WO2006042989A1 - Procede de commande d'un piege a oxydes d'azote d'un moteur a combustion interne - Google Patents

Procede de commande d'un piege a oxydes d'azote d'un moteur a combustion interne Download PDF

Info

Publication number
WO2006042989A1
WO2006042989A1 PCT/FR2005/050832 FR2005050832W WO2006042989A1 WO 2006042989 A1 WO2006042989 A1 WO 2006042989A1 FR 2005050832 W FR2005050832 W FR 2005050832W WO 2006042989 A1 WO2006042989 A1 WO 2006042989A1
Authority
WO
WIPO (PCT)
Prior art keywords
trap
nitrogen oxides
probe
signal
calculation
Prior art date
Application number
PCT/FR2005/050832
Other languages
English (en)
Inventor
Fabrice Gauvin
Emmanuel Poilane
Bernard Dionnet
Karim Guenounou
Original Assignee
Renault S.A.S
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault S.A.S filed Critical Renault S.A.S
Publication of WO2006042989A1 publication Critical patent/WO2006042989A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio

Definitions

  • the invention relates to the exhaust systems of motor vehicles, and in particular the order of the catalytic traps nitrogen oxides situated in these circuits.
  • the cataiytic nitrogen oxide trap placed in the exhaust line of the internal combustion engine is responsible for storing the nitrogen oxides during rated operation of the engine in lean mixture.
  • the engine operates in rich mixture and the trap is responsible for reducing these nitrogen oxides by the compounds HC, CO and H 2 emitted during this phase.
  • the cataiytic trap with nitrogen oxides is a monolith pierced with open channels at both ends in order to allow the passage of the exhaust gases.
  • the channels are covered by a porous structure called "washcoat" which has a large area of contact with the gas.
  • washcoat On this washcoat are deposited precious metals (eg platinum, rhodium) and alkali metals (eg cesium) or alkaline earth metals (eg barium) which have adsorption properties.
  • the trap not only adsorbs oxides of nitrogen but also post-treatment by oxidation of CO and HC, or even particle filtration in the case of a catalyst four-way.
  • the nitrogen oxides emitted are oxidized under the cataiytic action of platinum and then fixed on the sites. trap substances, such as barium oxides, where they are retained in the form of barium nitrate.
  • the catalytic phase also makes it possible to oxidize unburned hydrocarbons of the HC type and carbon monoxide.
  • the exhaust gases comprise reducing agents, so that the nitrogen oxides present in the trap are released from the barium sites and reduced under the catalytic action of the rhodium .
  • These operating conditions of the engine in rich mixture make it possible to achieve a reduction and assume the absence of oxygen and a high concentration of reducing agents.
  • the storage efficiency of the nitrogen oxides in the trap depends on several parameters.
  • the maximum catalyst entrapment capacity denoted NSC (measured in g / l of catalyst)
  • NSC represents the maximum amount of nitrogen oxides allowed to obtain a predefined cumulative storage efficiency.
  • This maximum storage capacity has a strong temperature dependence, as shown in FIG. 1. It can thus be seen that the curve showing the evolution of this capacitance between 150 ° C. and 400 ° C. has a bell-like appearance and presents a maximum around 310 0 C.
  • the instantaneous efficiency of the trap for storing the nitrogen oxides is a function of the temperature of the substrate but also of the quantity of nitrogen oxides arriving, the quantity of nitrogen oxides already stored in the trap (value NS) and the exhaust gas flow rate, which is represented by the measured hourly volumetric velocity in h -1, which represents the inverse of the residence time of the gases in the trap, It is known that the knowledge of the instantaneous storage efficiency calculates the amount of total nitrogen oxides stored (NS) by summing the quantities of nitrogen oxides stored at each instant.
  • the quantity of nitrogen oxides (NS) stored can be the maximum catalyst entrapment capacity (NSC)
  • NSC catalyst entrapment capacity
  • This ratio gives a coefficient which characterizes the actual filling as a function of the maximum possible filling at the desired efficiency.
  • the ratio can be represented by means of the curve illustrated in FIG. 2, the latter also showing the cumulative efficiency.
  • An object of the invention is to have particularly reliable information on the state of loading of the nitrogen oxide trap.
  • a method for controlling a nitrogen oxide trap of an engine wherein, when a predetermined variation of a signal of an oxygen probe is detected during a purge of the trap is associated at the time of detection a predetermined value in a calculation of a quantity of nitrogen oxides stored in the trap.
  • Document FR-2,843,044 in the name of the Applicant discloses a method for managing the operation of a nitrogen oxide trap in which an oxygen probe is used to detect the end of the reduction activity of the nitrogen oxides adsorbed on the catalyst during a purge.
  • This document sets out to detect the end of the purge of the adsorbed nitrogen oxides by the detection of a second jump of the electrical signal of the probe placed downstream of the trap.
  • This second jump follows indeed a first variation of the signal corresponding to the increase of the richness of the gases necessary for the reduction of the oxides of nitrogen in the trap.
  • This second increase occurs when the reducing agents sent upstream of the trap are used less for the reduction of the nitrogen oxides adsorbed in the trap, and during the formation of hydrogen in the trap at the end of purging.
  • This second increase in the concentration of reducing agents, including hydrogen downstream of the trap corresponds to the end of the purge and results in a variation of the output signal of the sensor placed downstream of the trap. It is provided according to the invention to use this knowledge of the end of purge time to associate this data with a predetermined value for resetting a calculation of a quantity of nitrogen oxides stored in the trap.
  • the variation is an inflection of the signal during a growth following a plateau;
  • the calculation comprises an estimation of the quantity of nitrogen oxides by discretization of the geometry of the trap;
  • the invention also provides an exhaust system for an engine, comprising:
  • an oxygen sensor arranged to detect a predetermined variation of a signal of the probe during a purge of the trap, the member being arranged to associate at the instant corresponding to this detection a predetermined value in a calculation of a quantity. of nitrogen oxides stored in the trap.
  • the probe may be a binary or proportional oxygen sensor.
  • FIGS. 1 and 2 illustrate curves relating to the capacity and efficiency of a nitrogen oxide trap of the prior art
