WO2006043533A1 - Receiver - Google Patents

Receiver Download PDF

Info

Publication number
WO2006043533A1
WO2006043533A1 PCT/JP2005/019093 JP2005019093W WO2006043533A1 WO 2006043533 A1 WO2006043533 A1 WO 2006043533A1 JP 2005019093 W JP2005019093 W JP 2005019093W WO 2006043533 A1 WO2006043533 A1 WO 2006043533A1
Authority
WO
WIPO (PCT)
Prior art keywords
receiver
filter
frequency
signal
band
Prior art date
Application number
PCT/JP2005/019093
Other languages
French (fr)
Japanese (ja)
Inventor
Yasumi Imagawa
Toshihiro Nagayama
Yasunori Miyahara
Kazunori Yamada
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004304051A external-priority patent/JP2006121160A/en
Priority claimed from JP2004325228A external-priority patent/JP2006135879A/en
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2006043533A1 publication Critical patent/WO2006043533A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/26Circuits for superheterodyne receivers
    • H04B1/28Circuits for superheterodyne receivers the receiver comprising at least one semiconductor device having three or more electrodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/30Circuits for homodyne or synchrodyne receivers

Definitions

  • the present invention relates to a receiver mounted on a communication terminal of a wireless communication system.
  • ZIF Zero Intermediate Frequency
  • LIF Low Intermediate Frequency
  • multi-mode receivers that can receive different communication methods (such as Mobile Telecommunication System: the third generation mobile communication system of Tsubaki Tsubame) on the same terminal has also been carried out. Yes.
  • FIG. 1 is a configuration diagram showing an example of a conventional ZIF receiver.
  • the high frequency filter 2 attenuates a signal outside the reception frequency band among the radio signals received by the antenna 1.
  • the high frequency amplifier 3 amplifies the output signal of the high frequency filter 2.
  • Quadrature mixer 4 has almost the same frequency as the reception frequency.
  • the baseband I and Q signals that are orthogonal to each other are generated by mixing the output signal of the local oscillator 5 that outputs a pair of orthogonal local oscillation signals and the signal amplified by the high-frequency amplifier 3 .
  • the channel selection filter 7 removes unnecessary waves by limiting the bands of the I and Q signals output from the multipliers 4a and 4b of the orthogonal mixer 4.
  • the variable gain amplifier 8 amplifies the I and Q signals output from the channel selection filter 7 to a desired level.
  • the decoding unit 10 converts the I and Q signals amplified by the variable gain amplifier 8 into digital signals by the ADCs 10a and 10b, and decodes them by the decoder.
  • the reception sensitivity is degraded by the baseband offset voltage.
  • Such an offset voltage is generated as a result of self-mixing in the quadrature mixer 4 between the mismatch of the circuit components and the local oscillation signal leaked to the high-frequency signal input of the quadrature mixer 4 and the output of the local oscillator 5.
  • the ZIF receiver shown in Fig. 1 eliminates the offset voltage generated in the baseband by providing a high pass filter (HPF) with capacitive coupling 6 and capacitive coupling 9 between each circuit block.
  • HPF high pass filter
  • FIG. 2 is an explanatory diagram showing how the bias voltage fluctuates when the ZIF receiver of FIG. 1 is started.
  • the DC bias voltage fluctuation 21 occurs at the start-up of the HPF cutoff frequency, so the time constant of the DC bias voltage stabilization time 22 until the receiver stabilizes significantly increases the start-up time.
  • the reception characteristics may be degraded by the attenuation of the low frequency components of the I and Q signals or the fluctuation of the group delay time due to HPF.
  • FIG. 3 is a configuration diagram illustrating an example of the offset voltage removal circuit disclosed in Patent Document 1.
  • the ADC Analog to Digital Converter: AD converter
  • the offset voltage detector lOd detect the offset voltages of the I and Q components.
  • the offset voltage is removed by applying negative feedback to the adders 10e, lOf and the adders 11a, l ib.
  • FIG. 4 is a block diagram showing an example of a conventional LIF receiver.
  • the high frequency filter 2 attenuates signals other than the reception frequency band among the radio signals received by the antenna 1.
  • the high frequency amplifier 3 amplifies the output signal of the high frequency filter 2.
  • the quadrature mixer 4 has a quadrature relationship by mixing the output signal of the local oscillation unit 5 that outputs a pair of orthogonal local oscillation signals offset by the radio signal power frequency and the signal amplified by the high frequency amplifier 3. Converts to an intermediate frequency (IF) signal of I and Q components.
  • IF intermediate frequency
  • the channel selection filter 7 removes unnecessary waves by limiting the bandwidth of the I and Q signals output from the multipliers 4a and 4b of the orthogonal mixer 4.
  • the variable gain amplifier 8 amplifies the I and Q signals output from the channel selection filter 7 to a desired level. In this LIF receiver, since it is converted to a low IF frequency, the offset voltage generated by the channel selection filter 7 and the variable gain amplifier 8 can be removed by the HPF by capacitive coupling. That is, the channel selection filter 7 may be a BPF (Band Pass Filter).
  • the ADCs 10a and 10b convert the I and Q signals amplified by the variable gain amplifier 8 into digital signals.
  • the second quadrature mixer 12 composed of digital circuits converts the output signals of ADC10a and 10b into digital baseband I and Q signals that are in a quadrature relationship.
  • the decoding unit 10 decodes the output signal of the second orthogonal mixer 12.
  • FIG. 5 is an explanatory diagram for explaining an example of setting an intermediate frequency in a conventional LIF receiver. That is, FIG. 5 shows an example of setting the intermediate frequency in the conventional LIF receiver described in FIG.
  • reference numeral 31 denotes a signal arrangement in the high frequency band
  • reference numeral 33 denotes a signal arrangement in the intermediate frequency band (IF band).
  • IF band intermediate frequency band
  • To receive signal 31a When there are adjacent signal waves 31b, 31c, 31d, 31e, and 31f that are disturbing waves, the first local oscillation is performed so that the output frequency of the first local oscillation unit 5 shown in Fig. 4 is about 1Z2 channel interval.
  • the frequency 32 is set, in the IF band signal arrangement 33, a reception desired wave 33a and adjacent disturbing waves 33b, 33c, 33d, 33e, 33f are arranged.
  • the adjacent interference wave 33c is an image signal.
  • the signal of the adjacent channel band corresponding to the image frequency is usually suppressed using an image removal mixer.
  • the adjacent channel frequency is not used or the standard for interference is relaxed. Therefore, in the image removal mixer, if the image signal is about 30 dB, Since it can be easily removed, sufficient anti-jamming characteristics can be secured.
  • the CDMA system uses adjacent channel frequencies, it is necessary to suppress more than 60 dB using only the image rejection mixer. At this time, the amount of image rejection is determined by the phase orthogonality between I and Q and the coincidence of amplitude.
  • the quadrature phase error between I and Q is Less than 0.1 degree, the amplitude error between I and Q should be less than 0.1 dB.
  • a technique for image removal (that is, video exclusion) in a LIF receiver is also disclosed in, for example, Patent Document 2 below.
  • Patent Document 1 Japanese Patent Laid-Open No. 7-111471
  • Patent Document 2 Japanese Translation of Special Publication 2002-523958
  • An object of the present invention is to provide a receiver capable of removing a DC offset voltage with a simple circuit configuration and supporting a plurality of communication methods without deteriorating a desired reception characteristic. is there.
  • a receiver of the present invention includes a first local oscillator that outputs a pair of orthogonal local signals, and a received signal that is orthogonalized by multiplying the output signal of the first local oscillator.
  • a first mixer that obtains I and Q signals of the intermediate frequency, a first filter that band-limits the I and Q signals of the first intermediate frequency, and a second filter that outputs a pair of orthogonal local signals.
  • a second mixer for obtaining I and Q signals, a second filter for band-limiting the I and Q signals of the second intermediate frequency, and a decoding controller for decoding the output signal of the second filter. And controlling the first local transmitter based on a communication method It adopts a configuration comprising a receiver mode setting means for selecting one of the intermediate frequency, a.
  • FIG. 1 Configuration diagram showing an example of a conventional ZIF receiver
  • FIG. 2 An explanatory diagram showing how the bias voltage fluctuates when the ZIF receiver of Fig. 1 is started.
  • FIG. 3 A configuration diagram showing an example of a conventional offset voltage elimination circuit.
  • FIG. 5 is an explanatory diagram for explaining an example of setting an intermediate frequency in a conventional LIF receiver.
  • FIG. 6 is a configuration diagram showing a receiver according to Embodiment 1 of the present invention.
  • FIG. 7 is an explanatory diagram for explaining an outline of a GSM frame configuration taking the TDMA scheme as an example in the receiver of the present invention.
  • FIG. 8 is an explanatory diagram for explaining the outline of the frame structure of UMTS using the W-CDMA system as an example in the receiver of the present invention.
  • FIG. 9 is a configuration diagram of an offset voltage removal circuit according to the second embodiment of the present invention.
  • FIG. 10 is a block diagram showing a basic configuration of an amplifying apparatus according to Embodiment 4 of the present invention.
  • FIG. 11A is a first explanatory diagram illustrating an input signal amplification method according to Embodiment 4 of the present invention.
  • FIG. 11B is a first explanatory diagram illustrating an input signal amplification method according to Embodiment 4 of the present invention.
  • FIG. 12A is a second explanatory diagram illustrating an input signal amplification method according to Embodiment 4 of the present invention.
  • FIG. 12B is a second explanatory diagram illustrating an input signal amplification method according to Embodiment 4 of the present invention.
  • FIG. 13 is a block diagram showing a basic configuration of an amplifying apparatus according to Embodiment 5 of the present invention.
  • FIG. 14 is a diagram showing a level diagram of the receiver in the embodiment 5 shown in FIG. 13.
  • FIG. 15 is a circuit diagram showing a detailed configuration of the band eliminate filter in FIG.
  • FIG. 6 is a block diagram showing a receiver according to Embodiment 1 of the present invention.
  • the receiver includes an antenna unit 101, a high frequency unit 102, a first local oscillation unit 103, a first mixer unit 104, a first channel selection filter 105, a second mixer unit 106, and a second local unit.
  • the mode setting unit 111 and the third local oscillation unit 112 are provided.
  • the antenna unit 101 has a function of receiving radio signals in a plurality of frequency bands by the plurality of antennas 101a and 101b.
  • the high frequency unit 102 includes a high frequency filter corresponding to a plurality of frequency bands and a plurality of high frequency amplifiers, and the radio signal force received by the antenna unit 101 also attenuates frequencies other than the necessary band and amplifies the necessary band frequency. It has a function.
  • the first local oscillation unit 103 has a function of outputting a pair of orthogonal local signals.
  • the first mixer section 104 has a function of converting the output signal of the high-frequency section 102 into the I and Q signals of the orthogonal first IF frequency f12 by multiplying the output signal of the first local oscillation section 103.
  • the first channel selection filter 105 has a function of selecting a desired signal by band-limiting the I and Q signals that are output signals of the first mixer unit 104.
  • the first channel selection filter 105 is an LPF (Low Pass Filter) and includes an offset voltage that hinders signal processing. This offset voltage is removed by the HPF (High Pass Filter). Therefore, the first channel selection filter 105 results in a BPF (Band Pass Filter).
  • the first channel selection filter 105 may be a filter specially designed as a BPF.
  • the second local oscillator 107 has a function of outputting a pair of orthogonal local signals.
  • the second mixer unit 106 multiplies the I and Q signals output from the first channel selection filter 105 by the output signal of the second local oscillation unit 107, thereby obtaining the second IF frequency fl3, It has a function to convert to Q signal.
  • the relationship between the two frequencies is the first IF frequency f 12 and the second IF frequency f 13.
  • the second channel selection filter 108 has a function of selecting a desired signal by band-limiting the output signal of the second mixer unit 106.
  • the second channel selection filter 108 is a plurality of filters having different passbands or a channel selection filter having a filtering power capable of variably setting the passband, and also has a function of setting a plurality of passband widths and center frequencies. ing.
  • the variable gain amplifier 109 is configured to output the signal output from the second channel selection filter 108. A function of adjusting the amplitude to a preset amplitude by control from the decoding unit 110 is provided.
  • the variable gain amplifier 109 uses the intermediate frequency band higher than the baseband or the low IF band, so that the decoding unit 110 can be capacitively coupled to the second channel selection filter 108 and the subsequent stage in the previous stage. Therefore, it is not necessary to remove the offset necessary for the ZIF receiver.
  • the decoding unit 110 includes an AD converter unit 110a, a digital mixer unit 110b, a CDMA decoding unit 110c, a TDMA decoding unit 11 Od, and an AGC (Automatic Gain Controller) lOe.
  • the AD converter unit 110a has a function of converting the output signal of the variable gain amplifier unit 109 into digital analog power.
  • the digital mixer section 110b has a function of converting the output of the AD converter 110a into digital I and Q signals.
  • AGClOe has a function of controlling the gain of the variable gain amplifier unit 109 according to the signal amplitude.
  • the CDMA decoding unit 110c has a function of decoding, for example, a UMTS (W-CDMA) signal.
  • the TDMA decoding unit 110d has a function of decoding, for example, a GSM signal.
  • the receiver mode setting unit 111 includes a first local oscillation unit 103, a first mixer unit 104, a first channel selection filter 105, and a second local unit according to a CDMA or TDMA communication method.
  • a function for setting the oscillation unit 107, the second channel selection filter 108, and the decoding unit 110 is provided.
  • the third local oscillating unit 112 has a function of generating a reference clock signal for the decoding unit 110.
  • the third local oscillating unit 112 may be shared if the frequency of the third local oscillating unit 112 is double or divided with the second local oscillating unit 107.
  • the receiver switches the receiver mode between the ZIF receiver mode and the LIF receiver mode according to the communication method (that is, the CDMA method or the TDMA method). Specifically, the receiver sets the frequencies of the first local oscillator 103 and the second local oscillator 107 based on the receiver mode, and selects the first channel selection filter 105 and the second channel selection.
  • the filter 108 is configured as a filter having a pass characteristic optimum for each communication method.
  • the receiver When setting to the ZIF receiver mode, the receiver sets the first local oscillation unit 103 to a frequency substantially the same as the reception frequency. As a result, the I and Q signals of the first IF frequency fl2 are Source signal. Further, the I and Q signals are quadrature modulated by the second local oscillation unit 107 and the second mixer unit 106, and are upmixed to the second IF frequency fl3.
  • the receiver when setting to the LIF receiver mode, sets the first local oscillation unit 103 to a frequency slightly offset from the reception frequency by the frequency of the first IF frequency fl2. . Further, the I and Q signals are orthogonally modulated by the second local oscillator 107 and the second mixer 106, and are upmixed to the second IF frequency f13.
  • each receiver mode of the ZIF receiver mode and the LIF receiver mode will be specifically described by taking a digital communication system as an example.
  • TDMA and CDMA are the typical digital communication systems used in mobile phones.
  • the ZIF receiver needs to remove the offset voltage generated in the baseband part. As shown in Fig. 1, the easiest way to remove this offset voltage is to capacitively couple between circuit blocks. In this case, however, it has an HPF characteristic and is cut off so as not to affect the reception sensitivity characteristic. Setting the frequency makes the time constant very long.
  • FIG. 7 is an explanatory diagram for explaining an outline of a GSM frame configuration using the TDMA scheme as an example in the receiver of the present invention.
  • GSM is a TDMAZFDD method
  • the timing of reception slot 200, monitor slot 201, and intermittent reception operation 202 shown in FIG. 7 will be described here.
  • the monitor slot 201 receives the monitor slot 201a
  • the reception slot 200 receives the reception slot 20 Oa designated as the communication slot.
  • one frame is 4.615 ms
  • one slot power is 77 seconds
  • one frame is composed of 8 slots.
  • Receive operation will be performed.
  • the intermittent reception operation 202 is an indispensable method for reducing current consumption.
  • the time required until the bias voltage is stable when the receiver is activated and becomes receivable has the relationship shown in Fig. 2, which causes an obstacle to the intermittent reception operation. Therefore, the ZIF receiver mode is suitable for the TD MA system! /!
  • LIF receiver mode In the LIF receiver mode, it is converted to an intermediate frequency equivalent to about 1Z2 channel spacing. Therefore, even if an HPF that removes the offset voltage is placed, ZIF Compared to the receiver mode, the cutoff frequency of the HPF can be set higher, and the start-up time can be easily increased. Therefore, LIF receiver mode is suitable for TDMA system.
  • FIG. 8 is an explanatory diagram for explaining the outline of the frame structure of UMTS, taking the W-CDMA system as an example in the receiver of the present invention.
  • UMTS W-CDMA
  • W-CDMA is a CDM AZFDD system
  • the received frame 300 shown in FIG. 8 will be described here.
  • UMTS W-CDMA
  • one frame is 10 ms, and since continuous reception is basically performed at the specified transmission rate from the base station during communication, intermittent reception is not performed as shown in intermittent reception operation 301. And the signal band is wide. Therefore, even if capacitive coupling HPF is used to remove the offset between circuit blocks, the cut-off frequency can be set high to some extent.Therefore, as shown in FIG. It can be shortened. Therefore, ZIF receiver mode is suitable for CDMA.
  • a ZIF receiver mode a UMTS (W-CDMA) receiver will be described as an example, and as a LIF receiver mode, a GSM receiver will be described as an example.
  • the output frequency of the first local oscillator 103 is set to be almost the same as the reception frequency, and the overall characteristics of the first channel selection filter 105 and the second channel selection filter 1 08 are UMTS (W-CDMA) transmission. 3.
  • the speed should be 3.84 Mcps baseband signal, and adjacent channel signal band should be filtered.
