永久磁石を用いたインバーター電動機が用 いられている。従来一般的であったインダクション電動機では、固定子 203bや回転 子 203aの積厚が大きくないと圧縮機 100の運転に必要なトルクが発生しない。しか し、回転子 203aに永久磁石を用いたインバーター電動機を用いることにより、回転ト ルクの発生に必要な励磁電流が必要でなくなるため固定子 203bの積厚や回転子 2 03aの積厚は低くすることが出来、電動要素 203をコンパクトにすることが出来る。  [0153] As the electric element 203, an inverter motor using a permanent magnet for the rotor 203a is used. In conventional induction motors, the torque required for the operation of the compressor 100 is not generated unless the stator 203b and the rotor 203a are thick. However, by using an inverter motor that uses permanent magnets for the rotor 203a, the exciting current required for generating the rotating torque is no longer required, so the stator 203b thickness and the rotor 203a thickness are low. The electric element 203 can be made compact.
[0154] 次に圧縮機 100の動作について説明する。  [0154] Next, the operation of the compressor 100 will be described.
[0155] 圧縮機に通電がなされると、ターミナル 280、リード線 281を通って電動要素 203の 固定子 203bに電流が流れ、固定子 203bが発生する回転磁界により回転子 203aが 回転する。回転子 203aの回転により、回転子に連結されたシャフト 240の偏芯部 24 2がシャフト 240の軸心より偏芯した回転運動を行う。シャフト 240の偏芯運動は、偏 芯部 242に連結された連結手段 261によって往復運動に変換され、連結手段 261 の他端に連結されたピストン 260の往復運動となり、ピストン 260は、圧縮室 251内の 容積を変化させながら冷媒の吸入圧縮を行う。  [0155] When the compressor is energized, a current flows through the terminal 280 and the lead wire 281 to the stator 203b of the electric element 203, and the rotor 203a rotates by the rotating magnetic field generated by the stator 203b. Due to the rotation of the rotor 203 a, the eccentric portion 242 of the shaft 240 connected to the rotor performs a rotational motion that is eccentric from the axis of the shaft 240. The eccentric motion of the shaft 240 is converted into a reciprocating motion by the connecting means 261 connected to the eccentric portion 242 and becomes a reciprocating motion of the piston 260 connected to the other end of the connecting means 261. The refrigerant is sucked and compressed while changing the internal volume.
[0156] ピストン 260が、圧縮室 251内で一往復中に吸入、吐出する容積を気筒容積と云 い、気筒容積の大小で冷却する能力が変化する。 [0157] 次に圧縮機を停止した状態で冷蔵庫が運搬等により傾いた場合について説明する [0156] The piston 260 sucks and discharges during one reciprocation in the compression chamber 251 is called a cylinder volume, and the cooling capacity changes depending on the size of the cylinder volume. [0157] Next, the case where the refrigerator is tilted by transportation or the like with the compressor stopped will be described.
[0158] 長時間において圧縮機 100が運転されない状態であると、 R600aは液ィ匕して液冷 媒 290となって、液化した R600aよりも比重の重い鉱油であるオイル 210の上部に貯 留される。このように冷媒が液ィ匕した状態で液冷媒がオイルの上部に貯留される汎用 の冷媒としては CO冷媒と、エステル油やエーテル油の組み合わせでも同様となる。 [0158] If the compressor 100 is not operated for a long time, the R600a becomes liquid and becomes a liquid cooling medium 290, which is stored on top of the oil 210, which is a mineral oil having a higher specific gravity than the liquefied R600a. Is done. As a general-purpose refrigerant in which the liquid refrigerant is stored in the upper part of the oil in a state where the refrigerant is in a liquid state, a combination of a CO refrigerant and ester oil or ether oil is the same.
2  2
これに対して、例えば従来冷媒として一般的に用いられていた R134aとエステル油 の場合ではオイルと液冷媒の上下関係は逆となり、液冷媒が下部に貯留され、その 上部にエステル油が貯留される。  On the other hand, for example, in the case of R134a and ester oil, which are generally used as conventional refrigerants, the vertical relationship between the oil and liquid refrigerant is reversed, the liquid refrigerant is stored in the lower part, and the ester oil is stored in the upper part. The