  • FIG. 3 is a schematic view of the engine and the exhaust system according to the invention in a preferred embodiment.
  • FIGS. 4 and 5 are curves illustrating the exploitation of the signal of the second probe in the engine of FIG. 3.
  • the exhaust circuit 2 is associated with a motor 4. internal combustion engine of a motor vehicle. This is a diesel engine.
  • the intake circuit 6 of this engine comprises an air flow meter 8, an air shutter 10, a turbocharger compressor 12, a charge air exchanger 16 and a collector 18. These elements have been listed in the order corresponding to their succession from upstream to downstream with reference to the flow direction of the gases in the intake circuit 6. They communicate with each other in series in this order.
  • the manifold opens into the cylinder head of the engine 20.
  • the latter opens at the inlet of the exhaust system 2 which comprises a turbine 22 of the turbocompressor 14 and then an oxygen sensor 24 (which is in this case proportional type), a nitrogen oxide trap 26, an oxygen probe 28 (which is in this case of the binary type but may otherwise be of the proportional type), a temperature sensor 30, a particulate filter 32 and a temperature sensor 34.
  • an oxygen sensor 24 which is in this case proportional type
  • a nitrogen oxide trap 26 an oxygen probe 28 (which is in this case of the binary type but may otherwise be of the proportional type)
  • a temperature sensor 30 which is in this case of the binary type but may otherwise be of the proportional type
  • a temperature sensor 30 which is in this case of the binary type but may otherwise be of the proportional type
  • a temperature sensor 34 which opens at the inlet of the exhaust system 2 which comprises a turbine 22 of the turbocompressor 14 and then an oxygen sensor 24 (which is in this case proportional type), a nitrogen oxide trap 26, an oxygen probe 28 (which is in this case of the binary type but
  • the engine comprises a exhaust gas recirculation comprising a conduit 44 communicating an upstream section of the exhaust circuit 2 with the manifold 18.
  • This conduit comprises an EGR valve 46 and upstream thereof two branches 48,50 s' extending in parallel with each other.
  • the branch 50 carries a heat exchanger 52 EGR gas.
  • a lung 54 is connected to each of the branches and is itself controlled by a solenoid valve 56.
  • FIG. 4 shows the evolution of the signal 61 of the downstream probe 28 as a function of time during a purge of the trap 26.
  • the evolution of this signal is already disclosed in the above-mentioned document FR-2 843 044 and refer to the latter for further details.
  • the signal has a growth phase 60 corresponding to the beginning of the purge to increase the richness of the gases necessary for the reduction of nitrogen oxides in the trap.
  • the signal of the probe knows a first plateau corresponding to the part 62 of the signal. By plateau is meant a portion of the signal for which the oxygen content is substantially constant during a time interval.
  • second signal growth phase 64 which notably comprises an inflection point 66 due to the fact that the signal then has a second plate 68.
  • the growth 64 therefore characterizes the end of the purging process. It is experimentally possible to measure the quantity of nitrogen oxides stored on a catalytic trap by sending a flow of nitrogen at high temperature (for example higher than 650 ° C.) upstream of the trap and by measuring downstream of the trap the total desorption of nitrogen oxides. The result of this experiment is illustrated in FIG.
  • the engine illustrated in FIG. 3 comprises, in a conventional manner, a motor control and control member comprising in particular a central unit.
  • This organ triggers and controls in particular the purge trap 26. It has programs to perform either the count of the amount of nitrogen oxides in the trap, an estimate of this amount, or both.
  • the controller updates the counter of the amount of nitrogen oxides to a reset value equal to 0 or close to 0. It can also provide this same value as initialization data in the algorithm for estimating the amount of nitrogen oxides stored.
  • the detection of the end of the purge is characterized by a bit forming a jump in the detection curve 74. It follows a reset to an initial value, for example to 0, of the counter nitrogen oxides stored as indicated on curve 76 which represents the amount of nitrogen oxides. It is thus used that the imminent arrival of the second plateau of the signal of the probe downstream of the trap means that all the nitrogen oxides stored on the trap have been reduced. In other words, the detection of the imminence of this second plateau by means of a control strategy makes it possible to raise an information by means of a detection bit which gives the order to reset the oxide counter to 0. stored nitrogen.
  • the use of this information obtained in closed loop which is itself correlated with a laboratory measurement of the amount of nitrogen oxides remaining in the catalytic trap, allows a reliable reset of the oxide calculator. nitrogen stored.
  • the invention therefore makes it possible to avoid accumulated errors when the model or measurement (by means of a sensor of the nitrogen oxide sensor type) is recorded of the quantity of nitrogen oxides stored.
  • the knowledge of this information also makes it possible to know more reliably the instantaneous quantity of nitrogen oxides remaining on the trap at any time.
  • the aforementioned estimation method of the quantity of nitrogen oxides stored on the trap may for example implement the following steps:
  • the trap geometry is discretized into several successive individual reactors perfectly agitated; and a thermal model is combined, making it possible to calculate the variation of the temperature of the catalytic phase of the trap during the passage of the exhaust gases, and an adsorption model making it possible to calculate the instantaneous mass of nitrogen oxides. stored in the trap according to the characteristics of the trap, the temperature from the thermal model for each individual reactor and the mass flow rate of the engine exhaust gas.
  • Knowing the amount of nitrogen oxides stored is important to optimize the operation of the trap, we will take care to make robust the detection strategy of the variation giving the end of purge information.
  • the variation of the signals of the probes serving as information any noise will be treated in the measurement.
  • a second method for estimating the amount of reduced nitrogen oxides will preferably be implemented.
  • a high threshold level for the signal of the probe will give the complete purge information.
  • the invention thus provides a method of resetting the counter of nitrogen oxides stored during the purge of the nitrogen oxide trap from physical information indicative of the end of purging. Thanks to the invention, this reset is performed reliably.