  • a specific example of the low-frequency pass characteristics of the first channel selection filter 105 has been published in Reference 1 below, and the HPF has a cutoff frequency of about 20 KHz or less that does not affect the reception characteristics. Appropriate.
  • the reference clock of UMTS (W—CDMA) is 19.2 MHz.
  • the second IF frequency fl3 is also 3.84 MHz.
  • the sampling frequency of the AD converter 110a is 15.36 MHz
  • the second IF frequency f13 is a 3.84 MHz digitized signal.
  • the digital mixer ⁇ 110b converts the digital I and Q signals with 15.36MHz 1Z4 orthogonal clocks, and the CDMA decoder 110c performs the decoded signal processing.
  • the output frequency of the first local oscillating unit 5 is a frequency that is detuned (that is, offset) from the reception frequency by 1Z2 channel interval or more.
  • a specific example of the first IF frequency f12 is presented in Reference 2 below. Further, it is described that the low frequency of the first channel selection filter 105 may be about 10 kHz.
  • the GSM reference clock is 13 MHz.
  • the first IF frequency fl2 is 135.4167 KHz, which is 1Z96 with a reference clock of 13 MHz
  • the output frequency of the second local oscillator 107 is 1Z4 of the reference clock, 3.25 MHz
  • the second IF frequency is 3.385417MHz. It is assumed that the second channel selection filter 108 secures an attenuation amount that is insufficient in the first channel selection filter 105.
  • the sampling clock of the AD converter 110a is 3.25 MHz
  • the second IF frequency f13 is undersampled
  • the digitized 135.4167KHz is obtained at the output of the AD converter 110a.
  • the digital I and Q signals are obtained from the 1Z96 orthogonal clock of 13 MHz clock and the digital mixer 110b, and the TDMA decoder 110d performs the decoding process.
  • the first channel selection filter 105 is a low-pass filter (LPF) with a cut-off frequency of about 2 MHz.
  • LPF low-pass filter
  • a band pass filter (BPF) can be realized by combining a high pass filter (HPF).
  • HPF high pass filter
  • the second channel selection filter 108 can be realized by configuring a band pass filter (BPF) having a center frequency of 3.84 MHz and a pass band of about 4 MHz.
  • the first channel selection filter 105 is an LPF with a cutoff frequency of about 200 kHz.
  • the second channel selection filter 108 can be realized by configuring a band pass filter (BPF) having a center frequency of 3. 385 417 MHz and a pass band of 400 kHz.
  • BPF band pass filter
  • the image frequency of the second IF frequency f 13 of the LIF receiver is + 6. 771 MHz or 6.771 MHz away from the desired signal in the high frequency band. Cut of the first channel selection filter If the off-frequency is 200 kHz, the image signal with the second IF frequency f 13 can be removed. If image signal removal is insufficient, it may be used as a notch filter.
  • the first channel selection filter 105 and the second channel selection filter 108 of the ZIF receiver and the LIF receiver can be configured by being individually arranged and switched appropriately.
  • the structure of the ZIF receiver filter is configured by switching the constants of the LIF receiver, the receiving circuit can be greatly reduced in size.
  • Embodiment 2 of the present invention will be described.
  • the DC offset voltage caused by the mismatch of the components in the second mixer section 106 in Fig. 6 appears as carrier leak at the second IF frequency f 13 and consequently affects the reception sensitivity. It is also possible to do. In such a case, the offset voltage may be canceled as necessary. Therefore, in the second embodiment of the present invention, a configuration example for canceling the offset voltage will be described.
  • FIG. 9 is a configuration diagram of the offset voltage removal circuit according to the second embodiment of the present invention. Therefore, the second embodiment will be described with reference to FIGS.
  • the first local oscillating unit 103 is set in a state where the high frequency signal is not frequency-converted by the first mixer unit 104 in the OFF state. As a result of this operation, it is possible to set no signal input even in areas where strong received signals exist.
  • the gain for setting the variable gain amplifier section 109 is In general, it is desirable to set the gain approximately 10 to 20 dB higher than the gain at the time of sensitivity point signal. By this operation, carrier leak can be detected efficiently and adjustments can be made so as not to affect the reception sensitivity.
  • the noise band can be narrowed by setting the filter after the second intermediate frequency to the GSM setting, the carrier leak can be detected more efficiently.
  • the carrier leak occurring at the second IF frequency f13 is read by the carrier detector l lOg based on the RS SI output of AGCl lOe, and the adjustment voltage is output from DAC l lOi and added. Adjust to vessel 114 to minimize carrier leakage. This adjustment operation is performed individually for the I channel or Q channel. At this time, the second mixer section 106 on the I channel or Q channel side that has not been adjusted should not perform the frequency conversion operation. Although not specifically explained with reference to the figure, it can be realized, for example, by turning off the power of the mixer or not inputting the second local oscillation signal.
  • the adjusted DAC control values of the I and Q channels are stored in the setting information holding unit lOh, and are output to DAClOi at the time of reception.
  • Such adjustment and storage may be performed at every reception, or may be performed every preset time or every factory shipment adjustment of the mobile terminal device. In other words, such adjustment and storage can be performed at any time. By adding a few functions in this way, stable offset voltage removal can be realized.
  • UMTS Wi-CDMA
  • GSM Global System for Mobile Communications
  • AMPS Advanced Mobile Phone Service: analog / cellular mobile
  • OFDM Orthogonal Frequency Division Multiplexing
  • UWB Ultra Wideband
  • any communication system that satisfies the radio standard in the ZIF receiver mode may be used in those ZIF receiver modes.
  • CDMA Code Division Multiple Access
  • it may be used in the LIF receiver mode as long as the communication system satisfies the radio standard in the LIF receiver mode.
  • a wireless LAN such as IEEE802.llg, frequency hopping, C Since it is appropriately used in the DMA and OFDM communication modes, it can be used in an optimal receiver state.
  • the frequency characteristics and Q of the first channel selection filter 105, the second channel selection filter 108, and the digital filter mounted in the decoding unit 110 can be varied as shown in FIG.
  • a circuit configuration it is possible to set the frequency characteristics and Q value of the filter for any communication method. With such a configuration, it is possible to configure a receiver that supports any communication method within the receivable frequency band.
  • the power described in the first and third embodiments for the multimode receiver is not limited to this.
  • the fixed integration in LIF receiver mode or ZIF receiver mode has been used so far for each wireless communication system.
  • the receiver is configured by a circuit, receivers of various wireless communication systems can be configured by the same integrated circuit. Further, the receivers of Embodiments 1 to 3 can be mounted on a communication terminal in combination with a transmitter.
  • FIG. 10 is a block diagram showing a basic configuration of the amplifying apparatus according to Embodiment 4 of the present invention.
  • the amplifying apparatus modulates the first I channel signal and the first Q channel signal, which are orthogonal baseband signals, and band-limits the output signal of the orthogonal modulation unit 1000, and the first Band-eliminate filter 1001 that removes the carrier leakage of the orthogonal modulation output that occurs according to the DC offset voltage of the I-channel signal and the first Q-channel signal, and the amplification unit 1002 that amplifies the output signal of the band-eliminate filter 1001 And the output of the amplifier 1002
  • the configuration includes a second I channel signal, which is a baseband signal orthogonal to the signal, and an orthogonal demodulation unit 1003 that performs orthogonal demodulation to the second Q channel signal.
  • a band-eliminating filter 1001 is provided on the output side of the quadrature modulation unit 1000, and is generated according to the DC offset voltages of the first I channel signal and the first Q channel signal that are baseband signals.
  • the carrier leak of the output signal of the quadrature modulator 1000 is removed.
  • the SZN ratio of the input signal of the quadrature modulation unit 1000 can be prevented from being lowered, and the amplification unit 1002 can amplify the baseband signal.
  • FIG. 11 is a first explanatory diagram showing the method of amplifying the input signal related to the amplifying device shown in FIG. 10.
  • FIG. 11A shows the output waveform of the quadrature modulator 1000
  • FIG. 11B shows the output waveform of the band-eliminate filter 1001.
  • ing. 12 is a second explanatory diagram illustrating an amplification method of the input signal related to the amplification device shown in FIG. 10.
  • FIG. 12A is an input waveform of the quadrature demodulation unit 1003
  • FIG. 12B is an output waveform of the quadrature demodulation unit 1003. Is shown. Therefore, the method for amplifying the input signal will be described with reference to FIG. 10, FIG. 11, and FIG.
  • the DC offset voltages of the first I channel signal and the first Q channel signal are converted into carrier leak 1101 shown in FIG. 11A, and the first I channel signal And the first Q channel signal is converted to an input signal 1102.
  • the carrier leak 1101 appears superimposed on the input signal 1102.
  • the magnitude of the carrier leak occurs according to the magnitude of the DC offset voltage of the first I channel signal and the first Q channel signal, and the SZN ratio of the input signal 1102 is the ratio of the input signal 1102 to the carrier leak 1101.
  • carrier leak 1101 on the output side of quadrature modulation section 1000 is suppressed by a band eliminate filter 1001 having a band eliminate filter cutoff frequency 1103 shown in FIG. 11B.
  • the carrier leak 1104 is suppressed, and the signal ratio between the input signal 1105 and the carrier leak 1104 is increased. Therefore, the SZN ratio of the input signal is improved and good reception characteristics can be secured.
  • the amplification unit 1002 amplifies this signal (that is, an input signal with an improved SZN ratio), and then the quadrature demodulation unit 1003 performs the second I-channel signal and the second I-channel signal as the baseband signals.
  • the baseband signal By converting (demodulating) the signal to a Q channel signal, the baseband signal can be amplified to a desired level while suppressing an increase in the baseband DC offset voltage.
  • a single pass filter or a band pass filter that performs band limitation may be provided between the orthogonal modulation unit 1000 and the orthogonal demodulation unit 1003, and band limitation may be performed at the IF frequency after the orthogonal modulation unit 1000. As a result, band limitation can be performed while suppressing an increase in the baseband DC offset voltage.
  • FIG. 12A shows how the band is limited by the band pass filter.
  • the carrier leak 1203 is removed by the band elimination filter cutoff frequency 1201 by the band elimination filter 1001, and the vicinity of the input signal 1204 is band-limited by the bandpass filter cutoff frequency 1202 by the bandpass filter.
  • the quadrature demodulator 1003 converts the baseband signal into the second I channel signal and the second Q channel signal, thereby blocking the band elimination filter 1001 and the bandpass filter as shown in FIG. 12B.
  • the band is limited by the frequency band, and a desired input signal 1206 can be obtained. As a result, it is possible to limit the band of the baseband signal while avoiding an increase in the DC offset voltage of the baseband.
  • the amplifying unit 1002 shown in FIG. 10 may be configured as a variable amplifier. By using such a variable amplifier, it is possible to variably amplify the input signal while avoiding a change in the baseband DC offset voltage.
  • variable amplification of the signal is performed by the variable amplifier corresponding to the amplification unit 1002 at the IF frequency, and the signal is converted into the second I channel signal and the second Q channel signal by the orthogonal demodulation unit 1003.
  • variable amplification can be performed while avoiding a change in the DC offset voltage of the baseband signal.
  • FIG. 13 is a block diagram showing a basic configuration of the amplifying apparatus according to Embodiment 5 of the present invention. In this figure, the configuration of a receiver using an amplification device is shown. Hereinafter, the receiver according to the fifth embodiment will be described with reference to FIG.
  • the receiver shown in FIG. 13 receives an antenna 1301 that receives a radio signal, a bandpass filter 1302 that limits the band of the signal received by the antenna 1301, and a signal that is band-limited by the bandpass filter 1302.
  • a high-frequency amplifier 1303 to amplify a first quadrature demodulator 1304 comprising mixers 1305 and 1306 that quadrature-demodulates the signal amplified by the high-frequency amplifier 1303, and a first quadrature demodulator 1304 having a phase difference of 2
  • the first 90 degree phase shifter 1307 that supplies two signals
  • the first local oscillator 1308 that is the signal source of the first 90 degree phase shifter 1307
  • the output of the first quadrature demodulator 1304 are orthogonal
  • the baseband amplifiers 1309 and 1310 that amplify the I channel signal and the Q channel signal, the low pass filters 1311 and 1312 that limit the output signals of the baseband amplifiers 1309 and 1310, respectively, and the low pass filters 1311 and 13
  • the second quadrature demodulator 1322 including the mixers 1323 and 1324 and the demodulator 1325 that demodulates the output signal of the second quadrature demodulation 1322 are provided.
  • the amplifier 1326 includes a quadrature modulator 1313, a second 90-degree phase shifter 1317, a second local oscillator 1318, a non-eliminate finalizer 1319, a Ronos finalizer 1320, and a variable amplifier 1321 and a second quadrature demodulator 1322.
  • FIG. 14 is a diagram showing a level diagram of the receiver in the fifth embodiment shown in FIG.
  • the horizontal axis represents the items of each component shown in FIG. 13, and the vertical axis represents the signal level. Therefore, the level diagram of the receiver shown in FIG. 13 will be described with reference to FIG. Note that the same reference numerals are given to the reference numerals of the constituent elements in FIG. 13 and the reference numerals of the constituent elements shown on the horizontal axis of the level diagram of FIG.
  • the baseband amplifiers 1309 and 1310 and the low-pass filters 1311 and 1312 obtain a large gain, the DC offset voltages of the I-channel signal and the Q-channel signal, which are baseband signals, are amplified. There was a problem that the SZN ratio of the battery deteriorated. Therefore, in the receiver of the present invention, as shown in the level diagram of FIG. 14, the signal whose level is attenuated by the bandpass filter 1302 is slightly amplified by the high-frequency amplifier 1303 and the first quadrature demodulator 1304, and further amplified. In other words, the baseband amplifiers 1309 and 1310 amplify slightly as the minimum gain setting to obtain the required reception sensitivity, and suppress the generation of DC offset voltage in the baseband part.
  • the Rhonos-Finolators 1311 and 1312, the quadrature modulator 1313, the node eliminator filter 1319, and the low-pass filter 1320 reduce the carrier leak on the output side of the quadrature modulator 1313 while keeping the signal level constant. By eliminating the band elimination filter 1319, the reduction of the SZN ratio of the received signal is prevented.
  • variable amplifier 1321 provided in the IF frequency band of the output signal of the quadrature modulator 1313 is amplified with a large gain to increase the signal level, and the second quadrature demodulator The signal is demodulated by 1322.
  • variable amplification can be performed while avoiding a change in the DC offset voltage of the baseband signal.
  • This also eliminates the need for a DC offset voltage elimination device that was conventionally required for each of the I-channel signal and the Q-channel signal, so that the circuit scale of the receiver can be reduced.
  • the conventional DC offset voltage elimination device is composed of an analog negative feedback circuit, Convergence time indicating the time to complete the removal of the offset voltage has become a problem.
  • the present invention does not require a DC offset voltage elimination device for the analog negative feedback circuit, so the DC offset voltage elimination is performed at high speed. This eliminates the need for complicated control for removing the DC offset voltage and simplifies the receiver design.
  • FIG. 15 is a circuit diagram showing a detailed configuration of the band-eliminated filter 1319 of FIG. Therefore, the configuration of the band-eliminated filter 1319 in FIG. 13 will be described in more detail with reference to FIG.
  • the band-eliminated filter 1319 can be configured using a generally known Twin-T type band-eliminating filter.
  • the band elimination filter 1319 is connected to the output stage of the Twin-T type band elimination filter 1500 at the output stage of the buffer amplifier 1501, the variable amplifier 1502 for changing the feedback amount of the output signal of the buffer amplifier 1501, and the output side of the variable amplifier 1502. And buffer amplifier 1503.
  • the Q value of band-eliminated filter 1319 can be set. For example, as the gain of the buffer amplifier 1501, the variable amplifier 1502, and the buffer amplifier 1503 approaches 1 time (that is, the loop gain becomes 1 time), the Q value increases to an infinitely large value. Therefore, by setting the gain of the variable amplifier 1502, a band-eliminated filter 1319 having a steep cut-off frequency characteristic can be realized. Therefore, if the received signal is in the vicinity of a direct current or direct current, the above-mentioned Twin-T type band elimination filter 1319 can be used to suppress the missing of the received signal component and remove the carrier leak. can do. If the received signal component does not exist in the vicinity of the direct current or direct current, the Q value of the band elimination filter may be reduced. In that case, you can use a band elimination filter other than the Twin-T type mentioned above!
  • the second local oscillator can be obtained by using a band elimination filter with a variable cutoff frequency as shown in FIG. 13 as a non-eliminating filter 1319, f array, and Japanese Unexamined Patent Publication No. 2001323652.
  • the cut-off frequency of the band-eliminated filter 1319 can be automatically matched to the output frequency of 1318 (that is, the carrier leak frequency).
  • Embodiment 5 described above applies the amplification device of the present invention to a receiver.
  • the amplification device of the present invention may be used for a transmitter.
  • a communication device may be configured by using the amplification device of the present invention in combination with a receiver and a transmitter. By doing so, it is possible to construct a receiver, a transmitter, and a communication device that avoid the influence of the DC offset voltage.
  • the receiver of the present invention can cancel the offset voltage with a simple circuit configuration and cope with a plurality of communication methods and communication modes, so that it can be used for communication-related infrastructures such as the broadcasting field and the communication field. be able to.