[0159] 本実施の形態のように、液冷媒 290がオイル 210の上部に貯留されるタイプの冷媒 とオイルの組み合わせを用 Vヽた圧縮機 100においては、圧縮機 100を傾けると下シ エル 201の内壁面とほぼ同一面に開口されている吸入配管 200に下部に貯留されて いるオイル 210が達すると、シェルの外へと容易に流出することで、シェル内部のオイ ル 210が減少し油面高さが減少してしまう。  [0159] In the compressor 100 using a combination of the refrigerant and oil of the type in which the liquid refrigerant 290 is stored in the upper part of the oil 210 as in the present embodiment, the lower shell is tilted when the compressor 100 is tilted. When the oil 210 stored in the lower part reaches the suction pipe 200 that is open on the same plane as the inner wall surface of the 201, the oil 210 inside the shell decreases by easily flowing out of the shell. The oil level will decrease.
[0160] このように油面高さが低下すると、圧縮要素 204の摺動部に供給されるオイル量が 減少し、摺動部の摩耗等が発生する可能性がある。  [0160] When the oil level is lowered in this way, the amount of oil supplied to the sliding portion of the compression element 204 is reduced, and wear of the sliding portion may occur.
[0161] この課題に対して本発明においては、単位体積当たりの冷凍能力が R134aに比べ て約 1Z2程度、 COに比べて約 1Z20程度まで小さい冷媒である R600aを用いて  [0161] In response to this problem, the present invention uses R600a, which is a refrigerant whose refrigerating capacity per unit volume is as small as about 1Z2 compared to R134a and about 1Z20 compared to CO.
2  2
いる。これによつて、 R134aや COと同等の冷凍能力を得る為に、気筒容積を R134  Yes. As a result, in order to obtain the refrigerating capacity equivalent to R134a and CO, the cylinder volume is reduced to R134.
2  2
aに比べて約 2倍、 COに比べて 20倍程度まで大きくするので、圧縮機のピストン押  Since it is about 2 times larger than a and 20 times larger than CO, the piston push of the compressor
2  2
しのけ量もこの気筒容積の増加に比例して増大する。すなわち、冷媒の単位時間当 たりの体積流量が増大するので、冷凍システム内を冷媒が通過する際の配管内の流 速力 134aに比べて約 2倍、 COに比べて約 20倍程度にまで増大するので、冷凍  The surplus amount also increases in proportion to the increase in cylinder volume. In other words, the volume flow rate of the refrigerant per unit time increases, so that the flow velocity in the piping when the refrigerant passes through the refrigeration system is about twice as high as the flow rate 134a and about 20 times that of CO. So frozen
2  2
システム内に滞留しているオイル 210を圧縮機 100内部へ速やかに戻すことが可能 となり、シェル内のオイル量不足を防止することができる。  It is possible to quickly return the oil 210 staying in the system to the compressor 100, thereby preventing a shortage of oil in the shell.
[0162] また、このような冷蔵庫の運搬等による冷凍機油面の低下については、圧縮機の電 源を入れた直後から 10分間程度のうちの少なくとも半分である 5分間以上において は、圧縮機の回転数を商用電源周波数より高い回転数で駆動するようなインバータ 一装置を用いると、高回転によって圧縮機のピストン押しのけ量が増大する。このこと で、冷凍システム内を冷媒が通過する際の配管内の流速がより増大するので、冷凍 システム内に滞留しているオイル 210を圧縮機 100内部へより速やかに戻すことがで き、シェル内のオイル量不足を防止することができる。 [0162] In addition, regarding such a decrease in the oil level of the refrigerator due to transportation of the refrigerator, etc., at least half of the 10 minutes immediately after the compressor is turned on, which is at least half of 5 minutes or more, An inverter that drives at a higher speed than the commercial power frequency. When one apparatus is used, the piston displacement of the compressor increases due to high rotation. This increases the flow velocity in the piping when the refrigerant passes through the refrigeration system, so that the oil 210 remaining in the refrigeration system can be returned to the compressor 100 more quickly, and the shell Insufficient oil amount can be prevented.
[0163] また、本実施の形態の圧縮機 100では圧縮機の高さ方向の小型化を実現しており 、従来の一般的な小型圧縮機の全高 190mn!〜 200mmに対して、本実施の形態の 圧縮機 100は 145mm程度まで高さ方向における小型化を図っている。  [0163] In addition, the compressor 100 of the present embodiment achieves downsizing in the height direction of the compressor, and the total height of the conventional general small compressor is 190mn! With respect to ~ 200 mm, the compressor 100 of the present embodiment is downsized in the height direction to about 145 mm.