Abstract

Dans le procédé de commande d'un piège à oxydes d'azote d'un moteur, on détecte une variation prédéterminée (66) d'un signal (61 ) d'une sonde à oxygène durant une purge du piège, et on associe à l'instant de la détection une valeur prédéterminée dans un calcul d'une quantité d'oxyde d'azote stockés dans le piège.

Description

PROCÉDÉ DE COMMANDE D'UN PIEGE A OXYDES D'AZOTE D'UN MOTEUR A
COMBUSTION INTERNE
L'invention concerne les circuits d'échappement de véhicule automobile, et en particulier la commande des pièges catalytiques à oxydes d'azote situés dans ces circuits.
Pour répondre aux exigences réglementaires concernant les émissions de composés tels que HC, CO1 NOx et de particules, il est connu de placer, dans la ligne d'échappement des moteurs à combustion interne, des systèmes de traitement en continu tels que des catalyseurs d'oxydation pour traiter Ses composés HC et CO ou des filtres à particules ou des pièges à NOx. Ces derniers systèmes alternent les phases de stockage des polluants et de régénération du piège, c'est-à-dire de conversion des polluants stockés en substances non polluantes.
Le piège cataiytique à oxydes d'azote placé dans !a ligne d'échappement du moteur à combustion interne est chargé de stocker les oxydes d'azote lors du fonctionnement nominal du moteur en mélange pauvre. Pendant la phase de régénération du piège, le moteur fonctionne en mélange riche et le piège est chargé de réduire ces oxydes d'azote par les composés HC, CO et H2 émis pendant cette phase.
Plus précisément, le piège cataiytique à oxydes d'azote, ou plus simplement catalyseur, est un monolithe percé de canaux ouverts à leurs deux extrémités afin de permettre le passage des gaz d'échappement. Les canaux sont couverts par une structure poreuse appelée « washcoat » qui présente une grande surface de contact avec les gaz. Sur ce washcoat sont déposés des métaux précieux (ex : platine, rhodium) et des métaux alcalins (ex : césium) ou alcalinoterreux (ex : baryum) qui présentent des propriétés d'adsorption. Le piège effectue non seulement une adsorption des oxydes d'azote mais aussi un post-traitement par oxydation du CO et des HC, voire un filtrage des particules dans le cas d'un catalyseur à quatre voies.
En cas d'excès d'air dans les gaz d'échappement, c'est-à-dire lorsque le moteur fonctionne en mélange pauvre, les oxydes d'azote émis sont oxydés sous l'action cataiytique du platine puis fixés sur les sites actifs du piège, tels que les oxydes de baryum où ils sont retenus sous forme de nitrate de baryum. La phase catalytique permet également d'oxyder les hydrocarbures imbrûlés de type HC et le monoxyde de carbone.
A l'inverse, lorsque le moteur fonctionne en mélange riche, les gaz d'échappement comprennent des réducteurs, de sorte que les oxydes d'azote présents dans le piège se trouvent libérés des sites de baryum et réduits sous l'action catalytique du rhodium. Ces conditions de fonctionnement du moteur en mélange riche permettent de réaliser une réduction et supposent l'absence d'oxygène et une forte concentration de réducteurs. Par ailleurs, l'efficacité du stockage des oxydes d'azote dans le piège est fonction de plusieurs paramètres. Ainsi, la capacité maximale de piégeage du catalyseur, notée NSC (mesurée en g / I de catalyseur), représente la quantité maximale d'oxydes d'azote admissible pour obtenir une efficacité de stockage cumulée prédéfinie. Cette capacité de stockage maximale présente une forte dépendance à la température, comme illustré à la figure 1. On voit ainsi que la courbe montrant l'évolution de cette capacité entre 1500C et 4000C a une allure en cloche et présente un maximum aux alentours de 3100C.
L'efficacité instantanée du piège pour stocker les oxydes d'azote est une fonction de la température du substrat mais également de la quantité d'oxydes d'azote arrivants, de la quantité d'oxydes d'azote déjà stockés dans le piège (valeur NS) et du débit des gaz d'échappement qui est représenté par la vitesse volumétrique horaire mesurée en h"1 qui représente l'inverse du temps de séjour des gaz dans le piège. On sait que la connaissance de l'efficacité de stockage instantanée permet de calculer la quantité d'oxydes d'azote totale stockés (NS) en effectuant la somme des quantités d'oxydes d'azote stockés à chaque instant. On peut enfin rapporter la quantité d'oxydes d'azote stockés (NS) à la capacité maximale de piégeage du catalyseur (NSC). Ce rapport permet d'obtenir un coefficient qui caractérise le remplissage effectif en fonction du remplissage maximum possible à l'efficacité voulue. L'efficacité instantanée du stockage en fonction de ce rapport peut être représentée au moyen de la courbe illustrée à la figure 2, cette dernière montrant également l'efficacité cumulée. Ces deux mesures sont faites à une température donnée du piège, ici de 25O0C.