Abstract

A receiver enabled to match a plurality of communication modes by eliminating a DC offset voltage with a simple circuit structure. In this receiver, a first mixer unit (104) converts the output signal of a high-frequency unit (102) into I and Q signals of a first IF frequency by multiplying the output signal of a first local oscillation unit (103). A first channel selection filter (105) limits the band of the output signal of the first mixer unit (104). A second mixer unit (106) converts the output signal of the first channel selection filter (105) into I and Q signals of a second IF frequency by multiplying the output signal of a second local oscillation unit (107). A second channel selection filter (108) limits the band of the output signal of the second mixer unit (106). In accordance with the communication mode, a receiver mode setting unit (111) sets the first local oscillation unit (103), the first channel selection filter (105), the second local oscillation unit (107) and the second channel selection filter (108).

Description

明 細 書  Specification
受信機  Receiving machine
技術分野  Technical field
[0001] 本発明は、無線通信システムの通信端末に搭載される受信機に関する。  [0001] The present invention relates to a receiver mounted on a communication terminal of a wireless communication system.
背景技術  Background art
[0002] 近年、ダイレクトコンバージョン受信機のような ZIF (Zero Intermediate Frequency) 受信機や、中間周波数を低い周波数に設定した LIF (Low Intermediate Frequency) 受信機の開発が盛んに行われて 、る。このような ZIF受信機や LIF受信機にぉ 、て は、 SAW (Surface Acoustic Wave :表面弾性波)フィルタやセラミックフィルタなどの ディスクリート素子で構成されているチャネル選択フィルタを ICチップ上に構成するこ とによって、携帯端末の小型化およびローコストィ匕を実現することが期待される。また 、 GSM (Global System for Mobile :デジタル携帯電話機で使われる無線通信方式の 一つ)や、 W- CDMA (Wideband-Code Division Multiple Access :広帯域 ·符号分 割多重接続方式)のような UMTS (Universal Mobile Telecommunication System :ョ 一口ツバの第 3世代移動体通信システム)などの異なる通信方式を同一の端末で受 信できるマルチモードタイプの受信機 (以下、マルチモード受信機という)の開発も行 われている。  In recent years, ZIF (Zero Intermediate Frequency) receivers such as direct conversion receivers and LIF (Low Intermediate Frequency) receivers in which the intermediate frequency is set to a low frequency have been actively developed. For such ZIF receivers and LIF receivers, a channel selection filter composed of discrete elements such as SAW (Surface Acoustic Wave) filters and ceramic filters is formed on the IC chip. Therefore, it is expected that the mobile terminal can be downsized and low cost. In addition, UMTS (Universal System for Mobile: one of the wireless communication systems used in digital cellular phones) and W-CDMA (Wideband-Code Division Multiple Access) (Universal / Code Division Multiple Access) The development of multi-mode type receivers (hereinafter referred to as multi-mode receivers) that can receive different communication methods (such as Mobile Telecommunication System: the third generation mobile communication system of Tsubaki Tsubame) on the same terminal has also been carried out. Yes.
[0003] 以下、従来の受信機につ!、て説明する。一般に、 GSM、 PDC (Personal Digital C ellular:デジタル無線通信方式の一つ)、および PHS (Personal Handy-phone Syste m)などの TDMA (Time Division Multiple Access:時間分割多重接続方式)の無線 システムにおいては、受信機は消費電流を低減するために間欠受信動作を行う。一 方、 UMTS (W— CDMA)等の CDMA方式の無線システムでは、通信中は連続的 に受信動作を行う。  [0003] Hereinafter, a conventional receiver will be described. In general, in TSM (Time Division Multiple Access) wireless systems such as GSM, PDC (Personal Digital Cellular) and PHS (Personal Handy-phone System) The receiver performs an intermittent reception operation in order to reduce current consumption. On the other hand, CDMA radio systems such as UMTS (W—CDMA) perform continuous reception during communication.
[0004] 図 1は、従来の ZIF受信機の一例を示す構成図である。まず、図 1を参照しながら 従来の ZIF受信機について説明する。高周波フィルタ 2は、アンテナ 1で受信した無 線信号のうち、受信周波数帯域以外の信号を減衰させる。高周波アンプ 3は、高周 波フィルタ 2の出力信号を増幅する。直交ミキサ 4は、受信周波数とほぼ同じ周波数 の一対の直交した局部発振信号を出力する局部発振部 5の出力信号と高周波アン プ 3で増幅された信号とをミキシングすることにより、直交関係にあるベースバンドの I 信号および Q信号を生成する。チャネル選択フィルタ 7は、直交ミキサ 4の乗算器 4a, 4bから出力された I, Q信号の帯域を制限することによって不要波を除去する。可変 利得アンプ 8は、チャネル選択フィルタ 7から出力された I, Q信号を所望のレベルに まで増幅する。復号部 10は、可変利得アンプ 8で増幅された I, Q信号を ADClOa, 10bでデジタル信号に変換し、復号器で復号する。このような ZIF受信機では、ベー スバンドのオフセット電圧によって受信感度が劣化する。このようなオフセット電圧は、 回路構成素子の不整合性や局部発振部 5の出力と直交ミキサ 4の高周波信号入力 に漏洩した局部発振信号とが直交ミキサ 4で自己混合した結果によって生じる。図 1 に示した ZIF受信機では、各回路ブロック間に容量結合 6や容量結合 9などによる H PF (High Pass Filter)を設けることによって、ベースバンドに生じるオフセット電圧を 除去している。 FIG. 1 is a configuration diagram showing an example of a conventional ZIF receiver. First, a conventional ZIF receiver will be described with reference to FIG. The high frequency filter 2 attenuates a signal outside the reception frequency band among the radio signals received by the antenna 1. The high frequency amplifier 3 amplifies the output signal of the high frequency filter 2. Quadrature mixer 4 has almost the same frequency as the reception frequency. The baseband I and Q signals that are orthogonal to each other are generated by mixing the output signal of the local oscillator 5 that outputs a pair of orthogonal local oscillation signals and the signal amplified by the high-frequency amplifier 3 . The channel selection filter 7 removes unnecessary waves by limiting the bands of the I and Q signals output from the multipliers 4a and 4b of the orthogonal mixer 4. The variable gain amplifier 8 amplifies the I and Q signals output from the channel selection filter 7 to a desired level. The decoding unit 10 converts the I and Q signals amplified by the variable gain amplifier 8 into digital signals by the ADCs 10a and 10b, and decodes them by the decoder. In such a ZIF receiver, the reception sensitivity is degraded by the baseband offset voltage. Such an offset voltage is generated as a result of self-mixing in the quadrature mixer 4 between the mismatch of the circuit components and the local oscillation signal leaked to the high-frequency signal input of the quadrature mixer 4 and the output of the local oscillator 5. The ZIF receiver shown in Fig. 1 eliminates the offset voltage generated in the baseband by providing a high pass filter (HPF) with capacitive coupling 6 and capacitive coupling 9 between each circuit block.
[0005] TDMA方式では時間分割を行うスロットのみを受信する間欠受信動作を行うため、 受信機を高速に起動させて受信動作に移行しなければならな 、が、前述のようにォ フセット電圧を除去するために容量結合を用いた場合は、 HPFのカットオフ周波数 は起動時に直流バイアス電圧の変動が発生する。図 2は、図 1の ZIF受信機の起動 時におけるバイアス電圧の変動の様子を示す説明図である。図 2に示すように、 HPF のカットオフ周波数は起動時に直流バイアス電圧変動 21が生じるため、受信機安定 までの直流バイアス電圧安定時間 22の時定数が起動時間を著しく長くしてしまう。ま た、 HPFによって I, Q信号の低域成分が減衰したり群遅延時間が変動したりすること によって、受信特性が劣化するおそれもある。  [0005] In the TDMA system, an intermittent reception operation for receiving only a slot for time division is performed. Therefore, the receiver must be started at a high speed to shift to a reception operation. However, as described above, the offset voltage is increased. When capacitive coupling is used to eliminate the HPF cutoff frequency, the DC bias voltage fluctuates at startup. FIG. 2 is an explanatory diagram showing how the bias voltage fluctuates when the ZIF receiver of FIG. 1 is started. As shown in Fig. 2, the DC bias voltage fluctuation 21 occurs at the start-up of the HPF cutoff frequency, so the time constant of the DC bias voltage stabilization time 22 until the receiver stabilizes significantly increases the start-up time. In addition, the reception characteristics may be degraded by the attenuation of the low frequency components of the I and Q signals or the fluctuation of the group delay time due to HPF.
[0006] このようなオフセット電圧を除去するための手段は、例えば、下記の特許文献 1など に開示されている。図 3は、特許文献 1に開示されているオフセット電圧除去回路の 一例を示す構成図である。図 3における受信機の基本的な構成は図 1と同様である のでその説明は省略し、オフセット電圧を除去する部分について説明する。図 3にお いて、復号部 10に含まれている ADC (Analog to Digital Converter: ADコンバータ) 10a, 10bとオフセット電圧検出部 lOdとによって I, Q成分のオフセット電圧を検出し 、加算器 10e, lOf及び加算器 11a, l ibに負帰還をかけることによってオフセット電 圧を除去している。しかし、このような構成ではオフセット電圧を除去する回路が必要 となり、さらに、オフセット電圧を微弱な受信信号の振幅に対して十分に小さい値に 調整する必要があるため、容易に実現することは極めて難しい。さらに、オフセット電 圧除去回路は GSM、 UMTSなどの無線システム毎に最適化する必要がある。また 、オフセット電圧は AGC (Automatic Gain Control)による利得制御動作によっても変 化するため、それに対応できるオフセット電圧除去の制御が必要となる。 [0006] Means for removing such an offset voltage is disclosed, for example, in Patent Document 1 below. FIG. 3 is a configuration diagram illustrating an example of the offset voltage removal circuit disclosed in Patent Document 1. In FIG. Since the basic configuration of the receiver in FIG. 3 is the same as that in FIG. 1, the description thereof is omitted, and only the portion from which the offset voltage is removed will be described. In FIG. 3, the ADC (Analog to Digital Converter: AD converter) 10a, 10b included in the decoder 10 and the offset voltage detector lOd detect the offset voltages of the I and Q components. The offset voltage is removed by applying negative feedback to the adders 10e, lOf and the adders 11a, l ib. However, such a configuration requires a circuit that removes the offset voltage, and furthermore, it is necessary to adjust the offset voltage to a sufficiently small value with respect to the amplitude of the weak received signal. difficult. Furthermore, the offset voltage removal circuit must be optimized for each wireless system such as GSM and UMTS. In addition, since the offset voltage is also changed by the gain control operation by AGC (Automatic Gain Control), it is necessary to control offset voltage removal to cope with it.
[0007] 次に、従来の LIF受信機について説明する。図 4は、従来の LIF受信機の一例を示 す構成図である。尚、図 4において図 1と同一の構成要素は同一の符号を付してある 。図 4において、高周波フィルタ 2は、アンテナ 1で受信した無線信号のうち、受信周 波数帯域以外の信号を減衰させる。高周波アンプ 3は、高周波フィルタ 2の出力信号 を増幅する。直交ミキサ 4は、無線信号力 周波数をオフセットした一対の直交した局 部発振信号を出力する局部発振部 5の出力信号と高周波アンプ 3で増幅された信号 とをミキシングすることにより、直交関係にある I, Q成分の中間周波 (IF)信号に変換 する。チャネル選択フィルタ 7は、直交ミキサ 4の乗算器 4a, 4bから出力された I, Q信 号の帯域を制限することによって不要波を除去する。可変利得アンプ 8は、チャネル 選択フィルタ 7から出力された I, Q信号を所望のレベルにまで増幅する。この LIF受 信機では、低い IF周波数に変換するため、チャネル選択フィルタ 7や可変利得アン プ 8で生じるオフセット電圧は容量結合による HPFで除去できる。つまり、チャネル選 択フィルタ 7は BPF (Band Pass Filter)でよい。 ADClOa, 10bは、可変利得アンプ 8 で増幅された I, Q信号をデジタル信号に変換する。デジタル回路にて構成された第 2の直交ミキサ 12は、 ADClOa, 10bの出力信号を直交関係にあるデジタルベース バンドの I信号, Q信号に変換する。復号部 10は、第 2の直交ミキサ 12の出力信号を 復号する。 Next, a conventional LIF receiver will be described. Fig. 4 is a block diagram showing an example of a conventional LIF receiver. In FIG. 4, the same components as those in FIG. 1 are denoted by the same reference numerals. In FIG. 4, the high frequency filter 2 attenuates signals other than the reception frequency band among the radio signals received by the antenna 1. The high frequency amplifier 3 amplifies the output signal of the high frequency filter 2. The quadrature mixer 4 has a quadrature relationship by mixing the output signal of the local oscillation unit 5 that outputs a pair of orthogonal local oscillation signals offset by the radio signal power frequency and the signal amplified by the high frequency amplifier 3. Converts to an intermediate frequency (IF) signal of I and Q components. The channel selection filter 7 removes unnecessary waves by limiting the bandwidth of the I and Q signals output from the multipliers 4a and 4b of the orthogonal mixer 4. The variable gain amplifier 8 amplifies the I and Q signals output from the channel selection filter 7 to a desired level. In this LIF receiver, since it is converted to a low IF frequency, the offset voltage generated by the channel selection filter 7 and the variable gain amplifier 8 can be removed by the HPF by capacitive coupling. That is, the channel selection filter 7 may be a BPF (Band Pass Filter). The ADCs 10a and 10b convert the I and Q signals amplified by the variable gain amplifier 8 into digital signals. The second quadrature mixer 12 composed of digital circuits converts the output signals of ADC10a and 10b into digital baseband I and Q signals that are in a quadrature relationship. The decoding unit 10 decodes the output signal of the second orthogonal mixer 12.
[0008] 図 5は、従来の LIF受信機における中間周波数の設定例を説明するための説明図 である。つまり、図 4で説明した従来の LIF受信機における中間周波数の設定例が図 5に示されている。図 5において、符号 31は高周波帯域における信号の配置であり、 符号 33は中間周波帯域 (IF帯域)における信号の配置である。受信希望波 31aに対 し妨害波となる近接信号波 31b, 31c, 31d, 31e, 31fがある場合、図 4に示した第 1 の局部発振部 5の出力周波数が 1Z2チャネル間隔程度となるように第 1の局部発振 周波数 32を設定すると、 IF帯信号配置 33においては受信希望波 33aおよび隣接妨 害波 33b, 33c, 33d, 33e, 33fが配置される。尚、隣接妨害波 33cはイメージ信号 となる。 FIG. 5 is an explanatory diagram for explaining an example of setting an intermediate frequency in a conventional LIF receiver. That is, FIG. 5 shows an example of setting the intermediate frequency in the conventional LIF receiver described in FIG. In FIG. 5, reference numeral 31 denotes a signal arrangement in the high frequency band, and reference numeral 33 denotes a signal arrangement in the intermediate frequency band (IF band). To receive signal 31a When there are adjacent signal waves 31b, 31c, 31d, 31e, and 31f that are disturbing waves, the first local oscillation is performed so that the output frequency of the first local oscillation unit 5 shown in Fig. 4 is about 1Z2 channel interval. When the frequency 32 is set, in the IF band signal arrangement 33, a reception desired wave 33a and adjacent disturbing waves 33b, 33c, 33d, 33e, 33f are arranged. The adjacent interference wave 33c is an image signal.
[0009] 図 4のような中間周波数を用いた受信方式ではイメージ信号が必ず存在することは 周知である。 TDMA方式を用いたセルラー電話の場合、例えば PDC、 PHSで使用 される周波数は、妨害となる隣接妨害波が次隣接チャネル周波数以上離れるよう〖こ プランニングされている。また、 GSMでは、隣接チャネル周波数を使用するが妨害 耐性である規格は緩和されていることから、図 5に示すように、チャネル間隔の 1Z2 程度となる周波数を中間周波数とすることが望ましい。具体的に、 PDCでは IF= 12 . 5KHz、 PHSでは IF= 150kHz、 GSMでは IF= 100kHz程度となる。したがって 、通常はイメージ除去ミキサを用いてイメージ周波数にあたる隣接チャネル帯域の信 号を抑圧する。上述したように、 TDMA方式を用いたセルラー電話では、隣接チヤ ネル周波数を使用しないか、もしくは妨害に対する規格が緩和されていることから、ィ メージ除去ミキサにおいては、イメージ信号が 30dB程度であれば容易に除去できる ため十分な隣接妨害波耐妨害特性を確保することができる。一方、 CDMA方式では 隣接チャネル周波数を用いるため、イメージ除去ミキサだけで 60dB以上の抑圧が必 要となる。このとき、イメージ除去量は I, Q間の位相の直交性と振幅の一致性によつ て決定され、 60dB以上のイメージ除去特性を得るためには、 I, Q間の直交位相誤 差は 0. 1度以下、 I, Q間の振幅誤差は 0. ldB以下に抑える必要がある。尚、 LIF受 信機においてイメージ除去 (つまり、映像排除)を行う技術は例えば下記の特許文献 2などにも開示されている。  [0009] It is well known that an image signal always exists in a reception method using an intermediate frequency as shown in FIG. In the case of a cellular phone using the TDMA system, for example, the frequency used in PDC and PHS is planned so that the adjacent interfering wave that becomes a disturbance is separated by more than the next adjacent channel frequency. In addition, in GSM, standards that use adjacent channel frequencies but are resistant to interference have been relaxed. Therefore, as shown in Fig. 5, it is desirable to set the frequency at which the channel spacing is about 1Z2 as the intermediate frequency. Specifically, IF = 12.5KHz for PDC, IF = 150kHz for PHS, and IF = 100kHz for GSM. Therefore, the signal of the adjacent channel band corresponding to the image frequency is usually suppressed using an image removal mixer. As described above, in the cellular phone using the TDMA system, the adjacent channel frequency is not used or the standard for interference is relaxed. Therefore, in the image removal mixer, if the image signal is about 30 dB, Since it can be easily removed, sufficient anti-jamming characteristics can be secured. On the other hand, because the CDMA system uses adjacent channel frequencies, it is necessary to suppress more than 60 dB using only the image rejection mixer. At this time, the amount of image rejection is determined by the phase orthogonality between I and Q and the coincidence of amplitude. To obtain an image rejection characteristic of 60 dB or more, the quadrature phase error between I and Q is Less than 0.1 degree, the amplitude error between I and Q should be less than 0.1 dB. A technique for image removal (that is, video exclusion) in a LIF receiver is also disclosed in, for example, Patent Document 2 below.