[0164] このような圧縮機の全高に対する小型化を行うにあたっては、オイル量の減少ゃォ ィルの流出などを避ける為、圧縮機の内部に封入するオイル量の油面高さについて は一般的な従来の小型圧縮機と同等の 30mm程度を確保している。その為に、従来 の圧縮機の全高に対するオイル油面高さが 12%〜13%程度であつたのに対して、 本実施の形態の小型圧縮機においては圧縮機の全高に対するオイル油面高さが 1 7%程度まで増大しており、圧縮機が傾いた場合のオイル流出がより大きな課題とな つていた。  [0164] When miniaturizing the overall height of the compressor, in order to avoid oil spills, etc., the oil level enclosed in the compressor is generally About 30 mm, which is equivalent to a typical conventional small compressor, is secured. For this reason, the oil oil level with respect to the total height of the conventional compressor is about 12% to 13%, whereas in the small compressor of the present embodiment, the oil oil level with respect to the total height of the compressor. However, the oil spill when the compressor is tilted has become a bigger problem.
[0165] この課題に対して、本実施の形態の圧縮機 100は小型化を実現するにあたって、 圧縮要素 204および電動要素 203の高さを低減することで、圧縮機を小型化して!/ヽ る。  [0165] In order to reduce the size of the compressor 100 according to the present embodiment, the compressor 100 and the electric element 203 are reduced in height to reduce the size of the compressor! / ヽThe
[0166] すなわち、圧縮要素 204および電動要素 203からなる機械部を弾性的に支持する 支持部 205の部分を高さ低減の要素として取り込まず、圧縮要素 204および電動要 素 203の機械部すなわち内部構成部品で高さ低減を図ることで、オイル 210が機械 部の電動要素 203と緩衝せず、かつ油面高さの変動が生じにく!、配慮をして 、る。  That is, the mechanical part consisting of the compression element 204 and the electric element 203 is elastically supported, and the part of the support part 205 is not taken as an element for reducing the height, and the mechanical part of the compression element 204 and the electric element 203, ie, the inside By reducing the height of the component parts, the oil 210 does not buffer with the electric element 203 of the machine part, and the oil level is less likely to fluctuate!
[0167] このように、冷蔵庫本体の上部に圧縮機 100を配置する形態において、大きな課題 となる圧縮機 100の高さ方向の小型化に関して、小型化を図る要素や観点の中でも 、特に、オイル流出を促進する方向でない、換言すればオイル流出抑制に関わる信 頼性維持のための特有の上述の小型化要素の組み合わせ構成を本実施の形態は 採用している。  [0167] As described above, regarding the downsizing of the compressor 100 in the height direction, which is a major problem in the configuration in which the compressor 100 is arranged on the upper part of the refrigerator body, the oil 100 is particularly important among the elements and viewpoints for downsizing. The present embodiment adopts a combination of the above-described miniaturization elements that are not intended to promote spillage, in other words, to maintain reliability related to oil spill suppression.
[0168] また、オイル 210の油面の最上部から吸入配管 200の開口部までの高さについて は従来の圧縮機と同等以上の寸法関係を確保することによつてもオイル 210の流出 を抑制することができる。例えば、吸入配管 200のシェルへの開口位置はシェル内の 最大高さに対して 1Z2高さより上部に位置していることで、圧縮機 100が傾いた場合 のオイル流出を防止する効果を大きくすることができる。 [0168] In addition, the height from the uppermost part of the oil surface of the oil 210 to the opening of the suction pipe 200 is ensured to have a dimensional relationship equal to or greater than that of the conventional compressor, so that the oil 210 flows out. Can be suppressed. For example, the opening position of the suction pipe 200 to the shell is located above the 1Z2 height with respect to the maximum height in the shell, so that the effect of preventing oil outflow when the compressor 100 is tilted is increased. be able to.
[0169] また、本実施の形態においては圧縮要素 204には上シェル(図示せず)または下シ エル 201と一定の隙間を有した当たり部 220が形成されているので、圧縮機が傾いた 際には当たり部 220と上シェルもしくは下シェル 201とが当接することで、大きな圧縮 要素 204および電動要素 203からなる機械部は大きく傾斜することがない。したがつ て、傾斜側に移動したオイルの容積を機械部が圧迫することを防ぎ、空間部を確保 できるので、オイル 108が吸入配管より流出しやすくなるのを防止できる。  [0169] Further, in the present embodiment, the compression element 204 is formed with the upper shell (not shown) or the lower shell 201 and the contact portion 220 having a certain gap, so that the compressor is inclined. In this case, the contact portion 220 and the upper shell or the lower shell 201 come into contact with each other, so that the mechanical portion including the large compression element 204 and the electric element 203 is not greatly inclined. Therefore, it is possible to prevent the mechanical portion from pressing the volume of the oil moved to the inclined side and to secure a space portion, thereby preventing the oil 108 from easily flowing out from the suction pipe.