Les phases de régénération du piège étant commandées en fonction de la quantité d'oxydes d'azote stockés, la connaissance de l'état de chargement du piège est nécessaire à la gestion optimale de la régénération. Elle permet en effet d'une part d'optimiser l'efficacité du stockage et la quantité d'oxydes d'azote piégés lors du fonctionnement nominal du moteur, et d'autre part d'optimiser la quantité d'oxydes d'azote réduits pendant la phase de régénération en mélange riche.
Il est connu à cet égard de disposer d'un compteur des oxydes d'azote stockés qui permet de savoir à quel moment déclencher la régénération du piège.
Un but de l'invention est de disposer d'une information particulièrement fiable concernant l'état de chargement du piège en oxydes d'azote.
A cet effet, on prévoit selon l'invention un procédé de commande d'un piège à oxydes d'azote d'un moteur, dans lequel, lorsque l'on détecte une variation prédéterminée d'un signal d'une sonde à oxygène durant une purge du piège, on associe à l'instant de la détection une valeur prédéterminée dans un calcul d'une quantité d'oxydes d'azote stockés dans le piège.
On connaît en effet du document FR-2 843 044 au nom de la demanderesse un procédé de gestion du fonctionnement d'un piège à oxydes d'azote dans lequel on utilise une sonde à oxygène pour détecter la fin de l'activité de réduction des oxydes d'azote adsorbés sur le catalyseur lors d'une purge. Ce document expose de détecter la fin de la purge des oxydes d'azote adsorbés par la détection d'un deuxième saut du signal électrique de la sonde placée en aval du piège. Ce deuxième saut suit en effet une première variation du signal correspondant à l'augmentation de la richesse des gaz nécessaire à la réduction des oxydes d'azote dans le piège. Cette deuxième augmentation intervient dès lors que les réducteurs envoyés en amont du piège sont moins utilisés pour la réduction des oxydes d'azote adsorbés dans le piège, et lors de la formation d'hydrogène au sein du piège en fin de purge. Cette seconde augmentation de la concentration de réducteurs, dont l'hydrogène en aval du piège, correspond à la fin de la purge et se traduit par une variation du signal de sortie du capteur placé en aval du piège. On prévoit selon l'invention d'utiliser cette connaissance de l'instant de la fin de la purge pour associer cette donnée à une valeur prédéterminée permettant de réinitialiser un calcul d'une quantité d'oxydes d'azote stockés dans le piège.
Le procédé selon l'invention pourra présenter en outre au moins l'une quelconque des caractéristiques suivantes :
- la variation est une inflexion du signal lors d'une croissance faisant suite à un plateau ; - le calcul comprend une estimation de la quantité d'oxydes d'azote par discrétisation de la géométrie du piège ; et
- l'estimation met en œuvre :
- un calcul d'une variation d'une température du piège ;
- un calcul d'une quantité instantanée d'oxydes d'azote stockés dans le piège.
On prévoit également selon l'invention un circuit d'échappement d'un moteur, comprenant :
- un piège à oxydes d'azote ;
- une sonde à oxygène ; et - un organe de commande agencé pour détecter une variation prédéterminée d'un signal de la sonde durant une purge du piège, l'organe étant agencé pour associer à l'instant correspondant à cette détection une valeur prédéterminée dans un calcul d'une quantité d'oxydes d'azote stockés dans le piège. La sonde pourra être une sonde à oxygène binaire ou proportionnelle. D'autres caractéristiques et avantages de l'invention apparaîtront encore dans la description suivante d'un mode préféré de réalisation donné à titre d'exemple non limitatif en référence aux dessins annexés sur lesquels :
- les figures 1 et 2 illustrent des courbes relatives à la capacité et à l'efficacité d'un piège à oxydes d'azote de l'art antérieur ;
- la figure 3 est une vue schématique du moteur et du circuit d'échappement selon l'invention dans un mode préféré de réalisation ; et