特許文献 1:特開平 7— 111471号公報  Patent Document 1: Japanese Patent Laid-Open No. 7-111471
特許文献 2:特表 2002— 523958号公報  Patent Document 2: Japanese Translation of Special Publication 2002-523958
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0010] し力しながら、前記の従来技術において複数の通信方式や通信モードに対応した マルチモード受信機を構成する場合は、以下に示すような種々の問題がある。まず、 GSM、 PDC、 PHS等の TDMA方式に ZIF受信機を用いると、その受信機ではオフ セット電圧を除去のためにブロック間を容量結合しなければないので端末の高速な 起動が困難となる。つまり、端末の立ち上がりが遅くなつてしまう。また、オフセット電 圧の除去機能を簡単な回路構成で実現することが難しいという問題もある。一方、 U MTS (W— CDMA)等の CDMA方式に LIF受信機を用いた場合は、隣接チャネル 妨害特性を確保するためのイメージ除去ミキサを簡単には実現することが難しい。こ のように、 TDMA方式および CDMA方式の双方に対応する受信機を ZIF受信機ま たは LIF受信機の何れか一方とすると、所望の受信特性が得られな!/、などの使!ヽ勝 手の悪さがある。 [0010] However, in the above-described prior art, a plurality of communication methods and communication modes are supported. When configuring a multi-mode receiver, there are various problems as described below. First, if a ZIF receiver is used for TDMA schemes such as GSM, PDC, and PHS, it is difficult to start up the terminal at high speed because the receiver must perform capacitive coupling between the blocks to remove the offset voltage. . In other words, the terminal rises slowly. There is also a problem that it is difficult to realize the function of removing the offset voltage with a simple circuit configuration. On the other hand, when a LIF receiver is used for a CDMA system such as U MTS (W-CDMA), it is difficult to easily realize an image removal mixer to ensure adjacent channel interference characteristics. In this way, if a receiver that supports both TDMA and CDMA is either a ZIF receiver or a LIF receiver, the desired reception characteristics cannot be obtained! There is no selfishness.
[0011] 本発明の目的は、簡単な回路構成で直流オフセット電圧を除去することができ、所 望の受信特性を落とすことなく複数の通信方式に対応することができる受信機を提 供することである。  An object of the present invention is to provide a receiver capable of removing a DC offset voltage with a simple circuit configuration and supporting a plurality of communication methods without deteriorating a desired reception characteristic. is there.
課題を解決するための手段  Means for solving the problem
[0012] 本発明の受信機は、一対の直交したローカル信号を出力する第 1の局部発信器と 、受信信号を、前記第 1の局部発振器の出力信号を乗算することによって、直交する 第 1の中間周波数の I, Q信号を得る第 1のミキサと、前記第 1の中間周波数の I, Q信 号を帯域制限する第 1のフィルタと、一対の直交したローカル信号を出力する第 2の 局部発信器と、前記第 1のフィルタの出力信号を、前記第 2の局部発振器の出力信 号を乗算することによって、前記第 1の中間周波数よりも高 、周波数の第 2の中間周 波数の I, Q信号を得る第 2のミキサと、前記第 2の中間周波数の I, Q信号を帯域制 限する第 2のフィルタと、前記第 2のフィルタの出力信号を復号ィヒする復号ィヒ手段と、 通信方式に基づいて前記第 1の局部発信器を制御することにより前記第 1の中間周 波数を選択する受信機モード設定手段と、を具備する構成を採る。 [0012] A receiver of the present invention includes a first local oscillator that outputs a pair of orthogonal local signals, and a received signal that is orthogonalized by multiplying the output signal of the first local oscillator. A first mixer that obtains I and Q signals of the intermediate frequency, a first filter that band-limits the I and Q signals of the first intermediate frequency, and a second filter that outputs a pair of orthogonal local signals. By multiplying the output signal of the local oscillator and the first filter by the output signal of the second local oscillator, the second intermediate frequency of the frequency is higher than the first intermediate frequency. A second mixer for obtaining I and Q signals, a second filter for band-limiting the I and Q signals of the second intermediate frequency, and a decoding controller for decoding the output signal of the second filter. And controlling the first local transmitter based on a communication method It adopts a configuration comprising a receiver mode setting means for selecting one of the intermediate frequency, a.
発明の効果  The invention's effect
[0013] 本発明によれば、簡単な回路構成で直流オフセット電圧を除去することができ、複 数の通信方式や通信モードに対応することができる。  [0013] According to the present invention, it is possible to remove the DC offset voltage with a simple circuit configuration, and it is possible to cope with a plurality of communication methods and communication modes.
図面の簡単な説明 [0014] [図 1]従来の ZIF受信機の一例を示す構成図 Brief Description of Drawings [0014] [FIG. 1] Configuration diagram showing an example of a conventional ZIF receiver
[図 2]図 1の ZIF受信機の起動時におけるバイアス電圧の変動の様子を示す説明図 [図 3]従来のオフセット電圧除去回路の一例を示す構成図  [Fig. 2] An explanatory diagram showing how the bias voltage fluctuates when the ZIF receiver of Fig. 1 is started. [Fig. 3] A configuration diagram showing an example of a conventional offset voltage elimination circuit.
圆 4]従来の LIF受信機の一例を示す構成図  圆 4] Configuration diagram showing an example of a conventional LIF receiver
[図 5]従来の LIF受信機における中間周波数の設定例を説明するための説明図 [図 6]本発明の実施の形態 1に係る受信機を示す構成図  FIG. 5 is an explanatory diagram for explaining an example of setting an intermediate frequency in a conventional LIF receiver. FIG. 6 is a configuration diagram showing a receiver according to Embodiment 1 of the present invention.
[図 7]本発明の受信機において、 TDMA方式を例とした GSMのフレーム構成の概 略を説明するための説明図  FIG. 7 is an explanatory diagram for explaining an outline of a GSM frame configuration taking the TDMA scheme as an example in the receiver of the present invention.
[図 8]本発明の受信機において、 W— CDMA方式を例として UMTSのフレーム構成 の概略を説明するための説明図  FIG. 8 is an explanatory diagram for explaining the outline of the frame structure of UMTS using the W-CDMA system as an example in the receiver of the present invention.
[図 9]本発明の実施の形態 2に係るオフセット電圧除去回路の構成図  FIG. 9 is a configuration diagram of an offset voltage removal circuit according to the second embodiment of the present invention.
[図 10]本発明における実施の形態 4の増幅装置の基本構成を示すブロック図  FIG. 10 is a block diagram showing a basic configuration of an amplifying apparatus according to Embodiment 4 of the present invention.
[図 11A]本発明の実施の形態 4に関わる入力信号の増幅方法を示す第 1の説明図 [図 11B]本発明の実施の形態 4に関わる入力信号の増幅方法を示す第 1の説明図 [図 12A]本発明の実施の形態 4に関わる入力信号の増幅方法を示す第 2の説明図 [図 12B]本発明の実施の形態 4に関わる入力信号の増幅方法を示す第 2の説明図 [図 13]本発明における実施の形態 5の増幅装置の基本構成を示すブロック図  FIG. 11A is a first explanatory diagram illustrating an input signal amplification method according to Embodiment 4 of the present invention. FIG. 11B is a first explanatory diagram illustrating an input signal amplification method according to Embodiment 4 of the present invention. FIG. 12A is a second explanatory diagram illustrating an input signal amplification method according to Embodiment 4 of the present invention. FIG. 12B is a second explanatory diagram illustrating an input signal amplification method according to Embodiment 4 of the present invention. FIG. 13 is a block diagram showing a basic configuration of an amplifying apparatus according to Embodiment 5 of the present invention.
[図 14]図 13に示す実施の形態 5における受信機のレベルダイアグラムを示す図 [図 15]図 13のバンドエリミネートフィルタの詳細な構成を示す回路図  FIG. 14 is a diagram showing a level diagram of the receiver in the embodiment 5 shown in FIG. 13. FIG. 15 is a circuit diagram showing a detailed configuration of the band eliminate filter in FIG.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0015] 以下、図面を参照しながら、本発明の受信機における幾つかの実施の形態を詳細 に説明する。尚、以下に述べる各実施の形態で用いる図面において同一の構成要 素は同一の符号を付し、かつ重複する説明は可能な限り省略する。  [0015] Hereinafter, several embodiments of the receiver of the present invention will be described in detail with reference to the drawings. In the drawings used in the respective embodiments described below, the same constituent elements are denoted by the same reference numerals, and redundant description is omitted as much as possible.
[0016] <実施の形態 1 >  [0016] <Embodiment 1>
図 6は、本発明の実施の形態 1に係る受信機を示す構成図である。図 6において、 受信機は、アンテナ部 101、高周波部 102、第 1の局部発振部 103、第 1のミキサ部 104、第 1のチャネル選択フィルタ 105、第 2のミキサ部 106、第 2の局部発振部 107 、第 2のチャネル選択フィルタ 108、可変利得アンプ部 109、復号部 110、受信機モ ード設定部 111および第 3の局部発振部 112を備えた構成となっている。 FIG. 6 is a block diagram showing a receiver according to Embodiment 1 of the present invention. In FIG. 6, the receiver includes an antenna unit 101, a high frequency unit 102, a first local oscillation unit 103, a first mixer unit 104, a first channel selection filter 105, a second mixer unit 106, and a second local unit. Oscillator 107, second channel selection filter 108, variable gain amplifier 109, decoder 110, receiver module The mode setting unit 111 and the third local oscillation unit 112 are provided.
[0017] まず、図 6に示す受信機の各構成要素の機能について説明する。なお、各構成要 素は 1つまたは複数の集積回路によって構成される。アンテナ部 101は、複数のアン テナ 101a、 101bにより複数の周波数帯の無線信号を受信する機能を備えている。 高周波部 102は、複数の周波数帯域に対応した高周波フィルタと複数の高周波アン プとによって構成され、アンテナ部 101で受信した無線信号力も必要帯域以外の周 波数を減衰させ、必要帯域周波数を増幅する機能を備えている。第 1の局部発振部 103は、一対の直交したローカル信号を出力する機能を備えている。第 1のミキサ部 104は、高周波部 102の出力信号を、第 1の局部発振部 103の出力信号を乗算する ことによって、直交する第 1の IF周波数 f 12の I, Q信号に変換する機能を備えている First, the function of each component of the receiver shown in FIG. 6 will be described. Each component is composed of one or more integrated circuits. The antenna unit 101 has a function of receiving radio signals in a plurality of frequency bands by the plurality of antennas 101a and 101b. The high frequency unit 102 includes a high frequency filter corresponding to a plurality of frequency bands and a plurality of high frequency amplifiers, and the radio signal force received by the antenna unit 101 also attenuates frequencies other than the necessary band and amplifies the necessary band frequency. It has a function. The first local oscillation unit 103 has a function of outputting a pair of orthogonal local signals. The first mixer section 104 has a function of converting the output signal of the high-frequency section 102 into the I and Q signals of the orthogonal first IF frequency f12 by multiplying the output signal of the first local oscillation section 103. Has
[0018] 第 1のチャネル選択フィルタ 105は、第 1のミキサ部 104の出力信号である I, Q信号 を帯域制限することによって希望信号を選択する機能を備えている。なお、第 1のチ ャネル選択フィルタ 105は LPF (Low Pass Filter)であり、信号処理の障害となるオフ セット電圧が含まれているが、このオフセット電圧は HPF (High Pass Filter)によって 除去されるため、第 1のチャネル選択フィルタ 105は結果的に BPF (Band Pass Filter )となる。尚、第 1のチャネル選択フィルタ 105は特別に BPFとして設計したフィルタで あってもよい。 [0018] The first channel selection filter 105 has a function of selecting a desired signal by band-limiting the I and Q signals that are output signals of the first mixer unit 104. Note that the first channel selection filter 105 is an LPF (Low Pass Filter) and includes an offset voltage that hinders signal processing. This offset voltage is removed by the HPF (High Pass Filter). Therefore, the first channel selection filter 105 results in a BPF (Band Pass Filter). The first channel selection filter 105 may be a filter specially designed as a BPF.
[0019] また、第 2の局部発振部 107は、一対の直交したローカル信号を出力する機能を備 えている。第 2のミキサ部 106は、第 1のチャネル選択フィルタ 105から出力された I, Q信号を、第 2の局部発振部 107の出力信号を乗算することによって、第 2の IF周波 数 fl3の, Q信号に変換する機能を備えている。但し、両者の周波数の関係は、第 1 の IF周波数 f 12く第 2の IF周波数 f 13である。第 2のチャネル選択フィルタ 108は、 第 2のミキサ部 106の出力信号を帯域制限して希望信号を選択する機能を備えてい る。尚、第 2のチャネル選択フィルタ 108は、通過帯域が異なる複数のフィルタまたは 通過帯域を可変に設定できるフィルタ力 なるチャネル選択フィルタであって、複数 の通過帯域幅と中心周波数を設定できる機能も備えている。  [0019] The second local oscillator 107 has a function of outputting a pair of orthogonal local signals. The second mixer unit 106 multiplies the I and Q signals output from the first channel selection filter 105 by the output signal of the second local oscillation unit 107, thereby obtaining the second IF frequency fl3, It has a function to convert to Q signal. However, the relationship between the two frequencies is the first IF frequency f 12 and the second IF frequency f 13. The second channel selection filter 108 has a function of selecting a desired signal by band-limiting the output signal of the second mixer unit 106. The second channel selection filter 108 is a plurality of filters having different passbands or a channel selection filter having a filtering power capable of variably setting the passband, and also has a function of setting a plurality of passband widths and center frequencies. ing.
[0020] 可変利得アンプ部 109は、第 2のチャネル選択フィルタ 108から出力された信号の 振幅を、復号部 110からの制御によって予め設定された振幅に調整する機能を備え ている。尚、可変利得アンプ部 109は、ベースバンドまたは低 IF帯よりも高い中間周 波数帯を用いることにより、前段の第 2のチャネル選択フィルタ 108や後段も復号部 1 10は容量結合することができるため、 ZIF受信機で必要なオフセット除去を行う必要 はない。 [0020] The variable gain amplifier 109 is configured to output the signal output from the second channel selection filter 108. A function of adjusting the amplitude to a preset amplitude by control from the decoding unit 110 is provided. The variable gain amplifier 109 uses the intermediate frequency band higher than the baseband or the low IF band, so that the decoding unit 110 can be capacitively coupled to the second channel selection filter 108 and the subsequent stage in the previous stage. Therefore, it is not necessary to remove the offset necessary for the ZIF receiver.
[0021] 復号部 110は、 ADコンバータ部 110a、デジタルミキサ部 110b、 CDMA復号部 1 10c、 TDMA復号部 11 Od及び AGC (Automatic Gain Controller) l lOeを備えた構 成となっている。 ADコンバータ部 110aは、可変利得アンプ部 109の出力信号をァ ナログ力もデジタルに変換する機能を備えている。また、デジタルミキサ部 110bは、 ADコンバータ 110aの出力をデジタル I, Q信号に変換する機能を備えている。さら に、 AGCl lOeは、信号振幅に応じて可変利得アンプ部 109の利得を制御する機能 を備えている。また、 CDMA復号部 110cは、例えば UMTS (W— CDMA)信号を 復号ィ匕する機能を備えている。さらに、 TDMA復号部 110dは、例えば GSM信号を 復号ィ匕する機能を備えている。  [0021] The decoding unit 110 includes an AD converter unit 110a, a digital mixer unit 110b, a CDMA decoding unit 110c, a TDMA decoding unit 11 Od, and an AGC (Automatic Gain Controller) lOe. The AD converter unit 110a has a function of converting the output signal of the variable gain amplifier unit 109 into digital analog power. The digital mixer section 110b has a function of converting the output of the AD converter 110a into digital I and Q signals. Furthermore, AGClOe has a function of controlling the gain of the variable gain amplifier unit 109 according to the signal amplitude. The CDMA decoding unit 110c has a function of decoding, for example, a UMTS (W-CDMA) signal. Further, the TDMA decoding unit 110d has a function of decoding, for example, a GSM signal.
[0022] 受信機モード設定部 111は、 CDMA方式または TDMA方式の通信方式に応じて 、第 1の局部発振部 103、第 1のミキサ部 104、第 1のチャネル選択フィルタ 105、第 2 の局部発振部 107、第 2のチャネル選択フィルタ 108および復号部 110の設定を行う 機能を備えている。  [0022] The receiver mode setting unit 111 includes a first local oscillation unit 103, a first mixer unit 104, a first channel selection filter 105, and a second local unit according to a CDMA or TDMA communication method. A function for setting the oscillation unit 107, the second channel selection filter 108, and the decoding unit 110 is provided.
[0023] 第 3の局部発振部 112は、復号部 110の基準クロック信号を生成する機能を備えて いる。尚、第 3の局部発振部 112は、第 3の局部発振部 112の周波数が第 2の局部 発振部 107と遁倍または分周関係であれば共用してもよい。  The third local oscillating unit 112 has a function of generating a reference clock signal for the decoding unit 110. The third local oscillating unit 112 may be shared if the frequency of the third local oscillating unit 112 is double or divided with the second local oscillating unit 107.