[0170] (実施の形態 9)  [Embodiment 9]
図 17は、本発明の実施の形態 9における冷蔵庫に搭載する圧縮機の概略断面図 を示している。なお、背景技術と同一構成については同一符号を付す。  FIG. 17 shows a schematic cross-sectional view of a compressor mounted on the refrigerator in the ninth embodiment of the present invention. In addition, the same code | symbol is attached | subjected about the same structure as background art.
[0171] 圧縮機 100内部で吸入配管 106はシェルの内部に延出しており、吸入マフラー 13 9に弾性部材であるスプリング 106aを介して接合されたダイレクトサクシヨンタイプで あり、吸入マフラー 139の内部空間経路を経てシリンダ 136内へと通じている。また、 吸入配管 106のシェル内部側は上方に向かった曲げ部を有しており、シェル内には 上方に向力つて開口するとともに、弾性部材であるスプリング 106aと連結している。  [0171] Inside the compressor 100, the suction pipe 106 extends into the shell and is a direct suction type joined to the suction muffler 139 via a spring 106a, which is an elastic member, and inside the suction muffler 139. It passes into the cylinder 136 through a spatial path. Further, the inside of the shell of the suction pipe 106 has a bent portion directed upward, and the shell is opened upward by force and is connected to a spring 106a which is an elastic member.
[0172] また吸入マフラー 139はシリンダヘッド 135へと経路がつながっており、シリンダ 13 6ゃシリンダヘッド 135と同方向に配置される。さらに吸入配管 106も吸入マフラー 13 9と接続するために同方向に配置されている。吐出配管 107は圧力脈動の低減のた め配管の弾性を高めるように所定の配管長さをとつてシリンダヘッドと反対側で下シェ ルと取り付けられている。吸入配管 106と吐出配管 107を反対側で構成することでよ り小型の圧縮機 100の構成が可能となる。  [0172] The suction muffler 139 is connected to the cylinder head 135, and the cylinder 136 is disposed in the same direction as the cylinder head 135. Further, the suction pipe 106 is arranged in the same direction so as to be connected to the suction muffler 139. The discharge pipe 107 is attached to the lower shell on the side opposite to the cylinder head with a predetermined pipe length so as to increase the elasticity of the pipe to reduce pressure pulsation. By configuring the suction pipe 106 and the discharge pipe 107 on the opposite sides, a compact compressor 100 can be configured.
[0173] 以上のようなダイレクトサクシヨンの構成により、圧縮機 100が傾斜した場合でもシリ ンダ 136の隙間ゃシリンダヘッド 135のバルブ隙間や、吸入マフラー 139に設けられ たオイル 108戻し穴(図示せず)など微小空間を通してし力、オイル 108の逆流流出 が発生しない。  [0173] With the configuration of the direct suction as described above, even when the compressor 100 is inclined, the clearance of the cylinder 136 is the clearance of the valve of the cylinder head 135 and the oil 108 return hole (not shown) provided in the suction muffler 139. )), And the back flow outflow of oil 108 does not occur.
[0174] なお、吸入配管 106と吸入マフラー 139との接合は密着巻きされたスプリングで構 成すると、圧縮振動の伝達低減となる上に、オイル 108も粘性によりスプリング隙間か らの流出が低減できるので、オイル 108の逆流を低減することが可能である。 [0174] The suction pipe 106 and the suction muffler 139 are joined by a tightly wound spring. In this case, the transmission of compression vibration is reduced, and the oil 108 can also reduce the outflow from the spring gap due to the viscosity, so that the back flow of the oil 108 can be reduced.
[0175] なお、吸入配管 106と吸入マフラー 139とを接続する弾性部材として、本実施の形 態ではスプリングを用いた力 ゴム等の弹性的な榭脂を用いても良 、。 [0175] As an elastic member for connecting the suction pipe 106 and the suction muffler 139, in this embodiment, an elastic resin such as a rubber using a spring may be used.
産業上の利用可能性  Industrial applicability
[0176] 本発明に係る冷蔵庫は、圧縮機を蒸発器より上方に配設した冷凍サイクルを有す る場合、圧縮機外へのオイルの流出を防止できる。そのため、圧縮機内の冷凍機ォ ィルが不足する事などを低減でき、家庭用冷蔵庫のみならず業務用冷蔵庫、 自動販 売機、その他の冷却機器を備えた貯蔵庫の冷凍サイクル構成として有用である。 [0176] When the refrigerator according to the present invention has a refrigeration cycle in which the compressor is disposed above the evaporator, oil can be prevented from flowing out of the compressor. Therefore, it is possible to reduce the shortage of refrigeration equipment in the compressor, and it is useful as a refrigeration cycle configuration for storage refrigerators equipped with commercial refrigerators, vending machines, and other cooling devices as well as household refrigerators. .