- les figures 4 et 5 sont des courbes illustrant l'exploitation du signal de la deuxième sonde dans le moteur de la figure 3. Dans le mode de réalisation illustré à la figure 3, le circuit d'échappement 2 est associé à un moteur 4 à combustion interne de véhicule automobile. Il s'agit en l'espèce d'un moteur diesel. Le circuit d'admission 6 de ce moteur comprend un débitmètre d'air 8, un volet d'air 10, un compresseur 12 de turbocompresseur 14, un échangeur d'air de suralimentation 16 et un collecteur 18. Ces éléments on été énumérés dans l'ordre correspondant à leur succession depuis l'amont jusqu'à l'aval par référence au sens de circulation des gaz dans le circuit d'admission 6. Ils communiquent les uns avec les autres en série dans cet ordre. Le collecteur débouche dans la culasse du moteur 20. Ce dernier débouche à l'entrée du circuit d'échappement 2 qui comprend une turbine 22 du turbocompresseur 14 puis une sonde à oxygène 24 (qui est en l'espèce de type proportionnel), un piège à oxydes d'azote 26, une sonde à oxygène 28 (qui est en l'espèce de type binaire mais pourra sinon être du type proportionnel), un capteur de température 30, un filtre à particules 32 et un capteur de température 34. Ces différents éléments ont eux aussi été énumérés dans l'ordre de leur succession d'amont en aval dans le circuit d'échappement 2. Ils sont tous disposés en série les uns des autres. En particulier, le piège 26 est encadré par les deux sondes 24 et 28 disposées respectivement en amont et en aval du piège. Un capteur de pression différentielle 40 est disposé dans une dérivation 42 du filtre à particules 32. Le moteur comprend un circuit de recirculation des gaz d'échappement comprenant un conduit 44 mettant en communication une section amont du circuit d'échappement 2 avec le collecteur 18. Ce conduit comprend une vanne d'EGR 46 et en amont de celle-ci deux branches 48,50 s'étendant en parallèle l'une de l'autre. La branche 50 porte un échangeur thermique 52 des gaz d'EGR. Un poumon 54 est relié à chacune des branches et est lui-même commandé par une électrovanne 56. Ces deux éléments permettent de commander et de régler le refroidissement des gaz d'EGR.
On a rappelé à la figure 4 l'évolution du signal 61 de la sonde aval 28 en fonction du temps lors d'une purge du piège 26. L'évolution de ce signal est déjà divulguée dans le document FR-2 843 044 précité et on se référera à ce dernier pour de plus amples détails. Le signal présente une phase de croissance 60 correspondant au début de la purge à l'augmentation de la richesse des gaz nécessaire à la réduction des oxydes d'azote dans le piège. Durant le traitement des oxydes d'azote qui constitue la purge, le signal de la sonde connaît un premier plateau correspondant à la partie 62 du signal. Par plateau, on entend une portion du signal pour laquelle la teneur en oxygène est sensiblement constante durant un intervalle de temps.
A l'issue de ce premier plateau, apparaît une deuxième phase de croissance 64 du signal qui comprend notamment un point d'inflexion 66 en raison du fait que le signal présente ensuite un deuxième plateau 68. Celui-ci survient lorsque les réducteurs envoyés en amont du piège sont moins utilisés pour la réduction des oxydes d'azote adsorbés. La croissance 64 caractérise par conséquent la fin du processus de purge. II est expérimentalement possible de mesurer la quantité d'oxydes d'azote stockés sur un piège catalytique en envoyant un flux d'azote à haute température (supérieur par exemple à 6500C) en amont du piège et en mesurant en aval du piège la désorption totale des oxydes d'azote. Le résultat de cette expérimentation est illustré à la figure 5 sur laquelle la courbe 70 illustre le signal de tension d'une sonde d'oxygène disposée en aval du piège et la courbe 72 illustre la quantité d'oxydes d'azote restants dans le piège. Ces deux grandeurs sont respectivement mesurées sur l'axe des ordonnées à gauche et à droite. L'axe des abscisses correspond à l'échelle temporelle comme dans la figure 4. Cette expérimentation permet de mesurer la quantité d'oxydes d'azote restant dans le catalyseur à différents instants de la purge. Ces différents instants sont reliés à la même base temps que le signal de la sonde placée en aval. On observe que la quantité d'oxydes d'azote résiduels décroît de façon quasi linéaire lorsque le signal de la sonde se situe sur le premier plateau. Lorsque le signal de la sonde atteint le deuxième plateau, la quantité résiduelle d'oxydes d'azote atteint la valeur 0 ou une valeur proche de 0. Cette expérimentation confirme donc que la fin de la purge a lieu au point 66 et se caractérise par une quantité minimale voire nulle d'oxydes d'azote dans le piège.