[0024] このような構成によって、受信機は、通信方式(つまり、 CDMA方式または TDMA 方式)に応じて、受信機モードを ZIF受信機モードと LIF受信機モードの切り替えを 行う。具体的には、受信機は、受信機モードに基づいて第 1の局部発振部 103と第 2 の局部発振部 107の周波数を設定し、第 1のチャネル選択フィルタ 105と第 2のチヤ ネル選択フィルタ 108を、各通信方式に最適な通過特性のフィルタに構成する。  [0024] With such a configuration, the receiver switches the receiver mode between the ZIF receiver mode and the LIF receiver mode according to the communication method (that is, the CDMA method or the TDMA method). Specifically, the receiver sets the frequencies of the first local oscillator 103 and the second local oscillator 107 based on the receiver mode, and selects the first channel selection filter 105 and the second channel selection. The filter 108 is configured as a filter having a pass characteristic optimum for each communication method.
[0025] ZIF受信機モードに設定する場合、受信機は、第 1の局部発振部 103を受信周波 数とほぼ同一の周波数に設定する。これにより、第 1の IF周波数 fl2の I, Q信号はべ ースバンド信号となる。さらに、 I, Q信号は、第 2の局部発振部 107と第 2のミキサ部 1 06によって直交変調され、第 2の IF周波数 fl 3へアップミキシングされる。 [0025] When setting to the ZIF receiver mode, the receiver sets the first local oscillation unit 103 to a frequency substantially the same as the reception frequency. As a result, the I and Q signals of the first IF frequency fl2 are Source signal. Further, the I and Q signals are quadrature modulated by the second local oscillation unit 107 and the second mixer unit 106, and are upmixed to the second IF frequency fl3.
[0026] 一方、 LIF受信機モードに設定する場合、受信機は、第 1の局部発振部 103を、受 信周波数を第 1の IF周波数 fl2の周波数分だけわずかにオフセットさせた周波数に 設定する。さらに、 I, Q信号は、第 2の局部発振部 107と第 2のミキサ部 106により直 交変調され、第 2の IF周波数 f 13へアップミキシングされる。  [0026] On the other hand, when setting to the LIF receiver mode, the receiver sets the first local oscillation unit 103 to a frequency slightly offset from the reception frequency by the frequency of the first IF frequency fl2. . Further, the I and Q signals are orthogonally modulated by the second local oscillator 107 and the second mixer 106, and are upmixed to the second IF frequency f13.
[0027] 次に、 ZIF受信機モードと LIF受信機モードの各受信機モードの使 、分けにっ 、て 、デジタル通信方式を例に具体的に説明する。現在、携帯電話で使用されているデ ジタル通信方式は、 TDMA方式と CDMA方式が代表的なものである。背景技術で 述べたように、 ZIF受信機はベースバンド部で生じるオフセット電圧を除去する必要 がある。このオフセット電圧を除去する手段として最も容易な方法は、図 1に示したよ うに、回路ブロック間を容量結合することであるが、この場合、 HPF特性を持っため 受信感度特性に影響しないようカットオフ周波数を設定すると時定数が非常に長くな つてしまう。  [0027] Next, the use of each receiver mode of the ZIF receiver mode and the LIF receiver mode will be specifically described by taking a digital communication system as an example. Currently, TDMA and CDMA are the typical digital communication systems used in mobile phones. As described in the background art, the ZIF receiver needs to remove the offset voltage generated in the baseband part. As shown in Fig. 1, the easiest way to remove this offset voltage is to capacitively couple between circuit blocks. In this case, however, it has an HPF characteristic and is cut off so as not to affect the reception sensitivity characteristic. Setting the frequency makes the time constant very long.
[0028] 図 7は、本発明の受信機において、 TDMA方式を例とした GSMのフレーム構成の 概略を説明するための説明図である。図 7に示すように、 GSMは TDMAZFDD方 式であるため、ここでは図 7に示す受信スロット 200、モニタスロット 201、および間欠 受信動作 202のタイミングについて説明する。例えば、モニタスロット 201がモニタス ロット 201aを受信し、受信スロット 200が通信スロットとして指定された受信スロット 20 Oaを受信する。 GSMでは、 1フレームが 4. 615m秒であり、 1スロット力 77 秒で あり、 1フレームが 8スロットで構成されるため、間欠受信動作 202のように自局に必要 なスロットのみを間欠的に受信動作することになる。間欠受信動作 202は、消費電流 を低減するために不可欠な方法である。しかしながら、図 1に示した構成では、受信 機を起動し受信可能となるバイアス電圧安定状態までに必要な時間は図 2に示した 関係となるため、間欠受信動作に支障が生じる。したがって、 ZIF受信機モードは TD MA方式に適して!/、な!/ヽ。  FIG. 7 is an explanatory diagram for explaining an outline of a GSM frame configuration using the TDMA scheme as an example in the receiver of the present invention. As shown in FIG. 7, since GSM is a TDMAZFDD method, the timing of reception slot 200, monitor slot 201, and intermittent reception operation 202 shown in FIG. 7 will be described here. For example, the monitor slot 201 receives the monitor slot 201a, and the reception slot 200 receives the reception slot 20 Oa designated as the communication slot. In GSM, one frame is 4.615 ms, one slot power is 77 seconds, and one frame is composed of 8 slots. Receive operation will be performed. The intermittent reception operation 202 is an indispensable method for reducing current consumption. However, in the configuration shown in Fig. 1, the time required until the bias voltage is stable when the receiver is activated and becomes receivable has the relationship shown in Fig. 2, which causes an obstacle to the intermittent reception operation. Therefore, the ZIF receiver mode is suitable for the TD MA system! /!
[0029] し力しながら、 LIF受信機モードにおいては、ー且 1Z2チャネル間隔程度に相当 する中間周波数に変換されるため、オフセット電圧を除去する HPFを配置しても ZIF 受信機モードの場合と比較して HPFのカットオフ周波数を高く設定でき、起動時間を 高速化しやすい。したがって、 LIF受信機モードは TDMA方式に適している。 [0029] However, in the LIF receiver mode, it is converted to an intermediate frequency equivalent to about 1Z2 channel spacing. Therefore, even if an HPF that removes the offset voltage is placed, ZIF Compared to the receiver mode, the cutoff frequency of the HPF can be set higher, and the start-up time can be easily increased. Therefore, LIF receiver mode is suitable for TDMA system.
[0030] 次に、 CDMA方式の例として、 UMTS (W— CDMA)のフレーム構成について説 明する。図 8は、本発明の受信機において、 W— CDMA方式を例として UMTSのフ レーム構成の概略を説明するための説明図である。 UMTS (W-CDMA)は CDM AZFDD方式であるため、ここでは図 8に示す受信フレーム 300について説明する。 UMTS (W— CDMA)では、 1フレームが 10msであり、通信中は基本的に基地局か ら指定された伝送速度で連続受信するため、間欠受信動作 301に示すように間欠受 信は行わず、かつ、信号帯域が広い。したがって、回路ブロック間のオフセット除去に 容量結合による HPFを用いてもカットオフ周波数をある程度高く設定することができ るため、図 8に示すように、回路ブロック間を容量結合しても起動時間を短縮すること ができる。したがって、 ZIF受信機モードは CDMA方式に適している。  [0030] Next, as an example of the CDMA system, a frame structure of UMTS (W-CDMA) will be described. FIG. 8 is an explanatory diagram for explaining the outline of the frame structure of UMTS, taking the W-CDMA system as an example in the receiver of the present invention. Since UMTS (W-CDMA) is a CDM AZFDD system, the received frame 300 shown in FIG. 8 will be described here. In UMTS (W-CDMA), one frame is 10 ms, and since continuous reception is basically performed at the specified transmission rate from the base station during communication, intermittent reception is not performed as shown in intermittent reception operation 301. And the signal band is wide. Therefore, even if capacitive coupling HPF is used to remove the offset between circuit blocks, the cut-off frequency can be set high to some extent.Therefore, as shown in FIG. It can be shortened. Therefore, ZIF receiver mode is suitable for CDMA.
[0031] このように、 CDMA方式では ZIF受信機モードに設定し、 TDMA方式では LIF受 信機モードに設定することが適当である。  [0031] As described above, it is appropriate to set the ZIF receiver mode in the CDMA system and the LIF receiver mode in the TDMA system.
[0032] 次に、図 6を用いて、 ZIF受信機モードと LIF受信機モードとを切り替える際に、第 1 の局部発振部 103、第 1のチャネル選択フィルタ 105、第 2の局部発振部 107、第 2 のチャネル選択フィルタ 108および復号部 110の各設定について説明する。  Next, referring to FIG. 6, when switching between the ZIF receiver mode and the LIF receiver mode, the first local oscillator 103, the first channel selection filter 105, and the second local oscillator 107 Each setting of second channel selection filter 108 and decoding section 110 will be described.
[0033] ZIF受信機モードとしては UMTS (W— CDMA)用受信機を例に挙げ、 LIF受信 機モードとしては GSM用受信機を例に挙げて具体的に説明する。まず、 ZIF受信機 モードに切り替えた場合、すなわち UMTS (W— CDMA)信号の受信について図 6 を参照して説明する。第 1の局部発振部 103の出力周波数は受信周波数とほぼ同 一に設定され、第 1のチャネル選択フィルタ 105および第 2のチャネル選択フィルタ 1 08の総合特性は、 UMTS (W— CDMA)の伝送速度である 3. 84Mcpsのベースバ ンド信号を通過させ、かつ隣接チャネル信号帯域を濾波できる程度の特性とする。第 1のチャネル選択フィルタ 105の低域周波数通過特性は、下記の参考文献 1に具体 的な例が発表されており、 HPFは受信特性に影響を与えない程度のカットオフ周波 数 20KHz程度以下が適当とされて 、る。  [0033] As a ZIF receiver mode, a UMTS (W-CDMA) receiver will be described as an example, and as a LIF receiver mode, a GSM receiver will be described as an example. First, the case of switching to the ZIF receiver mode, that is, reception of a UMTS (W-CDMA) signal will be described with reference to FIG. The output frequency of the first local oscillator 103 is set to be almost the same as the reception frequency, and the overall characteristics of the first channel selection filter 105 and the second channel selection filter 1 08 are UMTS (W-CDMA) transmission. 3. The speed should be 3.84 Mcps baseband signal, and adjacent channel signal band should be filtered. A specific example of the low-frequency pass characteristics of the first channel selection filter 105 has been published in Reference 1 below, and the HPF has a cutoff frequency of about 20 KHz or less that does not affect the reception characteristics. Appropriate.
[0034] 次に、 UMTS (W— CDMA)の基準クロックが 19. 2MHzである場合について説 明する。第 2の局部発振部 107を基準クロックが 19. 2MHzの 1Z4の出力周波数 3 . 84MHzである場合を例とすると、第 2の IF周波数 fl3も 3. 84MHzとなる。 ADコン バータ部 110aのサンプリング周波数を 15. 36MHzとすると、第 2の IF周波数 f 13は 3. 84MHzのデジタノレイ匕された信号となる。デジタノレミキサ咅 110bでは、 15. 36M Hzの 1Z4の直交したクロックにてデジタル I, Q信号に変換し、さらに CDMA復号部 110cで復号信号処理を行う。 [0034] Next, the case where the reference clock of UMTS (W—CDMA) is 19.2 MHz is explained. Light up. Taking the second local oscillator 107 as an example in which the reference clock is 19.2 MHz and the output frequency of 1Z4 is 3.84 MHz, the second IF frequency fl3 is also 3.84 MHz. Assuming that the sampling frequency of the AD converter 110a is 15.36 MHz, the second IF frequency f13 is a 3.84 MHz digitized signal. The digital mixer 咅 110b converts the digital I and Q signals with 15.36MHz 1Z4 orthogonal clocks, and the CDMA decoder 110c performs the decoded signal processing.
[0035] 次に、 LIF受信機モードに切り替えた場合、すなわち GSM信号の受信について説 明する。第 1の局部発振部 5の出力周波数は、受信周波数から 1Z2チャネル間隔程 度離調した(つまり、オフセットした) ΙΟΟΚΗζ以上の周波数となる。第 1の IF周波数 f 12の具体的な例は、下記の参考文献 2で発表されている。さらに、第 1のチャネル選 択フィルタ 105の低域側周波数は 10kHz程度でよいことが記されている。  [0035] Next, the case of switching to the LIF receiver mode, that is, reception of a GSM signal will be described. The output frequency of the first local oscillating unit 5 is a frequency that is detuned (that is, offset) from the reception frequency by 1Z2 channel interval or more. A specific example of the first IF frequency f12 is presented in Reference 2 below. Further, it is described that the low frequency of the first channel selection filter 105 may be about 10 kHz.
[0036] ここで、 GSMの基準クロックが 13MHzである場合について説明する。今、第 1の IF 周波数 fl2は、基準クロック 13MHzの 1Z96である 135. 4167KHz、第 2の局部発 振部 107の出力周波数を基準クロックの 1Z4である 3. 25MHzとすると、第 2の IF周 波数 fl3は 3. 385417MHzとなる。尚、第 2のチャネル選択フィルタ 108は、第 1の チャネル選択フィルタ 105で不足している減衰量を確保するものとする。  Here, a case where the GSM reference clock is 13 MHz will be described. Now, if the first IF frequency fl2 is 135.4167 KHz, which is 1Z96 with a reference clock of 13 MHz, and the output frequency of the second local oscillator 107 is 1Z4 of the reference clock, 3.25 MHz, then the second IF frequency The wave number fl3 is 3.385417MHz. It is assumed that the second channel selection filter 108 secures an attenuation amount that is insufficient in the first channel selection filter 105.
[0037] また、 ADコンバータ部 110aのサンプリングクロックを 3. 25MHzとすると、第 2の IF 周波数 f 13はアンダーサンプリングされ、 ADコンバータ部 110aの出力ではデジタル 化された 135. 4167KHzが得られ、基準クロック 13MHzの 1Z96の直交したクロッ クとデジタルミキサ 110b〖こよりデジタル I, Q信号が得られ TDMA復号部 110dで復 号処理を行う。  [0037] If the sampling clock of the AD converter 110a is 3.25 MHz, the second IF frequency f13 is undersampled, and the digitized 135.4167KHz is obtained at the output of the AD converter 110a. The digital I and Q signals are obtained from the 1Z96 orthogonal clock of 13 MHz clock and the digital mixer 110b, and the TDMA decoder 110d performs the decoding process.
[0038] 次に、 LIF受信機と ZIF受信機を両立させるための各ブロックにおける特性切り替 えについて具体的な例を説明する。 ZIF受信機では、第 1のチャネル選択フィルタ 10 5は、カットオフ周波数は 2MHz程度のローパスフィルタ(LPF)であり、回路に生ずる 直流オフセット電圧を除去するために、先に説明したように容量結合によるハイパス フィルタ (HPF)の組み合わせによるバンドパスフィルタ(BPF)が実現できる。また、 第 2のチャネル選択フィルタ 108は、中心周波数が 3. 84MHzで通過帯域 4MHz程 度であるバンドパスフィルタ (BPF)を構成することで実現できる。 [0039] LIF受信機では、第 1のチャネル選択フィルタ 105は、カットオフ周波数は 200kHz 程度の LPFとする。第 2のチャネル選択フィルタ 108は、中心周波数が 3. 385417 MHzで通過帯域 400kHであるバンドパスフィルタ(BPF)を構成することで実現でき る。 LIF受信機の第 2の IF周波数 f 13のイメージ周波数は、高周波帯の希望波信号 に対して + 6. 771MHz、もしくは一 6. 771MHz離れたところに存在する力 第 1の チャネル選択フィルタのカットオフ周波数が 200kHzであれば第 2の IF周波数 f 13の イメージ信号を除去することができる。イメージ信号の除去が不足している場合はノッ チフィルタと用いてもよい。 [0038] Next, a specific example of characteristic switching in each block for making both the LIF receiver and the ZIF receiver compatible will be described. In the ZIF receiver, the first channel selection filter 105 is a low-pass filter (LPF) with a cut-off frequency of about 2 MHz. In order to remove the DC offset voltage generated in the circuit, the capacitive coupling is performed as described above. A band pass filter (BPF) can be realized by combining a high pass filter (HPF). The second channel selection filter 108 can be realized by configuring a band pass filter (BPF) having a center frequency of 3.84 MHz and a pass band of about 4 MHz. In the LIF receiver, the first channel selection filter 105 is an LPF with a cutoff frequency of about 200 kHz. The second channel selection filter 108 can be realized by configuring a band pass filter (BPF) having a center frequency of 3. 385 417 MHz and a pass band of 400 kHz. The image frequency of the second IF frequency f 13 of the LIF receiver is + 6. 771 MHz or 6.771 MHz away from the desired signal in the high frequency band. Cut of the first channel selection filter If the off-frequency is 200 kHz, the image signal with the second IF frequency f 13 can be removed. If image signal removal is insufficient, it may be used as a notch filter.
[0040] ZIF受信機と LIF受信機の第 1のチャネル選択フィルタ 105、第 2のチャネル選択フ ィルタ 108は、個々に配置して適宜切り替えることによって構成することができる。また 、LIF受信機の定数を切り替えて ZIF受信機のフィルタを構成する仕組みであれば、 受信回路を大幅に小型することができる。  [0040] The first channel selection filter 105 and the second channel selection filter 108 of the ZIF receiver and the LIF receiver can be configured by being individually arranged and switched appropriately. In addition, if the structure of the ZIF receiver filter is configured by switching the constants of the LIF receiver, the receiving circuit can be greatly reduced in size.
[0041] このように、本実施の形態によれば、特別なオフセット電圧除去回路を備えることな ぐ複数の通信方式 (例えば、 TDMA方式および CDMA方式)に対応可能な受信 機を提供することができる。  [0041] Thus, according to the present embodiment, it is possible to provide a receiver capable of supporting a plurality of communication systems (for example, TDMA system and CDMA system) without providing a special offset voltage removal circuit. it can.
[0042] <実施の形態 2 >  <Embodiment 2>
次に、本発明の実施の形態 2に係る受信機について説明する。前述の実施の形態 1で説明したように、複数の通信方式に対応可能な受信機を構築するのに特別なォ フセット電圧除去回路を備える必要はない。し力しながら、図 6の第 2のミキサ部 106 にて構成素子の不整合によって生じた直流オフセット電圧は、第 2の IF周波数 f 13で はキャリアリークとして現れ、結果的に受信感度に影響することも考えられる。このよう な場合は、必要に応じてオフセット電圧のキャンセルを行えばよい。そこで本発明の 実施の形態 2では、オフセット電圧をキャンセルする構成例にっ 、て説明する。  Next, a receiver according to Embodiment 2 of the present invention will be described. As described in Embodiment 1 above, it is not necessary to provide a special offset voltage removal circuit to construct a receiver that can handle a plurality of communication methods. However, the DC offset voltage caused by the mismatch of the components in the second mixer section 106 in Fig. 6 appears as carrier leak at the second IF frequency f 13 and consequently affects the reception sensitivity. It is also possible to do. In such a case, the offset voltage may be canceled as necessary. Therefore, in the second embodiment of the present invention, a configuration example for canceling the offset voltage will be described.