Claims

請求の範囲 The scope of the claims
[1] 断熱箱体と、  [1] Insulated box,
前記断熱箱体に備えられた圧縮機と凝縮器と減圧器と蒸発器とを順に備えて一 連の冷媒流路を形成した冷凍サイクルと、  A refrigeration cycle in which a compressor, a condenser, a decompressor, and an evaporator provided in the heat insulation box are sequentially provided to form a continuous refrigerant flow path;
前記圧縮機内の内部構成部品を収めた空間内に封入されるオイルと、 前記圧縮機と前記蒸発器とを接続する吸入配管に配置され、前記圧縮機内部 力 前記蒸発器側への前記オイルの流出を防止するオイル流出防止トラップと を有し、  The oil enclosed in the space containing the internal components in the compressor, and the suction pipe connecting the compressor and the evaporator, the internal force of the compressor The oil to the evaporator side An oil spill prevention trap that prevents spillage,
前記圧縮機は内部低圧型であるとともに前記断熱箱体の天面部に配設され、 前記蒸発器は前記圧縮機よりも下方に設けられた冷蔵庫。  The compressor is an internal low-pressure type and is disposed on a top surface portion of the heat insulating box, and the evaporator is provided below the compressor.
[2] 前記断熱箱体は天面後方に凹み部を備え、  [2] The heat insulation box includes a recess at the rear of the top surface,
前記凹み部に前記圧縮機と前記オイル流出防止トラップとが備えられた請求項 1に記載の冷蔵庫。  The refrigerator according to claim 1, wherein the recess and the oil outflow prevention trap are provided in the recess.
[3] 前記オイル流出防止トラップは、前記断熱箱体の前面側が上になるように傾け た場合に前記圧縮機内部から前記蒸発器側への前記オイルの流出を防止する請求 項 1または 2に記載の冷蔵庫。  [3] The oil outflow prevention trap according to claim 1 or 2, wherein the oil outflow prevention trap prevents the oil from flowing out from the inside of the compressor to the evaporator side when tilted so that the front side of the heat insulating box is upward. The refrigerator described.
[4] 前記オイル流出防止トラップは、前記断熱箱体の前後方向に配管を U字形状に 曲げた U曲げ部を有し、 [4] The oil spill prevention trap has a U-bending portion obtained by bending a pipe in a U-shape in the front-rear direction of the heat-insulating box.
少なくとも前記 U曲げ部の一部が前記圧縮機の中心線よりも前記断熱箱体の前 方側に配置された請求項 1から 3のいずれか一項に記載の冷蔵庫。  The refrigerator according to any one of claims 1 to 3, wherein at least a part of the U-bending portion is disposed on a front side of the heat insulating box body with respect to a center line of the compressor.
[5] 前記オイル流出防止トラップが圧縮機シェルの内部に設けられた請求項 1から 4 の!、ずれか一項に記載の冷蔵庫。 5. The refrigerator according to any one of claims 1 to 4, wherein the oil spill prevention trap is provided inside the compressor shell.
[6] 前記オイル流出防止トラップは、前記蒸発器の接続側を上方力も内部に突出さ せて前記圧縮機の接続側を下方力 接続したチャンバ一である請求項 1から 5のい ずれか一項に記載の冷蔵庫。 6. The oil spill prevention trap is a chamber in which the connection side of the evaporator is protruded in the upward direction and the connection side of the compressor is connected downward. The refrigerator according to item.
[7] 前記オイル流出防止トラップは、前記圧縮機と前記吸入配管の接続部を前記圧 縮機の前後方向の断面における鉛直方向の中心線よりも断熱箱体の前方側に配置 された請求項 1から 6のいずれか一項に記載の冷蔵庫。 前記圧縮機は上下二分割の上シェルと下シェルを備え、 前記上シェルと前記下シェルとは内部に内部構成部品を収納し、シェル接合部 において密閉接合され、 [7] The oil spill prevention trap is arranged such that a connecting portion between the compressor and the suction pipe is disposed on the front side of the heat insulating box with respect to a center line in a vertical direction in a front-rear cross section of the compressor. The refrigerator according to any one of 1 to 6. The compressor includes an upper shell and a lower shell which are divided into upper and lower parts, and the upper shell and the lower shell house internal components inside and are hermetically joined at a shell joint portion,