Le moteur illustré à la figure 3 comprend de façon classique un organe de commande et de pilotage du moteur comprenant notamment une unité centrale. Cet organe déclenche et pilote en particulier la purge du piège 26. Il est doté de programmes permettant d'effectuer soit le comptage de la quantité d'oxydes d'azote dans le piège, soit une estimation de cette quantité, voire les deux.
Dans le cadre de ces calculs de la quantité d'oxydes dans le piège, il est possible d'utiliser la détection du point d'inflexion 66, c'est-à-dire l'arrivée imminente du deuxième plateau 68. Pour cela, lors de cette détection de la fin de la purge, l'organe de commande met à jour le compteur de la quantité d'oxydes d'azote à une valeur de réinitialisation égale à 0 ou proche de 0. Il peut fournir également cette même valeur comme donnée d'initialisation dans l'algorithme d'estimation de la quantité d'oxydes d'azote stockés.
Ainsi, comme illustré à la figure 5, la détection de la fin de la purge se caractérise par un bit formant un saut dans la courbe de détection 74. Il s'ensuit une remise à une valeur initiale, par exemple à 0, du compteur des oxydes d'azote stockés comme indiqué sur la courbe 76 qui représente la quantité d'oxydes d'azote. On utilise ainsi le fait que l'arrivée imminente du deuxième plateau du signal de la sonde en aval du piège signifie que tous les oxydes d'azote stockés sur le piège ont été réduits. En d'autres termes, la détection de l'imminence de ce deuxième plateau au moyen d'une stratégie de contrôle permet de lever une information au moyen d'un bit de détection qui donne l'ordre de réinitialiser à 0 le compteur des oxydes d'azote stockés. Ainsi, l'utilisation de cette information obtenue en boucle fermée, qui est elle-même corrélée à une mesure effectuée en laboratoire de la quantité d'oxydes d'azote restant dans le piège catalytique, permet une réinitialisation fiable du calculateur des oxydes d'azote stockés. L'invention permet par conséquent d'éviter les erreurs cumulées lors de la comptabilisation par modèle ou par mesure (au moyen d'un capteur de type capteur d'oxydes d'azote) de la quantité d'oxydes d'azote stockés.
La connaissance de cette information permet également de connaître de façon plus fiable la quantité instantanée d'oxydes d'azote restant sur le piège à tout moment. Le procédé d'estimation précité de la quantité d'oxydes d'azote stockés sur le piège pourra par exemple mettre en œuvre les étapes suivantes :
- on discrétise la géométrie du piège en plusieurs réacteurs individuels successifs parfaitement agités ; et - on combine un modèle thermique, permettant de calculer la variation de la température de la phase catalytique du piège lors de la traversée des gaz d'échappement, et un modèle d'adsorption permettant de calculer la masse instantanée d'oxydes d'azote stockés dans le piège en fonction des caractéristiques du piège, de la température issue du modèle thermique pour chaque réacteur individuel et du débit massique de gaz d'échappement du moteur.
La connaissance de la quantité d'oxydes d'azote stockés étant importante pour optimiser le fonctionnement du piège, on aura soin de rendre robuste la stratégie de détection de la variation donnant l'information de fin de purge. De plus, la variation des signaux des sondes servant d'information, on traitera tout bruit dans la mesure. Pour prévenir le cas de l'arrêt d'une purge avant la détection du double basculement de la sonde, un deuxième procédé d'estimation de la quantité des oxydes d'azote réduits sera de préférence mis en place. Par ailleurs, dans le cas de l'absence du double basculement de la sonde aval, on pourra prévoir qu'un niveau de seuil haut pour le signal de la sonde donnera l'information de purge complète.
L'invention prévoit ainsi un procédé de réinitialisation du compteur d'oxydes d'azote stockés lors de la purge du piège à oxydes d'azote à partir d'informations physiques indicatrices de la fin de purge. Grâce à l'invention, cette réinitialisation s'effectue de manière fiable.
Bien entendu, on pourra apporter à l'invention de nombreuses modifications sans sortir du cadre de celle-ci.