[0043] 図 9は、本発明の実施の形態 2に係るオフセット電圧除去回路の構成図である。し たがって、図 6と図 9を参照しながら実施の形態 2について説明する。第 1の局部発振 部 103は、 OFFした状態として高周波信号が第 1のミキサ部 104で周波数変換され ない状態に設定する。この操作の結果、強い受信信号の存在するエリアでも信号無 入力の状態を設定することができる。このとき、可変利得アンプ部 109を設定する利 得は、感度点信号時利得よりもおおむね 10〜20dB程度高く設定することが望まし い。この操作によりキャリアリークを効率よく検出し、受信感度に影響を及ぼさない様 に調整をすることができる。また、第 2の中間周波数以降にあるフィルタを GSMの設 定にすることにより雑音帯域を狭くできるため、よりキャリアリークを効率よく検出するこ とちでさる。 FIG. 9 is a configuration diagram of the offset voltage removal circuit according to the second embodiment of the present invention. Therefore, the second embodiment will be described with reference to FIGS. The first local oscillating unit 103 is set in a state where the high frequency signal is not frequency-converted by the first mixer unit 104 in the OFF state. As a result of this operation, it is possible to set no signal input even in areas where strong received signals exist. At this time, the gain for setting the variable gain amplifier section 109 is In general, it is desirable to set the gain approximately 10 to 20 dB higher than the gain at the time of sensitivity point signal. By this operation, carrier leak can be detected efficiently and adjustments can be made so as not to affect the reception sensitivity. In addition, since the noise band can be narrowed by setting the filter after the second intermediate frequency to the GSM setting, the carrier leak can be detected more efficiently.
[0044] 図 9において、第 2の IF周波数 f 13に生じているキャリアリークは、 AGCl lOeの RS SIの出力によりキャリア検出部 l lOgでレベルを読みとり、 DACl lOiから調整電圧を 出力して加算器 114にカ卩え、キャリアリークが最小になるように調整する。尚、この調 整動作は Iチャネルまたは Qチャネルを個別に行う。このとき、調整をしていない Iチヤ ネルまたは Qチャネル側の第 2のミキサ部 106は周波数変換動作しな 、ようにしてお く。図を用いた具体的な説明はしないが、例えば、ミキサの電源を OFFにする、ある いは、第 2の局部発振信号を入力しない様にすることによって実現することができる。  [0044] In FIG. 9, the carrier leak occurring at the second IF frequency f13 is read by the carrier detector l lOg based on the RS SI output of AGCl lOe, and the adjustment voltage is output from DAC l lOi and added. Adjust to vessel 114 to minimize carrier leakage. This adjustment operation is performed individually for the I channel or Q channel. At this time, the second mixer section 106 on the I channel or Q channel side that has not been adjusted should not perform the frequency conversion operation. Although not specifically explained with reference to the figure, it can be realized, for example, by turning off the power of the mixer or not inputting the second local oscillation signal.
[0045] 次に、 I,Qチャネルそれぞれの調整後の DAC制御値を設定情報保持部 l lOhに格 納し、受信の際に DACl lOiに出力する。このような調整 ·格納は、受信毎に行っても よいし、あらかじめ設定された時間毎や携帯端末装置の工場出荷調整ごとに行って もよい。つまり、このような調整 ·格納はいつ行っても構わない。このように僅かな機能 を追加することで、安定したオフセット電圧除去を実現することができる。  [0045] Next, the adjusted DAC control values of the I and Q channels are stored in the setting information holding unit lOh, and are output to DAClOi at the time of reception. Such adjustment and storage may be performed at every reception, or may be performed every preset time or every factory shipment adjustment of the mobile terminal device. In other words, such adjustment and storage can be performed at any time. By adding a few functions in this way, stable offset voltage removal can be realized.
[0046] <実施の形態 3 >  <Embodiment 3>
次に、本発明の実施の形態 3に係る受信機について説明する。実施の形態 1では UMTS (W— CDMA)と GSMの受信機について説明した力 これらの無線通信シ ステムに限定するものではなぐアナログ通信方式の AMPS (Advanced Mobile Phon e Service:アナログ ·セルラー方式の移動電話)やデジタル通信方式の OFDM (Orth ogonal Frequency Division Multiplexing:直交周波数分割多重方式)や UWB (Ultra Wideband:超広帯域無線技術)にも適用することが可能である。また、 TDMA方式で あっても ZIF受信機モードで無線規格が満足できる通信システムであれば、それらの ZIF受信機モードで使用しても構わない。さらに、 CDMA方式であっても LIF受信機 モードで無線規格が満足できる通信システムであれば、 LIF受信機モードで使用し ても構わない。例えば、 IEEE802. l lgの様な無線 LANでは、周波数ホッピング、 C DMA, OFDMの通信モードで適宜運用されるため、最適な受信機の状態で使用 することも可會である。 Next, a receiver according to Embodiment 3 of the present invention will be described. The power described in the first embodiment for UMTS (W-CDMA) and GSM receivers is not limited to these wireless communication systems. AMPS (Advanced Mobile Phone Service: analog / cellular mobile) It can also be applied to OFDM (Orthogonal Frequency Division Multiplexing) and UWB (Ultra Wideband) for digital communications. In addition, even in the case of the TDMA scheme, any communication system that satisfies the radio standard in the ZIF receiver mode may be used in those ZIF receiver modes. Furthermore, even if it is a CDMA system, it may be used in the LIF receiver mode as long as the communication system satisfies the radio standard in the LIF receiver mode. For example, in a wireless LAN such as IEEE802.llg, frequency hopping, C Since it is appropriately used in the DMA and OFDM communication modes, it can be used in an optimal receiver state.
[0047] また、図 6に示した復号部 110の CDMA復号部 110cおよび TDMA復号部 l lOd をモジュールィ匕する力、ソフトウェアによって復号ィ匕可能な無線通信システムを変更 可能とするカゝ、または両者を併用した構成とすることにより、 UMTS (W— CDMA)か ら IS95への変更や GSMから PHS等への変更が可能となる。ソフトウェアを、例えば 取り外し可能なメモリに格納することで、多数の通信方式に対応した受信機を実現す ることちでさる。  [0047] Also, the ability to modularize the CDMA decoding unit 110c and the TDMA decoding unit l lOd of the decoding unit 110 shown in FIG. 6, a card that can change the wireless communication system that can be decoded by software, or By using a combination of both, it is possible to change from UMTS (W-CDMA) to IS95, or from GSM to PHS. By storing the software in, for example, a removable memory, it is possible to realize a receiver that supports many communication methods.
[0048] さらに、図 6の第 1のチャネル選択フィルタ 105、第 2のチャネル選択フィルタ 108、 および図示して 、な ヽが復号部 110に搭載されるデジタルフィルタの各周波数特性 および Qを可変できる回路構成であれば、任意の通信方式に対してもフィルタの周 波数特性と Q値の設定を行うことが可能である。このような構成であれば、受信可能 な周波数帯であれば任意の通信方式に対応した受信機を構成することができる。  Furthermore, the frequency characteristics and Q of the first channel selection filter 105, the second channel selection filter 108, and the digital filter mounted in the decoding unit 110 can be varied as shown in FIG. With a circuit configuration, it is possible to set the frequency characteristics and Q value of the filter for any communication method. With such a configuration, it is possible to configure a receiver that supports any communication method within the receivable frequency band.
[0049] 尚、実施の形態 1および実施の形態 3ではマルチモードの受信機について説明し た力 本発明はこれに限定されるものではない。すなわち、 TDMA方式または CDM A方式を用いたシングルモードの受信機にぉ 、ては、 LIF受信機モードまたは ZIF受 信機モードに固定し使用することにより、これまで無線通信システム毎に専用の集積 回路で受信機が構成されて 、たが、同一の集積回路で様々な無線通信システムの 受信機を構成することもできる。また、実施の形態 1乃至実施の形態 3の受信機は、 送信機と組み合わせて通信端末に搭載することができる。  [0049] It should be noted that the power described in the first and third embodiments for the multimode receiver is not limited to this. In other words, for single-mode receivers that use TDMA or CDMA, the fixed integration in LIF receiver mode or ZIF receiver mode has been used so far for each wireless communication system. Although the receiver is configured by a circuit, receivers of various wireless communication systems can be configured by the same integrated circuit. Further, the receivers of Embodiments 1 to 3 can be mounted on a communication terminal in combination with a transmitter.
[0050] <実施の形態 4 >  [0050] <Embodiment 4>
図 10は、本発明における実施の形態 4の増幅装置の基本構成を示すブロック図で ある。まず、図 10に示す増幅装置の構成について説明する。この増幅装置は、直交 したベースバンド信号である第 1の Iチャネル信号及び第 1の Qチャネル信号を変調 する直交変調部 1000と、直交変調部 1000の出力信号に帯域制限を行うと共に、第 1の Iチャネル信号と第 1の Qチャネル信号の直流オフセット電圧に応じて発生する直 交変調出力のキャリアリークを除去するバンドエリミネートフィルタ 1001と、バンドエリ ミネートフィルタ 1001の出力信号の増幅を行う増幅部 1002と、増幅部 1002の出力 信号を直交したベースバンド信号である第 2の Iチャネル信号と第 2の Qチャネル信号 へ直交復調する直交復調部 1003とを備えた構成となっている。 FIG. 10 is a block diagram showing a basic configuration of the amplifying apparatus according to Embodiment 4 of the present invention. First, the configuration of the amplification device shown in FIG. 10 will be described. The amplifying apparatus modulates the first I channel signal and the first Q channel signal, which are orthogonal baseband signals, and band-limits the output signal of the orthogonal modulation unit 1000, and the first Band-eliminate filter 1001 that removes the carrier leakage of the orthogonal modulation output that occurs according to the DC offset voltage of the I-channel signal and the first Q-channel signal, and the amplification unit 1002 that amplifies the output signal of the band-eliminate filter 1001 And the output of the amplifier 1002 The configuration includes a second I channel signal, which is a baseband signal orthogonal to the signal, and an orthogonal demodulation unit 1003 that performs orthogonal demodulation to the second Q channel signal.
[0051] 次に、図 10に示す増幅装置の動作について説明する。図 10に示すように、直交変 調部 1000の出力側にバンドエリミネートフィルタ 1001を設けて、ベースバンド信号 である第 1の Iチャネル信号及び第 1の Qチャネル信号の直流オフセット電圧に応じて 生じる直交変調器 1000の出力信号のキャリアリークを除去する。これによつて、直交 変調部 1000の入力信号の SZN比の低下を防ぎ、増幅部 1002によってベースバン ド信号の増幅を行うことができる。  Next, the operation of the amplifying device shown in FIG. 10 will be described. As shown in FIG. 10, a band-eliminating filter 1001 is provided on the output side of the quadrature modulation unit 1000, and is generated according to the DC offset voltages of the first I channel signal and the first Q channel signal that are baseband signals. The carrier leak of the output signal of the quadrature modulator 1000 is removed. As a result, the SZN ratio of the input signal of the quadrature modulation unit 1000 can be prevented from being lowered, and the amplification unit 1002 can amplify the baseband signal.
[0052] ここで、第 1の Iチャネル信号と第 2の Qチャネル信号の直流オフセット電圧による入 力信号の SZN比の低下を防 、で信号の増幅を行う方法にっ 、て説明する。図 11 は、図 10に示す増幅装置に関わる入力信号の増幅方法を示す第 1の説明図であり 、図 11Aは直交変調部 1000の出力波形、図 11Bはバンドエリミネートフィルタ 1001 の出力波形を示している。また、図 12は、図 10に示す増幅装置に関わる入力信号 の増幅方法を示す第 2の説明図であり、図 12Aは直交復調部 1003の入力波形、図 12Bは直交復調部 1003の出力波形を示している。したがって、図 10、図 11、図 12 を用いて入力信号の増幅方法を説明する。  [0052] Here, a method for amplifying a signal while preventing a decrease in the SZN ratio of the input signal due to the DC offset voltage of the first I channel signal and the second Q channel signal will be described. FIG. 11 is a first explanatory diagram showing the method of amplifying the input signal related to the amplifying device shown in FIG. 10. FIG. 11A shows the output waveform of the quadrature modulator 1000, and FIG. 11B shows the output waveform of the band-eliminate filter 1001. ing. 12 is a second explanatory diagram illustrating an amplification method of the input signal related to the amplification device shown in FIG. 10. FIG. 12A is an input waveform of the quadrature demodulation unit 1003, and FIG. 12B is an output waveform of the quadrature demodulation unit 1003. Is shown. Therefore, the method for amplifying the input signal will be described with reference to FIG. 10, FIG. 11, and FIG.
[0053] 直交変調部 1000の出力側では、第 1の Iチャネル信号と第 1の Qチャネル信号の 直流オフセット電圧は、図 11Aに示すキャリアリーク 1101に変換され、また、第 1の I チャネル信号と第 1の Qチャネル信号は入力信号 1102に変換される。このとき、キヤ リアリーク 1101は入力信号 1102に重畳して現れる。また、キャリアリークの大きさは 第 1の Iチャネル信号と第 1の Qチャネル信号の直流オフセット電圧の大きさに応じて 生じ、入力信号 1102の SZN比は入力信号 1102とキャリアリーク 1101との比となる  [0053] On the output side of quadrature modulation section 1000, the DC offset voltages of the first I channel signal and the first Q channel signal are converted into carrier leak 1101 shown in FIG. 11A, and the first I channel signal And the first Q channel signal is converted to an input signal 1102. At this time, the carrier leak 1101 appears superimposed on the input signal 1102. The magnitude of the carrier leak occurs according to the magnitude of the DC offset voltage of the first I channel signal and the first Q channel signal, and the SZN ratio of the input signal 1102 is the ratio of the input signal 1102 to the carrier leak 1101. Become
[0054] 図 11Aに示すように、直交変調部 1000の出力側のキャリアリーク 1101を、図 11B に示すバンドエリミネートフィルタ遮断周波数 1103を有するバンドエリミネートフィル タ 1001によって抑制する。この結果、キャリアリーク 1104は抑制され、入力信号 110 5とキャリアリーク 1104との信号比が大きくなる。したがって、入力信号の SZN比が 改善されて良好な受信特性を確保することができる。 [0055] その後、増幅部 1002でこの信号 (つまり、 SZN比が改善された入力信号)の増幅 を行った後、直交復調部 1003によってベースバンド信号である第 2の Iチャネル信号 及び第 2の Qチャネル信号に変換 (復調)することで、ベースバンドの直流オフセット 電圧が増加することを抑制しながら、ベースバンド信号を所望のレベルに増幅するこ とができる。なお、直交変調部 1000と直交復調部 1003との間に、帯域制限を行う口 一パスフィルタまたはバンドパスフィルタを備え、直交変調部 1000の後の IF周波数 で帯域制限を行う構成としてもよい。これにより、ベースバンドの直流オフセット電圧 の増加を抑制しながら帯域制限を行うことができる。 As shown in FIG. 11A, carrier leak 1101 on the output side of quadrature modulation section 1000 is suppressed by a band eliminate filter 1001 having a band eliminate filter cutoff frequency 1103 shown in FIG. 11B. As a result, the carrier leak 1104 is suppressed, and the signal ratio between the input signal 1105 and the carrier leak 1104 is increased. Therefore, the SZN ratio of the input signal is improved and good reception characteristics can be secured. [0055] After that, the amplification unit 1002 amplifies this signal (that is, an input signal with an improved SZN ratio), and then the quadrature demodulation unit 1003 performs the second I-channel signal and the second I-channel signal as the baseband signals. By converting (demodulating) the signal to a Q channel signal, the baseband signal can be amplified to a desired level while suppressing an increase in the baseband DC offset voltage. Note that a single pass filter or a band pass filter that performs band limitation may be provided between the orthogonal modulation unit 1000 and the orthogonal demodulation unit 1003, and band limitation may be performed at the IF frequency after the orthogonal modulation unit 1000. As a result, band limitation can be performed while suppressing an increase in the baseband DC offset voltage.
[0056] ここで、図 12を用いて、直交変調部 1000と直交復調部 1003との間に設けたロー パスフィルタまたはバンドパスフィルタによって IF周波数で帯域制限を行う様子につ いて説明する。なお、この図は、バンドパスフィルタで帯域制限を行う様子を示してい る。まず、図 12Aに示すように、バンドエリミネートフィルタ 1001によるバンドエリミネ ートフィルタ遮断周波数 1201によってキャリアリーク 1203は除去され、バンドパスフ ィルタによるバンドパスフィルタ遮断周波数 1202によって入力信号 1204の近傍が帯 域制限される。その後、直交復調部 1003によって、ベースバンド信号である第 2の I チャネル信号と第 2の Qチャネル信号に変換することにより、図 12Bに示すように、バ ンドエリミネートフィルタ 1001とバンドパスフィルタの遮断周波の帯域によって帯域制 限され、所望の入力信号 1206を得ることができる。これによつて、ベースバンドの直 流オフセット電圧の増加を回避しながらベースバンド信号を帯域制限することができ る。  [0056] Here, a state in which band limitation is performed at the IF frequency by a low-pass filter or a band-pass filter provided between the orthogonal modulation unit 1000 and the orthogonal demodulation unit 1003 will be described with reference to FIG. This figure shows how the band is limited by the band pass filter. First, as shown in FIG. 12A, the carrier leak 1203 is removed by the band elimination filter cutoff frequency 1201 by the band elimination filter 1001, and the vicinity of the input signal 1204 is band-limited by the bandpass filter cutoff frequency 1202 by the bandpass filter. After that, the quadrature demodulator 1003 converts the baseband signal into the second I channel signal and the second Q channel signal, thereby blocking the band elimination filter 1001 and the bandpass filter as shown in FIG. 12B. The band is limited by the frequency band, and a desired input signal 1206 can be obtained. As a result, it is possible to limit the band of the baseband signal while avoiding an increase in the DC offset voltage of the baseband.
[0057] なお、図 10に示す増幅部 1002を可変増幅器とする構成としてもよい。このような可 変増幅器にすることによって、ベースバンドの直流オフセット電圧の変化を回避しな がら入力信号を可変増幅することもできる。  Note that the amplifying unit 1002 shown in FIG. 10 may be configured as a variable amplifier. By using such a variable amplifier, it is possible to variably amplify the input signal while avoiding a change in the baseband DC offset voltage.