前記下シェル側に設けられた吸入配管は前記シェル接合部より上方にまで配 管立ち上がり部を備える請求項 1から 7のいずれか一項に記載の冷蔵庫。  The refrigerator according to any one of claims 1 to 7, wherein the suction pipe provided on the lower shell side includes a pipe rising portion extending upward from the shell joint portion.
前記圧縮機は、内部構成部品の傾斜防止手段を備える請求項 1から 8の 、ずれ か一項に記載の冷蔵庫。  The refrigerator according to any one of claims 1 to 8, wherein the compressor includes an inclination prevention means for internal components.
前記圧縮機は上下二分割の上シェルと下シェルを備え、  The compressor is provided with an upper shell and a lower shell which are divided into upper and lower parts,
前記上シェルと前記下シェルは内部に内部構成部品を収納し、シェル接合部に おいて密閉接合され、  The upper shell and the lower shell accommodate internal components inside and are hermetically joined at the shell joint,
前記下シェル側に設けられた吸入配管は下シェル内壁面とほぼ同一面上で圧 縮機内部に開口している請求項 1から 9のいずれか一項に記載の冷蔵庫。  The refrigerator according to any one of claims 1 to 9, wherein the suction pipe provided on the lower shell side opens into the compressor on substantially the same plane as the inner wall surface of the lower shell.
前記冷凍サイクルには冷媒が封入され、  A refrigerant is enclosed in the refrigeration cycle,
前記冷媒は液化した状態にぉ 、て、前記オイルよりも比重が軽 、ものである請 求項 1から 10のいずれか一項に記載の冷蔵庫。  The refrigerator according to any one of claims 1 to 10, wherein the refrigerant is in a liquefied state and has a specific gravity lighter than that of the oil.
前記冷凍サイクルに封入される冷媒は R600aであり、  The refrigerant enclosed in the refrigeration cycle is R600a,
前記オイルは鉱油である請求項 1から 11のいずれか一項に記載の冷蔵庫。 前記圧縮機は、  The refrigerator according to any one of claims 1 to 11, wherein the oil is mineral oil. The compressor is
回転子に永久磁石を用いたインバーター電動機を有する電動要素と、 軸受部を有する圧縮要素と  An electric element having an inverter motor using a permanent magnet as a rotor, and a compression element having a bearing portion;
を備え、 With
前記軸受部は前記電動要素の回転子の高さ範囲内に嵌挿された請求項 1から 12のいずれか一項に記載の冷蔵庫。  The refrigerator according to any one of claims 1 to 12, wherein the bearing portion is fitted into a height range of a rotor of the electric element.
天面後方に凹み部を設けた断熱箱体と、  A heat insulating box provided with a dent on the back of the top surface;
前記凹み部に配設された内部高圧型の圧縮機と、  An internal high-pressure compressor disposed in the recess,
前記断熱箱体天面部に備えられた凝縮器と  A condenser provided on the top surface of the heat insulating box;
有し、 Have
前記圧縮機と前記凝縮器とは吐出配管により接続されており、 前記凝縮器は前記圧縮機の吐出配管接続部よりも前記断熱箱体の前方側でか つ高!ヽ位置に配置された冷蔵庫。 The compressor and the condenser are connected by a discharge pipe, The refrigerator is a refrigerator that is disposed at a higher position in front of the heat insulation box than a discharge pipe connection portion of the compressor.
PCT/JP2005/019267 2004-10-20 2005-10-20 Refrigerator WO2006043613A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-305502 2004-10-20
JP2004305502 2004-10-20
JP2004-349353 2004-12-02
JP2004349353A JP4496944B2 (en) 2004-10-20 2004-12-02 refrigerator