Claims

REVENDICATIONS
1. Procédé de commande d'un piège (26) à oxydes d'azote d'un moteur, caractérisé en ce que, lorsque l'on détecte une variation prédéterminée (66) d'un signal (61 ) d'une sonde à oxygène (28) durant une purge du piège, on associe à l'instant de la détection une valeur prédéterminée dans un calcul d'une quantité d'oxydes d'azote stockés dans le piège.
2. Procédé selon la revendication précédente, caractérisé en ce que la variation (66) est une inflexion du signal lors d'une croissance (64) faisant suite à un plateau (62).
3. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le calcul comprend une estimation de la quantité d'oxydes d'azote par discrétisation de la géométrie du piège.
4. Procédé selon la revendication précédente, caractérisé en ce que l'estimation met en œuvre : - un calcul d'une variation d'une température du piège ;
- un calcul d'une quantité instantanée d'oxydes d'azote stockés dans le piège.
5. Circuit d'échappement (2) d'un moteur (4), comprenant : - un piège à oxydes d'azote (26) ;
- une sonde à oxygène (28) ; et
- un organe de commande agencé pour détecter une variation prédéterminée (66) d'un signal (61 ) de la sonde durant une purge du piège, caractérisé en ce que l'organe est agencé pour associer à l'instant correspondant à cette détection une valeur prédéterminée dans un calcul d'une quantité d'oxydes d'azote stockés dans le piège.
6. Circuit selon la revendication précédente, caractérisé en ce que la sonde (28) est une sonde à oxygène de type binaire ou proportionnelle.
PCT/FR2005/050832 2004-10-18 2005-10-07 Procede de commande d'un piege a oxydes d'azote d'un moteur a combustion interne WO2006042989A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0410991 2004-10-18
FR0410991A FR2876736B1 (fr) 2004-10-18 2004-10-18 Procede de commande d'un piege a oxydes d'azote d'un moteur a combustion interne

Publications (1)

Publication Number Publication Date
WO2006042989A1 true WO2006042989A1 (fr) 2006-04-27

Family

ID=34949942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2005/050832 WO2006042989A1 (fr) 2004-10-18 2005-10-07 Procede de commande d'un piege a oxydes d'azote d'un moteur a combustion interne

Country Status (2)

Country Link
FR (1) FR2876736B1 (fr)
WO (1) WO2006042989A1 (fr)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19929293A1 (de) * 1999-06-25 2000-12-28 Volkswagen Ag Verfahren zur Steuerung einer Regeneration eines NOx-Speicherkatalysators
EP1134388A2 (fr) * 2000-03-17 2001-09-19 Ford Global Technologies, Inc. Méthode et dispositif pour évaluer les performances d'un dispositif de traitement des émissions d'échappement
US20030126859A1 (en) * 2002-01-08 2003-07-10 Mitsubishi Denki Kabushiki Kaisha Exhaust gas purification method for internal combustion engine
FR2843044A1 (fr) * 2002-07-31 2004-02-06 Renault Sa Procede et dispositif de gestion du fonctionnement d'un piege a oxydes d'azote pour un moteur a combustion interne fonctionnant en melange pauvre.
EP1426572A2 (fr) * 2002-11-29 2004-06-09 Toyota Jidosha Kabushiki Kaisha Dispositif et procédé de purification de gaz d'échappement pour moteur à combustion interne
FR2853007A1 (fr) * 2003-03-25 2004-10-01 Bosch Gmbh Robert Procede de gestion d'un catalyseur accumulateur d'oxydes d'azote (nox) installe dans la zone des gaz d'echappement d'un moteur a combustion interne