[0058] 以下、図 10及び図 11を用いて、第 1の Iチャネル信号と第 1の Qチャネル信号の直 流オフセット電圧の変化を回避しながら、入力信号を可変増幅する方法につ!、て説 明する。この場合も、前述の増幅度を可変しない増幅部 1002で説明した場合と同様 の動作によって入力信号 1105の SZN比が改善されて受信特性を良好に確保する ことができる。なお、この間の動作の流れは前述と全く同じであるので、重複を避ける ためにその説明は省略する。その後、 IF周波数において増幅部 1002に対応する可 変増幅器で信号の可変増幅を行い、直交復調部 1003によって第 2の Iチャネル信号 と第 2の Qチャネル信号へ変換する。これによつて、可変増幅器の利得を変化させた 場合においても、ベースバンド信号の直流オフセット電圧の変化を回避しながら可変 増幅を行うことができる。 [0058] Hereinafter, a method for variably amplifying an input signal while avoiding a change in the direct current offset voltage of the first I channel signal and the first Q channel signal will be described with reference to FIGS. 10 and 11. Explain. Also in this case, the SZN ratio of the input signal 1105 is improved by the same operation as that described in the case of the amplification unit 1002 in which the amplification degree is not variable, and the reception characteristic can be ensured satisfactorily. In addition, since the flow of operation during this time is exactly the same as described above, avoid duplication. Therefore, the description is omitted. After that, variable amplification of the signal is performed by the variable amplifier corresponding to the amplification unit 1002 at the IF frequency, and the signal is converted into the second I channel signal and the second Q channel signal by the orthogonal demodulation unit 1003. As a result, even when the gain of the variable amplifier is changed, variable amplification can be performed while avoiding a change in the DC offset voltage of the baseband signal.
[0059] <実施の形態 5 >  <Embodiment 5>
図 13は、本発明における実施の形態 5の増幅装置の基本構成を示すブロック図で ある。なお、この図では、増幅装置を用いた受信機の構成を示している。以下、図 13 を用いて、実施の形態 5の受信機について説明する。  FIG. 13 is a block diagram showing a basic configuration of the amplifying apparatus according to Embodiment 5 of the present invention. In this figure, the configuration of a receiver using an amplification device is shown. Hereinafter, the receiver according to the fifth embodiment will be described with reference to FIG.
[0060] 図 13に示す受信機は、無線信号を受信するアンテナ 1301と、アンテナ 1301が受 信した信号を帯域制限するバンドパスフィルタ 1302と、バンドパスフィルタ 1302によ つて帯域制限された信号を増幅する高周波増幅器 1303と、高周波増幅器 1303に よって増幅された信号を直交復調する、ミキサ 1305、 1306からなる第 1の直交復調 器 1304と、第 1の直交復調器 1304に 90度位相差の 2つの信号を供給する第 1の 9 0度位相器 1307と、第 1の 90度位相器 1307の信号源である第 1の局部発振器 130 8と、第 1の直交復調器 1304の出力の直交した Iチャネル信号と Qチャネル信号をそ れぞれ増幅するベースバンド増幅器 1309、 1310と、ベースバンド増幅器 1309、 13 10の出力信号をそれぞれ帯域制限するローパスフィルタ 1311、 1312と、ローパス フィルタ 1311、 1312の出力信号を直交変調する、ミキサ 1315、 1316からなる直交 変調器 1313と、直交変調器 1313及び後述する第 2の直交復調器 1322に 90度位 相差の 2つの信号を供給する第 2の 90度位相器 1317と、第 2の 90度位相器 1317 の信号源である第 2の局部発振器 1318と、直交変調器 1313の出力信号である IF 信号を帯域制限するバンドエリミネートフィルタ 1319と、バンドエリミネートフィルタ 13 19によって帯域制限された IF信号をさらに帯域制限するローパスフィルタ 1320と、 ローパスフィルタ 1320によって帯域制限された IF信号を可変増幅する可変増幅器 1 321と、可変増幅器 1321によって可変増幅された IF信号を直交復調する、ミキサ 13 23、 1324からなる第 2の直交復調器 1322と、第 2の直交復調 1322の出力信号を 復調する復調器 1325とを備えた構成となっている。 [0061] なお、増幅器 1326は、直交変調器 1313と、第 2の 90度位相器 1317と、第 2の局 部発振器 1318と、ノ ンドエリミネートフイノレタ 1319と、ローノ スフイノレタ 1320と、可変 増幅器 1321と、第 2の直交復調器 1322とによって構成されている。 The receiver shown in FIG. 13 receives an antenna 1301 that receives a radio signal, a bandpass filter 1302 that limits the band of the signal received by the antenna 1301, and a signal that is band-limited by the bandpass filter 1302. A high-frequency amplifier 1303 to amplify, a first quadrature demodulator 1304 comprising mixers 1305 and 1306 that quadrature-demodulates the signal amplified by the high-frequency amplifier 1303, and a first quadrature demodulator 1304 having a phase difference of 2 The first 90 degree phase shifter 1307 that supplies two signals, the first local oscillator 1308 that is the signal source of the first 90 degree phase shifter 1307, and the output of the first quadrature demodulator 1304 are orthogonal The baseband amplifiers 1309 and 1310 that amplify the I channel signal and the Q channel signal, the low pass filters 1311 and 1312 that limit the output signals of the baseband amplifiers 1309 and 1310, respectively, and the low pass filters 1311 and 1312 Output signal A quadrature modulator 1313 comprising mixers 1315 and 1316, and a second 90-degree phase shifter for supplying two signals having a phase difference of 90 degrees to the quadrature modulator 1313 and a second quadrature demodulator 1322 described later. 1317, a second local oscillator 1318 that is a signal source of the second 90-degree phase shifter 1317, a band-eliminate filter 1319 that band-limits an IF signal that is an output signal of the quadrature modulator 1313, and a band-eliminate filter 13 19 Low-pass filter 1320 that further band-limits the IF signal band-limited by IF, variable amplifier 1 321 that variably amplifies the IF signal band-limited by low-pass filter 1320, and quadrature demodulation of the IF signal that is variably amplified by variable amplifier 1321 The second quadrature demodulator 1322 including the mixers 1323 and 1324 and the demodulator 1325 that demodulates the output signal of the second quadrature demodulation 1322 are provided. Note that the amplifier 1326 includes a quadrature modulator 1313, a second 90-degree phase shifter 1317, a second local oscillator 1318, a non-eliminate finalizer 1319, a Ronos finalizer 1320, and a variable amplifier 1321 and a second quadrature demodulator 1322.
[0062] 図 14は、図 13に示す実施の形態 5における受信機のレベルダイアグラムを示す図 である。この図は、横軸に図 13に示す各構成要素の項目を表わし、縦軸に信号のレ ベルを表わしている。したがって、図 14を用いて図 13に示す受信機のレベルダイァ グラムを説明する。なお、図 13の各構成要素の符号と、図 14のレベルダイアグラムの 横軸に示す各構成要素の符号にっ 、ては同一番号が付与されて 、る。  FIG. 14 is a diagram showing a level diagram of the receiver in the fifth embodiment shown in FIG. In this figure, the horizontal axis represents the items of each component shown in FIG. 13, and the vertical axis represents the signal level. Therefore, the level diagram of the receiver shown in FIG. 13 will be described with reference to FIG. Note that the same reference numerals are given to the reference numerals of the constituent elements in FIG. 13 and the reference numerals of the constituent elements shown on the horizontal axis of the level diagram of FIG.
[0063] 従来は、ベースバンド増幅器 1309、 1310とローノ スフィルタ 1311、 1312で大き な利得を得るため、ベースバンド信号である Iチャネル信号と Qチャネル信号の直流 オフセット電圧が増幅されたため、受信信号の SZN比が劣化するという問題があつ た。そこで、本発明の受信機では、図 14のレベルダイアグラムに示すように、バンドパ スフィルタ 1302でレベルが減衰した信号を、高周波増幅器 1303、第 1の直交復調 器 1304で僅力ずつ増幅し、さら〖こ、ベースバンド増幅器 1309、 1310で所要の受信 感度が得られる最小限の利得設定として僅かに増幅してベースバンド部での直流ォ フセット電圧の発生を抑える。  [0063] Conventionally, since the baseband amplifiers 1309 and 1310 and the low-pass filters 1311 and 1312 obtain a large gain, the DC offset voltages of the I-channel signal and the Q-channel signal, which are baseband signals, are amplified. There was a problem that the SZN ratio of the battery deteriorated. Therefore, in the receiver of the present invention, as shown in the level diagram of FIG. 14, the signal whose level is attenuated by the bandpass filter 1302 is slightly amplified by the high-frequency amplifier 1303 and the first quadrature demodulator 1304, and further amplified. In other words, the baseband amplifiers 1309 and 1310 amplify slightly as the minimum gain setting to obtain the required reception sensitivity, and suppress the generation of DC offset voltage in the baseband part.
[0064] さら【こ、ローノ スフイノレタ 1311、 1312、直交変調器 1313、ノ ンドエリミネー卜フィノレ タ 1319、及びローパスフィルタ 1320では信号レベルを一定に推移させながら、直交 変調器 1313の出力側のキャリアリークをバンドエリミネートフィルタ 1319で除去する ことによって受信信号の SZN比の低下を防 、で 、る。  [0064] Furthermore, the Rhonos-Finolators 1311 and 1312, the quadrature modulator 1313, the node eliminator filter 1319, and the low-pass filter 1320 reduce the carrier leak on the output side of the quadrature modulator 1313 while keeping the signal level constant. By eliminating the band elimination filter 1319, the reduction of the SZN ratio of the received signal is prevented.
[0065] そして、受信信号の増幅については、直交変調器 1313の出力信号の IF周波数帯 に備えられた可変増幅器 1321により、大きな利得で増幅して信号のレベルを高め、 第 2の直交復調器 1322によって信号を復調させる。これによつて、可変増幅器 132 1の利得を変化させた場合にぉ 、ても、ベースバンド信号の直流オフセット電圧の変 化を回避しながら可変増幅を行うことができる。また、これによつて、従来は Iチャネル 信号と Qチャネル信号のそれぞれに必要であった直流オフセット電圧除去装置が不 要となるので、受信機の回路規模の小型化を図ることができる。さらに、従来の直流 オフセット電圧除去装置は、アナログ負帰還回路で構成されていることから、直流ォ フセット電圧の除去が完了するまでの時間を示す収束時間が問題となったが、本発 発明では、アナログ負帰還回路の直流オフセット電圧除去装置を必要としないため、 直流オフセット電圧除去を高速に行うことができると共に、直流オフセット電圧除去の ための複雑な制御が必要なくなるので、受信機の設計が簡素化される。 [0065] Then, for amplification of the received signal, the variable amplifier 1321 provided in the IF frequency band of the output signal of the quadrature modulator 1313 is amplified with a large gain to increase the signal level, and the second quadrature demodulator The signal is demodulated by 1322. As a result, even when the gain of the variable amplifier 1321 is changed, variable amplification can be performed while avoiding a change in the DC offset voltage of the baseband signal. This also eliminates the need for a DC offset voltage elimination device that was conventionally required for each of the I-channel signal and the Q-channel signal, so that the circuit scale of the receiver can be reduced. Furthermore, since the conventional DC offset voltage elimination device is composed of an analog negative feedback circuit, Convergence time indicating the time to complete the removal of the offset voltage has become a problem. However, the present invention does not require a DC offset voltage elimination device for the analog negative feedback circuit, so the DC offset voltage elimination is performed at high speed. This eliminates the need for complicated control for removing the DC offset voltage and simplifies the receiver design.
[0066] 図 15は、図 13のバンドエリミネートフィルタ 1319の詳細な構成を示す回路図であ る。したがって、図 15を用いて、図 13のバンドエリミネートフィルタ 1319の構成につ いてさらに詳細に説明する。バンドエリミネートフィルタ 1319は、一般的に知られてい る Twin— T型バンドエリミネートフィルタを用い構成することができる。バンドエリミネ ートフィルタ 1319は、 Twin— T型バンドエリミネートフィルタ 1500の出力段に、バッ ファアンプ 1501と、このバッファアンプ 1501の出力信号の帰還量を可変させる可変 増幅器 1502と、この可変増幅器 1502の出力側に接続されるバッファアンプ 1503と によって構成されている。  FIG. 15 is a circuit diagram showing a detailed configuration of the band-eliminated filter 1319 of FIG. Therefore, the configuration of the band-eliminated filter 1319 in FIG. 13 will be described in more detail with reference to FIG. The band-eliminated filter 1319 can be configured using a generally known Twin-T type band-eliminating filter. The band elimination filter 1319 is connected to the output stage of the Twin-T type band elimination filter 1500 at the output stage of the buffer amplifier 1501, the variable amplifier 1502 for changing the feedback amount of the output signal of the buffer amplifier 1501, and the output side of the variable amplifier 1502. And buffer amplifier 1503.
[0067] 可変増幅器 1502の利得を設定することにより、バンドエリミネートフルタ 1319の Q 値を設定することができる。例えば、バッファアンプ 1501と可変増幅器 1502とバッフ ァアンプ 1503の利得が 1倍(つまり、ループ利得が 1倍)に近づくにつれて Q値が無 限大に大きくなる。よって、可変増幅器 1502の利得設定により、急峻な遮断周波数 特性を持ったバンドエリミネートフィルタ 1319を実現することができる。したがって、受 信信号が直流カゝら直流近傍に存在する場合は、上記の Twin— T型のバンドエリミネ ートフィルタ 1319を用いることで、受信信号の成分の欠落を小さく抑えて、キャリアリ ークを除去することができる。また、受信信号の成分が直流力も直流近傍に存在しな い場合は、上記のバンドエリミネートフィルタの Q値を小さくしてもよい。その場合は上 記の Twin— T型以外のバンドエリミネートフィルタを用いてもよ!、。  [0067] By setting the gain of variable amplifier 1502, the Q value of band-eliminated filter 1319 can be set. For example, as the gain of the buffer amplifier 1501, the variable amplifier 1502, and the buffer amplifier 1503 approaches 1 time (that is, the loop gain becomes 1 time), the Q value increases to an infinitely large value. Therefore, by setting the gain of the variable amplifier 1502, a band-eliminated filter 1319 having a steep cut-off frequency characteristic can be realized. Therefore, if the received signal is in the vicinity of a direct current or direct current, the above-mentioned Twin-T type band elimination filter 1319 can be used to suppress the missing of the received signal component and remove the carrier leak. can do. If the received signal component does not exist in the vicinity of the direct current or direct current, the Q value of the band elimination filter may be reduced. In that case, you can use a band elimination filter other than the Twin-T type mentioned above!
[0068] 図 13のノ ンドエリミネー卜フイノレタ 1319ίま、 f列え ίま、特開 2001323652号公報【こ 示されているような遮断周波数が可変できるバンドエリミネートフィルタを用いることで 、第 2の局部発振器 1318の出力周波数 (つまり、キャリアリーク周波数)にバンドエリ ミネートフィルタ 1319の遮断周波数を自動的に一致させることができる。  [0068] The second local oscillator can be obtained by using a band elimination filter with a variable cutoff frequency as shown in FIG. 13 as a non-eliminating filter 1319, f array, and Japanese Unexamined Patent Publication No. 2001323652. The cut-off frequency of the band-eliminated filter 1319 can be automatically matched to the output frequency of 1318 (that is, the carrier leak frequency).
[0069] これによつて、バンドエリミネートフィルタ 1319の集積化時の素子ばらつきや温度 特性の影響により、バンドエリミネートフィルタ 1319の遮断周波数が変動した場合に おいても、キャリアリークをバンドエリミネートフィルタ 1319で適切に除去することがで きる。よって、図 13に示すような構成により、受信機ごとに個別調整を行う必要がなく なるので増幅装置や受信機の生産性が一段と向上する。 [0069] Thus, when the cutoff frequency of the band eliminate filter 1319 fluctuates due to element variations and temperature characteristics when the band eliminate filter 1319 is integrated. However, the carrier leak can be appropriately removed by the band eliminate filter 1319. Therefore, the configuration as shown in FIG. 13 eliminates the need for individual adjustment for each receiver, thereby further improving the productivity of the amplification device and the receiver.
[0070] なお、上記の実施の形態 5は、受信機に本発明の増幅装置を適用したものである 力 本発明の増幅装置を送信機に用いてもよい。また、本発明の増幅装置を受信機 と送信機とに組み合わせて使用して通信機を構成してもよい。このようにすることによ つて、直流オフセット電圧の影響を回避した受信機、送信機、及び通信機を構築する ことができる。  [0070] It should be noted that Embodiment 5 described above applies the amplification device of the present invention to a receiver. The amplification device of the present invention may be used for a transmitter. Further, a communication device may be configured by using the amplification device of the present invention in combination with a receiver and a transmitter. By doing so, it is possible to construct a receiver, a transmitter, and a communication device that avoid the influence of the DC offset voltage.
[0071] (参考文献 1)  [0071] (Reference 1)
2000 IEEE Radio Frequency Integrated Circuit symposium MOM3B-2 Analog bas ebandIC for use in direct conversion WCDMA receiver.  2000 IEEE Radio Frequency Integrated Circuit symposium MOM3B-2 Analog bas ebandIC for use in direct conversion WCDMA receiver.
(参考文献 2)  (Reference 2)
2000 IEEE Radio Frequency Integrated Circuit Symposium MOM3B— 3 A LOW IF POLYPHASE Receiver for GSM using log domain signal processing  2000 IEEE Radio Frequency Integrated Circuit Symposium MOM3B— 3 A LOW IF POLYPHASE Receiver for GSM using log domain signal processing
[0072] 本明細書は、 2004年 10月 19日出願の特願 2004— 304051及び 2004年 11月 9 [0072] This specification is based on Japanese Patent Application No. 2004-304051 filed on October 19, 2004 and November 9, 2004.
日出願の特願 2004— 325228に基づく。これらの内容はすべてここに含めておく。 産業上の利用可能性  Based on Japanese Patent Application No. 2004-325228. All these contents are included here. Industrial applicability
[0073] 本発明の受信機は、簡単な回路構成でオフセット電圧をキャンセルして複数の通 信方式や通信モードに対応することができるので、放送分野や通信分野など通信関 連インフラに利用することができる。 [0073] The receiver of the present invention can cancel the offset voltage with a simple circuit configuration and cope with a plurality of communication methods and communication modes, so that it can be used for communication-related infrastructures such as the broadcasting field and the communication field. be able to.