Publications (1)

Publication Number Publication Date
WO2006043613A1 true WO2006043613A1 (en) 2006-04-27

Family

ID=36203028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/019267 WO2006043613A1 (en) 2004-10-20 2005-10-20 Refrigerator

Country Status (3)

Country Link
JP (1) JP4496944B2 (en)
TW (2) TW200624741A (en)
WO (1) WO2006043613A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5861052B2 (en) * 2011-06-02 2016-02-16 パナソニックIpマネジメント株式会社 refrigerator
JP6554049B2 (en) * 2016-03-01 2019-07-31 日立グローバルライフソリューションズ株式会社 refrigerator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0267878U (en) * 1988-11-07 1990-05-23
JPH09273855A (en) * 1996-04-01 1997-10-21 Sanden Corp Cold-insulation room and method for installating cooling apparatus therefor
JP2001099552A (en) * 1999-09-29 2001-04-13 Sanyo Electric Co Ltd Cooler/refrigerator
JP2001201227A (en) * 2000-01-14 2001-07-27 Mitsubishi Electric Corp Refrigerator-freezer
JP2003028065A (en) * 2001-07-16 2003-01-29 Matsushita Refrig Co Ltd Hermetically closed electric compressor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59132074U (en) * 1983-02-23 1984-09-04 株式会社日立製作所 refrigerator
JPH0519716Y2 (en) * 1987-10-16 1993-05-24
JPH0816575B2 (en) * 1990-10-12 1996-02-21 三洋電機株式会社 Cold storage
JPH09113096A (en) * 1995-10-20 1997-05-02 Fujitsu General Ltd Electric refrigerator
JP2002195733A (en) * 2000-12-25 2002-07-10 Matsushita Refrig Co Ltd Refrigerator
JP3946611B2 (en) * 2002-10-07 2007-07-18 株式会社東芝 refrigerator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0267878U (en) * 1988-11-07 1990-05-23
JPH09273855A (en) * 1996-04-01 1997-10-21 Sanden Corp Cold-insulation room and method for installating cooling apparatus therefor
JP2001099552A (en) * 1999-09-29 2001-04-13 Sanyo Electric Co Ltd Cooler/refrigerator
JP2001201227A (en) * 2000-01-14 2001-07-27 Mitsubishi Electric Corp Refrigerator-freezer
JP2003028065A (en) * 2001-07-16 2003-01-29 Matsushita Refrig Co Ltd Hermetically closed electric compressor

Also Published As

Publication number Publication date
TWI341918B (en) 2011-05-11
JP4496944B2 (en) 2010-07-07
TW201122393A (en) 2011-07-01
TW200624741A (en) 2006-07-16
TWI422790B (en) 2014-01-11
JP2006145187A (en) 2006-06-08

Similar Documents

Publication Publication Date Title
JP2006183655A (en) Compressor, refrigerating device and refrigerator
WO2012153518A1 (en) Refrigerator
JP2007057129A (en) Refrigerator
JP5423242B2 (en) refrigerator
WO2006043613A1 (en) Refrigerator
JP5974282B2 (en) refrigerator
JP3858936B2 (en) Compressor and refrigeration equipment
JP3915825B2 (en) Compressor and refrigeration equipment and refrigerator
JP3741141B1 (en) refrigerator
JP3741142B1 (en) refrigerator
JP2007219904A (en) Automatic vending machine
JP2017161124A (en) refrigerator
JP3722149B1 (en) refrigerator
JP3960349B1 (en) Compressor and vending machine
JP5845438B2 (en) refrigerator
JP2006183989A (en) Refrigerator
JP2007057126A (en) Refrigerator
JP5682240B2 (en) refrigerator
JP2006183660A (en) Compressor and refrigerating device
WO2006041146A1 (en) Refrigerator
JP3722150B1 (en) refrigerator
JP2017161125A (en) refrigerator
JP6552985B2 (en) refrigerator
JP2008051371A (en) Refrigerator
JP3824014B2 (en) refrigerator

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580036155.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05795545

Country of ref document: EP

Kind code of ref document: A1