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19929293A1 (de) * 1999-06-25 2000-12-28 Volkswagen Ag Verfahren zur Steuerung einer Regeneration eines NOx-Speicherkatalysators
EP1134388A2 (fr) * 2000-03-17 2001-09-19 Ford Global Technologies, Inc. Méthode et dispositif pour évaluer les performances d'un dispositif de traitement des émissions d'échappement
US20030126859A1 (en) * 2002-01-08 2003-07-10 Mitsubishi Denki Kabushiki Kaisha Exhaust gas purification method for internal combustion engine
FR2843044A1 (fr) * 2002-07-31 2004-02-06 Renault Sa Procede et dispositif de gestion du fonctionnement d'un piege a oxydes d'azote pour un moteur a combustion interne fonctionnant en melange pauvre.
EP1426572A2 (fr) * 2002-11-29 2004-06-09 Toyota Jidosha Kabushiki Kaisha Dispositif et procédé de purification de gaz d'échappement pour moteur à combustion interne
FR2853007A1 (fr) * 2003-03-25 2004-10-01 Bosch Gmbh Robert Procede de gestion d'un catalyseur accumulateur d'oxydes d'azote (nox) installe dans la zone des gaz d'echappement d'un moteur a combustion interne

Also Published As

Publication number Publication date
FR2876736A1 (fr) 2006-04-21
FR2876736B1 (fr) 2007-01-19

Similar Documents

Publication Publication Date Title
EP1008379B1 (fr) Procédé et dispositif d'élimination des oxydes d'azote dans une ligne d'échappement de moteur à combustion interne
FR2868470A1 (fr) Dispositif de purification de gaz d'echappement et procede de purification de gaz d'echappement pour un moteur a combustion interne
EP1171696B1 (fr) Controle de la combustion en regenerant un filtre de particules
WO2006003341A1 (fr) Procede et dispositif pour gerer le fonctionnement d'un piege a oxydes d'azote, et diagnostiquer son etat de vieillissement
FR2952124A1 (fr) Procede et dispositif pour surveiller une installation de nettoyage des gaz d'echappement
EP1568863A1 (fr) Procédé de diagnostic pour un catalyseur de gaz d'echappement d'un moteur thermique et vehicule mettant en oeuvre ce procédé
WO2017216440A1 (fr) Procede de correction de diagnostic d'un catalyseur tenant compte d'une regeneration d'un filtre a particules dans une ligne d'echappement
FR2941011A1 (fr) Procede et appareil de commande pour controler un catalyseur d'oxydation et un dispositif de post-traitement des gaz d'echappement d'un moteur a combustion
JP2005240717A (ja) 触媒の劣化診断装置
EP0997626B1 (fr) Procédé de commande de la purge en oxydes d'azote d'un pot catalytique de traitement des gaz d'échappement d'un moteur à combustion interne
FR2862701A1 (fr) Procede et dispositif de regeneration d'un filtre a particules integre dans une ligne d'echappement d'un moteu a combustion interne
EP2145081A2 (fr) Procede de surveillance de l'efficacite d'un convertisseur catalytique stockant les nox implante dans une ligne d'echappement d'un moteur a combustion interne et moteur comportant un dispositif mettant en oeuvre ledit procede
FR2807473A1 (fr) Dispositif et procede pour coordonner des mesures a prendre concernant les gaz d'echappement
EP1639239B1 (fr) PROCEDE ET DISPOSITIF D’ESTIMATION D’UNE MASSE D’OXYDES D’AZOTE STOCKEE DANS UN DISPOSITIF DE PIEGEAGE CATALYTIQUE DE VEHICULE AUTOMOBILE
WO2006042989A1 (fr) Procede de commande d'un piege a oxydes d'azote d'un moteur a combustion interne
FR2935437A1 (fr) Procede de determination du chargement en suies d'un filtre a particules
FR2833300A1 (fr) Procede d'exploitation de dispositifs d'epuration des gaz d'echappement
FR2852627A1 (fr) Procede d'epuration des gaz d'echappement pour des moteurs a combustion interne a melange pauvre
WO2016146907A1 (fr) Procédé de purge ou de charge d'oxygene d'un catalyseur installé dans le flux d'un moteur
EP2177729B1 (fr) Procédé de commande de purge d'un piège à oxydes d'azote
WO2009040485A2 (fr) Procede et systeme de gestion d'un module de traitement des gaz d'echappement
FR2746142A1 (fr) Procedes de surveillance du fonctionnement et du vieillissement d'un pot catalytique de vehicule automobile et procede de commande du moteur d'un vehicule equipe d'un tel pot
FR2943095A1 (fr) Procede de regeneration d'un filtre a particules
EP3237738A1 (fr) Procédé de purge d'un piège a oxydes d'azote et dispositif de motorisation associé
FR2950654A1 (fr) Procede de commande d'un moteur par regeneration exothermique d'un composant de post-traitement des gaz d'echappement

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05810587

Country of ref document: EP

Kind code of ref document: A1