Claims

請求の範囲 The scope of the claims
[1] 一対の直交したローカル信号を出力する第 1の局部発信器と、  [1] a first local oscillator that outputs a pair of orthogonal local signals;
受信信号を、前記第 1の局部発振器の出力信号を乗算することによって、直交する 第 1の中間周波数の I, Q信号を得る第 1のミキサと、  A first mixer that multiplies the received signal by the output signal of the first local oscillator to obtain orthogonal I and Q signals of the first intermediate frequency;
前記第 1の中間周波数の I, Q信号を帯域制限する第 1のフィルタと、  A first filter for band-limiting the I and Q signals of the first intermediate frequency;
一対の直交したローカル信号を出力する第 2の局部発信器と、  A second local oscillator that outputs a pair of orthogonal local signals;
前記第 1のフィルタの出力信号を、前記第 2の局部発振器の出力信号を乗算するこ とによって、前記第 1の中間周波数よりも高い周波数の第 2の中間周波数の I, Q信号 を得る第 2のミキサと、  By multiplying the output signal of the first filter by the output signal of the second local oscillator, a second intermediate frequency I, Q signal having a frequency higher than the first intermediate frequency is obtained. 2 mixers,
前記第 2の中間周波数の I, Q信号を帯域制限する第 2のフィルタと、  A second filter for band-limiting the I and Q signals of the second intermediate frequency;
前記第 2のフィルタの出力信号を復号化する復号化手段と、  Decoding means for decoding the output signal of the second filter;
通信方式に基づいて前記第 1の局部発信器を制御することにより前記第 1の中間 周波数を選択する受信機モード設定手段と、  Receiver mode setting means for selecting the first intermediate frequency by controlling the first local transmitter based on a communication method;
を具備する受信機。  A receiver comprising:
[2] 前記第 2のフィルタは、通過帯域が異なる複数のフィルタまたは通過帯域を可変に 設定できるフィルタ力もなるチャネル選択フィルタであって、  [2] The second filter is a plurality of filters having different pass bands or a channel selection filter having a filter force capable of variably setting the pass bands,
前記受信機モード設定手段は、前記第 2の中間周波数の値によって前記第 2のフ ィルタの通過帯域を切り替える請求項 1に記載の受信機。  The receiver according to claim 1, wherein the receiver mode setting means switches a pass band of the second filter according to a value of the second intermediate frequency.
[3] 前記受信機モード設定手段は、前記第 1の中間周波数として、 TDMA通信方式で は LIF (Low Intermediate Frequency)を選択し、 CDMA通信方式では ZIF (Zero Int ermediate Frequency)を選択する請求項 1に記載の受信機。 [3] The receiver mode setting means selects, as the first intermediate frequency, LIF (Low Intermediate Frequency) in the TDMA communication system and ZIF (Zero Inte ermediate Frequency) in the CDMA communication system. The receiver according to 1.
[4] 前記第 2のミキサが、直交変調して生じるキャリアリークを検出し、自己の入力直流 バイアスに負帰還をかけることによって直流オフセット電圧を除去する請求項 1に記 載の受信機。 4. The receiver according to claim 1, wherein the second mixer detects carrier leak caused by quadrature modulation and removes a DC offset voltage by applying negative feedback to its input DC bias.
[5] 請求項 1に記載の受信機を備える通信端末。  [5] A communication terminal comprising the receiver according to claim 1.
PCT/JP2005/019093 2004-10-19 2005-10-18 Receiver WO2006043533A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-304051 2004-10-19
JP2004304051A JP2006121160A (en) 2004-10-19 2004-10-19 Multimode receiver and communication terminal
JP2004-325228 2004-11-09
JP2004325228A JP2006135879A (en) 2004-11-09 2004-11-09 Amplifier and communication equipment

Publications (1)

Publication Number Publication Date
WO2006043533A1 true WO2006043533A1 (en) 2006-04-27

Family

ID=36202948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/019093 WO2006043533A1 (en) 2004-10-19 2005-10-18 Receiver

Country Status (1)

Country Link
WO (1) WO2006043533A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007300260A (en) * 2006-04-28 2007-11-15 Renesas Technology Corp Receiving circuit
EP2062352A2 (en) * 2006-08-31 2009-05-27 Microtune (Texas), L.P. Rf filter adjustment based on lc variation
CN102377439A (en) * 2010-08-06 2012-03-14 Nxp股份有限公司 A multimode saw-less receiver with a translational loop for input matching
TWI766393B (en) * 2020-07-31 2022-06-01 大陸商星宸科技股份有限公司 Dc offset calibration system and method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001245007A (en) * 2000-02-29 2001-09-07 Matsushita Electric Ind Co Ltd Receiver with direct current offset correction function and method for correcting direct current offset in receiver
JP2003046401A (en) * 2001-07-27 2003-02-14 Matsushita Electric Ind Co Ltd Receiver and communication terminal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001245007A (en) * 2000-02-29 2001-09-07 Matsushita Electric Ind Co Ltd Receiver with direct current offset correction function and method for correcting direct current offset in receiver
JP2003046401A (en) * 2001-07-27 2003-02-14 Matsushita Electric Ind Co Ltd Receiver and communication terminal

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007300260A (en) * 2006-04-28 2007-11-15 Renesas Technology Corp Receiving circuit
EP2062352A2 (en) * 2006-08-31 2009-05-27 Microtune (Texas), L.P. Rf filter adjustment based on lc variation
CN102377439A (en) * 2010-08-06 2012-03-14 Nxp股份有限公司 A multimode saw-less receiver with a translational loop for input matching
TWI766393B (en) * 2020-07-31 2022-06-01 大陸商星宸科技股份有限公司 Dc offset calibration system and method thereof

Similar Documents

Publication Publication Date Title
JP3700933B2 (en) Receiver and communication terminal
JP4494650B2 (en) System and process for shared functional block CDMA / GSM communication transceiver
US6415001B1 (en) System and process for shared frequency source multi-band transmitters and receivers
CN100421485C (en) Direct change-over receiver for directly clearing deviation (DC)
US8238858B2 (en) Communication device, multi-band receiver, and receiver
US7813710B2 (en) Receiving circuit
US20070202813A1 (en) Wireless communication semiconductor integrated circuit device and wireless communication system
US20080182617A1 (en) Multiband mobile communication apparatus
JP2005151011A (en) High-frequency signal receiver and semiconductor integrated circuit
US20020049075A1 (en) Multiband portable radio terminal
JP2008109680A (en) Transceiver
WO2000019621A1 (en) Even harmonic direct conversion receiver and a transceiver comprising the same
JPH11234150A (en) Digital demodulator
JP2004343164A (en) Semiconductor integrated circuit for communication and radio communication system
KR20060130047A (en) Multi-mode receiver
US6104745A (en) Transceiver for performing time division full duplex spread spectrum communication
KR101053136B1 (en) Shared function block multimode multiband communication transceiver
WO2006043533A1 (en) Receiver
WO2003007493A1 (en) Radio signal receiving apparatus and demodulating circuit
CA2456658C (en) A mixer circuit with image frequency rejection, in particular for an rf receiver with zero or low intermediate frequency
JP2006121160A (en) Multimode receiver and communication terminal
JP3441311B2 (en) Receiving machine
JP2008005259A (en) Receiver
KR100667151B1 (en) Digital ultra-narrowband terminating system using direct-conversion and its multiple-band transmission and receiving apparatus
JP2003134183A (en) Direct conversion receiver

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05795471

Country of ref document: EP

Kind code of ref document: A1